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Abstract

The main objective of this thesis is to develop numerical methods for solving nonlinear fractional

ordinary differential equations, nonlinear fractional partial differential equations, and linear and

nonlinear fractional delay differential equation. Some methods are proposed by utilizing wavelets

operational matrix methods and quasilinearization technique, these methods are used for the solu-

tion of nonlinear fractional differential equations, we call these methods as wavelet quasilinearization

techniques. According to the wavelet quasilinearization techniques, we convert the fractional non-

linear differential equation to fractional discretize differential equation by using quasilinearization

technique and apply wavelet methods at each iteration of quasilinearization technique to get the

solution.

We established a technique by utilizing both the Haar wavelet and Picard technique for solving

the fractional nonlinear differential equation. While some methods based on the wavelets meth-

ods and method of steps, used for the solution of linear and nonlinear fractional delay differential

equation. These techniques converts the fractional linear or nonlinear delay differential equation

on a given interval to an fractional linear or nonlinear differential equation without delay over that

interval, by using the function defined on previous interval, and then apply the wavelet method

on the obtained fractional differential equation to find the solution on a given interval. The same

procedure provides the solution on next intervals.

We also developed a method, Gegenbauer wavelet operational matrix method, by using Gegen-

bauer polynomials. The Gegenbauer wavelet matrix, Gegenbauer wavelet operational matrix of

fractional integration and Gegenbauer wavelet operational matrix of fractional integration for bound-

ary value problems are derived, constructed and utilized for the solution of fractional differential

equations.

The convergence and supporting analysis of our methods are also investigated. The comparison

analysis of methods with other existing numerical methods is also performed.
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Chapter 1

Introduction

1.1 Fractional Calculus

Fractional calculus is a branch of mathematics which deals with derivatives and integrals of non–

integer orders. In a letter dated 30th September 1695, L′Hospital wrote to Leibniz asking him about

a particular notation he has used in his publication for the nth order derivative of a function d
n

dxn f(x),

n ∈ N, i.e. “what would be the result if n = 1
2?” Leibniz′s response “an apparent paradox from which

one day useful consequences will be drawn.” A list of mathematicians who have provided important

contributions up to the middle of last century, includes Abel, Liouville, Laplace, Riemann, Fourier,

Grunwald, Levy, Riesz, Erdelyi, Marchaud, and Letnikov.

A brief historical overview and exposition of the fundamental theory of fractional calculus is

given by Ross [111]. Oldham and Spanier [96] wrote a book in 1974, in which they concerned with

the definitions and the properties of fractional order differential and integral operators. A survey of

many different applications which have emerged from fractional calculus is given by Podlubny [98].

The first application of the fractional calculus was made by Abel in 1823. He discovered that the

solution of the integral equation for the tautochrone problem could be obtained via derivative of

order one half. The fractional calculus has gained considerable importance during the past decades

mainly due to its application in diverse fields of science and engineering such as viscoelasticity,

control theory of dynamical systems, diffusion of biological population, electrical networks, signal

processing, electromagnetism, fluid mechanics, electrochemistry, optics and signal processing, rheol-

ogy etc. Many researchers pointed out that derivatives and integrals of non–integer order are very

suitable for the description of properties of various real phenomena.

In recent years, numerous applications of fractional order ordinary and partial differential equa-

tions have appeared in many areas of physics and engineering. There have found a number of works,

especially in hereditary solid mechanics and in viscoelasticity theory, where fractional order deriva-

tives are used for a better description of material properties. This is the main advantage of fractional

derivatives in comparison with classical integer order models in which such effects are neglected. The
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mathematical modeling and simulation of systems and processes, based on the description of their

properties in terms of fractional derivatives, naturally lead to differential equations of fractional

order and to the necessity of solving such equations. For most of fractional order differential equa-

tions, exact solutions are not known. Therefore different numerical methods have been applied for

providing approximate solutions. Some of these techniques include, the Adomian decomposition

method (ADM) [24, 112], the homotopy perturbation method (HPM) [78, 89], the variational it-

eration method (VIM) [59, 90], the generalized differential transform method (DTM) [35, 95] and

wavelet methods [22,50,54,71–73].

We provide basic theory of some special functions of the fractional calculus which are used in the

other chapters. We give some information on the gamma and the Mittag- Leffler functions. These

functions play an important role in the theory of fractional differential equations.

Euler’s Gamma Function

In 1729, Euler introduced the gamma function Γ(x) while generalizing the factorial to non integer

values. The Euler’s gamma function is defined as

Γ(x) =
∞∫
0

tx−1e−tdt. (1.1.1)

The integral (1.1.1) converges for x ∈ R+. Also Γ(1) =
∞∫
0

e−tdt = 1 and for x > 0, an integration

by parts yields

Γ(x+ 1) =
∞∫
0

txe−tdt,

= [−txe−t]∞0 + x
∞∫
0

tx−1e−tdt,

= xΓ(x),

(1.1.2)

which is an important functional equation. For integer values n, the functional equation (1.1.2)

becomes Γ(n+ 1) = n!.

Mittag Leffler Function

A Swedish mathematician Gosta Mittag Leffler introduced the Mittag Leffler function in 1902,

which is a generalization of exponential function. The one parameter Mittag Leffler function Eα(x)

is defined by

Eα(x) =
∞∑
l=0

xl

Γ(αl+1) , x ∈ C, α > 0. (1.1.3)

2



The two parameter Mittag Leffler function is introduced by Wiman in 1905 and later investigated

by agrawal and Humbert in 1953, which is a generalization of the one parameter Mittag Leffler

function. The two parameter Mittag Leffler function Eα,β(x) is defined by

Eα,β(x) =
∞∑
l=0

xl

Γ(αl+β) , x ∈ C, R(α),R(β) > 0. (1.1.4)

Some particular case of two parameter Mittag Leffler function are as under:

E1,1(x) =
∞∑
l=0

xl

Γ(l+1 =
∞∑
l=0

xl

l! = ex,

E2,1(x2) =
∞∑
l=0

x2l

Γ(2l+1 =
∞∑
l=0

x2l

(2l)! = cosh(x),

E2,2(x2) =
∞∑
l=0

x2l

Γ(2l+2 = 1
x

∞∑
l=0

x2l+1

(2l+1)! = sinh(x)
x .

(1.1.5)

We review most commonly used definition of fractional integration and differentiation.

Riemann-Liouville fractional integral operator of order α:

The Riemann-Liouville fractional order integral of order α ∈ R+ is defined as

Iαa y(x) = 1
Γ(α)

x∫
a

(x− t)α−1y(t)dt, (1.1.6)

for a < x ≤ b, and Iαa becomes zero for x = a.

Riemann-Liouville fractional derivative operator of order α:

The Riemann-Liouville fractional order derivative of order α ∈ R+ is defined as

RD
α
a y(x) = 1

Γ(n−α)

(
d
dx

)n x∫
a

(x− t)n−α−1y(t)dt, (1.1.7)

for a < x ≤ b, where n− 1 < α < n, n ∈ N and n = dαe.
Caputo fractional derivative operator of order α:

The Caputo fractional order derivative of order α ∈ R+ is defined as

CD
α
a y(x) = 1

Γ(n−α)

x∫
a

(x− t)n−α−1
(
d
dt

)n
y(t)dt, (1.1.8)

for a < x ≤ b, where n− 1 < α < n, n ∈ N and n = dαe. RD
α
a and CD

α
a becomes zero for x = a.

1.2 Wavelets

In 1807, a French mathematician, Joseph Fourier, discovered that complex function could be rep-

resented and approximated as a weighted sum of basic trigonometric functions. There are many

advantages to such approximations and representations, as they provide valuable insight to analysis

of complicated functions. Fourier used sinusoids of varying frequencies as basis functions. These

representations had one major drawback due to using sinusoids as basis functions. Sinusoids have

3



perfect compact support in frequency domain, but not in time domain. Therefore, they cannot

be used to approximate non-stationary signals. The Fourier representation only provides spectral

content of the signal with no indication about the time localization of the spectral components.

Therefore the analysis of non-stationary signals, whose spectral content change in time, requires

a time-frequency representation, rather than just a frequency representation. Dennis Gabor was

modify the Fourier transform into short time Fourier transform in 1946. The idea behind the short

time Fourier transform was segmenting the signal by using a time-localized window, and the Fourier

transform was computed for every windowed segment of the signal. It suffered from one major

drawback that the fixed width of the window function for the analysis of the entire signal lead to

the resolution fixed.

Jean Morlet, a geophysical engineer, was faced problem while analyzing signals which had very

high frequency components with short time spans, and low frequency components with long time

spans. STFT was not able to analyze both at the same time. In 1982, Jean Morlet [97] first

introduced the idea of using a different window function for analyzing different frequency bands.

These windows were all generated by dilation or compression of a single window function. These

window functions had compact support both in time and frequency. The nature of these window

functions are small and oscillatory, Morlet named his basis functions as wavelets of constant shape. In

1985, Yves Meyer, a French mathematician, he constructed orthogonal wavelet basis functions with

very good time and frequency localization. The first entrant in the wavelet theory was a Hungarian

mathematician named Alfred Haar, who introduced in 1909 the functions that are now called Haar

wavelets. These functions consist simply of a short positive pulse followed by a short negative pulse.

Inspired by the work of Meyer, Ingrid Daubechies, a former graduate student of Grossman at the Free

University of Brussels, developed the wavelet frames for discretization of time and scale parameters

of the wavelet transform. In 1986 Mallat, a graduate student at Upenn, developed the idea of

multiresolution analysis (MRA) for discrete wavelet transform (DWT) with Meyer. In 1988, Ingrid

Daubechies constructed families of compactly supported orthonormal wavelets with some degree of

smoothness, which laid the foundations of the modern wavelet theory. For more detail about the

development of wavelet theory, we refer the readers to [26,97].

Wavelet analysis is a new development in the area of applied mathematics. Wavelets are a special

kind of functions which exhibits oscillatory behavior for a short period of time and then die out. In

wavelets, we use a single function and its dilations and translations to generate a set of orthonormal

basis functions to represent a signal. We define wavelet (mother wavelet) by [100]:

ψa,b(x) = 1√
|a|
ψ(x−ba ), a, b ∈ R, a 6= 0, (1.2.1)

where a and b are called scaling and translation parameter respectively. If |a| < 1, the wavelet (1.2.1)

is the compressed version (smaller support in time-domain) of the mother wavelet and corresponds

to mainly higher frequencies. On the other hand, when |a| > 1, the wavelet (1.2.1) has larger support
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in time-domain and corresponds to lower frequencies.

A wavelet is a function ψ which satisfies the condition, known as the wavelet admissibility

condition:
Cψ =

∞∫
−∞

|ψ̂(ω)|2
|ω| dω <∞, (1.2.2)

where ψ̂(ω) is the Fourier transform of ψ(x). This condition ensures that ψ̂(ω) goes to zero quickly

as ω → 0, it is required that

ψ̂(0) =

∞∫
−∞

ψ(x)dx = 0.

Another condition impose on wavelet function is finite energy, that is

∞∫
−∞

|ψ(x)|2dx <∞.

Continuous Wavelet Transform

Continuous wavelet transform is defined by the inner product of the function f(x) ∈ L2(R) and the

basis wavelet ψa,b(x) ∈ L2(R),

CWTf (a, b) = (f, ψa,b) = 1√
|a|

∞∫
−∞

f(x)ψ(x−ba )dx. (1.2.3)

Inverse Continuous Wavelet Transform

f(x) =
1

Cψ

∫ ∞
−∞

∫ ∞
−∞

CWTf (a, b)ψa,b(x)
dadb

a2
.

Continuous Wavelet Transform (CWT) is not of a greater practical use, because the correlation

of the function and the wavelet is calculated during the wavelet being continuously translated and

continuously scaled that is, the parameters a and b are continuous variables. Most of the coefficients

thus calculated are redundant and there are infinitely many of them. For that reason discretization

is performed. From a mathematical point of view, a continuous representation of a function of two

continuous parameters a, b in equation (1.2.3) can be converted into a discrete one by assuming that

a and b take only integer values. Discretizing the CWT parameters via a = 2−j and b = k2−j , we

get

ψj,k(x) = 2
j
2ψ(2jx− k). (1.2.4)

These wavelets for all integers j and k produce an orthogonal basis and it is called mother wavelet.

Other wavelets are produced by translation and dilation of the mother wavelet.

Daubechies’ constructed a family of orthonormal bases of compactly supported wavelets for

the space of square-integrable functions, L2(R). Due to the fact that they possess several useful

properties, such as orthogonality, compact support, exact representation of polynomials to a certain

degree, and ability to represent functions at different levels of resolution. The Daubechies’ wavelet
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discretization of differential equations is based on the Galerkin approach. The wavelet-Galerkin

scheme involves the evaluation of connection coefficients [25] to approximate derivatives as well as

non-linear terms. Since Daubechies’ wavelet do not have an explicit expression, therefore analytical

differentiation or integration is not possible. This complicates the solution of differential equations.

The connection coefficients are integrals with integrands being products of wavelet bases and their

derivatives. Due to the derivatives of compactly supported wavelets being highly oscillatory, it is

difficult and unstable to compute the connection coefficients by the numerical evaluation of integral.

In order to overcome this problem, algorithms have been given in chapter 7 for the exact evaluation

of connection coefficients. The detail analysis of Daubechies’ wavelet, multi-resolution analysis and

wavelet-Galerkin scheme are given in chapter 7.

There are many kinds of wavelets. The most simplest orthonormal wavelet with compact support

is the Haar wavelet. Haar wavelet is a rectangular function. In the 1980s, it turned out that the

Haar function was in fact the Daubechies’ wavelet of order 1. A good feature of the Haar wavelets

is the possibility to integrate them analytically arbitrary times. A drawback of the Haar wavelets is

their discontinuity. Since the derivatives do not exist in the points of discontinuity, it is not possible

to apply the Haar wavelets for solving differential equation directly. There are two possibilities to

handle this situation. One way is to regularize the Haar wavelets with interpolating splines. This

approach has been introduced by Cattani [15]. But this approach complicates the solution process

and lost the simplicity of the Haar wavelets. The other way is to make use of the integral method,

which was proposed by Chen and Hsiao [16]. They expand the highest derivative in the differential

equation into Haar series, and lower derivatives are obtained through integrations. The Haar wavelet

algorithm for solving differential equations is based on the collocation method. A detail study of

Haar wavelet is given in [52].

1.3 Quasilinearization

Linearization is carried out by considering the first two terms in the Taylor′s series expansion of the

original nonlinear differential equation. This technique is a generalized Newton-Raphson method

for functional equations. It is also known as the quasilinearization method. The quasilinearization

technique not only linearizes the nonlinear equation but also provides a sequence of functions which

in general converges rather rapidly to the solution of the original nonlinear equation. The main

advantage of this technique is that the procedure converges quadratically to the solution of the

original equation, if there is convergence at all. Quadratic convergence implies that the error in every

succeeding iteration tends to be proportional to the square of the error in its immediately preceding

iteration. The method of quasilinearization developed by Bellman [5,6] and was first used to obtain

a representation for the solution of the initial value problem for the Riccati equation. Bellman and

Kalaba [7] generalized these results and obtained a solution formula for a wide class of nonlinear
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first order differential equations. Garg and Rajagopal [51] used the method of quasilinearization

and the orthonormalization technique to solve nonlinear boundary value problems arising in non-

Newtonian fluid flow. Mohapatra et al. [91] established the existence, uniqueness, and convergence

results for general second order nonlinear boundary value problems by using quasilinearization and

monotone iterative methods. Devi et al. [32] developed the method of quasilinearization for fractional

differential equations. Existence and uniqueness result for an initial value problem of fractional

differential equations using generalized quasilinearization technique is obtained in [33]. Wang et

al. [129] constructed the two monotone sequences of upper and lower solutions for the initial value

problems of the system of fractional differential equations.

1.4 Picard Method

1.5 Overview

In Chapter 2, we have constructed Haar matrix, Haar wavelet operational matrix of fractional

integration and operational matrix of fractional integration for boundary value problems. These

matrices are utilized for the solution of fractional initial and boundary value problems over non-

uniform grids. The purpose of considering the non-uniform grids is to deal with those differential

equation whose solution have abrupt behavior on some part of the domain. Comparison of uniform

and non-uniform Haar wavelet method is also performed.

We proposed a method for fractional nonlinear differential equations by utilizing Haar wavelet

operational matrix method and quasilinearization technique, as given in Chapter 3. Implementation

of the method for both initial and boundary value problems are described. Convergence analysis

for Haar wavelet quasilinearization method is derived and given in subsection 3.2.3. In section 3.3,

Haar wavelet quasilinearization method is applied on nonlinear fractional initial and boundary value

problems by utilizing both uniform and non-uniform grids. Comparison of uniform and non-uniform

Haar wavelet quasilinearization method is also given.

The main aim of the Chapter 4 is to develop the Haar wavelet quasilinearization technique for the

solution of heat convection radiation equations, because when some numerical method applied for the

solution of heat convection radiation equations they becomes unstable when we increase the value

of parameter epsilon, which appears in heat convection radiation equations, while Haar wavelet

quasilinearization technique gives stable and accurate results. We also introduce Haar wavelet

quasilinearization method for fractional nonlinear oscillation equations, in which we consider the

forced and forced free duffing Van der Pol oscillation equation and higher order oscillation equation.

The purpose of Chapter 5 is to extend the Haar wavelet quasilinearization method for the solution

of fractional nonlinear partial differential equations. The procedure of implementation of method

is described in section 5.2. Convergence of the method is derived and given in section 5.3. We
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considered fractional generalized Berger-Fisher equation, fractional Klein-Gordon equations and

fractional Bergers equation as a test problems.

Solution of nonlinear fractional initial and boundary value problems is concerned in Chapter 6 by

introducing a numerical method, which is a combination of Haar wavelet operational matrix method

and Picard technique. Convergence of the proposed method is also considered. We described the

procedure of implementation of the method while solving nonlinear fractional differential equations.

In Chapter 7, we introduced another numerical method for solving nonlinear differential equa-

tions. The developed method is the combination of wavelet Galerkin and quasilinearization tech-

nique. We derived an expression for computing the two term connection coefficients, which are used

for the solution of nonlinear differential equation. The method is implemented on different nonlinear

differential equations to show the applicability of the wavelet Galerkin quasilinearization method.

Two numerical techniques are proposed in Chapter 8. First technique is the combination of

Chebyshev wavelet operational matrix method and quasilinearization technique while other utilizes

the Legendre wavelet operational matrix method and quasilinearization technique. The operational

matrices for these two methods are derived and utilized for the solution of fractional nonlinear differ-

ential equations. The procedure of implementation of methods for fractional nonlinear ordinary and

partial differential equation are given. Convergence analysis for both the methods is also provided.

In Chapter 9, we introduced a new wavelet method, Gegenbauer wavelets operational matrices

method, for solving fractional differential equations. The Gegenbauer matrix, operational matrix

of fractional integration and operational matrix of fractional integration for boundary value prob-

lems are derived and constructed. The convergence analysis and implementation of method is also

provided.

Chapter 10 is used to introduce the three numerical methods for the solution of delay differential

equations. First method is proposed by utilizing radial basis function networks and method of steps.

The procedure of implementation of radial basis function collocation method and proposed technique

for delay differential equation are given. The second method is the combination of Chebyshev wavelet

method and method of steps. Convergence analysis of the Chebyshev wavelet method is provided.

The procedure of implementation of Chebyshev wavelet method and proposed method are developed

and implemented on fractional linear and nonlinear delay differential equations. Comparison of

Chebyshev wavelet method and proposed method is also concerned. The third method is obtained

by combining Hermite wavelet method and method of step. We compared the obtained method and

Hermite wavelet method to check the efficiency of the proposed method.
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Chapter 2

Numerical Solution of Linear Fractional

Differential Equation by Non–uniform

Haar Wavelet Method

The Haar wavelet technique for solving linear homogeneous/inhomogeneous, constant and variable

coefficients differential equations has been discussed for uniform grids in [21, 49, 69]. We utilize

uniform grids for those differential equation which have sufficiently smooth behavior of solution i.e.,

there is no abrupt behavior of solution over the given domain and uniform grids are used for better

results and accuracy.

The differential equation arising from locally disturbed vibrations is solved by Lepik [72] by

using non-uniform grids because solution has abrupt behavior. We solved the fractional differential

equation of locally fractionally disturbed vibrations and showed that the results are converging to

the locally disturbed vibrations over the same domain and nonuniform grids. The non-uniform Haar

wavelets are used by Fazal-i-Haq et al. [55] for the solution of singularly perturbed boundary value

problem with different value of epsilon, we considered the fractionally singularly perturbed boundary

value problem and showed that it converged to the singularly perturbed boundary value problem

for different epsilon. We used the different non-uniform grid structures for better approximations.

2.1 The Uniform Haar Wavelets

The Haar functions contains just one wavelet during some subinterval of time, and remains zero

elsewhere and are orthogonal. The uniform Haar wavelets are useful for the treatment of solution of

differential equations which has no abrupt behavior. The lth uniform Haar wavelet hl(x), x ∈ [0, 1)

is defined as [16]:
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hl(x) =


1, a(l) ≤ x < b(l);

−1, b(l) ≤ x < c(l);

0, otherwise,

(2.1.1)

where a(l) = k
m , b(l) = k+0.5

m , c(l) = k+1
m , l = 2j + k + 1, j = 0, 1, 2, · · · , J is dilation parameter,

m = 2j and k = 0, 1, 2, · · · , 2j − 1 is translation parameter. When k = 0, j = 0 we have l = 2,

which is the minimal value of l and the maximal value of l is 2M where M = 2J , J is maximal level

of resolution. In particular h1(x) := χ[0,1)(x), where χ[0,1)(x) is characteristic function on interval

[0, 1) , is the Haar scaling function. For the uniform Haar wavelet, the wavelet-collocation method

is applied. The collocation points for the uniform Haar wavelets are usually taken as xj = j+0.5
2M ,

where j = 1, 2, ..., 2M .

2.1.1 Fractional Integral of the Uniform Haar Wavelets

The Riemann-Liouville fractional integral of the Haar scaling function and the uniform Haar wavelets

are given as

pα,1(x) = Iαa(1)h1(x) = 1
Γ(α)

x∫
a(1)

(x− s)α−1ds, α > 0, (2.1.2)

pα,l(x) = Iαa hl(x) =
1

Γ(α)



x∫
a(l)

(x− s)α−1ds, a(l) ≤ x < b(l);

b(l)∫
a(l)

(x− s)α−1ds−
x∫

b(l)

(x− s)α−1ds, b(l) ≤ x < c(l);

b(l)∫
a(l)

(x− s)α−1ds−
c(l)∫
b(l)

(x− s)α−1ds, x ≥ c(l).

(2.1.3)

Equation (2.1.2) and (2.1.3) imply

pα,1(x) = (x−a(1))α

Γ(α+1) , (2.1.4)

and

pα,l(x) =
1

Γ(α+ 1)


(x− a(l))α, a(l) ≤ x < b(l);

(x− a(l))α − 2(x− b(l))α, b(l) ≤ x < c(l);

(x− a(l))α − 2(x− b(l))α + (x− c(l))α, x ≥ c(l).
(2.1.5)

The uniform grids are useful for the treatment of differential equations whose solution have smooth

behavior.
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2.2 The Non-uniform Haar Wavelets

There are some problems for which the uniform Haar wavelet method may be unsuitable, for example

differential equations under the local excitation, boundary layer problems and asymptotic behavior

of solutions, etc. In such cases it is reasonable to increase the number of the collocation points

in subregions of rapid change and make use of the non-uniform Haar wavelet method [71]. That

is, if solution have abrupt behavior in a given domain then we use non-uniform grids for better

approximations.

The variable step-size is small when abrupt behavior of solution occurs and is large otherwise.

The main idea of a non-uniform Haar wavelet method was proposed by F. Dubeau et al. [27] and

later U. Lepik [72] used the modified form of the non-uniform Haar wavelet for the solution of integral

and differential equations. Different non-uniform structures, according to boundary layers, for the

numerical solution of singularly perturbed two-point boundary value problems were considered by

Fazal-i-Haq et al. [55].

The lth non-uniform Haar wavelet hl(x), x ∈ [a, b] is defined as

hl(x) =


1, ξ1(l) ≤ x < ξ2(l);

−γl, ξ2(l) ≤ x < ξ3(l);

0, otherwise,

(2.2.1)

where l = 2j + k+ 1; j = 0, 1, 2, · · · , J is dilation parameter and k = 0, 1, 2, · · · , 2j − 1 is translation

parameter, J is maximal level of resolution and the maximal value of l is 2M , M = 2J . In particular

h1(x) := χ[a,b](x) is the Haar scaling function. The interval [a, b] is partitioned into 2M subintervals

having grid points x(j), j = 0, 1, 2, · · · , 2M . The collocation points for the Haar wavelets are taken

as xc(i) = i+0.5
2M , where i = 1, 2, ..., 2M . Furthermore, ξj(l)′s, j = 1, 2, 3, are defined as

ξ1(l) = x(2kη), ξ2(l) = x((2k + 1)η),

ξ3(l) = x((2k + 2)η), η = M/m, m = 2j and γl =
ξ2(l)− ξ1(l)

ξ3(l)− ξ2(l)
.

2.2.1 Fractional Integral of the Non-uniform Haar Wavelets

In the following, we introduce the Riemann-Liouville fractional integral of the non-uniform Haar

scaling and wavelets function by similar procedure as for the uniform Haar wavelets, i.e.,

pα,1(x) = Iαa h1(x) = (x−a)α

Γ(α+1) , (2.2.2)

and

pα,l(x) = Iαa hl(x) =
1

Γ(α+ 1)


(x− ξ1(l))α, ξ1(l) ≤ x < ξ2(l);

(x− ξ1(l))α − (1 + γl)(x− ξ2(l))α, ξ2(l) ≤ x < ξ3(l);

(x− ξ1(l))α − (1 + γl)(x− ξ2(l))α + (x− ξ3(l))α, x ≥ ξ3(l).
(2.2.3)
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The non-uniform Haar wavelets provide approximation to the solution of differential equations on

non-uniform grids.

2.3 Function Approximations and Haar Matrices

Any function y ∈ L2[0, 1] can be represented in term of the non-uniform Haar series as

y(x) =
∞∑
l=1

blhl(x), (2.3.1)

where bl are the Haar wavelet coefficients given by bl =
1∫
0

y(x)hl(x)dx.

The function y(x) can be approximated by the truncated Haar wavelet series as

y(x) ≈ yM (x) =
2M∑
l=1

blhl(x), l = 2j + k + 1, j = 0, 1, 2, ..., J, k = 0, 1, 2, ..., 2j − 1. (2.3.2)

The wavelets coefficients bl are determined in such away that the integral square error E

E =
1∫
0

[
y(x)−

2M∑
l=1

blhl(x)
]2
dx (2.3.3)

is minimized.

In order to find the numerical approximations of a function, we put the Haar wavelets into a discrete

form. For this purpose, we utilized the collocation method.

The collocation points for the Haar wavelets are taken as xc(i) = i+0.5
2M , where i = 1, 2, ..., 2M .

In discrete form, equation (2.3.3) is written as

EM = 4x
2M∑
i=1

[
y(xc(i))−

2M∑
l=1

blhl(xc(i))
]2
.

2.3.1 Haar Matrix

Chen and Hsiao [16] established an operational matrix for integration via Haar wavelets, and a

procedure for applying the matrix to analyse lumped and distributed- parameters dynamic systems

is formulated. The highest derivatives appearing in the differential equations are first expanded into

Haar series. The lower order derivatives and the solution functions can then be obtained quite easily

by using Haar operational matrix of integration.

The discrete form of (2.3.2) is

yM (xc(i)) =
2M∑
l=1

blhl(xc(i)), i = 1, 2, · · · , 2M. (2.3.4)

We can represent (2.3.4) in vector form as

y = bH, (2.3.5)
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where b = [b1 b2 · · · b2M ] and y = [yM (xc(1)) yM (xc(2)) · · · yM (xc(2M))] are 2M dimensional row

vectors and

H2M×2M =


h1(xc(1)) h1(xc(2)) · · · h1(xc(2M))

h2(xc(1)) h2(xc(2)) · · · h2(xc(2M))
...

...
. . .

...

h2M (xc(1)) h2M (xc(2)) · · · h2M (xc(2M))

 .
In particular, for J = 2, we get 2M = 8 and the Haar matrix is given as

H8×8 =



1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 0 0 0 0

0 0 0 0 1 1 −1 −1

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1


.

The Haar coefficients bl can be determined by matrix inversion

b = yH−1, (2.3.6)

where H−1 is the inverse of H. Equation (2.3.6) gives the Haar coefficients bl which are used in

(2.3.2) to get the solution y(x).

2.3.2 Haar Wavelet Operational Matrix of Fractional Integration

Haar matrix H is obtained by using the collocation points in (2.2.1), H(l, i) = hl(xc(i)). Similarly, we

can obtain the fractional order integration matrix P of Haar function by substituting the collocation

points in equations (2.2.2) and (2.2.3), P(l, i) = pα,l(xc(i)), as

P2M×2M =


pα,1(xc(1)) pα,1(xc(2)) · · · pα,1(xc(2M))

pα,2(xc(1)) pα,2(xc(2)) · · · pα,2(xc(2M))
...

...
. . .

...

pα,2M (xc(1)) pα,2M (xc(2)) · · · pα,2M (xc(2M))

 .
In particular, we fix J = 2, α = 0.75, we get 2M = 8 and the Haar wavelet operational matrix of

fractional integration is
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P8×8 =



0.1360 0.3100 0.4548 0.5853 0.7067 0.8215 0.9312 1.0367

0.1360 0.3100 0.4548 0.5853 0.4347 0.2014 0.0216 −0.1340

0.1360 0.3100 0.1828 −0.0347 −0.0668 −0.0391 −0.0275 −0.0210

0 0 0 0 0.1360 0.3100 0.1828 −0.0347

0.1360 0.0380 −0.0293 −0.0142 −0.0091 −0.0066 −0.0051 −0.0042

0 0 0.1360 0.0380 −0.0293 −0.0142 −0.0091 −0.0066

0 0 0 0 0.1360 0.0380 −0.0293 −0.0142

0 0 0 0 0 0 0.1360 0.0380


.

2.3.3 Haar Wavelet Operational Matrix of Fractional Integration for Boundary
Value Problems

We drive another operational matrix of fractional integration to solve the fractional boundary value

problems. Let η > 0 and g : [0, η] → R be a continuous function and assume that Haar functions

have [0, η] as compact support, then

g(x)Iα0 h1(η) = g(x)
η∫
0

(η − s)α−1ds,

vα,η,1 = g(x)Cα,1,

(2.3.7)

and

g(x)Iα0 hl(η) = g(x)
[ b(l)∫
a(l)

(η − s)α−1ds−
c(l)∫
b(l)

(η − s)α−1ds
]
,

vα,η,l = g(x)Cα,l,

(2.3.8)

where vα,η,1 = g(x)Iα0 h1(η), vα,η,l = g(x)Iα0 hl(η), Cα,1 = ηα

Γ(α+1) and Cα,l = 1
Γ(α+1)

[
(η − a(l))α −

2(η − b(l))α + (η − c(l))α
]
. Also l = 2j + k + 1, j = 0, 1, 2, · · · , J and k = 0, 1, 2, · · · , 2j − 1. Let

xc(i) = η i−0.5
2M , i = 1, 2, · · · , 2M and define a matrix V by using the collocation points, xc, in (2.3.7)

and (2.3.8), we get

Vα,η
2M×2M =


g(xc(1))Iα0 h1(η) g(xc(2))Iα0 h1(η) · · · g(xc(2M))Iα0 h1(η)

g(xc(1))Iα0 h2(η) g(xc(2))Iα0 h2(η) · · · g(xc(2M))Iα0 h2(η)
...

...
. . .

...

g(xc(1))Iα0 h2M (η) g(xc(2))Iα0 h2M (η) · · · g(xc(2M))Iα0 h2M (η)

 .

In particular, for η = 1, g(x) = x2, α = 1.25, J = 2, we get
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V1.25,1
8×8 =



0.0034 0.0310 0.0862 0.1689 0.2793 0.4172 0.5827 0.7757

0.0005 0.0049 0.0137 0.0269 0.0444 0.0664 0.0927 0.1234

0.0001 0.0008 0.0021 0.0041 0.0069 0.0102 0.0143 0.0190

0.0002 0.0021 0.0058 0.0113 0.0187 0.0279 0.0390 0.0519

0.0000 0.0002 0.0005 0.0009 0.0015 0.0023 0.0032 0.0042

0.0000 0.0002 0.0006 0.0012 0.0019 0.0029 0.0041 0.0054

0.0000 0.0003 0.0009 0.0017 0.0029 0.0043 0.0060 0.0080

0.0001 0.0009 0.0024 0.0048 0.0079 0.0117 0.0164 0.0218


.

The Haar matrices H, P and V are constructed to solve the fractional order initial and boundary

value problems.

2.4 Convergence of Haar Wavelet Method

Let y(x) be a differentiable function and assume that y(x) have bounded first derivative on (0, 1),

i.e., there exist K > 0; for all x ∈ (0, 1)

|y′(x)| ≤ K.

Haar wavelet approximation for the function y(x) is mentioned in (2.3.2). Babolian and Shahsavaran

[4] gave L2−error norm for Haar wavelet approximation, which is

‖y(x)− yM (x)‖2 ≤ K2

3
.

1

(2M)2
,

or

‖y(x)− yM (x)‖ ≤ O(
1

M
), (2.4.1)

where M = 2J and J is the maximal level of resolution. From (2.4.1), we observe that error is

inversely proportional to the level of resolution. Thus the convergence of Haar wavelet approximation

is ensured at higher level of resolution i.e., when M is increased.

2.5 Nonuniform Haar Wavelet Method

This section is based on our paper [114], where we have generated different structures of nonuniform

collocation points and applied the non-uniform Haar wavelet methods to different classes of frac-

tional order ordinary differential equations which has abrupt behavior of solution. The uniform and

nonuniform Haar wavelet methods are compared. We consider fractional initial as well as boundary

value problems with constant and variable coefficients.
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2.5.1 Initial Value Problems

Example 1: Consider the αth order linear fractional ordinary differential equation with variable

coefficients whose solution also depends on the order of differential equation,

cDαy(x) + a(x)y = f(x), 0 ≤ x ≤ 10, 1 < α < 2, (2.5.1)

with y(0) = 1, y′(0) = α and f(x) = x−αE1,1−α(αx) + a(x)E1,1(αx), where E is Mittag-Leffler

function. Furthermore, we choose a(x) = x.

The exact solution of initial value problem (2.5.1) is y(x) = eαx. The solution procedure is as under:

We approximate the higher order derivative term by Haar wavelet series as

cDαy(x) ≈
2M∑
l=1

blhl(x). (2.5.2)

Lower order derivatives are obtained by integrating (2.5.2)

y(x) ≈
2M∑
l=1

blpα,l(x) + αx+ 1. (2.5.3)

Substitute (2.5.2) and (2.5.3) in (2.5.1), we get

2M∑
l=1

bl[hl(x) + xpα,l(x)] ≈ f(x)− αx2 − x. (2.5.4)

Let us divide the interval [0, 10] into two subintervals [0, 8] and [8, 10], let A = 0, B = 8, C = 10,

step-size for each subintervals are

∆x1 = (B−A)
M ,

∆x2 = (C−B)
M .

Here ∆x2 � ∆x1.

The coordinates of the grid points are

For j=1,2,...,M + 1

x(j)=A+(i-1)∆x1,

For j=1,2,..,M

x(j+M + 1)=B+(i)∆x2,

And collocation points are

For j=1,2,...,2M

xc(j) = x(j)+x(j+1)
2 .
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Figure 2.1: Comparison of exact solution with non-uniform Haar wavelet solution for α = 1.3, α =

1.5 and α = 1.7.

L∞-error for Non-uniform Haar wavelet solution L∞-error for Uniform Haar wavelet solution

α J = 6 J = 7 J = 8 J = 6 J = 7 J = 8

1.1 8.6077 1.9960 8.737e-1 2.0229e+2 1.0409e+2 5.2925e+1

1.3 3.4434e+1 8.1861 1.9291 1.5297e+3 7.8965e+2 4.0155e+2

1.5 1.8100e+2 4.4065e+1 1.0791e+1 1.3109e+4 6.7965e+3 3.4602e+3

Table 2.1: L∞-error for Example 1.

Numerical solution for different order, α, of fractional differential equation at different levels of

resolution, J , is considered for both uniform and non-uniform grids. The solution have abrupt

behavior so non-uniform Haar wavelets provide better results as compared to uniform Haar wavelet

as shown in Table 2.1. The non-uniform Haar wavelet solution and exact solution at different value

of α are shown in Figure 2.1.

Example 2: Consider the linear fractional ordinary differential equation with constant coefficients

cDαy(x) + y′(x) + y(x) = f(x), 0 ≤ x ≤ 1, 1 < α < 2, (2.5.5)

with y(0) = 0, y′(0) = 0, where f(x) = −2Γ(51)x50−α

Γ(51−α) + 2Γ(101)x100−α

Γ(101−α) − Γ( 21
10

)x
11
10−α

Γ( 21
10
−α)

−100x49 +200x99−

11x
1
10

50 − 2x50 + 2x100 − x
11
10

5 .

Exact solution of (2.5.5) is y(x) = −2x50 + 2x100− x
11
10

5 , and approximation of higher order term by

17



the Haar wavelets is
cDαy(x) ≈

2M∑
l=1

blhl(x). (2.5.6)

Other derivative terms are obtained by integrating (2.5.6)

y(x) ≈
2M∑
l=1

blpα,l(x),

y
′
(x) ≈

2M∑
l=1

blpα−1,l(x).

(2.5.7)

Substituting (2.5.6) and (2.5.7) in (2.5.5), we get

2M∑
l=1

bl[hl(x) + pα,l(x) + pα−1,l(x)] ≈ f(x). (2.5.8)

The exact solution y(x) = −2x50 +2x100− x
11
10

5 has minimum value Ymin at x = 0.9863. We observe

that the solution initially decreases slowly as x approaches to 0.88, decreases rapidly when x vary

from 0.88 to 0.9863 and then it increases rapidly. Therefore we divide the interval [0, 1] into three

subintervals [0, 0.88], [0.88, 0.9863] and [0.9863, 1], let A = 0, B = 0.88, C = 0.9863, D = 1, and

step-size for each subintervals are

∆x1 = 2(B−A)
M ,

∆x2 = (C−B)
M ,

∆x3 = 2(D−C)
M .

Here ∆x1 > ∆x2 > ∆x3.

The coordinates of the grid points are

For j=1,2,...,M2 + 1

x(j)=A+(i-1)∆x1,

For j=1,2,..,M

x(j+M
2 + 1)=B+(i)∆x2,

For j=1,2,...,M2
x(j+1+3M

2 )=C+(i)∆x3,

And collocation points are

For j=1,2,...,2M

xc(j) = x(j)+x(j+1)
2 .
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Figure 2.2: Non-uniform Haar wavelet solution at α = 1.1, α = 1.3 and exact solution.

Table 2.2: Comparison of numerical results by non-uniform Haar wavelets and uniform Haar wavelets

with exact solution, at different level of resolution J and for different values of α.

L∞- error for Non-uniform Haar wavelet solution

α J = 4 J = 5 J = 6 J = 7 J = 8

1.1 8.3734e-3 2.8987e-3 8.1917e-4 2.1882e-4 7.6632e-5

1.3 1.0135e-2 3.7616e-3 1.2634e-3 4.5917e-4 2.0132e-4

1.5 1.5592e-2 7.2314e-3 3.4244e-3 1.8563e-3 1.1179e-3

1.7 3.0194e-2 1.8103e-2 1.1610e-2 8.1744e-3 6.0322e-3

L∞-error for Uniform Haar wavelet solution

α J = 4 J = 5 J = 6 J = 7 J = 8

1.1 1.0245e+0 2.6536e-1 6.0917e-2 1.2686e-2 2.1391e-3

1.3 1.1184e+0 2.5716e-1 5.5018e-2 1.1632e-2 2.4754e-3

1.5 1.3520e+0 2.9487e-1 6.8696e-2 1.8905e-2 6.4434e-3

1.7 1.8857e+0 4.2629e-1 1.1869e-1 4.2828e-2 1.9471e-2

Table 2.2 shows that the non-uniform Haar wavelet is good for approximating solution having abrupt

behaviour on its domain of definition and provides relatively accurate results as compared to uniform

Haar wavelet. Non-uniform grids are generated, in such a away, to reduce the absolute error as much

as possible. Since solution of problem in Example 2 attains its minimum value at x = 0.9863 and

suddenly increases when x > 0.9863, that is the reason for using non-uniform grids as shown in
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Figure 2.2.

Locally fractionally disturbed vibrations

Example 3: Consider the linear fractional ordinary differential equation with constant coefficients

[72],
cDαy(x) + π2y(x) = f(x), 0 ≤ x ≤ 0.5, 1 < α < 2, (2.5.9)

with y(0) = 1, y′(0) = 0, where

f(x) =

400 sin(40πx), 0.2 ≤ x ≤ 0.25;

0, elsewhere.

Consider the Haar wavelet approximation of higher order derivative in (2.5.9)

cDαy(x) ≈
2M∑
l=1

blhl(x). (2.5.10)

Lower order derivatives are obtained by integrating (2.5.10)

y(x) ≈
2M∑
l=1

blpα,l(x) + 1. (2.5.11)

Substituting (2.5.10) and (2.5.11) in (2.5.9), we obtain

2M∑
l=1

bl[hl(x) + π2pα,l(x)] ≈ f(x)− π2. (2.5.12)

Here we use same non-uniform grids for fractional order ordinary differential equation as in [72] for

non-fractional order ordinary differential equation, interval [0, 0.5] is divided into three subintervals

[0.0.2], [0.2, 0.25] and [0.25, 0.5], step-size for each subintervals are

∆x1 = 0.4
M ,

∆x2 = 0.05
M ,

∆x3 = 0.5
M .

The coordinates of the grid points are

For l=1,2,..,M2 + 1

x(l) = l∆x1,

For l=1,2,..,M

x(l + M
2 + 1) = 0.2 + l∆x2,

For l=1,2,..,M2
x(l + 3M

2 + 1) = 0.25 + l∆x3,

And collocation points are

For l=1,2,...,2M

xc(l) = x(l)+x(l+1)
2 .
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Figure 2.3: Nonuniform Haar wavelet solution at α = 1.3, α = 1.5, α = 1.7, α = 1.9 and α = 2.

In [72], equation (2.5.9) is solved for α = 2, we showed that the solution of equation (2.5.9) converged

to the solution at α = 2 when α approaches to 2 as shown in Figure 2.3.

Example 4: Consider the αth order fractional ordinary differential equation with variable coeffi-

cients,
cDαy(x) + exy = f(x), 0 ≤ x ≤ 1, 0 < α < 1, (2.5.13)

with y(0) = 0 and f(x) = 5Γ(11)x10−α

Γ(11−α) − 4Γ(6)x5−α

Γ(6−α) + ex(5x10 − 4x5).

The exact solution of initial value problem (2.5.13) is y(x) = 5x10 − 4x5.

We approximate the higher order derivative term by Haar wavelet series as

cDαy(x) ≈
2M∑
l=1

blhl(x). (2.5.14)

Lower order derivatives are obtained by integrating (2.5.14)

y(x) ≈
2M∑
l=1

blpα,l(x). (2.5.15)

Substitute (2.5.14) and (2.5.15) in (2.5.13), we get the following form:

2M∑
l=1

bl[hl(x) + expα,l(x)] ≈ f(x). (2.5.16)

Since the behavior of the solution changes near x = 0.8, therefore, we divide the interval [0, 1] into

two subintervals [0, 0.8] and [0.8, 1]. Let A = 0, B = 0.8, C = 1, and step-size for each subintervals

are

∆x1 = (B−A)
M ,

∆x2 = (C−B)
M .
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Here ∆x2 � ∆x1.

The coordinates of the grid points are

For j=1,2,...,M + 1

x(j)=A+(i-1)∆x1,

For j=1,2,..,M

x(j+M + 1)=B+(i)∆x2,

And collocation points are

For j=1,2,...,2M

xc(j) = x(j)+x(j+1)
2 .
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Figure 2.4: Comparison of exact solution with non-uniform Haar wavelet solution at α =

0.7, and α = 0.9.

L∞-error for Non-uniform Haar wavelet solution L∞-error for Uniform Haar wavelet solution

α J = 5 J = 6 J = 7 J = 5 J = 6 J = 7

0.5 2.4323e-03 8.4575e-04 2.9406e-04 9.4314e-03 3.3157e-03 1.1523e-03

0.7 1.6592e-03 5.1638e-04 1.5997e-04 8.2594e-03 2.5151e-03 7.5543e-04

0.9 1.5639e-03 4.5507e-04 1.2499e-04 6.5167e-03 1.7602e-03 4.6737e-04

Table 2.3: L∞-error for different α and J.
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Table 2.3 shows that the non-uniform Haar wavelets provide better results as compared to uniform

Haar wavelets because the solution of the problem have abrupt behavior.

2.5.2 Boundary Value Problems

Example 5: Consider the second order linear fractional ordinary differential equation with variable

coefficients,

y′′(x) + a(x)cDαy(x) + b(x)y(x) = f(x), 0 ≤ x ≤ 1, 1 < α < 2, (2.5.17)

with y(0) = 0, y(1) = 0, where f(x) = 2− 4830x68 + Γ(3)x2−α

Γ(3−α) −
Γ(71)x70−α

Γ(71−α) + x2 − x70.

The exact solution of boundary value problem (2.5.17) is y(x) = x2 − x70.

Consider the Haar wavelet approximation for y′′(x) as

y′′(x) ≈
2M∑
l=1

blhl(x). (2.5.18)

Lower order derivatives are approximated by integrating (2.5.18)

y(x) ≈
2M∑
l=1

bl(p2,l(x)− xC2,l),

cDαy(x) ≈
2M∑
l=1

blp2−α,l(x),

(2.5.19)

where Cα,l is given in (2.3.8). Substitute (2.5.18) and (2.5.19) in (2.5.17), take a(x) = ex and

b(x) = sin(x), we get the following form:

2M∑
l=1

bl[hl(x) + exp2−α,l(x) + sin(x)p2,l(x)− x sin(x)C2,l] ≈ f(x). (2.5.20)

Exact solution y(x) = x2 − x70 has maximum value Ymax at x = ( 1
35)( 1

68
). Therefore divide the

interval [0, 1] into three subintervals [0, 0.9], [0.9, ( 1
35)( 1

68
)], [( 1

35)( 1
68

), 1], let A = 0, B = 0.9, C =

( 1
35)( 1

68
), D = 1 and step-size for each subintervals are

∆x1 = 4(B−A)
3M ,

∆x2 = 4(C−B)
M ,

∆x3 = (D−C)
M .

Here ∆x3 � ∆x1, ∆x2.

The coordinates of the grid points are

For j=1:3M4 + 1

x(j)=A+(i-1)∆x1,

For j=1:M4
x(j+3M

4 + 1)=B+(i)∆x2,
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For j=1:M

x(j+1+M)=C+(i)∆x3,

And collocation points are

For j=1,2,...,2M

xc(j) = x(j)+x(j+1)
2 .
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Figure 2.5: Non-uniform Haar wavelet solution at α = 1.3, α = 1.7 and exact solution.
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Table 2.4: Comparison of numerical results by non-uniform Haar wavelets and uniform Haar wavelets

with exact solution, at different level of resolution J and order α.

L∞-error for Non-uniform Haar wavelet solution

α J = 4 J = 5 J = 6 J = 7 J = 8

1.1 2.2827e-3 9.0688e-4 2.7620e-4 7.3601e-5 1.8858e-5

1.3 2.6304e-3 1.0321e-3 3.2093e-4 9.0173e-5 2.4710e-5

1.5 3.6424e-3 1.4603e-3 4.9544e-4 1.5983e-4 5.1733e-5

1.7 5.3347e-3 2.3109e-3 8.9327e-4 3.4001e-4 1.3157e-4

1.9 5.2355e-3 2.4560e-3 1.0336e-3 4.3941e-4 1.9339e-4

L∞-error for Uniform Haar wavelet solution

α J = 4 J = 5 J = 6 J = 7 J = 8

1.1 7.2378e-1 2.3554e-1 8.9974e-2 3.8429e-2 1.7646e-2

1.3 7.0842e-1 2.1793e-1 8.2622e-2 3.4997e-2 1.5973e-2

1.5 6.9719e-1 2.0808e-1 7.8037e-2 3.2571e-2 1.4674e-2

1.7 7.1624e-1 2.1195e-1 7.9057e-2 3.2570e-2 1.4442e-2

1.9 8.2296e-1 2.3659e-1 8.9121e-2 3.7229e-2 1.6675e-2

Figure 2.5 shows that solution of boundary value problem (2.5.17) attains its maximum value at

x = ( 1
35)( 1

68
) and suddenly decreases when x > ( 1

35)( 1
68

), that is the reason for using non-uniform

grids. Table 2.4 shows that uniform grids are not suitable here because we need more points when

x > ( 1
35)( 1

68
) and the non-uniform Haar wavelet solution is suitable.

Example 6: Consider the singularly perturbed problem [55] of fractional order:

−ε cDαy(x) + (1 + x(1− x))y(x) = f(x), 0 ≤ x ≤ 1, 1 < α < 2, (2.5.21)

with y(0) = 0, y(1) = 0, where f(x) = 1+x(1−x)+(2
√
ε−x2(1−x))e

−(1−x)√
ε +(2

√
ε−x(1−x)2)e

−x√
ε

and ε is a small positive parameter, 0 < ε << 1.

The exact solution of boundary value problem (2.5.21) is y(x) = 1+x(1−x)e
−x√
ε −xe

−(1−x)√
ε . Consider

the Haar wavelet approximation of higher order derivative term in (2.5.21) as

cDαy(x) ≈
2M∑
l=1

blhl(x). (2.5.22)

Lower order derivatives are obtained by integrating (2.5.22),

y(x) ≈
2M∑
l=1

bl(pα,l(x)− xCα,l), (2.5.23)
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where Cα,l is given in (2.3.8). Put (2.5.22) and (2.5.23) in (2.5.21),

2M∑
l=1

bl[−εhl(x) + (1 + x(1− x))(pα,l(x))− xCα,l] ≈ f(x). (2.5.24)

Keeping in view the nature of exact solution given in [55], we need more grid points at end of the

interval (0, 1). We generate the collocation points that fulfil the requirement of the solution.

Here, we consider q = 1.3, p = 0.75, the coordinates of the grid points are

For j=1:1,2,...,M + 1

x(j) = (qj−1)
2(qM+1−1)

,

For j=1:1,2,...,M

x(j +M + 1) = x(M + 1) + (pj−1)
2(pM−1)

,

And collocation points are

For j=1:1,2,...,2M

xc(j) = x(j)+x(j+1)
2 .

26



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x−axis

S
ol

ut
io

n

ε=0.1

Nonuniform Haar wavelet solution at α=1.5

Nonuniform Haar wavelet solution at α=1.7

Nonuniform Haar wavelet solution at α=1.9

Nonuniform Haar wavelet solution at α=2

Exact solution at α=2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x−axis

S
ol

ut
io

n

ε=0.01

Nonuniform Haar wavelet solution at α=1.5

Nonuniform Haar wavelet solution at α=1.7

Nonuniform Haar wavelet solution at α=1.9

Nonuniform Haar wavelet solution at α=2

Exact solution at α=2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x−axis

S
ol

ut
io

n

ε=0.001

Nonuniform Haar wavelet solution at α=1.5

Nonuniform Haar wavelet solution at α=1.7

Nonuniform Haar wavelet solution at α=1.9

Nonuniform Haar wavelet solution at α=2

Exact solution at α=2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x−axis

S
ol

ut
io

n

ε=0.0005

Nonuniform Haar wavelet solution at α=1.5

Nonuniform Haar wavelet solution at α=1.7

Nonuniform Haar wavelet solution at α=1.9

Nonuniform Haar wavelet solution at α=2

Exact solution at α=2

Figure 2.6: Non-uniform Haar wavelet solution at α = 1.5, α = 1.7, α = 1.9, α =

2 and exact solution at α = 2.

Figure 2.6 showed that the problem converged to the exact solution [55] at different value of ε, when

α approaches to 2.

2.5.3 Conclusion

The error for the non-uniform Haar wavelet is less than the error for the uniform Haar wavelet. In

Examples (3) and (6), we showed that the solution of fractional order ordinary differential equations

by the non-uniform Haar wavelet converged to the non-fractional order ordinary differential equation.

In Examples (1),(2), (4) and (5), we generated the non-uniform grids according to the behavior of the

solution and compared the results with exact and the uniform Haar wavelet solutions. The purpose

of including the Example (4) is to show that the method works for any order α. The present method

27



provided the more accurate results even if the level of resolution is low. Also, the non-uniform Haar

wavelet solutions are in good agreement with exact solutions.
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Chapter 3

Haar Wavelet-Quasilinearization

Technique for Fractional Nonlinear

Differential Equations

This chapter is based on our paper [115]. We introduce a numerical method for the solution of

fractional nonlinear ordinary differential equation, which is the combinations of two numerical tech-

niques, Haar wavelet and quasilinearization technique. Quasilinearization technique is used to lin-

earize the nonlinear fractional ordinary differential equation and then the Haar wavelet method is

applied to linearized fractional ordinary differential equations. In each iteration of quasilinearization

technique, solution is updated by the Haar wavelet method. The main aim of the present chapter

is to present a numerical method for the solution of nonlinear fractional initial and boundary value

problems over a uniform as well as non uniform grids.

3.1 Quasilinearization Technique

The quasilinearization approach [7,74,82] is a generalized Newton-Raphson technique for functional

equations. It converges quadratically to the exact solution, if there is convergence at all, and it has

monotone convergence. Let us consider the nonlinear second order differential equation [74]

y′′(x) = f(y(x), x), a ≤ x ≤ b, (3.1.1)

with the boundary conditions

y(a) = α, y(b) = β.

Choose an initial approximation of the function y(x), let say y0(x), it may be y0(x) = α, for

a ≤ x ≤ b. The function f can now be expanded around y0 by the use of the Taylor series

f(y(x), x) = f(y0(x), x) + (y(x)− y0(x))fy0(y0(x), x), (3.1.2)
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where we have ignored the second and higher order terms. Using (3.1.2) in (3.1.1), we get

y′′(x) = f(y0(x), x) + (y(x)− y0(x))fy0(y0(x), x). (3.1.3)

We solve equation (3.1.3) for y(x), call it y1(x). Now by expanding (3.1.1) about y1(x),

y′′(x) = f(y1(x), x) + (y(x)− y1(x))fy1(y1(x), x), (3.1.4)

we obtain a third approximation for y(x), call it y2(x). Assume that the problem converges and

continue the procedure until the desired accuracy is obtained. Consequently, recurrence relation is

of the form

y′′r+1(x) = f(yr(x), x) + (yr+1(x)− yr(x))fyr(yr(x), x), (3.1.5)

where yr(x) is known and can be used for obtaining yr+1(x). Equation (3.1.5) is always a linear

differential equation with boundary conditions

yr+1(a) = α, yr+1(b) = β.

Next we consider a general class of nonlinear second order differential equation of the form [74]

y′′(x) = f(y′(x), y(x), x), (3.1.6)

with the boundary conditions

y(a) = α, y(b) = β.

Here the first derivative y′(x) can be considered as another function and equation (3.1.6) implies

y′′r+1(x) = f(y′r(x), yr(x), x) + (yr+1(x)− yr(x))fyr(y
′
r(x), yr(x), x)

+ (y′r+1(x)− y′r(x))fy′r(y
′
r(x), yr(x), x),

(3.1.7)

with boundary conditions

yr+1(a) = α, yr+1(b) = β.

Similarly, for the higher order nonlinear differential equations, following the same procedure one can

obtain the recurrence relation [82],

Lnyr+1(x) = f(yr(x), y′r(x), ..., yn−1
r (x), x)

+
n−1∑
j=0

(yjr+1(x)− yjr(x))fyj (yr(x), y′r(x), ..., yn−1
r (x), x),

(3.1.8)

where n is order of the differential equation. Equation (3.1.8) is always a linear differential equation

and can be solved recursively, where yr(x) is known and one can use it to get yr+1(x).

3.1.1 Convergence of Quasilinearization Technique

Consider the nonlinear second order differential equation

y′′(x) = f(y), y(0) = y(b) = 0. (3.1.9)
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Application of quasilinearization technique to (3.1.9) yields

y′′r+1(x) = f(yr) + (yr+1 − yr)f ′(yr), yr+1(0) = yr+1(b) = 0. (3.1.10)

Let y0(x) be some initial approximation. Each function yr+1(x) is a solution of a linear equation

(3.1.10), where yr is always known and is obtained from the previous iteration. Subtract the rth

equation from the (r + 1)st equation (3.1.10), we get

(yr+1 − yr)′′ = f(yr)− f(yr−1) + (yr+1 − yr)f ′(yr)− (yr − yr−1)f ′(yr−1). (3.1.11)

By considering (3.1.11) as a differential equation for (yr+1 − yr) and converting into corresponding

integral equation

(yr+1 − yr) =

b∫
0

K(x, y){f(yr)− f(yr−1) + (yr+1 − yr)f ′(yr)− (yr − yr−1)f ′(yr−1)}dy. (3.1.12)

Where K(x, y) is the Green’s function defined by

K(x, y) =

x(y − b)/b, 0 ≤ x < y ≤ b,

(x− b)y/b, b ≥ x > y ≥ 0.

Observe that max
x,y
|K(x, y)| = b

4 , where the maximization is over the region 0 ≤ x, y ≤ b. The Taylor
series expansion for f with centre at yr−1 is

f(yr) = f(yr−1) + (yr − yr−1)f ′(yr−1) +
(yr − yr−1)2

2
f ′′(u), yr−1 < u < yr.

Letting max
y

(|f(y)|, |f ′(y)|) = s <∞ and k = max
u
|f ′′(u)|.

Equation (3.1.12) implies [7]:

|yr+1 − yr| ≤
b∫

0

∣∣K(x, y)
∣∣{∣∣yr+1 − yr

∣∣∣∣f ′(yr)∣∣+
(yr − yr−1)2

2

∣∣f ′′(u)
∣∣}dy,

or

max
x
|yr+1 − yr| ≤

b

4

b∫
0

{
max
x
|yr+1 − yr|s+

(yr − yr−1)2

2
k

}
dy,

max
x
|yr+1 − yr| ≤

b2s

4
max
x
|yr+1 − yr|+

b2k

8
(max

x
(|yr − yr−1|)2,

max
x
|yr+1 − yr| ≤

b2 k8
1− b2s

4

(max
x

(|yr − yr−1|)2.

This shows that there is quadratic convergence, if there is convergence at all.
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3.2 Haar Wavelets Quasilinearization Method

In the Haar wavelet quasilinearization technique, the nonlinear differential equation is solved recur-

sively by a series of linear differential equations. We describe the procedure for both initial and

boundary value problem.

3.2.1 Initial Value Problems

Consider the following nonlinear initial value problem

cD
αy = f(x, y,cD

βy, y′), 0 ≤ x ≤ η, 1 < α < 2, 0 < β < 1,

y(0) = A, y′(0) = B,
(3.2.1)

where A and B are constants. Apply the quasilinearization technique to equation (3.2.1), we get

cD
αyr+1 − fy′r(x, yr,cD

βyr, y
′
r)y
′
r+1 − fyβr (x, yr,cD

βyr, y
′
r)y

β
r+1 − fyr(x, yr,cDβyr,

y′r)yr+1 = f(x, yr,cD
βyr, y

′
r))− yrfyr(x, yr,cDβyr, y

′
r)− y

β
r fyβr

(x, yr,cD
βyr, y

′
r)

−y′rfy′r(x, yr,cD
βyr, y

′
r), yr+1(0) = A, y′r+1(0) = B, r ≥ 0.

(3.2.2)

where ∂f
∂yr

= fyr(x, yr,cD
βyr, y

′
r),

∂f
∂y′r

= fy′r(x, yr,cD
βyr, y

′
r) and ∂f

∂yβr
= f

yβr
(x, yr,cD

βyr, y
′
r).

Implement the Haar wavelet method to the series of differential equation (3.2.2). Approximate the

higher order derivative term in Haar wavelet series as

cD
αyr+1 =

2M∑
l=1

br+1
l hl(x). (3.2.3)

Integrate the equation (3.2.3) and use the initial conditions, to obtain

yr+1 =
2M∑
l=1

br+1
l pα,l(x) +Bx+A. (3.2.4)

Differentiation of equation (3.2.4) implies

y′r+1 =
2M∑
l=1

br+1
l pα−1,l(x) +B,

cD
βyr+1 =

2M∑
l=1

br+1
l pα−β,l(x) +B x1−β

Γ(2−β) .

(3.2.5)

Where pα,l(x), pα−1,l(x) and pα−β,l(x) are given in equations (2.1.4) and (2.1.5). Let gr(x, yr,cDβyr, y
′
r) =

f(x, yr,cD
βyr, y

′
r)− yrfyr(x, yr,cDβyr, y

′
r)− y

β
r fyβr

(x, yr,cD
βyr, y

′
r)− y′rfy′r(x, yr,cD

βyr, y
′
r) and use

equations (3.2.3), (3.2.4) and (3.2.5) in equation (3.2.2) to obtain

2M∑
l=1

br+1
l

[
hl(x)− fy′r(x, yr,cD

βyr, y
′
r)pα−1,l(x)− f

yβr
(x, yr,cD

βyr, y
′
r)pα−β,l(x)

−fyr(x, yr,cDβyr, y
′
r)pα,l(x)

]
= gr(x, yr,cD

βyr, y
′
r) +Bfy′r(x, yr,cD

βyr, y
′
r)

+Bf
yβr

(x, yr,cD
βyr, y

′
r)

x1−β

Γ(2−β) + (Bx+A)fyr(x, yr,cD
βyr, y

′
r).

(3.2.6)
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LetGr(x, yr,cDβyr, y
′
r) = gr(x, yr,cD

βyr, y
′
r)+Bfy′r(x, yr,cD

βyr, y
′
r)+Bfyβr

(x, yr,cD
βyr, y

′
r)

x1−β

Γ(2−β)+

(Bx+A)fyr(x, yr,cD
βyr, y

′
r). According to the Haar wavelet collocation method, the residual is set

to zero at the collocation points, xc(j) = η j+0.5
2M , j = 1, 2, · · · , 2M.

2M∑
l=1

br+1
l

[
hl(xc(j))− fy′r(xc(j), yr(xc(j)),cD

βyr(xc(j)), y
′
r(xc(j)))pα−1,l(xc(j))

−f
yβr

(xc(j), yr(xc(j)),cD
βyr(xc(j)), y

′
r(xc(j)))pα−β,l(xc(j))− fyr(xc(j), yr(xc(j)),

cD
βyr(xc(j)), y

′
r(xc(j)))pα,l(xc(j))

]
= Gr(xc(j), yr(xc(j)),cD

βyr(xc(j)), y
′
r(xc(j))).

(3.2.7)

In vector form, we have

(H− F′rPα−1 − Fβ
rPα−β − FrPα)(br+1)T = Kr, (3.2.8)

where br+1 = [br+1
1 br+1

2 · · · br+1
2M ] is an unknown vector, Kr = [Gr

∣∣
xc(1)

Gr
∣∣
xc(2)
· · ·Gr

∣∣
xc(2M)

] is

known vector, H, Pα−1, Pα−β and Pα are 2M × 2M matrices and are derived in section 2.3.

Where Fr, F′r and Fβ
r are the diagonal matrices and are given by

Fr =


fyr
∣∣
xc(1)

0 · · · 0

0 fyr
∣∣
xc(2)

· · · 0
...

...
. . .

...

0 0 · · · fyr
∣∣
xc(2M)

 , F′r =


fy′r
∣∣
xc(1)

0 · · · 0

0 fy′r
∣∣
xc(2)

· · · 0
...

...
. . .

...

0 0 · · · fy′r
∣∣
xc(2M)



and Fβ
r =


f
yβr

∣∣
xc(1)

0 · · · 0

0 f
yβr

∣∣
xc(2)

· · · 0
...

...
. . .

...

0 0 · · · f
yβr

∣∣
xc(2M)

 .

The notation fyr
∣∣
xc(1)

is used to represent evaluation of fyr at x = xc(1). Haar coefficients, br+1 =

[br+1
1 br+1

2 · · · br+1
2M ] can be obtained from equation (3.2.8) for each r ≥ 0 and use these in equations

(3.2.3), (3.2.4) and (3.2.5) to get the approximate values of cDαyr+1, yr+1, y
′
r+1and cD

βyr+1 at

the collocation points, xc(j), j = 1, 2, · · · , 2M. In particular, for r = 0 we get a linear differential

equation in y1(x), from equation (3.2.2), and use equation (3.2.8) to obtain b1 = [b11 b
1
2, · · · , b12M ]

which are used in (3.2.3), (3.2.4) and (3.2.5) to get the approximate values of cDαy1, y1, y
′
1and cD

βy1

at the collocation points. Similarly, for r = 1 we obtain y2(x) and so on. In this way, we obtain

a sequence of approximations y1(x), y2(x), · · · . We may get more accurate approximation while

increasing r.
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3.2.2 Boundary Value Problems

Consider the fractional nonlinear boundary value problem

cD
αy = f(x, y,cD

βy, y′), 0 ≤ x ≤ η, 1 < α < 2, 0 < β < 1,

y(0) = γ1, y(η) = γ2.
(3.2.9)

Implement the quasilinearization technique to equation (3.2.9), we get

cD
αyr+1 − fy′r(x, yr,cD

βyr, y
′
r))y

′
r+1 − fyβr (x, yr,cD

βyr, y
′
r))y

β
r+1 − fyr(x, yr,cDβyr, y

′
r))

yr+1 = f(x, yr,cD
βyr, y

′
r))− yrfyr(x, yr,cDβyr, y

′
r))− y

β
r fyβr

(x, yr,cD
βyr, y

′
r))

−y′rfy′r(x, yr,cD
βyr, y

′
r)), yr+1(0) = γ1, yr+1(η) = γ2, r ≥ 0.

(3.2.10)

Now apply the Haar wavelet method to the series of differential equation (3.2.10)

cD
αyr+1 =

2M∑
l=1

br+1
l hl(x). (3.2.11)

Integrate the equation (3.2.11) and use the boundary conditions to obtain

yr+1 =
2M∑
l=1

br+1
l pα,l(x) + x

η (γ2 − γ1 −
2M∑
l=1

br+1
l Cα,l) + γ1. (3.2.12)

First and β order derivative of yr+1 can be obtained from equation (3.2.12) as

y′r+1 =
2M∑
l=1

br+1
l pα−1,l(x) + 1

η (γ2 − γ1 −
2M∑
l=1

br+1
l Cα,l),

cD
βyr+1 =

2M∑
l=1

br+1
l pα−β,l(x) + x1−β

ηΓ(2−β)(γ2 − γ1 −
2M∑
l=1

br+1
l Cα,l).

(3.2.13)

Use equations (3.2.11), (3.2.12) and (3.2.13) in equation (3.2.10) to obtain

2M∑
l=1

br+1
l

[
hl(x)− fy′r(x, yr,cD

βyr, y
′
r)pα−1,l(x)− f

yβr
(x, yr,cD

βyr, y
′
r)pα−β,l(x)−

fyr(x, yr,cD
βyr, y

′
r)pα,l(x) + gr(x, yr,cD

βyr, y
′
r)Cα,l

]
= Qr(x, yr,cD

βyr, y
′
r),

(3.2.14)

where Qr(x, yr,cDβyr, y
′
r) = f(x, yr,cD

βyr, y
′
r) − yrfyr(x, yr,cDβyr, y

′
r) − y

β
r fyβr

(x, yr,cD
βyr, y

′
r) −

y′rfy′r(x, yr,cD
βyr, y

′
r)+(

fy′r
η (x, yr,cD

βyr, y
′
r)+fyβr

(x, yr,cD
βyr, y

′
r)

x1−β

ηΓ(2−β)+fyr(x, yr,cD
βyr, y

′
r)
x
η )(γ2−

γ1) + fyr(x, yr,cD
βyr, y

′
r)γ1,

gr(x, yr,cD
βyr, y

′
r) =

fy′r
η (x, yr,cD

βyr, y
′
r) + f

yβr
(x, yr,cD

βyr, y
′
r)

x1−β

ηΓ(2−β) + fyr(x, yr,cD
βyr, y

′
r)
x
η .

Set the residual equal to zero at the collocation points, xc(j) = η j+0.5
2M , j = 1, 2, · · · , 2M.

2M∑
l=1

br+1
l

[
hl(xc(j))− fy′r(xc(j), yr(xc(j)),cD

βyr(xc(j)), y
′
r(xc(j))))pα−1,l(xc(j))−

f
yβr

(xc(j), yr(xc(j)),cD
βyr(xc(j)), y

′
r(xc(j))))pα−β,l(xc(j))

−fyr(xc(j), yr(xc(j)),cDβyr(xc(j)), y
′
r(xc(j))))pα,l(xc(j))

+gr(xc(j), yr(xc(j)),cD
βyr(xc(j)), y

′
r(xc(j))))Cα,l

]
= Qr(xc(j), yr(xc(j)),cD

βyr(xc(j)), y
′
r(xc(j)))).

(3.2.15)
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In vector form, we have

(H− F′rPα−1 − Fβ
rPα−β − FrPα + Vα,η)(br+1)T = Dr, (3.2.16)

where br+1 = [br+1
1 br+1

2 , · · · , br+1
2M ] is an unknown vector, Dr = [Qr|xc(1), Qr|xc(2) · · ·Qr|xc(2M)] is

known vector and H, Pα−1, Pα−β, Pα and Vα,η are 2M × 2M matrices and are given in section

2.3. For each r ≥ 0, we obtain approximate values of y(x), y′(x), cD
βy(x) and cD

αy(x) at the

collocation points. We get more accurate results while increasing r.

3.2.3 Convergence Analysis of Haar Wavelet Quasilinearization Method

Let yr+1(x) be a differentiable function and have bounded first derivative on interval (0, 1), that is,

there exist K > 0, for all x ∈ (0, 1), we have

|y′r+1(x)| ≤ K.

Suppose yMr+1(x) be the Haar wavelet approximation for the function y(x) at the (r+ 1)th iteration

yMr+1(x) =
2M∑
l=1

br+1
l hl(x), (3.2.17)

where M = 2J , J = 0, 1, 2, · · · , then L2 error norm for the Haar wavelet approximation of y(x) at

the (r + 1)th iteration is given as

‖yr+1(x)− yMr+1(x)‖2 =
1∫
0

(yr+1(x)− yMr+1(x))2dx,

=
∞∑

l=2M+1

∞∑
l′=2M+1

br+1
l br+1

l′

1∫
0

hl(x)hl′(x)dx,

=
∞∑

l=2M+1

(br+1
l )2,

(3.2.18)

where

br+1
l = 〈yr+1(x), hl(x)〉 =

1∫
0

yr+1(x)hl(x)dx. (3.2.19)

Since Haar wavelet can be represented as hl(x) = 2
j
2H(2jx−k), where 2

j
2 is the normalizing factor,

k = 0, 1, 2, · · · , 2j − 1, j = 0, 1, 2, · · · , J, and

H(2jx− k) =


1, k

m ≤ x <
k+0.5
m ;

−1, k+0.5
m ≤ x < k+1

m ;

0, otherwise,

(3.2.20)

where m = 2j , equation (3.2.19) implies

br+1
l = 2

j
2

{ k+0.5
m∫
k
m

yr+1(x)dx−
k+1
m∫

k+0.5
m

yr+1(x)dx

}
. (3.2.21)
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By using the mean value theorem, we get

∃ x1, x2 :
k

m
≤ x1 <

k + 0.5

m
,
k + 0.5

m
≤ x2 <

k + 1

m
,

br+1
l = 2

j
2

{(
k+0.5
m − k

m

)
yr+1(x1)−

(
k+1
m − k+0.5

m

)
yr+1(x2)

}
,

= 2
−j
2
−1
(
yr+1(x1)− yr+1(x2)

)
,

or

(br+1
l )2 = 2−j−2

(
yr+1(x1)− yr+1(x2)

)2
.

Again using mean value theorem to obtain

(br+1
l )2 = 2−j−2

(
x2 − x1

)2
(y′r+1(x0))2, x1 < x0 < x2,

≤ 2−j−22−2jK2,

= 2−3j−2K2.

Equation (3.2.18) implies

‖yr+1(x)− yMr+1(x)‖2 =
∞∑

l=2J+1+1

(br+1
l )2,

=
∞∑

j=J+1

(
2j+1∑
l=2j+1

(br+1
l )2

)
,

≤
∞∑

j=J+1

(
2j+1∑
l=2j+1

2−3j−2K2

)
,

= K2
∞∑

j=J+1

2−2(j+1),

= K2 2−2(J+1)

3 ,

= K2

3
1

(2M)2
.

This implies that

‖yr+1(x)− yMr+1(x)‖2 ≤ K2

3
1

(2M)2
= O( 1

M ). (3.2.22)

Since M = 2J , J is the maximal level of resolution. According to (3.2.22), we conclude that error

at the (r + 1)th iteration is inversely proportional to the maximal level of resolution.

This implies that yMr+1(x) converges to yr+1(x) as J → ∞. Since yr+1(x) is the (r + 1)th iteration

of the quasilinearization technique and according to the convergence analysis of quasilinearization

technique as given in subsection 3.1.1, we have

max
x
|yr+1(x)− yr(x)| ≤ b2 k

8

1− b2s
4

(max
x
|yr(x)− yr−1(x)|)2, (3.2.23)

where b, k and s are positive finite constants. Equation (3.2.23) implies that yr+1 → y(x) as r →∞,

if there is convergence at all. Thus we conclude that Haar wavelet approximation, yMr+1(x), converges

to y(x) as J and r approaches to infinity.
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3.3 Nonlinear Fractional Differential Equations

In this section, we implement the Haar wavelet quasilinearization method to fractional nonlinear

initial and boundary value problems. The obtained results are compared with the exact solution

and solution obtained by other numerical methods.

3.3.1 Initial Value Problems

Example 1: Consider the αth order fractional Riccati equation

cDαy(x) = −y2(x) + 1, x > 0, 0 < α ≤ 1, (3.3.1)

subject to the initial condition y(0) = 0.

The exact solution, when α = 1, is given by [94]

y(x) = e2x−1
e2x+1

.

Applying the quasilinearized technique to equation (3.3.1), we get

cDαyr+1(x) + 2yr(x)yr+1(x) = y2
r (x) + 1, x > 0, 0 < α ≤ 1, (3.3.2)

with the initial condition yr+1(0) = 0.

Now we apply the Haar wavelet method to equation (3.3.2), we approximate the higher order deriva-

tive term by the Haar wavelet series as

cDαyr+1(x) =
2M∑
l=1

blhl(x). (3.3.3)

Lower order derivatives are obtained by integrating equation (3.3.3) and use the initial condition

yr+1(x) =
2M∑
l=1

blpα,l(x). (3.3.4)

Substitute equations (3.3.3) and (3.3.4) in (3.3.2), we get

2M∑
l=1

bl[hl(x) + 2yr(x)pα,l(x)] = y2
r (x) + 1, (3.3.5)

with the initial approximation y0(x) = 0.
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Figure 3.1: Comparison of exact solution and solutions by the Haar wavelet-quasilinearization tech-

nique at J = 3 for different iterations and α = 1.
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Figure 3.2: Exact solution at α = 1 and the Haar wavelet-quasilinearization solution at α = 1, α =

0.9, α = 0.7, α = 0.5 and α = 0.3.

α = 1

r = 4 J = 6 J = 7 J = 8 J = 9

x yHaar yHaar yHaar yHAAR yHPM [94] yExact

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 0.099667 0.099668 0.099668 0.099668 0.099668 0.099668

0.2 0.197373 0.197375 0.197375 0.197375 0.197375 0.197375

0.3 0.291310 0.291312 0.291312 0.291313 0.291312 0.291313

0.4 0.379946 0.379948 0.379949 0.379949 0.379944 0.379949

0.5 0.462114 0.462116 0.462117 0.462117 0.462078 0.462117

0.6 0.537047 0.537049 0.537049 0.537050 0.536857 0.537050

0.7 0.604365 0.604367 0.604368 0.604368 0.603631 0.604368

0.8 0.664035 0.664036 0.664037 0.664037 0.661706 0.664037

0.9 0.716296 0.716297 0.716298 0.716298 0.709919 0.716298

1.0 0.761593 0.761594 0.761594 0.761594 0.746032 0.761594

Table 3.1: Comparison of solutions by the Haar wavelet-quasilinearization technique at 4th iteration

and different level of resolutions and modified homotopy perturbation method [94].

We fix the order of the differential equation (3.3.1), α = 1, and level of resolution, J = 3. The graph

in Fig. 3.1 shows the exact solution and approximate solution by Haar wavelet method at three

iterations. The absolute error reduces with increasing iterations.
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Results of third iteration by quasilinearization approach at fixed level of resolution, are shown in

Fig. 3.2 with the exact solution at α = 1 and the Haar wavelet solution at different values of α. Fig.

3.2 shows that the numerical solutions converge to the exact solution when α approaches to 1.

For α = 1 and at different levels of resolution, the numerical results, by the Haar wavelet method, at

fourth iteration are shown in Table 3.1. The Haar solutions are in good agreement with exact solution

and Haar solution is also compared with the results obtained by modified homotopy perturbation

method [94].

Example 2: Consider the fractional Riccati equation

cDαy(x) = 2y(x)− y2(x) + 1, x > 0, 0 < α ≤ 1, (3.3.6)

subject to the initial condition y(0) = 0.

The exact solution, when α = 1, is [94]

y(x) = 1 +
√

2 tanh(
√

2x+ 1
2 log(

√
2−1
2 + 1)).

Applying the quasilinearized technique to equation (3.3.6), we get

cDαyr+1(x)− (2− 2yr(x))yr+1(x) = y2
r (x) + 1, x > 0, 0 < α ≤ 1, (3.3.7)

with the initial condition yr+1(0) = 0.

Now apply the Haar wavelet method to equation (3.3.7).We approximate the higher order derivative

term by the Haar wavelet series as

cDαyr+1(x) =
2M∑
l=1

blhl(x). (3.3.8)

Now to get the Haar wavelet series for lower order derivative terms we integrate equation (3.3.8)

and use the initial condition, to get

yr+1(x) =
2M∑
l=1

blpα,l(x). (3.3.9)

Substitute equations (3.3.8) and (3.3.9) in (3.3.7), we get

2M∑
l=1

bl[hl(x)− (2− 2yr(x))pα,l(x)] = y2
r (x) + 1, (3.3.10)

with the initial approximation y0(x) = 0.
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Figure 3.3: Comparison of exact solution and solution by Haar wavelet-quasilinearization technique

at J = 3, for different iterations, and α = 1.
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Figure 3.4: Exact solution at α = 1 and the Haar wavelet-quasilinearization solution at α = 1, α =

0.8, and α = 0.6.

α = 1

r = 4 J = 6 J = 7 J = 8 J = 9

x yHaar yHaar yHaar yHAAR yHPM [94] yExact

0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.1 0.110314 0.110300 0.110296 0.110295 0.110294 0.110295

0.2 0.242000 0.241983 0.241978 0.241977 0.241965 0.241977

0.3 0.395130 0.395111 0.395106 0.395105 0.395106 0.395105

0.4 0.567838 0.567819 0.567814 0.567813 0.568115 0.567812

0.5 0.756039 0.756020 0.756016 0.756015 0.757564 0.756014

0.6 0.953587 0.953571 0.953568 0.953567 0.958259 0.953566

0.7 1.152966 1.152953 1.152950 1.152949 1.163459 1.152949

0.8 1.346376 1.346367 1.346364 1.346364 1.365240 1.346364

0.9 1.526920 1.526914 1.526912 1.526911 1.554960 1.526911

1.0 1.689505 1.689500 1.689499 1.689499 1.723810 1.689498

Table 3.2: Haar wavelet with quasilinearization technique at 4th iteration and different level of

resolutions and comparison with modified homotopy perturbation method [94].

We fix the level of resolution, J = 3, and order of differential equation (3.3.6), α = 1. The exact

solution and the Haar solution at different iterations along with the absolute error are shown in Fig.

3.3. We observe that error reduces with increase in iterations.
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Exact solution at α = 1 and the Haar solution at different values of α, are displayed in Fig. 3.4. It

is observed that solutions of fractional Riccati equation (3.3.6) converge to the solution of first order

Riccati equation, when α approaches to 1.

Table 3.2 shows the Haar solution at fourth iteration and at α = 1 with different level of resolutions.

The Haar solution approaches to exact solution while increasing J . The Haar solution is also com-

pared with the modified homotopy perturbation method [94].

Example 3: Consider the following αth order fractional Van der Pol oscillator problem

cDαy(x) + dy(x)
dx + y(x) + y2(x)dy(x)

dx = 2 cos(x)− cos3(x), 1 < α ≤ 2, (3.3.11)

subject to the initial conditions: y(0) = 0, y′(0) = 1.

The exact solution, when α = 2, is [8] y(x) = sin(x).

Quasilinearization technique to equation (3.3.11) implies

cDαyr+1(x) + (1 + 2yr(x)y′r(x))yr+1(x) + (1 + y2
r (x))y′r+1(x)

= 2y2
r (x)y′r(x) + 2 cos(x)− cos3(x),

(3.3.12)

with the initial conditions yr+1(0) = 0, y′r+1(0) = 1.

Consider the Haar wavelet approximation of higher order derivative term in equation (3.3.12)

cDαyr+1(x) =
2M∑
l=1

blhl(x). (3.3.13)

Lower order derivatives are obtained by integrating equation (3.3.13) and use the initial conditions,

we get

yr+1(x) =
2M∑
l=1

blpα,l(x) + x, (3.3.14)

y′r+1(x) =
2M∑
l=1

blpα−1,l(x) + 1. (3.3.15)

Substitute equations (3.3.13), (3.3.14) and (3.3.15) in (3.3.12), we obtain

2M∑
l=1

bl[hl(x) + (1 + 2yr(x)y′r(x))pα,l(x) + (1 + y2
r (x))pα−1,l(x)] = 2y2

r (x)y′r(x)

−(1 + 2yr(x)y′r(x))x− 1− y2
r (x) + 2 cos(x)− cos3(x),

(3.3.16)

with the initial approximations y0(x) = 0, y′0(x) = 1.
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Figure 3.5: Comparison of exact solution and solutions by the Haar wavelet-quasilinearization tech-

nique at J = 3, for different iterations, and α = 2.
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Figure 3.6: Exact solution at α = 2 and the Haar wavelet-quasilinearization solution at α = 2, α =

1.8, α = 1.6and α = 1.4.

α = 2

r = 3 J = 8 J = 9 J = 10

x yHaar yHaar yHaar yV IM [9] yHPM [9] yExact

0.0 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000

0.1 0.0998333872 0.0998334093 0.0998334148 0.0998333893 0.0998334161 0.0998334166

0.2 0.1986692768 0.1986693173 0.1986693274 0.1986676148 0.1986692604 0.1986693308

0.3 0.2955201331 0.2955201883 0.2955202021 0.2955011070 0.2955190492 0.2955202067

0.4 0.3894182543 0.3894183203 0.3894183368 0.3893138342 0.3894101010 0.3894183423

0.5 0.4794254413 0.4794255143 0.4794255325 0.4790386507 0.4793884172 0.4794255386

0.6 0.5646423719 0.5646424480 0.5646424671 0.563525292 0.5645175388 0.5646424734

0.7 0.6442175863 0.6442176620 0.6442176809 0.6415028932 0.6438744431 0.6442176872

0.8 0.7173559950 0.7173560669 0.7173560849 0.7115469778 0.7165444751 0.7173560909

0.9 0.7833268225 0.7833268880 0.7833269044 0.7720563532 0.7816179472 0.7833269096

1.0 0.8414709106 0.8414709675 0.8414709817 0.8212443348 0.8381911175 0.8414709848

Table 3.3: Solution by the Haar wavelet-quasilinearization technique at 3rd iteration and different

level of resolutions compared with homotopy perturbation method [9], variational iteration method

[9] and exact solution.

The Haar solution at three iterations by fixing order of differential equation (3.3.11), α = 2, and

level of resolution, J = 3, are shown in Fig. 3.5. Absolute error is computed for each iteration.
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We fix the solutions at third iteration and level of resolution, J = 3 are shown in Fig. 3.6. Exact

solution at α = 2 is plotted and Fig. 3.6 shows that the Haar solution converges to the exact solution,

when α approaches to 2. From the numerical results in Table 3.3, it is clear that the approximate

solution by Haar wavelet method are close to exact solutions, when α = 2, and the Haar solution is

compared with variational iteration method [9] and homotopy perturbation method [9].

Example 4: Consider the αth order nonlinear oscillator ordinary differential equation

cDαy(x)− y(x) + y2(x) + y′2(x)− 1 = 0, 1 < α ≤ 2, (3.3.17)

subject to the initial conditions: y(0) = 2, y′(0) = 0.

The exact solution, when α = 2, is [46] y(x) = 1 + cos(x).

Quasilinearization technique to equation (3.3.17) implies

cDαyr+1(x) + 2y′r(x)y′r+1(x)− (1− 2yr(x))yr+1(x) = y2
r (x) + y′2r (x) + 1, 0 < α ≤ 2, (3.3.18)

with the initial conditions yr+1(0) = 2, y′r+1(0) = 0.

Apply the Haar wavelet method to equation (3.3.18)

cDαyr+1(x) =
2M∑
l=1

blhl(x). (3.3.19)

Lower order derivatives are obtained by integrating equation (3.3.19) and use the initial conditions

yr+1(x) =
2M∑
l=1

blpα,l(x) + 2, (3.3.20)

y′r+1(x) =
2M∑
l=1

blpα−1,l(x). (3.3.21)

Substitute equations (3.3.19), (3.3.20) and (3.3.21) in (3.3.18), we get

2M∑
l=1

bl[hl(x) + 2y′r(x)pα−1,l(x)− (1− 2yr(x))pα,l(x)] = y2
r (x) + y′2r (x) + 2(1− 2yr(x)) + 1,

(3.3.22)

with the initial approximations y0(x) = 2, y′0(x) = 0.
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Figure 3.7: Comparison of exact solution and solutions by Haar wavelet-quasilinearization technique

at J = 3, for different iterations, and α = 2.
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Figure 3.8: Exact solution at α = 2 and the Haar wavelet-quasilinearization solution at α = 2, α =

1.9, α = 1.7, α = 1.5and α = 1.3.

α = 2

r = 3 J = 8 J = 9 J = 10

x yHaar yHaar yHaar yV IM [9] yHPM [9] yExact

0.0 2.000000000 2.000000000 2.000000000 2.000000000 2.000000000 2.000000000

0.1 1.995004166 1.995004165 1.995004165 1.994995832 1.995012500 1.995004165

0.2 1.980066581 1.980066579 1.980066578 1.979933244 1.980200000 1.980066578

0.3 1.955336496 1.955336491 1.955336490 1.954661486 1.956012500 1.955336489

0.4 1.921061007 1.921060997 1.921060995 1.918927628 1.923200000 1.921060994

0.5 1.877582583 1.877582567 1.877582563 1.872374035 1.882812500 1.877582562

0.6 1.825335647 1.825335623 1.825335617 1.814534782 1.836200000 1.825335615

0.7 1.764842233 1.764842199 1.764842190 1.744830994 1.785012500 1.764842187

0.8 1.696706772 1.696706725 1.696706713 1.662565054 1.731200000 1.696706709

0.9 1.621610051 1.621609989 1.621609973 1.566913614 1.677012500 1.621609968

1.0 1.540302414 1.540302333 1.540302313 1.456919365 1.625000000 1.540302306

Table 3.4: Haar wavelet-quasilinearization technique at 3rd iteration and for different level of resolu-

tions compared with homotopy perturbation method [9], variational iteration method [9] and exact

solution.

The exact and the Haar solutions, at different iterations are shown in Fig. 3.7. Here we fix order

of differential equation (3.3.17), α = 2, and level of resolution, J = 3. Absolute error is given at
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each iteration. The results in Fig. 3.8 indicate that the Haar solution converge to the exact solution

when α approaches to 2.

Numerical solution of present method at different level of resolution is shown in Table 3.4 and

the results are in high agreement with the exact solution. Haar solutions are also compared with

solutions obtained by variational iteration method and homotopy perturbation method [9].

3.3.2 Boundary Value Problems

Example 5: Consider the fractional order nonlinear Troesch’s boundary value problem

cDαy(x)− λ sinh(λy(x)) = 0, 0 ≤ x ≤ 1, 1 < α ≤ 2, (3.3.23)

subject to the boundary conditions: y(0) = 0, y(1) = 1. The exact solution, when α = 2, is given

in [101].

The quasilinearized form of equation (3.3.23) is

cDαyr+1(x)− λ2 cosh(λyr(x))yr+1(x) = λ sinh(λyr(x))− λ2yr(x) cosh(λyr(x)), (3.3.24)

with the boundary conditions: yr+1(0) = 0, yr+1(1) = 1.

Apply the Haar wavelet method to equation (3.3.24), Haar wavelet approximation of higher order

derivative is
cDαyr+1(x) =

2M∑
l=1

blhl(x). (3.3.25)

Lower order derivatives are obtained by integrating equation (3.3.25) and use the boundary condi-

tions, we get

yr+1(x) =
2M∑
l=1

bl(pα,l(x)− xCα,l) + x, (3.3.26)

where Cα,l is given in equation (2.3.7) and (2.3.8). Substitute equations (3.3.25) and (3.3.26) in

(3.3.24), we get

2M∑
l=1

bl[hl(x)− λ2 cosh(λyr(x))pα,l(x) + xλ2 cosh(λyr(x))Cα,l]

= xλ2 cosh(λyr(x)) + λ sinh(λyr(x))− λ2yr(x) cosh(λyr(x)),

(3.3.27)

with the initial approximations y0(x) = 0.
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α = 2

r = 6 J = 8 J = 9 J = 10

x yHaar yHaar yHaar yHPM [40] yDM [28] yExact

0.1 0.0959443490 0.0959443492 0.0959443493 0.0959395656 0.0959383534 0.0959443493

0.2 0.1921287470 0.1921287475 0.1921287476 0.1921193244 0.1921180592 0.1921287477

0.3 0.2887944000 0.2887944007 0.2887944008 0.2887806940 0.2887803297 0.2887944009

0.4 0.3861848453 0.3861848461 0.3861848463 0.3861675428 0.3861687095 0.3861848464

0.5 0.4845471635 0.4845471644 0.4845471647 0.4845274183 0.4845302901 0.4845471647

0.6 0.5841332472 0.5841332481 0.5841332484 0.5841127822 0.5841169798 0.5841332484

0.7 0.6852011471 0.6852011480 0.6852011482 0.6851822495 0.6851868451 0.6852011483

0.8 0.7880165217 0.7880165224 0.7880165226 0.7880018367 0.7880055691 0.7880165227

0.9 0.8928542155 0.8928542160 0.8928542161 0.8928462193 0.8928480234 0.8928542161

Table 3.5: Results of Troeschs problem for λ = 0.5.

The Haar wavelet-quasilinearization technique at 6th iteration and different level of resolutions com-

pared with homotopy perturbation method [40], decomposition method [28] and exact solution

α = 2

r = 6 J = 8 J = 9 J = 10

x yHaar yHaar yHaar yHPM [40] yDM [28] yExact

0.1 0.0846612520 0.0846612554 0.0846612563 0.0843817004 0.084248760 0.0846612565

0.2 0.1701713492 0.1701713559 0.1701713576 0.1696207644 0.169430700 0.1701713582

0.3 0.2573938951 0.2573939048 0.2573939073 0.2565929224 0.256414500 0.2573939080

0.4 0.3472228388 0.3472228510 0.3472228541 0.3462107378 0.346085720 0.3472228551

0.5 0.4405998164 0.4405998305 0.4405998340 0.4394422743 0.439401985 0.4405998351

0.6 0.5385343780 0.5385343931 0.5385343968 0.5373300622 0.537365700 0.5385343980

0.7 0.6421285897 0.6421286043 0.6421286080 0.6410104651 0.641083800 0.6421286091

0.8 0.7526080774 0.7526080899 0.7526080930 0.7517335467 0.751788000 0.7526080939

0.9 0.8713625092 0.8713625172 0.8713625191 0.8708835371 0.870908700 0.8713625196

Table 3.6: Results of Troeschs problem for λ = 1.

The Haar wavelet-quasilinearization technique at 6th iteration and for different level of resolutions

compared with homotopy perturbation method [40], decomposition method [28] and exact solution
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Figure 3.9: Exact solution at α = 2 and the Haar wavelet-quasilinearization solution at α = 2, α =

1.8, α = 1.5, and α = 1.3.

Numerical solution by the Haar wavelet method is shown in Table 3.5 and Table 3.6 at different

levels of resolutions. The results in Table 3.5 and Table 3.6 are obtained for λ = 0.5 and λ = 1.0

respectively. Solution by present method are in good agreement with exact solution and also better

than the solution obtained by homotopy perturbation method [40] and decomposition method [28].

Numerical results at third iteration, with fixed resolution level J = 7 and λ = 0.5, λ = 1.0; for

different values of α are plotted in Fig. 3.9. We use the MATLAB command of one-dimensional

data interpolation using spline to get the values at x = 0.1, x = 0.2, ..., x = 0.9 and plot the exact

and the Haar solution at these points. It is also shown that the Haar solution converges to the exact

solution when α approaches to 2.

Comparison of Uniform and Nonuniform Haar Wavelet Quasilinearization Technique

Example 6: Consider the αth order fractional nonlinear boundary value problem,

cDαy(x) + a(x)y′2(x) + b(x)y(x)y′(x) = f(x), 1 < α ≤ 2, (3.3.28)

subject to the boundary conditions y(0) = 0, y(1) = 0.

The exact solution is given by

y(x) = xα − x70−α,

where

f(x) = Γ(α+ 1)− 71−α
71−2αx

70−2α + a(x)(αxα−1 − (70− α)x69−α)2

+b(x)(αxα−1 − (70− α)x69−α)(xα − x70−α).
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Applying the quasilinearized technique to equation (3.3.28), we get

cDαyr+1(x) + b(x)y′r(x)yr+1(x) + (2a(x)y′r(x) + b(x)yr(x))y′r+1(x) = f(x)

+a(x)y′2r (x) + b(x)yr(x)y′r(x),
(3.3.29)

with the boundary conditions yr+1(0) = 0, yr+1(1) = 0.

Now apply the Haar wavelet method to equation (3.3.29), we approximate the higher order deriva-

tive term by the Haar wavelet series as

cDαyr+1(x) =
2M∑
l=1

blhl(x). (3.3.30)

Lower order derivatives are obtained by integrating equation (3.3.30) and use the initial condition

yr+1(x) =
2M∑
l=1

bl(pα,l(x)− xCα,l), (3.3.31)

y′r+1(x) =
2M∑
l=1

bl(pα−1,l(x)− Cα,l), (3.3.32)

where Cα,l is given in (2.3.7) and (2.3.8). Substitute equations (3.3.30), (3.3.31) and (3.3.32) in

(3.3.29), we get

2M∑
l=1

bl[hl(x) + b(x)y′r(x)pα,l(x)− b(x)y′r(x)Cα,l + (2a(x)y′r(x) + b(x)yr(x))pα−1,l(x)

−(2a(x)y′r(x) + b(x)yr(x))Cα,l] = f(x) + a(x)y′2r (x) + b(x)yr(x)y′r(x),

(3.3.33)

with the initial approximation y0(x) = 0, y′0(x) = 0. Here we consider a(x) = ex and b(x) = x.

As the non-uniform Haar wavelets are useful for the treatment of abrupt solution of differential

equations. The solution of Problem (3.3.28) have abrupt behavior near point x = 0.95, so we use

the non-uniform grid structure for better approximations.

Let us divide the interval [0, 1] into two subintervals [0, 0.94] and [0.94, 1], let A = 0, B = 0.94, C = 1,

step-size for each subintervals are

∆x1 = (B−A)
3M
2

,

∆x2 = (C−B)
M
2

.

Here ∆x2 � ∆x1.

The coordinates of the grid points are

For j=1,2,...,3M2 + 1

x(j)=A+(i-1)∆x1,

For j=1,2,..,M2
x(j+3M

2 + 1)=B+(i)∆x2.

And collocation points are

For j=1,2,...,2M
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xc(j) = x(j)+x(j+1)
2 .
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Figure 3.10: Exact solution and the Haar wavelet-quasilinearization solution at α = 2, α =

1.9, and α = 1.8.
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Figure 3.11: Comparison of exact solution and solution by the Haar wavelet-quasilinearization tech-

nique at J = 7, for different iterations, and α = 1.7.

54



Non-uniform Haar wavelet solution Uniform Haar wavelet solution

α r = 10 J = 8 J = 9 J = 8 J = 9

1.8 5.4361e-004 2.5395e-004 8.2879e-002 2.2821e-002

1.9 2.7391e-004 1.1097e-004 6.4336e-002 2.2824e-002

2.0 8.0791e-005 2.0363e-005 1.0221e-002 2.3951e-003

Table 3.7: L∞-error

Numerical solution for different order α of fractional differential equation (3.3.28) at different level

of resolution J is considered for both uniform and non-uniform grids. The solution have abrupt

behavior so non-uniform Haar wavelets provide better results as compared to uniform Haar wavelet

as shown in Table 3.7. The results in Table 3.7 are at 10th iteration. The non-uniform Haar wavelet

solution and exact solution at 10th iteration, fixed level of resolution J = 7 and for different value of

α are plotted in Fig. 3.10. The advantage of quasilinearization technique for nonlinear differential

equations are shown in Fig. 3.11. Here we fix level of resolution and order of equation (3.3.28)

α = 1.7.

3.3.3 Conclusion

It is shown that Haar wavelet method with quasilinearization technique gives good results when

applied to different fractional order nonlinear initial and boundary value problems. The results

obtained from Haar wavelet quasilinearization technique are better from the results obtained by

other methods and are in good agreement with exact solutions. The solution of the fractional order,

nonlinear ordinary differential equation converge to the solution of integer order differential equation

as shown in Figures 3.2, 3.4, 3.6, 3.8, 3.9 and 3.10. The graphical analysis shows that approximate

solution converge to the exact solution while iterations are increased and absolute error goes down.

Different type of non-linearities can easily be handled by the Haar wavelet with quasilinearization

method.
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Chapter 4

Haar Wavelet-Quasilinearization

Technique for Heat

Convection–Radiation and Fractional

Oscillation Equations

Many physical problems such as heat transfer equations are nonlinear. Due to their nonlinear na-

ture, analytic solutions of these equations are not available in general. Therefore different numerical

methods have been applied for providing approximate solutions. Some of these techniques include,

generalized approximation method [62], variational iteration methods [47] and homotopy- perturba-

tion method [48].

In the last few decades a considerable attention has been devoted to the study of nonlinear

oscillators due to their potential applications in diverse areas of engineering and science [83]. The

oscillator equation arises in a number of models describing various phenomena in nonlinear dynamics.

Different numerical methods have been introduced for finding the approximate solution of nonlinear

oscillator equations such as a differential transform method [80], modified homotopy perturbation

method and the max-min approach [45], and homotopy analysis method [63].

This chaper is used to find the approximate solutions of the heat convection radiation and

nonlinear fractional oscillator equations by using Haar wavelet method in conjunction with quasi-

linearization technique.
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4.1 Assessment of Haar Wavelet-Quasilinearization Technique in

Heat Convection–Radiation Equations

In this section, we will discuss solutions by the Haar wavelet-quasilinearization technique for the two

problems, namely, (i) temperature distribution equation in lumped system of combined convection-

radiation in a slab made of materials with variable thermal conductivity and (ii) cooling of a lumped

system by combined convection and radiation are strongly reliable and also more accurate than

the other numerical methods and are in good agreement with exact solution. According to the

Haar wavelet-quasilinearization technique, we convert the nonlinear heat transfer equation to linear

discretized equation with the help of quasilinearization technique and apply the Haar wavelet method

at each iteration of quasilinearization technique to get the solution. The main aim of present

work [116] is to show the reliability of the Haar wavelet-quasilinearization technique for heat transfer

equations.

4.1.1 Temperature Distribution in Lumped System of Combined Convection-
Radiation in a Slab Made of Materials with Variable Thermal Conductiv-
ity

Let the lumped system have volume V , surface area A, density ρ, specific heat c, the initial temper-

ature Ti, temperature of the convection environment Ta, heat transfer coefficient h and ca is specific

heat at temperature Ta. Consider the mathematical model describing the temperature distribu-

tion in lumped system of combined convection–radiation in a slab made of materials with variable

thermal conductivity is given by the following nonlinear boundary value problem:

d2y(x)
dx2

−εy4(x) = 0, 0 ≤ x ≤ 1,
dy(0)
dx = 0, y(1) = 1.

(4.1.1)

Where y = T−Ta
Ti−Ta is dimensionless temperature, x = t

ρV ca/hA
is dimensionless time and ε = β(T−Ta).

Haar Wavelet-Quasilinearization Technique

Applying the quasilinearization technique to (4.1.1), we get

d2yr+1(x)
dx2

−4εy3
r (x)yr+1(x) = −3εy4

r (x), 0 ≤ x ≤ 1,
dyr+1(0)

dx = 0, yr+1(1) = 1.
(4.1.2)

Now we implement the Haar wavelet method to equation (4.1.2), we approximate the higher order

derivative term by the Haar wavelet series as

d2yr+1(x)
dx2

=
2M∑
l=1

br+1
l hl(x). (4.1.3)
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Lower order derivatives are obtained by integrating equation (4.1.3) and use the boundary conditions

yr+1(x) =
2M∑
l=1

br+1
l p2,l(x)− C2,l + 1, (4.1.4)

where Cα,l is given in (2.3.8). Substitute equations (4.1.3) and (4.1.4) in (4.1.2), to obtain

2M∑
l=1

br+1
l [hl(x)− 4εy3

r (x)p2,l(x) + 4εy3
r (x)C2,l] = −3εy4

r (x) + 4εy3
r (x), (4.1.5)

with the initial approximation y0(x) = 0.
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Figure 4.1: Solutions by Haar wavelet-quasilinearization technique for different ε at J = 5 and r = 4.

4th iteration J = 8

x Maple yGA [62] yHPM [62] yHaar

0.0 0.834542 0.963536 0.640000 0.834543

0.2 0.840390 0.964009 0.652096 0.840391

0.4 0.858269 0.965742 0.689536 0.858269

0.6 0.889247 0.969893 0.755776 0.889248

0.8 0.935346 0.979233 0.866576 0.935346

Table 4.1: Numerical results for temperature distribution equation for ε = 0.6: Haar wavelet-

quasilinearization technique at 4th iteration and level of resolutions J = 8.
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4th iteration J = 8

x Maple yGA [62] yHPM [62] yHaar

0.0 0.694318 0.968771 -0.666667 0.694362

0.2 0.703698 0.968804 -0.625600 0.703739

0.4 0.732894 0.969008 -0.489600 0.732927

0.6 0.785488 0.970024 -0.220267 0.785510

0.8 0.869161 0.975059 -0.246400 0.869176

Table 4.2: Numerical results for temperature distribution equation for ε = 2.0: Haar wavelet-

quasilinearization technique at 4th iteration and level of resolutions J = 8.

Figure 4.1 shows the temperature yHaar by Haar wavelet quasilinearization technique for different

ε at J = 5 and at 4th iteration. According to Figure 4.1 and Table 4.1 and 4.2, temperature increases

with decreasing ε, also temperature vary with time x. Table 4.1 and 4.2 shows that obtained solution

are in good agreement with numerical solution provided by Maple and are better than generalized

approximation method yGA [62] and homotopy perturbation method yHPM [62].

4.1.2 Cooling of a Lumped System by Combined Convection and Radiation

Consider the system have volume V , surface area A, density ρ, specific heat c, emissivity E, the

initial temperature Ti, temperature of the convection environment Ta, heat transfer coefficient h

and ca is specific heat at temperature Ta. In this case system loses heat through radiation and the

effective sink temperature is Ts. The mathematical model describing the cooling of a lumped system

by combined convection and radiation is given by the following nonlinear initial value problem:

ρV cdT (t)
dt + hA(T − Ta) + EσA(T 4 − T 4

s ) = 0,

T (t = 0) = Ti.
(4.1.6)

For the solution of (4.1.6), we do the certain changes in parameters:

y = T
Ti
, ya = Ta

Ti
, ys = Ts

Ti
, x = t

ρV ca/hA
, ε =

EσT 3
i

h .

Equation (4.1.6) implies after changing the parameters:

dy(x)
dx + (y − ya) + ε(y4 − y4

s) = 0,

y(x = 0) = 1.
(4.1.7)

For the sake of simplicity we assume that ya = ys = 0, equation (4.1.7) becomes

dy(x)
dx + y + εy4 = 0,

y(x = 0) = 1.
(4.1.8)
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Haar Wavelet-Quasilinearization Technique

Implementation of the quasilinearization technique to (4.1.8) gives

dyr+1(x)
dx + (1 + 4εy3

r )yr+1 = 3εy4
r ,

yr+1(x = 0) = 1.
(4.1.9)

According to the Haar wavelet method to equation (4.1.9), approximate the higher order derivative

term by the Haar wavelet series as

dyr+1(x)
dx =

2M∑
l=1

br+1
l hl(x). (4.1.10)

Solution can be obtained by integrating equation (4.1.10) and use the initial condition to yield

yr+1(x) =
2M∑
l=1

br+1
l p1,l(x) + 1. (4.1.11)

Substitute equations (4.1.10) and (4.1.11) in (4.1.9),

2M∑
l=1

br+1
l [hl(x) + (1 + 4εy3

r (x))p1,l(x)] = 3εy4
r (x)− (1 + 4εy3

r (x)), (4.1.12)

with the initial approximation y0(x) = 1.

To get the solution on large interval, say [0, 5], we divide the interval [0, 5] into three subinter-

vals [0, 1.25], [1.25, 3.75] and [3.75, 5], let A = 0, B = 1.25, C = 3.75, D = 5, step-size for each

subintervals are

∆x1 = (B−A)
M
2

,

∆x2 = (C−B)
M ,

∆x3 = (D−C)
M
2

,

The coordinates of the grid points are

For j=1,2,...,M2 + 1

x(j)=A+(i-1)∆x1,

For j=1,2,..,M

x(j+M
2 + 1)=B+(i)∆x2,

For j=1,2,..,M2
x(j+3M

2 + 1)=C+(i)∆x3.

And collocation points are

For j=1,2,...,2M

xc(j) = x(j)+x(j+1)
2 .
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4th iteration J = 8

ε Exact yV IM [47] yHPM [47] yHaar

0.0 0.606531 0.606531 0.606531 0.606531

0.1 0.591591 0.591617 0.591638 0.591592

0.2 0.578023 0.578207 0.578371 0.578023

0.3 0.565620 0.566185 0.566732 0.565620

0.4 0.554217 0.555440 0.556720 0.554217

0.5 0.543681 0.545868 0.548335 0.543681

0.6 0.533903 0.537369 0.541576 0.533904

0.7 0.524793 0.529850 0.536445 0.524793

0.8 0.516275 0.523226 0.532940 0.516275

0.9 0.508284 0.517412 0.531062 0.508284

1.0 0.500765 0.512333 0.530812 0.500765

Table 4.3: Numerical results for cooling equation for different ε and x = 0.5: Haar wavelet-

quasilinearization technique at 4th iteration and level of resolutions J = 8.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x−axis

S
ol

ut
io

n

Fourth iteration, Level of Resolution J=5

Haar Solution for ε=0
ε=0.2
ε=0.4
ε=0.6
ε=0.8
ε=1

Figure 4.2: Solutions by Haar wavelet-quasilinearization technique for different ε at J = 5 and r = 4.

Temperature yHaar at higher interval, [0, 5], by Haar wavelet quasilinearization technique at

J = 5 and iteration r = 4, of the cooling equation for different values of ε is shown in Figure

4.2. It shows that temperature decreases with increasing ε, also shows that temperature reduces to

zero when time x is increasing. According to Table 4.3, we conclude that our results are in good

agreement with exact solution and more accurate than variational iteration method yV IM [47] and
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homotopy perturbation method yHPM [47].

We can get more accurate results while increasing level of resolution J or iteration r or both,

according to convergence analysis given in section (3.2.3).

4.1.3 Conclusion

The main purpose of the present chapter is to show the applicability of Haar wavelet quasilineariza-

tion technique for the solution of heat convection radiation equations, because when some numerical

method applied for the solution of heat convection radiation equations they becomes unstable when

we increase the value of parameter epsilon, which appears in heat convection radiation equations, as

shown in Table 4.1, 4.2 and 4.3. This is the main advantage for implementing the Haar wavelet quasi-

linearization technique on heat convection radiation equations, because it gives stable and accurate

results.

4.2 Haar Wavelet Operational Matrix Method for Fractional Oscil-

lation Equations

The fractional order forced duffing-Van der Pol oscillator is given by the following second order

differential equation [83].

y′′(t)− µ(1− y2(t))y′(t) + ay(t) + by3(t) = g(f, ω, t),

where g(f, ω, t) = f cos(ωt) represents the periodic driving function of time with period T = 2π/ω,

where ω is the angular frequency of the driving force, f is the forcing strength, µ > 0 is the damping

parameter of the system. Duffing–Van der Pol oscillator equation can be expressed in three physical

situations

(1) Single-well a > 0, b > 0,

(2) Double-well a < 0, b > 0,

(3) Double-hump a > 0, b < 0.

In this section, we present Haar wavelet quasilinearization technique for the solution of force-free

duffing-Van der Pol oscillator of fractional order, forced duffing-Van der Pol oscillator of fractional

order and higher order fractional duffing equation and compare the results with those obtained by

other methods and exact solution.

4.2.1 Forced Duffing-Van Der Pol Oscillator Equation

Consider the αth order fractional forced DVP oscillator equation

cDαy(x)− µ(1− y2(x))y′(x) + ay(x) + by3(x) = f cos(ωx), 1 < α ≤ 2, (4.2.1)
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subject to the initial conditions y(0) = 1, y′(0) = 0.

Apply the quasilinearization technique to (4.2.1), we obtain

cDαyn+1(x)− µ(1− y2
n(x))y′n+1(x) + (a+ 2µyn(x)y′n(x) + 3by2

n(x))yn+1(t)

= f cos(ωx) + 2µy2
n(x)y′n(x) + 2by3

n(x),
(4.2.2)

with the initial conditions yn+1(0) = 1, y′n+1(0) = 0.

Now we apply the Haar wavelet method to equation (4.2.2), we approximate the higher order deriva-

tive term by the Haar wavelet series as

cDαyn+1(x) =
2M∑
l=1

blhl(x). (4.2.3)

Lower order derivatives are obtained by integrating equation (4.2.3) and use the initial condition

yn+1(x) =
2M∑
l=1

blpα,l(x) + 1, y′n+1(x) =
2M∑
l=1

blpα−1,l(x). (4.2.4)

Substitute equations (4.2.3) and (4.2.4) in (4.2.2) to get

2M∑
l=1

bl[hl(x)− µ(1− y2
n(x))pα−1,l(x) + (a+ 2µyn(x)y′n(x) + 3by2

n(x))pα,l(x)]

= f cos(ωx) + 2µy2
n(x)y′n(x) + 2by3

n(x)− (a+ 2µyn(x)y′n(x) + 3by2
n(x)).

(4.2.5)

with the initial approximations y0(x) = 1, y′0(x) = 0.

(1) (Single–well a > 0, b > 0.) a = 0.5, b = 0.5, µ = 0.1, f = 0.5, ω = 0.79.

(2) (Double–well a < 0, b > 0.) a = −0.5, b = 0.5, µ = 0.1, f = 0.5, ω = 0.79.

(3) (Double–hump a > 0, b < 0.) a = 0.5, b = −0.5, µ = 0.1, f = 0.5, ω = 0.79.

α = 2

5th iteration J = 9

x yRK yHPM [117] yV IM [117] yHaar Absolute Error

0.2 0.9900451 0.99004 0.99004 0.9900451 3.1e-8

0.4 0.9607026 0.96075 0.9607 0.9607024 1.5e-7

0.6 0.9134154 0.91383 0.91341 0.9134150 3.5e-7

0.8 0.8502496 0.85216 0.85025 0.8502491 5.8e-7

1.0 0.773523 0.77973 0.77353 0.773522 8.0e-7

Table 4.4: Single-well situation: Comparison of solutions by the Haar wavelet-quasilinearization

technique yHaar at 5th iteration and level of resolutions J = 9 with numerical methods [117] and

numerical solution based on the fourth-order Runge-Kutta.

63



α = 2

5th iteration J = 9

x yRK yV IM [117] yHPM [117] yHaar Absolute Error

0.2 1.009945 1.00994 1.00994 1.009945 9.8e-9

0.4 1.039114 1.03911 1.03918 1.039114 6.7e-8

0.6 1.085448 1.08544 1.08621 1.085448 1.9e-7

0.8 1.145384 1.14539 1.14937 1.145384 3.9e-7

1.0 1.213777 1.21382 1.22785 1.213778 6.4e-7

Table 4.5: Double-well situation: Comparison of solutions by the Haar wavelet-quasilinearization

technique yHaar at 5th iteration and level of resolutions J = 9 with numerical methods [117] and

numerical solution based on the fourth-order Runge-Kutta.

α = 2

5th iteration J = 9

x yRK yV IM [117] yHPM [117] yHaar Absolute Error

0.1 1.00250 1.0025 1.0025 1.00250 2.5e-9

0.2 1.01001 1.01001 1.01001 1.01001 4.3e-11

0.5 1.06301 1.063 1.06296 1.06301 4.3e-8

0.75 1.14347 1.14346 1.14209 1.14347 9.8e-8

1.0 1.26039 1.26035 1.25055 1.26039 3.9e-7

Table 4.6: Double-hump situation: Comparison of solutions by the Haar wavelet-quasilinearization

technique yHaar at 5th iteration and level of resolutions J = 9 with numerical methods [117] and

numerical solution based on the fourth-order Runge-Kutta.
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Figure 4.3: Solution by RK method (RK Solution) at α = 2 and solution by Haar wavelet-

quasilinearization technique (HAAR Solution) at J = 6 and different values of α for a = 0.5, b =

0.5, µ = 0.1, f = 0.5, ω = 0.79.
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Figure 4.4: Solution by RK method (RK Solution) at α = 2 and solution by Haar wavelet-

quasilinearization technique (HAAR Solution) at J = 5 and different values of α for a = −0.5, b =

0.5, µ = 0.1, f = 0.5, ω = 0.79.
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Figure 4.5: Solution by RK method (RK Solution) at α = 2 and solution by Haar wavelet-

quasilinearization technique (HAAR Solution) at J = 3 and different values of α for a = 0.5, b =

−0.5, µ = 0.1, f = 0.5, ω = 0.79

The results obtained using the Haar wavelet quasilinearization technique at fifth iteration for

the three situations, single-well, double-well and double-hump are given in Table 4.4, 4.5 and 4.6

respectively. Here we fix the order of equation, α = 2, and level of resolution J = 9. We compared

the obtained solution with variational iteration method [117], homotopy perturbation method [117]

and numerical solution based on the fourth–order Runge-Kutta (RK) method. Also the absolute

error relative to RK method is shown in Tables 4.4, 4.5 and 4.6. It shows that obtained results are

more accurate as compared to variational iteration method and homotopy perturbation method.

Figure 4.3, 4.4 and 4.5 showed the solution of equation (4.2.1) for single-well, double-well and

double-hump situation respectively. We plot the solutions at different order α of equation (4.2.1).

Here we fixed the solution at fifth iteration and level of resolution J = 5 or J = 6. Also solution by

fourth order Runge-Kutta method (RK Solution) at α = 2 is also plotted along with the solution

obtained by the Haar wavelet quasilinearization technique (HAAR Solution) and Figures 4.3, 4.4

and 4.5 shows that Haar solution converges to the RK solution when α approaches to 2.

4.2.2 Force-Free Duffing-Van Der Pol Oscillator Equation

Consider the αth order fractional force-free DVP oscillator equation

cDαy(x)− µ(1− y2(x))y′(x) + ay(x) + by3(x) = 0, 1 < α ≤ 2, (4.2.6)
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subject to the initial conditions y(0) = 1, y′(0) = 0.

Haar wavelet–quasilinearization technique on (4.2.6) gives

2M∑
l=1

bl[hl(x)− µ(1− y2
n(x))pα−1,l(x) + (a+ 2µyn(x)y′n(x) + 3by2

n(x))pα,l(x)]

= 2µy2
n(x)y′n(x) + 2by3

n(x)− (a+ 2µyn(x)y′n(x) + 3by2
n(x)),

(4.2.7)

with the initial approximations y0(x) = 1, y′0(x) = 0.

α = 2

5th iteration J = 9

x yRK yADM [17] yHaar Absolute Error

0.0 2.00000 1.99750 2.00000 2.1e-12

0.1 1.98971 1.98724 1.98971 1.7e-7

0.2 1.95936 1.95697 1.95936 3.5e-7

0.3 1.90980 1.90758 1.90980 5.4e-7

0.4 1.84202 1.84008 1.84202 7.3e-7

0.5 1.75702 1.75552 1.75702 9.2e-7

0.6 1.65586 1.65493 1.65586 1.1e-6

0.7 1.53958 1.53937 1.53958 1.3e-6

0.8 1.40923 1.53937 1.40923 1.4e-6

0.9 1.26586 1.26726 1.26586 1.6e-6

1.0 1.11054 1.11267 1.11054 1.7e-6

1.1 0.94435 0.94704 0.94435 1.9e-6

1.2 0.76846 0.77147 0.76846 2.0e-6

1.3 0.58411 0.58715 0.58410 2.1e-6

1.4 0.39267 0.39545 0.39267 2.3e-6

1.5 0.19567 0.19795 0.19566 2.4e-6

Table 4.7: Force-Free Duffing-Van der Pol Oscillator Equation: Comparison of solutions by the

Haar wavelet-quasilinearization technique yHaar at 5th iteration and level of resolutions J = 9 with

Adomian decomposition method yADM [17] and numerical solution based on the fourth-order Runge-

Kutta.
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Figure 4.6: Solution by RK method (RK Solution) at α = 2 and solution by Haar wavelet-

quasilinearization technique (HAAR Solution) at J = 5 and different values of α for a = 1, µ =

0.1, b = 0.01, f = 0.

Results of fifth iteration by the Haar wavelet quasilinearization technique at fixed level of res-

olution J = 9 and at α = 2 are shown in Table 4.7. Here we consider µ = 0.1, a = 1, b = 0.01

and compare the obtained solution with Adomian decomposition method [17]. Equation (4.2.6)

is also solved by fourth order Runge-Kutta method to show the applicability of the Haar wavelet

quasilinearization technique. Table 4.7 shows that solution by the Haar wavelet quasilinearization

technique gives more accurate results as compared to Adomian decomposition method.

Results of fifth iteration by the Haar wavelet quasilinearization technique at fixed level of reso-

lution J = 5 and at different values of α, are shown in Figure 4.6, along with the RK solution at

α = 2. Figure 4.6 showed that obtained solution converge to the RK solution when α approaches to

2.

4.2.3 Higher Order Oscillation Equation

Consider the αth order fractional Duffing equation

cDαy(x) + 5y′′(x) + 4y(x)− 1
6y

3(x) = 0, 3 < α ≤ 4, (4.2.8)

subject to the initial condition

y(0) = 0, y′(0) = 1.91103, y′′(0) = 0, y′′′(0) = −1.15874.
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The exact solution, when α = 4, is given by

y(x) = 2.1906 sin(0.9x)− 0.02247sin(2.7x) + 0.000045sin(4.5x).

Quasilinearization technique to (4.2.8) gives

cDαyn+1(x) + 5y′′n+1(x) + (4− 1
2y

2
n(x))yn+1(x) = −1

3y
3
n(x), 3 < α ≤ 4, (4.2.9)

with the initial conditions

yn+1(0) = 0, y′n+1(0) = 1.91103, y′′n+1(0) = 0, y′′′n+1(0) = −1.15874. Implement the Haar wavelet

method to equation (4.2.9) as
cDαyn+1(x) =

2M∑
l=1

blhl(x). (4.2.10)

Lower order derivatives are obtained by integrating equation (4.2.10) and use the initial condition

yn+1(x) =
2M∑
l=1

blpα,l(x)− 1.15874
6 x3 + 1.91103x,

y′n+1(x) =
2M∑
l=1

blpα−1,l(x)− 1.15874
2 x2 + 1.91103,

y′′n+1(x) =
2M∑
l=1

blpα−2,l(x)− 1.15874x,

y′′′n+1(x) =
2M∑
l=1

blpα−3,l(x)− 1.15874.

(4.2.11)

Substitute equations (4.2.10) and (4.2.11) in (4.2.9), we get

2M∑
l=1

bl[hl(x) + 5pα−2,l(x) + (4− 1
2y

2
n(x))pα,l(x)] = −1

3y
3
n(x) + 5(1.15874)x

−(4− 1
2y

2
n(x))(1.91103x− 1.15874

6 x3),

(4.2.12)

with the initial approximations

y0(x) = 0, y′0(x) = 1.91103, y′′0(x) = 0, y′′′0 (x) = −1.15874.
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α = 4

6th iteration J = 10

x yExact [75] yGDQR [75] EGDQR [75] yHaar EHaar

0.0 0 0 0 0 0

0.7 1.2692 1.2693 -0.002 1.2692 0.0025

1.4 2.0990 2.0993 -0.010 2.0990 0.0037

2.1 2.0929 2.0933 -0.019 2.0928 0.0048

2.8 1.2541 1.2545 -0.027 1.2541 0.0059

3.5 -0.0179 -0.0177 0.813 -0.0179 -0.1679

4.2 -1.2843 -1.2842 0.003 -1.2843 -0.0010

4.9 1.0880 -2.1051 -0.004 1.0879 0.0063

5.6 -2.0866 -2.0868 -0.014 -2.0865 -0.0046

6.3 -1.2390 -1.2395 -0.039 -1.2389 -0.0083

7.0 0.0357 0.0352 1.276 0.0358 0.2095

7.7 1.2992 1.2990 0.013 1.2992 0.0010

8.4 2.1109 2.1111 -0.009 2.1108 0.0031

9.1 2.0801 2.0805 -0.021 2.0800 0.0056

9.8 1.2237 1.2243 -0.044 1.2236 0.0099

10.5 -0.0536 -0.0529 1.146 -0.0537 -0.1965

11.2 -1.3141 -1.3136 0.037 -1.3141 -0.0042

11.9 -2.1166 -2.1166 -0.002 -2.1166 -0.0022

12.6 -2.0734 -2.0741 -0.030 -2.0733 -0.0068

13.3 -1.2084 -1.2093 -0.071 -1.2082 -0.0136

14.0 0.0714 0.0706 1.057 0.0715 0.1888

Table 4.8: Higher order oscillation equation: Comparison of solutions by the Haar wavelet-

quasilinearization technique at 6th iteration and level of resolutions J = 10 with generalized dif-

ferential quadrature rule (GDQR) method [75]and exact solution.
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Figure 4.7: Higher order oscillation equation: Exact solution at α = 4 and solution by Haar wavelet-

quasilinearization technique at J = 5 and different values of α.

Solution by the Haar wavelet quasilinearization technique at 6th, fixed level of resolution J = 10

and order of equation (4.2.8) α = 4 is shown in Table 4.8. It shows that obtained solution is

more accurate as compared to generalized differential quadrature rule (GDQR) [75]. EGDQE and

EHaar represent the percentage error of generalized differential quadrature rule and the Haar wavelet

quasilinearization technique respectively.

We fix the solutions at fifth iteration, level of resolution J = 5 and plot the solution at different

values of α are shown in Figure 4.7 along with the exact solution at α = 4 and Figure 4.7 shows

that solution by the Haar wavelet quasilinearization technique converge to the exact solution, when

α approaches to 4.

4.2.4 Conclusion

It is shown that Haar wavelet method with quasilinearization technique gives good results when

applied to fractional order nonlinear oscillation equations. The results obtained from Haar wavelet

quasilinearization technique are better from the results obtained by other methods and are in good

agreement with exact solutions or solution by fourth order Runge-Kutta method, as shown in Tables

and Figures. The solution of the fractional order, nonlinear oscillation equation converge to the

solution of integer order nonlinear oscillation differential equation as shown in Figures 4.3, 4.4, 4.5,

4.6 and 4.7.
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Chapter 5

Haar Wavelet Operational Matrix

Method for Fractional Nonlinear Partial

Differential Equations

The wavelet algorithms for solving partial differential equations are based on the Galerkin tech-

niques or on the collocation method. Haar wavelet algorithm is based on the collocation method.

Numerical solution of linear fractional partial differential equations by Haar wavelet method has

been given in [131]. Convergence analysis of Haar wavelet method is also discussed. Lepik [73] or-

ganized a method by using two dimensional Haar wavelets for solving partial differential equations,

he considered the diffusion and Poisson equations as test problems. An efficient numerical method

for the solution of nonlinear partial differential equations based on the Haar wavelets approach is

introduced by Celik [22,23], and tested in the case of generalized Burgers−Huxley equation and mag-

netohydrodynamic flow equations. Hariharan et al. [53,54] developed a solution for Fisher′s equation,

Nowell−whitehead equation, Cahn−Allen equation, FitzHugh−Nagumo equation, Burger′s equation

and the Burgers−Fisher equation by Haar wavelet method.

In this chapter, we developed a method by combining the Haar wavelet method and quasilin-

earization technique for numerical solutions of nonlinear fractional partial differential equations. We

discretize the nonlinear fractional partial differential equation by quasilinearization technique and

then convert the obtained discretized equation into a Sylvester equation by the Haar wavelet tech-

nique to get the solution. The convergence analysis of the method is also investigated. The obtained

numerical results are compared with the exact solution and the numerical solution obtained by other

methods. Several problems are solved to show the applicability of the Haar wavelet method with

quasilinearization technique.
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5.1 Quasilinearization for Partial Differential Equation

The quasilinearization approach [7] is a generalized Newton-Raphson technique for functional equa-

tions. It converges quadratically to the exact solution, if there is convergence at all, and it has

monotone convergence.

Quasilinearization for the nonlinear partial differential equations is as follows. Consider a class

of nonlinear fractional partial differential equations

∂αu

∂tα
= uxx + h(u, ux), 0 < x < 1, t ≥ 0, 0 < α < 1, (5.1.1)

with the initial condition

u(x, 0) = g(x),

and boundary conditions

u(0, t) = u(1, t) = 0,

where h is the nonlinear function of u and ux. Quasilinearization approach for equation (5.1.1)

implies
∂αur+1

∂tα = (ur+1)xx + h(ur, (ur)x) + (ur+1 − ur)hu(ur, (ur)x)

+((ur+1)x − (ur)x)hux(ur, (ur)x), r ≥ 0,
(5.1.2)

with the initial and boundary conditions

ur+1(x, 0) = g(x), 0 < x < 1,

ur+1(0, t) = ur+1(1, t) = 0, t ≥ 0.

Starting with an initial approximation u0(x, t), we have a linear equation for each ur+1, r ≥ 0.

5.2 Implementation of Method

In this section, we describes the procedure of implementing the method for fractional nonlinear

partial differential equation. The first step is to convert the fractional nonlinear partial differen-

tial equation into discrete fractional partial differential equation by quasilinearization technique, as

described in section 5.1. The next step is to solve the obtained discretized fractional partial differ-

ential equation by the Haar wavelet operational matrix method. Consider the following fractional

nonlinear partial differential equation

∂αu
∂tα − a(x)∂

βu
∂xβ

+ b(x)u∂
γu
∂xγ + d(x)up = f(t, x),

0 < α ≤ 2, 1 < β ≤ 2, 0 < γ ≤ 1, p ≥ 1,
(5.2.1)

with the initial and boundary conditions,

u(x, 0) = g1(x),
∂u

∂t
|t=0 = g2(x), 0 < x < 1,
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u(0, t) = Y1(t), u(1, t) = Y2(t), t ≥ 0.

Apply the quasilinearization technique to equation (5.2.1), we get

∂αur+1

∂tα − a(x)∂
βur+1

∂xβ
+ b(x, ur)

∂γur+1

∂xγ + d(x, ur,
∂γur
∂xγ )ur+1 = f(t, x, ur,

∂γur
∂xγ ),

0 < α ≤ 2, 1 < β ≤ 2, 0 < γ ≤ 1, r ≥ 0,
(5.2.2)

with the initial and boundary conditions,

ur+1(x, 0) = g1(x),
∂ur+1

∂t
|t=0 = g2(x), 0 < x < 1,

ur+1(0, t) = Y1(t), ur+1(1, t) = Y2(t), t ≥ 0,

where b(x, ur) = b(x)ur, d(x, ur,
∂γur
∂xγ ) = b(x)∂

γur
∂xγ + d(x)pup−1

r and

f(t, x, ur,
∂γur
∂xγ ) = f(t, x)− b(x)ur

∂γur
∂xγ − d(x)upr + ur

(
b(x)∂

γur
∂xγ + d(x)pup−1

r

)
+ b(x)ur

∂γur
∂xγ .

Apply the Haar wavelet method to equation (5.2.2), we approximate the higher order term by the

Haar wavelet series as

∂βur+1

∂xβ
=

2M∑
l=1

2M∑
i=1

cr+1
l,i hl(x)hi(t) = HT (x)Cr+1H(t). (5.2.3)

Apply the fractional integral operator Iβx on equation (5.2.3)

ur+1(x, t) =
2M∑
l=1

2M∑
i=1

cr+1
l,i Iβxhl(x)hi(t) + p(t)x+ q(t), (5.2.4)

where p(t) and q(t) are functions of t. Use the boundary conditions and equations (2.1.2) and (2.1.3),

we get

q(t) = Y1(t),

p(t) = −
2M∑
l=1

2M∑
i=1

cr+1
l,i (

1

Γ(β)

1∫
0

(1− s)β−1hl(s)ds)hi(t) + Y2(t)− Y1(t),

or

p(t) = −
2M∑
l=1

2M∑
i=1

cr+1
l,i (Iβ1 hl(x))hi(t) + Y2(t)− Y1(t).

Equation (5.2.4) can be written as

ur+1(x, t) =

2M∑
l=1

2M∑
i=1

cr+1
l,i pβ,l(x)hi(t)−x(

2M∑
l=1

2M∑
i=1

cr+1
l,i (Iβ1 hl(x))hi(t))+x(Y2(t)−Y1(t))+Y1(t). (5.2.5)

Take the Caputo fractional derivative ∂γ

∂xγ , of order γ, to equation (5.2.5)

∂γur+1

∂xγ =
2M∑
l=1

2M∑
i=1

cr+1
l,i pβ−γ,l(x)hi(t)− x1−γ

Γ(2−γ)(
2M∑
l=1

2M∑
i=1

cr+1
l,i (Iβ1 hl(x))hi(t))+

x1−γ

Γ(2−γ)(Y2(t)− Y1(t)).

(5.2.6)
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We introduce some notations which will be used in this section for simplification,

S(x, t) = −b(x,ur)x1−γ
Γ(2−γ) (Y2(t)− Y1(t))− xd(x, ur,

∂γur
∂xγ )(Y2(t)− Y1(t))− d(x, ur,

∂γur
∂xγ )Y1(t)

+f(t, x, ur,
∂γur
∂xγ )

=
2M∑
l=1

2M∑
i=1

ml,ihl(x)hi(t),

where ml,i =< hl(x), < S(x, t), hi(t) >> . Use equations (5.2.3), (5.2.5) and (5.2.6) in equation

(5.2.2), to obtain

∂αur+1

∂tα
=a(x)

2M∑
l=1

2M∑
i=1

cr+1
l,i hl(x)hi(t)− b(x, ur)

2M∑
l=1

2M∑
i=1

cr+1
l,i pβ−γ,l(x)hi(t)

+
b(x, ur)x

1−γ

Γ(2− γ)
(

2M∑
l=1

2M∑
i=1

cr+1
l,i Cβ,lhi(t))− d(x, ur,

∂γur
∂xγ

)
2M∑
l=1

2M∑
i=1

cr+1
l,i pβ,l(x)hi(t)

+ xd(x, ur,
∂γur
∂xγ

)(

2M∑
l=1

2M∑
i=1

cr+1
l,i Cβ,lhi(t)) +

2M∑
l=1

2M∑
i=1

ml,ihl(x)hi(t).

(5.2.7)

where Cβ,l = Iβ1 hl(x) and is given in section 2.3. Apply fractional integral operator Iαt to (5.2.7)

and use the initial conditions to obtain,

ur+1(x, t) =a(x)

2M∑
l=1

2M∑
i=1

cr+1
l,i hl(x)pα,i(t)− b(x, ur)

2M∑
l=1

2M∑
i=1

cr+1
l,i pβ−γ,l(x)pα,i(t)+

b(x, ur)x
1−γ

Γ(2− γ)
(

2M∑
l=1

2M∑
i=1

cr+1
l,i Cβ,lpα,i(t))− d(x, ur,

∂γur
∂xγ

)
2M∑
l=1

2M∑
i=1

cr+1
l,i pβ,l(x)pα,i(t)

+ xd(x, ur,
∂γur
∂xγ

)(

2M∑
l=1

2M∑
i=1

cr+1
l,i Cβ,lpα,i(t)) +

2M∑
l=1

2M∑
i=1

ml,ihl(x)pα,i(t) + g2(x)t

+ g1(x).

(5.2.8)

Let K(x, t) = −g2(x)t− g1(x) + x(Y2(t)− Y1(t)) + Y1(t). From equation (5.2.5) and (5.2.8),

2M∑
l=1

2M∑
i=1

cr+1
l,i pβ,l(x)hi(t)− x(

2M∑
l=1

2M∑
i=1

cr+1
l,i Cβ,lhi(t)) +K(x, t) = a(x)

2M∑
l=1

2M∑
i=1

cr+1
l,i hl(x)pα,i(t)

− b(x, ur)
2M∑
l=1

2M∑
i=1

cr+1
l,i pβ−γ,l(x)pα,i(t) +

b(x, ur)x
1−γ

Γ(2− γ)
(

2M∑
l=1

2M∑
i=1

cr+1
l,i Cβ,lpα,i(t))

− d(x, ur,
∂γur
∂xγ

)
2M∑
l=1

2M∑
i=1

cr+1
l,i pβ,l(x)pα,i(t) + xd(x, ur,

∂γur
∂xγ

)(
2M∑
l=1

2M∑
i=1

cr+1
l,i Cβ,lpα,i(t))

+
2M∑
l=1

2M∑
i=1

ml,ihl(x)pα,i(t).

(5.2.9)
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In discrete form, equation (5.2.9) can be written as

2M∑
l=1

2M∑
i=1

cr+1
l,i pβ,l(xc(j))hi(tc(n))− xc(j)(

2M∑
l=1

2M∑
i=1

cr+1
l,i Cβ,lhi(tc(n))) +K(xc(j), tc(n))

= a(xc(j))
2M∑
l=1

2M∑
i=1

cr+1
l,i hl(xc(j))pα,i(tc(n))− b(xc(j), ur)

2M∑
l=1

2M∑
i=1

cr+1
l,i pβ−γ,l(xc(j))pα,i(tc(n))

+
b(xc(j), ur)xc(j)

1−γ

Γ(2− γ)
(

2M∑
l=1

2M∑
i=1

cr+1
l,i Cβ,lpα,i(tc(n)))− d(xc(j), ur,

∂γur
∂xγ

)

2M∑
l=1

2M∑
i=1

cr+1
l,i pβ,l(xc(j))pα,i(tc(n)) + xc(j)d(xc(j), ur,

∂γur
∂xγ

)(
2M∑
l=1

2M∑
i=1

cr+1
l,i Cβ,lpα,i(tc(n)))

+

2M∑
l=1

2M∑
i=1

ml,ihl(xc(j))pα,i(tc(n)),

(5.2.10)

where xc(j) = 2j−1
4M , tc(n) = 2j−1

4M , j, n = 1, 2, ..., 2M , are collocation points.

In matrix form, equation (5.2.10) can be written as

P βCr+1H −Vβ,1,f(x)Cr+1H − (AHTCr+1Pα
t −BPβ−γ

x Cr+1Pα
t + Vβ,1,g(x)Cr+1Pα

t

−DPβ
xC

r+1Pα
t +DVβ,1,f(x)Cr+1Pα

t )−HTM ′Pα
t + K = 0,

(5.2.11)

where H is the 2M × 2M Haar matrix, Vβ,1,f(x) = f(x)Iβ1H
T and Vβ,1,g(x) = urg(x)Iβ1H

T are the

2M × 2M fractional integration matrices for boundary value problem and Pβ
x = IβxHT , Pα

t = Iαt H,

and Pβ−γ
x = Iβ−γx HT are the 2M×2M matrices of fractional integration of the Haar functions. These

matrices are derived in section 2.3. Also K = K(xc(j), tc(j)), j = 1, 2, · · · , 2M is the 2M × 2M

matrix determined at the collocation points, M ′ is 2M × 2M coefficient matrix determined by the

inner products ml,i =< hl(x), < S(x, t), hi(t) >>, and f(x) = x, g(x) = b(x)x1−γ

Γ(2−γ) .

Let Q := (AHT −BPβ−γ
x + Vβ,1,g(x) −DPβ

x +DVβ,1,f(x))−1 is the 2M × 2M matrix, where A, B

and D are the diagonal matrices and are given by

A =


a(x1) 0 · · · 0

0 a(x2) · · · 0
...

...
. . .

...

0 0 · · · a(x2M )

 , B =


b(x1) 0 · · · 0

0 b(x2) · · · 0
...

...
. . .

...

0 0 · · · b(x2M )



and D =


d(x1) 0 · · · 0

0 d(x2) · · · 0
...

...
. . .

...

0 0 · · · d(x2M )
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Equation (5.2.11) can be written as

Q(Pβ
x −Vβ,1,f(x))Cr+1 − Cr+1Pα

t H
−1 +Q(K−HTM ′Pα

t )H−1 = 0, (5.2.12)

which is the Sylvester equation. Solve equation (5.2.12) for Cr+1, which is 2M × 2M coefficient ma-

trix, and substituting Cr+1 in equation (5.2.5) or (5.2.8), we get solution ur+1(x, t) at the collocation

points.

In particular, given an initial approximation u0(x, t), we get a linear fractional partial differential

equation in u1(x, t) by substituting r = 0 in equation (5.2.2), which is solved by above procedure to

get u1(x, t) at the collocation points. Similarly for r = 1, we obtain u2(x, t) and so on.

5.3 Convergence of Method

Let us assume that ur+1(x, t) be a continuously differentiable function on [0, 1)×[0, 1), and |∂ur+1(x,t)
∂x | ≤

K, for all (x, t) ∈ [0, 1)× [0, 1), K > 0.

Suppose uMr+1(x, t) be the Haar wavelet approximation for the function u(x, t) at the (r + 1)th

iteration, that is,

ur+1(x, t) ≈ uMr+1(x, t) =
2M∑
l=1

2M∑
p=1

cr+1
lp hl(x)hp(t). (5.3.1)

L2 error norm for the Haar wavelet approximation of u(x, t) at the (r + 1)th iteration is given as

‖ur+1(x, t)− uMr+1(x, t)‖2 =
1∫
0

1∫
0

(ur+1(x, t)− uMr+1(x, t))2dxdt,

=
∞∑

l=2M+1

∞∑
p=2M+1

∞∑
l′=2M+1

∞∑
p′=2M+1

cr+1
lp cr+1

l′p′
( 1∫

0

hl(x)hl′(x)dx
)( 1∫

0

hp(t)hp′(t)dt
)
.

By using orthogonality of Haar wavelet, we get

‖ur+1(x, t)− uMr+1(x, t)‖2 =
∞∑

l=2M+1

∞∑
p=2M+1

(
cr+1
lp

)2
, (5.3.2)

where cr+1
lp = 〈hl(x), 〈ur+1(x, t), hp(t)〉〉. Consider the inner product of ur+1(x, t) and hp(t), we get

〈ur+1(x, t), hp(t)〉 =
1∫
0

ur+1(x, t)hp(t)dt,

= 2
j
2

{ k+0.5
m∫
k
m

ur+1(x, t)dt−
k+1
m∫

k+0.5
m

ur+1(x, t)dt

}
,

(5.3.3)

where 2
j
2 is the normalizing factor of the Haar wavelet. By using the mean value theorem

∃ t1, t2 :
k

m
≤ t1 <

k + 0.5

m
,
k + 0.5

m
≤ t2 <

k + 1

m

such that

〈ur+1(x, t), hp(t)〉 = 2
j
2

{
(k+0.5

m − k
m)ur+1(x, t1)− (k+1

m − k+0.5
m )ur+1(x, t2)

}
,

= 2−
j
2
−1
(
ur+1(x, t1)− ur+1(x, t2)

)
.

(5.3.4)
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Taking the inner product of hl(x) with the obtained function (5.3.4), we have

cr+1
lp = 〈hl(x), 〈ur+1(x, t), hp(t)〉〉,

= 2−
j
2
−1

1∫
0

hl(x)
(
ur+1(x, t1)− ur+1(x, t2)

)
dx,

= 2−
j
2
−1

(
1∫
0

hl(x)ur+1(x, t1)dx−
1∫
0

hl(x)ur+1(x, t2)dx

)
,

= 2−
j
2
−1

{
2
j
2

[ k+0.5
m∫
k
m

ur+1(x, t1)dx−
k+1
m∫

k+0.5
m

ur+1(x, t1)dx

−
k+0.5
m∫
k
m

ur+1(x, t2)dx+

k+1
m∫

k+0.5
m

ur+1(x, t2)dx

]}
,

Using the mean value theorem to obtain

∃ x1, x2, x3, x4, such that
k

m
≤ x1, x2 <

k + 0.5

m
,
k + 0.5

m
≤ x3, x4 <

k + 1

m

cr+1
lp = 1

2

[
(k+0.5

m − k
m)ur+1(x1, t1)− (k+1

m − k+0.5
m )ur+1(x3, t1)− (k+0.5

m − k
m)ur+1(x2, t2)

+(k+1
m − k+0.5

m )ur+1(x4, t2)

]
,

= 1
2j+2

[
(ur+1(x1, t1)− ur+1(x3, t1))− (ur+1(x2, t2)− ur+1(x4, t2))

]
,

or

(cr+1
lp )2 = 1

22j+4

[
(ur+1(x1, t1)− ur+1(x3, t1))− (ur+1(x2, t2)− ur+1(x4, t2))

]2

. (5.3.5)

Again using mean value theorem

∃ η1, η2 : x1 ≤ η1 < x3, x2 ≤ η2 < x4

such that

(cr+1
lp )2 = 1

22j+4

[
(x3 − x1)∂u(η1,t1)

∂x − (x4 − x2)∂u(η2,t2)
∂x

]2

,

≤ 1
22j+4

[
(x3 − x1)2

(
∂u(η1,t1)

∂x

)2

+ (x4 − x2)2

(
∂u(η2,t2)

∂x

)2

+2(x3 − x1)(x4 − x2)
∣∣∂u(η1,t1)

∂x

∣∣∣∣∂u(η2,t2)
∂x

∣∣],
≤ 1

22j+4

(
2−2jK2 + 2−2jK2 + 2× 2−2jK2

)
,

= K2

24j+2 .

(5.3.6)

Using (cr+1
lp )2 in equation (5.3.2), we get
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‖ur+1(x, t)− uMr+1(x, t)‖2 =
∞∑

l=2M+1

∞∑
p=2M+1

(
cr+1
lp

)2
,

=
∞∑

j=J+1

(
2j+1∑
l=2j+1

2j+1∑
p=2j+1

(
cr+1
lp

)2)
,

≤
∞∑

j=J+1

(
2j+1∑
l=2j+1

2j+1∑
p=2j+1

K2

24j+2

)
,

= K2
∞∑

j=J+1

22j

22(2j+1) ,

= K2
∞∑

j=J+1

1
22j+2 ,

= K2 2−2(J+1)

3 .

This implies that

‖ur+1(x, t)− uMr+1(x, t)‖2 ≤ K2

3
1

(2M)2
, (5.3.7)

where M = 2J and equation (5.3.7) implies that error between the exact and approximate solution

at the (r+1)th iteration is inversely proportional to the maximal level of resolution, J . This implies

that uMr+1(x, t) converges to ur+1(x, t) as J →∞. Since ur+1(x, t) is obtained at (r + 1)th iteration

of quasilinearization technique, according to convergence analysis of quasilinearization technique [7]

which states that ur+1(x, t) converges to u(x, t) as r approaches to infinity, if there is convergence

at all. This suggest that solution by Haar wavelet quasilinearization technique, uMr+1(x, t), converges

to u(x, t) as J and r approaches to infinity.

5.4 Solution of Nonlinear Fractional Partial Differential Equation

In this section, we implement the Haar wavelet quasilinearization method on some nonlinear frac-

tional initial boundary value problems and compare the results with exact solution and results

obtained by the other methods.

5.4.1 Fractional Generalized Burger–Fisher Equation

Consider the fractional time derivative generalized Burger–Fisher equation,

∂αu

∂tα
− ∂2u

∂x2
+ auγ

∂u

∂x
+ bu(uγ − 1) = 0, 0 ≤ x ≤ 1, t ≥ 0, 0 < α ≤ 1, (5.4.1)

subject to the initial and boundary conditions

u(x, 0) = (
1

2
− 1

2
tanh(

aγ

2(1 + γ)
x))

1
γ = L(x),

u(0, t) = (
1

2
− 1

2
tanh(

aγ

2(1 + γ)
[−(

a2 + b(1 + γ2)

a(1 + γ)
)t]))

1
γ = E(t),
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u(1, t) = (
1

2
− 1

2
tanh(

aγ

2(1 + γ)
[1− (

a2 + b(1 + γ2)

a(1 + γ)
)t]))

1
γ = F (t),

The exact solution, when α = 1, is [18]:

u(x, t) = (
1

2
− 1

2
tanh(

aγ

2(1 + γ)
[x− (

a2 + b(1 + γ2)

a(1 + γ)
)t]))

1
γ . (5.4.2)

Applying the quasilinearized technique to equation (5.4.1), we get

∂αur+1

∂tα
− ∂2ur+1

∂x2
− ur+1(b+ Y ) + V (ur+1)x = Z, 0 ≤ x ≤ 1, t ≥ 0, r ≥ 0 (5.4.3)

with the initial and boundary conditions

ur+1(x, 0) = L(x),

ur+1(0, t) = E(t), ur+1(1, t) = F (t),

where Y = −aγ(ur)
γ−1(ur)x − b(γ + 1)(ur)

γ , Z = −b(ur)γ+1 − Y ur, V = a(ur)
γ .

Now we apply the Haar wavelet method to discretized equation (5.4.3), as described in section 5.2,

we get the solution at the collocation points.

3rd iteration J = 5

x t uHaar uExact EHaar ERDTM [64] EV IM [64]

0.01 0.02 0.49999875125 0.49999875125 5.55112e-017 0.49994e-05 2.50311e-03

0.04 0.49999875250 0.49999875250 1.11022e-016 0.49994e-05 2.50811e-03

0.06 0.49999875375 0.49999875375 1.11022e-016 1.49994e-05 2.51312e-03

0.08 0.49999875500 0.49999875500 1.11022e-016 1.99994e-05 2.51812e-03

0.04 0.02 0.49999500125 0.49999500125 5.55112e-017 0.49975e-05 9.99620e-03

0.04 0.49999500250 0.49999500250 1.11022e-016 0.99975e-05 1.00012e-02

0.06 0.49999500375 0.49999500375 5.55112e-017 1.49975e-05 1.00062e-02

0.08 0.49999500500 0.49999500500 1.11022e-016 1.99975e-05 1.00112e-02

0.08 0.02 0.49999000125 0.49999000125 1.66533e-016 0.49950e-05 1.99794e-02

0.04 0.49999000250 0.49999000250 1.11022e-016 0.99950e-05 1.99844e-02

0.06 0.49999000375 0.49999000375 1.11022e-016 1.49950e-05 1.99894e-02

0.08 0.49999000500 0.49999000500 5.55112e-017 1.99950e-05 1.99944e-02

Table 5.1: Comparison of solution by the Haar wavelet–quasilinearization technique uHaar, at 3rd

iteration with fix level of resolution, J = 5 and α = 1, with exact solution uExact, solution by reduced

differential transform method and variational iteration method, by fixing a = 0.001, b = 0.001, γ = 1.
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3rd iteration J = 5

t x uHaar uExact EHaar ERDTM [64]

0.01 0.02 0.707104 0.707104 3.98681e-013 4.7133e-06

0.04 0.707102 0.707102 1.11466e-013 9.4271e-06

0.06 0.707100 0.707100 5.05040e-013 1 .4142e-05

0.08 0.707097 0.707097 5.23914e-013 1 .8855e-05

0.04 0.02 0.707104 0.707104 3.80584e-013 4.7117e-06

0.04 0.707102 0.707102 7.54951e-014 9.4260e-06

0.06 0.707100 0.707100 4.51750e-013 1 .4140e-05

0.08 0.707097 0.707097 4.54081e-013 1 .8854e-05

0.08 0.02 0.707104 0.707104 3.68705e-013 4.7104e-06

0.04 0.707102 0.707102 5.19584e-014 9.4241e-06

0.06 0.707100 0.707100 4.16667e-013 1 .4138e-05

0.08 0.707097 0.707097 4.07896e-013 1.8852e-05

Table 5.2: Comparison of solution by the Haar wavelet–quasilinearization technique uHaar, at 3rd

iteration, level of resolution J = 5 and α = 1, with exact solution uExact and solution by reduced

differential transform method, by fixing a = 0.001, b = 0.001, γ = 2.
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3rd iteration J = 2 J = 2 J = 2

EHPM [102] EHaar EHPM [102] EHaar EHPM [102] EHaar

x t a = b = 0.01 a = b = 0.01 a = b = 0.1 a=b=0.1 a = b = 0.5 a=b=0.5

0.1 0.2 6.28000e-11 2.69179e-12 4.32620e-8 3.78398e-9 6.17680e-6 9.57046e-7

0.4 5.08000e-11 1.02440e-11 1.08832e-7 1.38803e-8 1.60295e-5 3.50199e-6

0.6 1.63800e-10 1.64766e-11 1.74575e-7 2.23361e-8 2.58023e-5 5.69371e-6

0.8 3.02500e-10 9.08112e-12 2.40128e-7 1.48742e-8 3.54471e-5 4.76851e-6

0.4 0.2 3.50000e-10 2.94909e-12 3.85160e-7 6.66689e-9 7.87747e-5 3.83906e-6

0.4 6.02000e-10 1.06882e-11 6.65330e-7 1.87074e-8 7.89518e-5 7.95768e-6

0.6 1.65600e-9 1.69744e-11 1.71580e-6 2.76171e-8 2.36284e-4 1.02360e-5

0.8 2.71000e-9 9.43595e-12 2.76581e-6 1.8565e-8 3.92443e-4 7.75145e-6

0.8 0.2 6.69900e-9 2.94531e-12 7.28031e-6 7.3431e-9 1.24466e-3 6.72227e-6

0.4 2.69600e-9 1.06647e-11 3.08014e-6 1.9471e-8 6.22452e-4 1.19714e-5

0.6 1.31100e-9 1.69509e-11 1.12091e-6 2.8278e-8 2.80910e-6 1.39281e-5

0.8 5.32000e-9 9.42751e-12 5.32152e-6 1.8976e-8 6.28040e-4 9.92739e-6

Table 5.3: Comparison of solution by the Haar wavelet–quasilinearization technique, at 3rd iteration,

level of resolution J = 2 and α = 1, with exact solution and solution by homotopy perturbation

method at γ = 1 and different values of a, b.
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Figure 5.1: Comparison of exact solution and solution by Haar wavelet method of the generalized

Burger–Fisher equation (a = 0.001, b = 0.001, γ = 5) at α = 1, level of resolution J = 3 and at

different iterations.
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Figure 5.2: Solution by Haar wavelet quasilinearization method of generalized Burger–Fisher equa-

tion (a = 1, b = 1, γ = 2) at different values of α, J = 3 and at 3rd iteration.
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Figure 5.3: Comparison of solutions of generalized Burger equation (a = 0.2, b = 0, γ = 1.5) by Haar

wavelet quasilinearization method with exact solution , at different iteration and J = 3.

2nd iteration J = 2 J = 2

uHaar uExact Eabs uHaar uExact Eabs

x t a = 0.1 a = 0.1 a = 0.1 a = 0.5 a = 0.5 a = 0.5

0.1 0.2 0.4975625 0.4975625 3.7839802e-9 0.4890653 0.4890643 9.5704495e-7

0.4 0.4950627 0.4950627 1.3880260e-8 0.4765832 0.4765797 3.5019863e-6

0.6 0.4925630 0.4925630 2.2336092e-8 0.4641300 0.4641243 5.6937119e-6

0.8 0.4900638 0.4900638 1.4874234e-8 0.4517183 0.4517135 4.7685117e-6

0.4 0.2 0.4977500 0.4977500 6.6668935e-9 0.4937544 0.4937506 3.8390547e-6

0.4 0.4952502 0.4952501 1.8707414e-8 0.4812670 0.4812590 7.9576764e-6

0.6 0.4927505 0.4927505 2.7617091e-8 0.4688011 0.4687909 1.0236046e-5

0.8 0.4902513 0.4902512 1.8564943e-8 0.4563693 0.4563616 7.7514463e-6

0.8 0.2 0.4980000 0.4980000 7.3430706e-9 0.5000072 0.5000005 6.7222677e-6

0.4 0.4955001 0.4955001 1.9470687e-8 0.4875151 0.4875031 1.1971347e-5

0.6 0.4930005 0.4930005 2.8277874e-8 0.4750352 0.4750213 1.3928113e-5

0.8 0.4905012 0.4905011 1.8976366e-8 0.4625806 0.4625707 9.9273816e-6

Table 5.4: Comparison of exact solution of Burger equation (b = 0, γ = 1) at α = 1 and solution

by Haar wavelet quasilinearization method at second iteration, J = 2, for different values of a.

Case 1: Solution of the generalized Burger-Fisher equation at different values of a, b and γ.
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We fix the order of the differential equation (5.4.1), α = 1, level of resolution, J = 5 and take the

values a = 0.001, b = 0.001, γ = 1. We obtain the results at third iteration and compare with the

exact solution, reduced differential transform method [64] and variational iteration method [64] as

shown in Table 5.1. Here uHaar represent the solution by Haar wavelet quasilinearization method,

uExact represent the exact solution. EHaar, ERDTM and EV IM represents the absolute error by

Haar wavelet quasilinearization method, reduced differential transform method [64] and variational

iteration method [64] respectively.

We also solve the generalized Burger–Fisher equation (5.4.1) by taking a = 0.001, b = 0.001 and

γ = 2, and compare the solution by Haar wavelet quasilinearization method with solution obtained

by reduced differential transform method [64] and exact solution as shown in Table 5.2.

We get the solution of the generalized Burger–Fisher equation for α = 1, J = 2, γ = 1 and at different

values of a, b as shown in Table 5.3. We compare the solution by Haar wavelet quasilinearization

method with homotopy perturbation method [102]. Here EHaar, EHPM denotes the absolute error

by Haar wavelet quasilinearization method and homotopy perturbation method [102] respectively.

Table 5.1-5.3 shows that our results are more accurate as compare to reduced differential transform

method [64], variational iteration method [64] and homotopy perturbation method [102].

Exact solution at α = 1 and the solutions by Haar wavelet quasilinearization method at α = 1,

J = 3 and at different iterations are plotted in Figure 5.1, which shows that absolute error reduces

with increasing iterations of Haar wavelet quasilinearization method. Figure 5.1 is used to display

the solution of generalized Burger–Fisher equation when a = 0.001, b = 0.001 and γ = 5.

Exact solution at α = 1 and the solution by Haar wavelet quasilinearization technique at different

values of α, are displayed in Figure 5.2. It is observed that solutions of fractional generalized

Burger–Fisher equation (5.4.1) converge to the classical generalized Burger-Fisher equation when α

approaches to 1.

Case 2: When b = 0, equation (5.4.1) is reduced to the generalized Burger equation. Solution

by Haar wavelet quasilinearization method of the generalized Burger equation, when a = 0.2 and

γ = 1.5, along with exact solution at α = 1, is shown in Figure 5.3. It shows that absolute error

reduces while increasing iterations.

Case 3: When b = 0 and γ = 1, Equation (5.4.1) is reduced to the Burger equation. Solution by

Haar wavelet quasilinearization technique of the Burger equation along with exact solution at α = 1

for different values of a are shown in Table 5.4. Here we observe that solution by Haar wavelet

quasilinearization method with J = 2 and at second iteration are in good agreement with exact

solution. Absolute errors Eabs are also shown for the sake of accuracy.
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5.4.2 Fractional Klein–Gordon Equations

Problem 1 Consider the fractional Klein–Gordon equation,

∂αu
∂tα −

∂βu
∂xβ

+ u2 = x2t2, 1 < α ≤ 2, 1 < β ≤ 2. (5.4.4)

subject to the initial and boundary conditions

u(x, 0) = 0, ut(x, 0) = x,

u(0, t) = 0, u(1, t) = t.

The exact solution, when α = 2, β = 2, is

u(x, t) = xt.

The quasilinearized form of equation (5.4.4) is

∂αur+1

∂tα − ∂βur+1

∂xβ
+ 2urur+1 = x2t2 + (ur)

2, 1 < α ≤ 2, 1 < β ≤ 2, r ≥ 0, (5.4.5)

subject to the initial and boundary conditions

ur+1(x, 0) = 0, (ur+1)t(x, 0) = x,

ur+1(0, t) = 0, ur+1(1, t) = t.

Haar wavelet method to discretized equation (5.4.5) gives the following results for all r ≥ 0.
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3rd iteration J = 3

t x uHaar uExact Eabs

0.1 0.2 0.02 0.02 0

0.4 0.04 0.04 0

0.6 0.06 0.06 6.9389e-18

0.8 0.08 0.08 0

0.5 0.2 0.10 0.10 0

0.4 0.20 0.20 0

0.6 0.30 0.30 5.5511e-17

0.8 0.40 0.40 1.3323e-15

0.9 0.2 0.18 0.18 2.7756e-17

0.4 0.36 0.36 5.5511e-17

0.6 0.54 0.54 0

0.8 0.72 0.72 1.5543e-15

Table 5.5: Comparison of solution by the Haar wavelet–quasilinearization technique, at 3rd iteration,

level of resolution J = 3 and at α = 2, β = 2, with exact solution.
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Figure 5.4: Comparison of exact solution and solution by Haar wavelet quasilinearization method

for α = 2, β = 2, at different iterations with J = 3.
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Figure 5.5: Solution by Haar wavelet quasilinearization method, at 2nd iteration with J = 3, of

Klein Gordon equation at different values of α, β.

We fix α = 2, β = 2 in equation (5.4.4) and apply the Haar wavelet quasilinearization technique

with J = 3. The results in Table 5.5 is at third iteration. Eabs represent the absolute error which

shows that solutions by Haar wavelet quasilinearization method are in good agreement with exact

solution.

Figure 5.4 shows that solutions by Haar wavelet quasilinearization method of the Klein Gordon

equation (5.4.4) are more accurate and absolute error reduces while increasing iterations.

Numerical solution by Haar wavelet quasilinearization method at second iteration, with fixed resolu-

tion level J = 3 and for different values of α, β are plotted in Figure 5.5. It is observed that solutions

by Haar wavelet quasilinearization method of fractional Klein Gordon equation (5.4.4) converge to

the solution of classical Klein Gordon equation, when α, β approaches to 2.

Problem 2 Consider the following fractional time derivative Klein–Gordon equation,

∂αu
∂tα −

∂2u
∂x2

+ u2 = −x cos(t) + x2 cos2(t), 1 < α ≤ 2, (5.4.6)
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subject to the initial and boundary conditions

u(x, 0) = x, ut(x, 0) = 0,

u(0, t) = 0, u(1, t) = cos(t).

The exact solution, when α = 2, is given by [19]

u(x, t) = x cos(t).

Applying the quasilinearization technique to equation (5.4.6), we get the discretize equation

∂αur+1

∂tα − ∂2ur+1

∂x2
+ 2urur+1 = −x cos(t) + x2 cos2(t) + (ur)

2, (5.4.7)

subject to the initial and boundary conditions

ur+1(x, 0) = x, (ur+1)t(x, 0) = 0,

ur+1(0, t) = 0, ur+1(1, t) = cos(t).

Implement the Haar wavelet method on equation (5.4.7) to get the solution for each r ≥ 0.

α = 1.2 α = 2

3rd iteration J = 4 J = 7 J = 9

x t uHaar uHaar uHaar uExact

0.1 0.3 0.08366615 0.09553350 0.09553364 0.09553365

0.7 0.07232962 0.07648411 0.07648421 0.07648422

0.9 0.06287309 0.06216098 0.06216000 0.06216000

0.5 0.4 0.42018902 0.46053021 0.46053048 0.46053050

0.6 0.38907907 0.41266758 0.41266779 0.41266781

0.8 0.34364615 0.34835287 0.34835332 0.34835335

0.7 0.1 0.66860531 0.69650244 0.69650289 0.69650292

0.5 0.58480770 0.61430666 0.61430772 0.61430779

0.9 0.44007916 0.43512674 0.43512696 0.43512698

0.9 0.3 0.84074106 0.85980148 0.85980275 0.85980284

0.6 0.73431695 0.74280157 0.74280202 0.74280205

0.9 0.55768597 0.55944861 0.55944895 0.55944897

Table 5.6: Comparison of solution by Haar wavelet quasilinearization method, at 3rd iteration for

different values of α and different level of resolution J , with exact solution at α = 2.
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Figure 5.6: Comparison of exact and solution by Haar wavelet quasilinearization method at α = 2,

J = 4 and at different iterations.

Table 5.6 mention the exact solution at α = 2 and solution by Haar wavelet quasilinearization

technique at different α′s and J ′s. The results in Table 5.6 are at third iteration. The data displayed

in Table 5.6 shows that solution by the Haar wavelet quasilinearization technique converges to the

exact solution at α = 2 while increasing level of resolution J , because it shows that we get more

accurate results at J = 9 as compare to J = 7. Table 5.6 shows that solution by Haar wavelet

quasilinearization method converge to the exact solution when α approaches to 2.

Comparison of exact solution and solution by the Haar wavelet quasilinearization technique is shown

in Figure 5.6. It also shows that we get more accurate results at higher iterations.
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5.4.3 Fractional Burgers Equation

Consider the following fractional Burgers equation,

∂αu
∂tα + u∂u∂x = ∂βu

∂xβ
, 0 < α ≤ 1, 1 < β ≤ 2, (5.4.8)

with the following conditions

u(x, 0) = 2x,

u(0, t) = 0, u(1, t) =
2

1 + 2t
,

whose exact solution, when α = 1, β = 2, is given [10]

u(x, t) = 2x
1+2t . (5.4.9)

Applying the quasilinearization technique to equation (5.4.8) to obtain the discretized equation

∂αur+1

∂tα + ur
∂ur+1

∂x − ∂βur+1

∂xβ
+ ur+1

∂ur
∂x = ur

∂ur
∂x , 0 < α ≤ 1, 1 < β ≤ 2, r ≥ 0, (5.4.10)

with the following conditions

ur+1(x, 0) = 2x,

ur+1(0, t) = 0, ur+1(1, t) =
2

1 + 2t
.

Apply the Haar wavelet method to discretize equation (5.4.10).

α = 0.5, β = 2 α = 0.7, β = 2 α = 1, β = 2

5th iteration J = 8 J = 8 J = 7 J = 8

x t uHaar uHaar uHaar uHaar uExact

0.1 0.3 0.1200807 0.1220607 0.1250004 0.1250000 0.1250000

0.7 0.0896191 0.0881609 0.0833335 0.0833334 0.0833333

0.9 0.0796789 0.0772933 0.0714286 0.0714286 0.0714286

0.5 0.4 0.5543077 0.5576233 0.5555558 0.5555561 0.5555556

0.6 0.4732065 0.4698999 0.4545457 0.4545459 0.4545455

0.8 0.4134079 0.4057360 0.3846160 0.3846156 0.3846154

0.7 0.1 1.0861842 1.1088053 1.1666732 1.1666698 1.1666667

0.5 0.7107272 0.7103718 0.7000023 0.7000007 0.7000000

0.9 0.5310973 0.5219788 0.5000003 0.5000002 0.5000000

0.9 0.3 1.1171191 1.1212042 1.1250051 1.1250005 1.1250000

0.6 0.8276398 0.8259672 0.8181826 0.8181824 0.8181818

0.9 0.6582548 0.6536948 0.6428576 0.6428574 0.6428571

Table 5.7: Comparison of exact solution at α = 1, β = 2 and solution by Haar wavelet quasilin-

earization technique at different values of α and β = 2 with different resolution levels J.
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Figure 5.7: Comparison of exact and solution by Haar wavelet quasilinearization method at different

iterations with J = 4, α = 1 and β = 2.
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Figure 5.8: Comparison of exact solution and solution by Haar wavelet quasilinearization method

at 4th iteration and with different resolution levels J .

95



0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.5

1

1.5

2

x

Third iteration, Level of Resolution J=3

t

u(
x,

t)
Haar solution at α=0.3, β=1.3

Haar solution at α=0.7, β=1.7

Haar solution at α=1, β=2

Figure 5.9: Exact solution at α = 1, β = 2 and solution by Haar wavelet quasilinearization method

at different α and β with J = 3 and at 3rd iteration.

Numerical solution by the Haar wavelet quasilinearization technique is shown in Table 5.7, It

shows that solution by Haar wavelet quasilinearization method converges to the exact solution at

α = 1, β = 2, when β = 2 and α approaches to 1. Also it is observed that solution by Haar wavelet

quasilinearization method get closer to the exact solution while J is increased.

Result in Figure 5.7 indicate that solution by Haar wavelet quasilinearization method becomes

more accurate with increasing iterations. Solution by Haar wavelet quasilinearization method at

4th iteration, α = 1, β = 2 and at different level of resolutions J , are plotted in Figure 5.8. We

notice that solution by Haar wavelet quasilinearization method converge to the exact solution while

increasing J , i.e., absolute error goes down with increasing J .

Figure 5.9 shows that solution by Haar wavelet quasilinearization method converge to the exact

solution when α and β approaches to 1 and 2 respectively.
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5.4.4 Conclusion

It is observed that Haar wavelet method with quasilinearization technique gives comparatively good

results when applied to different fractional nonlinear initial boundary value problems. The results

obtained from Haar wavelet quasilinearization technique are better from the results obtained by

other methods [64, 102] and are in good agreement with exact solutions. The numerical solution of

the fractional nonlinear partial differential equation converge to the solution of the integer partial

differential equation as shown in Table 5.7 and Figures 5.2, 5.5, 5.9. Approximate solution converge

to the exact solution while iterations are increased and absolute error goes down. Also solution by

Haar wavelet quasilinearization technique becomes more accurate with increasing level of resolution

J . Different type of non-linearities can easily be handled by the Haar wavelet with quasilinearization

method.
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Chapter 6

Haar Wavelet-Picard Technique for

Fractional Order Nonlinear Initial and

Boundary Value Problems

In this chapter, a technique called Haar wavelet-Picard technique is developed to get the numerical

solutions of nonlinear differential equations of fractional order. The Haar wavelet-Picard technique

is the combination of Haar wavelet and Picard technique. Picard iteration is used to linearize

the nonlinear fractional order differential equations and then Haar wavelet method is applied to

linearized fractional ordinary differential equations. In each iteration of Picard iteration, solution is

updated by the Haar wavelet method. The results are compared with the exact solution.

6.1 Haar Wavelet Picard Technique

The procedure for implementation of Haar wavelet Picard technique is same as Haar wavelets quasi-

linearization method as described in section 3.2.

6.1.1 Convergence Analysis

First we analyze the convergence of both the schemes then we describe the role of their convergence

according to the Haar wavelet Picard technique.

Convergence of Picard Technique

Consider the nonlinear second order differential equation

y′′(x) = f(y), y(0) = y(b) = 0. (6.1.1)
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Application of Picard technique to (6.1.1) yields

y′′r+1(x) = f(yr), yr+1(0) = yr+1(b) = 0. (6.1.2)

Let y0(x) be some initial approximation. Each function yr+1(x) is a solution of a linear equation

(6.1.2), where yr is always considered known and is obtained from the previous iteration.

According to Picard technique [7]:

| yr+1 − yr |≤ k | yr − yr−1 |, where k < 1. (6.1.3)

This shows that there is linear convergence, if there is convergence at all.

Convergence of Haar Wavelet Method

We have already described the convergence of Haar wavelet method in section 2.4 of chapter 2, which

shows that the error is inversely proportional to the level of resolution.

Haar wavelet Picard technique first discretizes the nonlinear initial and boundary value problem,

then Haar wavelet method is applied on the obtained discretized equation to get the approximate

solutions y0(x), y1(x), · · · , at each iteration of Picard technique. According to the convergence

analysis of both Haar and Picard technique, approximate solution by Haar wavelet-Picard technique

converges to the exact solution while increasing both level of resolution J and picard iteration r.

6.2 Applications

In this section, we solve nonlinear differential equations of fractional order by the Haar wavelets -

Picard technique and compare the results with the exact solution.

Example 1: Consider the αth order fractional nonlinear Bratu type equation

cDαy(x)− 2ey(x) = 0, 1 < α ≤ 2, (6.2.1)

subject to the initial condition y(0) = 0, y′(0) = 0.

The exact solution, when α = 2, is given by [65]

y(x) = −2 ln(cosx).

Applying the Picard iteration to equation (6.2.1), we get

cDαyr+1(x) = 2eyr(x), 1 < α ≤ 2, (6.2.2)

with the initial condition yr+1(0) = 0, y′r+1(0) = 0.
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Now we apply the Haar wavelet method to equation (6.2.2), we approximate the higher order deriva-

tive term by the Haar wavelet series as

cDαyr+1(x) =
2M∑
l=1

blhl(x). (6.2.3)

Lower order derivatives are obtained by integrating equation (6.2.3) and use the initial conditions

yr+1(x) =
2M∑
l=1

blpα,l(x), y′r+1(x) =
2M∑
l=1

blpα−1,l(x). (6.2.4)

Substitute equations (6.2.3) and (6.2.4) in (6.2.2), we get

2M∑
l=1

blhl(x) = 2eyr(x), (6.2.5)

with the initial approximation y0(x) = 0.
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Figure 6.1: Comparison of exact solution and solutions by Haar wavelet-Picard technique, for dif-

ferent iterations at J = 5 and α = 2.
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Figure 6.2: Exact solution at α = 2 and the Haar wavelet-Picard solution at α = 2, α = 1.9, α =

1.7 and α = 1.5.

We fix the order of the differential equation (6.2.1), α = 2, and level of resolution, J = 5. The graph

in Figure 6.1 shows the exact solution and approximate solution at four iterations. The absolute

error reduces with increasing iterations.

Results at fifth iteration of Haar wavelet-Picard technique at fixed level of resolution J = 3 and at

different values of α are shown in Figure 6.2, with the exact solution at α = 2. Figure 6.2 showed

that the numerical solutions converge to the exact solution when α approaches to 2.

Example 2: Consider the fractional nonlinear Duffing equation

cDαy(x) + y′(x) + y(x) + y(x)3 = cos3(x)− sin(x), 1 < α ≤ 2, (6.2.6)

subject to the initial conditions y(0) = 1, y′(0) = 0.

The exact solution, when α = 2, is

y(x) = cos(x).

Applying the Picard iteration to equation (6.2.6)

cDαyr+1(x) + y′r+1(x) + yr+1(x) = cos3(x)− sin(x)− yr(x)3, 1 < α ≤ 2, (6.2.7)

with the initial conditions yr+1(0) = 1, y′r+1(0) = 0.

Apply the Haar wavelet method to equation (6.2.7). We approximate the higher order derivative

term by the Haar wavelet series as

cDαyr+1(x) =
2M∑
l=1

blhl(x). (6.2.8)
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Now to get the Haar wavelet series for lower order derivative terms we integrate equation (6.2.8)

and use the initial condition, to get

yr+1(x) =
2M∑
l=1

blpα,l(x) + 1, y′r+1(x) =
2M∑
l=1

blpα−1,l(x). (6.2.9)

Substitute equations (6.2.8) and (6.2.9) in (6.2.7)

2M∑
l=1

bl[hl(x) + pα−1,l(x) + pα,l(x)] = cos3(x)− sin(x)− yr(x)3 − 1, (6.2.10)

with the initial approximations y0(x) = 1, y′0(x) = 0.
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Figure 6.3: Comparison of exact solution and solutions by Haar wavelet-Picard technique for different

iterations at J = 3 and α = 2.
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Figure 6.4: Exact solution at α = 2 and the Haar wavelet-Picard solution at α = 2, α = 1.8, α =

1.5 and α = 1.3.

We fix the level of resolution, J = 3, and order of differential equation (6.2.6), α = 2. The exact

solution and the numerical solution by Haar wavelet-Picard technique at different iterations along

with the absolute error are shown in Figure 6.3.

Exact solution at α = 2 and the Haar solution at different values of α, are displayed in Figure 6.4.

It is observed that solutions of fractional nonlinear Duffing equation (6.2.6) converge to the solution

of second order nonlinear Duffing equation, when α approaches to 2.

Example 3: Consider the αth order nonlinear Lane–Emden type equation [65]:

cDαy(x) + 2
xy
′(x) + 8ey(x) + 4e

y(x)
2 = 0, 1 < α ≤ 2, (6.2.11)

subject to the initial conditions: y(0) = 0, y′(0) = 0.

The exact solution, when α = 2, is

y(x) = −2 ln(1 + x2).

Picard iteration to equation (6.2.11) implies

cDαyr+1(x) + 2
xy
′
r+1(x) = −8eyr(x) − 4e

yr(x)
2 , 1 < α ≤ 2, (6.2.12)

with the initial conditions yr+1(0) = 0, y′r+1(0) = 0.

Apply the Haar wavelet method to equation (6.2.12)

cDαyr+1(x) =
2M∑
l=1

blhl(x). (6.2.13)
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Lower order derivatives are obtained by integrating equation (6.2.13) and use the initial conditions

yr+1(x) =
2M∑
l=1

blpα,l(x), (6.2.14)

y′r+1(x) =
2M∑
l=1

blpα−1,l(x). (6.2.15)

Substitute equations (6.2.13), (6.2.14) and (6.2.15) in (6.2.12), we get

2M∑
l=1

bl[hl(x) + 2
t pα−1,l(x)] = −8eyr(x) − 4e

yr(x)
2 , (6.2.16)

with the initial approximations y0(x) = 0, y′0(x) = 0.
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Figure 6.5: Comparison of exact solution and solutions by Haar wavelet-Picard technique at J =

5, for different iterations and α = 2.
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Figure 6.6: Exact solution at α = 2 and the Haar wavelet-Picard solution at α = 2, α = 1.8, α =

1.5 and α = 1.3.

Here we fix the order of the differential equation (6.2.11), α = 2, and level of resolution, J = 5. The

graph in Figure 6.5 shows the exact solution and approximate solution by proposed method at six

iterations.

Results of sixth iteration by Haar wavelet-Picard technique at J = 5 and different values of α, are

shown in Figure 6.6 along with the exact solution at α = 2. Figure 6.6 showed that the numerical

solutions converge to the exact solution when α approaches to 2.

Example 4: Consider the αth order fractional nonlinear boundary value problem,

cDαy(x) + a(x)y′2(x) + b(x)y(x)y′(x) = f(x), 1 < α ≤ 2, (6.2.17)

subject to the boundary conditions y(0) = 0, y(1) = 0.

The exact solution is given by

y(x) = x3 − x2,

where f(x) = Γ(4)
Γ(4−α)x

3−α − Γ(3)
Γ(3−α)x

2−α + a(x)(3x2 − 2x)2 + b(x)(3x2 − 2x)(x3 − x2).

Applying the Picard technique to equation (6.2.17), we get

cDαyr+1(x) = f(x)− a(x)y′2r (x)− b(x)yr(x)y′r(x), 1 < α ≤ 2, (6.2.18)

with the boundary conditions yr+1(0) = 0, yr+1(1) = 0.

Now apply the Haar wavelet method to equation (6.2.18), we approximate the higher order derivative

term by the Haar wavelet series as

cDαyr+1(x) =
2M∑
l=1

blhl(x). (6.2.19)
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Lower order derivatives are obtained by integrating equation (6.2.19) and use the initial condition

yr+1(x) =
2M∑
l=1

bl(pα,l(x)− xCα,l), (6.2.20)

y′r+1(x) =
2M∑
l=1

bl(pα−1,l(x)− Cα,l), (6.2.21)

where Cα,l =
1∫
0

pα,l(x)dx. Substitute equations (6.2.19), (6.2.20) and (6.2.21) in (6.2.18), we get

2M∑
l=1

blhl(x) = f(x)− a(x)y′2r (x)− b(x)yr(x)y′r(x), 1 < α ≤ 2. (6.2.22)

with the initial approximation y0(x) = 0, y′0(x) = 0. Here we consider a(x) = ex and b(x) = x.
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Figure 6.7: Comparison of exact solution and solutions by Haar wavelet-Picard technique at J =

5, for different iterations and α = 2.
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Figure 6.8: Exact solution at α = 2 and the Haar wavelet-Picard solution at α = 2, α = 1.7, α =

1.4 and α = 1.2.

We fix the order of the differential equation (6.2.17), α = 2, and level of resolution, J = 5. The

graph in Figure 6.7 shows the exact solution and approximate solution by present method at six

iterations.

Results at sixth iteration of present method at fixed level of resolution, J = 5, and at different values

of α are shown in Figure 6.8 along with the exact solution at α = 2. Figure 6.8 showed that the

numerical solutions converge to the exact solution when α approaches to 2.

6.2.1 Conclusion

It is shown that Haar wavelet–Picard technique gives excellent results when applied to different

fractional order nonlinear initial and boundary value problems. The solution of the fractional order,

nonlinear ordinary differential equation converge to the solution of integer order differential equation

as shown in Figures 6.2, 6.4, 6.6, and 6.8. Other Figures show that approximate solution converge

to the exact solution while iterations are increased and absolute error goes down. Different type of

non-linearities can easily be handled by the Haar wavelet–Picard technique.
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Chapter 7

Wavelet Galerkin Quasilinearization

Method for Nonlinear Boundary Value

Problems

The wavelet-Galerkin method does not use a wavelet at all. It actually uses the wavelet’s scaling

function. Wavelet Galerkin method have been applied for solving linear boundary value problems

[3,92,93,99,113]. The objective of the present work is to develop a method by utilizing the wavelet-

Galerkin and quasilinearization technique for the approximation of solutions of nonlinear boundary

value problems. The beginning of this chapter is to describe the Daubechies wavelet, and then

construct the connection coefficients for the solution of differential equations.

7.1 Daubechies Wavelets

Daubechies [29, 30] constructed a family of compactly supported orthonormal wavelets. A wavelet

system consists of a scaling function φ(x) and a wavelet function ψ(x). There are two important

relations in wavelet theory, which we called two-scale relation

φ(x) =
N−1∑
l=0

plφl(2x), (7.1.1)

and the equation

ψ(x) =
1∑

l=2−N
(−1)lp1−lφl(2x), (7.1.2)

where φl(.) := φ(. − l). The coefficients pl are called the wavelet filter coefficients. Relations

(7.1.1) and (7.1.2) are also called refinement relations and N (an even integer) is the number of

wavelet filter coefficients in the refinement relations. The supports of the scaling function φ(x) and

wavelet function ψ(x) are [0, N − 1] and [1 − N
2 ,

N
2 ] respectively. Daubechies constructed wavelet
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filter coefficients pl to satisfy the certain conditions and corresponding to these, scaling and wavelet

functions have certain properties [20]

N−1∑
l=0

pl = 2 ⇒
∞∫
−∞

φ(x)dx = 1, (7.1.3)

N−1∑
l=0

plpl−2m = 2δ0,m ⇒
∞∫
−∞

φ(x)φ(x−m)dx = δ0,m, (7.1.4)

1∑
l=2−N

(−1)lp1−lpl−2m = 0 ⇒
∞∫
−∞

φ(x)ψ(x−m)dx = 0, for any integer m, (7.1.5)

N−1∑
l=0

(−1)ll
m
pl = 0 ⇒

∞∫
−∞

xmψ(x)dx = 0, m = 0, 1, ..., N2 − 1, (7.1.6)

where δ is the delta function. Relation (7.1.3) shows that scaling function have unit area and relations

(7.1.4) and (7.1.5) indicate the orthonormality of φ and orthogonality of φ and ψ respectively.

Relation (7.1.6) shows that mth moment of ψ is zero, i.e., it has m vanishing moments, which

implies that we can express the elements of the set {1, x, ..., x
N
2 − 1} as a linear combination of

φ(x− k), integer translate of φ(x).

Let Vj and Wj be the subspaces of L2(R), the space of square-integrable functions on the real

line, which are generated as the L2 − closure of the linear spans of φj,k(x) = 2j/2φ(2jx − k) and

ψj,k(x) = 2j/2ψ(2jx − k), k ∈ Z respectively. According to the orthogonality of φ and ψ, relation

(7.1.5), we have

Vj+1 = Vj
⊕
Wj . (7.1.7)

Relation (7.1.7) implies

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vj ⊂ Vj+1 (7.1.8)

and we have

Vj+1 = Vj
⊕
Wj ,

= Vj−1
⊕
Wj−1

⊕
Wj ,

...

= V0
⊕
W0
⊕
W1
⊕
W2 · · ·

⊕
Wj ,

(7.1.9)

where
⊕

denotes the orthogonal direct sum, Wj ⊥Wp for j 6= p andWj ⊂ Vp for j < p. Daubechies

112



wavelets have the following orthogonality properties [20]:

∞∫
−∞

φj,k(x)φj,l(x)dx = δk,l,

∞∫
−∞

ψj,k(x)ψl,m(x)dx = δj,lδk,m,

∞∫
−∞

φj,k(x)ψj,m(x)dx = 0.

Daubechies wavelet have no explicit expressions for the scaling function φ(x) and the wavelet function

ψ(x) at arbitrary x. The function values of φ(x) and ψ(x) at the dyadic points k
2j
, for integers j

and k, can be recursively computed from the two scale relations (7.1.1) and (7.1.2) respectively.

Multi-resolution analysis

The multi-resolution analysis is based on property (7.1.7). It is a decomposition of the Hilbert space

L2(R) on a series of closed subspaces {Vj}j∈Z such that

• · · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · ·Vj ⊂ Vj+1 ⊂ · · ·

•
⋃
j∈Z

Vj = L2(R)

•
⋂
j∈Z Vj = {0}

• f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1 ∀ f ∈ L2(R), j ∈ Z

• f(x) ∈ V0 ⇔ f(x− k) ∈ V0 ∀ f ∈ L2(R), k ∈ Z

• ∃φ ∈ V0 such that {φ(x− k)}k∈Z forms a Riesz basis for V0.

Multi-resolution analysis is designed to get good time resolution and poor frequency resolution at

high frequencies and good frequency resolution and poor time resolution at low frequencies. The idea

of multi-resolution is used in representing functions from the space L2(R). The wavelet expansion

of a function f(x) ∈ L2(R) is of the form

f(x) =
∑
k∈Z

c0kφ0k(x) +

∞∑
j=0

∑
k∈Z

cjkψjk(x).

This implies that

f(x) ∈ {V0

⊕
W0

⊕
W1

⊕
W2 · · ·

⊕
W∞} = L2(R).

It is an exact representation of f(x). We can approximate the function f(x) at fixed level of resolution

j as
f̃(x) =

∑
k∈Z

cjkφjk(x). (7.1.10)
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For this expansion, we have the following convergence property,

‖f − f̃‖ ≤ C2−jr‖f (r)‖, (7.1.11)

where

cjk =

∫
f̃(x)φjk(x)dx,

and C, r are constants. Inequality (7.1.11) implies that f̃(x) approaches to f(x) as j →∞.

7.1.1 Construction of Wavelet Filter Coefficients

There are certain restrictions on filter coefficients that is unit area under scaling function (7.1.3),

orthonormality of translates of scaling functions (7.1.4), orthonormality of scaling and wavelet func-

tions (7.1.5) and vanishing moments of wavelet functions (7.1.6). We constructed the wavelet filter

coefficient for the Daubechies wavelets, which we used for the solution of linear and nonlinear

boundary value problems. The simplest Daubechies wavelet is the Haar wavelet, which has explicit

expression for calculating the scaling function φ(x). It is denoted by D2, which means Daubechies

wavelet having two filter coefficients. It is also denoted by db1, which means the Daubechies wavelet

having one vanishing moment.

Equation (7.1.3) implies by taking N = 2

N−1∑
l=0

pl = 2 ⇒ p0 + p1 = 2. (7.1.12)

Since db1 has one vanishing moment, therefore from equation (7.1.6), we have

N−1∑
l=0

(−1)lpl = 0 ⇒ p0 − p1 = 0. (7.1.13)

Solving equation (7.1.12) and (7.1.13), we get p0 = 1, p1 = 1.

Similarly, db2 (D4) have four wavelet coefficients, i.e., N = 4, and two vanishing moments. Using

equations (7.1.3), (7.1.4) and (7.1.6), to get

Unit area under φ ⇒ p0 + p1 + p2 + p3 = 2.

Zeroth moment of ψ ⇒ p0 − p1 + p2 − p3 = 0.

First moment of ψ ⇒ 0p0 − 1p1 + 2p2 − 3p3 = 0.

Orthonormality of φ⇒

{
p0p2 + p1p3 = 0, m 6= 0,

p2
0 + p2

1 + p2
2 + p2

3 = 2, m = 0.

Solving system (7.1.1), we get filter coefficients

p0 = 1+
√

3
4 , p1 = 3+

√
3

4 , p2 = 3−
√

3
4 , p3 = 1−

√
3

4 .

Similarly, DN has N -coefficients and N
2 -vanishing moments. We get the other Daubechies filter

coefficients by similar procedure. Some are calculated and are shown in Table 7.1.
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N = 2 N = 4 N = 6 N = 8 N = 10 N = 12

p0 1 0.6830 0.4705 0.3258 0.2264 0.1577

p1 1 1.1830 1.1411 1.0109 0.8539 0.6995

p2 0.3170 0.6504 0.8922 1.0243 1.0623

p3 -0.1830 -0.1909 -0.0396 0.1958 0.4458

p4 -0.1208 -0.2645 -0.3427 -0.3200

p5 0.0498 0.0436 -0.0456 -0.1835

p6 0.0465 0.1097 0.1379

p7 -0.0150 -0.0088 0.0389

p8 -0.0178 -0.0447

p9 0.0047 0.0008

p10 0.0068

p11 -0.0015

Table 7.1: Filter coefficients for the family of Daubechies wavelets DN .

It can be seen that the equation
N−1∑
l=0

pl = 2 is satisfied.

7.2 Two-term Connection Coefficients

The Daubechies wavelet functions φ cannot be represented in closed form for N > 2 so analytic

calculation of its integrals is not an option, and numerical quadrature is often inaccurate due to

highly oscillatory nature of the wavelet basis functions. Latto et al. [76] provide an alternative

method for computing the wavelet connection coefficients on unbounded intervals. The two term

connection coefficients are defined as

Ωd1,d2
k =

∞∫
−∞

φd1(x)φd2(x− k)dx. (7.2.1)

There is no loss of generality in fixing the shift on the first term at zero because

Ωd1,d2
k,l =

∞∫
−∞

φd1k (x)φd2l (x)dx,

=
∞∫
−∞

φd1(x)φd2l−k(x)dx,

= Ωd1,d2
l−k .

Taking d times derivative of the Daubechies scaling function (7.1.1), by assuming that it is d times

differentiable, to obtain

φd(x) = 2d
N−1∑
l=0

plφ
d
l (2x), where φd(x) := ddφ

dxd
. (7.2.2)
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Use equation (7.2.2) in (7.2.1) and changing variables, we get

Ωd1,d2
k = 1

2

∞∫
−∞

(2d1
N−1∑
m=0

pmφ
d1
m (2x))(2d2

N−1∑
l=0

plφ
d2
l+2k(2x))d(2x),

= 2d1+d2−1
N−1∑
m=0

N−1∑
l=0

pmpl
∞∫
−∞

φd1m (2x)φd2l+2k(2x)d(2x),

= 2d1+d2−1
∑
m,l

pmpl
∞∫
−∞

φd1m (x)φd2l+2k(x)dx,

= 2d1+d2−1
∑
m,l

pmpl
∞∫
−∞

φd1(x)φd2l+2k−m(x)dx.

Changing indices, to obtain

Ωd1,d2
k = 2d1+d2−1

∑
m,l

pmpl−2k+m

∞∫
−∞

φd1(x)φd2(x− l)dx. (7.2.3)

Let
∧d1,d2 be a column vector with 2N − 3 components which are connection coefficients,

∧d1,d2 =

[Ωd1,d2
k ]

k=2−N :N−2
. Equation (7.2.3) gives a system of linear equations with

∧d1,d2 as unknown

vector, we can write equation (7.2.3) in vector form as

1
2d1+d2−1

∧d1,d2 = T
∧d1,d2 . (7.2.4)

We derive an expression of calculating the connection coefficients according to the Vj spaces. Define

the connection coefficients as

Ωd1,d2
k = 2j

∞∫
−∞

φd1(2jx)φd2(2jx− k)dx. (7.2.5)

Letting d1 = 0, d2 = d, we make the substitution, y = 2jx, use in [31], through out our work.

This substitution provides a way of calculating the connection coefficients for Vj spaces. Here j is

an integer and 2j is scaling factor. Its corresponds to either the expansion (j > 0) or contraction

(j < 0) of the scaling or wavelet function.

Connection coefficients takes the form

Ω0,d
k = 2dj

∫
φ(0)(y)φd(y − k)dy. (7.2.6)

Similarly, we can obtain
1

2d−1

∧0,d = T
∧0,d, (7.2.7)

where T is a square matrix of order 2N − 3, i.e., Tk:l =
N−1∑
m=0

pmpl−2k+m, where indices k and l vary

from 2−N to N−2. It is homogeneous system and thus does not have a unique nonzero solution. In

order to make the system inhomogeneous, one equation is added which is derived from the moment

equations of the scaling function.
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Moment of Daubechies Scaling Function

The moments M j
i of φi are defined as

M j
i =

∞∫
−∞

xjφi(x)dx. (7.2.8)

Since
∞∫
−∞

φ(x)dx = 1, this implies that M0
0 = 1. To derive an explicit formula to compute the

moments, let us consider the jth moment of φ(x) and use the refinement relation (7.1.1) to obtain

M j
0 =

∞∫
−∞

xjφ(x)dx,

=
∞∫
−∞

xj
N−1∑
i=0

piφ(2x− i)dx,

= 2−j−1
N−1∑
i=0

pi
∞∫
−∞

(2x)jφ(2x− i)d(2x),

M j
0 = 2−j−1

N−1∑
i=0

piM
j
i . (7.2.9)

By making substitution x− i = u in equation (7.2.8) to get

M j
i =

∞∫
−∞

(u+ i)jφ(u)du,

=
j∑

k=0

(
j
k

)
ij−kMk

0 .

(7.2.10)

Use equation (7.2.10) in equation (7.2.9)

M j
0 = 2−j−1

N−1∑
i=0

pi
j∑

k=0

(
j
k

)
ij−kMk

0 ,

= 2−j−1
N−1∑
i=0

pi
( j−1∑
k=0

(
j
k

)
ij−kMk

0 +M j
0

)
,

= 2−j−1
j−1∑
k=0

(
j
k

)
Mk

0

(N−1∑
i=0

pii
j−k)+ 2−j−1M j

0

N−1∑
i=0

pi,

Since
N−1∑
i=0

pi = 2, we get

M j
0 = 1

2j+1

[ j−1∑
k=0

(
j
k

)
Mk

0

(N−1∑
i=0

pii
j−k)+ 2M j

0

]
,

or

M j
0 = 1

2(2j−1)

j−1∑
k=0

(
j
k

)
Mk

0

N−1∑
i=0

pii
j−k. (7.2.11)

By substituting the obtained value of M j
0 in equation (7.2.10), we arrive at the explicit formula

which were derived by Latto et al. [76] to compute the moments of φi(x)

M j
i = 1

2(2j−1)

j∑
k=0

(
j
k

)
ij−k

k−1∑
l=0

(
k
l

)
M l

0(
N−1∑
i=0

pii
k−l),
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where pi are Daubechies wavelet coefficients.

The whole calculations were made to find the moment of scaling function in V0 space. Now following

[103], we extend the procedure for the moment of scaling function in Vj space for j ≥ 0. By using the

relation (7.1.6), we can represent the monomials xd, d = 0, 1, ..., N2 − 1, as the linear combinations

of Daubechies scaling function in Vj space as

xd =
∑
i
md
i φj,i(x), (7.2.12)

where md
i is the dth moment of φj,i(x) := 2

j
2φ(2jx− i) and is given by using the orthonormality of

φ(x) as

md
i =

∞∫
−∞

xd2j/2φi(2
jx)dx. (7.2.13)

Consider the substitution y = 2jx in equation (7.2.12)

yd = 2jd2j/2
∑
i
md
i φi(y). (7.2.14)

Differentiate equation (7.2.14) d times, to get

d! = 2jd2j/2
∑
i
md
i φ

d
i (y). (7.2.15)

Taking inner product on both sides of equation (7.2.15) with φ(y),

d! = 2j/2
∑
i
md
i 2
jd
∞∫
−∞

φ(y)φdi (y)dy,

or
d!2−j/2 =

∑
i
md
iΩ

0,d
i ,

d!2−j/2 = md
∧0,d, (7.2.16)

where md is a row vector with 2N − 3 components, md = [md
i ]i=2−N :N−2, and can be derive from

equation (7.2.13) as

md
i =

∫∞
−∞

yd

2jd
2j/2φi(y)d y

2j
,

md
i = 2−jd−j/2

∫∞
−∞ y

dφi(y)dy,

md
i = 2−jd−j/2Md

i , (7.2.17)

where Md
i =

∫
xdφi(x)dx is the dth moment of φi. Equation (7.2.17) shows that dth moment of

φj,i(x) is equal to the 2−jd−j/2 times dth moment of φ(x− i).
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Finally, from equation (7.2.7) and (7.2.16), we get the system for the calculation of connection

coefficients (
T − 1

2d−1 I

md

)∧0,d =

(
0

d!2−j/2

)
.

This is the over-determined system of order (2N − 2) × (2N − 3), which is solved to get column

vector
∧0,d.

Latto et al. [76] have only computed the two term connection coefficients at j = 0, N = 6, d1 =

0 and d2 = 2. We provide tables of connection coefficients in the appendix for the two cases

d1 = 0, d2 = 2 and d1 = 0, d2 = 1 by using different values of j and N . The purpose of finding the

connection coefficients is to use them in the wavelet Galerkin method for the solution of boundary

value problems. Without these connection coefficients wavelet Galerkin method does not work.

7.3 Implementation of Wavelet-Galerkin Method

Consider the following class of boundary value problem

y′′(x) + ay′(x) + by(x) = f(x), y(0) = α, y(1) = β, (7.3.1)

where a, b, α and β are real constants. A trial solution for (7.3.1) is

y(x) ∼=
∑
l

cl2
j/2φ(2jx− l), (7.3.2)

where cl are the unknown coefficients. Use (7.3.2) in (7.3.1) to obtain

d2

dx2

(∑
l

cl2
j/2φ(2jx− l)

)
+ a d

dx

(∑
l

cl2
j/2φ(2jx− l)

)
+b
∑
l

cl2
j/2φ(2jx− l)− f(x) 6= 0.

(7.3.3)

For simplicity, we use substitution y = 2jx, Cl = 2j/2cl in equation (7.3.3), we get

∑
l

Cl2
2j d2

dy2
φ(y − l) + a

∑
l

Cl2
j d
dyφ(y − l) + b

∑
l

Clφ(y − l)− f( y
2j

) 6= 0. (7.3.4)

Multiplying φp(y), on both sides of (7.3.4) and integrating over the domain, we get∑
l

Cl2
2j
∫
φ(y − p) d2

dy2
φ(y − l)dy + a

∑
l

Cl2
j
∫
φ(y − p) ddyφ(y − l)dy

+b
∑
l

Cl
∫
φ(y − p)φ(y − l)dy =

∫
φ(y − p)f( y

2j
)dy,

(7.3.5)

where f(x) =
m∑
i=0

bix
i, is a polynomial of degree m in x.

The orthonormality of Daubechies wavelets implies

∫
φ(y − p)φ(y − l)dy = δp,l. (7.3.6)
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Now use equation (7.2.6) and (7.3.6) in (7.3.5), we have

∑
l

Cl(Ω
0,2
l−p + aΩ0,1

l−p + bδp,l) =
m∑
i=0

bi
∫ yi

2ji
φ(y − p)dy,

or ∑
l

Cl(Ω
0,2
l−p + aΩ0,1

l−p + bδp,l) = hp, (7.3.7)

where hp =
m∑
i=0

bi
2ji
M i
p. The indexes l and p have to cover the whole domain. If the original domain

is discretized with 2j functions that is 0 ≤ l, p ≤ 2j−1 and N−1 functions have to be added both at

the left and right of the 2j functions, as mentioned in [31]. Now the fictitious domain is discretized

with 2j + 2(N − 1) functions that is −(N − 1) ≤ l, p ≤ 2j − 1 + (N − 1). This implies that equation

(7.3.7) will form an 2j + 2(N − 1) by 2j + 2(N − 1) linear system

AC = H,

where C and H are column vectors containing all the Cl and hp respectively and A is an square

matrix of order 2j + 2(N − 1).

Treatment of the boundary conditions [31] is as follows:

Conditions y(0) = α and y(1) = β imply ∑
l

Clφl(0) = α, (7.3.8)

∑
l

Clφl(1) = β. (7.3.9)

Since inner product of φl(y) and φp(y) gives the equation (7.3.6), therefore equation (7.3.8) and

(7.3.9) implies ∑
l

Clδl,p(0) = α, (7.3.10)

∑
l

Clδl,p(1) = β. (7.3.11)

First and last equations in (7.3.7) are replaced by (7.3.10) and (7.3.11) respectively. In equations

(7.3.10) and (7.3.11), the δ function has to be evaluated at 0 and 1 respectively. So, for the left and

right boundary we have l = p = 0 and l = p = 2j − 1 respectively and they occupy first and last

row in the matrix A.

Solution of Linear Boundary Value Problems

Consider the harmonic wave equation [11]

d
2
y

dx2
+By = 0, y(0) = 0, y(1) = 1, (7.3.12)
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where B is a constant. The exact solution of (7.3.12) is

y(x) =
sin(x

√
B)

sin(
√
B)

.

Apply the wavelet Galerkin method to equation (7.3.12), we get

∑
l

Cl(Ω
0,2
l−p +Bδp,l) = 0,

and boundary conditions gives ∑
l

Clδl,p(0) = 0,
∑
l

Clδl,p(1) = 1.

Consider B = 891 = (9.5π)2 in equation (7.3.12), as given in [11].
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Figure 7.1: Comparison of exact solution and solution by wavelet Galerkin method with D6 at j = 5.
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Figure 7.2: Comparison of exact solution and solution by wavelet Galerkin method with D12 at

j = 5.
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Figure 7.3: Comparison of exact solution and solution by wavelet Galerkin method with D6 at j = 8.

Figure 7.1 shows the exact solution and solution by wavelet Galerkin method with D6 and

resolution j = 5, that is 2j = 32 scaling functions. Figure 7.2 is used to show that wavelet Galerkin

method with higher order wavelets D12 gives better results as compared to low order wavelets D6, as

shown in Figure 7.1, with same resolution level j = 5. According to the error analysis of Daubechies

wavelets as shown in section 7.1, we get more accurate results while increasing level of resolution j as

shown in Figure 7.3. The approximate solution by wavelet Galerkin method are in good agreement

with exact solution.
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7.4 Wavelet Galerkin Quasilinearization Method for Nonlinear Bound-

ary Value Problems

A numerical method is introduced by wavelet-Galerkin and quasilinearization technique for nonlinear

boundary value problems. Quasilinearization technique is applied to discretize the nonlinear differen-

tial equation and then wavelet-Galerkin method is implemented to discretized differential equations.

In each iteration of quasilinearization technique, solution is updated by wavelet- Galerkin method.

In order to demonstrate the applicability of method, we consider the various nonlinear boundary

value problems.

Example 1: We consider the nonlinear two-point boundary value problem [34]

y′′(x) + y2(x) = x4 + 2, 0 < x < 1, (7.4.1)

subject to the boundary conditions y(0) = 0, y(1) = 1. The exact solution is y(x) = x2. Apply

quasilinearization to equation (7.4.1), we get

y′′r+1(x) + 2yr(x)yr+1(x) = y2
r (x) + 2 + x4, (7.4.2)

with the boundary conditions: yr+1(0) = 0, yr+1(1) = 1.

Apply wavelet–Galerkin method to equation (7.4.2) we have

∑
l

Cl(Ω
0,2
l−p + 2yr(x)δp,l) = y2

r (x) +
4∑
i=0

bi
2ji
M i
p,

and boundary conditions implies∑
l

Clδl,p(0) = 0,
∑
l

Clδl,p(1) = 1,

where b = [2, 0, 0, 0, 1], with the initial approximation y0(x) = 0.
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Figure 7.4: Comparison of exact solution and solution by wavelet Galerkin quasilinearization method

at J = 13, for different iterations, and we used D16.

3rd iteration J = 13

x yNEW yexact Absolute Error

0.1 1.0022e-2 1.0e-2 2.2423e-5

0.2 4.0045e-2 4.0e-2 4.4852e-5

0.3 9.0067e-2 9.0e-2 6.7318e-5

0.4 1.6009e-1 1.6e-1 8.9901e-5

0.5 2.5011e-1 2.5e-1 1.1275e-4

0.6 3.6014e-1 3.6e-1 1.3613e-4

0.7 4.9016e-1 4.9e-1 1.6038e-4

0.8 6.4019e-1 6.4e-1 1.8602e-4

0.9 8.1021e-1 8.1e-1 2.1369e-4

Table 7.2: Comparison of exact solution yexact and solution by the wavelet Galerkin quasilinearization

method yNEW at 2nd iteration, level of resolution J = 13 and D16 is used as Galerkin bases.

We solved the equation (7.4.1) by using D16 and fixed the level of resolution J = 13. Figure

7.4 shows the exact solution and approximate solution at first and second iteration, i.e., y0(x) is the

initial approximation and by using y0(x) we get y1(x), that is the solution at first iteration and then

y1(x) is used to get y2(x), which is the solution of equation (7.4.1) at second iteration. Table 7.2 is

used to compares the approximate solution, at second iteration for J = 13, with exact solution. We
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may get the more accurate results while increasing level of resolution at higher iteration.

Example 2: We consider the nonlinear Bratu’s boundary value problem

−y′′(x) = λey(x), y(0) = 0, y(1) = 0. (7.4.3)

The quasilinear form of equation (7.4.3) is

y′′r+1(x) + λeyr(x)yr+1(x) = −λeyr(x)(1− yr(x)), (7.4.4)

with the boundary conditions yr+1(0) = 0, yr+1(1) = 0.

Wavelet–Galerkin method for equation (7.4.4) implies∑
l

Cl(Ω
0,2
l−p + λeyr(x)δp,l) = −λeyr(x)(1− yr(x)),

and, from boundary conditions, we have∑
l

Clδl,p(0) = 0,
∑
l

Clδl,p(1) = 0,

with the initial approximation y0(x) = 0.
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Figure 7.5: Comparison of exact solution and solution by wavelet Galerkin method with quasilin-

earization technique at level of resolution J = 13 and we use D12 as Galerkin bases, and at λ = 1

and λ = 2 respectively.
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λ = 1

2nd iteration J = 13

x yDM [28] yNEW yexact

0.1 0.0471616875 0.0498386633 0.0498467900

0.2 0.0871680000 0.0891737644 0.0891899350

0.3 0.1177614375 0.1175850602 0.1176090956

0.4 0.1369920000 0.1347586231 0.1347902526

0.5 0.1435546875 0.1405003497 0.1405392142

0.6 0.1369920000 0.1347446015 0.1347902526

0.7 0.1177614375 0.1175571769 0.1176090956

0.8 0.0871680000 0.0891323318 0.0891899350

0.9 0.0471616875 0.0497841328 0.0498467900

Table 7.3: Comparison of exact solution yexact, solution by decomposition method yDM and solution

by the wavelet Galerkin quasilinearization method yNEW at 2nd iteration and for D12.

λ = 2

2nd iteration J = 13

x yDM [28] yNEW yexact

0.1 0.1144107440 0.1143861795 0.0991935000

0.2 0.2064191156 0.2063705472 0.1917440000

0.3 0.2738793116 0.2738079343 0.2679915000

0.4 0.3150893646 0.3149970528 0.3183360000

0.5 0.3289524214 0.3288416969 0.3359375000

0.6 0.3150893646 0.3149632892 0.3183360000

0.7 0.2738793116 0.2737413240 0.2679915000

0.8 0.2064191156 0.2062728271 0.1917440000

0.9 0.1144107440 0.1142597336 0.0991935000

Table 7.4: Comparison of exact solution yexact, solution by decomposition method yDM and solution

by the wavelet Galerkin quasilinearization method yNEW at 2nd iteration and for D12.

Bratu’s boundary value problem is solved by usingD12 as Galerkin bases and at level of resolution

J = 13. We compared our results with the results obtained by decomposition method in (7.4.3) and

exact solution. For λ = 1 and λ = 2, our results are more accurate as compared to decomposition

method, as shown in Tables 7.3 and 7.4 respectively. We used the MATLAB command of one-
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dimensional data interpolation using spline to get the values at x = 0.1, x = 0.2, ..., x = 0.9 and

plot the exact and approximate solutions at these points for λ = 1 and λ = 2 as shown in Figure

7.5.

Example 3: Consider the nonlinear Troesch’s boundary value problem

y′′(x)− λ sinh(λy(x)) = 0, 0 ≤ x ≤ 1,

y(0) = 0, y(1) = 1.
(7.4.5)

The quasilinearized form of equation (7.4.5) is

y′′r+1(x)− λ2 cosh(λyr(x))yr+1(x) = λ sinh(λyr(x))− λ2yr(x) cosh(λyr(x)), (7.4.6)

where 0 ≤ x ≤ 1, with the boundary conditions yr+1(0) = 0, yr+1(1) = 1.

Implementation of wavelet–Galerkin method to equation (7.4.6), implies∑
l

Cl(Ω
0,2
l−p − λ

2 cosh(λyr(x))δp,l) = λ sinh(λyr(x))− λ2yr(x) cosh(λyr(x)),

and boundary conditions leads to∑
l

Clδl,p(0) = 0,
∑
l

Clδl,p(1) = 1,

with the initial approximation y0(x) = 0.
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Figure 7.6: Comparison of exact solution and solution by wavelet Galerkin quasilinearization method

at level of resolution J = 13 and for D8, and at λ = 0.5 and λ = 1 respectively.
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λ = 0.5

2nd iteration J = 11 J = 13

x yV IM [84] yNEW yNEW yexact

0.1 0.100042 0.095994 0.095956 0.095177

0.2 0.200334 0.192228 0.192152 0.190634

0.3 0.301128 0.288944 0.288829 0.286653

0.4 0.402677 0.386385 0.386231 0.383523

0.5 0.505241 0.484798 0.484606 0.481537

0.6 0.609082 0.584436 0.584204 0.581002

0.7 0.714470 0.685556 0.685284 0.682235

0.8 0.821682 0.788424 0.788112 0.785572

0.9 0.931008 0.893316 0.892962 0.891367

1.0 1.042740 1.000592 1.000194 1.000000

Table 7.5: Comparison of exact solution yexact, solution by variational iteration method yV IM and

solutions by wavelet Galerkin quasilinearization method yNEW at 2nd iteration, at different level of

resolutions, while using D8 as Galerkin bases.

λ = 1

2nd iteration J = 11 J = 13

x yV IM [84] yNEW yNEW yexact

0.1 0.100167 0.084715 0.084674 0.081797

0.2 0.201339 0.170280 0.170197 0.164531

0.3 0.304541 0.257558 0.257433 0.249167

0.4 0.410841 0.347444 0.347275 0.336732

0.5 0.521373 0.440880 0.440666 0.428347

0.6 0.637362 0.538877 0.538616 0.525274

0.7 0.760162 0.642538 0.642226 0.628971

0.8 0.891287 0.753089 0.752722 0.741168

0.9 1.032460 0.871929 0.871495 0.863970

1.0 1.185650 1.000718 1.000226 1.000000

Table 7.6: Comparison of exact solution yexact, solution by variational iteration method yV IM and

solutions by wavelet Galerkin quasilinearization method yNEW at 2nd iteration, at different level of

resolutions while using D8 as Galerkin bases.
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Tables 7.5, 7.6 and Figure 7.6 represent the solution of equation (7.4.5) at second iteration. D8

is used as Galerkin bases to find the solution of (7.4.5) at different level of resolutions and at λ = 0.5

and λ = 1 as shown in Tables 7.5 and 7.6 respectively. Solutions by wavelet Galerkin quasilineariza-

tion method are compared with variational iteration method [84] and with exact solution. Our

results are in high agreement with exact solution and better than variational iteration method [84].

Example 4: Consider the following nonlinear boundary value problem,

y′′(x) + y′(x) + y3(x) + y(x) = f(x), (7.4.7)

subject to the boundary conditions y(0) = 0, y(1) = 0, where f(x) = 2 + 2x+ x2 − 20x3 − 5x4 −
x5 + x6 − 3x9 + 3x12 − x15 and exact solution is given by y(x) = x2 − x5.

Applying the quasilinearization technique to equation (7.4.7), we get

y′′r+1(x) + y′r+1(x) + (1 + 3y2
r (x))yr+1(x) = f(x) + 2y3

r (x), (7.4.8)

with the boundary conditions yr+1(0) = 0, yr+1(1) = 0.

Now we apply the wavelet–Galerkin method to equation (7.4.8),

∑
l

Cl(Ω
0,2
l−p + Ω0,1

l−p + (1 + 3y2
r (x))δp,l) = 2y3

r (x) +
15∑
i=0

bi
2ji
M i
p,

and boundary conditions implies∑
l

Clδl,p(0) = 0,
∑
l

Clδl,p(1) = 0,

where b = [2, 2, 1,−20,−5,−1, 1, 0, 0,−3, 0, 0, 3, 0, 0,−1], with the initial approximations y0(x) = 0.
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2nd iteration J = 13

x yNEW yexact Absolute Error

0.1 0.0100320512 0.0099900000 4.2051152889e-005

0.2 0.0397617227 0.0396800000 8.1722744304e-005

0.3 0.0876864075 0.0875700000 1.1640750572e-004

0.4 0.1499017545 0.1497600000 1.4175454098e-004

0.5 0.2189016605 0.2187500000 1.5166050983e-004

0.6 0.2823782628 0.2822400000 1.3826276219e-004

0.7 0.3220219443 0.3219300000 9.1944320423e-005

0.8 0.3123213602 0.3123199999 1.3602317094e-006

0.9 0.2193634808 0.2195099999 1.4651915492e-004

Table 7.7: Comparison of exact solution yexact and solution by wavelet Galerkin quasilinearization

method yNEW at 2nd iteration , level of resolutions J = 13 and D10 is used as Galerkin bases.
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Figure 7.7: Comparison of exact solution and solution by wavelet Galerkin quasilinearization method

at J = 13, for different iterations, and for D10.

Numerical solution by wavelet Galerkin quasilinearization method for (7.4.7) at second iteration

and level of resolution J = 13, are stable and accurate as shown in Table 7.7. To get the more accu-

rate results increase the iteration or level of resolution or both. Figure 7.7 shows that approximate

solution converge to the exact solution while increasing iterations. Here D10 is used as Galerkin

bases.
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7.4.1 Conclusion

We have successfully constructed the wavelet filter coefficients, and two term connection coefficients

which are used in wavelet Galerkin quasilinearization method for solving linear and nonlinear bound-

ary value problems. It is shown that the wavelet–Galerkin method with quasilinearization method

gives stable and accurate results when applied to different nonlinear boundary value problems. The

method provides better and more accurate results as compared to variational iteration method and

decomposition method, as shown in Tables 7.3–7.6. Also results are in good agreement with exact

solutions. Figures 7.4 and 7.7 shows that approximate solution converge to the exact solution while

iterations are increased and absolute error goes down. The main advantage of the method is that

the different type of non-linearities can easily be handled.
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Chapter 8

Numerical Techniques for Nonlinear

Fractional Differential Equations

Fractional differential equation is a generalization of the ordinary and partial differential equation to

arbitrary non-integer order. During the last decade, several papers have been devoted to the study

of the numerical solution of fractional differential equations. Therefore different numerical methods

have been introduced and utilized for providing approximate solutions. Some of these methods

include, the Adomian decomposition method [44], the homotopy perturbation method [60] and Haar

wavelets method [115,130].

In this chapter, we introduce two approximate methods for solving nonlinear fractional differ-

ential equation. The first method is the combinations of Chebyshev wavelet method with quasilin-

earization technique and second method is developed by using Legendre wavelet method in conjunc-

tion with quasilinearization technique. We discuss these methods in the present chapter.

8.1 Chebyshev Wavelet Quasilinearization Technique for Nonlinear

Fractional Differential Equations

Chebyshev wavelets are orthonormal and have compact support. The advantage of Chebyshev

wavelets operational matrices approach is that it reduces the differential equation to a system of

algebraic equations. The first kind Chebyshev wavelets is utilized in [70], authors constructed

operational matrices of integration and solve the linear ordinary differential equations. It also

utilized for solving fractional nonlinear integro–differential equations in [57]. According to [127],

authors derived operational matrices by using second kind Chebyshev wavelets for solving fractional

linear and nonlinear ordinary differential equation, they dealt only with the quadratic nonlinearity.

Chebyshev wavelets method is also used for solving linear partial differential equation in [58], authors

focused on the solution of the second order linear hyperbolic telegraph equation.
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We developed a solution method, Chebyshev wavelet quasilinearization technique, for fractional

nonlinear differential equation. The method utilizes the Chebyshev wavelets in conjunction with

quasilinearization technique. The operational matrices are derived and utilized to reduce the frac-

tional differential equation to a system of algebraic equations. Convergence analysis for the present

method is also investigated. Numerical examples are provided to illustrate the efficiency and accu-

racy of the technique.

8.1.1 Second Kind Chebyshev Wavelets and Operational Matrices

The second kind Chebyshev polynomials [86], Um(x), of order m are defined for m ∈ Z+, on the

interval [−1, 1] and given by the following recurrence formulae

U0(x) = 1, U1(x) = 2x, Um+1(x) = 2xUm(x)− Um−1(x), m = 1, 2, 3, · · · .

The second kind Chebyshev polynomials are orthogonal on [−1, 1] with respect to the weight function
√

1− x2 as
1∫
−1

√
1− x2Um(x)Un(x)dx =

π

2
δmn,

where π
2 is the normalizing factor and δ is the Kronecker delta function.

Scaling and translation of the basic wavelet (mother wavelet) ψ(x) define the basis

ψp,q(x) =
1√
|p|
ψ
(x− q

p

)
, p, q ∈ R, p 6= 0,

where p is scaling parameter and q is the translation parameter. By restricting p, q to discrete values

as: p = p−k0 , q = nq0p
−k
0 , where p0 > 1, q0 > 0 and k, n ∈ N, we get the following family of discrete

wavelets as

ψk,n(x) = p
k
2
0 ψ(pk0x− nq0). (8.1.1)

The set of wavelets (8.1.1) forms an orthogonal basis of L2[0, 1). In particular, when p0 = 2 and

q0 = 1, then ψk,n form an orthonormal basis. That is

〈 ψk,n(x), ψl,m(x)〉 = δklδnm.

The discrete wavelets transform is defined as

ψk,n(x) = 2
k
2ψ(2kx− n).

The second kind Chebyshev wavelets are defined on interval [0, 1) by

ψn,m(x) =


√

2
π2

k
2Um(2kx− n̂), n̂−1

2k
≤ x < n̂+1

2k
,

0, elsewhere,
(8.1.2)

where k = 1, 2, 3, · · · , is the level of resolution, n̂ = 2n − 1, n = 1, 2, 3, · · · , 2k−1, is the translation

parameter, m = 0, 1, 2, · · · ,M − 1, M ∈ N, is the order of the second kind Chebyshev polynomials.
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Function Approximations and the Second Kind Chebyshev Wavelets Matrix

We can expand any function y(x) ∈ L2[0, 1) into truncated second kind Chebyshev wavelets series

as

y(x) ≈
2k−1∑
n=1

M−1∑
m=0

cnmψn,m(x) = CTΨ(x), (8.1.3)

where C and Ψ(x) are m̂× 1, (m̂ = 2k−1M), matrices, given by

C=[c10, c11, · · · , c1M−1, c20, c21, · · · , c2M−1, · · · , c2k−10, c2k−11, · · · , c2k−1M−1]T ,

Ψ(x) = [ψ1,0(x), ψ1,1(x), · · · , ψ1M−1(x), ψ2,0(x), ψ2,1(x), · · · , ψ2,M−1(x)

, · · · , ψ2k−1,0(x), ψ2k−1,1(x), · · · , ψ2k−1,M−1(x)]T .

The collocation points for the second kind Chebyshev wavelets are taken as xi = 2i−1
2kM

, i =

1, 2, ..., 2k−1M . The second kind Chebyshev wavelets matrix Ψm̂,m̂ is given as

Ψm̂×m̂ =

[
Ψ

(
1

2kM

)
,Ψ

(
3

2kM

)
, ...,Ψ

(
2kM − 1

2kM

)]
. (8.1.4)

In particular, we fix k = 2, M = 3, we have n = 1, 2 ; m = 0, 1, 2 and i = 1, 2, ..., 6, the second kind

Chebyshev wavelets matrix is given as

Ψ6×6 =



1.2732 1.2732 1.2732 0 0 0

0 0 0 1.2732 1.2732 1.2732

−1.6977 0 1.6977 0 0 0

0 0 0 −1.6977 0 1.6977

0.9903 −1.2732 0.9903 0 0 0

0 0 0 0.9903 −1.2732 0.9903


Any function of two variables u(x, t) ∈ L2

(
[0, 1]× [0, 1]

)
can be approximated as

u(x, t) ≈
2k−1∑
n=1

M−1∑
m=0

2k−1∑
i=1

M−1∑
j=0

cnm,ijψn,m(x)ψi,j(t),

or

u(x, t) ≈
m̂∑
l=1

m̂∑
p=1

cl,pψl(x)ψp(t) = ΨT (x)CΨ(t),

where C is m̂× m̂ coefficient matrix and its entries are cl,p =< ψl(x), < u(x, t), ψp(t) >> .

Second Kind Chebyshev Wavelets Operational Matrix of Fractional Order Integration

For simplicity, we write (8.1.3) as

y(x) ≈
m̂∑
i=1

ciψi(x) = CTΨ(x), (8.1.5)
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where ci = cnm, ψi = ψn,m(x). The index i is determined by the equation i = M(n − 1) + m + 1

and m̂ = 2k−1M . Also, C = [c1, c2, · · · , cm̂]T , Ψ(x) = [ψ1(x), ψ2(x), · · · , ψm̂(x)]T .

An arbitrary function y ∈ L2[0, 1), can be expanded into block-pulse functions [68] as

y(x) ≈
m̂−1∑
i=0

aibi(x) = aTB(x),

where ai are the coefficients of the block-pulse functions bi(x). The second kind Chebyshev wavelets

can be expanded into m̂−set of block-pulse functions as

Ψ(x) = Ψm̂×m̂B(x). (8.1.6)

The fractional integral of block-pulse function vector can be written as

(IαB)(x) = Fαm̂×m̂ B(x), (8.1.7)

where Fαm̂×m̂ is given in [68] with

Pα
m̂×m̂ = Ψm̂×m̂Fα(Ψm̂×m̂)−1. (8.1.8)

The second kind Chebyshev wavelets operational matrix of integration Pα
m̂×m̂ of fractional order α

are utilize for solving differential equations.

In particular, for k = 2, M = 3, α = 0.75, the second kind Chebyshev wavelet operational matrix

of fractional order integration P0.75
6×6 is given by

P0.75
6×6 =



0.3718 0.5024 0.1505 −0.0405 −0.0115 0.0092

0 0.3718 0 0.1505 0 −0.0115

−0.1966 0.0467 0.0721 −0.0196 0.0983 0.0074

0 −0.1966 0 0.0721 0 0.0983

0.0525 0.0991 −0.0304 −0.0119 0.0427 0.0039

0 0.0525 0 −0.0304 0 0.0427


This phenomena makes calculations fast because the operational matrix Pα

m̂×m̂ contains many zero

entries.

Chebyshev Wavelets Operational Matrix of Fractional Integration for Boundary Value

Problems

We need another operational matrix of fractional integration while solving fractional boundary value

problems. In this subsection, we drive an operational matrix of fractional integration for dealing

with the boundary conditions while solving fractional boundary value problem. Let f(x) ∈ L2[0, 1)

be a given function, then
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f(x)Iα1 ψn,m(x) = f(x)
Γ(α)

1∫
0

(1− s)α−1ψn,m(s)ds. (8.1.9)

Since the second kind Chebyshev wavelets are supported on the intervals [2n−2
2k

, 2n
2k

), therefore

f(x)Iα1 ψn,m(x) = f(x)2
k+1
2√

πΓ(α)

2n

2k∫
2n−2

2k

(1− s)α−1Um(2ks− 2n+ 1)ds,

= f(x)Wα
n,m,

(8.1.10)

where Wα
n,m = 2

k+1
2√

πΓ(α)

2n

2k∫
2n−2

2k

(1− s)α−1Um(2ks− 2n+ 1)ds.

Expand the equation (8.1.10) at the collocation points, xi = 2i−1
2kM

, i = 1, 2, ..., m̂, to obtain

Kf ,α
m̂×m̂ = Wα

m̂×1H1×m̂, (8.1.11)

where H1×m̂ = [f(x1), f(x2), ..., f(xm̂)],

Wα
m̂×1 = [Wα

1,0,W
α
1,1, · · · ,Wα

1M−1,W
α
2,0,W

α
2,1, · · · ,Wα

2,M−1, · · · ,Wα
2k−1,0

,Wα
2k−1,1

, · · · ,Wα
2k−1,M−1

]T .

In particular, for k = 2, M = 3, α = 0.75, and f(x) = x cos(x), we have

Kf ,0.75
6×6 =



0.0466 0.1360 0.2140 0.2734 0.3082 0.3133

0.0684 0.1995 0.3139 0.4011 0.4520 0.4595

0.0027 0.0078 0.0122 0.0156 0.0176 0.0179

0.0195 0.0570 0.0897 0.1146 0.1292 0.1313

0.0159 0.0462 0.0727 0.0929 0.1047 0.1065

0.0346 0.1011 0.1590 0.2031 0.2290 0.2327


8.1.2 Procedure of Implementation to Fractional Nonlinear Ordinary Differen-

tial Equation

In this section, we describe the procedure of implementation of the method to fractional nonlinear

ordinary differential equations.

Fractional Nonlinear Duffing Oscillator with Damping Effect

Consider the following order Duffing oscillator equation

dαy

dtα
+ a

dy

dt
+ by + dy3 = f(t), 1 < α ≤ 2, t ≥ 0,

y(0) = A,
dy

dt
(0) = B,

(8.1.12)

where A, B, a, b, and d, are constants.
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Quasilinearization technique to equation (8.1.12) implies

dαyr+1

dtα
+ a

dyr+1

dt
+ (b+ 3dy2

r )yr+1 = f(t) + 2dy3
r , 1 < α ≤ 2, t ≥ 0,

yr+1(0) = A,
dyr+1

dt
(0) = B,

(8.1.13)

where r = 0, 1, 2, ..., N , N ∈ N. At this stage, we approximate the higher order derivative term in

equation (8.1.13) by Chebyshev wavelets series as

dαyr+1

dtα
= Cr+1TΨ(t). (8.1.14)

The integration of (8.1.14) along with initial conditions yields

yr+1 = (Cr+1)
T
IαxΨ(t) +Bt+A,

dyr+1

dx
= (Cr+1)

T
Iα−1
x Ψ(t) +B.

(8.1.15)

Substituting the equations (8.1.14) and (8.1.15) in equation (8.1.13), we get

(Cr+1)
T

[Ψ(t) + aIα−1
x Ψ(t) + (b+ 3dy2

r )I
α
xΨ(t)] = f(t) + 2dy3

r − aB− (b+ 3dy2
r )(Bt+A), (8.1.16)

with the initial approximations y0(x) = A, y′0(x) = B.

By considering a = b = d = 1, A = 1 and B = 0, equation (8.1.12) implies

dαy

dtα
+
dy

dt
+ y + y3 = cos3(t)− sin(t), 1 < α ≤ 2, t ≥ 0,

y(0) = 1,
dy

dt
(0) = 0.

(8.1.17)

The exact solution at α = 2 is given by y(t) = cos(t).
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Figure 8.1: Exact solution at α = 2 and numerical solutions at k = 5, M = 5, r =

3, and at different values of α.
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Figure 8.2: Comparison of exact solution and solutions by the Chebyshev wavelet quasilinearization

technique at k = 5, M = 5, α = 2 and for different iterations r.

Figure 8.1 indicates that approximate solution converge to the solution of integer order differential

equation when α approaches to 2. Figure 8.2 shows that approximate solution approaches to the

exact solution while increasing iteration r and absolute error goes down. Here we fix k = 5, M = 5

and α = 2.

Fractional Nonlinear Lane Emden Initial Value Problem

Consider the following initial value problem

dαy

dxα
+

2

x

dβy

dxβ
+ 4(2ey + e

y
2 ) = 0, 1 < α ≤ 2, 0 < β ≤ 1, x ≥ 0,

y(0) = 0,
dy

dx
(0) = 0.

(8.1.18)
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The exact solution at α = 2, β = 1, is given by y(x) = −2 ln(1 + x2).

We first linearized the equation (8.1.18) by applying the Quasilinearization technique, we obtain

dαyr+1

dxα
+

2

x

dβyr+1

dxβ
+ 2(4eyr + e

yr
2 )yr+1 = 8eyr(yr − 1) + 2e

yr
2 (yr − 2),

1 < α ≤ 2, 0 < β ≤ 1, x ≥ 0,

yr+1(0) = 0,
dyr+1

dx
(0) = 0,

(8.1.19)

where r = 0, 1, 2, ..., N , N ∈ N. Now approximate the solution of the equation (8.1.19) by Chebyshev

wavelet method. We approximate the higher order derivative term in equation (8.1.19) by Chebyshev

wavelets series as
dαyr+1

dxα
= Cr+1TΨ(x). (8.1.20)

Integrate the equation (8.1.20) and use the initial conditions to get the lower order derivatives as

yr+1 = (Cr+1)
T
IαxΨ(x),

dβyr+1

dxβ
= (Cr+1)

T
Iα−βx Ψ(x).

(8.1.21)

Use equations (8.1.20) and (8.1.21) in equation (8.1.19), we get

(Cr+1)
T

[Ψ(x) +
2

x
Iα−βx Ψ(x) + 2(4eyr + e

yr
2 )IαxΨ(x)] = 8eyr(yr − 1) + 2e

yr
2 (yr − 2), (8.1.22)

with the initial approximations y0(x) = 0.
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Figure 8.3: Exact solution at α = 2 and solution by the Chebyshev wavelet quasilinearization

technique at k = 5, M = 5, r = 4, and at different values of α and β.
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Figure 8.4: Comparison of exact solution and approximate solutions at k = 5, M = 5, α =

2 and for different iterations r.
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Table 8.1: Comparison of present solution with exact solution, at different level of resolution k and

different order of Chebyshev polynomials M at r = 4.

L∞-error for proposed solution

x k = 2, M = 3 k = 4, M = 4 k = 6, M = 5 k = 7, M = 6 k = 8, M = 7

0.1 4.220e-3 1.568e-4 6.277e-6 1.090e-6 2.002e-7

0.3 3.413e-3 1.190e-4 4.762e-6 8.268e-7 1.519e-7

0.5 2.151e-3 7.569e-5 3.027e-6 5.256e-7 9.653e-8

0.7 1.469e-3 5.222e-5 2.087e-6 3.623e-7 6.654e-8

0.9 1.584e-3 5.091e-5 2.034e-6 3.532e-7 6.487e-8

In Table 8.1, we consider 0 ≤ x ≤ 1, α = 2, and β = 1. The results shows that absolute

error decreases while increasing k and M . According to the Table 8.1 and Figure 8.4, we get more

accurate results while increasing k, M and r. Figure 8.3 shows that solution by Chebyshev wavelet

quasilinearization technique approaches to the solution of integer order differential equation when α

and β approaches to 2 and 1 respectively.

Fractional Nonlinear Lane Emden Boundary Value Problem

Consider the following fractional order boundary value problem

dαy

dxα
+

2

x

dy

dx
− 6y2 = 6 +

2

x
− 6(x2 + x)2, 1 < α ≤ 2, 0 ≤ x ≤ 1,

y(0) = 0, y(1) = 2.

(8.1.23)

The exact solution, when α = 2, is given by y(x) = x2 + x.

Apply the Quasilinearization technique to equation (8.1.23)

dαyr+1

dxα
+

2

x

dyr+1

dx
− 12yryr+1 = 6 +

2

x
− 6(x2 + x)2 − 6y2

r , 1 < α ≤ 2, 0 ≤ x ≤ 1,

yr+1(0) = 0, yr+1(1) = 2, r = 0, 1, 2, ..., N, N ∈ N.
(8.1.24)

We approximate the higher order derivative term in equation (8.1.24) by Chebyshev wavelets series

as
dαyr+1

dxα
= Cr+1TΨ(x). (8.1.25)

Integrate the equation (8.1.25) and use the boundary conditions, we obtain

yr+1 = (Cr+1)
T
IαxΨ(x) + 2x− f1(x)Wα

m̂×1,

dyr+1

dx
= (Cr+1)

T
Iα−1
x Ψ(x) + 2− f2(x)Wα

m̂×1,
(8.1.26)
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where f1(x) = x and f2(x) = 1. Use equations (8.1.25) and (8.1.26) in equation (8.1.24), we get

(Cr+1)
T

[Ψ(x) +
2

x
Iα−1
x Ψ(x)− g1(x)Wα

m̂×1 − 12yrI
α
xΨ(x) + g2(x)Wα

m̂×1]

= 6 +
2

x
− 6(x2 + x)2 − 6y2

r −
4

x
+ 24xyr,

(8.1.27)

with the initial approximations y0(x) = 0. where r = 0, 1, 2, ...,N, g1(x) = 2
x and g2(x) = 12xyr.
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Figure 8.5: Comparison of exact solution and solutions by Chebyshev wavelet quasilinearization

technique at k = 5, M = 5, α = 2 and for different iterations r.

Figure 8.5 is used to plot exact solution of integer order differential equation and approximate

solutions at different iteration r and α = 2, along with the absolute error.
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8.1.3 Procedure of Implementation to Fractional Nonlinear Partial Differential
Equation

We describe the procedure of implementation of the method to fractional nonlinear partial differential

equation.

Fractional Burgers Equations

We describes the procedure of implementing the method for fractional Burgers equation. Consider

∂αu

∂tα
+ au

∂u

∂x
= ν

∂βu

∂xβ
, 0 < α ≤ 1, 1 < β ≤ 2, t > 0, 0 ≤ x ≤ b, (8.1.28)

with the initial and boundary conditions

u(x, 0) = f(x), u(0, t) = g1(t), u(b, t) = g2(t),

where ν, a, b > 0. Apply the Quasilinearization technique to equation (8.1.28), we obtain

∂αur+1

∂tα + aur
∂ur+1

∂x − ν ∂
βur+1

∂xβ
+ a∂ur∂x ur+1 = aur

∂ur
∂x ,

0 < α ≤ 1, 1 < β ≤ 2, t > 0, 0 ≤ x ≤ b,
(8.1.29)

where r = 0, 1, 2, ..., N , N ∈ N, ur(x, t) is known and can be used for obtaining ur+1(x, t). Equation

(8.1.29) is always a linear differential equation with initial and boundary conditions are

ur+1(x, 0) = f(x), ur+1(0, t) = g1(t), ur+1(b, t) = g2(t).

We implement the Chebyshev wavelets method to equation (8.1.29) as

∂βur+1

∂xβ
=

m̂∑
l=1

m̂∑
i=1

cr+1
l,i ψl(x)ψi(t) = ΨT (x)Cr+1Ψ(t). (8.1.30)

Apply the fractional integral operator Iβx on equation (8.1.30)

ur+1(x, t) = IβxΨT (x)Cr+1Ψ(t) + h1(t)x+ h2(t). (8.1.31)

Differentiate the equation (8.1.31) with respect to x, we get

∂ur+1

∂x
= Iβ−1

x ΨT (x)Cr+1Ψ(t) + h1(t). (8.1.32)

Use the boundary conditions, to obtain

h2(t) = g1(t), h1(t) =
1

b

(
g2(t)− g1(t)− (Iβx=bΨ

T (x))Cr+1Ψ(t)

)
.

Equations (8.1.31) and (8.1.32) implies

ur+1(x, t) = IβxΨT (x)Cr+1Ψ(t) +
x

b

(
g2(t)− g1(t)

)
− x

b

(
Iβx=bΨ

T (x)

)
Cr+1Ψ(t) + g1(t). (8.1.33)
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∂ur+1

∂x
= Iβ−1

x ΨT (x)Cr+1Ψ(t) +
1

b

(
g2(t)− g1(t)

)
− 1

b

(
Iβx=bΨ

T (x)

)
Cr+1Ψ(t). (8.1.34)

Equation (8.1.29) can be written as

∂αur+1

∂tα
= aur

∂ur
∂x
− aur

∂ur+1

∂x
+ ν

∂βur+1

∂xβ
− a∂ur

∂x
ur+1. (8.1.35)

Use equations (8.1.30), (8.1.33) and (8.1.34) in equation (8.1.35), to obtain

∂αur+1

∂tα
=

(
− aur(Iβ−1

x ΨT (x)) +
a

b
ur(I

β
x=bΨ

T (x)) + νΨT (x)− a∂ur
∂x

(IβxΨT (x))

+
ax

b

∂ur
∂x

(Iβx=bΨ
T (x))

)
Cr+1Ψ(t) + ΨT (x)Sr+1Ψ(t),

(8.1.36)

where

Sr+1 = (ΨT (x))−1

(
aur

∂ur
∂x
− aur

b
(g2(t)− g1(t))− ax

b

∂ur
∂x

(g2(t)− g1(t))− a∂ur
∂x

g1(t)

)
(Ψ(t))−1.

Apply fractional integral operator Iαt to (8.1.36) and use the initial condition to obtain

ur+1(x, t) =

(
− aur(Iβ−1

x ΨT (x)) +
a

b
ur(I

β
x=bΨ

T (x)) + νΨT (x)− a∂ur
∂x

(IβxΨT (x))

+
ax

b

∂ur
∂x

(Iβx=bΨ
T (x))

)
Cr+1(Iαt Ψ(t)) + ΨT (x)Sr+1(Iαt Ψ(t)) + f(x).

(8.1.37)

From equation (8.1.33) and (8.1.37)

(
IβxΨT (x)− x

b
(Iβx=bΨ

T (x))

)
Cr+1Ψ(t)) +

x

b
(g2(t)− g1(t)) + g1(t)

=

(
− aur(Iβ−1

x ΨT (x)) +
a

b
ur(I

β
x=bΨ

T (x)) + νΨT (x)− a∂ur
∂x

(IβxΨT (x))

+
ax

b

∂ur
∂x

(Iβx=bΨ
T (x))

)
Cr+1(Iαt Ψ(t)) + ΨT (x)Sr+1(Iαt Ψ(t)) + f(x),

(8.1.38)

or

G
(
IβxΨT (x)− x

b
(Iβx=bΨ

T (x))
)
Cr+1 − Cr+1(Iαt Ψ(t))(Ψ(t))−1 +GF (Ψ(t))−1 = 0, (8.1.39)

where

G =

(
− aur(Iβ−1

x ΨT (x)) +
a

b
ur(I

β
x=bΨ

T (x)) + νΨT (x)− a∂ur
∂x

(IβxΨT (x)) +
ax

b

∂ur
∂x

(Iβx=bΨ
T (x))

)−1

and

F =

(
x

b
(g2(t)− g1(t)) + g1(t)− (ΨT (x)Sr+1(Iαt Ψ(t)) + f(x))

)
.
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Equation (8.1.39) is the Sylvester equation. We solve equation (8.1.39) for Cr+1 and substituting

Cr+1 in equation (8.1.33) or (8.1.37), to get solution u(x, t) at (r+1)th iteration of quasilinearization

technique, at the collocation points.

Example: Consider the following fractional problem

∂αu

∂tα
+ u

∂u

∂x
=
∂βu

∂xβ
, 0 < α ≤ 1, 1 < β ≤ 2, t > 0, 0 ≤ x ≤ 1, (8.1.40)

with the initial and boundary conditions

u(x, 0) = 2x, u(0, t) = 0, u(1, t) =
2

1 + 2t
.

The exact solution of (8.1.40), when α = 1 and β = 2, is given in [13], u(x, t) = 2x
1+2t .
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Figure 8.6: Solutions by the method at k = 4, M = 3 and at different α and β.
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Figure 8.7: Comparison of exact solution at α = 1, β = 2 and solutions by the method at k =

5, M = 3, α = 2 and for different iterations r.

Solution of the fractional order differential equation converge to the solution of the integer order

differential equation when α and β approaches to 1 and 2 respectively, as shown in Figure 8.6. Figure

8.7 compares the exact solution and approximate solution for α = 1 and β = 2, at different iteration

r and k = 5, M = 3.

Fractional Klein Gordon Equation

Consider the following fractional Klein Gordon equation,

∂αu

∂tα
+ a

∂βu

∂xβ
+ ub = f(x, t), 1 < α ≤ 2, 1 < β ≤ 2, t > 0, 0 ≤ x ≤ 1, (8.1.41)
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with the initial and boundary conditions

u(x, 0) = g1(x), ut(x, 0) = g2(x),

u(0, t) = f1(t), u(1, t) = f2(t),
(8.1.42)

where a is a constant and b > 1. We linearized the nonlinear equation (8.1.41) that is

∂αur+1

∂tα
+ a

∂βur+1

∂xβ
+ bub−1

r ur+1 = f(x, t) + ubr(b− 1),

1 < α ≤ 2, 1 < β ≤ 2, t > 0, 0 ≤ x ≤ 1,

(8.1.43)

subject to the conditions

ur+1(x, 0) = g1(x), (ur+1)t(x, 0) = g2(x),

ur+1(0, t) = f1(t), ur+1(1, t) = f2(t),
(8.1.44)

where r = 0, 1, 2, ..., N , N ∈ N, u0(x, t) is a initial approximation which is used to get u1(x, t) and

use u1(x, t) to get u2(x, t) and so on. In this way, we may get more accurate results while increasing

N .

Apply the Chebyshev wavelets method to equation (8.1.43), we approximate the higher order deriva-

tive term by Chebyshev wavelets series as

∂βur+1

∂xβ
= ΨT (x)Cr+1Ψ(t). (8.1.45)

Apply the fractional integral operator Iβx on equation (8.1.45) and utilize the boundary conditions,

we obtain

ur+1(x, t) =

(
IβxΨT (x)− x

(
Iβx=1ΨT (x)

))
Cr+1Ψ(t) + x

(
f2(t)− f1(t)

)
+ f1(t). (8.1.46)

Use Equations (8.1.45) and (8.1.46) in Equation (8.1.43), we obtain

∂αur+1

∂tα
=

(
− aΨT (x)− bub−1

r (IβxΨT (x)) + bxub−1
r (Iβx=1ΨT (x))

)
Cr+1Ψ(t)

+ΨT (x)Sr+1Ψ(t),

(8.1.47)

where

Sr+1 = (ΨT )−1

(
− bub−1

r

(
x(f2(t)− f1(t)) + f1(t)

)
+ f(x, t) + ubr(b− 1)

)
(Ψ(t))−1.

Apply fractional integral operator Iαt to (8.1.47) and use the initial condition to obtain

u(x, t) =

(
− aΨT (x)− bub−1

r (IβxΨT (x)) + bxub−1
r (Iβx=1ΨT (x))

)
Cr+1(Iαt Ψ(t))

+ΨT (x)Sr+1(Iαt Ψ(t)) + tg2(x) + g1(x).

(8.1.48)
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From equation (8.1.46) and (8.1.48)

(
IβxΨT (x)− x

(
Iβx=1ΨT (x)

))
Cr+1Ψ(t)−

(
− aΨT (x)− bub−1

r (IβxΨT (x)) + bxub−1
r (Iβx=1ΨT (x))

)
Cr+1(Iαt Ψ(t)) + x

(
f2(t)− f1(t)

)
+ f1(t)−ΨT (x)Sr+1(Iαt Ψ(t))− tg2(x)− g1(x) = 0,

(8.1.49)

or

(Gr+1)−1

(
IβxΨT (x)− x

(
Iβx=1ΨT (x)

))
Cr+1 − (Gr+1)−1Cr+1(Iαt Ψ(t))(Ψ(t))−1

+(Gr+1)−1F r+1(Ψ(t))−1 = 0,

(8.1.50)

where

Gr+1 =

(
− aΨT (x)− bub−1

r (IβxΨT (x)) + bxub−1
r (Iβx=1ΨT (x))

)
and

F r+1 = x

(
f2(t)− f1(t)

)
+ f1(t)−ΨT (x)Sr+1(Iαt Ψ(t))− tg2(x)− g1(x).

Equation (8.1.50) is the Sylvester equation. we get Cr+1 at (r+1)th iteration from Equation

(8.1.50) and substituting Cr+1 in Equation (8.1.46) or (8.1.48), to get solution u(x, t) at (r + 1)th

iteration at the collocation points.

Example: Consider the following fractional Klein–Gordon equation,

∂αu
∂tα −

∂βu
∂xβ

+ u2 = −x cos(t) + x2 cos2(t), 1 < α ≤ 2, 1 < β ≤ 2, (8.1.51)

subject to the initial and boundary conditions

u(x, 0) = x, ut(x, 0) = 0,

u(0, t) = 0, u(1, t) = cos(t).

The exact solution, when α = 2, β = 2, is given by [19]

u(x, t) = x cos(t).
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Figure 8.8: Solutions by the method at k = 4, M = 2, and at different α and β.
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Figure 8.9: Comparison of exact solution at α = 2, β = 2 and solutions by the Chebyshev wavelet

quasilinearization technique at k = 4, M = 2, α = 2, β = 2 and for different iterations r.

Figure 8.8 shows that solution by the method for fractional differential equation converge to the

solution of integer differential equation while α, β approaches to 2. At α = 2 and β = 2, solution

by the method converge to the exact solution when iteration r is increased, as in Figure 8.9.

8.1.4 Convergence of the Chebyshev Wavelet Quasilinearization Method

We derive an error estimate of the Chebyshev wavelet quasilinearization approximations to an arbi-

trary unknown function.

Theorem: Let r, k, M →∞, then the series solution (8.1.3) converges to y(x).

Proof: Let L2[0, 1) be the Hilbert space and ψn,m forms a basis of L2[0, 1). Let us consider
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yr+1(x) ≈
2k−1∑
n=1

M−1∑
m=0

cr+1
nm ψn,m(x), (8.1.52)

where cr+1
nm = 〈yr+1(x), ψn,m(x)〉. Let Sr+1

k,M be a sequence of partial sums of cr+1
nm ψn,m(x), we prove

that Sr+1
k,M is a Cauchy sequence in Hilbert space L2[0, 1) and then we show that Sr+1

k,M converges to

yr+1(x), when k,M →∞.
We show that Sr+1

k,M is a Cauchy sequence. Let Sr+1

k̂,M̂
be arbitrary sums of cr+1

nm ψn,m(x) with k >

k̂, M > M̂.

‖Sr+1
k,M − S

r+1

k̂,M̂
‖2 = ‖

2k−1∑
n=1

M−1∑
m=0

cr+1
nm ψn,m(x)−

2k̂−1∑
n=1

M̂−1∑
m=0

cr+1
nm ψn,m(x)‖2,

= ‖
2k−1∑

n=2k̂−1+1

M−1∑
m=M̂

cr+1
nm ψ

λ
n,m(x)‖2,

= 〈
2k−1∑

n=2k̂−1+1

M−1∑
m=M̂

cr+1
nm ψn,m(x),

2k−1∑
i=2k̂−1+1

M−1∑
j=M̂

cr+1
ij ψi,j(x)〉,

=
2k−1∑

n=2k̂−1+1

M−1∑
m=M̂

2k−1∑
i=2k̂−1+1

M−1∑
j=M̂

cr+1
nm c

r+1
ij 〈ψn,m(x), ψi,j(x)〉,

=
2k−1∑

n=2k̂−1+1

M−1∑
m=M̂

|cr+1
nm |2.

(8.1.53)

From the Bessel’s inequality, we have
∞∑
n=1

∞∑
m=0
|cr+1
nm |2 is convergent and hence

‖Sr+1
k,M − S

r+1

k̂,M̂
‖2 → 0 as , k,M, k̂, M̂ →∞.

This implies that Sr+1
k,M is a Cauchy sequence and it converges to, say, ur+1(x) ∈ L2[0, 1). We need

to show that ur+1(x) = yr+1(x),

〈ur+1(x)− yr+1(x), ψn,m(x)〉 = 〈ur+1(x), ψn,m(x)〉 − 〈yr+1(x), ψn,m(x)〉,
= lim

k,M→∞
〈Sr+1
k,M , ψn,m(x)〉 − cr+1

nm ,

= cr+1
nm − cr+1

nm ,

= 0.

(8.1.54)

Hence
2k−1∑
n=1

M−1∑
m=0

cr+1
nm ψn,m(x) converges to yr+1(x) as k,M →∞. Now we show that yr+1(x) converges

to y(x) as r →∞.
According to the convergence of quasilinearization technique, as given in subsection 3.1.1, we have

max
x
|yr+1 − yr| ≤

b2 k8
1− b2m

4

(max
x

(|yr − yr−1|)2, (8.1.55)

where b, k and m are positive finite constants and are given in [7]. From (8.1.55), we conclude that

yr+1(x)→ y(x) as r →∞, if there is convergence at all.
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8.1.5 Conclusion

Each iteration of quasilinearization technique gives linear differential equation in yr+1(x) which is

solved to get yr+1(x) by Chebyshev wavelets operational matrix method. According to convergence

analysis of method,
2k−1∑
n=1

M−1∑
m=0

cr+1
nm ψn,m(x) converges faster to yr+1(x) if we consider the higher level

of resolution k or higher order Chebyshev polynomials M or higher both M and k i.e., we get

more accurate results while increasing k and M , and at the same time quasilinearization technique

works i.e., given an initial approximation y0(x), we get solution y1(x) of linear differential equation

by Chebyshev wavelets method, at next iteration we get y2(x) and so on. Since quasilinearization

technique is second order accurate so it gives rapid convergence.

We have constructed the Chebyshev wavelets operational matrices, Ψm̂×m̂, the Chebyshev

wavelets operational matrix of fractional order integration, Pα
m̂×m̂, and another Chebyshev wavelets

operational matrix of fractional order integration, Kf ,α
m̂×m̂, which is used for solving boundary value

problems. These operational matrices are used to reduce the fractional differential equation to a

system of algebraic equations.

It is shown that Chebyshev wavelet quasilinearization technique gives good results when applied

to different fractional nonlinear ordinary and partial differential equations. We get more accurate

results while increasing k or M or both, and Figures 8.2, 8.4, 8.5, 8.7 and 8.9 show that approxi-

mate solution converge to the exact solution and absolute error decreases while increasing iterations

r, as promised in convergence analysis. The solution of the fractional order differential equation

converge to the solution of integer order differential equation as in Figure 8.1, 8.3, 8.6 and 8.8. The

results obtained from Chebyshev wavelet quasilinearization technique are in good agreement with

exact solutions. Different type of non-linearities can easily be handled by the Chebyshev wavelet

quasilinearization technique.

8.2 Legendre Wavelet Quasilinearization Technique for Nonlinear

Fractional Differential Equations

Legendre wavelet method without using the operational matrices have widely been used for solving

ordinary/fractional, initial and boundary value problems [56, 61, 132]. This approach leads to com-

plicated calculations. The Legendre wavelet operational matrix method [108,110] got less attention

but gives fast calculations.

In this section, we combine the Legendre operational matrix wavelet method and quasilineariza-

tion technique, which we named as the Legendre wavelet - quasilinearization technique, to solve

the nonlinear fractional differential equations. According to the technique, we first use the quasilin-

earization technique to discretize the fractional nonlinear differential equation and then apply the

Legendre wavelet method for the solution of discretized fractional differential equation. To the best
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of our knowledge , Legendre wavelets never combined with quasilinearization technique.

8.2.1 Legendre Wavelets

The Legendre polynomials, Lm(x), of order m are defined on the interval [−1, 1] and given by the

following recurrence formulae,

L0(x) = 1, L1(x) = x, Lm+1(x) =
2m+ 1

m+ 1
xLm(x)− m

m+ 1
Lm−1(x), m = 1, 2, 3, · · · .

The Legendre wavelets are defined on interval [0, 1) by

ψn,m(x) =

(m+ 1
2)

1
2 2

k
2Lm(2kx− n̂), n̂−1

2k
≤ x < n̂+1

2k
,

0, elsewhere,

where k = 2, 3, · · · , is the level of resolution, n = 1, 2, 3, · · · , 2k−1, n̂ = 2n − 1, is the translation

parameter, m = 0, 1, 2, · · · ,M − 1 is the order of the Legendre polynomials, M > 0.

Function approximations and construction of operational matrices, procedure of implementation

to fractional nonlinear ordinary differential equation and convergence analysis of Legendre wavelet

quasilinearization method are same as Chebyshev wavelet quasilinearization method and are given

in subsections 8.1.1, 8.1.2 and 8.1.4 respectively.

8.2.2 Numerical Solution of Nonlinear Fractional Differential Equations

We solve nonlinear differential equations of fractional order by the Legendre wavelet - quasilineariza-

tion technique and compare the results with other numerical schemes and exact solution.

Example 1: Consider the general fractional Riccati differential equation

cDαy(x) = Q(x)y(x) +R(x)y2(x) + P (x), x ≥ 0, 0 < α ≤ 1, (8.2.1)

subject to the initial conditions y(0) = y0.

Apply the quasilinearization technique to equation (8.2.1), to obtain

cDαyr+1(x)− (Q(x) + 2R(x)yr(x))yr+1(x) = P (x)−R(x)y2
r (x), x ≥ 0, 0 < α ≤ 1, (8.2.2)

with the initial condition yr+1(0) = y0.

Apply the Legendre wavelet method to equation (8.2.2), the Legendre wavelet approximation of

higher order derivative is

cDαyr+1(x) =
2k−1∑
n=1

M−1∑
m=0

anmψn,m(x) = aTΨ(x). (8.2.3)

Lower order derivatives are obtained by integrating equation (8.2.3) and use the initial conditions,

we get
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yr+1(x) =
2k−1∑
n=1

M−1∑
m=0

anmI
αψn,m(x) + y0 = aTPα

m̂×m̂Ψ(x) + y0. (8.2.4)

Substitute equations (8.2.3) and (8.2.4) in (8.2.2), we obtain

2k−1∑
n=1

M−1∑
m=0

anm[ψn,m(x)− (Q(x) + 2R(x)yr(x))Iαψn,m(x)]

= P (x)−R(x)y2
r (x) + (Q(x) + 2R(x)yr(x))y0.

(8.2.5)

In particular, take Q(x) = −2x4, R(x) = x3, P (x) = x5 + 1 and y0 = 0, equation (8.2.5) becomes

2k−1∑
n=1

M−1∑
m=0

anm[ψn,m(x)− (−2x4 + 2x3yr(x))Iαψn,m(x)] = x5 + 1− x3y2
r (x), (8.2.6)

with the initial approximation y0(x) = 0.
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Figure 8.10: Comparison of exact solution and solution by the Legendre wavelet - quasilinearization

technique at k = 3, M = 8 and for different iterations.
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t EADM [107] ELWM

0.2 1.137979× 10−14 5.551115× 10−17

0.4 7.456530× 10−10 1.665335× 10−16

0.6 4.897381× 10−7 2.220446× 10−16

0.8 4.879991× 10−5 2.220446× 10−16

0.9 3.202668× 10−4 4.440892× 10−16

Table 8.2: Comparison of the Legendre wavelets - quasilinearization technique (at 4th iteration when

k = 7, M = 8) with Adomian decomposition method [107] and exact solution for α = 1.

We fix the order of the differential equation (8.2.1), α = 1, and k = 3, M = 8. The graph

in Figure 8.10 shows that the exact solution and approximate solution by the Legendre wavelet -

quasilinearization technique at 4th iteration. The absolute error reduces with increasing iterations.

For k = 7 and M = 8, Table 8.2 contains the results obtained by the Legendre wavelet - quasi-

linearization technique at 4th iteration with solution by Adomian decomposition method and exact

solution. For this problem the Legendre wavelet - quasilinearization technique gives significantly

accurate results as compared to the Adomian decomposition method.

Example 2: Consider the fractional nonlinear singular initial value problem,

cDαy(x) + 2
xy
′(x)− 6y(x) = 4y ln y, x ≥ 0, 1 < α ≤ 2, (8.2.7)

subject to the initial conditions y(0) = 1, y′(0) = 0.

The exact solution, when α = 2, is [126]: y(x) = ex
2
.

Apply the quasilinearization technique to equation (8.2.7), we obtain

cDαyr+1(x) + 2
xy
′
r+1(x)− (10 + 4 ln yr(x))yr+1(x) = −4yr(x), x ≥ 0, 1 < α ≤ 2, (8.2.8)

with the initial conditions yr+1(0) = 1, y′r+1(0) = 0.

Apply the Legendre wavelet method to equation (8.2.8), we get

2k−1∑
n=1

M−1∑
m=0

anm[ψn,m(x) + 2
xI

α−1ψn,m(x)− (10 + 4 ln yr(x))Iαψn,m(x)]

= −4yr(x) + (10 + 4 ln yr(x)).

(8.2.9)

with the initial approximations y0(x) = 1, y′0(x) = 0.
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t k = 2, M = 3 k = 4, M = 5 k = 6, M = 7 k = 7, M = 9

0.2 2.997× 10−3 6.018× 10−5 1.918× 10−6 2.901× 10−7

0.4 4.092× 10−3 9.012× 10−5 2.873× 10−6 4.344× 10−7

0.6 7.440× 10−3 1.640× 10−4 5.209× 10−6 7.729× 10−7

0.8 1.676× 10−2 3.387× 10−4 9.817× 10−6 6.275× 10−7

Table 8.3: Absolute error for different values of k and M , at 2nd iteration, α = 2.
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Figure 8.11: Solutions by the Legendre wavelet - quasilinearization technique at 2nd iteration by

using k = 4, M = 6, for different values of α.

Comparison of exact solution and approximate solution by the Legendre wavelet - quasilineariza-

tion technique at 2nd iteration is shown in Table 8.3. We get more accurate results while increasing

both k and M . Solution at 2nd iteration, with k = 4, M = 6 and at different values of α is shown in

Figure 8.11 along with exact solution at α = 2. We observe that the approximate solutions converge

to the exact solution, when α approaches to 2.

Example 3: Consider the following αth order fractional Van der Pol oscillator problem

cDαy(x) + dy
dx + y(x) + y2(x) dydx = 2 cos(x)− cos3(x), 1 < α ≤ 2, (8.2.10)

subject to the initial conditions y(0) = 0, y′(0) = 1. The exact solution, when α = 2, is [8],

y(x) = sin(x).

Quasilinearization technique to equation (8.2.10) leads to

cDαyr+1(x) + (1 + 2yr(x)y′r(x))yr+1(x) + (1 + y2
r (x))y′r+1(x)

= 2y2
r (x)y′r(x) + 2 cos(x)− cos3(x), 1 < α ≤ 2,

(8.2.11)

with the initial conditions yr+1(0) = 0, y′r+1(0) = 1.
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Consider the Legendre wavelet approximation and use the initial conditions, we get

cDαy(x) =
2k−1∑
n=1

M−1∑
m=0

anmψn,m(x),

y(x) =
2k−1∑
n=1

M−1∑
m=0

anmI
αψn,m(x) + x,

y′(x) =
2k−1∑
n=1

M−1∑
m=0

anmI
α−1ψn,m(x) + 1.

(8.2.12)

Substitute equations (8.2.12) in (8.2.11), we obtain

2k−1∑
n=1

M−1∑
m=0

anm[ψn,m(x) + (1 + y2
r (x))Iα−1ψn,m(x) + (1 + 2y′r(x)yr(x))Iαψn,m(x)]

= 2y2
r (x)y′r(x)− (1 + y2

r (x))− x(1 + 2y′r(x)yr(x)) + 2 cos(x)− cos3(x).

(8.2.13)

with the initial approximations y0(x) = 0, y′0(x) = 1.
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Figure 8.12: Solutions by the Legendre wavelet - quasilinearization technique at 4th iteration by

using k = 5, M = 5, for different values of α

k = 7, M = 7 k = 8, M = 8 k = 9, M = 9

x yLWM yLWM yLWM yV IM [9] yHPM [9] yEXACT

0.2 0.1986692194 0.1986693095 0.1986693266 0.1986676148 0.1986692604 0.1986693308

0.4 0.3894181493 0.3894183054 0.3894183350 0.3893138342 0.3894101010 0.3894183423

0.6 0.5646422331 0.5646424274 0.5646424643 0.563525292 0.5645175388 0.5646424734

0.8 0.7173558385 0.7173560426 0.7173560814 0.7115469778 0.7165444751 0.7173560909

0.9 0.7833266633 0.7833268627 0.7833269006 0.7720563532 0.7816179472 0.7833269096

Table 8.4: Solution (α = 2) by the Legendre wavelet - quasilinearization technique at 3rd iteration

and different values of k, M compared with homotopy perturbation method [9], variational iteration

method [9] and exact solution.
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The primary purpose of Example 3 is to show the applicability of Legendre wavelet - quasilin-

earization method on large domain, as shown in Figure 8.12. We fix the solutions at fourth iteration

by taking k = 5, M = 5, and 0 ≤ x ≤ 6. Exact solution at α = 2 is also plotted and Figure 8.12

shows that the Legendre solution converges to the exact solution, when α approaches to 2. From

the numerical results in Table 8.4, it is clear that the approximate solution by Legendre wavelet -

quasilinearization technique are close to exact solutions and becomes more close to exact solution

while increasing k and M , when α = 2, and also more accurate as compared to variational iteration

method [9] and homotopy perturbation method [9].

Example 4: Consider the fractional nonlinear oscillator equation

cDαy(x) + ω2y(x) = λym(x), 0 ≤ x ≤ 1, 1 < α ≤ 2, (8.2.14)

subject to the boundary conditions y(0) = 0, y(1) = A, A > 0, where m is a positive integer and

λ is a positive real number.

Apply the quasilinearization technique to equation (8.2.14), we get

cDαyr+1(x) + (ω2 −mλym−1
r (x))yr+1(x) = (1−m)λymr (x), 0 ≤ x ≤ 1, 1 < α ≤ 2, (8.2.15)

with the boundary conditions yr+1(0) = 0, yr+1(1) = A.

Apply the Legendre wavelet method to equation (8.2.15), we obtain

2k−1∑
n=1

M−1∑
m=0

anm[ψn,m(x)− (ω2 −mλym−1
r (x))Iαψn,m(x)− x(ω2 −mλym−1

r (x))

( 1
Γ(α)

1∫
0

(1− s)α−1ψn,m(s)ds)] = (1−m)λymr (x)−Ax(ω2 −mλym−1
r (x)),

(8.2.16)

with the initial approximation y0(x) = 0.

To verify the validity of the approximation (8.2.16), we consider a Duffing oscillator, m = 3, with

the parameters ω2 = 5
4 and λ = 1

2 , which has exact solution [119]: y(x) = sn(x|14), and A = sn(1|14),

where sn is the Jacobi elliptic function.
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k = 7,M = 11

α = 1.5 α = 1.8 α = 2

x yLWM yLWM yLWM yADM [119] yEXACT

0.1 0.113145 0.104671 0.099792 0.0996758 0.099792

0.3 0.323190 0.305949 0.294466 0.294127 0.294466

0.5 0.503727 0.487739 0.475084 0.474580 0.475083

0.7 0.652792 0.643492 0.634295 0.633792 0.634293

0.9 0.772571 0.770284 0.767087 0.766860 0.767085

Table 8.5: Comparison of solutions by the Legendre wavelet - quasilinearization technique at 3rd

iteration, k = 7, M = 11, and Adomian decomposition method.

Solution at different values of α by the Legendre wavelet - quasilinearization technique at 3rd

iteration is shown in Table 8.5, by fixing k = 7 andM = 11. The results by developed method along

with exact solution and solution by Adomian decomposition method at α = 2, is shown in Table

8.5. Method gives better results than the Adomian decomposition method.

Example 5: Consider the following fractional nonlinear differential equation

cDαy(x) + a(x)y′2(x) + b(x)y(x)y′(x) = f(x), 0 ≤ x ≤ 1, 1 < α ≤ 2, (8.2.17)

subject to the boundary conditions y(0) = 0, y(1) = 1. The exact solution of equation (8.2.17)

depends on its order, which is y(x) = xα.

Apply the quasilinearization technique to equation (8.2.17), to obtain

cDαy(x) + b(x)y′r(x)yr+1(x) + (2a(x)y′r(x) + b(x)yr(x))y′r+1(x)

= f(x) + a(x)y′2r (x) + b(x)yr(x)y′r(x), 0 ≤ x ≤ 1, 1 < α ≤ 2,
(8.2.18)

with the boundary conditions yr+1(0) = 0, yr+1(1) = 1.

Apply the Legendre wavelet method to equation (8.2.18), we get

2k−1∑
n=1

M−1∑
m=0

anm[ψn,m(x) + b(x)y′r(x)Iαψn,m(x)− xb(x)y′r(x)

( 1
Γ(α)

1∫
0

(1− s)α−1ψn,m(s)ds) + (2a(x)y′r(x) + b(x)yr(x))Iα−1ψn,m(x)

−(2a(x)y′r(x) + b(x)yr(x))( 1
Γ(α)

1∫
0

(1− s)α−1ψn,m(s)ds)] = f(x) + a(x)y′2r (x)

+b(x)yr(x)y′r(x)− xb(x)y′r(x)− (2a(x)y′r(x) + b(x)yr(x)),

(8.2.19)

with the initial approximation y0(x) = 0, y′0(x) = 0.
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Figure 8.13: Exact solution and solution by the Legendre wavelet - quasilinearization technique at

4th iteration, k = 3, M = 3, and at different values of α.

Since solution of the equation (8.2.17) depends on its order, Figure 8.13 shows that the exact

solution and proposed solution at different values of α by fixing k = 3 and M = 3.

8.2.3 Conclusion

It is shown that the Legendre wavelet method with quasilinearization technique gives excellent results

when applied to different fractional nonlinear initial and boundary value problems. Error by the

Legendre wavelet - quasilinearization technique reduces while increasing iterations, as mentioned

in Figure 8.10. The results obtained from the Legendre wavelet - quasilinearization technique are

better from the results obtained by other methods and are in good agreement with exact solutions,

as shown in Tables. Different type of non-linearities can easily be handled by the Legendre wavelet

- quasilinearization technique.
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Chapter 9

Gegenbauer Wavelets Operational

Matrix Method for Fractional

Differential Equations

In this chapter, we introduce a numerical method, named Gegenbauer wavelets method, which is

derived from conventional Gegenbauer polynomials, for solving fractional initial and boundary value

problems. The operational matrices are derived and utilized to reduce the fractional differential

equation to a system of algebraic equations. We perform the convergence analysis for the Gegenbauer

wavelets method. Numerical examples are provided to illustrate the efficiency and accuracy of the

method.

Gegenbauer polynomials [38] or ultraspherical polynomials are orthogonal polynomials on the

interval [−1, 1] with respect to a certain weight function. They generalize the Legendre and Cheby-

shev polynomials. In the present work, we constructed the Gegenbauer wavelets by using the shifted

Gegenbauer polynomials as their basis functions. The interval [0, 1) is chosen to be the compact

support of Gegenbauer wavelets. The purpose of introducing the Gegenbauer wavelets is to develop

a numerical method for solving fractional differential equations. Boundary value problems are con-

siderably more difficult to deal with than the initial value problems. Gegenbauer wavelets method

for boundary value problems is more complicated than for initial value problems. We need more

operational matrices for tackling the boundary conditions while solving boundary value problems.

9.1 Gegenbauer Polynomials and Gegenbauer Wavelets

The Gegenbauer polynomials [38], or ultra spherical harmonics polynomials, Cλm(x), of order m are

defined, for λ > −1
2 , m ∈ Z+, on the interval [−1, 1] and given by the following recurrence formulae,

Cλ0 (x) = 1, Cλ1 (x) = 2λx,
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Cλm+1(x) =
1

m+ 1
(2(m+ λ)xCλm(x)− (m+ 2λ− 1)Cλm−1(x)), m = 1, 2, 3, · · · .

The Gegenbauer polynomials are orthogonal on [−1, 1] with respect to the weight function (1−x2)λ−
1
2

as
1∫
−1

(1− x2)λ−
1
2Cλm(x)Cλn(x)dx = Lλmδmn, λ >

−1

2
,

where Lλm(x) = π21−2λΓ(m+2λ)
m!(m+λ)(Γ(λ))2

is the normalizing factor and δ is the Kronecker delta function.

Gegenbauer polynomials generalize Legendre polynomials and Chebyshev polynomials. For λ = 0

and λ = 1, we get Chebyshev polynomials of first and second kind respectively and at λ = 1
2 we get

Legendre polynomial.

The Gegenbauer wavelets are defined on interval [0, 1) by

ψλn,m(x) =


1√
Lλm

2
k
2Cλm(2kx− n̂), n̂−1

2k
≤ x < n̂+1

2k
,

0, elsewhere,
(9.1.1)

where k = 1, 2, 3, · · · , is the level of resolution, n = 1, 2, 3, · · · , 2k−1, n̂ = 2n − 1, is the translation

parameter,m = 0, 1, 2, · · · ,M−1 is the order of the Gegenbauer polynomials,M > 0. Corresponding

to each λ > −1
2 , we have a different family of wavelets i.e., when λ = 1

2 , we get Legendre wavelets

[108], ψ
1
2
n,m(x). Similarly for λ = 0 and λ = 1, we obtain the Chebyshev wavelet of first [77] and

second kind [127], respectively. In the present work, we utilize the Gegenbauer wavelets at different

values of λ > −1
2 .

9.1.1 Function Approximations and Gegenbauer Wavelets Matrix

We can expand any function f(x) ∈ L2[0, 1) into truncated Gegenbauer wavelet series as ,

f(x) ≈
2k−1∑
n=1

M−1∑
m=0

aλnmψ
λ
n,m(x) = aλ

T
Ψλ(x), (9.1.2)

where aλ and Ψλ are m̂× 1, (m̂ = 2k−1M), matrices, given by

aλ=[aλ10, a
λ
11, · · · , aλ1M−1, a

λ
20, a

λ
21, · · · , aλ2M−1, · · · , aλ2k−10

, aλ
2k−11

, · · · , aλ
2k−1M−1

]T ,

Ψλ(x) = [ψλ1,0(x), ψλ1,1(x), · · · , ψλ1M−1(x), ψλ2,0(x), ψλ2,1(x), · · · , ψλ2,M−1(x)

, · · · , ψλ
2k−1,0

(x), ψλ
2k−1,1

(x), · · · , ψλ
2k−1,M−1

(x)]T .

The collocation points for the Gegenbauer wavelets are taken as xi = 2i−1
2kM

, i = 1, 2, ..., 2k−1M . The

Gegenbauer wavelet matrix Ψλ
2k−1M,2k−1M is given as

Ψλ
2k−1M×2k−1M = [Ψλ(

1

2kM
),Ψλ(

3

2kM
), ...,Ψλ(

2kM − 1

2kM
)] (9.1.3)
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or

Ψλ
2k−1M×2k−1M =



ψλ1,0( 1
2kM

) ψλ1,0( 3
2kM

) · · · ψλ1,0(2kM−1
2kM

)

ψλ1,1( 1
2kM

) ψλ1,1( 3
2kM

) · · · ψλ1,1(2kM−1
2kM

)
...

... · · ·
...

ψλ1,M−1( 1
2kM

) ψλ1,M−1( 3
2kM

) · · · ψλ1,M−1(2kM−1
2kM

)

ψλ2,0( 1
2kM

) ψλ2,0( 3
2kM

) · · · ψλ2,0(2kM−1
2kM

)

ψλ2,1( 1
2kM

) ψλ2,1( 3
2kM

) · · · ψλ2,1(2kM−1
2kM

)
...

... · · ·
...

ψλ2,M−1( 1
2kM

) ψλ2,M−1( 3
2kM

) · · · ψλ2,M−1(2kM−1
2kM

)
...

... · · ·
...

ψλ
2k−1,0

( 1
2kM

) ψλ
2k−1,0

( 3
2kM

) · · · ψλ
2k−1,0

(2kM−1
2kM

)

ψλ
2k−1,1

( 1
2kM

) ψλ
2k−1,1

( 3
2kM

) · · · ψλ
2k−1,1

(2kM−1
2kM

)
...

... · · ·
...

ψλ
2k−1,M−1

( 1
2kM

) ψλ
2k−1,M−1

( 3
2kM

) · · · ψλ
2k−1,M−1

(2kM−1
2kM

)


In particular, we fix k = 2, M = 3, we have n = 1, 2 and m = 0, 1, 2, the Gegenbauer wavelet matrix

is given as

Ψλ
6×6 =



ψλ1,0( 1
12) ψλ1,0( 3

12) ψλ1,0( 5
12) ψλ1,0( 7

12) ψλ1,0( 9
12) ψλ1,0(11

12)

ψλ2,0( 1
12) ψλ2,0( 3

12) ψλ2,0( 5
12) ψλ2,0( 7

12) ψλ2,0( 9
12) ψλ2,0(11

12)

ψλ1,1( 1
12) ψλ1,1( 3

12) ψλ1,1( 5
12) ψλ1,1( 7

12) ψλ1,1( 9
12) ψλ1,1(11

12)

ψλ2,1( 1
12) ψλ2,1( 3

12) ψλ2,1( 5
12) ψλ2,1( 7

12) ψλ2,1( 9
12) ψλ2,1(11

12)

ψλ1,2( 1
12) ψλ1,2( 3

12) ψλ1,2( 5
12) ψλ1,2( 7

12) ψλ1,2( 9
12) ψλ1,2(11

12)

ψλ2,2( 1
12) ψλ2,2( 3

12) ψλ2,2( 5
12) ψλ2,2( 7

12) ψλ2,2( 9
12) ψλ2,2(11

12)


Compact support of the Gegenbauer wavelets is [2n−2

2k
, 2n

2k
), when n = 1, support of ψλ1,m(x) is [0, 1

2),

so ψλ1,0(x), ψλ1,1(x), ψλ1,2(x) are zero at x = 7
12 ,

9
12 ,

11
12 . Similarly, for n = 2, support of ψλ2,m(x) is

[1
2 , 1), this implies that ψλ2,0(x), ψλ2,1(x), ψλ2,2(x) are zero at x = 1

12 ,
3
12 ,

5
12 , we have

Ψλ
6×6 =



ψλ1,0( 1
12) ψλ1,0( 3

12) ψλ1,0( 5
12) 0 0 0

0 0 0 ψλ2,0( 7
12) ψλ2,0( 9

12) ψλ2,0(11
12)

ψλ1,1( 1
12) ψλ1,1( 3

12) ψλ1,1( 5
12) 0 0 0

0 0 0 ψλ2,1( 7
12) ψλ2,1( 9

12) ψλ2,1(11
12)

ψλ1,2( 1
12) ψλ1,2( 3

12) ψλ1,2( 5
12) 0 0 0

0 0 0 ψλ2,2( 7
12) ψλ2,2( 9

12) ψλ2,2(11
12)


For fix value of λ, say λ = 5, we have
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Ψ5
6×6 =



2√
L5
0

C5
0 (−2

3 ) 2√
L5
0

C5
0 (0) 2√

L5
0

C5
0 (2

3) 0 0 0

0 0 0 2√
L5
0

C5
0 (−2

3 ) 2√
L5
0

C5
0 (0) 2√

L5
0

C5
0 (2

3)

2√
L5
1

C5
1 (−2

3 ) 2√
L5
1

C5
1 (0) 2√

L5
1

C5
1 (2

3) 0 0 0

0 0 0 2√
L5
1

C5
1 (−2

3 ) 2√
L5
1

C5
1 (0) 2√

L5
1

C5
1 (2

3)

2√
L5
2

C5
2 (−2

3 ) 2√
L5
2

C5
2 (0) 2√

L5
2

C5
2 (2

3) 0 0 0

0 0 0 2√
L5
2

C5
2 (−2

3 ) 2√
L5
2

C5
2 (0) 2√

L5
2

C5
2 (2

3)


or

Ψ5
6×6 =



2.2746 2.2746 2.2746 0 0 0

0 0 0 2.2746 2.2746 2.2746

−5.2530 0 5.2530 0 0 0

0 0 0 −5.2530 0 5.2530

7.8628 −1.8145 7.8628 0 0 0

0 0 0 7.8628 −1.8145 7.8628


.

Similarly, we get different Gegenbauer wavelet matrices for different value of λ.

9.1.2 The Gegenbauer Wavelets Operational Matrix of Fractional Order Inte-
gration

For simplicity, we write (9.1.2) as

f(x) ≈
m̂∑
i=1

aλi ψ
λ
i (x) = aλ

T
Ψλ(x), (9.1.4)

where aλi = aλm,n, ψλi = ψλm,n(x). The index i is determined by the equation i = M(n− 1) +m+ 1

and m̂ = 2k−1M . Also, aλ = [aλ1 , a
λ
2 , · · · , aλm̂]T , Ψλ(x) = [ψλ1 (x), ψλ2 (x), · · · , ψλm̂(x)]T .

An arbitrary function f ∈ L2[0, 1), can be expanded into block-pulse functions [68] as

f(x) ≈
m̂−1∑
i=0

fibi(x) = fTB(x),

where fi are the coefficients of the block-pulse function. The Gegenbauer wavelets can be expanded

into m−set of block-pulse Functions as

Ψλ(x) = Ψλ
m̂×m̂B(x). (9.1.5)

The fractional integral of block-pulse function vector can be written as

(IαB)(x) = Fαm̂×m̂ B(x), (9.1.6)
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where Fαm̂×m̂ is given in [68] with

Pλ,α
m̂×m̂ = Ψλ

m̂×m̂F
α(Ψλ

m̂×m̂)−1. (9.1.7)

The Gegenbauer wavelets operational matrix of integrationPλ,α
m̂×m̂ of fractional order α is constructed

for different λ > −1
2 and are utilize for solving differential equations. In particular, for k = 2,M = 3,

α = 1.25, λ = 5, the Gegenbauer wavelet operational matrix of fractional order integration P5, 1.25
6×6

is given by

P5, 1.25
8×8 =



0.1592 0.4581 0.0551 0.0189 0.0028 −0.0017

0 0.1592 0 0.0551 0 0.0028

−0.2462 −0.0634 −0.0278 0.0090 0.0247 −0.0018

0 −0.2462 0 −0.0278 0 0.0247

0.3599 0.9284 0.0843 0.0406 −0.0061 −0.0041

0 0.3599 0 0.0843 0 −0.0061


For k = 2, M = 3, α = 1.25, λ = 12, we have

P12, 1.25
6×6 =



0.1580 0.4589 0.0374 0.0128 0.0014 −0.0008

0 0.1580 0 0.0374 0 0.0014

−0.3781 −0.0922 −0.0278 0.0090 0.0179 −0.0013

0 −0.3781 0 −0.0278 0 0.0179

0.8748 2.2912 0.1490 0.0672 −0.0049 −0.0048

0 0.8748 0 0.1490 0 −0.0049


.

For different values of λ, we get different families of Gegenbauer wavelets matrices and their cor-

responding different operational matrices of fractional order integration. This phenomena makes

calculations fast because the operational matrix Pλ, α
m̂×m̂ contains many zero entries.

9.1.3 Operational Matrix of Fractional Order Integration for Boundary Value
Problems

We drive another operational matrix of fractional integration to solve the fractional boundary value

problems. Let g(x) ∈ L2[0, b] be a given function, b > 0, then

g(x)Iαb ψ
λ
n,m(x) = g(x)

Γ(α)

b∫
0

(b− s)α−1ψλn,m(s)ds. (9.1.8)

Since the Gegenbauer wavelets are supported on the intervals [ (2n−2)b
2k

, 2nb
2k

), therefore

g(x)Iαb ψ
λ
n,m(x) = g(x)2

k
2√

(Lλm)Γ(α)

2nb

2k∫
(2n−2)b

2k

(b− s)α−1Cλm(2ks− 2n+ 1)ds,

= g(x)V λ,α,b
n,m ,

(9.1.9)
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where V λ,α,b
n,m = 2

k
2√

(Lλm)Γ(α)

2nb

2k∫
(2n−2)b

2k

(b− s)α−1Cλm(2ks− 2n+ 1)ds.

Expand the equation (9.1.9) at the collocation points, xi = 2i−1
2kM

, where i = 1, 2, ..., 2k−1M , to obtain

Qg,λ,α,b
m̂×m̂ = Vλ,α,b

m̂×1B1×m̂, (9.1.10)

where B1×m̂ = [g(x1), g(x2), ..., g(xm̂)],

Vλ,α,b
m̂×1 = [V λ,α,b

1,0 , V λ,α,b
1,1 , · · · , V λ,α,b

1M−1, V
λ,α,b

2,0 , V λ,α,b
2,1 , · · · , V λ,α,b

2,M−1, · · · , V
λ,α,b

2k−1,0
, V λ,α,b

2k−1,1
, · · · , V λ,α,b

2k−1,M−1
]T .

Qg,λ×α,b
m̂,m̂ =



V λ,α,b
1,0 g( 1

2kM
) V λ,α,b

1,0 g( 3
2kM

) · · · V λ,α,b
1,0 g(2kM−1

2kM
)

V λ,α,b
1,1 g( 1

2kM
) V λ,α,b

1,1 g( 3
2kM

) · · · V λ,α,b
1,1 g(2kM−1

2kM
)

...
... · · ·

...

V λ,α,b
1,M−1g( 1

2kM
) V λ,α,b

1,M−1g( 3
2kM

) · · · V λ,α,b
1,M−1g(2kM−1

2kM
)

V λ,α,b
2,0 g( 1

2kM
) V λ,α,b

2,0 g( 3
2kM

) · · · V λ,α,b
2,0 g(2kM−1

2kM
)

V λ,α,b
2,1 g( 1

2kM
) V λ,α,b

2,1 g( 3
2kM

) · · · V λ,α,b
2,1 g(2kM−1

2kM
)

...
... · · ·

...

V λ,α,b
2,M−1g( 1

2kM
) V λ,α,b

2,M−1g( 3
2kM

) · · · V λ,α,b
2,M−1g(2kM−1

2kM
)

...
... · · ·

...

V λ,α,b
2k−1,0

g( 1
2kM

) V λ,α,b
2k−1,0

g( 3
2kM

) · · · V λ,α,b
2k−1,0

g(2kM−1
2kM

)

V λ,α,b
2k−1,1

g( 1
2kM

) V λ,α,b
2k−1,1

g( 3
2kM

) · · · V λ,α,b
2k−1,1

g(2kM−1
2kM

)
...

... · · ·
...

V λ,α,b
2k−1,M−1

g( 1
2kM

) V λ,α,b
2k−1,M−1

g( 3
2kM

) · · · V λ,α,b
2k−1,M−1

g(2kM−1
2kM

)



.

In particular, for λ = 7, k = 2, M = 3, α = 1.5, b = 1, and g(x) = x2, we have

Qg,7,1.5,1
6×6 =



V 7,1.5,1
1,0 g( 1

12) V 7,1.5,1
1,0 g( 3

12) V 7,1.5,1
1,0 g( 5

12) V 7,1.5,1
1,0 g( 7

12) V 7,1.5,1
1,0 g( 9

12) V 7,1.5,1
1,0 g(11

12)

V 7,1.5,1
2,0 g( 1

12) V 7,1.5,1
2,0 g( 3

12) V 7,1.5,1
2,0 g( 5

12) V 7,1.5,1
2,0 g( 7

12) V 7,1.5,1
2,0 g( 9

12) V 7,1.5,1
2,0 g(11

12)

V 7,1.5,1
1,1 g( 1

12) V 7,1.5,1
1,1 g( 3

12) V 7,1.5,1
1,1 g( 5

12) V 7,1.5,1
1,1 g( 7

12) V 7,1.5,1
1,1 g( 9

12) V 7,1.5,1
1,1 g(11

12)

V 7,1.5,1
2,1 g( 1

12) V 7,1.5,1
2,1 g( 3

12) V 7,1.5,1
2,1 g( 5

12) V 7,1.5,1
2,1 g( 7

12) V 7,1.5,1
2,1 g( 9

12) V 7,1.5,1
2,1 g(11

12)

V 7,1.5,1
1,2 g( 1

12) V 7,1.5,1
1,2 g( 3

12) V 7,1.5,1
1,2 g( 5

12) V 7,1.5,1
1,2 g( 7

12) V 7,1.5,1
1,2 g( 9

12) V 7,1.5,1
1,2 g(11

12)

V 7,1.5,1
2,2 g( 1

12) V 7,1.5,1
2,2 g( 3

12) V 7,1.5,1
2,2 g( 5

12) V 7,1.5,1
2,2 g( 7

12) V 7,1.5,1
2,2 g( 9

12) V 7,1.5,1
2,2 g(11

12)


or

Qg,7,1.5,1
6×6 =



0.0103 0.0924 0.2566 0.5029 0.8313 1.2419

0.0056 0.0505 0.1403 0.2750 0.4547 0.6792

−0.0007 −0.0059 −0.0165 −0.0324 −0.0535 −0.0799

−0.0013 −0.0115 −0.0321 −0.0629 −0.1039 −0.1552

0.0038 0.0341 0.0949 0.1859 0.3073 0.4591

0.0019 0.0174 0.0485 0.0950 0.1570 0.2345
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9.2 Convergence of the Gegenbauer Wavelets Method

Let 2k−1, M →∞, then the series solution (9.1.2) converges to f(x).

Proof: Take the inner product of f(x) and ψλn,m(x) with respect to the weight function, we get

aλnm = 〈f(x), ψλn,m(x)〉 =

1∫
0

(1− x2)λ−
1
2 f(x)ψλn,m(x)dx

We introduce notations, p̂ = 2k−1, p = 2d−1, q̂ = M and q = N, where k and d denotes the level of

resolutions and, M and N represents the order of the Gegenbauer polynomials.

Let Sλp̂,q̂ be a sequence of partial sums of aλijψ
λ
i,j(x), we prove that Sp̂,q̂ is a Cauchy sequence in

Hilbert space L2[0, 1) and then we show that Sλp̂,q̂ converges to f(x), when p̂, q̂ → ∞. First we

show that Sλp̂,q̂ is a Cauchy sequence. For this purpose, let Sλp,q be arbitrary sums of aλijψ
λ
i,j(x) with

p̂ > p, q̂ > q.

‖Sλp̂,q̂ − Sλp,q‖2 = ‖
p̂∑

i=p+1

q̂−1∑
j=q

aλijψ
λ
i,j(x)‖2,

= 〈
p̂∑

i=p+1

q̂−1∑
j=q

aλijψ
λ
i,j(x),

p̂∑
r=p+1

q̂−1∑
s=q

aλrsψ
λ
r,s(x)〉,

=
p̂∑

i=p+1

q̂−1∑
j=q

p̂∑
r=p+1

q̂−1∑
s=q

aλija
λ
rs〈ψλi,j(x), ψλr,s(x)〉,

=
p̂∑

i=p+1

q̂−1∑
j=q
|aλij |2.

(9.2.1)

From the Bessel’s inequality, we have
∞∑
i=1

∞∑
j=0
|aλij |2 is convergent and hence

‖Sλp̂,q̂ − Sλp,q‖2 → 0 as p̂, q̂, p, q →∞.

This implies that Sλp̂,q̂ is a Cauchy sequence and it converges to, say, y(x) ∈ L2[0, 1). We need to

show that y(x) = f(x),

〈y(x)− f(x), ψλi,j(x)〉 = 〈y(x), ψλi,j(x)〉 − 〈f(x), ψλi,j(x)〉,
= lim

p̂,q̂→∞
〈Sλp̂,q̂, ψλi,j(x)〉 − aλij ,

= aλij − aλij ,
= 0.

(9.2.2)

Hence
p̂∑
i=1

q̂−1∑
j=0

aλijψ
λ
i,j(x) converges to f(x) as p̂, q̂ →∞.

9.3 Implementation and Examples

We describe the algorithm by working out few examples. We implement the Gegenbauer wavelets

method to fractional initial as well as boundary value problems.
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9.3.1 Initial Value Problems

Example 1. Consider the following Bagley Torvik equation

bc1D
2y(x) + bc2D

1.5y(x) + b3y(x) = f(x), x ≥ 0,

y(0) = 1, y′(0) = 1,
(9.3.1)

where f(x) = b3(x+ 1), and the exact solution [108] is y(x) = x+ 1. Apply the Gegenbauer wavelet

method to equation (9.3.1), we approximate the higher order term by the Gegenbauer wavelets series

as

D2y(x) =
2k−1∑
n=1

M−1∑
m=0

aλnmψ
λ
n,m(x) = aλ

T
Ψλ(x). (9.3.2)

Lower order derivatives are obtained by integrating (9.3.2) and using the initial conditions

Dy(x) =
2k−1∑
n=1

M−1∑
m=0

aλnm(I1
xψ

λ
n,m(x)) + 1 = aλ

TPλ,1Ψλ(x) + 1, (9.3.3)

y(x) =
2k−1∑
n=1

M−1∑
m=0

aλnm(I2
xψ

λ
n,m(x)) + x+ 1 = aλ

TPλ,2Ψλ(x) + x+ 1, (9.3.4)

D1.5y(x) =
2k−1∑
n=1

M−1∑
m=0

aλnm(I0.5
x ψλn,m(x)) = aλ

TPλ,0.5Ψλ(x). (9.3.5)

Substitute (9.3.2), (9.3.4), and (9.3.5) in equation (9.3.1), we get

2k−1∑
n=1

M−1∑
m=0

(b1a
λ
nmψ

λ
n,m(x) + b2a

λ
nm(I0.5

x ψλn,m(x)) + b3a
λ
nm(I2

xψ
λ
n,m(x))

= −b3(1 + x) + f(x), x ≥ 0.

(9.3.6)

Equation (9.3.6) at the collocation points, xi = 2i−1
2kM

, i = 1, 2, · · · , 2k−1M , and in vector notation,

takes the following form by using equations (9.1.3) and (9.1.7)

aλ
T

(b1Ψλ
m̂×m̂ + b2P

λ,0.5
m̂×m̂Ψλ

m̂×m̂ + b3P
λ,2
m̂×m̂Ψλ

m̂×m̂) = F,

or

aλ
T
Uλm̂×m̂ = F,

(9.3.7)

where F = {−b3(1 + xi) + f(xi)}2
k−1M
i=1 and Uλm̂×m̂ = (b1Ψλ

m̂×m̂ + b2P
λ,0.5
m̂×m̂Ψλ

m̂×m̂ + b3P
λ,2
m̂×m̂Ψλ

m̂×m̂).
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Consider b1 = b2 = b3 = 1 and λ = 17.5, k = 2, M = 4, we get

U17.5
8×8 =



3.9117 4.6393 5.1779 5.6801 2.2699 2.0590 2.0610 2.1288

0 0 0 0 3.9117 4.6393 5.1779 5.6801

−17.8455 −9.2678 2.3847 15.8417 1.0869 0.1013 −0.1984 −0.3492

0 0 0 0 −17.8455 −9.2678 2.3847 15.8417

57.0389 14.3879 12.3357 65.5851 18.9272 16.3578 16.1898 16.6459

0 0 0 0 57.0389 14.3879 12.3357 65.5851

−147.2366 −25.9284 −21.4612 128.2630 8.4966 0.8268 −1.4405 −2.5715

0 0 0 0 −147.2366 −25.9284 −21.4612 128.2630


F =

(
0 0 0 0 0 0 0 0

)
, a17.5T =

(
0 0 0 0 0 0 0 0

)
.

Substitute a17.5T in equation (9.3.4) to obtain

y(x) = x+ 1, (9.3.8)

which is the exact solution.

Example 2. Consider the following fractional differential equation with variable coefficients

gD2y(x) + b(x)cDαy(x) + c(x)Dy(x) + e(x)cDβy(x) + k(x)y(x) = f(x),

0 < β < 1, 1 < α < 2,

y(0) = 2, y′(0) = 0,

(9.3.9)

where g is a constant and

f(x) = −g − b(x)
Γ(3−α)x

2−α − xc(x) − e(x)
Γ(3−β)x

2−β + k(x)(2 − 1
2x

2), and the exact solution [39] is

y(x) = 2− 1
2x

2.

Apply the Gegenbauer wavelets method to equation (9.3.9), we obtain

aλ
T

(gΨλ
m̂×m̂ + Pλ,2−α

m̂×m̂ Ψλ
m̂×m̂B + Pλ,1

m̂×m̂Ψλ
m̂×m̂C + Pλ,2−β

m̂×m̂ Ψλ
m̂×m̂E

+Pλ,2
m̂×m̂Ψλ

m̂×m̂K) = L,
(9.3.10)

and solution at the collocation points is given by

Y = aλ
TPλ,2

m̂×m̂Ψλ
m̂×m̂ + 2, (9.3.11)

where L = [f(x1)− 2k(x1), f(x2)− 2k(x2), ..., f(xm̂)− 2k(xm̂)], Y = [y(x1, y(x2), ..., y(xm̂))] and

B, C, E and K are the diagonal matrices and are given by

B =


b(x1) 0 · · · 0

0 b(x2) · · · 0
...

...
. . .

...

0 0 · · · b(xm̂)

 , C =


c(x1) 0 · · · 0

0 c(x2) · · · 0
...

...
. . .

...

0 0 · · · c(xm̂)
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E =


e(x1) 0 · · · 0

0 e(x2) · · · 0
...

...
. . .

...

0 0 · · · e(xm̂)

 , and K =


k(x1) 0 · · · 0

0 k(x2) · · · 0
...

...
. . .

...

0 0 · · · k(xm̂)


where xi = 2i−1

2m̂ , i = 1, 2, ..., m̂, are collocation points.

We consider g = 1, b(x) =
√
x, c(x) = ex, e(x) = x

1
4 , and k(x) = x

1
5 . We fix α = 1.755, β =

0.333 and plot the exact solution and solution by the Gegenbauer wavelets method at k = 5, M =

11, λ = 30, as shown in Figure 9.1, along with the absolute error. Table 9.1 shows that absolute

error reduces while increasing k and M , as in convergence analysis.

0 0.2 0.4 0.6 0.8 1
1.4

1.6

1.8

2

x−axis

y(
x)

Comparison of Exact and Gegenbauer wavelet solution

Exact Solution

Gegenbauer Solution at α=1.755, β=0.333

0 0.2 0.4 0.6 0.8 1
2

3

4

5
x 10

−5
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A
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ut

e 
E

rr
or

Figure 9.1: Exact solution and Solution by the Gegenbauer wavelet method by taking k = 5,

M = 11, λ = 30, at β = 0.333 and α = 1.755.
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x k = 2, M = 3 k = 4, M = 5 k = 6, M = 7 k = 7, M = 9

0.1 1.1894× 10−3 0.3059× 10−4 0.1174× 10−5 0.2017× 10−6

0.2 1.2516× 10−3 0.3553× 10−4 0.1496× 10−5 0.2709× 10−6

0.3 1.3127× 10−3 0.3969× 10−4 0.1767× 10−5 0.3289× 10−6

0.4 1.3649× 10−3 0.4304× 10−4 0.1989× 10−5 0.3765× 10−6

0.5 1.4015× 10−3 0.4563× 10−4 0.2164× 10−5 0.4145× 10−6

0.6 1.4233× 10−3 0.4753× 10−4 0.2298× 10−5 0.4439× 10−6

0.7 1.4333× 10−3 0.4883× 10−4 0.2396× 10−5 0.4656× 10−6

0.8 1.4331× 10−3 0.4960× 10−4 0.2462× 10−5 0.4806× 10−6

0.9 1.4242× 10−3 0.4993× 10−4 0.2501× 10−5 0.4901× 10−6

1.0 1.4079× 10−3 0.4991× 10−4 0.2517× 10−5 0.4948× 10−6

Table 9.1: Absolute error for different values of k and M , at λ = 7 and α = 1.8, β = 0.7.

9.3.2 Boundary Value Problems

Example 3. Consider the following fractional boundary value problem

cDαy(x) =c Dβy(x) + h(x), 1 < α ≤ 2, 0 < β ≤ 1,

y(0) = 0, y(1) = 0,
(9.3.12)

where h(x) = −ex−1−1, and the exact solution [109] is known at α = 2 and β = 1, y(x) = x(1−ex−1).

Consider the Gegenbauer wavelet approximation of higher order derivative term in equation

(9.3.12)

cDαy(x) =
2k−1∑
n=1

M−1∑
m=0

aλnmψ
λ
n,m(x). (9.3.13)

Now to get the Gegenbauer wavelet series for lower order derivative terms we integrate equation

(9.3.13) and use the boundary condition, to get

y(x) =
2k−1∑
n=1

M−1∑
m=0

aλnm(Iαxψ
λ
n,m(x)− x( 1

Γ(α)

1∫
0

(1− s)α−1ψn,m(s)ds)),

cDβy(x) =
2k−1∑
n=1

M−1∑
m=0

aλnm(Iα−βx ψλn,m(x)− Γ(2)
Γ(2−β)x

1−β( 1
Γ(α)

1∫
0

(1− s)α−1ψn,m(s)ds)).

(9.3.14)

Substitute the equations (9.3.13) and (9.3.14) in equation (9.3.12), we obtain

2k−1∑
n=1

M−1∑
m=0

aλnm(ψλn,m(x)− Iα−βx ψλn,m(x) + Γ(2)
Γ(2−β)x

1−β( 1
Γ(α)

1∫
0

(1− s)α−1ψn,m(s)ds)) = h(x).

(9.3.15)

Use equations (9.1.3), (9.1.7) and (9.1.10), we get
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aλ
T

(Ψλ
m̂×m̂ −Pλ,α−β

m̂×m̂ Ψλ
m̂×m̂ + Qg,λ,α,1

m̂×m̂ ) = H, (9.3.16)

and solution at the collocation points is given by

Y = aλ
TPλ,α

m̂×m̂Ψλ
m̂×m̂ − aλ

T
QR,λ,α,1

m̂×m̂ , (9.3.17)

where H = [h(x1), h(x2), ..., h(xm̂)], and g = Γ(2)
Γ(2−β)x

1−β, R = x.

Solve the equation (9.3.16) for aλ
T , and substitute it in (9.3.17) to get y(x), at the collocation

points. Choose λ = 5, k = 10, M = 3, the results obtained by the Gegenbauer wavelet method

yGWM is shown in Table 9.2 along with the absolute error EGWM . It shows that Gegenbauer wavelet

method provides better results as compared to homotopy perturbation method yHPM [128] and Haar

wavelet method yHAAR [109]. We can get more accurate results while increasing k or M or both.

According to the Figure 9.2, solution by the Gegenbauer wavelet method at different values of α

converge to the exact solution, when α approaches to 2.

λ = 5, k = 10, M = 3

α = 2, β = 1

x yHPM [128] yHAAR [109] yGWM yExact EGWM

0.1 0.05934820 0.05934300 0.05934302 0.05934303 1.58953244e-8

0.2 0.11014318 0.11013418 0.11013419 0.11013421 1.97211689e-8

0.3 0.15103441 0.15102438 0.15102438 0.15102441 2.46505651e-8

0.4 0.18048329 0.18047531 0.18047531 0.18047535 3.08917651e-8

0.5 0.19673826 0.19673463 0.19673463 0.19673467 3.86865598e-8

0.6 0.19780653 0.19780792 0.19780792 0.19780797 4.83152341e-8

0.7 0.18142196 0.18142718 0.18142719 0.18142725 6.01022115e-8

0.8 0.14500893 0.14501532 0.14501532 0.14501540 7.44224910e-8

0.9 0.08564186 0.08564623 0.08564623 0.08564632 9.17089691e-8

Table 9.2: Comparison of the Gegenbauer wavelet method with homotopy perturbation and Haar

wavelet method.
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Figure 9.2: Solution by the Gegenbauer wavelet method by taking k = 4, M = 3, λ = 5, at β = 1

and different α

Example 4. Consider the following fractional boundary value problem with variable coefficients

cDαy(x) + e(x)Dy(x) + b(x)cDβy(x) + c(x)y(x) = f(x), 1 < α ≤ 2, 0 < β < 1,

y(0) = 0, y(1) = 0,
(9.3.18)

where f(x) = Γ(α + 1) − Γ(8)
Γ(8−β)x

7−α + e(x)(αxα−1 − 7x6) + b(x)( Γ(α+1)
Γ(α−β+1)x

α−β − Γ(8)
Γ(8−β)x

7−β) +

c(x)(xα−x7), and the exact solution depends on the order of the equation (9.3.18), y(x) = xα−x7.

Apply the Gegenbauer wavelets method to equation (9.3.18), we get

aλ
T

(Ψλ
m̂×m̂ + Pλ,α−1

m̂×m̂ Ψλ
m̂×m̂E + Pλ,α−β

m̂×m̂ Ψλ
m̂×m̂B + Pλ,α

m̂×m̂Ψλ
m̂×m̂C

−Qe,λ,α,1
m̂×m̂ −Qg,λ,α,1

m̂×m̂ −Qh,λ,α,1
m̂×m̂ ) = F,

(9.3.19)

and solution at the collocation points is given by

Y = aλ
TPλ,α

m̂×m̂Ψλ
m̂×m̂ − aλ

T
QR,λ,α,1

m̂×m̂ , (9.3.20)

where F = [f(x1), f(x2), ..., f(xm̂)], Y = [y(x1, y(x2), ..., y(xm̂))], e = e(x), g = b(x)( Γ(2)
Γ(2−β)x

1−β), h =

xc(x), R = x, and E, B and C are the diagonal matrices and are given by

E =


e(x1) 0 · · · 0

0 e(x2) · · · 0
...

...
. . .

...

0 0 · · · e(xm̂)

 , B =


b(x1) 0 · · · 0

0 b(x2) · · · 0
...

...
. . .

...

0 0 · · · b(xm̂)

 and
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C =


c(x1) 0 · · · 0

0 c(x2) · · · 0
...

...
. . .

...

0 0 · · · c(xm̂)


where xi = 2i−1

2m̂ , i = 1, 2, ..., m̂, are collocation points
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Exact solution at α=2

Gegenbauer solution at α=2

Figure 9.3: Solution by the Gegenbauer wavelet method by taking k = 5,M = 3, λ = 15, at β = 0.5

and different α

We consider e(x) = sin(x), b(x) = ex, c(x) = x2 and fix the parameters k = 5, M = 3, λ = 15.

Exact solutions and solutions by Gegenbauer wavelet method agrees at different values of α, and

β = 0.5, as shown in Figure 9.3.

9.3.3 Conclusion

We have derived the Gegenbauer wavelets matrix, Ψλ
2k−1M,2k−1M , the Gegenbauer wavelets opera-

tional matrix of fractional order integration, Pλ,α
m̂×m̂, and another Gegenbauer wavelets operational

matrix of fractional order integration, Qg,λ,α,b
m̂×m̂ , which is used for solving boundary value problems.

These matrices are successfully utilized to solve the fractional initial and boundary value problems

with constant or variable coefficients.

According to the Table 9.1, we get more accurate results while increasing k or M or both, as

in convergence analysis. The solution of the fractional order differential equation converge to the

solution of integer order differential equation as in Figure 9.2. Gegenbauer wavelets method is also

compared with the other numerical methods. Gegenbauer wavelets method is more accurate than

the homotopy perturbation method and Haar wavelet method, as shown in Table 9.2. Gegenbauer

wavelet method is highly competitive in comparison with the classical methods.
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Chapter 10

Methods for Solving Delay Differential

Equations

A functional differential equation is one in which the rate of change of unknown function depends

not only on the values of unknown function for the same time value but also on previous time values.

The solution of delay differential equations not only require information of current state, but also

requires some information about the previous state. Delay differential equations have numerous

applications in mathematical modeling [14]: for example, physiological and pharmaceutical kinetics,

chemical kinetics, the navigational control of ships and aircraft, population dynamics and infectious

diseases.

Fractional delay differential equation is a generalization of the delay differential equation to

arbitrary non-integer order. During the last decade, several papers have been devoted to the study

of the numerical solution of fractional delay differential equations. For most of fractional order

delay differential equations, exact solutions are not known. Therefore different numerical methods

[87,88,124] have been developed and applied for providing approximate solutions.

The procedure of converting discrete delay differential equation to an ordinary differential equa-

tion is established by the method of steps [118]. It is easy to understand and use. In [41], the method

of steps is utilize to solve linear and nonlinear discrete delay differential equation with different types

of delay.

In this chapter, we introduced three approximate methods for solving delay differential equation.

The methods are combinations of method of steps with radial basis function networks, Chebyshev

wavelet method and Hermite wavelet method respectively. We discussed these three methods in this

chapter.
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10.1 Radial Basis Function Networks for Delay Differential Equa-

tion

For last decades, radial basis function collocation method is used for solving differential equations

arising in mathematical problems. The radial basis functions is a mesh-free schemes, avoid grid

generation and the domain of interest can be considered by a set of scattered data points [123].

The multiquadric radial basis functions [85] is very important and useful method for the numerical

solution of ordinary and Partial Differential Equations. In [42, 43], radial basis function collocation

method have been shown numerically and theoretically that it is very accurate even for a small

number of collocation points.

In this section, combination of method of steps and radial basis function networks is used for

solving delay differential equations. We transform the delay differential equation to an ordinary

differential equation and then implement the radial basis function collocation method to find the

solution of obtained ordinary differential equation. Total number of collocation points and radial

basis functions are taken to be the same. Numerical examples are given to show the advantages of

the technique over radial basis functions collocation method.

10.1.1 Radial Basis Function Networks

We can expand any function f(x) ∈ L2[a, b) into radial basis function networks as

f(x) ≈
M∑
j=0

wjhj(x), (10.1.1)

where M + 1 is the number of radial basis functions, wj are the network weights, and x is the input.

In the present work, we consider a multiquadrics radial basis function

hj(x) =
√

(x− dj)2 + b2j

where dj
′
s are the centres of radial basis functions and bj

′
s are the widths of radial basis function.

Large or small width of the radial basis function makes the response of a neuron flat or peak

respectively. The width of the jth radial basis function is chosen as [85]

bj = νej

where ν > 0 and ej is the distance from the jth center to the nearest center. Consider input points

{xj}Mj=0, where M + 1 is the total number of collocation points and we get desired outputs {yj}Mj=0

corresponding to the collocation points. The set of network weights {wj}Mj=0 can be found using the

general linear least square methods.
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10.1.2 Implementation of Radial Basis Function Collocation Method

Consider the following form of second order delay differential equation with discrete delay

d2y
dx2

= f(x, y(x), y′(x), y(px− τ), y′(px− τ)), a ≤ x ≤ b, (10.1.2)

subject to the initial conditions y(a) = y0, y′(a) = y′0 , or boundary conditions α1y(a)+β1y
′(a) = γ1,

α2y(b) + β2y
′(b) = γ2, where p, y0, y

′
0, α1, β1, γ1, α2, β2, and γ2 are constants, f is a continuous

linear or nonlinear function, τ(x, y(x)) is delay and px− τ(x, y(x)) is called delay argument.

We can approximate the solution of equation (10.1.2) by the radial basis function networks as

y(x) '
M∑
j=0

wjhj(x). (10.1.3)

In the delay equations, we also have to approximate the y(px−τ) in terms of the radial basis function

series at delay time as

y(px− τ) '
M∑
j=0

wjhj(px− τ). (10.1.4)

Substituting equation (10.1.3), (10.1.4) in equation (10.1.2), we get the residual as

M∑
j=0

wj
d2

dx2
hj(x)− f

(
x,

M∑
j=0

wjhj(x),
M∑
j=0

wjh
′
j(x),

M∑
j=0

wjhj(px− τ),

M∑
j=0

wjh
′
j(px− τ)

)
.

(10.1.5)

Set the residual (10.1.5) equal to zero at the set of collocation points, xi,

M∑
j=0

wj
d2

dx2
hj(xi)− f

(
xi,

M∑
j=0

wjhj(xi),
M∑
j=0

wjh
′
j(xi),

M∑
j=0

wjhj(pxi − τ),

M∑
j=0

wjh
′
j(pxi − τ)

)
= 0.

(10.1.6)

We obtain M − 1 equations from equation (10.1.6) by using collocation points xi. There are M + 1

unknowns, {wj}Mj=0, and M − 1 equations. Two more equations obtain from the conditions of

equation (10.1.2), that is

y(a) = y0, ⇒
M∑
j=0

wjhj(a) = y0,

y′(a) = y′0, ⇒
M∑
j=0

wjh
′
j(a) = y′0,

or

α1y(a) + β1y
′(a) = γ1, ⇒ α1

M∑
j=0

wjhj(a) + β1

M∑
j=0

wjh
′
j(a) = γ1,
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α2y(b) + β2y
′(b) = γ2, ⇒ α2

M∑
j=0

wjhj(b) + β2

M∑
j=0

wjh
′
j(b) = γ2.

Now we obtained M + 1 equations either linear or nonlinear along with M + 1 unknown coefficients

wj , which is solved by Newton iterative method to get wj
′
s and use it in (10.1.3) to get the

approximate solution.

10.1.3 Implementation of the Method

The method of steps [41, 118] is used to transform the delay differential equations to ordinary

differential equations on a given intervals. Consider the following delay differential equation with

discrete delay

d2y
dx2

= f(x, y(x), y′(x), y(px− τ), y′(px− τ)) , a ≤ x ≤ b,
y(x) = φ(x) , −b ≤ x ≤ a.

(10.1.7)

We solve problems in two steps. In first step, we transform the delay differential equation to ordinary

differential equation by using method of steps and in second step, we implement the radial basis

function collocation method, which is described in section 10.1.2, on resulting ordinary differential

equation.

Step I: The solution y(x) of delay differential equation (10.1.7) is known on [−b, a], say φ(x), and

call this solution y0(x), that is y0(px− τ) = φ(px− τ).

Now the delay differential equation on [a, b] takes the form

d2y
dx2

= f(x, y(x), y′(x), y0(px− τ), y′0(px− τ)), a ≤ x ≤ b. (10.1.8)

It is an ordinary differential equation with no delay term, because y0(px − τ) and y′0(px − τ) are

known.

Step II: We solve this ordinary differential equation on [a, b] by using the radial basis function

collocation method and denote this solution as y1(x), which is defined on [a, b].

Delay differential equation on [b, 2b] becomes

d2y
dx2

= f(x, y(x), y′(x), y1(px− τ), y′1(px− τ)), b ≤ x ≤ 2b, (10.1.9)

which is again an ordinary differential equation and solve it by the radial basis function networks to

get y2(x) on [b, 2b]. This procedure may be continued for subsequent intervals.

10.1.4 Numerical Solutions

In this section, we solve linear and nonlinear delay differential equations by using both the radial

basis function collocation method and proposed method and compare the results with each other

and exact solution. The collocation points are chosen to be the same as centers, {dj}Mj=0 = {xj}Mj=0.
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The width of the jth radial basis function is bj = νej , where ej = xj+1− xj and ν > 0. We consider

ν = 20, 100, 200 and 200 in Examples 1, 2, 3 and 4 respectively.

Example 1. Consider the linear delay differential equation

dy
dx = 1

2e
x
2 y(x2 ) + 1

2y(x), 0 < x ≤ 1,

y(x) = ex, x ≤ 0.
(10.1.10)

The exact solution is y(x) = ex.

M = 8

x yRBFN yPRO yexact ERBFN EPRO

0.1 1.105170918075648 1.105170863740288 1.105170855606515 6.24691e-08 5.43354e-08

0.2 1.221402758160170 1.221402856590157 1.221402863666870 1.05507e-07 9.84300e-08

0.3 1.349858807576003 1.349858788968366 1.349858782042489 2.55335e-08 1.86076e-08

0.4 1.491824697641270 1.491824438669770 1.491824412174714 2.85467e-07 2.58971e-07

0.5 1.648721270700128 1.648721317398444 1.648721323561253 5.28611e-08 4.66983e-08

0.6 1.822118800390509 1.822119254967360 1.822119295929978 4.95539e-07 4.54577e-07

0.7 2.013752707470477 2.013752509582033 2.013752499151085 2.08319e-07 1.97888e-07

0.8 2.225540928492468 2.225540178147770 2.225540113992763 8.14500e-07 7.50345e-07

0.9 2.459603111156950 2.459604456196746 2.459604485114913 1.37396e-06 1.34504e-06

1.0 2.718281828459045 2.718271894779136 2.718271375842572 1.04526e-05 9.93368e-06

Table 10.1: Comparison of the radial basis function collocation method and proposed method at

M = 8 with Exact solution.

The results obtained by the radial basis function collocation method, yRBFN , and present

method, yPRO, at M = 8 are shown in Table 10.1 along with exact solution, yexact, where ERBFN
and EPRO represents the absolute error by radial basis function collocation method and present

method respectively. Present method provides better results as compared to radial basis function

collocation method.

For the problem (10.1.10), present and radial basis function collocation method takes 7 seconds and

9 seconds respectively. For this purpose, we use Maple 13, system with Core Duo CPU 2.00 GHz

and RAM 2.50GB.

Example 2. Consider the first order system of delay differential equations

dy
dx = y(x)− z(x) + y(x2 )− e

x
2 + e−x , 0 ≤ x ≤ 1

dz
dx = −y(x)− z(x)− z(x2 ) + e

−x
2 + ex ,

y(x) = ex, z(x) = e−x , 0 ≤ x,
(10.1.11)
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The exact solution is [104]

y(x) = ex, z(x) = e−x. (10.1.12)

M = 10

x EyRBFN EyPRO EzRBFN EzPRO

0.1 7.0409e-10 6.7479e-10 1.3130e-10 1.4285e-10

0.2 8.3987e-10 7.3608e-10 3.1837e-11 6.2746e-11

0.3 1.0038e-09 8.0754e-10 7.0113e-11 1.7884e-11

0.4 1.2073e-09 8.9950e-10 1.7321e-10 9.6736e-11

0.5 1.4572e-09 1.0152e-09 2.8226e-10 1.7684e-10

0.6 1.7335e-09 1.1309e-09 4.0698e-10 2.6622e-10

0.7 2.0876e-09 1.2945e-09 5.3670e-10 3.5221e-10

0.8 2.4927e-09 1.4730e-09 6.8998e-10 4.5102e-10

0.9 2.9569e-09 1.6682e-09 8.6674e-10 5.5985e-10

1.0 3.3129e-09 1.7036e-09 1.1344e-09 7.4364e-10

Table 10.2: Absolute errors by radial basis function networks EyRBFN , EzRBFN and present method

EyPRO , EzPRO at M = 10.

The absolute error by the radial basis function collocation method and present method are given

in Table 10.2. According to the results, proposed method is more accurate as compared to radial

basis collocation method.

Present and radial basis function collocation method takes 85 seconds and 160 seconds respectively

for solving system (10.1.11).

Example 3. Consider the delay differential equations with nonlinear delay function

d3y
dx3

= 2y2(x2 )− 1 , 0 ≤ x ≤ 1,

y(x) = sin(x) , x ≤ 0,
(10.1.13)

The exact solution is [105], y(x) = sin(x).
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M = 4 M = 8 M = 12

x EPRO EPRO EPRO

0.1 4.83592e-08 4.81648e-12 8.87562e-19

0.2 1.75599e-06 2.32022e-11 7.60022e-19

0.3 1.75600e-05 6.06338e-12 7.35690e-18

0.4 7.95568e-05 8.69715e-12 4.81231e-20

0.5 2.49494e-04 2.09505e-10 1.97600e-17

0.6 6.27890e-04 1.35259e-10 1.32771e-17

0.7 1.36286e-03 6.19630e-10 2.59420e-18

0.8 2.65845e-03 4.02785e-09 8.29066e-17

0.9 4.78246e-03 4.63197e-08 6.46850e-16

1.0 8.07353e-03 2.28389e-07 6.32662e-14

Table 10.3: Absolute error by proposed method at different M .

Absolute error by present method at different values of M are shown in Table 10.3. According

to the Table 10.3, we obtain more accurate results while increasing M .

Example 4. Consider the following nonlinear pantograph equation

d2y
dx2
− 8

3y
′(x2 )y(x)− 8x2y(x2 ) = −4

3 −
22
3 x− 7x2 − 5

3x
3, 0 ≤ x ≤ 1, (10.1.14)

subject to the boundary conditions y(0) = y(1) = 1.

The exact solution is given by [1], y(x) = 1 + x− x3.

M = 12 M = 15 M = 20 M = 25

x EPRO EPRO EPRO EPRO

0.1 1.30716e-17 3.58196e-19 6.98392e-26 2.34956e-29

0.2 2.67614e-17 7.20286e-19 1.40681e-25 4.72857e-29

0.3 4.01346e-17 1.09121e-18 2.12345e-25 7.17179e-29

0.4 5.34373e-17 1.47850e-18 2.86677e-25 9.70581e-29

0.5 7.09090e-17 1.87855e-18 3.67347e-25 1.23424e-28

0.6 8.26400e-17 2.30394e-18 4.47129e-25 1.51001e-28

0.7 1.02193e-16 2.74542e-18 5.33450e-25 1.80139e-28

0.8 1.17716e-16 3.22784e-18 6.29137e-25 2.10847e-28

0.9 1.39402e-16 3.66054e-18 7.28024e-25 2.42230e-28

Table 10.4: Absolute error by present method at different M .

181



Table 10.4 shows that larger values of M gives more accurate results.

10.1.5 Conclusion

Linear and non linear delay differential equations can easily be handled by the method. It is shown

that method provides better results as compared to the radial basis function collocation method

and are in good agreement with exact solution, as shown in Table 10.1 and 10.2. We can get more

accurate results while increasing M .

Present method is more efficient than the radial basis function collocation method, as given for

Example 1 and 2. Efficiency of radial basis function collocation method further decreases in case of

non linear delay differential equation.

10.2 Chebyshev Wavelet Method for Fractional Delay–Type Equa-

tions

Chebyshev polynomials method [120] is implemented for finding the numerical solution of the de-

lay differential equations in which they utilize the shifted Chebyshev polynomials for solving the

pantograph equations. Chebyshev wavelet method [133] are implemented for fractional nonlinear

Fredholm integro-differential equations in which they used the second kind Chebyshev wavelet.

In [127], Chebyshev wavelet method are used to solve the fractional differential equations.

In this section, we developed the shifted Chebyshev wavelets method for solving the linear and

nonlinear fractional delay differential equations, fractional delay Volterra integro–differential equa-

tions and fractional system of delay differential equations. To the best of our knowledge, Chebyshev

wavelets method have never been implemented for fractional delay equations. According to the de-

velopment, we approximate the delay unknown functions by the Chebyshev wavelets series at delay

time, which we call the delay Chebyshev wavelet series. We also proposed a technique by combining

the method of steps and Chebyshev wavelets method for solving fractional delay differential equa-

tions. This technique converts the fractional delay differential equation on a given interval to an

fractional differential equation without delay over that interval, by using the function defined on

previous interval, and then apply the Chebyshev wavelet method on the obtained fractional non–

delay differential equation to find the solution. Numerical examples are presented to demonstrate

the benefits of computing with these approaches.
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10.2.1 Chebyshev Wavelets

In the present work, we use the sifted Chebyshev polynomials on [a, b], so the shifted Chebyshev

nodes are

xk =
b− a

2
cos
((2k + 1)π

2M

)
+
a+ b

2
, k = 0, 1, 2, ...,M − 1,

where a and b are real numbers, a < b. The shifted Chebyshev polynomials Tm(x), of order m are

defined on the interval [a, b] and given by the following recurrence formulae

T0(x) = 1, T1(x) =
2x− (b+ a)

b− a
, Tm+1(x) = 2

(2x− (b+ a)

b− a

)
Tm(x)− Tm−1(x), m = 1, 2, 3, · · · .

The polynomials Tm(x) are orthogonal with respect to the weight function 1√
1−
(

2x−(b+a)
b−a

)2 , that is
b∫
a

1√
1−

(2x−(b+a)
b−a

)2Tm(x)Tn(x)dx =


0, m 6= n;

( b−a2 )π, m = n = 0;

( b−a4 )π, m = n 6= 0.

(10.2.1)

The discrete wavelets transform is defined as

ψj,k(x) = 2
j
2ψ(2jx− k).

The set ψj,k forms an orthogonal basis of L2(R). That is

〈 ψj,k(x), ψl,m(x)〉 = δjlδkm.

The Chebyshev wavelets are defined on interval [a, b] by

ψn,m(x) =

2
k
2

√
4

(b−a)πTm(2kx− n̂), a+ (b− a) n̂−1
2k
≤ x < a+ (b− a) n̂+1

2k
,

0, elsewhere,

where k = 1, 2, 3, · · · , is the level of resolution, n = 1, 2, 3, · · · , 2k−1, n̂ = 2n − 1, is the translation

parameter, m = 1, 2, · · · ,M − 1 is the order of the Chebyshev polynomials, M > 0.

Function Approximations

We can expand any function f(x) ∈ L2[a, b) into truncated Chebyshev wavelet series as

f(x) ≈
2k−1∑
n=1

M−1∑
m=0

anmψn,m(x) = aTΨ(x), (10.2.2)

where a and Ψ are m̂× 1 (m̂ = 2k−1M) matrices, given by

a = [a10, a11, · · · , a1M−1, a20, a21, · · · , a2M−1, · · · , a2k−10, a2k−11, · · · , a2k−1M−1]T ,

Ψ(x) = [ψ1,0(x), ψ1,1(x), · · · , ψ1M−1(x), ψ2,0(x), ψ2,1(x), · · · , ψ2,M−1(x),

· · · , ψ2k−1,0(x), ψ2k−1,1(x), · · · , ψ2k−1,M−1(x)]T .
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10.2.2 Convergence Analysis

Let L2([a, b]) be a Hilbert space for which ψn,m(x) form an orthonormal sequence in L2([a, b]). Let

y(x) ∈ L2([a, b]), we have

y(x) ≈
2k−1∑
n=1

M−1∑
m=0

anmψn,m(x), (10.2.3)

where anm = 〈y(x), ψn,m(x)〉 is an inner product of y(x) and ψn,m(x). Equation (10.2.3) can be

written as

y(x) ≈
2k−1∑
n=1

M−1∑
m=0
〈y(x), ψn,m(x)〉ψn,m(x). (10.2.4)

For simplicity, let j = M(n− 1) +m+ 1, we can write (10.2.4) as

y(x) ≈
m̂∑
j=1
〈y(x), ψj(x)〉ψj(x) =

m̂∑
j=1

ajψj(x) = aTΨ(x), (10.2.5)

where aj = amn, ψj(x) = ψm,n(x), m̂ = 2k−1M and a = [a1, a2, ..., am̂]T ,

Ψ(x) = [ψ1(x), ψ2(x), ..., ψm̂(x)]T . Convergence of Legendre wavelet method is analyzed in [122],

where the authors have considered a particular case by choosing k = 1. Following the similar pro-

cedure, we get the convergence of the general orthogonal wavelet method for all level of resolution

k.

Since m̂ = 2k−1M and method converges if m̂ → ∞ i.e., when we use higher order Chebyshev

polynomials M − 1, or use large level of resolution k, or use both higher M and k, we get more

accurate results.

10.2.3 Procedure for Implementation

Consider the following form of αth order fractional nonlinear delay equation with both discrete and

continuous delay

cDαy(x) = h(x) + f
(
y(x), y′(x), y(px− τ), y′(px− τ),

x∫
px−τ

h(x, s, y(s))ds
)
,

a ≤ x ≤ b, 1 < α ≤ 2,

(10.2.6)

subject to the initial conditions y(a) = y0, y′(a) = y′0 , where h(x) is a source function and f is

a continuous linear or nonlinear function. Also y0, y
′
0, p, are constants, τ(x, y(x)) is delay, px −

τ(x, y(x)) is called delay argument and y(px − τ(x, y(x))) is the solution of the delay term. The

delay τ(x, y(x)) is called constant delay, time dependent delay and state dependent delay if the delay

τ(x, y(x)) is constant, function of time x, and function of time x and y(x) respectively.

We can approximate the solution of equation (10.2.6) by the Chebyshev wavelet method as

y(x) ≈
2k−1∑
n=1

M−1∑
m=0

anmψn,m(x). (10.2.7)
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In the delay equations, we also have to approximate y(px − τ) in terms of the Chebyshev wavelet

series at delay time as

y(px− τ) ≈
2k−1∑
n=1

M−1∑
m=0

anmψn,m(px− τ). (10.2.8)

We call this series as the delay Chebyshev wavelet series. Substituting equation (10.2.7), (10.2.8) in

equation (10.2.6), we get the residual as

2k−1∑
n=1

M−1∑
m=0

anm
cDαψn,m(x)− h(x)− f

( 2k−1∑
n=1

M−1∑
m=0

anmψn,m(x),
2k−1∑
n=1

M−1∑
m=0

anmψ
′
n,m(x),

2k−1∑
n=1

M−1∑
m=0

anmψn,m(px− τ),
2k−1∑
n=1

M−1∑
m=0

anmψ
′
n,m(px− τ),

x∫
px−τ

h(x, s,
2k−1∑
n=1

M−1∑
m=0

anmψn,m(s))ds
)
.

(10.2.9)

Set the residual (10.2.9) equal to zero at the set of Chebyshev nodes, xi,

2k−1∑
n=1

M−1∑
m=0

anm
cDαψn,m(xi)− h(xi)− f

( 2k−1∑
n=1

M−1∑
m=0

anmψn,m(xi),
2k−1∑
n=1

M−1∑
m=0

anmψ
′
n,m(xi),

2k−1∑
n=1

M−1∑
m=0

anmψn,m(pxi − τ),
2k−1∑
n=1

M−1∑
m=0

anmψ
′
n,m(pxi − τ),

xi∫
pxi−τ

h(x, s,
2k−1∑
n=1

M−1∑
m=0

anmψn,m(s))ds
)

= 0.

(10.2.10)

We obtain 2k−1M−d equations, where d is the number of conditions of the delay equation. According

to equation (10.2.6), two conditions are given (d = 2) so we get 2k−1M − 2 equations from equation

(10.2.10) by using chebyshev nodes xi. Two more equations obtain from the conditions of equation

(10.2.6), that is

y(a) = y0 ⇒
2k−1∑
n=1

M−1∑
m=0

anmψn,m(0) = y0,

y′(a) = y′0 ⇒
2k−1∑
n=1

M−1∑
m=0

anmψ
′
n,m(0) = y′0.

We obtained 2k−1M equations either linear or nonlinear along with 2k−1M unknown coefficients

anm, which is solved by Newton iterative method to get anm
′
s and use it in (10.2.7) to get the

approximate solution.

10.2.4 Numerical Solutions

In this section, we solve linear and nonlinear delay differential and Volterra integro-differential

equations of fractional order by the Chebyshev wavelet method, for k = 1 and at different M , and

compare the results with exact solution. Through this work we use Caputo derivatives.
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The term yCWM represent the solution by Chebyshev wavelets method, yexact represent the exact

solution and ECWM represents their absolute error.

Nonlinear Delayed Fractional Differential Equations

Example 1. Consider the following nonlinear fractional pantograph equation

cDαy(x)− 8
3y
′(x2 )y(x)− 8x2y(x2 ) = −4

3 −
22
3 x− 7x2 − 5

3x
3, 0 ≤ x ≤ 1, 1 < α ≤ 2, (10.2.11)

subject to the boundary conditions y(0) = y(1) = 1. The exact solution, when α = 2, is given by [1],

y(x) = 1 + x− x3.

The results obtained by the Chebyshev wavelets method by taking k = 1, M = 5, is shown

in Figure 10.1 and Table 10.5. Figure 10.1 shows that solution by the Chebyshev wavelet method

approaches to exact solution, when α approaches to 2. Table 10.5 indicates that results obtained

from the Chebyshev wavelets method are more close to exact solution.

0 0.2 0.4 0.6 0.8 1
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1

1.1
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x−axis

y(
x)

Solution by Chebyshev wavelet method

y(x) at alpha=1.5
y(x) at alpha=1.9
y(x) at alpha=2
Exact solution at alpha=2

Figure 10.1: Solutions by the Chebyshev wavelet method at different α, M = 5 and exact solutions

at α = 2.
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α = 2 M = 5

x yCWM yexact ECWM

0.0 1.000 1.000 3.0e-100

0.1 1.099 1.099 0.0e+00

0.2 1.192 1.192 0.0e+00

0.3 1.273 1.273 0.0e+00

0.4 1.336 1.336 0.0e+00

0.5 1.375 1.375 0.0e+00

0.6 1.384 1.384 0.0e+00

0.7 1.357 1.357 0.0e+00

0.8 1.288 1.288 0.0e+00

0.9 1.171 1.171 1.0e-99

1.0 1.000 1.000 9.0e-100

Table 10.5: Comparison of the solution by Chebyshev wavelets method at M = 5, with Exact

solution at α = 2.

Fractional Volterra Delay Integro-Differential Equations

Example 2. Consider the fractional Volterra delay integro-differential equations for which only a

continuously distributed delay is presented

cDαy(x) = e−2y(x) + 2
x∫

x−1

es−xy(s)ds , x ≥ 0, 0 < α ≤ 1,

y(x) = ex , x ≤ 0,

(10.2.12)

The exact solution, when α = 1, is given by [106], y(x) = ex.

Figure 10.2 shows that approximate solution at different α converge to the exact solution at

α = 1, when α approaches to 1. According to the Table 10.6, we take k = 1 and absolute error goes

down while increasing M .
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Solution by Chebyshev wavelet method

y(x) at alpha=0.2
y(x) at alpha=0.4
y(x) at alpha=0.6
y(x) at alpha=0.8
y(x) at alpha=0.9
y(x) at alpha=1
Exact solution at alpha=1

Figure 10.2: Solution by the Chebyshev wavelet method at different α, M = 10 and exact solution

at α = 1 .

α = 1 M = 10 M = 20 M = 30 M = 40 M = 50

x ECWM ECWM ECWM ECWM ECWM

0.0 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

0.2 3.53755e-07 1.92910e-15 1.47443e-25 9.33233e-32 1.20200e-39

0.4 4.82617e-07 3.88233e-15 1.00623e-23 6.58330e-32 1.37272e-39

0.6 5.41694e-07 5.06443e-15 1.71088e-23 3.89809e-32 1.38842e-39

0.8 6.31832e-07 6.02721e-15 2.10738e-23 3.80014e-32 1.58040e-39

1.0 7.64294e-07 7.22217e-15 2.48458e-23 5.03183e-32 1.93476e-39

1.2 9.35777e-07 8.78809e-15 2.98929e-23 6.52316e-32 2.38860e-39

1.4 1.15049e-06 1.07466e-14 3.64803e-23 8.06468e-32 2.92845e-39

1.6 1.40205e-06 1.31386e-14 4.46346e-23 9.81924e-32 3.57680e-39

1.8 1.71333e-06 1.60509e-14 5.45593e-23 1.19590e-31 4.36647e-39

2.0 2.04433e-06 1.96036e-14 6.66430e-23 1.45971e-31 5.33218e-39

Table 10.6: Absolute error at different M .

Example 3. Consider the fractional Volterra delay integro-differential equations with both dis-

cretely and continuously distributed delays
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cDαy(x) = y(x− 1) +
x∫

x−1

y(s)ds , x ≥ 0, 0 < α ≤ 1,

y(x) = ex , x ≤ 0,

(10.2.13)

The exact solution, when α = 1, is [106], y(x) = ex.

Solution obtained by Chebyshev wavelets method at different values of α is shown in Figure 10.3,

along with exact solution at α = 1. We also compared the approximate solution with exact solution

at α = 1, by using the absolute error as shown in Table 10.7.
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Solution by Chebyshev wavelet method

y(x) at alpha=0.3
y(x) at alpha=0.5
y(x) at alpha=0.7
y(x) at alpha=1
Exact solution at alpha=1

Figure 10.3: Solution by the Chebyshev wavelet method at different α, M = 12 and exact solution

at α = 1 is also shown.
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α = 1 M = 10 M = 20 M = 30 M = 40 M = 50

x ECWM ECWM ECWM ECWM ECWM

0.0 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

0.3 5.81674e-06 5.65937e-13 1.08285e-19 1.64100e-26 2.36835e-33

0.6 1.46019e-05 2.12560e-13 1.02644e-19 1.86827e-26 2.96658e-33

0.9 1.90008e-05 7.14313e-14 8.48984e-20 1.78400e-26 3.00450e-33

1.2 2.25328e-05 3.72624e-14 1.19050e-19 2.36895e-26 3.90696e-33

1.5 3.02529e-05 2.25379e-13 1.83171e-19 3.48261e-26 5.63686e-33

1.8 4.20864e-05 2.93035e-13 2.50886e-19 4.78519e-26 7.75561e-33

2.1 5.66581e-05 3.23038e-13 3.30574e-19 6.36598e-26 1.03595e-32

2.4 7.65962e-05 4.23074e-13 4.42834e-19 8.53715e-26 1.38990e-32

2.7 1.03032e-04 5.96889e-13 6.00172e-19 1.15477e-25 1.87850e-32

3.0 1.44809e-04 8.17098e-13 8.12080e-19 1.56158e-25 2.53965e-32

Table 10.7: Absolute error at different M .

Example 4. Consider the following fractional nonlinear integro–differential equation with propor-

tional delay in kernel

cDαy(x) + (x2 − 2)y(x)− 2
x∫
0

y( s2)2ds = 1 , x ≥ 0, 0 < α ≤ 1,

y(x) = xex , x ≤ 0.

(10.2.14)

Considering α = 1 and substituting x = 0 in equation (10.2.14), we get y′(0) = 1. By taking

derivative of (10.2.14), we obtain the pantograph equation

cDα+1y(x) + (x2 − 2)y′(x) + 1
2y(x)− 2y(x2 )2 = 0 , x ≥ 0,

y(x) = xex , x ≤ 0,
(10.2.15)

with the initial conditions y(0) = 0, y′(0) = 1. The exact solution, when α = 1, is given in [1],

y(x) = xex.

Solution by the Chebyshev wavelet method at different α, M = 6 and exact solution at α = 1

is shown in Figure 10.4. Table 10.8 compares the exact solution and solution by Chebyshev wavelet

method at α = 1 and M = 7.
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Solution by Chebyshev wavelet method

y(x) at alpha=0.6
y(x) at alpha=0.8
y(x) at alpha=1
Exact solution at alpha=1

Figure 10.4: Solution by the Chebyshev wavelet method at different α, M = 6 and exact solution

at α = 1.

α = 1 M = 7

x yexact yCWM ECWM

0.0 0.000000000000000 0.000000000000000 5.47880e-32

0.1 0.110517091807565 0.110517060483851 3.13237e-08

0.2 0.244280551632034 0.244280466993502 8.46385e-08

0.3 0.404957642272801 0.404957652876706 1.06039e-08

0.4 0.596729879056508 0.596729933166477 5.41100e-08

0.5 0.824360635350064 0.824360416827363 2.18523e-07

0.6 1.093271280234305 1.093270782690551 4.97544e-07

0.7 1.409626895229334 1.409626919077817 2.38485e-08

0.8 1.780432742793974 1.780433427114300 6.84320e-07

0.9 2.213642800041255 2.213636987730133 5.81231e-06

1.0 2.718281828459045 2.718238592350892 4.32361e-05

Table 10.8: Comparison of exact solution and solution by Chebyshev wavelet method at α = 1 and

M = 7.
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System of Fractional Order Delay Differential Equations

Example 5. Consider the fractional order system of delay differential equations

cDαy(x) = y(x)− z(x) + y(x2 )− e
x
2 + e−x , 0 < α ≤ 1, 0 ≤ x ≤ 1,

cDαz(x) = −y(x)− z(x)− z(x2 ) + e
−x
2 + ex ,

y(x) = ex, z(x) = e−x, 0 ≤ x,
(10.2.16)

The exact solution, when α = 1, is [104]

y(x) = ex, z(x) = e−x. (10.2.17)

Figure 10.5 shows the solutions by Chebyshev wavelets method at different α. The approximate

solutions approaches to exact solution, when α approaches 1. Exact solutions and solutions by

Chebyshev wavelet method at α = 1 and M = 15 is shown in Table 10.9, along with the absolute

errors, EyCWM and EzCWM .
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Solution by Chebyshev wavelet method

y(x) at alpha=0.6
y(x) at alpha=0.8
y(x) at alpha=1
Exact y(x) at alpha=1
z(x) at alpha=0.6
z(x) at alpha=0.8
z(x) at alpha=1
Exact z(x) at alpha=1

Figure 10.5: Solutions by the Chebyshev wavelet method at different α, M = 5 and exact solutions

at α = 1.
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α = 1 M = 15

x yCWM yexact EyCWM zCWM zexact EzCWM

0.0 1.0000 1.0000 0.0000e+00 1.0000 1.0000 1.0000e-99

0.1 1.1052 1.1052 3.4579e-22 0.9048 0.9048 1.2852e-22

0.2 1.2214 1.2214 1.0407e-21 0.8187 0.8187 4.1707e-22

0.3 1.3499 1.3499 1.6882e-21 0.7408 0.7408 6.3206e-22

0.4 1.4918 1.4918 1.6656e-21 0.6703 0.6703 6.8670e-22

0.5 1.6487 1.6487 2.4307e-21 0.6065 0.6065 9.9268e-22

0.6 1.8221 1.8221 2.4914e-21 0.5488 0.5488 1.0176e-21

0.7 2.0138 2.0138 3.8977e-21 0.4966 0.4966 1.3803e-21

0.8 2.2255 2.2255 4.0018e-21 0.4493 0.4493 1.5151e-21

0.9 2.4596 2.4596 1.3108e-21 0.4066 0.4066 5.7753e-22

1.0 2.7183 2.7183 9.2257e-20 0.3679 0.3679 3.3664e-20

Table 10.9: Comparison of Exact solution and solution by Chebyshev wavelet method at α = 1 and

M = 15.

10.2.5 Procedure for Implementation of Proposed Method

The method of steps [118] is the simplest method for converting delay differential equations to

ordinary differential equations on a given intervals. Consider the following fractional nonlinear

delay differential equation with discrete delay

cDαy(x) = h(x) + f(y(x), y′(x), y(px− τ), y′(px− τ)), a ≤ x ≤ b, 1 < α ≤ 2,

y(x) = φ(x), −b ≤ x ≤ a.
(10.2.18)

Method consists of two steps, in first step we convert the fractional delay differential equation to

fractional non–delay differential equation by method of steps and in second step, we apply the Cheby-

shev wavelet method on resulting fractional non–delay differential equation by using the procedure

which is described in section 10.2.3.

Step I: In the fractional delay differential equation the solution y(x) is known on [−b, a], say φ(x),

and call this solution y0(x), that is y0(px− τ) = φ(px− τ), which is known.

Now the fractional delay differential equation on [a, b] takes the form

cDαy(x) = h(x) + f(y(x), y′(x), y0(px− τ), y′0(px− τ)), a ≤ x ≤ b, 1 < α ≤ 2, (10.2.19)

subject to the initial conditions y(a) = φ(a), y′(a) = φ′(a).

It is an fractional non–delay differential equation because y0(px− τ) and y′0(px− τ) are known.

Step II: We solve this fractional non–delay differential equation on [a, b] by using the Chebyshev

wavelet method and denote this solution as y1(x), which is defined on [a, b].

193



Delay differential equation on [b, 2b] becomes

cDαy(x) = h(x) + f(y(x), y′(x), y1(px− τ), y′1(px− τ)), b ≤ x ≤ 2b, 1 < α ≤ 2, (10.2.20)

subject to the initial conditions y(b) = φ(b), y′(b) = φ′(b).

which is again an fractional non–delay differential equation and solve it by the Chebyshev wavelet

method to get y2(x) on [b, 2b]. This procedure may be continued for subsequent intervals.

10.2.6 Numerical Solutions

In this section, we solve fractional nonlinear delay differential equations with discrete delays by the

present method and compare the results with exact solution, solution by Legendre wavelet methods

and Chebyshev wavelet method.

Example 6. Consider the following fractional nonlinear delay differential equations

cDαy(x) = 1− 2y2(x2 ) , 0 < α ≤ 1, 0 < x ≤ 1

y(x) = sin(x), 0 ≤ x,
(10.2.21)

The exact solution, when α = 1, is [56], y(x) = sin(x).

Figure 10.6 shows that present solution converges to the exact solution when α approaches to 1.

According to the Table 10.10, present method ypro provides better results as compared to Legendre

wavelet method yLWM . In present method, we use low resolution level, k = 1, but still we get more

accurate results as compared to Legendre wavelet method for k = 2.
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Figure 10.6: Solutions by the present method at different α, M = 9, k = 1 and exact solutions at

α = 1.

α = 1

x yLWM ypro yexact Eabs

0.000 0.000000000 0.000000000 0.000000000 1.23452e-22

0.125 0.124674731 0.124674733 0.124674733 1.70708e-12

0.250 0.247403957 0.247403959 0.247403959 2.47323e-12

0.375 0.366272527 0.366272529 0.366272529 9.36426e-12

0.500 0.479425537 0.479425539 0.479425538 1.78774e-11

0.625 0.585097271 0.585097273 0.585097272 1.88843e-11

0.750 0.681638759 0.681638760 0.681638760 3.04277e-12

0.875 0.767543501 0.767543502 0.767543502 1.64433e-12

1.000 0.841470984 0.841470984 0.841470984 4.51086e-10

Table 10.10: Comparison between exact solution, Legendre wavelet method [56] for M = 9, k = 2,

and present method for M = 9, k = 1.

Example 7. Consider the fractional delay differential equations with nonlinear delay function,

195



cDαy(x) = 2y2(x2 )− 1 , 2 < α ≤ 3, 0 ≤ x ≤ 1,

y(x) = sin(x) , x ≤ 0,
(10.2.22)

The exact solution, when α = 3, is [105], y(x) = sin(x).

By fixing k = 1 and M = 20, we plot the solutions by method at different values of α and exact

solution at α = 3 on large interval, as shown in Figure 10.7. Comparison of exact solution yexact

and approximate solution ypro at α = 3, M = 50 and k = 1, is shown in Table 10.11.
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y(x) at alpha=2.90
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y(x) at alpha=3
Exact solution at alpha=3

Figure 10.7: Solutions by the present method at different α, M = 20, k = 1 and exact solutions at

α = 3.
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α = 3

x ypro yexact Eabs

0.000 0.0000000 0.0000000 1.25843e-214

0.125 0.1246747 0.1246747 3.13235e-96

0.250 0.2474040 0.2474040 2.02963e-95

0.375 0.3662725 0.3662725 3.72562e-95

0.500 0.4794255 0.4794255 6.40642e-95

0.625 0.5850973 0.5850973 9.34377e-95

0.750 0.6816388 0.6816388 4.01299e-95

0.875 0.7675435 0.7675435 6.11317e-94

1.000 0.8414710 0.8414710 1.00063e-89

Table 10.11: Solution by present method for M = 50, k = 1.

Comparison of Chebyshev Wavelet Method and Present Method

In this example, we compare the Chebyshev wavelet method and proposed method.

Example 8. Consider the fractional nonlinear pantograph equation

cDαy(x) + (y′(x2 ))2 − 1
4y(x2 )− 1

4y(x) = 0, 0 ≤ x ≤ 1, 1 < α ≤ 2, (10.2.23)

subject to the initial conditions y(0) = y′(0) = 1. The exact solution, when α = 2, is [1], y(x) = ex.

For α = 2, k = 1 andM = 7, Table 10.12 contains the exact solution yexact, solution obtained by

the Chebyshev wavelet method yCWM and present method ypro. ECWM and Epro represents absolute

error by Chebyshev wavelet method and present method respectively. It indicates that the present

method provides significantly accurate results as compared to Chebyshev wavelet method. Also

present method take less computational time as compared to the Chebyshev wavelet method. For

the problem (10.2.23), present and Chebyshev wavelet method takes 1.44 seconds and 8.09 seconds

respectively.

For this purpose, we useMaple 13 in system with Core Duo CPU 2.00 GHz and RAM 2.50GB.
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α = 2 M = 7

x ypro yCWM yexact ECWM Epro

0.0 1.000000000000000 1.000000000000000 1.000000000000000 0.00000e+00 0.00000e+00

0.1 1.105170917987022 1.105170918075648 1.105170918046593 2.90544e-11 8.86261e-11

0.2 1.221402760355470 1.221402758160170 1.221402758178371 1.82008e-11 2.19530e-09

0.3 1.349858805809554 1.349858807576003 1.349858806748101 8.27902e-10 1.76645e-09

0.4 1.491824680504743 1.491824697641270 1.491824678359615 1.92817e-08 1.71365e-08

0.5 1.648721270700128 1.648721270700128 1.648721078676698 1.92023e-07 2.09532e-192

0.6 1.822118901602975 1.822118800390509 1.822117704955597 1.09543e-06 1.01212e-07

0.7 2.013752782405488 2.013752707470477 2.013748284301158 4.42317e-06 7.49350e-08

0.8 2.225539717513771 2.225540928492468 2.225526749646569 1.41788e-05 1.21098e-06

0.9 2.459596083968986 2.459603111156950 2.459564553456737 3.85577e-05 7.02719e-06

1.0 2.718257075060718 2.718281828459045 2.718189119155270 9.27093e-05 2.47534e-05

Table 10.12: Comparison of the Chebyshev wavelets method and present method, by fixing M = 7,

k = 1, and α = 2.

10.2.7 Conclusion

It is shown that the Chebyshev wavelet method gives good results when applied to different linear

and nonlinear fractional delay differential equation, fractional delay Volterra integro–differential

equations and fractional system of delay differential equation and are in good agreement with exact

solutions. According to the convergence analysis, error by the Chebyshev wavelet method reduces

while increasing M , as shown in Tables 10.6 and 10.7. Tables 10.5 - 10.9 shows the comparison of

exact solution and solution by the Chebyshev wavelets method. According to the comparison, we

conclude that Chebyshev wavelets method is a suitable technique for solving fractional delay–type

equations.

The solution of the fractional order delay equation converge to the solution of integer order delay

equation as shown in Figures.

Proposed technique gives more accurate results as compared to the Legendre wavelet method

and are in good agreement with exact solution, as shown in Table 10.10. Solution by present

technique converges to the exact solution at higher M as in Table 10.11. According to the Table

10.12, Chebyshev wavelet method gives more accurate results at x = 0 to x = 0.3 and less accurate

results at x = 0.4 to x = 1.0 as compared to the present method.

Present method is more efficient than the Chebyshev wavelet method. It is a more powerful

technique for solving fractional delay differential equation as compared to the Chebyshev wavelet

method.
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10.3 Hermite Wavelet Method for Fractional Delay Differential Equa-

tions

Hermite wavelet method [2] is implemented for finding the numerical solution of the boundary value

problems and compare the obtained solutions with exact solution. In [121], authors utilized the

physicists Hermite wavelet method for solving linear singular differential equations. According to

our information, Hermite wavelet method has not been implemented for delay differential equations.

In this section, we combine method of steps with Hermite wavelet method for solving the frac-

tional delay differential equations. We also implement the Hermite wavelet method for solving

fractional delay differential equation, as describe in Example 6, which were not implemented before.

Shifted Chebyshev nodes are used as the collocation points. Several numerical examples are solved

to show the applicability of the proposed method (Hermite step method). Comparison of solutions

by these two methods, proposed method and Hermite wavelet method, with each other and with

exact solution are also presented.

10.3.1 Hermite Wavelets

The Hermite polynomials Hm(x), of order m are defined on the interval [−∞,∞] and given by the

following recurrence formulae,

H0(x) = 1, H1(x) = 2x, Hm+1(x) = 2xHm(x)− 2mHm−1(x), m = 1, 2, 3, · · · .

The polynomials Hm(x) are orthogonal with respect to the weight function e−x2 , that is

∞∫
−∞

e−x
2
Hm(x)Hn(x)dx =

{
0, m 6= n;

n!2n
√
π, m = n.

(10.3.1)

The Hermite wavelets are defined on interval [0, 1) by

ψn,m(x) =

2
k
2

√
1

n!2n
√
π
Hm(2kx− n̂), n̂−1

2k
≤ x < n̂+1

2k
,

0, elsewhere,

where k = 1, 2, 3, · · · , is the level of resolution, n = 1, 2, 3, · · · , 2k−1, n̂ = 2n − 1, is the translation

parameter, m = 1, 2, · · · ,M − 1 is the order of the Hermite polynomials, M > 0.

10.3.2 Convergence Analysis

Function approximations and convergence analysis of Hermite wavelet method are same as for Cheby-

shev wavelet method and are given in subsection 10.2.1 and 10.2.2 respectively.
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10.3.3 Procedure for Implementation of Hermite Step Method

The method of steps [118] is used to convert the discrete delay differential equations to non-delay dif-

ferential equations on a given intervals. Consider the following fractional delay differential equation

with discrete delay

cDαy(x) = g(x) + f(y(x), y′(x), y(qx− τ), y′(qx− τ)) , a ≤ x ≤ b, 1 < α ≤ 2,

y(x) = φ(x), −b ≤ x ≤ a.
(10.3.2)

where g(x) is a source function and f is a continuous linear or nonlinear function. Also q is constant,

τ is delay and qx − τ is called delay argument. The delay τ(x, y(x)) is called constant delay, time

dependent delay and state dependent delay if the delay τ(x, y(x)) is constant, function of time x,

and function of time x and y(x) respectively.

Hermite step method consists of two methods, method of steps and Hermite wavelet method.

We first implement the method of steps to the fractional delay differential equation (10.3.2) and get

the fractional non–delay differential equation by utilizing initial function, φ(x), and then we utilize

the Hermite wavelet method for solving the obtained fractional non–delay differential equation.

Method of Steps: In the fractional delay differential equation the solution y(x) is known on [−b, a],

say φ(x), and call this solution y0(x), that is y0(qx − τ) = φ(qx − τ), which is known. Now the

fractional delay differential equation on [a, b] takes the form

cDαy(x) = g(x) + f(y(x), y′(x), y0(qx− τ), y′0(qx− τ)), a ≤ x ≤ b, 1 < α ≤ 2, (10.3.3)

subject to the initial conditions y(a) = φ(a), y′(a) = φ′(a).

It is an fractional non–delay differential equation because y0(qx− τ) and y′0(qx− τ) are known.

Hermite Wavelet Method for Fractional Non Delay Differential Equation: We solve the

obtained fractional non–delay differential equation (10.3.3) on [a, b] by using the Hermite wavelet

method. The procedure for implementation of Hermite wavelet method for fractional differential

equation is as follows:

Step 1: Approximate the unknown function y(x) of equation (10.3.3) by the Hermite wavelet

method as

y(x) '
2k−1∑
n=1

M−1∑
m=0

anmψn,m(x). (10.3.4)

Step 2: Substituting equation (10.3.4) in equation (10.3.3) to get the residual

2k−1∑
n=1

M−1∑
m=0

acnmD
αψn,m(x) = g(x) + f

( 2k−1∑
n=1

M−1∑
m=0

anmψn,m(x),
2k−1∑
n=1

M−1∑
m=0

anmψ
′
n,m(x),

y0(qx− τ), y′0(qx− τ)
)
.

(10.3.5)

Step 3: Set the residual (10.3.5) equal to zero at the set of Chebyshev nodes, xi = b−a
2 cos( (2i+1)π

2kM
)+
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a+b
2 , i = 0, 1, 2, ...,M − 1, on interval [a, b].

2k−1∑
n=1

M−1∑
m=0

acnmD
αψn,m(xi)− g(xi)− f

( 2k−1∑
n=1

M−1∑
m=0

anmψn,m(xi),
2k−1∑
n=1

M−1∑
m=0

anmψ
′
n,m(xi),

y0(qxi − τ), y′0(qxi − τ)
)

= 0.

(10.3.6)

We obtain 2k−1M − p equations, where p is the number of conditions of the delay equation. Two

conditions are given (p = 2) so we get 2k−1M−2 equations from equation (10.3.6) by using Chebyshev

nodes xi. Two more equations obtain from the conditions of equation (10.3.2), that is

y(a) = φ(a) ⇒
2k−1∑
n=1

M−1∑
m=0

anmψn,m(a) = φ(a),

y′(a) = φ′(a) ⇒
2k−1∑
n=1

M−1∑
m=0

anmψ
′
n,m(a) = φ′(a).

We obtained 2k−1M equations either linear or nonlinear along with 2k−1M unknown coefficients

anm, which is solved by Newton iterative method to get anm
′
s and use it in (10.3.4) to get the

approximate solution. Denote the obtained solution as y1(x), which is defined on [a, b].

Continue the procedure for the subsequent interval, delay differential equation on [b, 2b] becomes

cDαy(x) = h(x) + f(y(x), y′(x), y1(qx− τ), y′1(qx− τ)), b ≤ x ≤ 2b, 1 < α ≤ 2, (10.3.7)

subject to the initial conditions y(b) = y1(b), y′(b) = y′1(b).

Which is again an fractional non–delay differential equation and solve it by the Hermite wavelet

method to get y2(x) on [b, 2b]. This procedure may be continued for subsequent intervals.

10.3.4 Numerical Solutions

In this Section, we utilize the Hermite step method for finding the numerical solution of linear and

nonlinear fractional delay differential equations. The notations ypro, yexact and Eabs represents the

solution by Hermite step method, exact solution and their absolute error respectively. We use the

results up to 100 decimal places. Through this work we use Caputo derivatives.

Linear Delayed Fractional Differential Equations

Example 1. Consider the fractional delay differential equation

cDαy(x) + y(x)− y(x− τ) = 2
Γ(3−α)x

2−α − 1
Γ(2−α)x

1−α + 2τx− τ2 − τ,
x > 0, 0 < α < 1,

y(x) = 0, x ≤ 0.

(10.3.8)

The exact solution [124], when α = 1, is y(x) = x2 − x.
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The results obtained by the Hermite step method, by taking α = 0.5, k = 1, M = 3, and

τ = 0.01e−x, is shown in Figure 10.8 along with the exact solution. Table 10.13 indicates that

results obtained from the Hermite step method are more close to exact solution and better than the

method [124]. Eabs and Err represents the absolute error by Hermite step method and method [124],

respectively.
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x−axis

y(
x)

Solution by proposed method

y(x) at alpha=0.5
Exact solution at alpha=0.5

Figure 10.8: Solutions by the Hermite step method, τ = 0.01e−x, and exact solutions, at α = 0.5.

τ = 0.1, α = 0.2 τ = 0.01e−x, α = 0.9 τ = 0.01e−x, α = 0.2

x Eabs Err [124] Eabs Err [124] Eabs Err [124]

5 1.9e-97 0.0062 4.0000e-98 0.0010 2.7e-97 0.0074

10 2.7e-97 0.0134 1.1000e-97 4.7115e-4 4.0e-97 0.0082

50 3.0e-96 0.0690 0.0000e+00 7.0303e-4 5.0e-96 0.0052

Table 10.13: Comparison of the solution by Hermite step method at M = 3, with exact solution

and method [124].

Example 2. Consider the following fractional delay differential equation

cDαy(x) = −y(x)− y(x− 0.3) + e−x+0.3, 0 ≤ x ≤ 1, 2 < α ≤ 3, (10.3.9)

subject to the initial conditions y(0) = 1, y′(0) = −1, and y′′(0) = 1. The exact solution, when
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α = 1, is y(x) = e−x.

The data in Table 10.14 shows that this method provides more accurate results as compared to

Adomian decomposition method [36]. These results are obtained by fixing M = 25 and k = 1, at

α = 3. Solution by the Hermite step method at different values of α are shown in Figure 10.9, which

shows that solutions by Hermite step method at different α converges to the exact solution at α = 3,

when α approaches to 3.

x ypro yexact Eabs EADM [36]

0.0 1.000000000000000 1.000000000000000 0.00e+00 8.52e-14

0.2 0.818730753077982 0.818730753077982 9.12e-42 3.83e-14

0.4 0.670320046035639 0.670320046035639 6.90e-41 1.68e-13

0.6 0.548811636094026 0.548811636094026 2.38e-40 6.00e-14

0.8 0.449328964117222 0.449328964117222 6.01e-41 6.66e-15

1.0 0.367879441171442 0.367879441171442 3.58e-36 4.57e-14

Table 10.14: Comparison of the solution by Hermite step method, M = 25, with exact solution and

Adomian decomposition method [36], at α = 3.
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Figure 10.9: Solutions by the Hermite step method at different α, M = 7, k = 1, and exact solution

at α = 3.

Example 3. Consider the fractional pantograph equation,
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cDαy(x) = 1
2e

x
2 y(x2 ) + 1

2y(x) , 0 < α ≤ 1, 0 ≤ x ≤ 1,

y(0) = 1.
(10.3.10)

The exact solution, when α = 1, is y(x) = ex.

By fixing k = 1 and M = 4, we plot the solutions by Hermite step method at different values of

α and exact solution at α = 1, as shown in Figure 10.10. It shows that present solution approaches

to the exact solution while α approaches to 1.

Comparison of present solution ypro at α = 1, M = 30 and k = 1, with Adomian decomposition

method [36] and the spline function technique [37], is shown in Table 10.15. The notations Eabs,

EADM and Espline represents the absolute error by Hermite step method, Adomian decomposition

method and the spline function technique respectively. We can get more accurate results while

increasing M .
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y(x) at alpha=0.7
y(x) at alpha=0.8
y(x) at alpha=0.9
y(x) at alpha=1
Exact solution at alpha=1

Figure 10.10: Solutions by the Hermite step method at different α,M = 4, k = 1 and exact solutions

at α = 1.
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α = 1

x ypro yexact Eabs EADM [36] Espline [37]

0.2 1.221402758160170 1.221402758160170 1.96519e-51 0.00 3.10e-15

0.4 1.491824697641270 1.491824697641270 2.51474e-51 2.22e-16 7.54e-15

0.6 1.822118800390509 1.822118800390509 2.56283e-51 2.22e-16 1.39e-14

0.8 2.225540928492468 2.225540928492468 1.03409e-50 1.33e-15 2.13e-14

1.0 2.718281828459045 2.718281828459045 8.81662e-49 4.88e-15 3.19e-14

Table 10.15: Solution by present method for M = 30, k = 1.

Example 4. Consider the following fractional neutral functional differential equation with propor-

tional delay

cDαy(x) = −y(x) + 0.1y(0.8x) + 0.5cDαy(0.8x) + (0.32x− 0.5)e−0.8x + e−x, x ≥ 0, 0 < α ≤ 1,

y(0) = 0,

(10.3.11)

which has the exact solution, when α = 1, is xex.

We implement the method by fixing k = 1, M = 5, at different values of α, the results are shown

in Figure 10.11 along with the exact solution at α = 1. Table 10.16 shows that present method

gives more accurate results as compared to the spectral shifted Legendre-Gauss collocation (SLC)

method [12], the reproducing kernel Hilbert space method (RKHSM) [79] and a Runge-Kutta-type

(RKT ) method [125].
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Figure 10.11: Solution by the present method at different α, M = 5 and exact solution at α = 1.

α = 1 M = 17

x SLC method [12] RKHSM [79] RKT method [125] Eabs

0.1 4.27e-17 1.42e-4 8.68e-4 1.23e-24

0.2 2.70e-17 1.17e-4 1.49e-3 3.41e-25

0.3 5.94e-17 9.45e-4 1.90e-3 1.74e-24

0.4 8.01e-17 7.59e-4 2.16e-3 2.79e-24

0.5 8.27e-17 6.03e-4 2.28e-3 3.33e-24

0.6 1.95e-16 4.73e-4 2.31e-3 3.94e-24

0.7 1.56e-16 3.64e-4 2.27e-3 3.56e-24

0.8 8.80e-17 2.75e-4 2.17e-3 2.35e-25

0.9 1.03e-16 2.03e-4 2.03e-3 1.02e-23

1.0 1.23e-16 1.43e-4 1.86e-3 1.58e-22

Table 10.16: Absolute errors using Hermite step method at α = 1 and M = 17.

Nonlinear Delayed Fractional Differential Equations

Example 5. Consider the fractional nonlinear delay differential equation
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cDαy(x) = 1− 2y2(x2 ), 0 ≤ x ≤ 1, 1 < α ≤ 2, (10.3.12)

subject to the initial conditions, y(0) = 1, y′(0) = 0. The exact solution [66], when α = 2, is

y(x) = cos(x).

Solutions by present method at different values of α is plotted in Figure 10.12, which shows that

present solution is converges to the exact solution when α approaches to 2. According to the Table

10.17, absolute error reduces while increasing M .
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Figure 10.12: Solution by the Hermite step method at different α, M = 5 and exact solution at

α = 2.
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α = 2 M = 15 M = 25 M = 30 M = 40

x Eabs Eabs Eabs Eabs

0.1 2.17077e-23 1.96989e-42 8.02964e-52 5.46682e-60

0.2 4.49566e-23 2.28499e-42 7.79780e-52 1.52681e-59

0.3 1.67001e-22 6.26291e-42 1.42878e-51 1.57732e-59

0.4 3.60801e-23 2.25484e-41 2.38398e-51 5.49810e-60

0.5 2.87200e-22 2.25484e-41 4.19542e-51 1.09577e-58

0.6 4.60073e-24 7.94684e-41 6.75256e-51 9.58443e-59

0.7 4.89152e-22 1.18456e-40 1.12211e-50 3.69647e-57

0.8 1.23582e-21 1.36081e-40 1.58769e-50 1.69940e-55

0.9 5.88496e-21 4.92247e-40 5.35881e-50 5.29603e-54

1.0 5.30153e-19 1.25319e-37 1.99293e-47 3.70755e-53

Table 10.17: Absolute errors by using present method at different M and α = 2.

Comparison of Hermite Step Method and Hermite Wavelet Method

Example 6. Consider the fractional nonlinear neutral delay differential equation ,

cDαy(x) = 1
2y(x) + 1

2y(x2 )cDαy(x2 ), x ≥ 0, 0 < α ≤ 1, (10.3.13)

subject to the initial conditions, y(0) = 1. The exact solution [67] , when α = 1, is y(x) = ex.

Hermite Wavelet Method for Fractional Delay Differential Equation

We can approximate the solution of equation (10.3.13) by the Hermite wavelet method as

y(x) '
2k−1∑
n=1

M−1∑
m=0

anmψn,m(x). (10.3.14)

In the delay equations, we also have to approximate the delay unknown function y(x2 ) in terms of

the Hermite wavelet series at delay time as

y(x2 ) '
2k−1∑
n=1

M−1∑
m=0

anmψn,m(x2 ). (10.3.15)

We call this series as the delay Hermite wavelet series. Substituting equation (10.3.14), (10.3.15) in

equation (10.3.13), we get the residual as

2k−1∑
n=1

M−1∑
m=0

acnmD
αψn,m(x) = 1

2

2k−1∑
n=1

M−1∑
m=0

anmψn,m(x)

+1
2

2k−1∑
n=1

M−1∑
m=0

anmψn,m(x2 )
( 2k−1∑
n=1

M−1∑
m=0

acnmD
αψn,m(x2 )

)
.

(10.3.16)
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Set the residual (10.3.16) equal to zero at the set of Chebyshev nodes, xi = 1
2 cos( (2i+1)π

2kM
)+ 1

2 , k =

0, 1, 2, ...,M − 1, on interval [0, 1], we get

2k−1∑
n=1

M−1∑
m=0

acnmD
αψn,m(xi)− 1

2

2k−1∑
n=1

M−1∑
m=0

anmψn,m(xi)

−1
2

2k−1∑
n=1

M−1∑
m=0

anmψn,m(xi2 )
( 2k−1∑
n=1

M−1∑
m=0

acnmD
αψn,m(xi2 )

)
= 0.

(10.3.17)

We get 2k−1M−1 equations from equation (10.3.17) by using chebyshev nodes xi. One more equation

obtain from the condition of equation (10.3.13), that is

y(0) = 1 ⇒
2k−1∑
n=1

M−1∑
m=0

anmψn,m(0) = 1,

We obtained 2k−1M nonlinear equations along with 2k−1M unknown coefficients anm, which is

solved by Newton iterative method to get anm
′
s and use it in (10.3.14) to get the approximate

solution by Hermite wavelet method.

We fixM = 9, k = 1 and implement the Hermite wavelet and Hermite step method to (10.3.13).

The results are shown in Table 10.18 along with the absolute errors. According to the Table 10.18,

Hermite wavelet and Hermite step method gives good results that is, for some points Hermite step

method is more accurate as compared to Hermite wavelet method and vice versa.

For the problem (10.3.13), run time of present method and Hermite wavelet method are 1.21

and 26.21 seconds respectively. Hermite step method is more efficient than the Hermite wavelet

method. yHWM and EHWM represents the solution by Hermite wavelet method and their absolute

error, respectively.

For this purpose, we useMaple 13 in system with Core Duo CPU 2.00 GHz and RAM 2.50GB
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α = 1

x yHWM ypro yexact EHWM Epro

0.0 1.0000000000 1.0000000000 1.0000000000 0.00000e+00 0.00000e+00

0.1 1.1051709181 1.1051709181 1.1051709181 1.33288e-11 5.37737e-12

0.2 1.2214027582 1.2214027581 1.2214027582 3.93123e-12 1.14859e-11

0.3 1.3498588076 1.3498588076 1.3498588076 2.83949e-11 2.13830e-11

0.4 1.4918246977 1.4918246976 1.4918246976 1.26536e-11 6.30257e-12

0.5 1.6487212707 1.6487212707 1.6487212707 8.42958e-12 3.08447e-11

0.6 1.8221188004 1.8221188004 1.8221188004 5.79353e-11 1.57380e-11

0.7 2.0137527076 2.0137527075 2.0137527075 8.92374e-11 4.32148e-11

0.8 2.2255409285 2.2255409284 2.2255409285 3.39446e-11 6.08108e-11

0.9 2.4596031112 2.4596031112 2.4596031112 6.71791e-11 6.72473e-11

1.0 2.7182818276 2.7182818276 2.7182818285 8.41911e-10 8.35594e-10

Table 10.18: Comparison of present and Hermite wavelet method M = 9, k = 1.

10.3.5 Conclusion

It is shown that method gives excellent results when applied to different fractional linear and non-

linear delay differential equations. The results obtained from the Hermite step method are more

accurate and better than the results obtained from other methods, as shown in Tables 10.13-10.16.

The solution of the fractional delay differential equation converge to the solution of integer delay

differential equation, as shown in Figures 10.9-10.12. According to the convergence analysis, error

by the present method reduces while increasing M, as shown in Tables 10.17. Table 10.18 indicates

that both Hermite wavelet method and present method gives good results. Hermite step method is

more efficient than the Hermite wavelet method.
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Chapter 11

Summary

Most of the numerical methods are not adequate to handle the fractional nonlinear differential

equations, which necessitates the deriving of new approximation techniques for fractional nonlinear

differential equations. The major objective of this thesis is to develop new numerical methods

and their supporting analysis for solving fractional nonlinear differential equations. A series of six

published papers and seven manuscripts has been presented on the solution of fractional nonlinear

ordinary differential equations, fractional nonlinear partial differential equations, and linear and

nonlinear fractional delay differential equation. We have included these papers and manuscripts in

Chapters 2 to 10 and are summarized as follows:

In Chapter 1 we have provided a brief introduction of fractional calculus, quasilinearization

technique and wavelet analysis. The non−uniform Haar wavelet matrix, operational matrix of

fractional integration and operational matrix of fractional integration for boundary value problems

are constructed in Chapter 2 and utilized for solving fractional initial and boundary value problems

over non−uniform nodes. The obtained solutions by non−uniform Haar wavelet method are better

than the uniform Haar wavelet method.

The principle objective of considering the non uniform nodes for the Haar wavelets is to deal

with the solution of problems for which solution behave abruptly on some part of the domain, that

is, it is smooth on some part of domain and suddenly have abrupt changes. The present method

can handle these types of problems with reasonable accuracy. We have constructed the subintervals

by keeping in view the behavior of the problem’s solution.

A numerical technique, Haar wavelet quasilinearization technique, is developed by using both

uniform and non−uniform Haar wavelet operational matrix method in conjunction with quasilin-

earization technique, as given in Chapter 3. Method of implementation is investigated and utilized

for solving fractional nonlinear initial and boundary value problems. Convergence analysis of the

method has also presented. The obtained solutions are more accurate and efficient than the solution

obtained by other numerical methods. More accurate results are obtained by increasing iteration of

method. It is observed that solution of the fractional order, α, differential equation converge to the
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solution of integer order differential equation when α approaches to the integer value.

In Chapter 4 we developed Haar wavelet quasilinearization technique for heat convection–radiation

and fractional oscillation equations. Haar wavelet quasilinearization technique gave stable and suffi-

ciently accurate results when applied to heat convection–radiation equations as compared to gener-

alized approximation method, homotopy perturbation method and variational iteration method. We

also developed Haar wavelet quasilinearization technique for forced and force-free duffing-Van der

Pol oscillator equation and higher order oscillation equation. The method provides good results as

compared to homotopy perturbation method, variational iteration method, decomposition method

and generalized differential quadrature rule method. The results are in good agreement with exact

solutions or forth order Runge–Kutta method.

Haar wavelet quasilinearization technique has been extended, in Chapter 5, for fractional nonlin-

ear partial differential equations. Procedure of implementation of the method for general fractional

nonlinear partial differential equation has been introduced. Convergence analysis of Haar wavelet

quasilinearization technique for function of two variables has also been investigated. It has been

observed that method gives more accurate results while increasing level of resolution or iteration

of the method or both. We considered the fractional generalized Berger–Fisher equation, fractional

Klein Gordon equations and fractional Bergers equation to show the applicability of the method.

Our results are more accurate than the reduced differential transform method, variational iteration

method and homotopy perturbation method.

In Chapter 6, a numerical method for fractional nonlinear differential equation by utilizing Haar

wavelet operational matrix method and Picard technique has been discussed. Convergence of the

method is discussed in details. The method is applied on fractional nonlinear initial and boundary

value problems. We considered fractional nonlinear Bratu type equation, duffing equation and Lane–

Emden type equation as test problems. Graphical results show that solution of fractional order

equation converge to the solution of integer order equation when fractional order value approaches

to integer value, and it is also observed that solution becomes more accurate by increasing iteration

of the method.

In Chapter 7 combination of wavelet Galerkin method and quasilinearization technique is im-

plemented for solving nonlinear boundary value problems. Daubechies scaling functions are used as

Galerkin basis. We have successfully derived the expression for computing the two term connection

coefficients as shown in section 7.2 and appendix. These connection coefficients are used in wavelet

Galerkin quasilinearization technique for solving nonlinear boundary value problems. The descrip-

tion of implementation for the method has given in section 7.3. Comparison analysis with other

numerical methods has also been presented for the sake of accuracy and efficiency of the present

method.

The two solution methods for fractional nonlinear differential equations are presented in Chapter

8. One of them is Chebyshev wavelet quasilinearization technique and the other method is Legendre
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wavelet quasilinearization technique. The wavelet matrix, operational matrix of fractional inte-

gration for initial and boundary value problems are constructed and utilized for solving fractional

nonlinear ordinary differential equations. Chebyshev wavelet quasilinearization technique is also

extended for fractional nonlinear partial differential equations. The procedure of implementation

of Chebyshev wavelet quasilinearization and Legendre wavelet quasilinearization are same and are

described for fractional nonlinear duffing oscillator with damping effect, fractional nonlinear Lane

Emden initial and boundary value problem, general fractional Riccati equation, fractional nonlinear

oscillator equations, fractional Bergers differential equation and fractional Klein Gordon equation.

Convergence analysis of the methods is presented which shows that approximate solution converges

to the exact solution while increasing level of resolution or order of polynomials or iteration of the

methods or all. Comparison of Legendre wavelet quasilinearization technique is carried out with

Adomian decomposition method, variational iteration method and homotopy perturbation method.

It has been observed that method provides more accurate and stable results. The graphical analysis

shows that solution of the fractional order differential equations converge to the solution of integer

order differential equations and absolute error decreases while increasing iteration of the methods.

In Chapter 9 we introduced a new numerical method, Gegenbauer wavelets operational matrix

method, for solving fractional differential equation. We derived Gegenbauer wavelet matrix, Gegen-

bauer wavelet operational matrix of fractional integration and Gegenbauer wavelet operational ma-

trix of fractional integration for boundary value problems and utilized for solving fractional linear

differential equations. Implementation is carried out on different problems and convergence analysis

is also investigated. Comparison of the method with Haar wavelet method and homotopy perturba-

tion method shows that our results are more accurate.

In Chapter 10, three numerical methods are presented for delay differential equations. The first

method is the combination of radial basis function networks and method of steps. The procedure of

implementation of radial basis function collocation method and proposed method are presented and

utilized for the solution of different linear and nonlinear delay differential equations. Comparison

of these two methods is presented which shows that present method is more efficient than the

radial basis function collocation method. In section 10.2, we developed the Chebyshev wavelets

method for solving the linear and nonlinear fractional delay differential equations, fractional delay

Volterra integro–differential equations and fractional system of delay differential equations. We also

introduced a technique by combining Chebyshev wavelet method and method of steps for solving

fractional delay differential equations. Comparison of our method and Chebyshev wavelet method

is presented which shows that our method is more efficient than the Chebyshev wavelet method.

The procedure of implementation and convergence analysis are also given. Another method which

we developed in Chapter 10 is the combination of Hermite wavelet method and method of steps.

Comparison of method with Hermite wavelet method, Adomian decomposition method, the spline

function technique, spectral shifted Legendre-Gauss collocation method, reproducing kernel Hilbert
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space method and Runge-Kutta-type method are presented. The method is more efficient than the

Hermite wavelet method at least for the tested problem.

Wavelets quasilinearization technique can be extended for fractional nonlinear partial differential

equations, and Gegenbauer wavelet quasilinearization technique can be developed for fractional

nonlinear differential equations.
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Appendix

Two Term Connection Coefficients

We construct the two term connection coefficients at different level of resolution j, for different

Daubechies wavelets, by using MATLAB program.

j = 0, N = 6 j = 1, N = 6 j = 2, N = 6

Ω0,2
−4 5.357142857141826e-003 2.142857142857320e-002 8.571428571428662e-002

Ω0,2
−3 1.142857142857159e-001 4.571428571428521e-001 1.828571428571418e+000

Ω0,2
−2 -8.761904761904875e-001 -3.504761904761875e+000 -1.401904761904759e+001

Ω0,2
−1 3.390476190476216e+000 1.356190476190466e+001 5.424761904761887e+001

Ω0,2
0 -5.267857142857139e+000 -2.107142857142841e+001 -8.428571428571381e+001

Ω0,2
1 3.390476190476166e+000 1.356190476190468e+001 5.424761904761871e+001

Ω0,2
2 -8.761904761904648e-001 -3.504761904761882e+000 -1.401904761904751e+001

Ω0,2
3 1.142857142857137e-001 4.571428571428545e-001 1.828571428571419e+000

Ω0,2
4 5.357142857143558e-003 2.142857142857155e-002 8.571428571428807e-002

Table 1: Two term connection at N = 6, d1 = 0, d2 = 2 and different j
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j = 3, N = 6 j = 4, N = 6 j = 5, N = 6

Ω0,2
−4 3.428571428571458e-001 1.371428571428649e+000 5.485714285714518e+000

Ω0,2
−3 7.314285714285692e+000 2.925714285714256e+001 1.170285714285708e+002

Ω0,2
−2 -5.607619047619031e+001 -2.243047619047600e+002 -8.972190476190496e+002

Ω0,2
−1 2.169904761904755e+002 8.679619047618978e+002 3.471847619047619e+003

Ω0,2
0 -3.371428571428556e+002 -1.348571428571417e+003 -5.394285714285691e+003

Ω0,2
1 2.169904761904752e+002 8.679619047618978e+002 3.471847619047593e+003

Ω0,2
2 -5.607619047619014e+001 -2.243047619047599e+002 -8.972190476190377e+002

Ω0,2
3 7.314285714285687e+000 2.925714285714264e+001 1.170285714285707e+002

Ω0,2
4 3.428571428571566e-001 1.371428571428608e+000 5.485714285714590e+000

Table 2: Two term connection at N = 6, d1 = 0, d2 = 2 and different j

j = 6, N = 6 j = 7, N = 6 j = 8, N = 6

Ω0,2
−4 2.194285714285784e+001 8.777142857143053e+001 3.510857142857163e+002

Ω0,2
−3 4.681142857142830e+002 1.872457142857140e+003 7.489828571428539e+003

Ω0,2
−2 -3.588876190476193e+003 -1.435550476190475e+004 -5.742201904761879e+004

Ω0,2
−1 1.388739047619045e+004 5.554956190476182e+004 2.221982476190466e+005

Ω0,2
0 -2.157714285714270e+004 -8.630857142857112e+004 -3.452342857142838e+005

Ω0,2
1 1.388739047619032e+004 5.554956190476169e+004 2.221982476190463e+005

Ω0,2
2 -3.588876190476136e+003 -1.435550476190469e+004 -5.742201904761864e+004

Ω0,2
3 4.681142857142813e+002 1.872457142857137e+003 7.489828571428535e+003

Ω0,2
4 2.194285714285805e+001 8.777142857143291e+001 3.510857142857182e+002

Table 3: Two term connection at N = 6, d1 = 0, d2 = 2 and different j
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j = 9, N = 6 j = 10, N = 6 j = 11, N = 6

Ω0,2
−4 1.404342857142891e+003 5.617371428571553e+003 2.246948571428641e+004

Ω0,2
−3 2.995931428571427e+004 1.198372571428564e+005 4.793490285714245e+005

Ω0,2
−2 -2.296880761904784e+005 -9.187523047618968e+005 -3.675009219047597e+006

Ω0,2
−1 8.887929904761952e+005 3.555171961904737e+006 1.422068784761896e+007

Ω0,2
0 -1.380937142857141e+006 -5.523748571428541e+006 -2.209499428571414e+007

Ω0,2
1 8.887929904761834e+005 3.555171961904749e+006 1.422068784761895e+007

Ω0,2
2 -2.296880761904731e+005 -9.187523047619022e+005 -3.675009219047592e+006

Ω0,2
3 2.995931428571412e+004 1.198372571428568e+005 4.793490285714257e+005

Ω0,2
4 1.404342857142966e+003 5.617371428571412e+003 2.246948571428614e+004

Table 4: Two term connection at N = 6, d1 = 0, d2 = 2 and different j

j = 0, N = 8 j = 1, N = 8 j = 2, N = 8

Ω0,2
−6 1.592164927486754e-005 6.368659709865587e-005 2.547463883897427e-004

Ω0,2
−5 -1.630376885702075e-003 -6.521507542809107e-003 -2.608603017123232e-002

Ω0,2
−4 -1.057272777801076e-002 -4.229091111203748e-002 -1.691636444481578e-001

Ω0,2
−3 1.509728996160295e-001 6.038915984641060e-001 2.415566393856457e+000

Ω0,2
−2 -6.978691043580259e-001 -2.791476417432023e+000 -1.116590566972836e+001

Ω0,2
−1 2.642070208104647e+000 1.056828083241845e+001 4.227312332967440e+001

Ω0,2
0 -4.165973640696393e+000 -1.666389456278559e+001 -6.665557825114267e+001

Ω0,2
1 2.642070208104588e+000 1.056828083241853e+001 4.227312332967385e+001

Ω0,2
2 -6.978691043579955e-001 -2.791476417432061e+000 -1.116590566972809e+001

Ω0,2
3 1.509728996160251e-001 6.038915984641088e-001 2.415566393856425e+000

Ω0,2
4 -1.057272777800908e-002 -4.229091111203711e-002 -1.691636444481482e-001

Ω0,2
5 -1.630376885702051e-003 -6.521507542809029e-003 -2.608603017123440e-002

Ω0,2
6 1.592164927491819e-005 6.368659709770528e-005 2.547463883940679e-004

Table 5: Two term connection at N = 8, d1 = 0, d2 = 2 and different j
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j = 3, N = 8 j = 4, N = 8 j = 5, N = 8

Ω0,2
−6 1.018985553571927e-003 4.075942214264236e-003 1.630376885708006e-002

Ω0,2
−5 -1.043441206849605e-001 -4.173764827397488e-001 -1.669505930959118e+000

Ω0,2
−4 -6.766545777925135e-001 -2.706618311170434e+000 -1.082647324468204e+001

Ω0,2
−3 9.662265575425584e+000 3.864906230170310e+001 1.545962492068136e+002

Ω0,2
−2 -4.466362267891171e+001 -1.786544907156519e+002 -7.146179628626170e+002

Ω0,2
−1 1.690924933186943e+002 6.763699732747868e+002 2.705479893099166e+003

Ω0,2
0 -2.666223130045711e+002 -1.066489252018283e+003 -4.265957008073134e+003

Ω0,2
1 1.690924933186991e+002 6.763699732747851e+002 2.705479893099126e+003

Ω0,2
2 -4.466362267891412e+001 -1.786544907156511e+002 -7.146179628625968e+002

Ω0,2
3 9.662265575425868e+000 3.864906230170296e+001 1.545962492068111e+002

Ω0,2
4 -6.766545777926012e-001 -2.706618311170378e+000 -1.082647324468142e+001

Ω0,2
5 -1.043441206849559e-001 -4.173764827397630e-001 -1.669505930958990e+000

Ω0,2
6 1.018985553548858e-003 4.075942214262211e-003 1.630376885715088e-002

Table 6: Two term connection at N = 8, d1 = 0, d2 = 2 and different j

j = 6, N = 8 j = 7, N = 8 j = 8, N = 8

Ω0,2
−6 6.521507542830642e-002 2.608603017129146e-001 1.043441206855564e+000

Ω0,2
−5 -6.678023723836140e+000 -2.671209489534182e+001 -1.068483795813761e+002

Ω0,2
−4 -4.330589297872758e+001 -1.732235719149116e+002 -6.928942876596633e+002

Ω0,2
−3 6.183849968272513e+002 2.473539987308997e+003 9.894159949236040e+003

Ω0,2
−2 -2.858471851450443e+003 -1.143388740580170e+004 -4.573554962320728e+004

Ω0,2
−1 1.082191957239662e+004 4.328767828958627e+004 1.731507131583458e+005

Ω0,2
0 -1.706382803229253e+004 -6.825531212917001e+004 -2.730212485166792e+005

Ω0,2
1 1.082191957239654e+004 4.328767828958623e+004 1.731507131583431e+005

Ω0,2
2 -2.858471851450408e+003 -1.143388740580167e+004 -4.573554962320595e+004

Ω0,2
3 6.183849968272465e+002 2.473539987308988e+003 9.894159949235864e+003

Ω0,2
4 -4.330589297872614e+001 -1.732235719149057e+002 -6.928942876596170e+002

Ω0,2
5 -6.678023723836182e+000 -2.671209489534469e+001 -1.068483795813737e+002

Ω0,2
6 6.521507542837254e-002 2.608603017125445e-001 1.043441206858962e+000

Table 7: Two term connection at N = 8, d1 = 0, d2 = 2 and different j
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j = 9, N = 8 j = 10, N = 8 j = 11, N = 8

Ω0,2
−6 4.173764827425225e+000 1.669505930971174e+001 6.678023723861125e+001

Ω0,2
−5 -4.273935183255965e+002 -1.709574073302103e+003 -6.838296293208365e+003

Ω0,2
−4 -2.771577150638221e+003 -1.108630860255392e+004 -4.434523441021765e+004

Ω0,2
−3 3.957663979694332e+004 1.583065591877754e+005 6.332262367511063e+005

Ω0,2
−2 -1.829421984928236e+005 -7.317687939713063e+005 -2.927075175885267e+006

Ω0,2
−1 6.926028526333740e+005 2.770411410533518e+006 1.108164564213415e+007

Ω0,2
0 -1.092084994066722e+006 -4.368339976266882e+006 -1.747335990506750e+007

Ω0,2
1 6.926028526333884e+005 2.770411410533526e+006 1.108164564213399e+007

Ω0,2
2 -1.829421984928308e+005 -7.317687939713104e+005 -2.927075175885189e+006

Ω0,2
3 3.957663979694424e+004 1.583065591877755e+005 6.332262367510970e+005

Ω0,2
4 -2.771577150638528e+003 -1.108630860255384e+004 -4.434523441021545e+004

Ω0,2
5 -4.273935183255515e+002 -1.709574073302138e+003 -6.838296293208033e+003

Ω0,2
6 4.173764827361305e+000 1.669505930957055e+001 6.678023723903364e+001

Table 8: Two term connection at N = 8, d1 = 0, d2 = 2 and different j
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j = 0, N = 10 j = 1, N = 10 j = 2, N = 10

Ω0,2
−8 3.538762372724263e-009 1.415503991870649e-008 5.662015979006055e-008

Ω0,2
−7 1.656544135415504e-006 6.626176543753997e-006 2.650470617655871e-005

Ω0,2
−6 3.671453838941836e-004 1.468581535579231e-003 5.874326142311675e-003

Ω0,2
−5 7.946205571441002e-004 3.178482228576603e-003 1.271392891430086e-002

Ω0,2
−4 -2.990798043764482e-002 -1.196319217506301e-001 -4.785276870025282e-001

Ω0,2
−3 1.809535500933656e-001 7.238142003736265e-001 2.895256801494564e+000

Ω0,2
−2 -6.495021899805745e-001 -2.598008759923048e+000 -1.039203503969259e+001

Ω0,2
−1 2.414790351192434e+000 9.659161404771346e+000 3.863664561908612e+001

Ω0,2
0 -3.834994313783372e+000 -1.533997725513428e+001 -6.135990902053714e+001

Ω0,2
1 2.414790351193088e+000 9.659161404771760e+000 3.863664561908625e+001

Ω0,2
2 -6.495021899809332e-001 -2.598008759923271e+000 -1.039203503969266e+001

Ω0,2
3 1.809535500934332e-001 7.238142003736624e-001 2.895256801494574e+000

Ω0,2
4 -2.990798043766519e-002 -1.196319217506370e-001 -4.785276870025272e-001

Ω0,2
5 7.946205571434909e-004 3.178482228574532e-003 1.271392891429838e-002

Ω0,2
6 3.671453838939398e-004 1.468581535577375e-003 5.874326142312047e-003

Ω0,2
7 1.656544135440499e-006 6.626176543772582e-006 2.650470617638380e-005

Ω0,2
8 3.538759177639483e-009 1.415503921834577e-008 5.662016104188667e-008

Table 9: Two term connection at N = 10, d1 = 0, d2 = 2 and different j
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j = 3, N = 10 j = 4, N = 10 j = 5, N = 10

Ω0,2
−8 2.264806438372176e-007 9.059225398626676e-007 3.623690337895192e-006

Ω0,2
−7 1.060188247094546e-004 4.240752987948207e-004 1.696301195479521e-003

Ω0,2
−6 2.349730456924624e-002 9.398921827703768e-002 3.759568731075404e-001

Ω0,2
−5 5.085571565716359e-002 2.034228626290972e-001 8.136914505139112e-001

Ω0,2
−4 -1.914110748010074e+000 -7.656442992040458e+000 -3.062577196816142e+001

Ω0,2
−3 1.158102720597830e+001 4.632410882391194e+001 1.852964352956579e+002

Ω0,2
−2 -4.156814015877082e+001 -1.662725606350729e+002 -6.650902425403700e+002

Ω0,2
−1 1.545465824763454e+002 6.181863299053630e+002 2.472745319621593e+003

Ω0,2
0 -2.454396360821485e+002 -9.817585443285968e+002 -3.927034177314373e+003

Ω0,2
1 1.545465824763442e+002 6.181863299053988e+002 2.472745319621433e+003

Ω0,2
2 -4.156814015877019e+001 -1.662725606350923e+002 -6.650902425402835e+002

Ω0,2
3 1.158102720597821e+001 4.632410882391496e+001 1.852964352956441e+002

Ω0,2
4 -1.914110748010080e+000 -7.656442992040895e+000 -3.062577196815917e+001

Ω0,2
5 5.085571565719506e-002 2.034228626287706e-001 8.136914505151182e-001

Ω0,2
6 2.349730456924411e-002 9.398921827694688e-002 3.759568731079856e-001

Ω0,2
7 1.060188247070593e-004 4.240752987864339e-004 1.696301195438063e-003

Ω0,2
8 2.264806433832283e-007 9.059225265746785e-007 3.623690487151188e-006

Table 10: Two term connection at N = 10, d1 = 0, d2 = 2 and different j
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j = 6, N = 10 j = 7, N = 10 j = 8, N = 10

Ω0,2
−8 1.449476095478013e-005 5.797904425998113e-005 2.319161855334121e-004

Ω0,2
−7 6.785204780689570e-003 2.714081912618476e-002 1.085632764907711e-001

Ω0,2
−6 1.503827492434704e+000 6.015309969721770e+000 2.406123987898113e+001

Ω0,2
−5 3.254765802062957e+000 1.301906320824141e+001 5.207625283291282e+001

Ω0,2
−4 -1.225030878726426e+002 -4.900123514905859e+002 -1.960049405962209e+003

Ω0,2
−3 7.411857411825775e+002 2.964742964730459e+003 1.185897185892127e+004

Ω0,2
−2 -2.660360970161092e+003 -1.064144388064541e+004 -4.256577552257807e+004

Ω0,2
−1 9.890981278485660e+003 3.956392511394458e+004 1.582557004557715e+005

Ω0,2
0 -1.570813670925753e+004 -6.283254683703004e+004 -2.513301873481197e+005

Ω0,2
1 9.890981278486488e+003 3.956392511394397e+004 1.582557004557820e+005

Ω0,2
2 -2.660360970161541e+003 -1.064144388064509e+004 -4.256577552258379e+004

Ω0,2
3 7.411857411826508e+002 2.964742964730407e+003 1.185897185892225e+004

Ω0,2
4 -1.225030878726577e+002 -4.900123514905757e+002 -1.960049405962483e+003

Ω0,2
5 3.254765802060289e+000 1.301906320824192e+001 5.207625283296589e+001

Ω0,2
6 1.503827492430988e+000 6.015309969726228e+000 2.406123987889844e+001

Ω0,2
7 6.785204780497495e-003 2.714081912528849e-002 1.085632764891305e-001

Ω0,2
8 1.449476001059264e-005 5.797904514574883e-005 2.319161639579069e-004

Table 11: Two term connection at N = 10, d1 = 0, d2 = 2 and different j
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j = 9, N = 10 j = 10, N = 10 j = 11, N = 10

Ω0,2
−8 9.276646904372849e-004 3.710658850163947e-003 1.484263561211925e-002

Ω0,2
−7 4.342531059812703e-001 1.737012424094660e+000 6.948049696175408e+000

Ω0,2
−6 9.624495951573638e+001 3.849798380619461e+002 1.539919352248286e+003

Ω0,2
−5 2.083050113320538e+002 8.332200453272749e+002 3.332880181307076e+003

Ω0,2
−4 -7.840197623849253e+003 -3.136079049539793e+004 -1.254431619815909e+005

Ω0,2
−3 4.743588743568555e+004 1.897435497427526e+005 7.589741989710131e+005

Ω0,2
−2 -1.702631020903137e+005 -6.810524083613269e+005 -2.724209633445335e+006

Ω0,2
−1 6.330228018230894e+005 2.532091207292494e+006 1.012836482917001e+007

Ω0,2
0 -1.005320749392482e+006 -4.021282997569930e+006 -1.608513199027968e+007

Ω0,2
1 6.330228018231288e+005 2.532091207292382e+006 1.012836482916944e+007

Ω0,2
2 -1.702631020903350e+005 -6.810524083612668e+005 -2.724209633445025e+006

Ω0,2
3 4.743588743568901e+004 1.897435497427429e+005 7.589741989709628e+005

Ω0,2
4 -7.840197623849910e+003 -3.136079049539589e+004 -1.254431619815815e+005

Ω0,2
5 2.083050113318606e+002 8.332200453274910e+002 3.332880181310069e+003

Ω0,2
6 9.624495951559901e+001 3.849798380626097e+002 1.539919352250294e+003

Ω0,2
7 4.342531059587488e-001 1.737012424069827e+000 6.948049696444462e+000

Ω0,2
8 9.276646604721024e-004 3.710658979601785e-003 1.484263606959022e-002

Table 12: Two term connection at N = 10, d1 = 0, d2 = 2 and different j
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j = 0, N = 12 j = 1, N = 12 j = 2, N = 12

Ω0,2
−10 -1.264097876724598e-011 -5.056507963203803e-011 -2.022556636237721e-010

Ω0,2
−9 2.629981104154165e-008 1.051992439199124e-007 4.207969757357792e-007

Ω0,2
−8 -3.466086046077293e-006 -1.386434418283787e-005 -5.545737674116930e-005

Ω0,2
−7 -5.436337907645785e-005 -2.174535163049358e-004 -8.698140652207401e-004

Ω0,2
−6 -6.569629078445609e-005 -2.627851631397719e-004 -1.051140652547745e-003

Ω0,2
−5 6.478061041939686e-003 2.591224416775302e-002 1.036489766710306e-001

Ω0,2
−4 -4.936161063950125e-002 -1.974464425580035e-001 -7.897857702320411e-001

Ω0,2
−3 2.049054694327311e-001 8.196218777309501e-001 3.278487510923756e+000

Ω0,2
−2 -6.307332429629734e-001 -2.522932971852045e+000 -1.009173188740778e+001

Ω0,2
−1 2.311866563670177e+000 9.247466254681022e+000 3.698986501872334e+001

Ω0,2
0 -3.686063482147259e+000 -1.474425392858916e+001 -5.897701571435668e+001

Ω0,2
1 2.311866563670155e+000 9.247466254680465e+000 3.698986501872263e+001

Ω0,2
2 -6.307332429629595e-001 -2.522932971851724e+000 -1.009173188740734e+001

Ω0,2
3 2.049054694327266e-001 8.196218777308840e-001 3.278487510923633e+000

Ω0,2
4 -4.936161063949909e-002 -1.974464425579911e-001 -7.897857702319906e-001

Ω0,2
5 6.478061041939042e-003 2.591224416775772e-002 1.036489766710283e-001

Ω0,2
6 -6.569629078481492e-005 -2.627851631390393e-004 -1.051140652556928e-003

Ω0,2
7 -5.436337907630618e-005 -2.174535163050178e-004 -8.698140652209454e-004

Ω0,2
8 -3.466086045782824e-006 -1.386434418290632e-005 -5.545737673255587e-005

Ω0,2
9 2.629981098109758e-008 1.051992439770264e-007 4.207969755590383e-007

Ω0,2
10 -1.264109848372647e-011 -5.056394558717779e-011 -2.022561442652375e-010

Table 13: Two term connection at N = 12, d1 = 0, d2 = 2 and different j
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j = 3, N = 12 j = 4, N = 12 j = 5, N = 12

Ω0,2
−10 -8.090370440306238e-010 -3.235921798249199e-009 -1.294449946187273e-008

Ω0,2
−9 1.683187899282874e-006 6.732751659830736e-006 2.693100639211662e-005

Ω0,2
−8 -2.218295069247718e-004 -8.873180281702858e-004 -3.549272110902696e-003

Ω0,2
−7 -3.479256260885189e-003 -1.391702504349056e-002 -5.566810017416912e-002

Ω0,2
−6 -4.204562610165038e-003 -1.681825044122728e-002 -6.727300176309307e-002

Ω0,2
−5 4.145959066840249e-001 1.658383626737518e+000 6.633534506945009e+000

Ω0,2
−4 -3.159143080927814e+000 -1.263657232371543e+001 -5.054628929484694e+001

Ω0,2
−3 1.311395004369412e+001 5.245580017478679e+001 2.098232006991118e+002

Ω0,2
−2 -4.036692754962765e+001 -1.614677101985510e+002 -6.458708407940686e+002

Ω0,2
−1 1.479594600748868e+002 5.918378402996212e+002 2.367351361198232e+003

Ω0,2
0 -2.359080628574246e+002 -9.436322514297131e+002 -3.774529005718785e+003

Ω0,2
1 1.479594600748943e+002 5.918378402995226e+002 2.367351361198261e+003

Ω0,2
2 -4.036692754963201e+001 -1.614677101984934e+002 -6.458708407940849e+002

Ω0,2
3 1.311395004369506e+001 5.245580017477295e+001 2.098232006991148e+002

Ω0,2
4 -3.159143080928074e+000 -1.263657232371056e+001 -5.054628929484770e+001

Ω0,2
5 4.145959066840644e-001 1.658383626736738e+000 6.633534506945354e+000

Ω0,2
6 -4.204562610220666e-003 -1.681825044093799e-002 -6.727300176362197e-002

Ω0,2
7 -3.479256260887767e-003 -1.391702504349444e-002 -5.566810017416796e-002

Ω0,2
8 -2.218295069311091e-004 -8.873180276715695e-004 -3.549272110864563e-003

Ω0,2
9 1.683187898198771e-006 6.732751658693551e-006 2.693100643916897e-005

Ω0,2
10 -8.090318943597590e-010 -3.236047377047866e-009 -1.294447589830267e-008

Table 14: Two term connection at N = 12, d1 = 0, d2 = 2 and different j
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j = 6, N = 12 j = 7, N = 12 j = 8, N = 12

Ω0,2
−10 -5.177798005768146e-008 -2.071134660283070e-007 -8.284647747797681e-007

Ω0,2
−9 1.077240255634689e-004 4.308961018884622e-004 1.723584407706808e-003

Ω0,2
−8 -1.419708844297557e-002 -5.678835376430962e-002 -2.271534150343634e-001

Ω0,2
−7 -2.226724006964358e-001 -8.906896027893919e-001 -3.562758411151697e+000

Ω0,2
−6 -2.690920070539038e-001 -1.076368028218255e+000 -4.305472112864513e+000

Ω0,2
−5 2.653413802778020e+001 1.061365521111146e+002 4.245462084443969e+002

Ω0,2
−4 -2.021851571793860e+002 -8.087406287175115e+002 -3.234962514869842e+003

Ω0,2
−3 8.392928027964472e+002 3.357171211185718e+003 1.342868484474241e+004

Ω0,2
−2 -2.583483363176286e+003 -1.033393345270493e+004 -4.133573381081803e+004

Ω0,2
−1 9.469405444792965e+003 3.787762177917145e+004 1.515104871166828e+005

Ω0,2
0 -1.509811602287520e+004 -6.039246409150057e+004 -2.415698563660018e+005

Ω0,2
1 9.469405444793052e+003 3.787762177917239e+004 1.515104871166920e+005

Ω0,2
2 -2.583483363176337e+003 -1.033393345270549e+004 -4.133573381082342e+004

Ω0,2
3 8.392928027964599e+002 3.357171211185867e+003 1.342868484474377e+004

Ω0,2
4 -2.021851571793910e+002 -8.087406287175722e+002 -3.234962514870345e+003

Ω0,2
5 2.653413802778164e+001 1.061365521111244e+002 4.245462084444683e+002

Ω0,2
6 -2.690920070542778e-001 -1.076368028217790e+000 -4.305472112865718e+000

Ω0,2
7 -2.226724006966231e-001 -8.906896027867058e-001 -3.562758411148717e+000

Ω0,2
8 -1.419708844339636e-002 -5.678835377427147e-002 -2.271534150964587e-001

Ω0,2
9 1.077240255873366e-004 4.308961019825347e-004 1.723584405719999e-003

Ω0,2
10 -5.177775730313133e-008 -2.071113334110827e-007 -8.284509886632400e-007

Table 15: Two term connection at N = 12, d1 = 0, d2 = 2 and different j
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j = 9, N = 12 j = 10, N = 12 j = 11, N = 12

Ω0,2
−10 -3.313762787046124e-006 -1.325499511088505e-005 -5.302076941954415e-005

Ω0,2
−9 6.894337644103972e-003 2.757735060343232e-002 1.103094022302312e-001

Ω0,2
−8 -9.086136604628754e-001 -3.634454641732330e+000 -1.453781856576694e+001

Ω0,2
−7 -1.425103364457279e+001 -5.700413457830712e+001 -2.280165383133559e+002

Ω0,2
−6 -1.722188845141308e+001 -6.888755380609204e+001 -2.755502152214489e+002

Ω0,2
−5 1.698184833778097e+003 6.792739335112789e+003 2.717095734044612e+004

Ω0,2
−4 -1.293985005948137e+004 -5.175940023792531e+004 -2.070376009516870e+005

Ω0,2
−3 5.371473937897389e+004 2.148589575158954e+005 8.594358300635415e+005

Ω0,2
−2 -1.653429352432863e+005 -6.613717409731468e+005 -2.645486963892423e+006

Ω0,2
−1 6.060419484667570e+005 2.424167793867029e+006 9.696671175467806e+006

Ω0,2
0 -9.662794254640138e+005 -3.865117701856049e+006 -1.546047080742411e+007

Ω0,2
1 6.060419484667510e+005 2.424167793866993e+006 9.696671175468177e+006

Ω0,2
2 -1.653429352432826e+005 -6.613717409731258e+005 -2.645486963892637e+006

Ω0,2
3 5.371473937897281e+004 2.148589575158902e+005 8.594358300635886e+005

Ω0,2
4 -1.293985005948089e+004 -5.175940023792341e+004 -2.070376009517003e+005

Ω0,2
5 1.698184833778067e+003 6.792739335112339e+003 2.717095734044764e+004

Ω0,2
6 -1.722188845149549e+001 -6.888755380590808e+001 -2.755502152236020e+002

Ω0,2
7 -1.425103364457827e+001 -5.700413457832755e+001 -2.280165383135506e+002

Ω0,2
8 -9.086136603797715e-001 -3.634454641532466e+000 -1.453781856625087e+001

Ω0,2
9 6.894337652143804e-003 2.757735061252992e-002 1.103094020768655e-001

Ω0,2
10 -3.313774710144577e-006 -1.325508314812706e-005 -5.302055374571969e-005

Table 16: Two term connection at N = 12, d1 = 0, d2 = 2 and different j
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j = 0, N = 14 j = 1, N = 14 j = 2, N = 14

Ω0,2
−12 2.003462875478288e-014 7.618350316625926e-014 2.858820963466460e-013

Ω0,2
−11 1.634254355550330e-010 6.537017486924693e-010 2.614810929834814e-009

Ω0,2
−10 2.065484709089308e-009 8.261941195446524e-009 3.304777456916617e-008

Ω0,2
−9 1.486183289949873e-006 5.944733159288970e-006 2.377893264002077e-005

Ω0,2
−8 1.401115549807462e-006 5.604462200919528e-006 2.241784880570807e-005

Ω0,2
−7 4.156644098757038e-005 1.662657639545149e-004 6.650630557927202e-004

Ω0,2
−6 -1.605235464468504e-003 -6.420941857888948e-003 -2.568376743163273e-002

Ω0,2
−5 1.396368919026623e-002 5.585475676107586e-002 2.234190270444499e-001

Ω0,2
−4 -6.705236229077559e-002 -2.682094491631042e-001 -1.072837796652847e+000

Ω0,2
−3 2.233591022278455e-001 8.934364089113975e-001 3.573745635646781e+000

Ω0,2
−2 -6.214976746649311e-001 -2.485990698659797e+000 -9.943962794643531e+000

Ω0,2
−1 2.255045788050212e+000 9.020183152201167e+000 3.608073260881296e+001

Ω0,2
0 -3.604515526034094e+000 -1.441806210413690e+001 -5.767224841655087e+001

Ω0,2
1 2.255045788050778e+000 9.020183152203455e+000 3.608073260880956e+001

Ω0,2
2 -6.214976746652678e-001 -2.485990698661171e+000 -9.943962794641442e+000

Ω0,2
3 2.233591022279253e-001 8.934364089117365e-001 3.573745635646189e+000

Ω0,2
4 -6.705236229079710e-002 -2.682094491631991e-001 -1.072837796652589e+000

Ω0,2
5 1.396368919027134e-002 5.585475676108752e-002 2.234190270443578e-001

Ω0,2
6 -1.605235464477370e-003 -6.420941857909641e-003 -2.568376743161370e-002

Ω0,2
7 4.156644098906695e-005 1.662657639562138e-004 6.650630558251257e-004

Ω0,2
8 1.401115550250582e-006 5.604462200952607e-006 2.241784880614045e-005

Ω0,2
9 1.486183289837643e-006 5.944733159309059e-006 2.377893263959070e-005

Ω0,2
10 2.065485192623341e-009 8.261940622026800e-009 3.304776483630680e-008

Ω0,2
11 1.634254269376621e-010 6.537017414408330e-010 2.614810865017833e-009

Ω0,2
12 1.777667872026136e-014 7.096607082343888e-014 2.876951548315236e-013

Table 17: Two term connection at N = 14, d1 = 0, d2 = 2 and different j
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j = 3, N = 14 j = 4, N = 14 j = 5, N = 14

Ω0,2
−12 1.154082450048948e-012 4.577769708109114e-012 1.834192269131837e-011

Ω0,2
−11 1.045922654362139e-008 4.183695686175578e-008 1.673477785825097e-007

Ω0,2
−10 1.321911088563116e-007 5.287640484921418e-007 2.115056337805130e-006

Ω0,2
−9 9.511573054315589e-005 3.804629222214576e-004 1.521851688849178e-003

Ω0,2
−8 8.967139525743209e-005 3.586855811944848e-004 1.434742325069759e-003

Ω0,2
−7 2.660252223318906e-003 1.064100889327469e-002 4.256403557314682e-002

Ω0,2
−6 -1.027350697264921e-001 -4.109402789059906e-001 -1.643761115623913e+000

Ω0,2
−5 8.936761081774594e-001 3.574704432708721e+000 1.429881773083465e+001

Ω0,2
−4 -4.291351186609631e+000 -1.716540474644068e+001 -6.866161898575710e+001

Ω0,2
−3 1.429498254258224e+001 5.717993017034102e+001 2.287197206813462e+002

Ω0,2
−2 -3.977585117855665e+001 -1.591034047142773e+002 -6.364136188570444e+002

Ω0,2
−1 1.443229304352213e+002 5.772917217409739e+002 2.309166886963776e+003

Ω0,2
0 -2.306889936661977e+002 -9.227559746648044e+002 -3.691023898659174e+003

Ω0,2
1 1.443229304352618e+002 5.772917217409738e+002 2.309166886963963e+003

Ω0,2
2 -3.977585117858114e+001 -1.591034047142778e+002 -6.364136188571611e+002

Ω0,2
3 1.429498254258853e+001 5.717993017034251e+001 2.287197206813821e+002

Ω0,2
4 -4.291351186611410e+000 -1.716540474644241e+001 -6.866161898577295e+001

Ω0,2
5 8.936761081774295e-001 3.574704432709711e+000 1.429881773083878e+001

Ω0,2
6 -1.027350697265636e-001 -4.109402789059335e-001 -1.643761115623996e+000

Ω0,2
7 2.660252223299098e-003 1.064100889320341e-002 4.256403557277424e-002

Ω0,2
8 8.967139521364732e-005 3.586855808967927e-004 1.434742323553625e-003

Ω0,2
9 9.511573054646635e-005 3.804629222224450e-004 1.521851688826565e-003

Ω0,2
10 1.321910506251359e-007 5.287642447179209e-007 2.115056935526588e-006

Ω0,2
11 1.045922682805499e-008 4.183695492490508e-008 1.673477861419150e-007

Ω0,2
12 1.136419647863200e-012 4.605273840114645e-012 1.836439044732966e-011

Table 18: Two term connection at N = 14, d1 = 0, d2 = 2 and different j
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j = 6, N = 14 j = 7, N = 14 j = 8, N = 14

Ω0,2
−12 7.343895836829572e-011 2.936802453332225e-010 1.175793956651511e-009

Ω0,2
−11 6.693921970241139e-007 2.677565768408699e-006 1.071026613620596e-005

Ω0,2
−10 8.460223699413345e-006 3.384090091004247e-005 1.353636072980174e-004

Ω0,2
−9 6.087406756037182e-003 2.434962702215654e-002 9.739850809027002e-002

Ω0,2
−8 5.738969292708812e-003 2.295587719035902e-002 9.182350873920780e-002

Ω0,2
−7 1.702561422902897e-001 6.810245691671077e-001 2.724098276660951e+000

Ω0,2
−6 -6.575044462493648e+000 -2.630017784997982e+001 -1.052007113999123e+002

Ω0,2
−5 5.719527092334836e+001 2.287810836933717e+002 9.151243347735485e+002

Ω0,2
−4 -2.746464759431456e+002 -1.098585903772256e+003 -4.394343615089313e+003

Ω0,2
−3 9.148788827257300e+002 3.659515530901930e+003 1.463806212360844e+004

Ω0,2
−2 -2.545654475429403e+003 -1.018261790171407e+004 -4.073047160685860e+004

Ω0,2
−1 9.236667547857247e+003 3.694667019142275e+004 1.477866807656956e+005

Ω0,2
0 -1.476409559463712e+004 -5.905638237854715e+004 -2.362255295141910e+005

Ω0,2
1 9.236667547854233e+003 3.694667019142155e+004 1.477866807656845e+005

Ω0,2
2 -2.545654475427582e+003 -1.018261790171337e+004 -4.073047160685201e+004

Ω0,2
3 9.148788827252663e+002 3.659515530901813e+003 1.463806212360692e+004

Ω0,2
4 -2.746464759430191e+002 -1.098585903772284e+003 -4.394343615089056e+003

Ω0,2
5 5.719527092335471e+001 2.287810836934194e+002 9.151243347736851e+002

Ω0,2
6 -6.575044462488378e+000 -2.630017784997643e+001 -1.052007113998908e+002

Ω0,2
7 1.702561422913951e-001 6.810245691654139e-001 2.724098276660222e+000

Ω0,2
8 5.738969294964641e-003 2.295587717712905e-002 9.182350870757253e-002

Ω0,2
9 6.087406756104002e-003 2.434962702255506e-002 9.739850809182690e-002

Ω0,2
10 8.460228615856428e-006 3.384091193019296e-005 1.353636486489300e-004

Ω0,2
11 6.693921807045750e-007 2.677565370708196e-006 1.071026410582643e-005

Ω0,2
12 7.480789131216059e-011 2.953386307471755e-010 1.183922637664226e-009

Table 19: Two term connection at N = 14, d1 = 0, d2 = 2 and different j
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j = 9, N = 14 j = 10, N = 14 j = 11, N = 14

Ω0,2
−12 4.695620124341847e-009 1.885291117920846e-008 7.519061383690603e-008

Ω0,2
−11 4.284106490153028e-005 1.713640117304137e-004 6.854569144629773e-004

Ω0,2
−10 5.414543635458626e-004 2.165818547071371e-003 8.663270441031195e-003

Ω0,2
−9 3.895940323715649e-001 1.558376129322234e+000 6.233504517948456e+000

Ω0,2
−8 3.672940349639070e-001 1.469176140297406e+000 5.876704559668548e+000

Ω0,2
−7 1.089639310664806e+001 4.358557242690666e+001 1.743422897063438e+002

Ω0,2
−6 -4.208028455996761e+002 -1.683211382398976e+003 -6.732845529594937e+003

Ω0,2
−5 3.660497339094018e+003 1.464198935637764e+004 5.856795742550541e+004

Ω0,2
−4 -1.757737446035789e+004 -7.030949784141364e+004 -2.812379913657155e+005

Ω0,2
−3 5.855224849443671e+004 2.342089939776810e+005 9.368359759109465e+005

Ω0,2
−2 -1.629218864274463e+005 -6.516875457095336e+005 -2.606750182838986e+006

Ω0,2
−1 5.911467230628029e+005 2.364586892250772e+006 9.458347569004558e+006

Ω0,2
0 -9.449021180567668e+005 -3.779608472226996e+006 -1.511843388890816e+007

Ω0,2
1 5.911467230627207e+005 2.364586892251235e+006 9.458347569003698e+006

Ω0,2
2 -1.629218864273970e+005 -6.516875457098145e+005 -2.606750182838473e+006

Ω0,2
3 5.855224849442493e+004 2.342089939777558e+005 9.368359759108279e+005

Ω0,2
4 -1.757737446035539e+004 -7.030949784143725e+004 -2.812379913656950e+005

Ω0,2
5 3.660497339094717e+003 1.464198935637901e+004 5.856795742551587e+004

Ω0,2
6 -4.208028455994950e+002 -1.683211382399622e+003 -6.732845529592935e+003

Ω0,2
7 1.089639310664794e+001 4.358557242651029e+001 1.743422897063545e+002

Ω0,2
8 3.672940348553743e-001 1.469176139264744e+000 5.876704557400261e+000

Ω0,2
9 3.895940323723735e-001 1.558376129313524e+000 6.233504517937830e+000

Ω0,2
10 5.414546042618743e-004 2.165818228533662e-003 8.663273622172268e-003

Ω0,2
11 4.284106484763625e-005 1.713640441711847e-004 6.854569232499823e-004

Ω0,2
12 4.747546607506164e-009 1.869653425815363e-008 7.578033373943364e-008

Table 20: Two term connection at N = 14, d1 = 0, d2 = 2 and different j
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j = 0, N = 16 j = 1, N = 16 j = 2, N = 16

Ω0,2
−14 -1.148024275421403e-015 9.259482049878509e-017 1.423856581191772e-015

Ω0,2
−13 2.709917921565594e-013 1.083063162907301e-012 4.332294476795473e-012

Ω0,2
−12 -5.813834711638026e-011 -2.325549267994774e-010 -9.302198506703989e-010

Ω0,2
−11 -1.058570541219077e-008 -4.234282226909658e-008 -1.693712895251933e-007

Ω0,2
−10 -3.723076306330369e-007 -1.489230520877817e-006 -5.956922090640851e-006

Ω0,2
−9 2.090423495448280e-006 8.361693980982877e-006 3.344677592465187e-005

Ω0,2
−8 -2.398228524608487e-005 -9.592914097935484e-005 -3.837165639121684e-004

Ω0,2
−7 4.516792028712516e-004 1.806716811499788e-003 7.226867246003963e-003

Ω0,2
−6 -4.097656893425651e-003 -1.639062757370445e-002 -6.556251029481604e-002

Ω0,2
−5 2.207029188483285e-002 8.828116753928755e-002 3.531246701571179e-001

Ω0,2
−4 -8.226639997426313e-002 -3.290655998968139e-001 -1.316262399587235e+000

Ω0,2
−3 2.371780582155096e-001 9.487122328614122e-001 3.794848931445703e+000

Ω0,2
−2 -6.156141465574054e-001 -2.462456586227665e+000 -9.849826344910953e+000

Ω0,2
−1 2.219146593891828e+000 8.876586375563809e+000 3.550634550225573e+001

Ω0,2
0 -3.553692289913436e+000 -1.421476915965254e+001 -5.685907663861011e+001

Ω0,2
1 2.219146593890713e+000 8.876586375564839e+000 3.550634550225886e+001

Ω0,2
2 -6.156141465566998e-001 -2.462456586228314e+000 -9.849826344912939e+000

Ω0,2
3 2.371780582152939e-001 9.487122328616032e-001 3.794848931446319e+000

Ω0,2
4 -8.226639997418213e-002 -3.290655998968780e-001 -1.316262399587475e+000

Ω0,2
5 2.207029188481781e-002 8.828116753929494e-002 3.531246701571725e-001

Ω0,2
6 -4.097656893423902e-003 -1.639062757370759e-002 -6.556251029482763e-002

Ω0,2
7 4.516792028764111e-004 1.806716811498624e-003 7.226867245996593e-003

Ω0,2
8 -2.398228524510812e-005 -9.592914098033821e-005 -3.837165639207784e-004

Ω0,2
9 2.090423495429467e-006 8.361693981091696e-006 3.344677592417852e-005

Ω0,2
10 -3.723076303519969e-007 -1.489230521936113e-006 -5.956922087642646e-006

Ω0,2
11 -1.058570538606602e-008 -4.234282230700323e-008 -1.693712891459849e-007

Ω0,2
12 -5.813861165777252e-011 -2.325552130724581e-010 -9.302216554492291e-010

Ω0,2
13 2.710265897197415e-013 1.083047560804446e-012 4.332824906909346e-012

Ω0,2
14 2.354102626208739e-016 -1.428257943608805e-016 -1.073286815161846e-015

Table 21: Two term connection at N = 16, d1 = 0, d2 = 2 and different j
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j = 3, N = 16 j = 4, N = 16 j = 5, N = 16

Ω0,2
−14 -6.430865232832079e-015 1.897813205243266e-014 -1.421520082319231e-014

Ω0,2
−13 1.733011347277772e-011 6.932382510470170e-011 2.772514675785338e-010

Ω0,2
−12 -3.720875252483431e-009 -1.488353836402891e-008 -5.953444351341502e-008

Ω0,2
−11 -6.774851549268767e-007 -2.709940618597296e-006 -1.083976250349363e-005

Ω0,2
−10 -2.382768837599288e-005 -9.531075357703401e-005 -3.812430128467083e-004

Ω0,2
−9 1.337871036988788e-004 5.351484147965492e-004 2.140593659131520e-003

Ω0,2
−8 -1.534866255634000e-003 -6.139465022574630e-003 -2.455786009083434e-002

Ω0,2
−7 2.890746898397288e-002 1.156298759360733e-001 4.625195037439536e-001

Ω0,2
−6 -2.622500411792560e-001 -1.049000164717136e+000 -4.196000658870219e+000

Ω0,2
−5 1.412498680628531e+000 5.649994722513906e+000 2.259997889006128e+001

Ω0,2
−4 -5.265049598349354e+000 -2.106019839339830e+001 -8.424079357359062e+001

Ω0,2
−3 1.517939572578404e+001 6.071758290314003e+001 2.428703316125345e+002

Ω0,2
−2 -3.939930537964776e+001 -1.575972215186051e+002 -6.303888860743228e+002

Ω0,2
−1 1.420253820090306e+002 5.681015280361482e+002 2.272406112144414e+003

Ω0,2
0 -2.274363065544447e+002 -9.097452262177873e+002 -3.638980904871088e+003

Ω0,2
1 1.420253820090329e+002 5.681015280361170e+002 2.272406112144568e+003

Ω0,2
2 -3.939930537964922e+001 -1.575972215185858e+002 -6.303888860744203e+002

Ω0,2
3 1.517939572578460e+001 6.071758290313523e+001 2.428703316125626e+002

Ω0,2
4 -5.265049598349678e+000 -2.106019839339759e+001 -8.424079357359798e+001

Ω0,2
5 1.412498680628661e+000 5.649994722514461e+000 2.259997889005910e+001

Ω0,2
6 -2.622500411792894e-001 -1.049000164717085e+000 -4.196000658868997e+000

Ω0,2
7 2.890746898399916e-002 1.156298759360413e-001 4.625195037438571e-001

Ω0,2
8 -1.534866255685811e-003 -6.139465022738140e-003 -2.455786009098188e-002

Ω0,2
9 1.337871036980203e-004 5.351484148009024e-004 2.140593659174635e-003

Ω0,2
10 -2.382768835027504e-005 -9.531075340004174e-005 -3.812430136155573e-004

Ω0,2
11 -6.774851551344431e-007 -2.709940616914608e-006 -1.083976250707321e-005

Ω0,2
12 -3.720883006473321e-009 -1.488352700342403e-008 -5.953416982463951e-008

Ω0,2
13 1.733114870963507e-011 6.933016894667235e-011 2.772693901509178e-010

Ω0,2
14 -9.863396946603916e-017 3.929253139294437e-015 -3.462184090075471e-014

Table 22: Two term connection at N = 16, d1 = 0, d2 = 2 and different j
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j = 6, N = 16 j = 7, N = 16 j = 8, N = 16

Ω0,2
−14 -2.643303228421481e-013 -2.214815803650501e-013 -1.104271249411186e-012

Ω0,2
−13 1.109179004604097e-009 4.436836856803815e-009 1.774416780106512e-008

Ω0,2
−12 -2.381359513091238e-007 -9.525463495315582e-007 -3.810194604444282e-006

Ω0,2
−11 -4.335904993721131e-005 -1.734361998399463e-004 -6.937448008868793e-004

Ω0,2
−10 -1.524972051988884e-003 -6.099888213422666e-003 -2.439955285757138e-002

Ω0,2
−9 8.562374636624036e-003 3.424949854722228e-002 1.369979941849385e-001

Ω0,2
−8 -9.823144036782526e-002 -3.929257614609567e-001 -1.571703045789018e+000

Ω0,2
−7 1.850078014975232e+000 7.400312059904473e+000 2.960124823961027e+001

Ω0,2
−6 -1.678400263547242e+001 -6.713601054189937e+001 -2.685440421676483e+002

Ω0,2
−5 9.039991556024404e+001 3.615996622409519e+002 1.446398648963774e+003

Ω0,2
−4 -3.369631742943917e+002 -1.347852697177512e+003 -5.391410788709776e+003

Ω0,2
−3 9.714813264502061e+002 3.885925305800781e+003 1.554370122320259e+004

Ω0,2
−2 -2.521555544297473e+003 -1.008622217718989e+004 -4.034488870875826e+004

Ω0,2
−1 9.089624448577923e+003 3.635849779431179e+004 1.454339911772456e+005

Ω0,2
0 -1.455592361948433e+004 -5.822369447793745e+004 -2.328947779117510e+005

Ω0,2
1 9.089624448577995e+003 3.635849779431208e+004 1.454339911772511e+005

Ω0,2
2 -2.521555544297512e+003 -1.008622217719007e+004 -4.034488870876178e+004

Ω0,2
3 9.714813264502005e+002 3.885925305800811e+003 1.554370122320371e+004

Ω0,2
4 -3.369631742943744e+002 -1.347852697177499e+003 -5.391410788710167e+003

Ω0,2
5 9.039991556023291e+001 3.615996622409337e+002 1.446398648963758e+003

Ω0,2
6 -1.678400263547400e+001 -6.713601054189819e+001 -2.685440421675962e+002

Ω0,2
7 1.850078014975881e+000 7.400312059904264e+000 2.960124823960967e+001

Ω0,2
8 -9.823144036392971e-002 -3.929257614552836e-001 -1.571703045824285e+000

Ω0,2
9 8.562374636688602e-003 3.424949854686245e-002 1.369979941875777e-001

Ω0,2
10 -1.524972054454305e-003 -6.099888217548274e-003 -2.439955287258221e-002

Ω0,2
11 -4.335904994497258e-005 -1.734361998786672e-004 -6.937447998477694e-004

Ω0,2
12 -2.381364777395823e-007 -9.525460875436087e-007 -3.810184513151683e-006

Ω0,2
13 1.109239707299676e-009 4.436563873418627e-009 1.774757790238731e-008

Ω0,2
14 -1.019233313044627e-013 -2.405024925524931e-014 -2.790263323189326e-012

Table 23: Two term connection at N = 16, d1 = 0, d2 = 2 and different j
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j = 9, N = 16 j = 10, N = 16 j = 11, N = 16

Ω0,2
−14 7.551037005846955e-012 -2.920170671107247e-011 -1.290348394267641e-010

Ω0,2
−13 7.098787147611045e-008 2.839180552136943e-007 1.135726982016560e-006

Ω0,2
−12 -1.524075800899198e-005 -6.096313414043894e-005 -2.438515059316123e-004

Ω0,2
−11 -2.774979195702157e-003 -1.109991679168744e-002 -4.439966710182935e-002

Ω0,2
−10 -9.759821155684499e-002 -3.903928455658621e-001 -1.561571382373987e+000

Ω0,2
−9 5.479919767425753e-001 2.191967907017031e+000 8.767871627843451e+000

Ω0,2
−8 -6.286812183180321e+000 -2.514724873288658e+001 -1.005889949340979e+002

Ω0,2
−7 1.184049929584994e+002 4.736199718337545e+002 1.894479887334948e+003

Ω0,2
−6 -1.074176168670433e+003 -4.296704674682432e+003 -1.718681869872476e+004

Ω0,2
−5 5.785594595854648e+003 2.314237838342118e+004 9.256951353368387e+004

Ω0,2
−4 -2.156564315483984e+004 -8.626257261935688e+004 -3.450502904774413e+005

Ω0,2
−3 6.217480489281385e+004 2.486992195712398e+005 9.947968782849874e+005

Ω0,2
−2 -1.613795548350452e+005 -6.455182193401243e+005 -2.582072877360562e+006

Ω0,2
−1 5.817359647090040e+005 2.326943858835907e+006 9.307775435343744e+006

Ω0,2
0 -9.315791116470114e+005 -3.726316446587991e+006 -1.490526578635202e+007

Ω0,2
1 5.817359647089910e+005 2.326943858836005e+006 9.307775435343994e+006

Ω0,2
2 -1.613795548350372e+005 -6.455182193401873e+005 -2.582072877360716e+006

Ω0,2
3 6.217480489281201e+004 2.486992195712584e+005 9.947968782850248e+005

Ω0,2
4 -2.156564315483968e+004 -8.626257261936225e+004 -3.450502904774463e+005

Ω0,2
5 5.785594595854924e+003 2.314237838342007e+004 9.256951353368003e+004

Ω0,2
6 -1.074176168670345e+003 -4.296704674681576e+003 -1.718681869872648e+004

Ω0,2
7 1.184049929584814e+002 4.736199718337445e+002 1.894479887335277e+003

Ω0,2
8 -6.286812183284223e+000 -2.514724873312776e+001 -1.005889949326440e+002

Ω0,2
9 5.479919767545959e-001 2.191967906991213e+000 8.767871627961164e+000

Ω0,2
10 -9.759821147940240e-002 -3.903928459566537e-001 -1.561571383746130e+000

Ω0,2
11 -2.774979194170024e-003 -1.109991679492958e-002 -4.439966718504985e-002

Ω0,2
12 -1.524073472109326e-005 -6.096293772827238e-005 -2.438518747931637e-004

Ω0,2
13 7.098790053280857e-008 2.839094051733652e-007 1.135756450302380e-006

Ω0,2
14 1.177418225985876e-012 -1.559153055245662e-011 -5.949704395952573e-011

Table 24: Two term connection at N = 16, d1 = 0, d2 = 2 and different j
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j = 0, N = 6 j = 1, N = 6 j = 2, N = 6

Ω0,1
−4 -3.424657534244847e-004 -6.849315068494171e-004 -1.369863013698808e-003

Ω0,1
−3 -1.461187214611888e-002 -2.922374429223750e-002 -5.844748858447520e-002

Ω0,1
−2 1.452054794520550e-001 2.904109589041092e-001 5.808219178082186e-001

Ω0,1
−1 -7.452054794520550e-001 -1.490410958904109e+000 -2.980821917808222e+000

Ω0,1
0 -2.580266458986246e-015 1.269579863612015e-015 1.170252996448804e-014

Ω0,1
1 7.452054794520563e-001 1.490410958904108e+000 2.980821917808211e+000

Ω0,1
2 -1.452054794520550e-001 -2.904109589041092e-001 -5.808219178082179e-001

Ω0,1
3 1.461187214611873e-002 2.922374429223722e-002 5.844748858447472e-002

Ω0,1
4 3.424657534247128e-004 6.849315068494664e-004 1.369863013698641e-003

Table 25: Two term connection at N = 6, d1 = 0, d2 = 1 and different j

j = 3, N = 6 j = 4, N = 6 j = 5, N = 6

Ω0,1
−4 -2.739726027397891e-003 -5.479452054795143e-003 -1.095890410959065e-002

Ω0,1
−3 -1.168949771689486e-001 -2.337899543379004e-001 -4.675799086757952e-001

Ω0,1
−2 1.161643835616436e+000 2.323287671232873e+000 4.646575342465741e+000

Ω0,1
−1 -5.961643835616424e+000 -1.192328767123287e+001 -2.384657534246569e+001

Ω0,1
0 -1.499004750799484e-014 2.227680767978787e-014 -5.179881449458651e-014

Ω0,1
1 5.961643835616441e+000 1.192328767123285e+001 2.384657534246574e+001

Ω0,1
2 -1.161643835616437e+000 -2.323287671232870e+000 -4.646575342465746e+000

Ω0,1
3 1.168949771689510e-001 2.337899543378956e-001 4.675799086758059e-001

Ω0,1
4 2.739726027397371e-003 5.479452054797154e-003 1.095890410958777e-002

Table 26: Two term connection at N = 6, d1 = 0, d2 = 1 and different j
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j = 6, N = 6 j = 7, N = 6 j = 8, N = 6

Ω0,1
−4 -2.191780821917990e-002 -4.383561643836622e-002 -8.767123287674131e-002

Ω0,1
−3 -9.351598173516031e-001 -1.870319634703213e+000 -3.740639269406386e+000

Ω0,1
−2 9.293150684931502e+000 1.858630136986300e+001 3.717260273972597e+001

Ω0,1
−1 -4.769315068493156e+001 -9.538630136986313e+001 -1.907726027397260e+002

Ω0,1
0 1.400247505457093e-013 3.523867193710038e-013 1.842622247494781e-013

Ω0,1
1 4.769315068493143e+001 9.538630136986282e+001 1.907726027397259e+002

Ω0,1
2 -9.293150684931497e+000 -1.858630136986299e+001 -3.717260273972601e+001

Ω0,1
3 9.351598173516045e-001 1.870319634703193e+000 3.740639269406429e+000

Ω0,1
4 2.191780821917412e-002 4.383561643835246e-002 8.767123287669129e-002

Table 27: Two term connection at N = 6, d1 = 0, d2 = 1 and different j

j = 9, N = 6 j = 10, N = 6 j = 11, N = 6

Ω0,1
−4 -1.753424657534592e-001 -3.506849315068540e-001 -7.013698630137928e-001

Ω0,1
−3 -7.481278538812837e+000 -1.496255707762563e+001 -2.992511415525104e+001

Ω0,1
−2 7.434520547945201e+001 1.486904109589039e+002 2.973808219178075e+002

Ω0,1
−1 -3.815452054794526e+002 -7.630904109589034e+002 -1.526180821917806e+003

Ω0,1
0 1.577602130184808e-012 2.530817623787548e-013 1.386710361021475e-012

Ω0,1
1 3.815452054794512e+002 7.630904109589035e+002 1.526180821917805e+003

Ω0,1
2 -7.434520547945193e+001 -1.486904109589038e+002 -2.973808219178076e+002

Ω0,1
3 7.481278538812731e+000 1.496255707762548e+001 2.992511415525115e+001

Ω0,1
4 1.753424657534483e-001 3.506849315069668e-001 7.013698630137033e-001

Table 28: Two term connection at N = 6, d1 = 0, d2 = 1 and different j
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j = 0, N = 8 j = 1, N = 8 j = 2, N = 8

Ω0,1
−6 -8.408505370743570e-007 -1.681701074185182e-006 -3.363402148587037e-006

Ω0,1
−5 1.722061900053109e-004 3.444123800106526e-004 6.888247600212938e-004

Ω0,1
−4 2.224049670722979e-003 4.448099341445886e-003 8.896198682891706e-003

Ω0,1
−3 -3.358020705103609e-002 -6.716041410207226e-002 -1.343208282041450e-001

Ω0,1
−2 1.919989707989422e-001 3.839979415978848e-001 7.679958831957694e-001

Ω0,1
−1 -7.930095049744685e-001 -1.586019009948939e+000 -3.172038019897884e+000

Ω0,1
0 -5.526808655122328e-015 -9.499709280070580e-015 -2.882319835704930e-015

Ω0,1
1 7.930095049744733e-001 1.586019009948947e+000 3.172038019897884e+000

Ω0,1
2 -1.919989707989423e-001 -3.839979415978851e-001 -7.679958831957692e-001

Ω0,1
3 3.358020705103645e-002 6.716041410207291e-002 1.343208282041452e-001

Ω0,1
4 -2.224049670722941e-003 -4.448099341445797e-003 -8.896198682891706e-003

Ω0,1
5 -1.722061900050692e-004 -3.444123800105677e-004 -6.888247600212200e-004

Ω0,1
6 8.408505370934272e-007 1.681701074416322e-006 3.363402148683573e-006

Table 29: Two term connection at N = 8, d1 = 0, d2 = 1 and different j

j = 3, N = 8 j = 4, N = 8 j = 5, N = 8

Ω0,1
−6 -6.726804297145255e-006 -1.345360859426572e-005 -2.690721718865060e-005

Ω0,1
−5 1.377649520042688e-003 2.755299040085112e-003 5.510598080170548e-003

Ω0,1
−4 1.779239736578324e-002 3.558479473156773e-002 7.116958946313103e-002

Ω0,1
−3 -2.686416564082901e-001 -5.372833128165802e-001 -1.074566625633161e+000

Ω0,1
−2 1.535991766391540e+000 3.071983532783081e+000 6.143967065566161e+000

Ω0,1
−1 -6.344076039795772e+000 -1.268815207959155e+001 -2.537630415918313e+001

Ω0,1
0 -3.680793296229343e-015 9.973476745655034e-015 4.244684391948051e-014

Ω0,1
1 6.344076039795776e+000 1.268815207959154e+001 2.537630415918308e+001

Ω0,1
2 -1.535991766391540e+000 -3.071983532783079e+000 -6.143967065566161e+000

Ω0,1
3 2.686416564082905e-001 5.372833128165800e-001 1.074566625633159e+000

Ω0,1
4 -1.779239736578353e-002 -3.558479473156664e-002 -7.116958946313297e-002

Ω0,1
5 -1.377649520042484e-003 -2.755299040084932e-003 -5.510598080170267e-003

Ω0,1
6 6.726804297206082e-006 1.345360859416071e-005 2.690721718766981e-005

Table 30: Two term connection at N = 8, d1 = 0, d2 = 1 and different j
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j = 6, N = 8 j = 7, N = 8 j = 8, N = 8

Ω0,1
−6 -5.381443437637813e-005 -1.076288687547044e-004 -2.152577375128900e-004

Ω0,1
−5 1.102119616034110e-002 2.204239232067915e-002 4.408478464136526e-002

Ω0,1
−4 1.423391789262624e-001 2.846783578525270e-001 5.693567157050568e-001

Ω0,1
−3 -2.149133251266320e+000 -4.298266502532643e+000 -8.596533005065291e+000

Ω0,1
−2 1.228793413113231e+001 2.457586826226461e+001 4.915173652452928e+001

Ω0,1
−1 -5.075260831836621e+001 -1.015052166367323e+002 -2.030104332734649e+002

Ω0,1
0 9.279286054895763e-014 4.780816005404218e-014 1.111912956398615e-013

Ω0,1
1 5.075260831836612e+001 1.015052166367323e+002 2.030104332734646e+002

Ω0,1
2 -1.228793413113231e+001 -2.457586826226463e+001 -4.915173652452927e+001

Ω0,1
3 2.149133251266317e+000 4.298266502532641e+000 8.596533005065284e+000

Ω0,1
4 -1.423391789262668e-001 -2.846783578525379e-001 -5.693567157050737e-001

Ω0,1
5 -1.102119616033992e-002 -2.204239232067903e-002 -4.408478464136004e-002

Ω0,1
6 5.381443437562496e-005 1.076288687544133e-004 2.152577375080155e-004

Table 31: Two term connection at N = 8, d1 = 0, d2 = 1 and different j

j = 9, N = 8 j = 10, N = 8 j = 11, N = 8

Ω0,1
−6 -4.305154750201835e-004 -8.610309500378567e-004 -1.722061900081141e-003

Ω0,1
−5 8.816956928271635e-002 1.763391385654493e-001 3.526782771308876e-001

Ω0,1
−4 1.138713431410138e+000 2.277426862820325e+000 4.554853725640538e+000

Ω0,1
−3 -1.719306601013058e+001 -3.438613202026111e+001 -6.877226404052226e+001

Ω0,1
−2 9.830347304905857e+001 1.966069460981170e+002 3.932138921962338e+002

Ω0,1
−1 -4.060208665469297e+002 -8.120417330938581e+002 -1.624083466187717e+003

Ω0,1
0 4.865058701158801e-013 -5.284185955124391e-013 -4.225487654003048e-013

Ω0,1
1 4.060208665469291e+002 8.120417330938589e+002 1.624083466187717e+003

Ω0,1
2 -9.830347304905855e+001 -1.966069460981170e+002 -3.932138921962340e+002

Ω0,1
3 1.719306601013055e+001 3.438613202026117e+001 6.877226404052229e+001

Ω0,1
4 -1.138713431410146e+000 -2.277426862820293e+000 -4.554853725640611e+000

Ω0,1
5 -8.816956928271781e-002 -1.763391385654292e-001 -3.526782771308567e-001

Ω0,1
6 4.305154750139888e-004 8.610309500521470e-004 1.722061900075186e-003

Table 32: Two term connection at N = 8, d1 = 0, d2 = 1 and different j
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j = 0, N = 10 j = 1, N = 10 j = 2, N = 10

Ω0,1
−8 -2.696049513624955e-010 -5.392095888751848e-010 -1.078419669048528e-009

Ω0,1
−7 -2.524117113307028e-007 -5.048234227969769e-007 -1.009646845024442e-006

Ω0,1
−6 -5.404730164465636e-005 -1.080946032895173e-004 -2.161892065789329e-004

Ω0,1
−5 -2.392358200238082e-004 -4.784716400478805e-004 -9.569432800979131e-004

Ω0,1
−4 7.461396365775579e-003 1.492279273155188e-002 2.984558546310373e-002

Ω0,1
−3 -5.335257193267418e-002 -1.067051438653493e-001 -2.134102877307007e-001

Ω0,1
−2 2.288201870669558e-001 4.576403741339125e-001 9.152807482678232e-001

Ω0,1
−1 -8.259060118501859e-001 -1.651812023700376e+000 -3.303624047400773e+000

Ω0,1
0 2.062032995977524e-017 5.850954037754273e-015 8.066416953436720e-014

Ω0,1
1 8.259060118501861e-001 1.651812023700371e+000 3.303624047400705e+000

Ω0,1
2 -2.288201870669560e-001 -4.576403741339123e-001 -9.152807482678218e-001

Ω0,1
3 5.335257193267442e-002 1.067051438653487e-001 2.134102877306953e-001

Ω0,1
4 -7.461396365775853e-003 -1.492279273155184e-002 -2.984558546310492e-002

Ω0,1
5 2.392358200238775e-004 4.784716400478782e-004 9.569432800953953e-004

Ω0,1
6 5.404730164482921e-005 1.080946032895151e-004 2.161892065788593e-004

Ω0,1
7 2.524117111385085e-007 5.048234223693013e-007 1.009646845229118e-006

Ω0,1
8 2.696049654842978e-010 5.392097896509548e-010 1.078418667938476e-009

Table 33: Two term connection at N = 10, d1 = 0, d2 = 1 and different j
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j = 3, N = 10 j = 4, N = 10 j = 5, N = 10

Ω0,1
−8 -2.156839029812038e-009 -4.313677415298035e-009 -8.627349408720405e-009

Ω0,1
−7 -2.019293690395968e-006 -4.038587381290359e-006 -8.077174763059951e-006

Ω0,1
−6 -4.323784131592555e-004 -8.647568263171378e-004 -1.729513652633565e-003

Ω0,1
−5 -1.913886560191572e-003 -3.827773120383501e-003 -7.655546240751445e-003

Ω0,1
−4 5.969117092620609e-002 1.193823418524131e-001 2.387646837048335e-001

Ω0,1
−3 -4.268205754614011e-001 -8.536411509227972e-001 -1.707282301845568e+000

Ω0,1
−2 1.830561496535652e+000 3.661122993071298e+000 7.322245986142621e+000

Ω0,1
−1 -6.607248094801546e+000 -1.321449618960303e+001 -2.642899237920577e+001

Ω0,1
0 1.158374177605779e-013 1.400922789672790e-013 -6.967185323646469e-013

Ω0,1
1 6.607248094801447e+000 1.321449618960292e+001 2.642899237920634e+001

Ω0,1
2 -1.830561496535649e+000 -3.661122993071294e+000 -7.322245986142624e+000

Ω0,1
3 4.268205754613932e-001 8.536411509227873e-001 1.707282301845611e+000

Ω0,1
4 -5.969117092620942e-002 -1.193823418524172e-001 -2.387646837048184e-001

Ω0,1
5 1.913886560191089e-003 3.827773120382484e-003 7.655546240766035e-003

Ω0,1
6 4.323784131572361e-004 8.647568263167217e-004 1.729513652635492e-003

Ω0,1
7 2.019293691413277e-006 4.038587377894723e-006 8.077174763077405e-006

Ω0,1
8 2.156836913690272e-009 4.313677054838900e-009 8.627358455766487e-009

Table 34: Two term connection at N = 10, d1 = 0, d2 = 1 and different j
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j = 6, N = 10 j = 7, N = 10 j = 8, N = 10

Ω0,1
−8 -1.725471494132981e-008 -3.450942913576917e-008 -6.901885040700357e-008

Ω0,1
−7 -1.615434952040001e-005 -3.230869904435612e-005 -6.461739809218302e-005

Ω0,1
−6 -3.459027305265731e-003 -6.918054610522556e-003 -1.383610922105838e-002

Ω0,1
−5 -1.531109248155757e-002 -3.062218496312441e-002 -6.124436992622660e-002

Ω0,1
−4 4.775293674096536e-001 9.550587348193060e-001 1.910117469638619e+000

Ω0,1
−3 -3.414564603691221e+000 -6.829129207382422e+000 -1.365825841476485e+001

Ω0,1
−2 1.464449197228521e+001 2.928898394457037e+001 5.857796788914070e+001

Ω0,1
−1 -5.285798475841255e+001 -1.057159695168249e+002 -2.114319390336496e+002

Ω0,1
0 1.467212498638750e-012 2.879800469857873e-012 5.664922102075400e-012

Ω0,1
1 5.285798475841135e+001 1.057159695168225e+002 2.114319390336450e+002

Ω0,1
2 -1.464449197228518e+001 -2.928898394457032e+001 -5.857796788914061e+001

Ω0,1
3 3.414564603691130e+000 6.829129207382251e+000 1.365825841476447e+001

Ω0,1
4 -4.775293674096900e-001 -9.550587348193730e-001 -1.910117469638723e+000

Ω0,1
5 1.531109248153117e-002 3.062218496305587e-002 6.124436992611188e-002

Ω0,1
6 3.459027305261825e-003 6.918054610532298e-003 1.383610922103628e-002

Ω0,1
7 1.615434951564792e-005 3.230869902348481e-005 6.461739807311245e-005

Ω0,1
8 1.725469700276301e-008 3.450939927728653e-008 6.901879574515332e-008

Table 35: Two term connection at N = 10, d1 = 0, d2 = 1 and different j
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j = 9, N = 10 j = 10, N = 10 j = 11, N = 10

Ω0,1
−8 -1.380375917867597e-007 -2.760752722587007e-007 -5.521507381460003e-007

Ω0,1
−7 -1.292347962219340e-004 -2.584695923951555e-004 -5.169391846133784e-004

Ω0,1
−6 -2.767221844206842e-002 -5.534443688417550e-002 -1.106888737682619e-001

Ω0,1
−5 -1.224887398521174e-001 -2.449774797046592e-001 -4.899549594103688e-001

Ω0,1
−4 3.820234939277341e+000 7.640469878554662e+000 1.528093975710940e+001

Ω0,1
−3 -2.731651682952901e+001 -5.463303365905875e+001 -1.092660673181187e+002

Ω0,1
−2 1.171559357782817e+002 2.343118715565631e+002 4.686237431131259e+002

Ω0,1
−1 -4.228638780672918e+002 -8.457277561345908e+002 -1.691455512269195e+003

Ω0,1
0 -1.067978662149538e-011 9.987827418797017e-013 3.655008755470717e-011

Ω0,1
1 4.228638780673005e+002 8.457277561345904e+002 1.691455512269164e+003

Ω0,1
2 -1.171559357782819e+002 -2.343118715565630e+002 -4.686237431131252e+002

Ω0,1
3 2.731651682952976e+001 5.463303365905870e+001 1.092660673181163e+002

Ω0,1
4 -3.820234939277085e+000 -7.640469878554626e+000 -1.528093975710974e+001

Ω0,1
5 1.224887398522411e-001 2.449774797045203e-001 4.899549594089175e-001

Ω0,1
6 2.767221844211033e-002 5.534443688436032e-002 1.106888737682778e-001

Ω0,1
7 1.292347963974198e-004 2.584695921032656e-004 5.169391849517267e-004

Ω0,1
8 1.380376417130166e-007 2.760754130758060e-007 5.521502103934498e-007

Table 36: Two term connection at N = 10, d1 = 0, d2 = 1 and different j
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j = 0, N = 12 j = 1, N = 12 j = 2, N = 12

Ω0,1
−10 6.968102061150500e-013 1.393671723150309e-012 2.787685940467265e-012

Ω0,1
−9 -2.899666654226089e-009 -5.799333367477154e-009 -1.159866734500792e-008

Ω0,1
−8 4.206912046409758e-007 8.413824091421626e-007 1.682764817486590e-006

Ω0,1
−7 1.202657519585258e-005 2.405315039148907e-005 4.810630078300360e-005

Ω0,1
−6 4.296891570946732e-006 8.593783141464923e-006 1.718756628401881e-005

Ω0,1
−5 -1.588561543475901e-003 -3.177123086951281e-003 -6.354246173903122e-003

Ω0,1
−4 1.454551104199443e-002 2.909102208398829e-002 5.818204416797410e-002

Ω0,1
−3 -7.244058999766312e-002 -1.448811799953269e-001 -2.897623599906539e-001

Ω0,1
−2 2.585529441414751e-001 5.171058882829496e-001 1.034211776565901e+000

Ω0,1
−1 -8.501366615559489e-001 -1.700273323111905e+000 -3.400546646223837e+000

Ω0,1
0 -1.771531943484048e-014 -9.397701065441274e-015 3.189910223544962e-014

Ω0,1
1 8.501366615559639e-001 1.700273323111913e+000 3.400546646223813e+000

Ω0,1
2 -2.585529441414753e-001 -5.171058882829498e-001 -1.034211776565901e+000

Ω0,1
3 7.244058999766427e-002 1.448811799953273e-001 2.897623599906528e-001

Ω0,1
4 -1.454551104199388e-002 -2.909102208398797e-002 -5.818204416797575e-002

Ω0,1
5 1.588561543476083e-003 3.177123086951924e-003 6.354246173902477e-003

Ω0,1
6 -4.296891570917664e-006 -8.593783141911318e-006 -1.718756628367386e-005

Ω0,1
7 -1.202657519569253e-005 -2.405315039116234e-005 -4.810630078303700e-005

Ω0,1
8 -4.206912045171942e-007 -8.413824091943564e-007 -1.682764818798538e-006

Ω0,1
9 2.899666853418460e-009 5.799333632051729e-009 1.159866819379381e-008

Ω0,1
10 -6.968413855754819e-013 -1.393485636746043e-012 -2.788339218165746e-012

Table 37: Two term connection at N = 12, d1 = 0, d2 = 1 and different j
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j = 3, N = 12 j = 4, N = 12 j = 5, N = 12

Ω0,1
−10 5.574496614888726e-012 1.115377020866846e-011 2.229965654981504e-011

Ω0,1
−9 -2.319733439946490e-008 -4.639466614937414e-008 -9.278934078712447e-008

Ω0,1
−8 3.365529637182767e-006 6.731059270956813e-006 1.346211854493656e-005

Ω0,1
−7 9.621260156601985e-005 1.924252031329031e-004 3.848504062630691e-004

Ω0,1
−6 3.437513256763476e-005 6.875026512463018e-005 1.375005302649743e-004

Ω0,1
−5 -1.270849234780765e-002 -2.541698469559886e-002 -5.083396939123046e-002

Ω0,1
−4 1.163640883359540e-001 2.327281766718988e-001 4.654563533438043e-001

Ω0,1
−3 -5.795247199813072e-001 -1.159049439962619e+000 -2.318098879925254e+000

Ω0,1
−2 2.068423553131800e+000 4.136847106263601e+000 8.273694212527209e+000

Ω0,1
−1 -6.801093292447624e+000 -1.360218658489527e+001 -2.720437316979078e+001

Ω0,1
0 -5.461996944086902e-014 1.466671462891199e-014 4.963300421700580e-013

Ω0,1
1 6.801093292447667e+000 1.360218658489525e+001 2.720437316979038e+001

Ω0,1
2 -2.068423553131800e+000 -4.136847106263594e+000 -8.273694212527195e+000

Ω0,1
3 5.795247199813085e-001 1.159049439962612e+000 2.318098879925202e+000

Ω0,1
4 -1.163640883359506e-001 -2.327281766719060e-001 -4.654563533437987e-001

Ω0,1
5 1.270849234780771e-002 2.541698469561734e-002 5.083396939121575e-002

Ω0,1
6 -3.437513256813831e-005 -6.875026513607995e-005 -1.375005302733390e-004

Ω0,1
7 -9.621260156592389e-005 -1.924252031338556e-004 -3.848504062644134e-004

Ω0,1
8 -3.365529635703508e-006 -6.731059272749183e-006 -1.346211854686139e-005

Ω0,1
9 2.319733460260197e-008 4.639466953672927e-008 9.278934499315327e-008

Ω0,1
10 -5.574606906675431e-012 -1.114879845632270e-011 -2.230719155450397e-011

Table 38: Two term connection at N = 12, d1 = 0, d2 = 1 and different j
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j = 6, N = 12 j = 7, N = 12 j = 8, N = 12

Ω0,1
−10 4.460008150691497e-011 8.920383068978271e-011 1.784329365885219e-010

Ω0,1
−9 -1.855786659603524e-007 -3.711573577727717e-007 -7.423146935987642e-007

Ω0,1
−8 2.692423710000159e-005 5.384847419676242e-005 1.076969482921150e-004

Ω0,1
−7 7.697008125308266e-004 1.539401625053768e-003 3.078803250119820e-003

Ω0,1
−6 2.750010605172746e-004 5.500021210559334e-004 1.100004242122891e-003

Ω0,1
−5 -1.016679387824381e-001 -2.033358775648997e-001 -4.066717551297090e-001

Ω0,1
−4 9.309127066876437e-001 1.861825413375254e+000 3.723650826750292e+000

Ω0,1
−3 -4.636197759850479e+000 -9.272395519700977e+000 -1.854479103940188e+001

Ω0,1
−2 1.654738842505443e+001 3.309477685010887e+001 6.618955370021767e+001

Ω0,1
−1 -5.440874633958098e+001 -1.088174926791625e+002 -2.176349853583258e+002

Ω0,1
0 -4.609897213739054e-013 3.334560305993533e-013 2.464027161411541e-012

Ω0,1
1 5.440874633958133e+001 1.088174926791623e+002 2.176349853583238e+002

Ω0,1
2 -1.654738842505442e+001 -3.309477685010883e+001 -6.618955370021763e+001

Ω0,1
3 4.636197759850483e+000 9.272395519700886e+000 1.854479103940177e+001

Ω0,1
4 -9.309127066876174e-001 -1.861825413375198e+000 -3.723650826750481e+000

Ω0,1
5 1.016679387824613e-001 2.033358775648949e-001 4.066717551297869e-001

Ω0,1
6 -2.750010605372147e-004 -5.500021210920076e-004 -1.100004242165326e-003

Ω0,1
7 -7.697008125266731e-004 -1.539401625054399e-003 -3.078803250114857e-003

Ω0,1
8 -2.692423709323072e-005 -5.384847417592798e-005 -1.076969483767874e-004

Ω0,1
9 1.855786799154870e-007 3.711573633341429e-007 7.423147046276602e-007

Ω0,1
10 -4.459832786581782e-011 -8.920883463672624e-011 -1.784077643256998e-010

Table 39: Two term connection at N = 12, d1 = 0, d2 = 1 and different j
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j = 9, N = 12 j = 10, N = 12 j = 11, N = 12

Ω0,1
−10 3.568814269824286e-010 7.135319054928643e-010 1.427296812279246e-009

Ω0,1
−9 -1.484629371143922e-006 -2.969258755612068e-006 -5.938517219001792e-006

Ω0,1
−8 2.153938965916432e-004 4.307877936993525e-004 8.615755868619370e-004

Ω0,1
−7 6.157606500207510e-003 1.231521300040246e-002 2.463042600080800e-002

Ω0,1
−6 2.200008484260971e-003 4.400016968362715e-003 8.800033936989898e-003

Ω0,1
−5 -8.133435102593426e-001 -1.626687020519306e+000 -3.253374041037593e+000

Ω0,1
−4 7.447301653500555e+000 1.489460330700241e+001 2.978920661400355e+001

Ω0,1
−3 -3.708958207880362e+001 -7.417916415760794e+001 -1.483583283152139e+002

Ω0,1
−2 1.323791074004353e+002 2.647582148008706e+002 5.295164296017404e+002

Ω0,1
−1 -4.352699707166504e+002 -8.705399414332979e+002 -1.741079882866586e+003

Ω0,1
0 1.645519158080046e-012 -3.221807682988138e-013 -2.510523739197342e-011

Ω0,1
1 4.352699707166489e+002 8.705399414332977e+002 1.741079882866605e+003

Ω0,1
2 -1.323791074004353e+002 -2.647582148008703e+002 -5.295164296017406e+002

Ω0,1
3 3.708958207880366e+001 7.417916415760755e+001 1.483583283152157e+002

Ω0,1
4 -7.447301653500960e+000 -1.489460330700204e+001 -2.978920661400361e+001

Ω0,1
5 8.133435102596023e-001 1.626687020519325e+000 3.253374041038964e+000

Ω0,1
6 -2.200008484321742e-003 -4.400016968558922e-003 -8.800033937259269e-003

Ω0,1
7 -6.157606500213888e-003 -1.231521300043118e-002 -2.463042600080695e-002

Ω0,1
8 -2.153938967247599e-004 -4.307877935254872e-004 -8.615755867573784e-004

Ω0,1
9 1.484629352077567e-006 2.969258773936342e-006 5.938517437145822e-006

Ω0,1
10 -3.567758616121751e-010 -7.135402283443558e-010 -1.426911748340083e-009

Table 40: Two term connection at N = 12, d1 = 0, d2 = 1 and different j
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j = 0, N = 14 j = 1, N = 14 j = 2, N = 14

Ω0,1
−12 -9.093659201960153e-016 -1.020387742027126e-015 -2.551015341973991e-015

Ω0,1
−11 -1.203524319370248e-011 -2.407048567855346e-011 -4.814096829924245e-011

Ω0,1
−10 4.183055991508054e-010 8.366108141446448e-010 1.673221402103675e-009

Ω0,1
−9 -2.187113034221992e-007 -4.374226069287557e-007 -8.748452136645133e-007

Ω0,1
−8 -1.650167921185091e-006 -3.300335841844315e-006 -6.600671684218315e-006

Ω0,1
−7 4.236394680075738e-006 8.472789359913194e-006 1.694557871999972e-005

Ω0,1
−6 3.373440477639545e-004 6.746880955295991e-004 1.349376191057733e-003

Ω0,1
−5 -3.881454657631967e-003 -7.762909315264846e-003 -1.552581863053076e-002

Ω0,1
−4 2.268741101466512e-002 4.537482202933121e-002 9.074964405866265e-002

Ω0,1
−3 -9.018906621784878e-002 -1.803781324356944e-001 -3.607562648713963e-001

Ω0,1
−2 2.829650945261911e-001 5.659301890523817e-001 1.131860378104769e+000

Ω0,1
−1 -8.687439145242527e-001 -1.737487829048478e+000 -3.474975658097025e+000

Ω0,1
0 2.005960347975370e-014 -2.973839019641094e-014 7.652339070044165e-014

Ω0,1
1 8.687439145242358e-001 1.737487829048503e+000 3.474975658096962e+000

Ω0,1
2 -2.829650945261905e-001 -5.659301890523829e-001 -1.131860378104767e+000

Ω0,1
3 9.018906621784691e-002 1.803781324356978e-001 3.607562648713885e-001

Ω0,1
4 -2.268741101466551e-002 -4.537482202933151e-002 -9.074964405866125e-002

Ω0,1
5 3.881454657632025e-003 7.762909315264959e-003 1.552581863052757e-002

Ω0,1
6 -3.373440477645093e-004 -6.746880955281301e-004 -1.349376191058470e-003

Ω0,1
7 -4.236394680128265e-006 -8.472789360337551e-006 -1.694557872047109e-005

Ω0,1
8 1.650167921071844e-006 3.300335842200119e-006 6.600671684459459e-006

Ω0,1
9 2.187113032721298e-007 4.374226067335177e-007 8.748452132468603e-007

Ω0,1
10 -4.183055328314662e-010 -8.366109180119963e-010 -1.673222139639658e-009

Ω0,1
11 1.203530502022236e-011 2.407089322991096e-011 4.814053106038553e-011

Ω0,1
12 6.216532372502836e-016 1.500071897102762e-015 2.397264247450226e-015

Table 41: Two term connection at N = 14, d1 = 0, d2 = 1 and different j
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j = 3, N = 14 j = 4, N = 14 j = 5, N = 14

Ω0,1
−12 -4.634393850498429e-015 -1.275690082076888e-014 -2.116636953714351e-014

Ω0,1
−11 -9.628226205861661e-011 -1.925632265438996e-010 -3.851300647795375e-010

Ω0,1
−10 3.346442942232174e-009 6.692892046182721e-009 1.338578119764802e-008

Ω0,1
−9 -1.749690427233403e-006 -3.499380852263309e-006 -6.998761705061007e-006

Ω0,1
−8 -1.320134336970431e-005 -2.640268673680747e-005 -5.280537347197350e-005

Ω0,1
−7 3.389115744115972e-005 6.778231488009504e-005 1.355646297624779e-004

Ω0,1
−6 2.698752382116903e-003 5.397504764224951e-003 1.079500952845710e-002

Ω0,1
−5 -3.105163726106119e-002 -6.210327452209935e-002 -1.242065490442127e-001

Ω0,1
−4 1.814992881173229e-001 3.629985762346430e-001 7.259971524692958e-001

Ω0,1
−3 -7.215125297427840e-001 -1.443025059485557e+000 -2.886050118971105e+000

Ω0,1
−2 2.263720756209526e+000 4.527441512419062e+000 9.054883024838109e+000

Ω0,1
−1 -6.949951316193983e+000 -1.389990263238783e+001 -2.779980526477555e+001

Ω0,1
0 6.209924764424032e-014 -2.939119803428816e-013 -6.767588055021938e-013

Ω0,1
1 6.949951316193931e+000 1.389990263238807e+001 2.779980526477612e+001

Ω0,1
2 -2.263720756209525e+000 -4.527441512419071e+000 -9.054883024838128e+000

Ω0,1
3 7.215125297427795e-001 1.443025059485587e+000 2.886050118971174e+000

Ω0,1
4 -1.814992881173232e-001 -3.629985762346500e-001 -7.259971524693020e-001

Ω0,1
5 3.105163726105801e-002 6.210327452211609e-002 1.242065490442382e-001

Ω0,1
6 -2.698752382116729e-003 -5.397504764223376e-003 -1.079500952844862e-002

Ω0,1
7 -3.389115744072425e-005 -6.778231488274878e-005 -1.355646297638668e-004

Ω0,1
8 1.320134336897328e-005 2.640268673823597e-005 5.280537347562757e-005

Ω0,1
9 1.749690427097165e-006 3.499380853899855e-006 6.998761706025780e-006

Ω0,1
10 -3.346444661503256e-009 -6.692889344397132e-009 -1.338577485534072e-008

Ω0,1
11 9.628382240067928e-011 1.925673023215563e-010 3.851335644982122e-010

Ω0,1
12 3.881789440223672e-015 1.189439841358159e-014 2.332122565200561e-014

Table 42: Two term connection at N = 14, d1 = 0, d2 = 1 and different j
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j = 6, N = 14 j = 7, N = 14 j = 8, N = 14

Ω0,1
−12 -4.740267026698519e-014 -7.377985437513795e-014 -1.920298904016830e-013

Ω0,1
−11 -7.702610922270493e-010 -1.540510797212152e-009 -3.081028045139360e-009

Ω0,1
−10 2.677156188673411e-008 5.354309856249868e-008 1.070861451494485e-007

Ω0,1
−9 -1.399752340719014e-005 -2.799504682799360e-005 -5.599009365591120e-005

Ω0,1
−8 -1.056107469693313e-004 -2.112214939263439e-004 -4.224429877623725e-004

Ω0,1
−7 2.711292595184406e-004 5.422585190553425e-004 1.084517038093828e-003

Ω0,1
−6 2.159001905689903e-002 4.318003811387313e-002 8.636007622762833e-002

Ω0,1
−5 -2.484130980884254e-001 -4.968261961769300e-001 -9.936523923540052e-001

Ω0,1
−4 1.451994304938539e+000 2.903988609877130e+000 5.807977219754516e+000

Ω0,1
−3 -5.772100237942301e+000 -1.154420047588450e+001 -2.308840095176944e+001

Ω0,1
−2 1.810976604967623e+001 3.621953209935248e+001 7.243906419870515e+001

Ω0,1
−1 -5.559961052955217e+001 -1.111992210591036e+002 -2.223984421182091e+002

Ω0,1
0 1.195036562868803e-012 3.039221158569714e-013 4.438520263020029e-012

Ω0,1
1 5.559961052955116e+001 1.111992210591034e+002 2.223984421182053e+002

Ω0,1
2 -1.810976604967620e+001 -3.621953209935249e+001 -7.243906419870497e+001

Ω0,1
3 5.772100237942218e+000 1.154420047588454e+001 2.308840095176888e+001

Ω0,1
4 -1.451994304938594e+000 -2.903988609877191e+000 -5.807977219754376e+000

Ω0,1
5 2.484130980884350e-001 4.968261961769322e-001 9.936523923538364e-001

Ω0,1
6 -2.159001905691777e-002 -4.318003811385076e-002 -8.636007622776364e-002

Ω0,1
7 -2.711292595279895e-004 -5.422585190506353e-004 -1.084517038096656e-003

Ω0,1
8 1.056107469473008e-004 2.112214939008694e-004 4.224429877954504e-004

Ω0,1
9 1.399752340820121e-005 2.799504682332806e-005 5.599009364876137e-005

Ω0,1
10 -2.677156118693736e-008 -5.354309903464176e-008 -1.070862210031373e-007

Ω0,1
11 7.702656236172596e-010 1.540520990903657e-009 3.081068854621338e-009

Ω0,1
12 3.819578254630561e-014 7.680456331597872e-014 1.153192069429565e-013

Table 43: Two term connection at N = 14, d1 = 0, d2 = 1 and different j
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j = 9, N = 14 j = 10, N = 14 j = 11, N = 14

Ω0,1
−12 -2.961957373655074e-013 -5.665348886591096e-013 -1.106219387048709e-012

Ω0,1
−11 -6.162108213913547e-009 -1.232414961043282e-008 -2.464826547194698e-008

Ω0,1
−10 2.141725216565016e-007 4.283449037625223e-007 8.566893365188916e-007

Ω0,1
−9 -1.119801873477969e-004 -2.239603747008321e-004 -4.479207495077898e-004

Ω0,1
−8 -8.448859756784086e-004 -1.689771951007886e-003 -3.379543902178116e-003

Ω0,1
−7 2.169034076295395e-003 4.338068152456392e-003 8.676136304799487e-003

Ω0,1
−6 1.727201524554215e-001 3.454403049109827e-001 6.908806098221395e-001

Ω0,1
−5 -1.987304784707517e+000 -3.974609569415280e+000 -7.949219138831976e+000

Ω0,1
−4 1.161595443950855e+001 2.323190887901782e+001 4.646381775803556e+001

Ω0,1
−3 -4.617680190353773e+001 -9.235360380707556e+001 -1.847072076141525e+002

Ω0,1
−2 1.448781283974098e+002 2.897562567948206e+002 5.795125135896407e+002

Ω0,1
−1 -4.447968842364112e+002 -8.895937684728199e+002 -1.779187536945656e+003

Ω0,1
0 -6.589283301769666e-012 -2.633744732637104e-011 -8.734767812061007e-012

Ω0,1
1 4.447968842364168e+002 8.895937684728417e+002 1.779187536945663e+003

Ω0,1
2 -1.448781283974101e+002 -2.897562567948214e+002 -5.795125135896412e+002

Ω0,1
3 4.617680190353849e+001 9.235360380707790e+001 1.847072076141538e+002

Ω0,1
4 -1.161595443950874e+001 -2.323190887901765e+001 -4.646381775803512e+001

Ω0,1
5 1.987304784707826e+000 3.974609569415967e+000 7.949219138831019e+000

Ω0,1
6 -1.727201524553275e-001 -3.454403049107459e-001 -6.908806098214101e-001

Ω0,1
7 -2.169034076207619e-003 -4.338068152350534e-003 -8.676136304735779e-003

Ω0,1
8 8.448859756362829e-004 1.689771951243437e-003 3.379543902361922e-003

Ω0,1
9 1.119801873023748e-004 2.239603746223188e-004 4.479207491312973e-004

Ω0,1
10 -2.141723675509842e-007 -4.283445810923666e-007 -8.566892999628293e-007

Ω0,1
11 6.162081031867288e-009 1.232406013731403e-008 2.464787863842850e-008

Ω0,1
12 3.415405258983562e-013 7.004616800332815e-013 1.527614622082337e-012

Table 44: Two term connection at N = 14, d1 = 0, d2 = 1 and different j
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j = 0, N = 16 j = 1, N = 16 j = 2, N = 16

Ω0,1
−14 1.371660846034882e-016 1.133483965033230e-016 -2.130366470392521e-016

Ω0,1
−13 -1.240034252708606e-014 -2.457974331317060e-014 -4.938996778206259e-014

Ω0,1
−12 7.256004215050857e-013 1.450131252903530e-012 2.901120904542585e-012

Ω0,1
−11 9.697184738032619e-010 1.939437143482114e-009 3.878873940094430e-009

Ω0,1
−10 7.207948211956484e-008 1.441589643357304e-007 2.883179298632430e-007

Ω0,1
−9 -3.993810461589868e-008 -7.987620954705709e-008 -1.597524183894186e-007

Ω0,1
−8 -2.451992114549783e-007 -4.903984215036264e-007 -9.807968448259236e-007

Ω0,1
−7 -7.667706908354899e-005 -1.533541381669490e-004 -3.067082763353312e-004

Ω0,1
−6 1.031530213376507e-003 2.063060426751026e-003 4.126120853502637e-003

Ω0,1
−5 -6.958379116451669e-003 -1.391675823290300e-002 -2.783351646580214e-002

Ω0,1
−4 3.129014783948015e-002 6.258029567896263e-002 1.251605913579195e-001

Ω0,1
−3 -1.063640682894436e-001 -2.127281365788876e-001 -4.254562731577741e-001

Ω0,1
−2 3.032593514765940e-001 6.065187029531854e-001 1.213037405906374e+000

Ω0,1
−1 -8.834460460908277e-001 -1.766892092181637e+000 -3.533784184363293e+000

Ω0,1
0 -6.141045325830091e-015 -2.173764897400916e-014 -2.919326713291232e-014

Ω0,1
1 8.834460460908328e-001 1.766892092181655e+000 3.533784184363318e+000

Ω0,1
2 -3.032593514765954e-001 -6.065187029531846e-001 -1.213037405906375e+000

Ω0,1
3 1.063640682894451e-001 2.127281365788875e-001 4.254562731577785e-001

Ω0,1
4 -3.129014783948039e-002 -6.258029567895888e-002 -1.251605913579206e-001

Ω0,1
5 6.958379116450659e-003 1.391675823290129e-002 2.783351646580255e-002

Ω0,1
6 -1.031530213375280e-003 -2.063060426751547e-003 -4.126120853501163e-003

Ω0,1
7 7.667706908376750e-005 1.533541381684657e-004 3.067082763355221e-004

Ω0,1
8 2.451992111417998e-007 4.903984223680227e-007 9.807968443807015e-007

Ω0,1
9 3.993810457513655e-008 7.987620936162933e-008 1.597524182475894e-007

Ω0,1
10 -7.207948244957361e-008 -1.441589647392887e-007 -2.883179294000416e-007

Ω0,1
11 -9.697183764183109e-010 -1.939436993065447e-009 -3.878874306853540e-009

Ω0,1
12 -7.252036768650327e-013 -1.450590496349511e-012 -2.900530948295082e-012

Ω0,1
13 1.245476607713937e-014 2.478474487639414e-014 4.970056025386812e-014

Ω0,1
14 2.338325297269043e-019 4.340955735116002e-016 1.394726838992659e-016

Table 45: Two term connection at N = 16, d1 = 0, d2 = 1 and different j
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j = 3, N = 16 j = 4, N = 16 j = 5, N = 16

Ω0,1
−14 4.456425147727763e-016 4.071930963747828e-017 -4.905382952480158e-015

Ω0,1
−13 -9.936133300288921e-014 -1.958557848380791e-013 -3.965817534169358e-013

Ω0,1
−12 5.800895798305475e-012 1.160874689025285e-011 2.321191708632698e-011

Ω0,1
−11 7.757748228388976e-009 1.551549641219591e-008 3.103099517772754e-008

Ω0,1
−10 5.766358586405585e-007 1.153271713489912e-006 2.306543440627997e-006

Ω0,1
−9 -3.195048367552289e-007 -6.390096744884248e-007 -1.278019351718962e-006

Ω0,1
−8 -1.961593689677080e-006 -3.923187382453329e-006 -7.846374757335848e-006

Ω0,1
−7 -6.134165526697048e-004 -1.226833105338093e-003 -2.453666210694881e-003

Ω0,1
−6 8.252241707001827e-003 1.650448341402558e-002 3.300896682803101e-002

Ω0,1
−5 -5.566703293160744e-002 -1.113340658632279e-001 -2.226681317264104e-001

Ω0,1
−4 2.503211827158423e-001 5.006423654316798e-001 1.001284730863339e+000

Ω0,1
−3 -8.509125463155630e-001 -1.701825092631093e+000 -3.403650185262193e+000

Ω0,1
−2 2.426074811812756e+000 4.852149623625479e+000 9.704299247251006e+000

Ω0,1
−1 -7.067568368726693e+000 -1.413513673745321e+001 -2.827027347490648e+001

Ω0,1
0 1.590394891935833e-013 4.244146351305575e-014 -5.340752145707917e-014

Ω0,1
1 7.067568368726561e+000 1.413513673745318e+001 2.827027347490654e+001

Ω0,1
2 -2.426074811812753e+000 -4.852149623625492e+000 -9.704299247251017e+000

Ω0,1
3 8.509125463155473e-001 1.701825092631100e+000 3.403650185262225e+000

Ω0,1
4 -2.503211827158426e-001 -5.006423654316798e-001 -1.001284730863375e+000

Ω0,1
5 5.566703293160476e-002 1.113340658632123e-001 2.226681317264377e-001

Ω0,1
6 -8.252241707005054e-003 -1.650448341401015e-002 -3.300896682802081e-002

Ω0,1
7 6.134165526692924e-004 1.226833105341155e-003 2.453666210675792e-003

Ω0,1
8 1.961593688931446e-006 3.923187379354861e-006 7.846374758709446e-006

Ω0,1
9 3.195048363214557e-007 6.390096727237132e-007 1.278019346592530e-006

Ω0,1
10 -5.766358595324536e-007 -1.153271718125744e-006 -2.306543433502799e-006

Ω0,1
11 -7.757747885972653e-009 -1.551549507651747e-008 -3.103099040685187e-008

Ω0,1
12 -5.802059917564717e-012 -1.160431673477888e-011 -2.320739172021296e-011

Ω0,1
13 9.847580104602041e-014 1.967964397493907e-013 3.920085518983520e-013

Ω0,1
14 -1.058414478057531e-016 1.104672208571300e-015 7.257992675575480e-019

Table 46: Two term connection at N = 16, d1 = 0, d2 = 1 and different j
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j = 6, N = 16 j = 7, N = 16 j = 8, N = 16

Ω0,1
−14 -5.932417784836436e-015 -1.499822907383957e-014 -1.937580872204892e-014

Ω0,1
−13 -8.012823561025362e-013 -1.586654636810487e-012 -3.181992667795546e-012

Ω0,1
−12 4.641544242118252e-011 9.284300303185449e-011 1.857386100799850e-010

Ω0,1
−11 6.206197901497031e-008 1.241239676795707e-007 2.482479271917831e-007

Ω0,1
−10 4.613086888010296e-006 9.226173753048421e-006 1.845234751884255e-005

Ω0,1
−9 -2.556038689907971e-006 -5.112077384534750e-006 -1.022415478867391e-005

Ω0,1
−8 -1.569274950422817e-005 -3.138549900628333e-005 -6.277099812611156e-005

Ω0,1
−7 -4.907332421384718e-003 -9.814664842762199e-003 -1.962932968550942e-002

Ω0,1
−6 6.601793365601165e-002 1.320358673120900e-001 2.640717346243023e-001

Ω0,1
−5 -4.453362634527944e-001 -8.906725269056537e-001 -1.781345053811329e+000

Ω0,1
−4 2.002569461726710e+000 4.005138923453441e+000 8.010277846906657e+000

Ω0,1
−3 -6.807300370524421e+000 -1.361460074104876e+001 -2.722920148209741e+001

Ω0,1
−2 1.940859849450202e+001 3.881719698900398e+001 7.763439397800791e+001

Ω0,1
−1 -5.654054694981279e+001 -1.130810938996251e+002 -2.261621877992514e+002

Ω0,1
0 -2.872215220973313e-013 -1.636092220497607e-012 -8.741080883325535e-013

Ω0,1
1 5.654054694981303e+001 1.130810938996265e+002 2.261621877992522e+002

Ω0,1
2 -1.940859849450201e+001 -3.881719698900403e+001 -7.763439397800812e+001

Ω0,1
3 6.807300370524452e+000 1.361460074104897e+001 2.722920148209783e+001

Ω0,1
4 -2.002569461726733e+000 -4.005138923453475e+000 -8.010277846906986e+000

Ω0,1
5 4.453362634528394e-001 8.906725269056922e-001 1.781345053811436e+000

Ω0,1
6 -6.601793365602066e-002 -1.320358673120267e-001 -2.640717346241151e-001

Ω0,1
7 4.907332421365074e-003 9.814664842727264e-003 1.962932968544405e-002

Ω0,1
8 1.569274950989726e-005 3.138549902511642e-005 6.277099802673462e-005

Ω0,1
9 2.556038692758237e-006 5.112077387701098e-006 1.022415477057711e-005

Ω0,1
10 -4.613086874180953e-006 -9.226173751882891e-006 -1.845234745940235e-005

Ω0,1
11 -6.206198502033239e-008 -1.241239662057077e-007 -2.482479399945051e-007

Ω0,1
12 -4.640997488026645e-011 -9.279784292097722e-011 -1.857022676458353e-010

Ω0,1
13 7.929161781643192e-013 1.550395057947863e-012 3.275361082523044e-012

Ω0,1
14 8.397387221597780e-016 1.832958627061042e-014 -5.483593223707976e-014

Table 47: Two term connection at N = 16, d1 = 0, d2 = 1 and different j
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j = 9, N = 16 j = 10, N = 16 j = 11, N = 16

Ω0,1
−14 -1.454878540147583e-014 -1.955619903015936e-014 -1.312777998534403e-013

Ω0,1
−13 -6.363656145884063e-012 -1.265671571755959e-011 -2.547828675151841e-011

Ω0,1
−12 3.713417929492187e-010 7.428252783584298e-010 1.485453978375123e-009

Ω0,1
−11 4.964958444868848e-007 9.929917590440886e-007 1.985983453603970e-006

Ω0,1
−10 3.690469502166279e-005 7.380938966529265e-005 1.476187798889735e-004

Ω0,1
−9 -2.044830954226878e-005 -4.089661900921275e-005 -8.179323802680611e-005

Ω0,1
−8 -1.255419960425406e-004 -2.510839920803659e-004 -5.021679843410730e-004

Ω0,1
−7 -3.925865937095228e-002 -7.851731874181912e-002 -1.570346374840230e-001

Ω0,1
−6 5.281434692482463e-001 1.056286938497035e+000 2.112573876993201e+000

Ω0,1
−5 -3.562690107622669e+000 -7.125380215246239e+000 -1.425076043049083e+001

Ω0,1
−4 1.602055569381391e+001 3.204111138762822e+001 6.408222277525508e+001

Ω0,1
−3 -5.445840296419544e+001 -1.089168059283905e+002 -2.178336118567808e+002

Ω0,1
−2 1.552687879560164e+002 3.105375759120316e+002 6.210751518240635e+002

Ω0,1
−1 -4.523243755985028e+002 -9.046487511970025e+002 -1.809297502394008e+003

Ω0,1
0 -4.163910493792970e-012 -8.982106246393310e-012 -1.277439891854268e-011

Ω0,1
1 4.523243755985063e+002 9.046487511970097e+002 1.809297502394018e+003

Ω0,1
2 -1.552687879560165e+002 -3.105375759120320e+002 -6.210751518240641e+002

Ω0,1
3 5.445840296419587e+001 1.089168059283913e+002 2.178336118567825e+002

Ω0,1
4 -1.602055569381395e+001 -3.204111138762755e+001 -6.408222277525559e+001

Ω0,1
5 3.562690107622763e+000 7.125380215245345e+000 1.425076043049096e+001

Ω0,1
6 -5.281434692481560e-001 -1.056286938496408e+000 -2.112573876992644e+000

Ω0,1
7 3.925865937094103e-002 7.851731874203148e-002 1.570346374836081e-001

Ω0,1
8 1.255419960665890e-004 2.510839921286645e-004 5.021679842653965e-004

Ω0,1
9 2.044830953624548e-005 4.089661906975100e-005 8.179323830211168e-005

Ω0,1
10 -3.690469497088060e-005 -7.380938994742371e-005 -1.476187799702449e-004

Ω0,1
11 -4.964958952550113e-007 -9.929918547887168e-007 -1.985983686868240e-006

Ω0,1
12 -3.712611049031478e-010 -7.425463035847393e-010 -1.484874377051332e-009

Ω0,1
13 6.327211159595169e-012 1.266832535004749e-011 2.510338406939905e-011

Ω0,1
14 2.133638768475553e-014 9.030814883171042e-014 1.014789213891910e-013

Table 48: Two term connection at N = 16, d1 = 0, d2 = 1 and different j
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