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Abstract

In this thesis, we discuss some fundamental concept of Abstract Algebra like rings
and modules. The main concern of this dissertation is with the algebraic and geometric
invariants such as depth, Stanley depth and regularity. We also discuss some known re-
sults related to these invariants. Furthermore, we compute exact values and bounds for
depth, Stanley depth and regularity of cyclic modules associated with corona product
of multi triangular snake and ouroboros snake graphs with any graph Q.
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Introduction

Depth, Stanley depth, Projective dimension, and Castelnuovo-Mumford regularity are
four significant and interconnected invariants in the fields of commutative algebra and
algebraic geometry. Richard P. Stanley is known for his work to develop a relationship
in Algebra and Geometry. In 1982, Stanley proposed a conjecture [31]. According to
Stanley conjecture, Stanley depth of a module is atleast the depth of a module. Later
on it was proved by Duval et al. [11] in year 2015 that Stanley’s conjecture generally
does not hold for Λ/I type modules, where S is defined as a ring of polynomials and I

is a monomial ideal. Yet, finding classes which still satisfy the Stanley’s inequality is
a challenging task. Number of papers on Stanley depth and depth have been written
up till now, and still more work is being done on these invariants and the conjecture
relating them.

Castelnuovo-Mumford regularity [23] was introduced in the early 1980s by Eisenbud,
Goto, and Ooishi as a mathematical concept that corresponds to the idea of regularity.
One of the important aspects of Castelnuovo-Mumford regularity is that it can also be
defined and used to determine the vanishing of local cohomology modules and estimates
the complexity of the minimal free resolution [4, 33]. This triple nature of Castelnuovo-
Mumford regularity is commonly discussed in the context of graded rings over base
fields, but it holds true in general, as demonstrated in this thesis. Furthermore, this
thesis computes the precise values of Depth and Stanley depth for the Cyclic Modules
associated with the Corona Product of certain graphs. For some recent results related
to the said invariants we refer the readers to [16, 18, 19, 27].

The first chapter provides an overview, definitions and findings for algebraic struc-
tures ring, module and graph theory along with the relevant examples and results. In
second chapter, the fundamental theory of depth, Stanley depth and Stanley decompo-
sition of ideals and modules have been discussed. Different results related to regularity

vii



and projective dimension are also stated in this chapter. In third chapter, the exact
values of depth, Stanley depth and projective dimension of cyclic modules associated
with corona product of multi-triangular and ouroboros snake graph with any graph
Q are computed by using short exact sequences. In fourth chapter, the exact values
for regularity of cyclic modules associated with corona product of multi-triangular and
ouroboros snake graph with any graph Q are computed.
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Chapter 1

Preliminaries

1.1 Ring Theory

In 1914, Fraenkel gave the definition of ring. Initially the concept of ring was studied
in 1800, when Emmy Noether introduced the general concept of commutative rings.
Also throughout this thesis rings would be considered as commutative rings. Later, the
concept of non-commutative rings was also addressed as generalised concept of com-
mutative rings. Polynomial rings, fields, ring of integers are examples of commutative
rings. In algebra, the algebraic structures are dealt under the flag of ring theory, which
have defined operations of multiplication and addition. For further details we refer the
readers to [10].

Definition 1.1.1. A non empty set Λ with well defined operations
“ + ” and “ × ” forms a ring if it satisfies these axioms:

• Λ is abelian with respect to addition "+".

• Associative law holds with respect to multiplication “ × ” in Λ.

• Distributive laws (left and right) holds in Λ.

If a ring Λ is commutative w.r.t multiplication, then it is called a commutative ring.
The ring Λ is known to have an identity 1 ∈ Λ if ∀ λ ∈ Λ

λ× 1 = 1× λ = λ.
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Definition 1.1.2. A subring S is a subgroup of the ring Λ that is non-empty and
satisfies closure under multiplication.

Definition 1.1.3. A subring L of a ring Λ is called an ideal if it satisfies the following
axioms:

• L is a commutative subgroup of Λ w.r.t addition.

• If λ ∈ L and ϕ ∈ Λ, then λϕ ∈ L.

The ideal {0} is considered to be the trivial ideal.

Definition 1.1.4. Let J be a proper ideal of ring Λ. If there exist an ideal L such
that if J ⊂ L ⊂ Λ, then J = L or L = Λ, then L is known as maximal ideal.

Definition 1.1.5. Local ring is a ring Λ with unique maximal ideal.

Definition 1.1.6. For a proper ideal L, a quotient ring Λ/L can be formed, which
consists of cosets λ+ L, where λ ∈ Λ, and the product of cosets is defined as:

(λ1 + L)(λ2 + L) = λ1λ2 + L.

Definition 1.1.7. Consider an ideal L of a ring Λ. Then (0 : L) is an ideal known as
the annihilator of L represented as Ann(L) defined as

Ann(L) = {λ ∈ Λ : λL = 0}.

Definition 1.1.8. An ideal L of Λ is primary ideal if λ1λ2 ∈ L, for λ1, λ2 ∈ Λ, then
either λ1 ∈ L or λn

2 ∈ L for some n ≥ 1.

Definition 1.1.9. Consider the ring Λ = 𭟋[λ1, . . . , λn], where 𭟋 is a field. In this ring,
the monomials form a natural 𭟋-basis for Λ. Let u = (u1, . . . , un) ∈ Rn be a vector
with non-negative components uj ≥ 0. A monomial is defined as a product of the form
λu1
1 . . . λun

n , where each uj is a non-negative integer. We can express a monomial w as
w = λu, where u = (u1, . . . , un) ∈ Zn

+, and the multiplication of monomials satisfies
the rule

λu1λu2 = λu1+u2 .

2



Definition 1.1.10. A monomial λb is said to be squarefree if b has components 0 and
1. An ideal with a generating set containing only squarefree monomials is known as
squarefree monomial ideal.

Let Λ be a ring. Set of polynomials in one or more than one indeterminants form
a polynomial ring with co-efficents in 𭟋.

Definition 1.1.11. A polynomial over a field 𭟋 with the variable λ is an expression
of the form Λ(x) = a0 + a1λ + a2λ

2 + · · · + anλ
n, where ao, a1, . . . , an ∈ 𭟋 and n ≥ 0.

The polynomial Ring over 𭟋 is

Λ[x] = {a0 + a1λ+ a2λ
2 + · · ·+ anλ

n: ao, a1, . . . , an ∈ 𭟋, n ≥ 0 }.

Definition 1.1.12. The polynomial ring in the variables λ1, λ2, . . . , λn and coefficients
belonging to Λ (commutative with identity) is defined inductively

Λ[λ1, λ2, . . . , λn] = Λ[λ1, λ2, . . . , λn−1][λn].

A ring homomorphism is a mapping between two rings that preserves their respec-
tive additive and multiplicative structures.

Definition 1.1.13. Consider two rings Λ1 and Λ2.

A ring homomorphism is a map M : Λ1 → Λ2 which satisfies the following axioms
for all λ1, λ2 ∈ Λ1

• M(λ1 + λ2) = M(λ1) +M(λ2),

• M(λ1λ2) = M(λ1)M(λ2),

A homomorphism which is both injective and surjective is known as ring isomorphism.

1.2 Module Theory

Module is an algebraic object with a ring attached to it, and actually the ring acts on
module. Emmy Noether made important contributions to Abstract Algebra, and so
she also introduced the use of modules. In this section, various properties of modules
are discussed along with the examples and some important results of Module Theory.
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Definition 1.2.1. Assume a ring Λ that is commutative, an Λ-module D is a commu-
tative group w.r.t addition, along with a scalar multiplication map · : Λ × D → D,
defined as · ((λ, ϕ)) = λϕ, which holds the following axioms:

(1) λ(ϕ1 + ϕ2) = λϕ1 + λϕ2 for all λ ∈ Λ and ϕ1, ϕ2 ∈ D,

(2) (λ1 + λ2)ϕ = λ1ϕ+ λ2ϕ for all λ1, λ2 ∈ Λ and ϕ ∈ D,

(3) (λ1λ2)ϕ = λ1(λ2ϕ) for all λ1, λ2 ∈ Λ and ϕ ∈ D.

If the ring Λ has unity then we impose one additional axiom that is

(4) 1ϕ = ϕ for all ϕ ∈ D.

Definition 1.2.2. A submodule P of a Λ-module D is a subgroup of D under addition
such that λϕ ∈ Λ for all λ ∈ Λ and ϕ ∈ D.

Definition 1.2.3. (Submodule Criterion)

For a Λ-module D, P ⊆ D then P is said to be a submodule of D if and only if

1. P ̸= ∅,

2. p1 + λp2 ∈ P , ∀ λ ∈ Λ and p1, p2 ∈ P .

Definition 1.2.4. For any poset P with respect to ≤, the following statements are
equivalent

1. Any increasing sequence λ1 ≤ λ2 ≤ . . . ≤ λr ≤ . . . in P is stationary, that is
there exist r ∈ N for which λs = λr, for all s ≥ r.

2. Any ∅ ≠ H ⊂ P possesses a maximal element.

If P be the set of submodules of D which is ordered w.r.t the relation ⊆ then
statement 1 is known as ascending chain condition and statement 2 is known as the
maximal condition.

Definition 1.2.5. Consider a commutative ring Λ, a Λ -module D is known as Noethe-
rian if each ascending chain of Λ-submodules of D is stationary. A ring Λ is Noetherian
if Λ is Noetherian as a Λ -module.
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Definition 1.2.6. Let Λ be a commutative ring. Consider a sequence on Λ-modules

. . . −→ Υk−1
hk−−→ Υk

hk+1−−−→ Υk+1
hk+2−−−→ . . .

it is exact at Υk if Im(hk) = ker(hk+1). If the sequence is exact at each Υk, then it is
called exact sequence.

Definition 1.2.7. The sequence

0 −→ Υ1
h−−→ Υ

g−−→ Υ2 −→ 0

is considered to be short exact sequence if and only if h is one to one, g is onto and
Im(h) = ker(g).

Definition 1.2.8 (Regular Element). Let Λ be a ring and D be a module over Λ. An
element 0 ̸= λ ∈ Λ is considered a regular element on D if, for any ϕ ∈ D, the condition
λϕ = 0 implies that ϕ = 0.

Definition 1.2.9 (Regular Sequence). A sequence of elements λ1, λ2, . . . , λn in Λ is
referred as D-regular where D is a Λ-module, if it fulfills the following conditions:

1. λi is regular on D/(λ1, λ2, . . . , λi−1) D for all i = 1, . . . , n;

2. D ≠ (λ1, λ2, . . . , λi)D.

1.3 Graded Rings and Graded Modules

Consider a commutative semigroup (w.r.t addition) H. An H-graded ring is such type
of a ring Λ alongside a decomposition

Λ =
⊕
u∈H

Λu (as a group),

such that ΛuΛv ⊂ Λu+v ∀ u, v ∈ H.
Then for λ ∈ Λ, we can write a unique expression

λ =
∑
u∈H

λu,
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where λu ∈ Λu and almost all λu = 0. The element λu is called the uth homogeneous
component and if λ = λu, then λ is homogeneous of degree u. Λ[λ] and Λ[λ, ϕ] are
Z-graded rings as

• Λ[λ] = Λ⊕ Λλ⊕ Λλ2 ⊕ Λλ3 ⊕ Λλ4 ⊕ Λλ5 ⊕ · · ·.

• Λ[λ, ϕ] = Λ⊕ (Λλ+Λϕ)⊕ (Λλ2+Λλϕ+Λϕ2)⊕ (Λλ3+Λλ2ϕ+Λλϕ2+Λϕ3)⊕· · ·.

For an H-graded ring Λ and Λ-module D

D =
⊕
u∈H

Du (as a group),

with ΛuDv ⊂ Du+v for all u, v ∈ H, then D is said to be an H-graded module. A non
zero element of Du is called a homogeneous element of degree u.

For a polynomial ring Λ defined over the field 𭟋, suppose b ∈ Zn, then h ∈ Λ is
said to be homogeneous of degree b when h has the form βλb, where β ∈ 𭟋. Also Λ is
Zn-graded with graded components:

Λb =

{
𭟋λb, if b ∈ Zn

+;

0 , otherwise.

A Λ-module D is Zn-graded if D =
⊕

b∈Zn Db and Λb1Db2 ⊂ Db1+b2 for all b1,b2 ∈ Zn.

Definition 1.3.1. A graded ideal in the polynomial ring is defined as an ideal L that
is generated by homogeneous elements.

Example 1. Let S = 𭟋[λ1, λ2, λ3] be a polynomial ring, then ideal

(1) L = (λ2
1λ2 − λ1λ

2
2, λ

2
3λ1 − λ2

1λ3, λ
2
2λ3) is a graded ideal.

(2) J = (λ3
1λ2 − λ1λ

3
2 + 1, λ1λ

3
3 − λ3

2λ3) is not a graded ideal.

1.4 Graph Theory

In 18th century, Euler solved the Konigsberg’s bridge problem which lead to new
branch of mathematics called Graph Theory. Graph Theory is considered as a field of
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modern mathematics. Anderson et al. [2] proposed the idea of associating a graph to a
commutative ring in 1991, which is now commonly used in research. In this section, we
discuss some fundamentals of Graph Theory. We also discuss different types of graph
which we will use in next chapters. For further details we refer the readers to [37].

1.4.1 Basic Definitions

A graph W is an ordered pair W = (V (W ), E(W )), where V (W ) can be referred as
vertex set and E(W ) is referred as an edge set. Each edge consists of two vertices which
are its endpoints. If e1 is an edge whose end points are same then e1 is a loop. If e2 and
e3 are the edges with exactly the same set of endpoints then e2 and e3 are multiple edges.
If edges e2 and e3 have a common endpoint then they are adjacent edges. Two vertices
joined by an edge is known as adjacent vertices. Also a graph which has no loops
and multiple edges is a simple graph. In this thesis, we are considering simple graphs.
Number of edges adjacent to a vertex is known as its degree. If V (Wv) = {λ1, . . . , λv}
and E(Wv) = ∅, then a graph Wv is a null graph on v vertices. A bipartite graph
is a graph whose vertex set can be split up into two disjoint independent sets called
partite sets. A simple graph Pr is a path if its vertices can be ordered in such a way
that two vertices have an edge between them if and only if they are consecutive in the
list. A graph consisting of r vertices (r ≥ 3) is known as a cycle if we join first and
last vertices of path graph by an edge. Deleting one edge from a cycle forms a path. A
path and cycle on r vertices are represented by Pr and Cr, respectively. When every
pair of vertices is connected by an edge, a graph is said to be complete for r ≥ 1 (unless
r = 1, in which case E(K1) is empty). Let s ≥ 2, an s− star denoted by Λs is a graph
on s + 1 vertices, having one internal vertex of degree s and all other vertices having
degree 1.

Definition 1.4.1. A vertex λ in a connected graph is a cut vertex whose deletion
together with incident edges disconnects the graph.

Definition 1.4.2. If there is no cut vertex in a maximal connected subgraph of W ,
then it is called a block. W is itself a block if it is connected and has no cut vertex.

Definition 1.4.3. For a set M ⊆ V (W ), an induced subgraph of W is a graph H =

(M,E(W ′)) such that E(W ) = {{λi, λj} ∈ E(W ) : λi, λj ∈ M}.
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Definition 1.4.4. Let W = (V (W ), E(W )) be a graph. The squarefree monomial
ideal of W is the edge ideal associated with Λ, such that

I(W ) = (λiλj|{λi, λj} ∈ E(W )).

Definition 1.4.5. A triangular snake graph Γr [35], is a connected graph where all
the blocks are triangles, and the block cut vertex graph forms a path. In other words,
Γr represents a triangular snake graph with r blocks.

Figure 1.1: Γ3

Definition 1.4.6. For any values where r ≥ 1 and s ≥ 2, the graph Γr,s represents
a multi triangular snake. This graph consists of r blocks, and each block contains r

triangles, all sharing a common edge. For any values of r, s ≥ 1, the graph Γr,s is
referred to as an s-triangular snake. Specifically, when s = 1, Γr,s becomes Γr, which
is a triangular snake and when s ≥ 2, Γr,s is called a multi-triangular snake.

Figure 1.2: Γ3,3

Definition 1.4.7. If the vertices λ1 and λ2 in a graph W are replaced by one new
vertex λ, that is every edge that was adjacent to either λ1 or λ2, or both, is now
adjacent to λ. .
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Definition 1.4.8. If we merge vertices λ1 and λr+1 in the Γr,s graph, we get a new
graph denoted Ωr,s, which is called an s-triangular ouroboros snake. In particular, if
s = 1, then we call Ωr,1 a triangular ouroboros snake, and if s ≥ 2 then we call Ωr,s a
multi triangular ouroboros snake [29].

Figure 1.3: O4,2

1.4.2 Graph Operations

Definition 1.4.9. Let W1 = (V,E) and W2 = (V ′, E ′) are two simple graphs. The
union of these two graphs is a simple graph having edge set E ∪ E ′ and vertex set
V ∪ V ′ . The union of W1 and W2 is denoted by W1 ∪W2.

Definition 1.4.10. The Corona Product [13] of two graphs, W1 and W2, is obtained
by choosing one copy of W1 and |V (W1)| copies of W2. Each vertex of W1 in this
product is connected to every vertex in the corresponding copy of W2. This connection
is established for the jth vertex of W1 with each vertex in the jth copy of W2, where
1 ≤ j ≤ |V (W1)|.

9



(a) Graphs C3 and Q (b) C3 ⊙Q

Figure 1.4: Corona product of two graphs
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Chapter 2

Depth, Stanley Depth and Regularity

In this chapter, we provide a summary of the currently known values and limitations
regarding the depth and Stanley depth of monomial ideals in polynomial rings, as well
as their quotients.

2.1 Depth and Stanley Depth

Definition 2.1.1. Consider a Λ-module D. A zero divisor of a module D is an element
0 ̸= λ ∈ Λ such that λϕ = 0, where 0 ̸= ϕ ∈ D.

Definition 2.1.2. Consider D, a finitely generated Λ-module, and let L be unique
maximal ideal of local Noetherian ring Λ. Then depth of D is the common length of
all maximal D-sequences in L, represented by depth(D).

Definition 2.1.3. Let Λ := 𭟋[λ1, λ2, . . . , λn] be a ring of polynomials and consider Zn-
graded Λ-module D over field 𭟋. Suppose λ ∈ D and also consider H ⊂ {λ1, . . . , λn},
then λZ[H] represents the Z-subspace of D, whose generating set comprises of elements
(homogeneous in degree) of the form λh, where h is a monomial in Z[H]. When λZ[H]

is a free Z[H]-module, it is referred to as a Stanley space with a dimension of |H|. The
Stanley decomposition of D is then determined as:

M : D =
n⊕

r=1

λpZ[Hp]

11



sdepth(A) = min{|Hp|: p = 1, 2, . . . , n}.

Also

sdepth(D) = max{sdepth(A) : A is a Stanley decomposition ofD}.

2.1.1 Stanley’s Conjecture

In 1982, Stanley gave a conjecture about an upper bound for the depth of a Zn-graded
Λ-modules.

depth(D) ≤ sdepth(D).

It has been extremely significant as it gave a comparison of two very different invariants
of modules. For a ring of polynomials Λ in n number of variables, consider L ⊂ Λ be
the monomial ideal, then for n ≤ 3, n = 4 and n = 5 the conjecture for Λ/L is proved
by Apel [3], Anwar and Popescu [2, 25], respectively. Also, when L is an intersection
of three monomial prime ideals, or three monomial primary ideals or four monomial
prime ideals of Λ , the conjecture holds for L. But in 2016, Duval et al. [11] proved
that Stanley’s coniecture is generally false, by giving a counter example for the module
of type Λ/L.

2.1.2 Method to Compute Stanley Depth

In 2009, Herzog et al. gave a method of computing the lower bound for Stanley
depth of monomial ideals in finite number of steps by using posets. Assume L be a
squarefree monomial ideal generated by e1, . . . , em. The characteristic poset of L w.r.t
g = (1, . . . , 1), written as P(1,...,1)

L is defined as

P(1,...,1)
L = {β ⊂ [n] | β contains supp(ej) for some j},

where supp(ej) = {i : λi|ej} ⊆ [n] := {1, . . . , n}. For each ρ, ϕ ∈ P(1,...,1)
L where ρ ⊆ ϕ,

and

[ρ , ϕ] = {β ∈ P(1,...,1)
L : ρ ⊆ β ⊆ ϕ}.
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Let P : P(1,...,1)
L = ∪l

j=1[βj , ηj] be a partition of P(1,...,1)
L , and for every j, suppose

s(j) ∈ {0, 1}n is the tuple with supp(λs(j)) = βj, then the Stanley decomposition D(P)

of L is given by

D(P) : L =
r⊕

j=1

λs(j)𭟋[{λl | l ∈ ηj}].

Clearly, sdepthD(P) = min{|η1|, . . . , |ηr|} and

sdepth(L) = max{sdepthD(P) | P is a partition of P(1,...,1)
L }.

Example 2.1.4. Consider L = (λ1λ4, λ1λ2, λ2λ4, λ1λ3) ⊂ 𭟋[λ1, λ2, λ3, λ4] be a square-
free monomial ideal and J = 0. Set α1 = (1, 0, 0, 1), α2 = (1, 1, 0, 0), α3 = (0, 1, 0, 1)

and α4 = (1, 0, 1, 0). Thus L is generated by λα1 , λα2 , λα3 , λα4 and choose g = (1, 1, 1, 1).
The poset r = P g

L/J is given by

t = {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 0, 1), (1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1),

(0, 1, 1, 1), (1, 1, 1, 1)}.

Partitions of P are given by

P1 : [(1, 1, 0, 0), (1, 1, 0, 0)]
⋃

[(1, 0, 1, 0), (1, 0, 1, 0)]
⋃

[(0, 1, 0, 1), (0, 1, 0, 1)]
⋃

[(1, 0, 0, 1), (1, 0, 0, 1)]
⋃

[(1, 1, 1, 0), (1, 1, 1, 0)]
⋃

[(1, 1, 0, 1), (1, 1, 0, 1)]
⋃

[(1, 0, 1, 1), (1, 0, 1, 1)]
⋃

[(0, 1, 1, 1), (0, 1, 1, 1)]
⋃

[(1, 1, 1, 1), (1, 1, 1, 1)].

P2 : [(1, 1, 0, 0), (1, 1, 1, 0)]
⋃

[(1, 0, 0, 1), (1, 1, 0, 1)]
⋃

[(1, 0, 1, 0), (1, 0, 1, 1)]
⋃

[(0, 1, 0, 1), (0, 1, 1, 1)]
⋃

[(1, 1, 1, 1), (1, 1, 1, 1)].

and the corresponding Stanley decomposition is

D(P1) := λ1λ2𭟋[λ1, λ2]⊕ λ1λ3𭟋[λ1, λ3]⊕ λ1λ4𭟋[λ1, λ4]⊕ λ2λ4𭟋[λ2, λ4]⊕

λ2λ3λ4𭟋[λ2, λ3, λ4]⊕ λ1λ2λ4𭟋[λ1, λ2, λ4]⊕ λ1λ3λ4𭟋[λ1, λ3, λ4]⊕

λ1λ2λ3𭟋[λ1, λ2, λ3]⊕ λ1λ2λ3λ4𭟋[λ1, λ2, λ3, λ4].
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D(P2) := λ1λ3𭟋[λ1, λ3, λ4]⊕ λ1λ4𭟋[λ1, λ2, λ4]⊕ λ1λ2𭟋[λ1, λ2, λ3]⊕ λ2λ4𭟋[λ2, λ3, λ4]⊕

λ1λ2λ3λ4𭟋[λ1, λ2, λ3, λ4].

Then

sdepth(L) ≥ max{sdepth(D(P1)) , sdepth(D(P2))}

≥ max{2, 3}

≥ 3.

Example 2.1.5. For Λ = 𭟋[λ1, λ2, λ3, λ4, λ5], consider L = (λ1λ5, λ2λ3λ4, λ1λ2, λ1λ4).
Then choose g = (1, 1, 1, 1, 1) and the poset P = P g

Λ/Q is given by

P = {(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1),

(1, 0, 1, 0, 0), (0, 1, 1, 0, 0), (0, 1, 0, 1, 0), (0, 1, 0, 0, 1), (0, 0, 1, 1, 0), (0, 0, 1, 0, 1),

(0, 0, 0, 1, 1), (0, 1, 1, 0, 1), (0, 1, 0, 1, 1), (0, 0, 1, 1, 1)}.

Partitions of P are given by

P1 : [(0, 0, 0, 0, 0), (0, 0, 1, 1, 1)]
⋃

[(1, 0, 0, 0, 0), (1, 0, 0, 0, 0)]
⋃

[(0, 1, 0, 0, 0), (0, 1, 0, 0, 0)]
⋃

[(0, 0, 1, 0, 0), (0, 0, 1, 0, 0)]
⋃

[(0, 0, 0, 1, 0), (0, 0, 0, 1, 0)]
⋃

[(0, 0, 0, 0, 1), (0, 0, 0, 0, 1)]
⋃

[(1, 0, 1, 0, 0), (1, 0, 1, 0, 0)]
⋃

[(0, 1, 1, 0, 0), (0, 1, 1, 0, 0)]
⋃

[(0, 1, 0, 1, 0), (0, 1, 0, 1, 0)]
⋃

[(0, 1, 0, 0, 1), (0, 1, 0, 0, 1)]
⋃

[(0, 0, 1, 1, 0), (0, 0, 1, 1, 0)]
⋃

[(0, 0, 1, 0, 1), (0, 0, 1, 0, 1)]
⋃

[(0, 0, 0, 1, 1), (0, 0, 0, 1, 1)]
⋃

[(0, 1, 1, 0, 1), (0, 1, 1, 0, 1)]
⋃

[(0, 1, 0, 1, 1), (0, 1, 0, 1, 1)].
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P2 : [(0, 0, 0, 0, 0), (1, 0, 1, 0, 0)]
⋃

[(0, 1, 0, 0, 0), (0, 1, 1, 0, 0)]
⋃

[(0, 0, 0, 1, 0), (0, 1, 0, 1, 0)]
⋃

[(0, 0, 0, 0, 1), (0, 1, 0, 0, 1)]
⋃

[(0, 0, 0, 1, 1), (0, 1, 0, 1, 1)]
⋃

[(0, 0, 1, 0, 1), (0, 1, 1, 0, 1)]
⋃

[(0, 0, 1, 1, 0), (0, 0, 1, 1, 1)].

and the corresponding Stanley decomposition is

D(P1) := 𭟋[λ3, λ4, λ5]⊕ λ1𭟋[λ1]⊕ λ2𭟋[λ2]⊕ λ3𭟋[λ3]⊕ λ4𭟋[λ4]⊕ λ5𭟋[λ5]⊕

λ1λ3𭟋[λ1, λ3]⊕ λ2λ3𭟋[λ2, λ3]⊕ λ2λ4𭟋[λ2, λ4]⊕ λ2λ5𭟋[λ2, λ5]⊕

λ3λ4𭟋[λ3, λ4]⊕ λ3λ5𭟋[λ3, λ5]⊕ λ4λ5𭟋[λ4, λ5]⊕ λ2λ3λ5𭟋[λ2, λ3, λ5]⊕

λ2λ4λ5𭟋[λ2, λ4, λ5].

D(P2) := 𭟋[λ1, λ3]⊕ λ2𭟋[λ2, λ3]⊕ λ4𭟋[λ2, λ4]⊕ λ5𭟋[λ2, λ5]⊕ λ4λ5𭟋[λ2, λ4, λ5]⊕

λ3λ5𭟋[λ2, λ3, λ5]⊕ λ3λ4𭟋[λ3, λ4, λ5].

Then

sdepth(Λ/L) ≥ max{sdepth(D(P1)) , sdepth(D(P2))}

≥ max{1, 2}

≥ 2.

2.1.3 Some Known Results for Depth and Stanley Depth

Following are the results in which the classes of monomial ideals including monomial
edge ideals and residue class rings of monomial ideals are considered for computing
their depth as well as Stanley depth.

Lemma 2.1.6 ([14]). (Depth Lemma) Let Υ1, Υ2 and Υ3 be Zn-graded Λ-modules and

0 −→ Υ1 −→ Υ2 −→ Υ3 −→ 0

be a short exact sequence. Then

(a) depth(Υ2) ≥ min{depth(Υ3), depth(Υ1)}.
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(b) depth(Υ1) ≥ min{depth(Υ2), depth(Υ3) + 1}.

(c) depth(Υ3) ≥ min{depth(Υ1)− 1, depth(Υ2)}.

Proposition 2.1.7 ([27, Lemma 2.2]). Consider a short exact sequence 0 −→ Υ1 −→
Υ2 −→ Υ3 −→ 0 of Zn-graded Λ-modules. In this case, we have the inequality

sdepth(Υ2) ≥ min{sdepth(Υ1), sdepth(Υ3)}.

Lemma 2.1.8 ([14, Lemma 3.6]). Let L and J be two monomial ideals with J ⊂ L,
suppose Λ′ = Λ[λn+1]. Then

(a) depth(LΛ′/JΛ′) = depth(LΛ/JΛ) + 1.

(b) sdepth(LΛ′/JΛ′) = sdepth(LΛ/JΛ) + 1.

Lemma 2.1.9 ([27, Theorem 3.1]). Consider two monomial ideals such that L ⊂ Λ′ =

𭟋[λ1, . . . , λu] and J ⊂ Λ′′ = 𭟋[λu+1, . . . , λn] with 1 ≤ u < n. If Λ = Λ′ ⊗K Λ′′, then

(a) depthΛ(Λ
′/L⊗KΛ

′′/J ) = depthΛ(Λ/(LΛ+JΛ)) = depthΛ′ (Λ
′
/L)+depthΛ′′ (Λ

′′
/J ).

(b) sdepthΛ(Λ
′/L⊗KΛ

′′/J ) = sdepthΛ(Λ/(LΛ+JΛ)) ≥ sdepthΛ′ (Λ
′
/L)+sdepthΛ′′ (Λ

′′
/J ).

Corollary 2.1.10 ([27, Corollary 1.3]). Assume a proper monomial ideal L of Λ and
λ /∈ L. Then

depth(Λ/(L : λ)) ≥ depth(Λ/L).

Proposition 2.1.11 ([38, Proposition 2.7]). Assume a proper monomial ideal L of Λ
and λ /∈ L. Then

sdepth(Λ/(L : λ)) ≥ sdepth(Λ/L).

Lemma 2.1.12 ([30, Lemma 2.2]). Consider a null graph W1. Let Λ = 𭟋[V (W1⊙Q)]

and I(W1 ⊙Q) be the edge ideal. Then

depth(Λ/I(W1 ⊙Q)) = sdepth(Λ/I(W1 ⊙Q)) = 1.

Lemma 2.1.13 ([1, Theorem 2.6]). Let Λ = 𭟋[V (Λs)] and I(Λs) be an edge ideal of
s-star. Then

depth(Λ/I(Λs)) = sdepth(Λ/I(Λs)) = 1.
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Theorem 2.1.14 ([30, Theorem 2.17]). Let Λ = 𭟋[V (Λs ⊙Q)]. Then

(a) depth(Λ/I(Λs ⊙Q)) = m+ depth(𭟋[V (Q)]/I(Q)) + |i(Q)|.

(b) sdepth(Λ/I(Λs ⊙Q)) ≥ m+ sdepth(𭟋[V (Q)]/I(Q)) + |i(Q)|.

Lemma 2.1.15 ([21, Lemma 2.8]). Let L = I(Pr) be an edge ideal of a path graph on
r vertices and r ≥ 2. Then

(a) depth(Λ/L) = ⌈ r
3
⌉.

(b) sdepth(Λ/L) = ⌈ r
3
⌉.

Theorem 2.1.16 ([30, Theorem 2.5]). Let r ≥ 1 and Λ = 𭟋[V (Pr ⊙Q)]. Then

(a) depth(Λ/I(Pr ⊙Q)) = ⌈ r
2
⌉+ ⌈ r−1

2
⌉( depth(𭟋[V (Q)]/I(Q)) + |i(Q)|).

(b) sdepth(Λ/I(Pr ⊙Q)) ≥ ⌈ r
2
⌉+ ⌈ r−1

2
⌉( sdepth(𭟋[V (Q)]/I(Q)) + |i(Q)|).

To be more specific, if Q is a null graph, then

sdepth(Λ/I(Pr ⊙Q)) = ⌈r
2
⌉+ ⌈r − 1

2
⌉|V (Q)|.

Proposition 2.1.17 ([9, Proposition 1.3]). Let L = I(Cr) be an edge ideal of ring Λ

associated with a cycle graph. Then

(a) depth(Λ/L) = ⌈ r−1
3
⌉.

(b) sdepth(Λ/L) ≥ ⌈ r−1
3
⌉.

Theorem 2.1.18 ([30, Theorem 2.9]). If r ≥ 3 and Λ = 𭟋[V (Cr ⊙Q)], then

(a) depth(Λ/I(Cr ⊙Q)) = ⌈ r−1
2
⌉+ ⌈ r

2
⌉( depth(𭟋[V (Q)]/I(Q)) + |i(Q)|).

(b) sdepth(Λ/I(Cr ⊙Q)) ≥ ⌈ r−1
2
⌉+ ⌈ r

2
⌉( sdepth(𭟋[V (Q)]/I(Q)) + |i(Q)|).

To be more specific, if Q is a null graph, then

sdepth(Λ/I(Cr ⊙Q)) = ⌈r − 1

2
⌉+ ⌈r

2
⌉|V (Q)|.

Lemma 2.1.19 ([6, Theorems 1.3.3]). If Λ is a Noetherian local ring that is also a
commutative ring, and D is a non-zero finite Λ-module of finite projective dimension,
then

pdim(D) + depth(D) = depth(Λ).
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2.2 Regularity

Consider a field 𭟋 and a polynomial ring in n variables over 𭟋 denoted by Λ :=
𭟋[λ1, . . . , λn]. Suppose we have a finitely generated Z-graded Λ-module D, and it
possesses a minimal free resolution.

0 −→
⊕
k∈Z

Λ(−k)ϕl,k(D) −→
⊕
k∈Z

Λ(−k)ϕl−1,k(D) −→ . . . −→
⊕
k∈Z

Λ(−k)ϕ0,k(D) −→ D −→ 0,

then the regularity and projective dimension of C can be determined by reg(D) =

max{k − l : ϕl,k(D) /∈ 0} and pdim(D) = max{l : ϕl,k(D) /∈ 0}, respectively. The role
of regularity as a key indicator of module’s complexity is significant and serves as an
important invariant in the field of Commutative Algebra. Numerous researchers have
examined the values and limitations of regularity and projective dimension of edge
ideals.

2.2.1 Some Known Results for Regularity

Theorem 2.2.1 ([7, Theorems 4.7]). Assume a monomial ideal L with λ as a variable
of Λ. Then

(a) reg(Λ/L) = reg Λ/(L : λ) + 1, if reg(Λ/L : λ) > reg Λ/(L, λ),

(b) reg(Λ/L) ∈ {reg Λ/(L, λ) + 1, reg Λ/(L, λ)}, if reg(Λ/L : λ) = reg Λ/(L, λ) and

(c) reg(Λ/L) = reg(λ/L, λ) if reg(λ/L : λ) < reg Λ/(L, λ).

Lemma 2.2.2 ([36, Lemma 8]). Consider two disjoint graphs V1 and V2, and let A =

V1 ∪ V2. Then

reg(𭟋[V (A)]/I(A)) = reg(𭟋[V (A)]/I(V1)) + reg(𭟋[V (A)]/I(V2)).

Lemma 2.2.3 ([22, Lemma 3.6]). Let J ⊂ Λ = 𭟋[λ1, . . . , λn] be a monomial ideal and
Λ′ = Λ

⊗
K 𭟋[λn+1, . . . , λn+s]. Then

reg(Λ′/J ) = reg(Λ/J ),
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Theorem 2.2.4 ([30, Lemma 2.26]). Let s ≥ 1. If Λ = 𭟋[V (Λs)] and I(Λs) be an edge
ideal of an s-star, then reg(Λ/I(Λs)) = 1.

Lemma 2.2.5 ([30, Lemma 2.26]). Consider a ring Λ = 𭟋[V (W1 ⊙Q)]. Then

reg(Λ/I(W1 ⊙Q)) =

{
1 , if Q is a null graph;
reg(𭟋[V (Q)]/I(Q)) , otherwise.

Theorem 2.2.6 ([30, Theorem 2.34]). Consider a ring Λ such that Λ = 𭟋[V (Λs⊙Q)]

where Λs is an s-star on s+ 1 vertices. Then

reg(Λ/I(Λs ⊙Q)) =

{
s , if Q is a null graph;
(s+ 1).reg(𭟋[V (Q)]/I(Q)) , otherwise.
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Chapter 3

Depth, Stanley Depth and Projective
Dimension of Cyclic Modules
Associated with Corona Product Of
Certain Graphs

In this chapter, we compute Stanley depth, depth and projective dimension of edge
ideal associated with corona product of multi-triangular graph Γr,s with any graph Q.
The process of computing exact values of these invariants involves the use of short
exact sequences and some important results of the Stanley depth, depth and projective
dimension.

3.1 Depth, Stanley Depth and Projective Dimension

of Cyclic Module Associated with Γr,s ⊙Q

Consider a graph Q with w vertices such that |V (Q)|= w. Let r, s ≥ 1. Then corona
product of multi triangular snake graph Γr,s with any graph Q denoted by Γr,s ⊙ Q
is obtained by connecting all vertices of Q to every vertex of Γr,s. If s = 1 then
Γr,s = Γr,1 = Γr a triangular snake graph. Clearly |V (Γr,s ⊙Q)|= |V (Γr,s)|(|V (Q)|+1)

and E(Γr,s ⊙ Q) = |E(Γr,s)|+(|V (Γr,s)||E(Q)|) + (|V (Γr,s)||E(Q)|). The vertices of
the Γr,s ⊙ Q are labelled by using the following sets of variables {µ1, µ2, . . . , µr+1},

20



{µr1, µr2, . . . , µrw},{σr1, σr2, . . . , σrs} and {σrs1, σrs2, . . . , σrsw}. For example see figure
3.1. Also we denote the edge ideal of polynomial ring Λr,s = 𭟋[V (Γr,s ⊙Q)] by Ir,s .
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Figure 3.1: Γ3,2 ⊙Q

Let us consider a supergraph Γ′
r,s ⊙ Q of the graph Γr,s ⊙ Q. The vertex and edge

sets of Γ′
r,s ⊙Q are |V (Γ′

r,s ⊙Q)|= |V (Γ′
r,s)|(|V (Q)|+1) = V (Tr,s)

⋃
{σ(r+1)1, σ(r+1)2,

. . . , σ(r+1)s} and E(Γ′
r,s⊙Q) = |E(Γ′

r,s)|+(|V (Γ′
r,s)||V (Q)|)+(|V (Γ′

r,s)||E(Q)|) = E(Tr,s)⋃
{{µr+1, σ(r+1)k} : 1 ≤ k ≤ s}. For example of graph Γ′

r,s⊙Q see figure 3.2. We denote
the edge ideal of graph Γ′

r,s ⊙ Q with I ′r,s, which is monomial ideal of the polynomial
ring Λ′

r,s = 𭟋[V (Γ′
r,s ⊙Q)].
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Figure 3.2: Γ′
2,2 ⊙Q

Clearly Γr,s is a connected graph. It is important to note that the graph Γr,s⊙Q does
not contain any isolated vertices, regardless of whether Q itself has isolated vertices.
Therefore, we allow the presence of isolated vertices in the graph Q. The presence of
isolated vertices within Q is of great importance in our findings.

Remark 3.1.1. Let Q be a graph, and we denote the set of isolated vertices in Q as
i(Q). If we define C := V (Q) \ i(Q), we use Q′ to represent the induced subgraph
of Q on the vertex set C. It is clear that |V (Q)|= |i(Q)|+|C| and I(Q) = (qiqj, qk :

{qi, qj} ∈ E(Q′
)) and qk ∈ i(Q)). Also 𭟋[V (Q)]/I(Q) ∼= 𭟋[V (Q′

)]/I(Q′
).

Lemma 3.1.2. Let r, s ≥ 1. If Λ′
r,s = 𭟋[V (Γ′

r,s ⊙Q)] and I ′r,s = I(Γ′
r,s ⊙Q), then

(1) depth(Λ′
r,s/I

′
r,s) = (r + 1)(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s).

(2) sdepth(Λ′
r,s/I

′
r,s) = (r + 1)(sdepth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s).
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Proof. We will prove this result by induction on r. Following is the sequence which is
short exact

0 −→ Λ′
r,s/(I

′
r,s : µr+1)

.µr+1−→Λ′
r,s/I

′
r,s −→ Λ′

r,s/(I
′
r,s, µr+1) −→ 0.

By Depth Lemma, we have

depth(Λ′
r,s/I

′
r,s) ≥ min{depth(Λ′

r,s/(I
′
r,s : µr+1)), depth(Λ

′
r,s/(I

′
r,s, µr+1))}.

If r = 1, then we have the following isomorphism:

Λ′
1,s/(I

′
1,s : µ2) ∼=

2s+1⊗
k=1

𭟋[V (Q)]/I(Q)
2s+1⊗
k=1

𭟋[i(Q)]
⊗
K

𭟋[µ2].

Then by Lemma 2.1.9, we have

depth(Λ′
1,s/(I

′
1,s : µ2)) =

2s+1∑
k=1

depth(𭟋[V (Q)]/I(Q)) +
2s+1∑
k=1

depth(𭟋[i(Q)])

+ depth(𭟋[µ2]),

which implies that

depth(Λ′
1,s/(I

′
1,s : µ2)) = (2s+ 1)(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + 1.

Similarly

Λ′
1,s/(I

′
1,s, µ2) ∼=𭟋[V (Λs ⊙Q)]/I(Λs ⊙Q)

⊗
K

𭟋[V (Q)]/I(Q)

s⊗
k=1

𭟋[V (W1 ⊙Q)]/I(W1 ⊙Q)
⊗
K

𭟋[i(Q)].

Therefore again by Lemma 2.1.9
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depth(Λ′
1,s/(I

′
1,s, µ2)) =depth(𭟋[V (Λs ⊙Q)]/I(Λs ⊙Q)) + depth(𭟋[V (Q)]/I(Q))

+
s∑

k=1

depth(𭟋[V (W1 ⊙Q)]/I(W1 ⊙Q)) + depth(𭟋[i(Q)]).

Thus by Theorem 2.1.14

depth(Λ′
1,s/(I

′
1,s, µ2)) = 2(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s).

It follows by Lemma 2.1.6

depth(Λ′
1,s/I

′
1,s) ≥ 2(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s). (3.1)

Now since σ21σ22 . . . σ2s /∈ I ′1,s, we have

Λ′
1,s/(I

′
1,s : σ21σ22 . . . σ2s) ∼=𭟋[V (Λs ⊙Q)]/I(Λs ⊙Q)

⊗
K

𭟋[i(Q)]⊗
K

𭟋[V (Q)]/I(Q)
⊗
K

𭟋[σ21, σ22, . . . , σ2s],

by using Lemma 2.1.9, we get

depth(Λ′
1,s/(I

′
1,s : σ21σ22 . . . σ2s)) =depth(𭟋[V (Λs ⊙Q)]/I(Λs ⊙Q))

+ depth(𭟋[V (Q)]/I(Q)) + depth(𭟋[i(Q)])

+ depth(𭟋[σ21, σ22, . . . , σ2s]).

Thus by Theorem 2.1.14

depth(Λ′
1,s/(I

′
1,s : σ21σ22 . . . σ2s)) = 2(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s).

By using Corollary 2.1.10, we have

depth(Λ′
1,s/I

′
1,s) ≤ 2(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s). (3.2)
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Therefore by Eq (3.1) and Eq (3.2) we have the following result

depth(Λ′
1,s/I

′
1,s) = 2(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s).

If r = 2, then using the similar arguments and case r = 1, one can easily prove that
depth(Λ′

2,s/I
′
2,s) = 3(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s).

Let r ≥ 3. Then we have

Λ′
r,s/(I

′
r,s : µr+1) ∼= Λ′

(r−2),s/I
′
(r−2),s

2s+1⊗
k=1

𭟋[V (Q)]/I(Q)
2s+1⊗
k=1

𭟋[i(Q)]
⊗
K

𭟋[µr+1].

Then by Lemma 2.1.9

depth(Λ′
r,s/(I

′
r,s : µr+1)) =depth(Λ′

(r−2),s/I
′
(r−2),s) +

2s+1∑
k=1

depth(𭟋[V (Q)]/I(Q))

+
2s+1∑
k=1

depth(𭟋[i(Q)]) + depth(𭟋[µr+1]).

By induction, we have

depth(Λ′
r,s/(I

′
r,s : µr+1)) = (r + 2s)(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + rs− s+ 1.

Also

Λ′
r,s/(I

′
r,s, µr+1) ∼=Λ′

(r−1),s/I
′
(r−1),s

⊗
K

𭟋[V (Q)]/I(Q)
s⊗

k=1

𭟋[V (W1 ⊙Q)]/I(W1 ⊙Q)⊗
K

𭟋[i(Q)].

Then by Lemma 2.1.9

depth(Λ′
r,s/(I

′
r,s, µr+1)) =depth(Λ′

(r−1),s/I
′
(r−1),s) + depth(𭟋[V (Q)]/I(Q))

+
s∑

k=1

depth(𭟋[V (W1 ⊙Q)]/I(W1 ⊙Q)) + depth(𭟋[i(Q)]).
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By induction and Lemma 2.1.12, we get

depth(Λ′
r,s/(I

′
r,s, µr+1)) = (r + 1)(depth(𭟋[(Q)]/I(Q)) + |i(Q)|+s).

Again by Lemma 2.1.6

depth(Λ′
r,s/I

′
r,s) ≥ (r + 1)(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s). (3.3)

Now since σ(r+1)1σ(r+1)2 . . . σ(r+1)s /∈ I ′r,s, we have

Λ′
r,s/(I

′
r,s : σ(r+1)1σ(r+1)2 . . . σ(r+1)s) ∼=Λ′

(r−1),s/I
′
(r−1),s

⊗
K

𭟋[i(Q)]
⊗
K

𭟋[V (Q)]/I(Q)⊗
K

𭟋[σ(r+1)1, σ(r+1)2, . . . , σ(r+1)s].

Thus by Lemma 2.1.9

depth(Λ′
r,s/(I

′
r,s : σ(r+1)1σ(r+1)2 . . . σ(r+1)s)) =depth(Λ′

(r−1),s/I
′
(r−1),s) + depth(𭟋[i(Q)]

+ depth(𭟋[V (Q)]/I(Q))

+ depth(𭟋[σ(r+1)1, σ(r+1)2, . . . , σ(r+1)s]).

By induction depth(Λ′
r,s/(I

′
r,s : σ(r+1)1σ(r+1)2 . . . σ(r+1)s)) = (r+1)(depth(𭟋[V (Q)]/I(Q))+

|i(Q)|+s). Again by Corollary 2.1.10, we have

depth(Λ′
r,s/I

′
r,s) ≤ (r + 1)(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s). (3.4)

Hence by Eq (3.3) and (3.4), we get the desired result

depth(Λ′
r,s/(I

′
r,s)) = (r + 1)(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s).

Now we prove the result for the Stanley depth. We obtain the lower bound for the
Stanley depth by induction, Proposition 2.1.7, Lemma 2.1.8(b), and Lemma 2.1.9(b).
For upper bound we use Proposition 2.1.11 instead of Corollary 2.1.10.
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Corollary 3.1.3. Let r,s ≥ 1. Then

pdim(Λ′
r,s/I

′
r,s) = (r + 1)(s+ 1)(|V (Q)|)− (r + 1) depth(𭟋[V (Q)]/I(Q)) + r + 1.

Proof. The result for projective dimension follows by using Lemma 2.1.19, that is

pdim(Λ′
r,s/I

′
r,s) + depth(Λ′

r,s/I
′
r,s) = depth(Λ′

r,s),

which implies that

pdim(Λ′
r,s/I

′
r,s) = depth(Λ′

r,s)− depth(Λ′
r,s/I

′
r,s).

Hence by Lemma 3.1.2, we have

pdim(Λ′
r,s/I

′
r,s) = (r + 1)(s+ 1)(|V (Q)|)− (r + 1) depth(𭟋[V (Q)]/I(Q) + r + 1.

Theorem 3.1.4. Let r, s ≥ 1. If Λr,s = 𭟋[V (Γr,s ⊙Q)] and Ir,s = I(Γr,s ⊙Q), then

(1) depth(Λr,s/Ir,s) = (r + 1)(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + rs.

(2) sdepth(Λr,s/Ir,s) = (r + 1)(sdepth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + rs.

Proof. First we demonstrate the result for depth. Consider the sequence which is short
exact

0 −→ Λr,s/(Ir,s : µr+1)
.µr+1−→Λr,s/Ir,s −→ Λr,s/(Ir,s, µr+1) −→ 0.

By applying Depth Lemma, we get

depth(Λr,s/Ir,s) ≥ min{depth(Λr,s/(Ir,s : µr+1)), depth(Λr,s/(Ir,s, µr+1))}.

If r = 1, then we have the following isomorphism:

Λ1,s/(I1,s : µ2) ∼=
s+1⊗
k=1

𭟋[V (Q)]/I(Q)
s+1⊗
k=1

𭟋[i(Q)]
⊗
K

𭟋[µ2].
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Then by Lemma 2.1.9

depth(Λ1,s/(I1,s : µ2)) =
s+1∑
k=1

depth(𭟋[V (Q)]/I(Q)) +
s+1∑
k=1

depth(𭟋[i(Q)])

+ depth(𭟋[µ2]),

implies that

depth(Λ1,s/(I1,s)) : µ2) = (s+ 1)(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + 1.

Similarly

Λ1,s/(I1,s, µ2) ∼= 𭟋[V (Λs ⊙Q)]/I(Λs ⊙Q)
⊗
K

𭟋[V (Q)]/I(Q)
⊗
K

𭟋[i(Q)].

Therefore again by Lemma 2.1.9, we have

depth(Λ1,s/(I1,s, µ2)) =depth(𭟋[V (Λs ⊙Q)]/I(Λs ⊙Q)) + depth(𭟋[V (Q)]/I(Q))

+ depth(𭟋[i(Q)]).

Thus by Theorem 2.1.14

depth(Λ1,s/(I1,s, µ2)) = 2(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + s.

It follows by Lemma 2.1.6

depth(Λ1,s/I1,s) ≥ 2(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + s. (3.5)

Now since σ21σ22 . . . σ2s /∈ I1,s, we have

Λ1,s/(I1,s : σ21σ22 . . . σ2s) ∼=
2⊗

k=1

𭟋[V (Q)]/I(Q)
2⊗

k=1

𭟋[i(Q)]
⊗
K

𭟋[σ21, σ22, . . . , σ2s].
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By using Lemma 2.1.9

depth(Λ1,s/(I1,s : σ21σ22 . . . σ2s)) =
2∑

i=1

depth(𭟋[V (Q)]/I(Q)) +
2∑

i=1

depth(𭟋[i(Q)])

+ depth(𭟋[σ21, σ22, . . . , σ2s]).

Thus we have

depth(Λ1,s/(I1,s : σ21σ22 . . . σ2s)) = 2(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + s.

By using Corollary 2.1.10, we get

depth(Λ1,s/I1,s) ≤ 2(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + s. (3.6)

Therefore by Eq (3.5) and (3.6) we have

depth(Λ1,s/I1,s) = 2(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + s.

If r = 2, then using the similar arguments and case r = 1, one can easily prove that
depth(Λ2,s/I2,s) = 3(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + s. Let r ≥ 3. Then we have

Λr,s/(Ir,s : µr+1) ∼= Λ′
(r−2),s/I

′
(r−2),s

s+1⊗
k=1

𭟋[V (Q)]/I(Q)
s+1⊗
k=1

𭟋[i(Q)]
⊗
K

𭟋[µr+1].

Then by Lemma 2.1.9

depth(Λr,s/(Ir,s : µr+1)) =depth(Λ′
(r−2),s/I

′
(r−2),s) +

s+1∑
k=1

depth(𭟋[V (Q)]/I(Q))

+
s+1∑
k=1

depth(𭟋[i(Q)]) + depth(𭟋[µr+1]).

By Lemma 3.1.2

depth(Λr,s/(Ir,s : µr+1)) = (r + s)(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + rs− s+ 1.
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Also

Λr,s/(Ir,s, µr+1) ∼= Λ′
(r−1),s/I

′
(r−1),s

⊗
K

𭟋[V (Q)]/I(Q)
⊗
K

𭟋[i(Q)].

Then again by Lemma 2.1.9, we get

depth(Λr,s/(Ir,s, µr+1)) =depth(Λ′
(r−1),s/I

′
(r−1),s) + depth(𭟋[V (Q)]/I(Q))

+ depth(𭟋[i(Q)]).

By Lemma 3.1.2

depth(Λr,s/(Ir,s, µr+1)) = (r + 1)(depth(𭟋[V (Q)]/I(Q)) + |iQ|) + rs.

Again by Lemma 2.1.6

depth(Λr,s/Ir,s) ≥ (r + 1)(depth(𭟋[Q]/I(Q)) + |i(Q)|) + rs. (3.7)

Now since σr1σr2 . . . σrs /∈ Ir,s, we have

Λr,s/(Ir,s : σr1σr2 . . . σrs) ∼=Λ′
(r−1),s/I

′
(r−1),s

2⊗
k=1

𭟋[V (Q)]/I(Q)

2⊗
k=1

𭟋[i(Q)]
⊗
K

𭟋[σr1, σr2, . . . , σrs].

Thus by Lemma 2.1.9

depth(Λr,s/(Ir,s : σr1σr2 . . . σrs)) =depth(Λ′
(r−1),s/I

′
(r−1),s)

+
2∑

k=1

depth(𭟋[V (Q)]/I(Q))

+
2∑

k=1

depth(𭟋[i(Q)]

+ depth(𭟋[σr1, σr2, . . . , σrs]).
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By Lemma 3.1.2

depth(Λr,s/(Ir,s : σr1σr2 . . . σrs)) =(r + 1)(depth(𭟋[V (Q)]/I(Q))

+ |i(Q)|) + rs.

Again by Corollary 2.1.10, we have

depth(Λr,s/Ir,s) ≤ (r + 1)(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + rs. (3.8)

Hence by Eq (3.7) and Eq (3.8) we get the desired result

depth(Λr,s/Ir,s) = (r + 1)(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + rs.

Now we prove the result for the Stanley depth. We obtain the lower bound for the
Stanley depth by induction, Proposition 2.1.7, Lemma 2.1.8(b), and Lemma 2.1.9(b).
For upper bound we use Proposition 2.1.11 instead of Corollary 2.1.10.

Corollary 3.1.5. Let r,s ≥ 1. Then

pdim(Λr,s/Ir,s) = (rs+ r + 1)(|V (Q)|)− (r + 1) depth(𭟋[V (Q)]/I(Q)) + r + 1.

Proof. The result for projective dimension follows by using Lemma 2.1.19, that is

pdim(Λr,s/Ir,s) + depth(Λr,s/Ir,s) = depth(Λr,s),

which implies that

pdim(Λr,s/Ir,s) = depth(Λr,s)− depth(Λr,s/Ir,s).

Hence by Theorem 3.1.4, we get

pdim(Λr,s/Ir,s) = (r + 1)(s+ 1)(|V (Q)|)− (r + 1) depth(𭟋[V (Q)]/I(Q) + r + 1.
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3.2 Depth, Stanley Depth and Projective Dimension

of Cyclic Module Associated with Ωr,s ⊙Q

In this section, we compute Stanley depth, depth and projective dimension of edge
ideal associated with corona product of multi triangular ouroboros snake graph Or,s

with any graph Q.

Let r, s ≥ 1. Then corona product of multi triangular ouroboros snake graph Or,s

with any graph Q denoted by Or,s ⊙ Q is obtained by connecting all vertices of Q
to every vertex of Or,s. For example if s = 1 then Or,s = Or,1 = Or a triangular
ouroboros snake graph. Clearly |V (Or,s⊙Q)|= |V (Or,s)|(|V (Q)|+1) and E(Or,s⊙Q) =

|E(Or,s)|+(|V (Or,s)||E(Q)|)+(|V (Or,s)||V (Q)|). The vertices of the Γr,s⊙Q are labelled
by using the following sets of variables {µ1, µ2, . . . , µr+1}, {µr1, µr2, . . . , µrw},{σr1, σr2,

. . . , σrs} and {σrs1, σrs2, . . . , σrsw}. For example see figure 3.4. Also we denote the
square free monomial ideal of polynomial ring Ωr,s = 𭟋[V (Or,s ⊙Q)] by Jr,s.
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Figure 3.3: Ω4,2 ⊙Q
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Figure 3.4: Γ′′
2,s ⊙Q

Let us consider a super graph Γ′′
r,s ⊙Q of the graph Γ′

r,s ⊙Q. The vertex and edge
sets of Γ′′

r,s ⊙Q are |V (Γ′′
r,s ⊙Q)|= |V (Γ′′

r,s)|(|V (Q)|+1) = V (T ′
r,s)

⋃
{σ(r+2)1, σ(r+2)2,

. . . , σ(r+2)s} and E(Γ′′
r,s⊙Q) = |E(Γ′′

r,s)|+(|V (Γ′′
r,s)||V (Q)|)+(|V (Γ′′′

r,s)||E(Q)|) = E(T ′
r,s)⋃

{{µ1, σ(r+2)k} : 1 ≤ k ≤ s}. Clearly T ′′
r,s⊙Q. For example of graph Γ′′

r,s⊙Q see figure
3.4. We denote the edge ideal of graph Γ′′

r,s ⊙ Q with J ′′
r,s which is monomial ideal of

the polynomial ring Λ′′
r,s = 𭟋[V (Γ′′

r,s ⊙Q)].

Lemma 3.2.1. Let r, s ≥ 1. If Λ′′
r,s = 𭟋[V (Γ′′

r,s ⊙Q)] and J ′′
r,s = I(Γ′′

r,s ⊙Q), then

(1) depth(Λ′′
r,s/J

′′
r,s) = (r + 1)(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + (r + 2)s.

(2) sdepth(Λ′′
r,s/J

′′
r,s) = (r + 1)(sdepth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + (r + 2)s.

Proof. First we demonstrate the result for depth by induction on r. Consider the

34



sequence which is short exact

0 −→ Λ′′
r,s/(J

′′
r,s : µr+1)

.µr+1−→Λ′′
r,s/J

′′
r,s −→ Λ′′

r,s/(J
′′
r,s, µr+1) −→ 0

by applying Depth Lemma, we get

depth(Λ′′
r,s/J

′′
r,s) ≥ min{depth(Λ′′

r,s/(J
′′
r,s : µr+1)), depth(Λ

′′
r,s/(J

′′
r,s, µr+1))}.

If r = 1, then we have the following isomorphism:

Λ′′
1,s/(J

′′
1,s : µ2) ∼=

2s+1⊗
k=1

𭟋[V (Q)]/I(Q)
2s+1⊗
k=1

𭟋[i(Q)]
s⊗

k=1

𭟋[V (W1 ⊙Q)]/I(W1 ⊙Q)⊗
K

𭟋[µ2].

Then by Lemma 2.1.9

depth(Λ′′
1,s/(J

′′
1,s : µ2)) =

2s+1∑
k=1

depth(𭟋[V (Q)]/I(Q)) +
2s+1∑
k=1

depth(𭟋[i(Q)])

+
s∑

k=1

depth(𭟋[V (W1 ⊙Q)]/I(W1 ⊙Q)) + depth(𭟋[µ2]),

which implies by Lemma 2.1.12

depth(Λ′′
1,s/(J

′′
1,s : µ2)) = (2s+ 1)(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + s+ 1.

Similarly

Λ′′
1,s/(J

′′
1,s, µ2) ∼=𭟋[V (Λ2s ⊙Q)]/I(Λ2s ⊙Q)

⊗
K

𭟋[V (Q)]/I(Q)
⊗
K

𭟋[i(Q)]

s⊗
k=1

𭟋[V (W1 ⊙Q)]/I(W1 ⊙Q).

Therefore again by Lemma 2.1.9, we have
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depth(Λ′′
1,s/(J

′′
1,s, µ2)) =depth(𭟋[V (Λ2s ⊙Q)]/I(Λ2s ⊙Q)) + depth(𭟋[V (Q)]/I(Q))

+ depth(𭟋[i(Q)]) +
s∑

k=1

depth(𭟋[V (W1 ⊙Q)]/I(W1 ⊙Q)).

Thus we have by Theorem 2.1.14

depth(Λ′′
1,s/(J

′′
1,s, µ2)) = 2(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + 3s.

It follows by Lemma 2.1.6

depth(Λ′′
1,s/J

′′
1,s) ≥ 2(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + 3s. (3.9)

Now since σ21σ22 . . . σ2s /∈ J ′′
1,s, we have

Λ′′
1,s/(J

′′
1,s : σ21σ22 . . . σ2s) ∼=𭟋[V (Λ2s ⊙Q)]/I(Λ2s ⊙Q)

⊗
K

𭟋[V (Q)]/I(Q)⊗
K

𭟋[i(Q)]
⊗
K

𭟋[σ21, σ22, . . . , σ2s].

By using Lemma 2.1.9

depth(Λ′′
1,s/(J

′′
1,s : σ21σ22 . . . σ2s)) =depth(𭟋[V (Λ2s ⊙Q)]/I(Λ2s ⊙Q))

+ depth(𭟋[V (Q)]/I(Q))

+ depth(𭟋[i(Q)]) + depth(𭟋[σ21, σ22, . . . , σ2s]).

Thus we have by Theorem 2.1.14

depth(Λ′′
1,s/(J

′′
1,s : σ21σ22 . . . σ2s)) = 2(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + 3s.

By using Corollary 2.1.10, we get

depth(Λ′′
1,s/J

′′
1,s) ≤ 2(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + 3s. (3.10)
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Therefore by Eq (3.9) and Eq (3.10) we get the following result

depth(Λ′′
1,s/(J

′′
1,s) = 2(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + 3s.

If r = 2, then using the similar arguments and case r = 1, one can easily prove that
depth(Λ′′

2,s/J
′′
2,s) = 3(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + 4s. Let r ≥ 3, thus we have

Λ′′
r,s/(J

′′
r,s : µr+1) ∼=Λ′′

(r−2),s/J
′′
(r−2),s

2s+1⊗
k=1

𭟋[V (Q)]/I(Q)
2s+1⊗
k=1

𭟋[i(Q)]⊗
K

𭟋[µr+1].

Then by Lemma 2.1.9

depth(Λ′′
r,s/(J

′′
r,s : µr+1)) =depth(Λ′′

(r−2),s/J
′′
(r−2),s) +

2s+1∑
k=1

depth(𭟋[V (Q)]/I(Q))

+
2s+1∑
k=1

depth(𭟋[i(Q)]) + depth(𭟋[µr+1]).

Now by induction

depth(Λ′′
r,s/(J

′′
r,s : µr+1)) = (r + 2s)(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + rs+ 1.

Also

Λ′′
r,s/(J

′′
r,s, µr+1) ∼=Λ′′

(r−1),s/J
′′
(r−1),s

⊗
K

𭟋[V (Q)]/I(Q)
⊗
K

𭟋[i(Q)]

s⊗
k=1

𭟋[V (W1 ⊙Q)]/I(W1 ⊙Q).

Then again by Lemma 2.1.9

depth(Λ′′
r,s/(J

′′
r,s, µr+1)) =depth(Λ′′

(r−1),s/J
′′
(r−1),s) + depth(𭟋[V (Q)]/I(Q))

+ depth(𭟋[i(Q)]) +
s∑

k=1

depth(𭟋[V (W1 ⊙Q)]/I(W1 ⊙Q)).
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By induction, we get

depth(Λ′′
r,s/(J

′′
r,s, µr+1)) = (r + 1)(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + (r + 2)s.

Again by Lemma 2.1.6

depth(Λ′′
r,s/J

′′
r,s) ≥ (r + 1)(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + (r + 2)s. (3.11)

Now since σ(r+1)1σ(r+1)2 . . . σ(r+1)s /∈ J ′′
r,s, we have

Λ′′
r,s/(J

′′
r,s : σ(r+1)1σ(r+1)2 . . . σ(r+1)s) ∼=Λ′′

(r−1),s/J
′′
(r−1),s

⊗
K

𭟋[V (Q)]/I(Q)
⊗
K

𭟋[i(Q)]⊗
K

𭟋[σ(r+1)1, σ(r+1)2, . . . , σ(r+1)s].

Thus by Lemma 2.1.9, we get

depth(Λ′′
r,s/(J

′′
r,s : σ(r+1)1σ(r+1)2 . . . σ(r+1)s)) =depth(Λ′′

(r−1),s/J
′′
(r−1),s ⊙W )

+ depth(𭟋[V (Q)]/I(Q))

+ depth(𭟋[i(Q)]

+ depth(𭟋[σ(r+1)1, σ(r+1)2, . . . , σ(r+1)s]).

Then by induction

depth(Λ′′
r,s/(J

′′
r,s : σ(r+1)1σ(r+1)2 . . . σ(r+1)s)) =(r + 1)(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|)

+ (r + 2)s.

Again by Corollary 2.1.10,

depth(Λ′′
r,s/J

′′
r,s) ≤ (r + 1)(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + (r + 2)s. (3.12)

Hence we have he desired result by Eq (3.11) and Eq (3.12) such that

depth(Λ′′
r,s/J

′′
r,s) = (r + 1)(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + (r + 2)s.
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Now we prove the result for the Stanley depth. We obtain the lower bound for the
Stanley depth by induction, Proposition 2.1.7, Lemma 2.1.8(b), and Lemma 2.1.9(b).
For upper bound we use Proposition 2.1.11 instead of Corollary 2.1.10.

Corollary 3.2.2. Let r,s ≥ 1. Then

pdim(Λ′′
r,s/J

′′
r,s) = (r + 1)(s+ 1)(|V (Q)|)− (r + 1) depth(𭟋[V (Q)]/I(Q)) + r + 1.

Proof. The result for projective dimension follows by using Lemma 2.1.19, that is

pdim(Λ′′
r,s/J

′′
r,s) + depth(Λ′′

r,s/J
′′
r,s) = depth(Λ′′

r,s),

which implies that pdim(Λ′′
r,s/J

′′
r,s) = depth(Λ′′

r,s)− depth(Λ′′
r,s/J

′′
r,s). Hence by Lemma

3.2.1, we have

pdim(Λ′′
r,s/J

′′
r,s) = (r + 1)(s+ 1)(|V (Q)|)− (r + 1) depth(𭟋[V (Q)]/I(Q)) + r + 1.

Theorem 3.2.3. Let r ≥ 3, s ≥ 1. If Ωr,s = 𭟋[V (Or,s ⊙ Q)] and Jr,s = I(Or,s ⊙ Q),
then

(1) depth(Ωr,s/Jr,s) = r(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s).

(2) sdepth(Ωr,s/Jr,s) = r(sdepth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s).

Proof. First we demonstrate the result for depth. Consider the sequence which is short
exact

0 −→ Ωr,s/(Jr,s : µr)
.µr−→Ωr,s/Jr,s −→ Ωr,s/(Jr,s, µr) −→ 0.

By applying Depth Lemma

depth(Ωr,s/Jr,s) ≥ min{depth(Ωr,s/(Jr,s : µr+1)), depth(Ωr,s/(Jr,s, µr+1))}.
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If r = 3, then we have

Ω3,s/(J3,s : µ3) ∼=
2s+2⊗
k=1

𭟋[V (Q)]/I(Q)
2s+2⊗
k=1

𭟋[i(Q)]
s⊗

k=1

𭟋[V (W1 ⊙Q)]/I(W1 ⊙Q)⊗
K

𭟋[µ3].

Then by Lemma 2.1.9

depth(Ω3,s/(J3,s : µ3)) =
2s+2∑
k=1

depth(𭟋[V (Q)]/I(Q)) +
2s+2∑
k=1

depth(𭟋[i(Q)])

+
s∑

k=1

depth(𭟋[V (W1 ⊙Q)]/I(W1 ⊙Q)) + depth(𭟋[µ3]),

which implies by Lemma 2.1.12

depth(Ω3,s/(J3,s : µ3)) = (2s+ 2)(depth(𭟋[V (Q)]/I(Q)) + i(Q)|) + s+ 1.

Similarly

Ω3,s/(J3,s, µ3) ∼= Λ′′
1,s/J

′′
1,s

⊗
K

𭟋[V (Q)]/I(Q)
⊗
K

𭟋[i(Q)].

Therefore again by Lemma 2.1.9

depth(Ω3,s/(J3,s, µ3)) = depth(Λ′′
1,s/J

′′
1,s) + depth(𭟋[V (Q)]/I(Q)) + depth(𭟋[i(Q)]).

Thus by Lemma 3.2.1, we have

depth(Ω3,s/(J3,s, µ3)) = 3(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s).

It follows by Lemma 2.1.6

depth(Ω3,s/J3,s) ≥ 3(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s). (3.13)

40



Now since σ31σ32 . . . σ3s /∈ J3,s, we have

Ω3,s/(J3,s : σ31σ32 . . . σ3s) ∼=𭟋[V (Λ2s ⊙Q)]/I(Λ2s ⊙Q)
2⊗

k=1

𭟋[i(Q)]
2⊗

k=1

𭟋[V (Q)]/I(Q)⊗
K

𭟋[σ31, σ32, . . . , σ3s].

By using Lemma 2.1.9

depth(Ω3,s/(J3,s : σ31σ32 . . . σ3s)) =depth(𭟋[V (Λ2s ⊙Q)]/I(Λ2s ⊙Q))

+
2∑

i=1

depth(𭟋[i(Q)]) +
2∑

i=1

depth(𭟋[V (Q)]/I(Q))

+ depth(𭟋[σ31, σ32, . . . , σ3s]).

Thus by Theorem 2.1.14, we have

depth(Ω3,s/(J3,s : σ31σ32 . . . σ3s)) = 3(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s).

By using Corollary 2.1.10

depth(Ω3,s/J3,s) ≤ 3(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s). (3.14)

Therefore by Eq (3.13) and (3.14), we have the following result

depth(Ω3,s/J3,s) = 3(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s).

If r = 4, then using the similar arguments and case r = 3, one can easily prove that
depth(Ω4,s/J4,s) = 4(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s). Let r ≥ 5. Then we have

Ωr,s/(Jr,s : µr) ∼= Λ′′
(r−4),s/J

′′
(r−4),s

2s+2⊗
k=1

𭟋[V (Q)]/I(Q)
2s+2⊗
k=1

𭟋[i(Q)]
⊗
K

𭟋[µr].
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Then by Lemma 2.1.9

depth(Ωr,s/(Jr,s : µr)) =depth(Λ′′
(r−4),s/J

′′
(r−4),s) +

2s+2∑
k=1

depth(𭟋[V (Q)]/I(Q))

+
2s+2∑
k=1

depth(𭟋[i(Q)]) + depth(𭟋[µr]).

By Lemma 3.2.1

depth(Ωr,s/(Jr,s : µr)) = (r + 2s− 1)(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + (r − 2)s+ 1.

Also

Ωr,s/(Jr,s, µr) ∼= Λ′′
(r−2),s/J

′′
(r−2),s

⊗
K

𭟋[V (Q)]/I(Q)
⊗
K

𭟋[i(Q)].

Then again by Lemma 2.1.9, we get

depth(Ωr,s/(Jr,s, µr)) =depth(Λ′′
(r−2),s/J

′′
(r−2),s) + depth(𭟋[V (Q)]/I(Q))

+ depth(𭟋[i(Q)]).

By Lemma 3.2.1

depth(Ωr,s/(Jr,s, µr)) = r(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s).

Again by Lemma 2.1.6

depth(Ωr,s/Jr,s, µr) ≥ r(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s). (3.15)

Now since σr1σr2 . . . σrs /∈ Jr,s, we have

Ωr,s/(Jr,s : σr1σr2 . . . σrs) ∼=Λ′′
(r−3),s/J

′′
(r−3),s

2⊗
k=1

𭟋[i(Q)]
2⊗

k=1

𭟋[V (Q)]/I(Q)⊗
K

𭟋[σr1, σr2, . . . , σrs].
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Thus by Lemma 2.1.9

depth(Ωr,s/(Jr,s : σr1σr2 . . . σrs)) =depth(Λ′′
(r−3),s/J

′′
(r−3),s) +

2∑
k=1

depth(𭟋[i(Q)]

+
2∑

k=1

depth(𭟋[V (Q)]/I(Q))

+ depth(𭟋[σr1, σr2, . . . , σrs]).

Again by Lemma 3.2.1

depth(Ωr,s/(Jr,s : σr1σr2 . . . σrs)) = r(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s).

Again by Corollary 2.1.10

depth(Ωr,s/Jr,s) ≤ r(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s). (3.16)

Hence we have the desired result by Eq (3.15) and Eq (3.16) that is

depth(Ωr,s/Jr,s) = r(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s).

Now we prove the result for the Stanley depth. We obtain the lower bound for the
Stanley depth by induction, Proposition 2.1.7, Lemma 2.1.8(b), and Lemma 2.1.9(b).
For upper bound we use Proposition 2.1.11 instead of Corollary 2.1.10.

Corollary 3.2.4. Let r ≥ 3, s ≥ 1. Then

pdim(Ωr,s/Jr,s) = (rs+ r + 1)(|V (W )|)− (r + 1) depth(𭟋[V (Q)]/I(Q)) + r + 1.

Proof. The result for projective dimension follows by using Lemma 2.1.19, that is

pdim(Ωr,s/Jr,s) + depth(Ωr,s/Jr,s) = depth(Ωr,s),
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which implies that

pdim(Ωr,s/Jr,s) = depth(Ωr,s)− depth(Ωr,s/Jr,s).

Hence by theorem 3.2.3, we have

pdim(Ωr,s/Jr,s) = (r + 1)(s+ 1)(|V (Q)|)− (r + 1) depth(𭟋[V (Q)]/I(Q) + r + 1.

3.3 Krull Dimension and Cohen-Macaulay Graphs

In this section, we establish a formula for the residue class rings of edge ideals associated
with the corona product of two graphs if the Krull dimension of one graph is known. In
addition, we use the depth values provided in the Sections 3.1 and 3.2 to characterize
distinct Cohen-Macaulay graphs.

Definition 3.3.1. A finite (i.e. finitely generated) Λ-module D ≠ 0 is a Cohen-
Macaulay module for a commutative Noetherian local ring if depth(D) = dim(D) (in
general, depth(D) ≤ dim(D)). However, because Λ is a module on itself, any Cohen-
Macaulay module that is also a Λ-module is referred to as a Cohen-Macaulay ring.
A maximal Cohen-Macaulay module is defined as one with the property depth(D) =

depth(Λ).

Definition 3.3.2. In commutative algebra, the supremum of all chains of prime ideals
is known as the Krull dimension of a commutative ring R, after Wolfgang Krull. The
Krull dimension does not have to be finite for a Noetherian ring. In general, the
deviation of a submodule’s poset can be used to calculate the Krull dimension for
modules spanning potentially non-commutative rings.

Theorem 3.3.3. Let ⨿ and Q represent any two graphs, and Λ = 𭟋[V (⨿⊙Q)]. Then

dim(Λ/I(⨿⊙Q)) = |V (⨿)|·( dim(𭟋[V (Q)]/I(Q)) + |i(Q)|).
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Lemma 3.3.4. Let Q be a non-trivial connected graph and Λ = 𭟋[V (Q)]. Then
dim(Λ/I(Q)) = 1 if and only if Q is complete graph.

Theorem 3.3.5. Let Q be any graph, ⨿ ∈ {Γ′
r,s,Γr,s,Γ

′′
r,s,Ωr,s} and Λ = 𭟋[V (⨿⊙Q)].

Then Λ/I(⨿⊙Q) is Cohen-Macaulay if and only if Q is a complete graph.

Proof. By Lemma 3.3.4, a non-trivial connected graph Q is complete if and only if
dim(𭟋[V (Q)]/I(Q)) = depth(𭟋[V (Q)]/I(Q)) = 1. We will discuss all the cases one by
one as follows:

(1) Let ⨿ = Γr,s. By Theorem 3.1.4 and Theorem 3.3.5, the module Λ/I(Γr,s ⊙ Q)

is Cohen-Macaulay if and only if depth(Λ/I(Γr,s ⊙Q)) = dim(Λ/I(Γr,s ⊙Q)) if
and only if

(r + 1)(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|) + rs =(rs+ r + 1)·

( dim(𭟋[V (Q)]/I(Q)) + |i(Q)|)

if and only if |i(Q)|= 1 and depth(𭟋[V (Q)]/I(Q)) = 0 = dim(𭟋[V (Q)]/I(Q)) or
|i(Q)|= 0 and dim(𭟋[V (Q)]/I(Q)) = depth(𭟋[V (Q)]/I(Q)) = 1 if and only if Q
is a complete graph.

(2) Let ⨿ = Ωr,s. By Theorem 3.2.3 and Theorem 3.3.5, the module Λ/I(Ωr,s ⊙ Q)

is Cohen-Macaulay if and only if depth(Λ/I(Ωr,s ⊙Q)) = dim(Λ/I(Ωr,s ⊙Q)) if
and only if

r(depth(𭟋[V (Q)]/I(Q)) + |i(Q)|+s) = r(s+ 1) · ( dim(𭟋[V (Q)]/I(Q)) + |i(Q)|)

if and only if |i(Q)|= 1 and depth(𭟋[V (Q)]/I(Q)) = 0 = dim(𭟋[V (Q)]/I(Q)) or
|i(Q)|= 0 and dim(𭟋[V (Q)]/I(Q)) = depth(𭟋[V (Q)]/I(Q)) = 1 if and only if Q
is a complete graph.
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Chapter 4

Regularity of the Cyclic Modules
Associated with Corona Product of
Certain Graphs

In this chapter, we compute regularity of edge ideal associated with corona product
of multi triangular snake and ouroboros snake graph with any graph Q. We also use
some important results of regularity to find our results.

4.1 Regularity of Cyclic Module Associated with Γr,s⊙
Q

Lemma 4.1.1. Let r, s ≥ 1. If Λ′
r,s = 𭟋[V (Γ′

r,s ⊙Q)] and I ′r,s = I(Γ′
r,s ⊙Q), then

reg(Λ′
r,s/I

′
r,s) = (r + 1)(s+ 1) reg(𭟋[V (Q)]/I(Q)).

Proof. Now, using induction on r, we demonstrate the result for regularity. If r = 1,
then we have

reg(Λ′
1,s/(I

′
1,s : µ2)) =

2s+1∑
k=1

reg(𭟋[V (Q)]/I(Q)) = (2s+ 1) reg(𭟋[V (Q)]/I(Q)).
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Also by applying Lemma 2.2.2 and Lemma 2.2.3, we get

reg(Λ′
1,s/(I

′
1,s, µ2)) = reg(𭟋[V (Λs ⊙Q)]/I(Λs ⊙Q)) + reg(𭟋[V (Q)]/I(Q))

+
s∑

k=1

reg(𭟋[V (W1 ⊙Q)]/I(W1 ⊙Q)).

Then by using Theorem 2.2.5 and Theorem 2.2.6, we get

reg(Λ′
1,s/(I

′
1,s, µ2)) = 2(s+ 1) reg(𭟋[V (Q)]/I(Q)).

The required result follows by Theorem 2.2.1(c), such that

reg(Λ′
1,s/I

′
1,s) = 2(s+ 1) reg(𭟋[V (Q)]/I(Q)).

If r = 2, then by using the similar arguments and case r = 1, we get the desired result,
that is

reg(Λ′
2,s/(I

′
2,s) = 3(s+ 1) reg(𭟋[V (Q)]/I(Q)).

Now let r ≥ 3. By Lemma 2.2.2 and Lemma 2.2.3, we have

reg(Λ′
r,s/(I

′
r,s : µr+1)) = reg(Λ′

(r−2),s/I
′
(r−2),s) +

2s+1∑
k=1

reg(𭟋[V (Q)]/I(Q)).

So by induction, we have reg(Λ′
r,s/(I

′
r,s : µr+1)) = (rs + r + s)(reg(𭟋[V (Q)]/I(Q)).

Again applying Lemma 2.2.2 and Lemma 2.2.3, we get

reg(Λ′
r,s/(I

′
r,s, µr+1)) = reg(Λ′

(r−1),s/I
′
(r−1),s) +

s∑
k=1

reg(𭟋[V (W1 ⊙Q)]/I(W1 ⊙Q))

+ reg(𭟋[V (Q)]/I(Q)).

Again by induction and Theorem 2.2.5, we get

reg(Λ′
r,s/(I

′
r,s, µr+1)) = (r + 1)(s+ 1) reg(𭟋[V (Q)]/I(Q)).
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Hence by Theorem 2.2.1(c) we have

reg(Λ′
r,s/I

′
r,s) = (r + 1)(s+ 1) reg(𭟋[V (Q)]/I(Q)).

Theorem 4.1.2. Let r, s ≥ 1. If Λr,s = 𭟋[V (Γr,s ⊙Q)] and Ir,s = I(Γr,s ⊙Q), then

reg(Λr,s/Ir,s) = (r(s+ 1) + 1) reg(𭟋[V (Q)]/I(Q)).

Proof. Now, we will be using Lemma 3.1.2 to demonstrate the result for regularity. If
r = 1, then we have

reg(Λ1,s/(I1,s : µ2)) =
s+1∑
k=1

reg(𭟋[V (Q)]/I(Q)) = (s+ 1) reg(𭟋[V (Q)]/I(Q)).

Also by applying Lemma 2.2.2 and Lemma 2.2.3, we get

reg(Λ1,s/(I1,s, µ2)) = reg(𭟋[V (Λs ⊙Q)]/I(Λs ⊙Q)) + reg(𭟋[V (Q)]/I(Q)).

Then by using Theorem 2.2.6, we get

reg(Λ1,s/(I1,s, µ2)) = (s+ 2) reg(𭟋[V (Q)]/I(Q)).

The required result follows by Theorem 2.2.1(c), such that

reg(Λ1,s/I1,s) = (s+ 2) reg(𭟋[V (Q)]/I(Q)).

If r = 2, then by using the similar arguments and case r = 1, we get the desired result,
that is

reg(Λ2,s/(I2,s) = (2s+ 3) reg(𭟋[V (Q)]/I(Q)).

Now let r ≥ 3, Again by Lemma 2.2.3, we have

reg(Λr,s/(Ir,s : µr+1)) = reg(Λ′
(r−2),s/I

′
(r−2),s) +

s+1∑
k=1

reg(𭟋[V (Q)]/I(Q)).
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So by Lemma 4.1.1, we have

reg(Λr,s/(Ir,s : µr+1)) = (rs+ r)(reg(𭟋[V (Q)]/I(Q)).

Now applying Lemma 2.2.2 and Lemma 2.2.3, we get

reg(Λr,s/(Ir,s, µr+1)) = reg(Λ′
(r−1),s/I

′
(r−1),s) + reg(𭟋[V (Q)]/I(Q)).

Again by Lemma 4.1.1, we get

reg(Λr,s/(Ir,s, µr+1)) = (r(s+ 1) + 1) reg(𭟋[V (Q)]/I(Q)).

Hence by Theorem 2.2.1(c) we have

reg(Λr,s/Ir,s) = (r(s+ 1) + 1) reg(𭟋[V (Q)]/I(Q)).

4.2 Regularity of Cyclic Module Associated with Ωr,s⊙
Q

Lemma 4.2.1. Let r, s ≥ 1. If Λ′′
r,s = 𭟋[V (Γ′′

r,s ⊙Q)] and J ′′
r,s = I(Γ′′

r,s ⊙Q), then

reg(Λ′′
r,s/J

′′
r,s) = ((r + 2)s+ r + 1) reg(𭟋[V (Q)]/I(Q)).

Proof. Now, using induction on r, we demonstrate the result for regularity.

If r = 1, then we have

reg(Λ′′
1,s/(J

′′
1,s : µ2)) =

s∑
k=1

𭟋[V (W1 ⊙Q)]/I(W1 ⊙Q) +
2s+1∑
k=1

reg(𭟋[V (Q)]/I(Q)).

Then by Theorem 2.2.5

reg(Λ′′
1,s/(J

′′
1,s : µ2) = (3s+ 1) reg(𭟋[V (Q)]/I(Q)).

49



Also by applying Lemma 2.2.2 and Lemma 2.2.3, we get

reg(Λ′′
1,s/(J

′′
1,s, µ2)) = reg(𭟋[V (Λ2s ⊙Q)]/I(Λ2s ⊙Q))

+
s∑

k=1

reg(𭟋[V (W1 ⊙Q)]/I(W1 ⊙Q) + reg(𭟋[V (Q)]/I(Q)).

Then by using Theorem 2.2.5 and Theorem 2.2.6

reg(Λ′′
1,s/(J

′′
1,s, µ2)) = (3s+ 2) reg(𭟋[V (Q)]/I(Q)).

The required result follows by Theorem 2.2.1(c), such that

reg(Λ′′
1,s/I

′′
1,s) = (3s+ 2) reg(𭟋[V (Q)]/I(Q)).

If r = 2, then by using the similar arguments and case r = 1, we get the desired result,
that is

reg(Λ′′
2,s/J

′′
2,s) = (4s+ 3) reg(𭟋[V (Q)]/I(Q)).

Now let r ≥ 3, Again by Lemma 2.2.3

reg(Λ′′
r,s/(J

′′
r,s : µr+1)) = reg(Λ′′

(r−2),s/J
′′
(r−2),s) +

2s+1∑
k=1

reg(𭟋[V (Q)]/I(Q)).

So by induction, we have

reg(Λ′′
r,s/(J

′′
r,s : µr+1)) = (rs+ r + s− 1)(reg(𭟋[V (Q)]/I(Q)).

Now applying Lemma 2.2.2 and Lemma 2.2.3

reg(Λ′′
r,s/(J

′′
r,s, µr+1)) = reg(Λ′′

(r−1),s/J
′′
(r−1),s) +

s∑
k=1

reg(𭟋[V (W1 ⊙Q)]/I(W1 ⊙Q))

+ reg(𭟋[V (Q)]/I(Q)).

Again by induction and Theorem 2.2.5

reg(Λ′′
r,s/(J

′′
r,s, µr+1)) = ((r + 2)s+ r + 1) reg(𭟋[V (Q)]/I(Q)).
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Hence by Theorem 2.2.1(c) we have

reg(Λ′′
r,s/J

′′
r,s) = ((r + 2)s+ r + 1) reg(𭟋[V (Q)]/I(Q)).

Theorem 4.2.2. Let r ≥ 3, s ≥ 1. If Ωr,s = 𭟋[V (Or,s ⊙ Q)] and Jr,s = I(Or,s ⊙ Q),
then

reg(Ωr,s/Jr,s) = r(s+ 1) reg(𭟋[V (Q)]/I(Q)).

Proof. Now, using Lemma 4.2.1, we demonstrate the result for regularity. If r = 3,
then we have

reg(Ω1,s/(J1,s : µ3)) =
2s+2∑
k=1

reg(𭟋[V (Q)]/I(Q)) +
s∑

k=1

reg(𭟋[V (W1 ⊙Q)]/I(W1 ⊙Q)).

Then by Theorem 2.2.5, we get

reg(Ω3,s/(J3,s : µ3)) = (3s+ 2) reg(𭟋[V (Q)]/I(Q)).

Also by applying Lemma 2.2.2 and Lemma 2.2.3, we get

reg(Ω3,s/(J3,s, µ3)) = Λ′′
1,s/J

′′
1,s + reg(𭟋[V (Q)]/I(Q)).

Then by using Lemma 4.2.1, we get

reg(Ω3,s/(J3,s, µ3)) = 3(s+ 1) reg(𭟋[V (Q)]/I(Q)).

The required result follows by Theorem 2.2.1(c), such that

reg(Ω3,s/J3,s) = 3(s+ 1) reg(𭟋[V (Q)]/I(Q)).

If r = 4, then by using the similar arguments and case r = 3, we get the desired result

reg(Ω4,s/J4,s) = 4(s+ 1) reg(𭟋[V (Q)]/I(Q)).
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Now let r ≥ 5. Again by Lemma 2.2.3, we have

reg(Ωr,s/(Jr,s : µr)) = reg(Λ′′
(r−4),s/J

′′
(r−4),s) +

2s+2∑
k=1

reg(𭟋[V (Q)]/I(Q)).

So by Lemma 4.2.1, we have

reg(Ωr,s/(Jr,s : µr)) = (rs+ r − 1)(reg(𭟋[V (Q)]/I(Q)).

Now applying Lemma 2.2.2 and Lemma 2.2.3, we get

reg(Ωr,s/(Jr,s, µr)) = reg(Λ′′
(r−1),s/J

′′
(r−1),s) + reg(𭟋[V (Q)]/I(Q)).

By using Lemma 4.2.1, we have reg(Ωr,s/(Jr,s, µr)) = r(s + 1) reg(𭟋[V (Q)]/I(Q)).

Hence by Theorem 2.2.1(c), we have the desired result

reg(Ωr,s/Jr,s) = r(s+ 1) reg(𭟋[V (Q)]/I(Q)).
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