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Abstract

In 1982, Stanley suggested the prominent conjecture in which he estimated a

combinatorial upper bound for the depth of any finitely generated multigraded

module over a polynomial ring. The estimated invariant is now named as the

Stanley depth. The Stanley conjecture is attractive in the sense that it compares

a homological invariant with a combinatorial invariant of the module. In 2015,

Duval et al. constructed a counterexample for Stanley’s conjecture. However,

there still looks to be a profound and attractive relationship between these two

invariants, which is yet to be understood. Furthermore, it is still fascinating to

confirm Stanley’s inequality for some classes of modules and as result a lower

bound for the Stanley depth can be achieved. The study of Stanley depth for

modules is a complex problem. Herzog, Vladoiu and Zheng gave a combinatorial

method to find Stanley depth. However, it is too difficult to calculate Stanley

depth by their method because this is based on hard combinatorial techniques.

The aim of this thesis is to provide the values and bounds of Stanley depth and

depth of the edge ideals and quotient rings of the edge ideals associated with

some classes of graphs. Furthermore, thesis gives a positive answer to Stanley’s

inequality for quotient rings of the edge ideals related to some classes of graphs.

In addition, a positive answer is also given to the Conjecture of Herzog for the

edge ideals associated with some classes of graphs.
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Chapter 1

Introduction

1.1 Research Background

In the last few years, combinatorial commutative algebra manifested as a

novel and energetic part of mathematics. The work of Melvin Hochster invited

the interest of a great number of researchers due to that the modern commutative

algebra has become one of the flourishing lines of research. Richard P. Stanley is

famous for his appreciable participation to combinatorics and its connection to

geometry and algebra, specifically in the theory of simplicial complexes. In 1975,

Richard Stanley [74] provided a positive answer to the upper bound conjecture

for spheres. This provides new directions in the field of commutative algebra,

as it proved that commutative algebra furnishes fundamental approaches in the

algebraic study of combinatorics on convex polytopes and simplicial complexes.

Stanley was the pioneer to apply the ideas and strategies from commutative alge-

bra in an organized manner to analyse the simplicial complexes by considering of

the Hilbert function of Stanley-Reisner rings. Since then the subject of squarefree

monomial ideals has become an eye-catching field of research in commutative alge-

bra. Partitionable and Cohen-Macaulay complexes both have prominent places in
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other complexes, and they play pivotal roles in combinatorics. Stanley presented

the main conjecture linking these two notions as follows; are all Cohen-Macaulay

simplicial complexes partitionable? In 1982, Stanley defined a notion, which is

now named as the Stanley depth of a graded module over a graded commutative

ring. By a conjecture of Stanley, this geometric invariant connects to an algebraic

invariant depth.

1.2 Problem Statement

Let S = K[z1, . . . , zn] is a polynomial ring in n indeterminates with coeffi-

cients in the field K. Let Q be a finitely generated Zn-graded S-module. The

Stanley depth of Q (usually represented by sdepth(Q)), is a combinatorial invari-

ant of Q which was first studied by Apel in [4] and the study of Stanley depth

attracted the many researchers, for instance; see [1, 2, 7, 10, 13, 22–25, 33, 36, 62].

The interested reader is referred to [29, 68] for a brief introduction to this sub-

ject. The Stanley depth can be described in the form of specific combinato-

rial decompositions, which are named as Stanley decompositions. These Stanley

decompositions have some applications in both pure and applied mathematics.

Stanley decompositions may be used to express finitely generated graded alge-

bras, for instance, rings of invariants under some group action [77]. For some

other applications in the systems of differential equations; see [58,59,72]. Stanley

conjectured in [75] that sdepth(Q) ≥ depth(Q) for any Zn-graded S-module Q.

After 33 years, this conjecture was disproved by Duval and his co-authors in [21]

as it was expected due to the different nature of these two invariants. However,

there still looks to be a deep and fascinating relationship between depth and Stan-

ley depth, which is yet to be exactly understood. The relation between Stanley

depth and some other invariants has already been established; see [34,36,65,78].
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In [36], Herzog and his co-authors proved that the Stanley depth of Q can be

calculated in a limited number of steps if Q = B/A, where A ⊂ B ⊂ S are

monomial ideals. However, practically it is too hard to find Stanley depth by

using this method; see, for instance [7, 15, 17, 53, 55]. The interested reader is

encouraged to consult [40,51,66,67,70] for some computing techniques of Stanley

depth for some classes of modules. For some parallel results for the Stanley depth

and depth, the interested reader may consult to [30, 35-38, 45-47, 66]. For the

monomial ideal A ⊂ S, it is well known that depth(A) = depth(S/A) + 1, this

means that once you know about depth(S/A) then you also know about depth(A)

and vice versa. Whereas for Stanley depth this is not the case, examples are

existed where sdepth(A) > sdepth(S/A) but until now, no example is known

where sdepth(A) < sdepth(S/A). Looking at the behaviour of sdepth(S/A) and

sdepth(A) it seems that the latter inequality is false. For the monomial ideal

A ⊂ S, Asia asked the following question.

Question 1.2.1. [70] Does the following inequality holds

sdepth(A) ≥ sdepth(S/A) + 1?

A weaker form of the above inequality is given as a conjecture by Herzog as

follows:

Conjecture 1.2.1 ( [29, Conjecture 64]). Let A ⊂ S be a monomial ideal then

sdepth(A) ≥ sdepth(S/A).

The aforementioned conjecture has been proved in some special cases by

Popescu and Qureshi in [66] and Asia in [70]. Recently, Keller and Young in [55],

proved it for any squarefree monomial ideal of S = K[z1, . . . , z7].
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1.3 Research Objectives

The main objectives of this research are stated in the following:

(1) To determine the values and bounds of Stanley depth and depth of the edge

ideals and quotient rings of the edge ideals associated with some classes of

graphs.

(2) To give a positive answer to the Conjecture 1.2.1 for the edge ideals associ-

ated with some classes of graphs.

(3) To show that Stanley’s inequality holds for the quotient rings of the edge

ideals associated with some classes of graphs.

1.4 Scope of the Research

This research focuses on the values and bounds of Stanley depth and depth of

the edge ideals and quotient rings of the edge ideals associated with some classes

of graphs. A positive answer is provided to the Conjecture 1.2.1 for these classes

of edge ideals. Furthermore, this research shows that Stanley’s inequality holds

for the quotient rings of the edge ideals associated with some classes of graphs.

1.5 Significance of the Research

In 2015, Duval et al. [21] proved that Stanley conjecture is false for modules of

the type S/I in general. However, there still looks to be a deep and interesting

relationship between depth and Stanley depth, which is yet to be exactly under-

stood. Furthermore, it is still interesting to prove Stanley’s inequality for some

classes of modules because in this case, a lower bound for the Stanley depth can
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be obtained. The study of Stanley depth for modules is a hard problem because,

until now, there is no efficient method to compute Stanley depth. Let I ⊂ J ⊂ S

be monomial ideals, Herzog et al. in [36] gave a combinatorial method to compute

Stanley depth of J/I. However, it is too hard to compute Stanley depth by their

method because the method is based on hard combinatorial techniques.

This research provides the values and bounds of Stanley depth and depth of

the edge ideals and quotient rings of the edge ideals associated with some classes

of graphs. Furthermore, a positive answer is given to the Conjecture 1.2.1 for the

edge ideals associated with some classes of graphs. Furthermore, this research

shows that Stanley’s inequality holds for the quotient rings of the edge ideals

associated with some classes of graphs.

1.6 Research Methodology

In this research, by using the combinatorial/homological techniques, values and

bounds of Stanley depth and depth of the edge ideals and quotient rings of the

edge ideals associated with some classes of graphs are provided. In most of the

results, for initial cases, the computer algebra system CoCoA [71] is used. For

the remaining cases, the mathematical induction is used.

1.7 Organization of the Thesis

This thesis is structured as follows.

Chapter 1 describes the research background, research objectives, research

methodology, the scope of the research, significance of the research as well as

thesis organization.

Chapter 2 contains some required definitions of graph theory. In chapter 3,
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some necessary material of commutative algebra is given. Furthermore, some

known results and computational technique related to Stanley depth of multi-

graded S-modules are discussed in this chapter.

In chapter 4, precise values of Stanley depth and depth for the quotient ring

of the edge ideal related to a square path on n vertices are given. For n ≡

0, 3, 4(mod 5), exact values of Stanley depth and depth for the quotient ring

of the edge ideal related to a square cycle on n vertices are provided. In the

remaining cases, tight bounds are established. Furthermore, the conjecture of

Herzog presented in [29] is proved for the edge ideals of square paths and square

cycles. These results are published in [42].

Chapter 5 provides the generalized results of the fourth chapter. Precise

values are provided for the Stanley depth and depth of the quotient ring of the

edge ideal related with the tth power of a path on n vertices, where t ≥ 3. If

n ≡ 0, t+1, t+2, . . . , 2t(mod(2t+1)), then values are given for the Stanley depth

and depth of the quotient ring of the edge ideal associated to the tth power of

a cycle on n vertices and tight bounds otherwise. Also, lower bounds for the

Stanley depth of the edge ideals associated with the tth power of a path and a

cycle are established. These bounds are good enough that a positive answer is

given to the conjecture of Herzog for these ideals. These results are elaborated

also in [44].

In chapter 6, some upper and lower bounds for Stanley depth and depth of

edge ideals associated to line graphs of the ladder and circular ladder graphs are

established. Furthermore, some bounds for the dimension of the quotient rings

of the edge ideals related to these graphs are also given. These results are taken

from [43].

In chapter 7, results are discussed that are related to Stanley depth and depth

of the edge ideals and quotient rings of the edge ideals associated with classes
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of graphs obtained by taking the strong product of two graphs. In this chapter,

the strong product of two graphs is considered, when either both graphs are

arbitrary paths or one is an arbitrary path and the other is an arbitrary cycle.

Exact formulae for values of Stanley depth and depth for some subclasses are

given. Also some sharp upper bounds for Stanley depth and depth in the general

cases are established. These results are discussed in [45].

The final chapter provides a recap of the entire thesis and sums up the whole

idea. The future perspectives of the research, and the conclusion are presented

in Chapter 8.

Figure 1.1 gives the organization of the whole thesis.
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Chapter 2

Some Elements of Graph Theory

This chapter describes some basic notions, terminologies and definitions of graph

theory that are used in the rest of this dissertation. For further details, the

interested reader is referred to [8, 11, 28].

2.1 Basic Notions

Definition 2.1.1. [8] A graph U is an ordered pair U = (V (U), E(U)), where

V (U) is a non-empty set and E(U) is a set of two-element subsets of V (U). The

elements of V (U) are the vertices of U and the elements of E(U) are the edges of

U.

The order and size of a graph U are defined as the cardinalities of V (U) and

E(U), respectively. The vertex set V (U) of a graph U is always non-empty. A

graph with a finite set of vertices is said to be a finite graph, on the other hand,

it is called an infinite graph. Two or more edges that attach the same pair of

vertices are known as multiple edges, and a loop is an edge that joins a vertex

with itself. A graph U is said to be a simple graph if it has no loop and multiple

edges. Throughout this work, all the graphs are undirected, simple and finite.
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Definition 2.1.2. [11] If v, w ∈ V (U), then e = vw is an edge between v and

w, and they are said to be end vertices of e.

Definition 2.1.3. [11] The degree of a vertex v is the number of edges that are

incident with it.

Definition 2.1.4. [11] For a vertex u in a graph U, the neighborhood of u is

commonly expressed and defined as follows:

NU(u) = {v : {v, u} ∈ E(U)},

that is, the set consisting of all neighbors of u.

Definition 2.1.5. [8] A graph U = (V (U), E(U)) is said to be a subgraph of a

graph T = (V (T ), E(T )), if V (U) ⊆ V (T ) and E(U) ⊆ E(T ), and in this case T

is called supergraph of U.

Definition 2.1.6. [11] A vertex cover of a graph U is a subset B of V (U) such

that for every edge e ∈ E(U), e ∩ B 6= ∅ and B is minimal with respect to

this property, that is for any proper subset B′ of B, then there exists an edge

f ∈ E(U) with f ∩B′ = ∅.

2.2 Some Common types of Graphs

Definition 2.2.1. [8] A graph U is known as the r-regular if for every vertex

v ∈ U, the set NU(v) has the cardinality r.

Definition 2.2.2. [11] If U is a graph with V (U) = {a1, a2, . . . , an}, then U is

said to be a path if E(U) = {{ai, ai+1} : i ∈ [n− 1]}.

Definition 2.2.3. [8] If U is a graph with V (U) = {w1, . . . , wn}, then U is called

a cycle if E(U) = {{wi, wi+1} : i ∈ [n− 1]}
⋃
{{w1, wn}}.
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Definition 2.2.4. [11] An n-vertex graph is called a complete graph denoted

by Kn, if each pair of vertices of Kn is connected through an edge. The complete

graph K1 is a trivial and simple graph with exactly one vertex.

Definition 2.2.5. [8] An n-vertex graph U is called a bipartite graph if V (U)

can be classified into disjoint sets U1 and U2 such that each edge of U has one

end point in U1 and other end point in U2.

A complete bipartite graph Kn,m is a bipartite graph with bipartition (U1, U2)

where |U1| = n and |U2| = m such that each vertex of U1 is joined with each

vertex of U2 through an edge.

2.3 Connected and Disconnected Graphs

Definition 2.3.1. [8] A graph U is said to be a connected graph, if for every

pair of vertices a, b ∈ V (U), there exists a a-b path in U. If the graph U does not

satisfy this property, then it is called a disconnected graph.

Definition 2.3.2. [11] For a, b ∈ V (U) of a graph U , the length of a shortest

path from a to b is called the distance between them, and it is symbolized by

dU(a, b). If there exists no such path between them, then dU(a, b) =∞.

Definition 2.3.3. [11] The diameter of a connected graph U is denoted and

define as follows:

diam(U) := max{dU(a, b) : a, b ∈ V (U)}.

2.4 Powers of Graphs

Definition 2.4.1. [8] For a simple n-vertex graph U , the square of a graph U

is the graph U2 on the vertex set V (U), and every two vertices, which are at

distance 2 or less in U , they are connected by an edge in the graph U2.
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Definition 2.4.2. [11] Let n ≥ 3 and Pn be a path on [n] = {1, 2, . . . , n} vertices,

then the edge set of square of a path (or square path) is

E(P 2
n) =

{
{k, k + 1}, {k, k + 2} : k ∈ [n− 2]

}
∪
{
{n− 1, n}

}
.

See Fig. 2.1 for examples of P 2
n .

1 2 3 1 2 3 4 5 1 2 3 4 5 6 7

Figure 2.1: From left to right; square paths P 2
n with n = 3, n = 5 and n = 7,

respectively.

Definition 2.4.3. [11] Let n ≥ 5 and Cn be a cycle on [n] vertices, then the

edge set of square of cycle (or square cycle) is

E(C2
n) =

{
{k, k+1}, {k, k+2} : k ∈ [n−2]

}
∪
{
{n−1, 1}, {n, 1}, {n−1, n}, {n, 2}

}
.

See Fig. 2.2 for examples of C2
n.

2
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1

3
4

5

Figure 2.2: From left to right; square cycles C2
n with n = 5, n = 6 and n = 10,

respectively.

Definition 2.4.4. [11] Let U be a simple graph. For t ∈ Z+, the tth power of

a graph U is another graph U t on the vertex set V (U), such that two vertices
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are connected through an edge in U t when in U , the distance between them is at

most t.

Definition 2.4.5. [11] For n ≥ 2, the tth power of a path, denoted by P t
n, is a

graph such that ∀ 1 ≤ j < k ≤ n, {j, k} ∈ E(P t
n) iff 0 < k − j ≤ t. If n ≤ t + 1,

then P t
n is a complete graph on [n] vertices. If n ≥ t+ 2, then

E(P t
n) = ∪n−tj=1

{
{j, j + 1}, . . . , {j, j + t}

}
∪

∪n−1k=n−t+1

{
{k, k + 1}, . . . , {k, n}

}
.

Definition 2.4.6. [11] For n ≥ 3, the tth power of a cycle, denoted by Ct
n, is a

graph such that ∀ 1 ≤ j, k ≤ n, {j, k} ∈ E(Ct
n) iff |k − j| ≤ t or |k − j| ≥ n− t.

If n ≤ 2t+ 1, then Ct
n is a complete graph on [n] vertices. If n ≥ 2t+ 2, then

E(Ct
n) = E(P t

n)∪∪tl=1

{
{l, l+n− t}, {l, l+n− t+1}, {l, l+n− t+2}, . . . , {l, n}

}
.

For examples of powers of paths and cycles see Figures 2.3 and 2.4.

1 11753 9

1264 1082

1 11753 9

1264 1082

Figure 2.3: From left to right, P 3
12 and P 4

12 respectively.

2.5 Two Standard Graph Products

Definition 2.5.1. [27] The Cartesian product of two graphs U1 and U2 is

usually denoted by U12U2. This graph has vertex set V (U1) × V (U2), and for

(v1, u1), (v2, u2) ∈ V (U12U2), (v1, u1)(v2, u2) ∈ E(U12U2), if either

13
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Figure 2.4: From left to right, C3
10 and C4

10 respectively.

• {v1, v2} ∈ E(U1) and u1 = u2 or

• v1 = v2 and {u1, u2} ∈ E(U2).

If n ≥ 2, then the Cartesian product P22Pn of two paths P2 and Pn is called

the ladder graph which is denoted as Ln that is Ln := P22Pn. For n ≥ 3, the

Cartesian product of P2 and Cn is the circular ladder graph which is represented

by CLn that is CLn := P22Cn.

Definition 2.5.2. [8] For a given graph U , the line graph of U is usually denoted

by L(U). It is a graph with vertex set V (L(U)) = E(U) and two vertices in L(U)

are adjacent iff the corresponding edges in U share a vertex.

For examples of the ladder, circular ladder graphs and their corresponding

line graphs see Figures 2.5 and 2.6.

Definition 2.5.3 ( [27]). The strong product U1 � U2 of graphs U1 and U2 is a

graph with V (U1 � U2) = V (U1)× V (U2), and for (v1, u1), (v2, u2) ∈ V (U1 � U2),

(v1, u1)(v2, u2) ∈ E(U1 � U2), whenever

• {v1, v2} ∈ E(U1) and u1 = u2 or

14
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Figure 2.5: L2, L4, L6 and their line graphs L(L2), L(L4), L(L6) respectively.
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Figure 2.6: From left to right, CL6 and L(CL6).

• v1 = v2 and {u1, u2} ∈ E(U2) or

• {v1, v2} ∈ E(U1) and {u1, u2} ∈ E(U2).

For n ≥ 2, let Pn,m := Pn � Pm ∼= Pm � Pn, and for m ≥ 1 and n ≥ 3, let

Cn,m := Cn�Pm ∼= Pm�Cn. For examples of Pn,m and Cn,m, see Figures 2.7 and

2.8.

Figure 2.7: From left to right; P5,1, P5,2 and P5,3.
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Figure 2.8: From left to right; C6,1, C6,2 and C6,3.

2.6 Conclusion

In this chapter, some basic notions, terminologies and definitions from graph

theory are presented. Furthermore, the concept of power of a graph is discussed.

The two well-known graph operations are explained at the end of the chapter.
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Chapter 3

Brief introduction of

Commutative algebra

This chapter is divided into eight sections. In the first five sections, some necessary

material of commutative algebra is given. A method for computing the Stanley

depth of a special type of module is given in section 6.

Some known results of depth and Stanley depth are presented in the last

section. For further details, the interested reader is referred to [6, 19,30,79].

3.1 Ring theory

Definition 3.1.1. [19] A ring is a set T with two operations + and × such that

(T,+) is an abelian group, the multiplication is associative and left and right

distributes laws hold in T.

Definition 3.1.2. [19] The ring T is commutative if for all a, c ∈ T, ac = ca.

Definition 3.1.3. [19] The ring T is said to be a ring with unity if there is an

element 1 ∈ T with 1× z = z × 1 = z for all z ∈ T.
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Throughout this dissertation, all rings are considered to be commutative with

unity.

Definition 3.1.4. [19] Let T be a ring. Then the set of all polynomials in

a variable z with coefficients in T form a ring under usual addition and multi-

plication of polynomials, this ring is denoted by T[z]. The polynomial ring in

the variables z1, z2, . . . , zn with coefficients in T, represented by T[z1, . . . , zn], is

defined inductively by T[z1, . . . , zn] = T[z1, . . . , zn−1][zn].

Definition 3.1.5. [19] A subset A of a ring T is called an ideal of T if:

• A is an additive subgroup of T and,

• ∀ x ∈ A and ∀ r ∈ T, rx ∈ A.

Definition 3.1.6. [19] An ideal A of T is called a primary ideal if xy ∈ A then

x ∈ A or ya ∈ A for some a ≥ 1.

Definition 3.1.7. [19] An ideal A of T is called a prime ideal if xy ∈ A then

x ∈ A or y ∈ A. Let A0, A1, . . . , Ak be the prime ideals of T. A chain of prime

ideals A0  A1  · · ·  Ak is said to be a chain of length k.

Definition 3.1.8. [19] The Krull dimension of a ring T, usually represented by

dim(T), is the length of the longest chain of its prime ideals.

Definition 3.1.9. [19] An ideal m in a ring T is said to be a maximal ideal if I

is an ideal such that m ⊆ I ⊆ T, then m = I or I = T.

Definition 3.1.10. [19] A ring T is a local ring if it has a unique maximal ideal.

Definition 3.1.11. [19] A ring T is a Noetherian ring if it satisfies the ascending

chain condition on its ideals, that is for any chain of ideals:

A1 ⊂ A2 ⊂ · · · ⊂ Ak+1 ⊂ . . .

18



there exists k ∈ Z+ such as

Ak = Ak+1 = . . . .

3.2 Module theory

Definition 3.2.1. [19] Let T be a ring, a T-module Q is an abelian group under

addition and an action of T on Q (that is a map T×Q −→ Q) represented by az

for all a ∈ T and z ∈ Q that satisfies the following axioms:

1. a(y + z) = ay + az, ∀ a ∈ T and y, z ∈ Q,

2. (ab)z = a(bz), ∀ a, b ∈ T and z ∈ Q,

3. (a+ b)z = az + bz, ∀ a, b ∈ T and z ∈ Q,

4. 1z = z, ∀ z ∈ Q.

Definition 3.2.2. [19] Let Q is a T-module, a T-submodule A of Q is an additive

subgroup of Q such that ra ∈ A for all r ∈ T, a ∈ A.

Definition 3.2.3. [19] Let Q is a T-module and Q1, Q2, . . . , Qn be submodules

of Q. The sum of Q1, Q2, . . . , Qn is denoted by Q1 + Q2 + · · · + Qn and it is the

set of all finite sums of elements of Qi as follows:

Q1 +Q2 + · · ·+Qn = {b1 + b2 + · · ·+ bn | bi ∈ Qi ∀ i}.

Definition 3.2.4. [19] LetQ is a T-module andB ⊂ Q. For i ∈ Z+, r1, r2, . . . , ri ∈

T, b1, b2, . . . , bi ∈ B, then TB = {r1b1 + r2b2 + · · ·+ ribi}. If B = {b1, b2, . . . , bm},

then TB can be written as TB = Tb1 + Tb2 + · · ·+ Tbm.

Definition 3.2.5. [19] A submodule A of Q is called finitely generated if there

is some finite subset B of Q such that A = TB.
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Definition 3.2.6. A T-module Q is said to be Noetherian if each of its submodule

is finitely generated.

Definition 3.2.7. [19] A submodule A of Q is called cyclic if there exists an

element m ∈ Q such that A = Tm, that is, if A can be generated by a single

element:

A = Tm = {rm | r ∈ T}.

Definition 3.2.8. [19] Let Q1, Q2, . . . , Qm be a collection of T-modules. The

collection of i-tuples (n1, n2, . . . , ni) where nk ∈ Qk with addition and action of

T defined componentwise is said to be the direct product of these modules.

Remark 3.2.1. [19] The direct product of a collection of T-modules is again

a T-module. The direct product of Q1, Q2, . . . , Qm is also referred as the direct

sum of Q1, Q2, . . . , Qm.

Definition 3.2.9. [19] A T-module Q is called free module on the subset A

of Q, if for any non-zero element m ∈ Q, there exist unique non-zero elements

x1, x2, . . . , xn of T and unique elements a1, a2, . . . , an in A such that m = x1a1 +

x2a2 + · · · + xnan for some n ∈ Z+. Then A is said to be basis or set of free

generators of Q.

Definition 3.2.10. [19] Let A, B and C be T-modules over ring T. Then the

pair of T-homomorphisms A
α−→ B

β−→ C is called exact at B if image(α) = ker(β).

Definition 3.2.11. [19] A sequence . . . −→ Am−1 −→ Am −→ Am+1 . . . of T-

modules and T-homomorphisms is called an exact sequence if it is exact at every

Am between a pair of homomorphisms.

Proposition 3.2.1 ( [19, Proposition 22]). Let X, Y and Z be T-modules over

ring T. Then
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1. The sequence 0 −→ X
π−→ Y is called exact at X if and only if π is injective.

2. The sequence Y
ψ−→ Z −→ 0 is called exact at Z if and only if ψ is surjective.

Corollary 3.2.1 ( [19, Corollary 23]). The sequence 0 −→ X
π−→ Y

ψ−→ Z −→ 0

is exact if and only if π is injective, ψ is surjective and image(π) = ker(ψ).

Definition 3.2.12. [19] The exact sequence 0 −→ X
π−→ Y

ψ−→ Z −→ 0 is said

to be a short exact sequence.

Definition 3.2.13. [30] Let T be a ring, Q be a T-module and A be a proper

subset of Q. The annihilator of A is usually represented by AnnT(A). It consists

of all elements r in T such that for each a in A, ra = 0. In set notation, it can

be written as follows:

AnnT(A) = {r ∈ T : ∀ a ∈ A, ra = 0}.

Definition 3.2.14. [30] Let Q be a T-module, a monomial prime ideal P of T

is called an associated prime of Q if P = Ann(m) for a non-zero element m of Q.

The set of associated primes of Q is denoted by AssT(Q).

3.3 Monomial ideals

Let S = K[z1, . . . , zn], and Nn represents the set of vectors β = (b1, . . . , bn) with

each bj ≥ 0 is an integer. Any arbitrary product of the type u = zb11 z
b2
2 . . . zbnn

with bj ∈ N is said to be a monomial, and it can be written as u = zβ. If B

denotes the set of monomials of S then B is a K-basis of S. That is, if g ∈ S then

g can be written as a linear combination of elements of B over K as follows:

g =
∑
u∈B

ubu,

where bu ∈ K. The sets supp(g) = {u ∈ B : bu 6= 0}, and supp(u) = {j : zj|u}

represent the support of g and u respectively.
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Definition 3.3.1. [30] Let A ⊂ S be an ideal, then A is a monomial ideal if it

is generated by the set of monomials.

Theorem 3.3.1. [30] If L is the set of monomials of the monomial ideal A, then

L is a K-basis of A.

Proposition 3.3.1. [30] Let A ⊂ S be a monomial ideal, then A has a unique

minimal set of monomial generators.

The unique minimal set of the monomial ideal A is denoted by G(A).

Definition 3.3.2. [30] A monomial a is said to be a squarefree if a = zj1zj2 . . . zjm

for some 1 ≤ j1 < j2 < · · · < jm ≤ n.

Definition 3.3.3. [30] Any monomial ideal is said to be a squarefree monomial

ideal if it is generated by squarefree monomials.

Definition 3.3.4. [30] Let U := (V (U), E(U)) be a graph with vertex set

V (U) := {x1, x2, . . . , xn} and edge set E(U). The edge ideal I(U) associated to

U is the squarefree monomial ideal, that is I(U) = (xixj : {xi, xj} ∈ E(U)).

Remark 3.3.1. The intersection, product, and sum of monomial ideals are

again monomial ideals. Furthermore, for the monomial ideals A1 and A2 of

S, it follows that G(A1 + A2) ⊂ G(A1) ∪ G(A2), G(A1A2) ⊂ G(A1)G(A) and

A1 ∩ A2 = (lcm(a, b) : a ∈ G(A1), b ∈ G(A2)), where lcm(a, b) represents the least

common multiple of a and b.

Proposition 3.3.2. [30] The colon ideal (A1 : A2) of two monomial ideals A1

and A2 of S, is again a monomial ideal and (A1 : A2) =
⋂
e∈G(A2)

(A1 : (e)).

Moreover, {d/ gcd(e, d) : d ∈ G(A1)} is a set of generators of (A1 : (e)).

Example 3.3.1. Let S = K[z1, z2, z3, z4], A1 = {z2z23 , z1z22 , z21 , z3z24} and A2 =

{z2z31 , z2z3, z4z3} are monomial ideals of S. Then

A1A2 = {z21z3z4, z21z2z3, z23z34 , z1z22z3z4, z2z33z4, z2z23z24 , z1z32z3, z22z33 , z51z2, z41z32},
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A1 + A2 = {z3z4, z2z3, z21 , z1z22},

A1 ∩ A2 = {z2z23 , z3z24 , z31z2, z21z2z3, z1z22z3, z21z3z4},

(A1 : A2) = {z2z3, z21 , z24 , z1z2z4, z1z22 , z3z4}.

3.4 Graded rings and graded modules

Definition 3.4.1. [30] Let (H,+) be an abelian semigroup. An H-graded ring

is a ring T together with a decomposition

T =
⊕
a∈H

Ta (as a group),

such that TaTb ⊂ Ta+b for all a, b ∈ H. Then for r ∈ T, a unique expression can

be written as follows:

r =
∑
a∈H

ra,

where ra ∈ Ta and almost all ra = 0. The element ra is called the ath homogeneous

component and if r = ra, then r is homogeneous of degree a.

Definition 3.4.2. [30] Let (H,+) be an abelian semigroup, T is an H-graded

ring and Q is a T-module with

Q =
⊕
a∈H

Qa (as a group)

such that TaQb ⊂ Qa+b ∀a, b ∈ H, then Q is said to be an H-graded module. A

non-zero element of Qa is called a homogenous element of degree a.

Example 3.4.1. Let β = (b1, b2, . . . , bn) ∈ Zn and zβ = zb11 z
b2
2 . . . zbnn . Then

g ∈ S := K[z1, . . . , zn] is said to be a homogeneous element of degree β if g = czβ

and c ∈ K. Here S is clearly a Zn-graded ring that is S =
⊕

β∈Zn Sβ, where

Sβ =

 Kzβ, if β ∈ Zn+;

0, otherwise.
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An S-module Q is said to be a Zn-graded if Q =
⊕

β∈Zn Qβ and SβQγ ⊂ Qβ+γ

for all β, γ ∈ Zn.

3.5 Depth

In this section, some definitions related to depth are provided.

Definition 3.5.1. [19] Let T be a ring and Q be a T module. A zero divisor of

a module Q is an element x of T such that xq = 0 for some non-zero q in Q.

Definition 3.5.2. [30] Let Q be a module over a ring T, a ∈ T is said to be

Q-regular if for any m ∈ Q, am = 0 implies m = 0. In other words, a is not a

zero-divisor on Q or the multiplication by a on Q is an injective map.

Example 3.5.1. (1) Let S = K[z1, z2], and Q = S. As S is an integral domain,

thus every monomial of S is S-regular element.

(2) Let S = K[z1, z2, z3] be the polynomial ring, and Q = S/(z22z3). Then z31 is

Q-regular element, as z31 is not a zero divisor of Q.

Definition 3.5.3. [30] Let Q be a module over a ring T and z = z1, . . . , zn be a

sequence of elements in T, it is said to be a Q-regular sequence, if it satisfies the

following conditions:

• zi is Q/(z1, . . . , zi−1)Q regular for any i;

• Q 6= (z)Q.

Example 3.5.2. Let S = K[z1, . . . , zn]. Then z1, . . . , zn is a regular sequence on

S.

Example 3.5.3. Let S = K[z1, z2, z3, z4], and Q = S/J, where J = (z22 , z3z4) ⊂ S

is a monomial ideal. Then z = z3 + z4, z
2
1 is a Q-regular sequence, as z3 + z4 is

not a zero divisor in Q, and z21 /∈ (z2, z3, z4).
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Theorem 3.5.1. [9] Let T be a Noetherian ring, Q is a finitely generated T-

module and J ⊂ T such that JQ 6= Q. Then all maximal Q-sequences in J have

the same length n, that is given by

n = min{i : ExtiT(T/J,Q) 6= 0}.

Definition 3.5.4. [30] Let T be a local Noetherian ring with unique maximal

ideal m, and Q a finitely generated T-module. The common length of all the

maximalQ-sequences in m is said to be the depth ofQ and it is usually represented

by depth(Q).

Example 3.5.4. Let S = K[z1, . . . , zn]. Then z = z1, . . . , zn is a regular sequence

on S. Since S/(z) ∼= K, thus depth(S) = n.

Example 3.5.5. Let S = K[z1, z2, z3, z4] be the polynomial ring and Q = S/J,

where J = (z22 , z3z4) ⊂ S is a monomial ideal. Then z = z3 + z4,z
2
1 is a maximal

Q-sequence.

3.6 Stanley depth

Let S = K[z1, . . . , zn] be a polynomial ring over a field K, and A is a finitely

generated Zn-graded S-module. Let a ∈ A be a homogeneous element and

X ⊂ {z1, z2, . . . , zn}. aK[X] represents as the K-subspace of A generated by all

elements ab where b is a monomial in K[X]. The Zn-graded K-subspace aK[X] of

A is said to be a Stanley space of dimension |X|, if aK[X] is a free K[X]-module.

A Stanley decomposition of A is a presentation of K-vector space A as a finite

direct sum of Stanley spaces

H : A =
r⊕
i=1

aiK[Xi].
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The number sdepth(H) = min{|Xi| : i = 1, . . . , r} is the Stanley depth of H.

Let sdepth(A) = max{sdepth(H) : H is a Stanley decomposition of A}, then

sdepth(A) is called the Stanley depth of A. Herzog et. al initiated a method [36],

in order to find the Stanley depth of a module of the form B/A where A ⊂ B ⊂ S

are monomial ideals. By using this method, examples are given in the next chap-

ters. Let Q = B/A, A ⊂ B are monomial ideals of S. Let ” ≤ ” be the

natural partial order on Nn given by b ≤ c if b(k) ≤ c(k) for all k ∈ [n] and

zb = z
b(1)
1 . . . z

b(n)
n for b ∈ Nn. Suppose that B is generated by the monomials

zb1 , . . . , zbr and A by the monomials zc1 , . . . , zcs , bk, cl ∈ Nn. Choose a ∈ Nn such

that bk ≤ a, cl ≤ a for all k, l. Let P a
B/A be the sub-poset of Nn given by all d ∈ Nn

with d ≤ a and such that bk ≤ d for some k and d � cl for all l. P a
B/A is said to

be the characteristic poset of B/A with respect to a. Given a finite poset P and

b, c ∈ P , [b, c] = {d ∈ P : b ≤ d ≤ c} is an interval. A partition of P is a disjoint

union β : P =
⋃r
k=1[bk, ck] of intervals, for d ∈ P , set Zd = {zl : d(l) = a(l)} and

let ψ : P −→ N be the map given by d −→ |Zd|.

Theorem 3.6.1. [36]

1. Let β : P a
B/A =

⋃r
k=1[dk, ek] be a partition of P a

B/A. Then

H(β) : B/A =
r⊕

k=1

(
⊕
d

yd[Zek ])

is a Stanley decomposition of B/A, where the inner direct sum is taken over

all d ∈ [dk, ek] for which d(l) = dk(l) for all l with zl ∈ Zek . Moreover,

sdepth(H(β)) = min{ψ(ek) : k ∈ [r]}.

2. Let H be a Stanley decomposition of B/A. Then there exists a partition β

of P a
B/A such that sdepth(H(β)) ≥ sdepth(H)

In particular, Stanley depth of B/A can be calculated in the limited number

of steps.
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Example 3.6.1. Let B = (z2z4, z1z2, z3z4, z1z3) ⊂ K[z1, z2, z3, z4] and A = 0. Set

b1 = (0, 1, 0, 1), b2 = (1, 1, 0, 0), b3 = (0, 0, 1, 1) and b4 = (1, 0, 1, 0). Thus B is

generated by zb1 , zb2 , zb3 , zb4 and a can be chosen as a = (1, 1, 1, 1). The poset

P = P a
B/A is given by

P = {(1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1),

(0, 1, 1, 1), (1, 1, 1, 1)}

A partition P of P is given by

[(0, 1, 0, 1), (1, 1, 0, 1)]
⋃

[(1, 1, 0, 0), (1, 1, 1, 0)]
⋃

[(0, 0, 1, 1), (1, 0, 1, 1)]⋃
[(1, 0, 1, 0), (0, 1, 1, 1)]

⋃
[(1, 1, 1, 1), (1, 1, 1, 1)].

From finitely many Stanley decompositions, some are as follows:

β1 : B = z2z4K[z1, z2, z4]⊕z2z1K[z1, z2, z3]⊕z3z4K[z3, z4, z2]⊕z3z1K[z3, z1, z4]⊕

z2z3z4z1K[z2, z3, z4, z1].

β2 : B = z2z4K[z2, z4, z3]⊕ z1z2K[z1, z4, z2]⊕ z3z4K[z3, z4, z1]⊕

z1z3K[z1, z3, z2]⊕ z1z2z3z4K[z1, z3, z2, z4].

β3 : B = z2z4K[z4, z2]⊕ z1z2K[z1, z3, z2]⊕ z3z4K[z2, z3, z4]⊕

z1z3K[z3, z1, z4]⊕ z1z2z4K[z1, z4, z2]⊕ z1z2z3z4K[z1, z3, z4, z2].

β4 : B = z2z4K[z2, z4, z3]⊕ z1z2K[z2, z1]⊕ z3z4K[z1, z4, z3]⊕

z2z4z1K[z2, z1, z4]⊕ z3z1K[z1, z3, z2]⊕ z1z2z3z4K[z1, z3, z2, z4].

β5 : B = z2z4K[z2, z1, z4]⊕ z1z2K[z1, z3, z2]⊕ z3z4K[z3, z4]⊕

z2z3z4K[z2, z4, z3]⊕ z1z3K[z1, z4, z3]⊕ z1z2z3z4K[z1, z4, z3, z2].
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β6 : B = z2z4K[z1, z4, z2]⊕ z1z2K[z1, z3, z2]⊕ z3z4K[z4, z3, z2]⊕

z1z3K[z1, z3]⊕ z1z3z4K[z4, z3, z1]⊕ z1z2z3z4K[z1, z4, z3, z2].

The Stanley depth of B is

sdepth(B) = max{sdepth βi : βi is a Stanley decomposition of B} ≥ 3.

As sdepth(B) = 4 if and only if B is a principal ideal. Since B is not a principal

ideal, thus sdepth(B) = 3.

3.7 Some known results for depth and Stanley

depth

A monomial ideal B ⊂ S = K[z1, z2, . . . , zn] is said to be a Stanley ideal if

Stanley’s inequality is true for S/B.

Theorem 3.7.1. [5] Any monomial ideal of S = K[z1, z2, z3] is a Stanley ideal.

Theorem 3.7.2. [3] Let B ⊂ S be a monomial ideal. If n = 4, then B is a

Stanley ideal.

Theorem 3.7.3. [63] For any monomial ideal B of S = K[z1, z2, z3, z4, z5], B

is a Stanley ideal.

Theorem 3.7.4. [62] If B =
⋂3
i=1Bi, where each Bi is a monomial prime ideal

of S, then B is a Stanley ideal.

Theorem 3.7.5. [80] If B =
⋂3
i=1Bi, where each Bi is a monomial primary

ideal of S, then B is a Stanley ideal.

Theorem 3.7.6. [64] If B =
⋂4
i=1Bi, where each Bi is a monomial prime ideal

of S, then B is a Stanley ideal.
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Let B ⊂ A ⊂ S be monomial ideals. Herzog et al. [36] calculated the Stanley

depth of m := (z1, . . . , zn) ⊂ S for n ≤ 9 by applying their method, and show

that sdepth(m) = dn
2
e. They conjectured that this result holds for any n. Using

combinatorial techniques, Biro et al. [7] provided a positive answer to this con-

jecture. A subset B of S is said to be a complete intersection monomial ideal of

S if for any two monomials v1 and v2 of G(B), supp(v1)
⋂

supp(v2) = ∅. For a

complete intersection monomial ideal B of S, some results are as follows.

Proposition 3.7.1 ( [36, Proposition 3.8]). Let |G(B)| = 3. Then sdepth(B) =

n− 1.

Theorem 3.7.7 ( [73, Theorem 2.3]). Let |G(B)| = r. Then sdepth(B) = n−b r
2
c.

Shen proposed the upcoming question for the squarefree monomial ideal T of S.

Question 3.7.1. [73] Let |G(T )| = r. Is it true that sdepth(T ) ≥ n− b r
2
c?

Keller and Young gave a positive answer to the above question in [54].

Theorem 3.7.8. [54] Let |G(T )| = r. Then sdepth(T ) ≥ n− b r
2
c.

Let B ba an ideal of S, then the ideal

√
B := {r ∈ S : ra ∈ B for some a ∈ Z+}

is said to be a radical ideal of B. It is a famous result that depth(S/B) ≤

depth(S/
√
B) and equivalently depth(B) ≤ depth(

√
B) [35]. Apel showed that

the first inequality holds also for Stanley depth.

Theorem 3.7.9. [5] sdepth(S/B) ≤ sdepth(S/
√
B).

Ishaq extended the above result, which is shown in [46] as follows:

Theorem 3.7.10. Let B ⊂ A ⊂ S = K[z1, . . . , zn] be monomial ideals. Then

sdepth(
√
A/
√
B) ≥ sdepth(A/B).
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He also gave the following interesting upper bound.

Theorem 3.7.11. [47] Let A ⊂ S be a monomial ideal. Then

sdepth(A) ≤ min{Pi, i = 1, . . . , s},

where Pi ∈ AssS(S/A).

Now some results related to the edge ideals of graphs are presented here. Ishaq

and Qureshi [51] gave the upper bounds of Stanley depth for the edge ideals of a

k-uniform complete bipartite hypergraph and k-partite complete graph.

Corollary 3.7.1 ( [51, Corollary 2.9]). If B is an edge ideal of complete k-partite

graph then Stanley’s inequality is true for B.

Let I(Pn) and I(Cn) be the edge ideals of the path and cyclic graphs respec-

tively. By applying Depth Lemma, Morey showed the following result.

Lemma 3.7.1 ( [57, Lemma 2.8]). Let n ≥ 2, then depth(S/I(Pn)) = dn
3
e.

Stefan proved a similar result for Stanley depth.

Lemma 3.7.2 ( [76, Lemma 4]). Let n ≥ 2, then sdepth(S/I(Pn)) = dn
3
e.

Theorem 3.7.12 ( [67, Theorem 2.7]). Let H be a forest with k connected

components H1, . . . , Hk and let I(H) be its edge ideal in S. Let ei is the diameter

of Hi, 1 ≤ i ≤ k, and e = max{ei | 1 ≤ i ≤ k}. Then for every r ≥ 1

sdepth(S/(I(H))r) ≥ max{de− r + 2

3
e+ k − 1, k}.

Cimpoeas proved the following results for the edge ideals of the cyclic graph.

Proposition 3.7.2 ( [16, Proposition 1.3]). Let n ≥ 3, then

depth(S/I(Cn)) = dn− 1

3
e.
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Theorem 3.7.13 ( [16, Theorem 1.9]). Let n ≥ 3, then

(1) sdepth(S/I(Cn)) = dn−1
3
e, if n ≡ 0, 2 (mod 3).

(2) sdepth(S/I(Cn)) ≤ dn
3
e, if n ≡ 1 (mod 3).

Fouli and Morey gave the following lower bound in terms of the diameter of a

graph U .

Theorem 3.7.14 ( [26, Theorems 3.1 and 4.18]). Let U be a connected graph

and A = I(U) be the edge ideal of U. If d = diam(U), then

depth(S/A), sdepth(S/A) ≥ dd+ 1

3
e.

For more results about these invariants that are related to the powers of edge

ideals, the interested reader is referred to [20, 26, 57, 81]. Some results that are

referred several times in the rest of the dissertation are as follows.

Lemma 3.7.3 (Depth Lemma). [79, Lemma 1.3.9] Let 0 −→ A1 −→ A2 −→

A3 −→ 0 be the short exact sequence, where A1, A2 and A3 are the finitely gen-

erated Zn-graded S-modules. Then

1. depth(A2) ≥ min{depth(A3), depth(A1)}.

2. depth(A3) ≥ min{depth(A1)− 1, depth(A2)}.

3. depth(A1) ≥ min{depth(A2), depth(A3) + 1}.

Lemma 3.7.4 ( [70, Lemma 2.2]). Let 0 −→ T1 −→ T2 −→ T3 −→ 0 be the short

exact sequence, where T1, T2 and T3 are Zn-graded S-modules. Then

sdepth(T2) ≥ min{sdepth(T1), sdepth(T3)}.

Lemma 3.7.5 ( [36, Lemma 3.6]). Let T ⊂ S = K[z1, . . . , zn] is a monomial

ideal, and S̄ = S[zn+1, zn+2, . . . , zn+r] is a polynomial ring. Then

depth(S̄/T S̄) = depth(S/TS) + r and sdepth(S̄/T S̄) = sdepth(S/TS) + r.
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Theorem 3.7.15 ( [60, Theorem 2.3]). Let T ⊂ S be a monomial ideal of S and

|G(T )| = r. Then

sdepth(T ) ≥ min
{

1, n− br
2
c
}
.

Corollary 3.7.2 ( [70, Corollary 1.3]). Let T ⊂ S be a monomial ideal. Then

depth(S/(T : v)) ≥ depth(S/T ) ∀ v /∈ T.

Proposition 3.7.3 ( [14, Proposition 2.7]). Let T ⊂ S be a monomial ideal.

Then

sdepth(S/(T : v)) ≥ sdepth(S/T ) ∀ v /∈ T.

3.8 Conclusion

In this chapter, some basic notions, terminologies and definitions from commuta-

tive algebra are presented.The fundamental material on monomial ideals is sum-

marized in it. Moreover,the basic literature related to Stanley depth and depth is

given in this chapter. Furthermore, a computational technique related to Stanley

depth of multigraded S-modules is presented in this chapter.
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Chapter 4

Depth and Stanley depth of the

edge ideals of square paths and

square cycles

This chapter consists of two sections. In the first section, the exact value of depth

and Stanley depth for S/I(P 2
n) is computed. These invariants are also computed

for S/I(C2
n), when n ≡ 0, 3, 4(mod 5), and tight bounds are given in other cases.

In the next section, a lower bound is provided for the Stanley depth of I(P 2
n),

and this is good enough that a positive answer to the Conjecture 1.2.1 as well as

to the Question 1.2.1 for I(P 2
n) can be given. Also, a positive answer is given to

the Conjecture 1.2.1 for I(C2
n) at the end of this chapter.

Throughout this chapter, set Sm := K[a1, a2, . . . , am]. The edge ideal I(P 2
n)

associated with the graph P 2
n is the squarefree monomial ideal of polynomial ring

Sm and the generating set contains monomials of the type aiaj, which corresponds

to the edges in the graph P 2
n . For examples of P 2

n , see Fig. 2.1. Edge ideal of P 2
n
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is given by

I(P 2
n) = (a1a2, a1a3, a2a3, a2a4, . . . , aiai+1, aiai+2, . . . , an−4an−3, an−4an−2,

an−3an−2, an−3an−1, an−2an−1, an−2an, an−1an).

Similarly, the edge ideal of C2
n is given by

I(C2
n) = (a1a2, a1a3, a2a3, a2a4, . . . , aiai+1, aiai+2, . . . , an−4an−3, an−4an−2,

an−3an−2, an−3an−1, an−2an−1, an−2an, an−1an, an−1a1, ana1, ana2).

See Fig. 2.2 for examples of C2
n.

4.1 Depth and Stanley depth of cyclic modules

associated to square paths and square cycles

In this section, the values of depth and Stanley depth are computed for the cyclic

module S/I(P 2
n), and these results are used in computations of depth and Stanley

depth of S/I(C2
n).

Theorem 4.1.1. Let n ≥ 3. Then depth(S/I(P 2
n)) = dn

5
e.

Proof. To prove it, the induction hypothesis is used. For 3 ≤ n ≤ 7, the result is

true. Now consider n ≥ 8. For this, assume the short exact sequence as follows:

0 −→ S/(I(P 2
n) : an−2)

·an−2−−−→ S/I(P 2
n) −→ S/(I(P 2

n), an−2) −→ 0, (4.1)

by Depth Lemma

depth(S/I(P 2
n)) ≥ min{depth(S/(I(P 2

n) : an−2)), depth(S/(I(P 2
n), an−2)}.
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(I(P 2
n) : an−2) = (a1a2, a1a3, a2a3, a2a4, . . . , aiai+1, aiai+2, . . . , an−6an−5, an−4,

an−3, an−1, an)

= (I(P 2
n−5), an−4, an−3, an−1, an).

This further implies that S/(I(P 2
n) : an−2) ∼= (Sn−5/I(P 2

n−5))[an−2]. The induction

hypothesis and Lemma 3.7.5 give

depth(S/(I(P 2
n) : an−2) = dn− 5

5
e+ 1 = dn

5
e.

Now let

T := (I(P 2
n), an−2) = (I(P 2

n−3), an−3an−1, an−1an, an−2).

For this, assume the short exact sequence as follows:

0 −→ S/(T : an−1)
·an−1−−−→ S/T −→ S/(T, an−1) −→ 0. (4.2)

By Depth Lemma, it follows that

depth(S/T ) ≥ min{depth(S/(T : an−1)), depth(S/(T, an−1))}.

Here

(T : an−1) = (I(P 2
n−4), an−3, an−2, an) and (T, an−1) = (I(P 2

n−3), an−2, an−1).

That gives

S/(T : an−1) ∼= (Sn−4/I(P 2
n−4))[an−1] and S/(T, an−1) ∼= (Sn−3/I(P 2

n−3))[an].

Thus inductive hypothesis on n and Lemma 3.7.5 yield

depth(S/(T : an−1)) = dn− 4

5
e+ 1 and depth(S/(T, an−1)) = dn− 3

5
e+ 1.

Since depth(S/(T, an−1)) ≥ depth(S/(T : an−1)), then by Depth Lemma

depth(S/(I(P 2
n), an−2)) = depth(S/T ) = dn− 4

5
e+ 1.
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Also as depth(S/(I(P 2
n), an−2)) ≥ depth(S/(I(P 2

n) : an−2)), again by Depth

Lemma

depth(S/I(P 2
n)) = dn

5
e.

Proposition 4.1.1. Let n ≥3. Then sdepth(S/I(P 2
n)) ≥ dn

5
e.

Proof. If 3 ≤ n ≤ 7, then by using the method given in [36], the Stanley decom-

positions of the desired Stanley depth are as follows.

If n = 3, then S/I(P 2
3 ) = K[a1]⊕ a2K[a2]⊕ a3K[a3].

If n = 4, then S/I(P 2
4 ) = K[a1, a4]⊕ a2K[a2]⊕ a3K[a3].

If n = 5, then S/I(P 2
5 ) = K[a1, a4]⊕ a2K[a2, a5]⊕ a3K[a3]⊕ a5K[a1, a5].

If n = 6, then S/I(P 2
6 ) = K[a1, a4]⊕ a2K[a2, a5]⊕ a3K[a3, a6]⊕ a5K[a1, a5]

⊕a6K[a1, a6]⊕ a2a6K[a2, a6].

If n = 7, then S/I(P 2
7 ) = K[a1, a4]⊕ a2K[a2, a5]⊕ a3K[a3, a6]⊕ a5K[a1, a5]

⊕a6K[a1, a6]⊕ a7K[a1, a7]⊕ a2a6K[a2, a6]⊕ a2a7K[a2, a7]

⊕a3a7K[a3, a7]⊕ a4a7K[a1, a4, a7].

It remains to be shown that the result holds for n ≥ 8. For this, the proposition

can be proved by taking the similar steps as in Theorem 4.1.1. By applying

Lemma 3.7.4 instead of Depth Lemma on the exact sequences (4.1) and (4.2),

then the required result holds by inductive hypothesis.

The following elementary lemma is helpful in finding an upper bound for the

Stanley depth.
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Lemma 4.1.1. Let I is a squarefree monomial ideal of S, if supp(I) = [n],

and v := ai1ai2 · · · aiq ∈ S/I such that ajv ∈ I for all j ∈ [n]\ supp(v). Then

sdepth(S/I) ≤ q.

Proof. Suppose that sdepth(S/I) > q, then by [31, Lemma 4.1], a squarefree

Stanley decomposition of S/I, is as follows

S/I =
s⊕
r=1

urK[Zr],

where |Zr| > q, ur’s are squarefree monomials in S/I and supp(ur) ⊂ Zr ∀ r.

Since v ∈ S/I, thus v ∈ ur′K[Zr′ ] for some r′, and by supposition |Zr′| > q,

therefore supp(v) ( Zr′ . Let al ∈ Zr′\ supp(v) then alv ∈ I and hence ur′K[Zr′ ]

is not a free K[Zr′ ] module, a contradiction, thus sdepth(S/I) ≤ q.

Theorem 4.1.2. Let n ≥ 3. Then sdepth(S/I(P 2
n)) = dn

5
e.

Proof. Using Proposition 4.1.1, it only needs to prove that sdepth(S/I(P 2
n)) ≤

dn
5
e. If n = 3 or 4, then the result can be easily verified. For n ≥ 5, assume the

following cases:

Case 1. Let n = 5k, where k ≥ 1. Since v = a3a8a13 · · · a5k−2 ∈ S\I(P 2
n), but

alv ∈ I(P 2
n) for all l ∈ [n]\ supp(v), thus by using Lemma 4.1.1, sdepth(S/I(P 2

n)) ≤

k = dn
5
e.

Case 2. Let n = 5k + t ≥ 7, where t ∈ {1, 2, 3} and k ≥ 1. Since v =

a3a8a13 · · · a5k−2a5k+t ∈ S\I(P 2
n), but alv ∈ I(P 2

n) for all l ∈ [n]\ supp(v), there-

fore by Lemma 4.1.1, sdepth(S/I(P 2
n)) ≤ k + 1 = dn

5
e.

Case 3. Let n = 5k + 4 ≥ 9, where k ≥ 1. Since v = a3a8a13 · · · a5k+3 ∈

S\I(P 2
n), but alv ∈ I(P 2

n) for all l ∈ [n]\ supp(v), thus again by Lemma 4.1.1,

sdepth(S/I(P 2
n)) ≤ k + 1 = dn

5
e.

From Theorems 4.1.1 and 4.1.2, the next result can be easily deduced.

Corollary 4.1.1. The Stanley’s inequality holds for I(P 2
n).
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Theorem 4.1.3. Let n ≥ 5. Then depth(S/I(C2
n)) ≥ dn−2

5
e.

Proof. The result can be easily verified for 5 ≤ n ≤ 7. For n ≥ 8, assume the

short exact sequence as follows:

0 −→ S/(I(C2
n) : an−2)

·an−2−−−→ S/I(C2
n) −→ S/(I(C2

n), an−2) −→ 0.

Then by Depth Lemma

depth(S/I(C2
n)) ≥ min{depth(S/(I(C2

n) : an−2)), depth(S/(I(C2
n), an−2))}.

As S/(I(C2
n) : an−2) ∼= Sn−5/I(P 2

n−5)[an−2], then by Proposition 4.1.1 and Lemma

3.7.5, it follows that

depth(S/(I(C2
n) : an−2)) = dn− 5

5
e+ 1 = dn

5
e.

Let

J ′ := (I(C2
n), an−2) = (a1a2, a1a3, a2a3, a2a4, . . . , aiai+1, aiai+2, . . . , an−5an−4,

an−5an−3, an−4an−3, an−3an−1, an−1an, an−1a1, ana1, ana2, an−2).

Now assume the following exact sequence

0 −→ S/(J ′ : an−1)
·an−1−−−→ S/J ′ −→ S/(J ′, an−1) −→ 0.

By using Depth Lemma,

depth(S/J ′) ≥ min{depth(S/(J ′ : an−1)), depth(S/(J ′, an−1))}.

Here

(J ′ : an−1) = (a2a3, a2a4, . . . , aiai+1, aiai+2, . . . , an−5an−4, an−3, an, a1, an−2).

After renumbering the variables, it follows that

S/(J ′ : an−1) ∼= Sn−5/I(P 2
n−5)[an−1].
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Therefore by Theorem 4.1.2 and Lemma 3.7.5, it results that

depth(S/(J ′ : an−1)) = dn− 5

5
e+ 1 = dn

5
e.

Also

(J ′, an−1) = (ana1, ana2, a1a2, a1a3, a2a3, a2a4, . . . , aiai+1, aiai+2, . . . , an−5an−4,

an−5an−3, an−4an−3, an−1, an−2).

After renumbering the variables

S/(J ′, an−1) ∼= Sn−2/I(P 2
n−2).

By Theorem 4.1.2, it follows that

depth(S/(J ′, an−1)) = dn− 2

5
e.

Thus depth(S/I(C2
n)) ≥ dn−2

5
e.

Corollary 4.1.2. Let n ≥ 5, if n ≡ 1, 2 (mod 5), then

dn
5
e − 1 ≤ depth(S/I(C2

n)) ≤ dn
5
e.

Otherwise,

depth(S/I(C2
n)) = dn

5
e.

Proof. The result can be easily verified if 5 ≤ n ≤ 7. For n ≥ 8, by Theorem 4.1.3

it only needs to show that depth(S/I(C2
n)) ≤ dn

5
e. Since an−2 6∈ I(C2

n), therefore

by Corollary 3.7.2, it follows that

depth(S/I(C2
n)) ≤ depth(S/(I(C2

n) : an−2)).

Since S/(I(C2
n) : an−2) ∼= Sn−5/I(P 2

n−5)[an−2], thus by Lemma 3.7.5 and Theorem

4.1.1, depth(Sn−5/I(P 2
n−5)[an−2]) = dn

5
e and the required result follows.
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Theorem 4.1.4. Let n ≥ 5. Then sdepth(S/I(C2
n)) ≥ dn−2

5
e.

Proof. If 5 ≤ n ≤ 7, then by using the method given in [36], the Stanley decom-

positions of the desired Stanley depth are as follows.

If n = 5, then S/I(C2
5) = K[a1]⊕ a2K[a2]⊕ a3K[a3]⊕ a4K[a4]⊕ a5K[a5].

If n = 6, then S/I(C2
6) = K[a1, a4]⊕ a2K[a2, a5]⊕ a3K[a3, a6]⊕ a5K[a5]

⊕a6K[a6].

If n = 7, then S/I(C2
7) = K[a1, a4]⊕ a2K[a2, a5]⊕ a3K[a3, a6]⊕ a5K[a1, a5]

⊕a6K[a2, a6]⊕ a7K[a3, a7]⊕ a4a7K[a4, a7].

Now consider n ≥ 8. For this, the theorem can be proved in similar way as the

proof of Theorem 4.1.3. By applying Lemma 3.7.4 instead of Depth Lemma and

Theorem 4.1.2 instead of Theorem 4.1.1, the required result holds.

Corollary 4.1.3. Let n ≥ 5, if n ≡ 1, 2 (mod 5), then

dn
5
e − 1 ≤ sdepth(S/I(C2

n)) ≤ dn
5
e.

Otherwise,

sdepth(S/I(C2
n)) = dn

5
e.

Proof. By Theorem 4.1.4, if n ≡ 1, 2(mod 5), then sdepth(S/I(C2
n)) ≥ dn

5
e −

1 and otherwise sdepth(S/I(C2
n)) ≥ dn

5
e, thus it is only need to show that

sdepth(S/I(C2
n)) ≤ dn

5
e. To do this, assume the three cases as follows:

Case 1. Let n = 5k, where k ≥ 1. Consider the monomial v such that

v = a1a6a11 · · · a5(k−2)+1a5(k−1)+1,
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then clearly v ∈ S\I(C2
n), but alv ∈ I(C2

n) for all l ∈ [n]\ supp(v), thus by Lemma

4.1.1, sdepth(S/I(C2
n)) ≤ k = dn

5
e.

Case 2. Let n = 5k + t, where t ∈ {1, 2, 3} and k ≥ 1. Consider the monomial

v = a1a6a11 · · · a5(k−1)+1a5k−1,

then clearly v ∈ S\I(C2
n), but alv ∈ I(C2

n) for all l ∈ [n]\ supp(v), therefore by

Lemma 4.1.1, sdepth(S/I(C2
n)) ≤ k + 1 = dn

5
e.

Case 3. Let n = 5k+4, where k ≥ 1. Consider the monomial v = a1a6 · · · a5(k−1)+1a5k+1,

then clearly v ∈ S\I(C2
n), but alv ∈ I(C2

n) for all l ∈ [n]\ supp(v), thus by Lemma

4.1.1, sdepth(S/I(C2
n)) ≤ k + 1 = dn

5
e.

From Corollaries 4.1.2 and 4.1.3, the following result can be easily deduced.

Corollary 4.1.4. The Stanley’s inequality holds for I(C2
n).

4.2 Stanley depth of edge ideals of square paths

and square cycles

The main goal of this section is to show that the Conjecture 1.2.1 is true for the

edge ideals of square paths and square cycles. Moreover, a positive answer to the

Question 1.2.1 for edge ideal of an arbitrary square path, and for some classes of

edge ideals of square cycle is given.

Theorem 4.2.1. Let n ≥ 3. Then sdepth(I(P 2
n)) ≥ dn

5
e+ 1.

Proof. To prove it, the induction hypothesis is used. It is easy to see that the

result is true for 3 ≤ n ≤ 7. Now consider n ≥ 8. For this, since an−2 6∈ I(P 2
n),

thus it follows that

I(P 2
n) = I(P 2

n) ∩ S ′
⊕

an−2
(
I(P 2

n) : an−2
)
S,
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where S ′ = K[a1, . . . , an−3, an−1, an], I(P 2
n)∩S ′ =

(
G(I(P 2

n−3)), an−3an−1, an−1an
)
,

and
(
I(P 2

n) : an−2
)

=
(
G(I(P 2

n−5)), an−4, an−3, an−1, an
)
S.

I(P 2
n) ∩ S ′ =

(
G(I(P 2

n−3)), an−3an−1, an−1an
)

=(
G(I(P 2

n−3)), an−3an−1, an−1an
)
∩S ′′

⊕
an−1

(
(G(I(P 2

n−3)), an−3an−1, an−1an) : an−1
)
S ′,

where S ′′ = K[a1, . . . , an−3, an],
(
G(I(P 2

n−3)), an−3an−1, an−1an
)
S ′′ =

(
G(I(P 2

n−3))
)
S ′′,

and
(
(G(I(P 2

n−3)), an−3an−1, an−1an) : an−1
)

=
(
G(I(P 2

n−4)), an−3, an
)
S ′. Thus

sdepth
(
I(P 2

n)
)
≥ min

{
sdepth

(
(G(I(P 2

n−5)), an−4, an−3, an−1, an)S
)
,

sdepth
(
(G(I(P 2

n−3))S
′′), sdepth

(
(G(I(P 2

n−4)), an−3, an)S ′
)}
.

By Lemma 3.7.5, it follows that

sdepth
(
(G(I(P 2

n−5)), an−4, an−3, an−1, an)S
)

= sdepth
(
(G(I(P 2

n−5)), an−4, an−3, an−1, an)S ′
)

+ 1,

and by [14, Theorem 1.3], it results that

sdepth
(
(G(I(P 2

n−5)), an−4, an−3, an−1, an)S ′
)
≥ min

{
sdepth

(
I(P 2

n−5)Sn−5
)

+ 4,

sdepth
(
(an−4, an−3, an−1, an)S̄

)
+ sdepth

(
Sn−5/I(P 2

n−5)Sn−5
)}
,

where S̄ = K[an−4, an−3, an−1, an]. Now by induction on n, by [7, Theorem 2.2]

and Theorem 4.1.3, it follows that

sdepth
(
(G(I(P 2

n−5)), an−4, an−3, an−1, an)
)
S ′ ≥ min

{
dn−5

5
e+ 1 + 4, 2 + dn−5

5
e
}

= dn
5
e+ 1.

Therefore sdepth
(
(G(I(P 2

n−5)), an−4, an−3, an−1, an)S
)
> dn

5
e + 1. Now by induc-

tive hypothesis and Lemma 3.7.5, it follows that

sdepth
(
(G(I(P 2

n−3)), an−3an−1, an−1an)S ′′
)

= sdepth
(
(G(I(P 2

n−3)))S
′′)

≥ dn− 3

5
e+ 1 + 1.
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By [47, Lemma 2.11], the following inequality holds

sdepth
(
(G((I(P 2

n−4)), an−3, an)S ′
)
≥ sdepth

(
I(P 2

n−4)Sn−4[an−1]
)
,

by Lemma 3.7.5 and induction on n, it follows that

sdepth
(
((G(I(P 2

n−3)), an−3an−1, an−1an) : an−1)S
′) =

sdepth
(
(G(I(P 2

n−4)), an−3, an)S ′
)
≥ sdepth

(
I(P 2

n−4)Sn−4[an−1]
)
≥ dn− 4

5
e+1+1.

Thus

sdepth(I(P 2
n)) ≥ dn

5
e+ 1.

Corollary 4.2.1. Let n ≥ 3. Then sdepth(I(P 2
n)) ≥ sdepth(S/I(P 2

n)) + 1.

Proposition 4.2.1. Let n ≥ 5. Then sdepth(I(C2
n)/I(P 2

n)) ≥ dn+3
5
e.

Proof. If 5 ≤ n ≤ 9, then by using the method given in [36], the Stanley decom-

positions of desired Stanley depth are as follows:

If n = 5 or 6, then

I(C2
n)/I(P 2

n) = a1an−1K[a1, an−1]⊕ a1anK[a1, an]⊕ a2anK[a2, an].

If n = 7, then

I(C2
7)/I(P 2

7 ) = a1a6K[a1, a6]⊕ a1a7K[a1, a7]⊕ a2a7K[a2, a7]

⊕a1a4a7K[a1, a4, a7].

If n = 8, then

I(C2
8)/I(P 2

8 ) = a1a7K[a1, a4, a7]⊕ a1a8K[a1, a4, a8]

⊕a2a8K[a2, a5, a8]⊕ a1a5a8K[a1, a5, a8].
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If n = 9, then

I(C2
9)/I(P 2

9 ) = a1a8K[a1, a4, a8]⊕ a1a9K[a1, a4, a9]

⊕a2a9K[a2, a5, a9]⊕ a1a5a8K[a1, a5, a8]⊕ a1a5a9K[a1, a5, a9]

⊕a1a6a9K[a1, a6, a9]⊕ a2a5a8K[a2, a5, a8]⊕ a2a6a9K[a2, a6, a9].

It remains to be shown that the result holds for n ≥ 10. For this, consider the

following K-vector space isomorphism:

I(C2
n)/I(P 2

n) ∼=

a1an
K[a4, a5, . . . , an−3]

(a4a5, a4a6, . . . , an−4an−3)
[a1, an]⊕ a2an

K[a5, a6, . . . , an−3]

(a5a6, a5a7, . . . , an−4an−3)
[a2, an]

⊕ a1an−1
K[a4, a5, . . . , an−4]

(a4a5, a4a6, . . . , an−5an−4)
[a1, an−1].

Indeed, if u ∈ I(C2
n) and u 6∈ I(P 2

n), then (a1an)|u or (a2an)|u or (a1an−1)|u. If

(a1an)|u, then u = xγ11 x
δ1
n v1, v1 ∈ K[a4, a5, . . . , an−3], since v1 /∈ I(P 2

n), it follows

that v1 /∈ (a4a5, a4a6, . . . , an−4an−3). Now if (a2an)|u, then u = xγ22 x
δ2
n v2, v2 ∈

K[a5, a6, . . . , an−3], since v2 /∈ I(P 2
n), it follows that v2 /∈ (a5a6, . . . , an−4an−3).

Finally, if (a1an−1)|u, then u = xγ31 x
δ3
n−1v3, v3 ∈ K[a4, . . . , an−4], since v3 /∈ I(P 2

n),

it follows that v3 /∈ (a4a5, a4a6, . . . , an−5an−4). Thus by Theorem 4.1.2 and Lemma

3.7.5, it follows that

sdepth(I(C2
n)/I(P 2

n)) ≥ min{dn+ 3

5
e, dn+ 3

5
e, dn+ 4

5
e} = dn+ 3

5
e.

Theorem 4.2.2. Let n ≥ 5. Then sdepth(I(C2
n)) ≥ dn−2

5
e+ 1.

Proof. Assume the exact sequence as follows:

0 −→ I(P 2
n) −→ I(C2

n) −→ I(C2
n)/I(P 2

n) −→ 0,

then by using Lemma 3.7.4,

sdepth(I(C2
n)) ≥ min{sdepth(I(P 2

n)), sdepth(I(C2
n)/I(P 2

n))}.
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By Theorem 4.2.1, it follows that

sdepth(I(P 2
n)) ≥ dn

5
e+ 1,

and by using Proposition 4.2.1, it concludes that

sdepth(I(C2
n)/I(P 2

n)) ≥ dn+ 3

5
e = dn− 2

5
e+ 1,

this finishes the proof.

Corollary 4.2.2. Let n ≥ 5, if n ≡ 1, 2 (mod 5), then

sdepth(I(C2
n)) ≥ sdepth(S/I(C2

n)).

Otherwise,

sdepth(I(C2
n)) ≥ sdepth(S/I(C2

n)) + 1.

4.3 Conclusion

In this chapter, it is proved that dn
5
e is the exact value of both Stanley depth

and depth for the quotient ring of the edge ideal related to a square path on n

vertices. For n ≡ 0, 3, 4(mod 5), it is confirmed that dn
5
e is the value of Stanley

depth and depth for the quotient ring of the edge ideal related to a square cycle

on n vertices. In the remaining cases, tight bounds are provided. Furthermore,

a positive answer is given to the Conjecture 1.2.1 for the edge ideals of square

paths and square cycles.
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Chapter 5

Depth and Stanley depth of the

edge ideals of the powers of paths

and cycles

In the first section of this chapter, the values of depth and Stanley depth of

S/I(P t
n) are computed, where I(P t

n) denotes the edge ideal of the tth power of a

path Pn on n vertices. Then it is proved that

depth(S/I(P t
n)) = sdepth(S/I(P t

n)) = d n

2t+ 1
e.

Let I(Ct
n) represents the edge ideal of the tth power of a cycle Cn on n vertices.

In second section, some lower bounds for depth and Stanley depth of S/I(Ct
n) are

given. If n ≥ 2t + 2, then by Corollaries 5.2.2 and 5.2.3, it is proved that if n ≡

0, t + 1, . . . , 2t(mod(2t + 1)) then depth(S/I(Ct
n)) = sdepth(S/I(Ct

n)) = d n
2t+1
e.

Otherwise,

d n

2t+ 1
e − 1 ≤ depth(S/I(Ct

n)), sdepth(S/I(Ct
n)) ≤ d n

2t+ 1
e.
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Last section is devoted to Conjecture 1.2.1 for I(P t
n) and I(Ct

n). By Theorem

5.3.1, it follows that

sdepth(I(P t
n)) ≥ d n

2t+ 1
e+ 1,

which shows that I(P t
n) satisfies Conjecture 1.2.1. For n ≥ 2t + 1, Proposition

5.3.1 gives a lower bound for I(Ct
n)/I(P t

n) that is

sdepth(I(Ct
n)/I(P t

n)) ≥ dn+ t+ 1

2t+ 1
e.

Corollary 5.3.1 of this chapter proves that I(Ct
n) satisfies Conjecture 1.2.1.

Throughout this chapter, set Sm := K[a1, a2, . . . , am]. Let I ⊂ S be an ideal.

Then it is represented by I instead of IS. Thus every ideal is considered to be

an ideal of S unless otherwise stated. Let I and J be monomial ideals of S,

then for I + J , it is denoted by (I, J). In the whole chapter, the vertices of

the graph U are lebeled by 1, 2, 3, . . . , n. The set of vertices of U is represented

by [n] := {1, 2, . . . , n} and its edge set by E(U). Assume that all graphs and

their powers are simple graphs and all graphs have at least two vertices and a

non-empty edge set.

If n ≤ t+1, then I(P t
n) is a squarefree Veronese ideal of degree 2. If n ≥ t+2,

then

G(I(P t
n)) = ∪n−ti=1{aiai+1, aiai+2, . . . , aiai+t}∪

∪n−1j=n−t+1 {ajaj+1, ajaj+2, . . . , ajan}.

If n ≤ 2t+ 1, then I(Ct
n) is a squarefree Veronese ideal of degree 2. If n ≥ 2t+ 2,

then

G(I(Ct
n)) = G(I(P t

n)) ∪ ∪tl=1{alal+n−t, alal+n−t+1, . . . , alan}.

Let U be a graph and i ∈ [n], then NU(ai) := {aj : aixj ∈ G
(
I(U)

)
}, where

j ∈ [n]\{i}. For t ≥ 2, 0 ≤ i ≤ t − 1 and n ≥ 2t + 2, let An−t−1, An−t+i, Bn−t+i
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and Dn−t+i denote the monomial prime ideals of S such that An−t−1 = (0),

An−t+i := (an−t, an−t+1, . . . , an−t+i),

Bn−t+i :=
(
aj : aj ∈ NP t

n
(an−t+i)

)
= (an−2t+i, an−2t+i+1, . . . , an−t+i−1, an−t+i+1, . . . , an),

and Dn−t+i :=
(
aj : aj ∈ NCt

n
(an−t+i)

)
. Thus if i = 0, then

Dn−t+i = (an−2t, an−2t+1, . . . , an−t−1, an−t+1, . . . , an)

and if 1 ≤ i ≤ t− 1, then

Dn−t+i = (an−2t+i, an−2t+i+1, . . . , an−t+i−1, an−t+i+1, . . . , an, a1, . . . , ai).

These monomial prime ideals and the following function play important role in

the proof of main theorems of this chapter. For t ≥ 2 and 2t + 2 ≤ n ≤ 3t + 1,

define a function

f : {n− t, n− t+ 1, . . . , n− t+ i, . . . , n− 1} −→ Z+ ∪ {0}, by

f(n− t+ i) =

 t, if n− 2t− 1 + i ≥ t+ 1;

n− 2t− 2 + i, if 2 ≤ n− 2t− 1 + i < t+ 1.

5.1 Depth and Stanley of cyclic modules asso-

ciated to the edge ideals of the powers of a

path

In the start of this section, some results are proved, that are used to complete

the main task of this section.

48



Lemma 5.1.1. Let a ≥ 2 be an integer, {Ei : 1 ≤ i ≤ a} and {Gi : 0 ≤ i ≤ a} be

the some families of Zn-graded S-modules with the following short exact sequences:

0 −→ E1 −→ G0 −→ G1 −→ 0 (1)

0 −→ E2 −→ G1 −→ G2 −→ 0 (2)

...

0 −→ Ea−1 −→ Ga−2 −→ Ga−1 −→ 0 (a− 1)

0 −→ Ea −→ Ga−1 −→ Ga −→ 0 (a)

and depth(Ga) ≥ depth(Ea), depth(Ei) ≥ depth(Ei−1) for all 2 ≤ i ≤ a. Then

depth(G0) = depth(E1).

Proof. By assumption, it follows that depth(Ga) ≥ depth(Ea), using Depth

Lemma on (a), depth(Ga−1) = depth(Ea). Also, by assumption

depth(Ga−1) = depth(Ea) ≥ depth(Ea−1).

By applying Depth Lemma on (a−1), depth(Ga−2) = depth(Ea−1). By repeating

the same steps on all exact sequences one by one from bottom to top gives that

depth(Gi−1) = depth(Ei) for all i. Thus if i = 1, then depth(G0) = depth(E1).

Lemma 5.1.2. Let t ≥ 2 and n ≥ 2t+ 2. Then

S/(I(P t
n), An−1) ∼= Sn−t−1/I(P t

n−t−1)[an].

Proof. Since,

G(I(P t
n)) = ∪n−ti=1

{
aiai+1, aiai+2, . . . , aiai+t

}
∪

∪n−1i=n−t+1

{
aiai+1, aiai+2, . . . , aian

}
,
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which further implies that

I(P t
n) + An−1 = An−1+[ n−t∑

i=n−2t

(aiai+1, aiai+2, . . . , aiai+t) +
n−2t−1∑
i=1

(aiai+1, aiai+2, . . . , aiai+t)+

n−1∑
i=n−t+1

(aiai+1, aiai+2, . . . , aian)
]

=
n−2t−1∑
i=1

(
aiai+1, aiai+2, . . . , aiai+t

)
+

n−t−2∑
i=n−2t

(aiai+1, aiai+2, . . . , aian−t−1) + An−1 = I(P t
n−t−1) + An−1.

Thus the required result follows.

Lemma 5.1.3. Let t ≥ 2, 0 ≤ i ≤ t− 1 and n ≥ 3t+ 2. Then

S/(I(P t
n) : an−t+i) ∼= Sn−2t−1+i/I(P t

n−2t−1+i)[an−t+i].

Proof. It suffices to show that (I(P t
n) : an−t+i) = (I(P t

n−2t−1+i), Bn−t+i). Clearly

I(P t
n−2t−1+i) ⊂ I(P t

n) ⊂ (I(P t
n) : an−t+i).

Let u ∈ Bn−t+i, by definition of I(P t
n), uxn−t+i ∈ I(P t

n) i.e. u ∈ (I(P t
n) : an−t+i).

ThusBn−t+i ⊂ (I(P t
n) : an−t+i) and it further implies that

(
I(P t

n−2t−1+i), Bn−t+i
)
⊂

(I(P t
n) : an−t+i). Now let w be a monomial generator of (I(P t

n) : an−t+i), then

w = v
gcd(v,an−t+i)

, where v ∈ G(I(P t
n)). If supp(v) ∩ G(Bn−t+i) 6= ∅, then it fol-

lows that w ∈ G(Bn−t+i) and if supp(v) ∩ G(Bn−t+i) = ∅, then w ∈ G(I(P t
n)) ∩

K[a1, a2, . . . , an−2t−1+i] = G(I(P t
n−2t−1+i)).

Lemma 5.1.4. Let n ≥ 3t+ 2 and 0 ≤ i ≤ t− 1, then

S/((I(P t
n), An−t+(i−1)) : an−t+i) ∼= Sn−2t−1+i/I(P t

n−2t−1+i)[an−t+i].

Proof. As
(
(I(P t

n), An−t+(i−1)) : an−t+i
)

=
(
(I(P t

n) : an−t+i), An−t+(i−1)
)
. Now

using the proof of Lemma 5.1.3, it follows that(
(I(P t

n) : an−t+i), An−t+(i−1)
)

=(
I(P t

n−2t−1+i), Bn−t+i, An−t+(i−1)
)

=
(
I(P t

n−2t−1+i), Bn−t+i
)
,
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as An−t+(i−1) ⊂ Bn−t+i. Thus the required result follows by Lemma 5.1.3.

Remark 5.1.1. Let m ≥ 2 and I(Pm−1
m ) ⊂ Sm = K[a1, a2, . . . , am] be the edge

ideal of the (m− 1)th power of path Pm. Then I(Pm−1
m ) is a squarefree Veronese

ideal in variables a1, a2, . . . , am and it has degree 2. Thus by [30, Corollary 10.3.7]

and Theorem 5.1.2, it follows that

depth(Sm/I(Pm−1
m )) = sdepth(Sm/I(Pm−1

m )) = 1.

Remark 5.1.2. Let t ≥ 2 and 2t+ 2 ≤ n ≤ 3t+ 1, then it is easy to see that

(1) If n = 2t+ 2, then

S/(I(P t
n) : an−t) = S/(a2, . . . , an−t−1, an−t+1, . . . , an) ∼= K[a1, an−t].

(2) If 0 ≤ i ≤ t− 1 and n > 2t+ 2, then

S/(I(P t
n) : an−t+i) = S/((I(P t

n), An−t+(i−1)) : an−t+i)

∼= Sn−2t−1+i/I(P
f(n−t+i)
n−2t−1+i)[an−t+i]

=


Sn−2t−1+i/I(P t

n−2t−1+i)[an−t+i], if n− 2t− 1 + i ≥ t+ 1;

Sn−2t−1+i/I(P n−2t−2+i
n−2t−1+i )[an−t+i], otherwise.

Theorem 5.1.1. Let n ≥ 2. Then depth(S/I(P t
n)) = d n

2t+1
e.

Proof. (a) If n ≤ t+1, then I(P t
n) is a squarefree Veronese ideal thus by Remark

5.1.1, depth(S/I(P t
n)) = 1 = d n

2t+1
e.

(b) For n ≥ t+ 2, assume the following cases:

(1) If t = 1, then by [57, Lemma 2.8],

depth(S/I(P 1
n)) = dn

3
e = d n

2t+ 1
e.
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(2) If t ≥ 2 and t + 2 ≤ n ≤ 2t + 1, then depth(S/I(P t
n)) ≥ 1 as m /∈

Ass(S/I(P t
n)). Since at+1 /∈ I(P t

n) and asat+1 ∈ G(I(P t
n)) for all s ∈

{1, . . . t, t+ 2, . . . , n}, that gives

(I(P t
n) : at+1) = (a1, . . . at, at+2, . . . , an).

By Corollary 3.7.2, it follows that

depth(S/I(P t
n)) ≤ depth(S/(I(P t

n) : at+1))

= depth(S/(a1, . . . at, at+2, . . . , an)) = 1.

Thus depth(S/I(P t
n)) = 1 = d n

2t+1
e.

(3) For t ≥ 2, 2t+ 2 ≤ n ≤ 3t+ 1 and 0 ≤ i ≤ t− 1, assume the family of

short exact sequences:

0 −→ S/((I(P t
n), An−t+(i−1)) : an−t+i)

·an−t+i−−−−→

S/(I(P t
n), An−t+(i−1)) −→ S/(I(P t

n), An−t+i) −→ 0

By Lemma 5.1.2, S/(I(P t
n), An−1) ∼= Sn−t−1/I(P t

n−t−1)[an]. Since the

case 2t+ 2 ≤ n ≤ 3t+ 1 is considered here, which implies that t+ 1 ≤

n−t−1 ≤ 2t. If n−t−1 = t+1, then Sn−t−1/I(P t
n−t−1) = St+1/I(P t

t+1),

by Remark 5.1.1 and Lemma 3.7.5, depth
(
S/(I(P t

n), An−1)
)

= 2. If

t+1 < n−t−1 ≤ 2t, then by case(b)(2), depth(Sn−t−1/I(P t
n−t−1)) = 1.

By Lemma 3.7.5, depth
(
S/(I(P t

n), An−1)
)

= 2. Now to prove that

depth
(
S/(I(P t

n) : an−t)
)

= 2, consider the following cases:

If n = 2t+ 2, then by Remark 5.1.2,

S/(I(P t
n) : an−t) =

S/(a2, a3, . . . , an−t−1, an−t+1, . . . , an) ∼= K[a1, an−t],
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and thus depth
(
S/(I(P t

n) : an−t)
)

= 2. If n > 2t+ 2, by Remark 5.1.2

it follows that

S/(I(P t
n) : an−t) ∼= Sn−2t−1/I(P n−2t−2

n−2t−1 )[an−t],

where 2 ≤ n − 2t − 1 ≤ t. Thus by Remark 5.1.1 and Lemma 3.7.5,

depth
(
S/(I(P t

n) : an−t)
)

= 2. Now for 1 ≤ i ≤ t− 1, by Remark 5.1.2,

it follows that

S/((I(P t
n), An−t+(i−1)) : an−t+i) = S/(I(P t

n) : an−t+i)

∼= Sn−2t−1+i/I(P
f(n−t+i)
n−2t−1+i)[an−t+i].

Let T := Sn−2t−1+i/I(P
f(n−t+i)
n−2t−1+i)[an−t+i]. Assume the following three

cases:

(i) If t + 1 = n − 2t − 1 + i, then T = St+1/I(P t
t+1)[an−t+i], thus by

case(a) and Lemma 3.7.5, depth(T ) = 2.

(ii) For t+1 < n−2t−1+i, T = Sn−2t−1+i/I(P t
n−2t−1+i)[an−t+i]. Since

t + 2 ≤ n − 2t − 1 + i ≤ 2t − 1, thus by case(b)(2) and Lemma

3.7.5, depth(T ) = 2.

(iii) If 2 ≤ n− 2t− 1 + i < t+ 1, then

T = Sn−2t−1+i/I(P n−2t−2+i
n−2t−1+i )[an−t+i], by Remark 5.1.1 and Lemma

3.7.5, depth(T ) = 2.

Thus by Lemma 5.1.1, depth(S/I(P t
n)) = 2.

(4) For t ≥ 2, n ≥ 3t + 2 and 0 ≤ i ≤ t − 1, assume the family of short
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exact sequences

0 −→ S/((I(P t
n), An−t+(i−1)) : an−t+i)

·an−t+i−−−−→

S/(I(P t
n), An−t+(i−1)) −→ S/(I(P t

n), An−t+i) −→ 0

By Lemma 5.1.2, S/(I(P t
n), An−1)) ∼= Sn−t−1/I(P t

n−t−1)[an]. The induc-

tion hypothesis and Lemma 3.7.5 yield that depth(S/(I(P t
n), An−1)) =

dn−t−1
2t+1
e+ 1. By Lemma 5.1.4, it follows that

S/((I(P t
n), An−t+(i−1)) : an−t+i) ∼= Sn−2t−1+i/I(P t

n−2t−1+i)[an−t+i].

Thus by induction on n and Lemma 3.7.5, it results that

depth(S/((I(P t
n), An−t+(i−1)) : an−t+i)) = dn− 2t− 1 + i

2t+ 1
e+ 1.

Here

depth(S/(I(P t
n), An−1)) = dn−t−1

2t+1
e+ 1 ≥

dn− t− 2

2t+ 1
e+ 1 = depth(S/(I(P t

n), An−2) : an−1)),

and for all 1 ≤ i ≤ t− 1,

depth(S/((I(P t
n), An−t+(i−1)) : an−t+i)) = dn−2t−1+i

2t+1
e+ 1 ≥

dn− 2t− 2 + i

2t+ 1
e+ 1 = depth(S/((I(P t

n), An−t+(i−2)) : an−t+(i−1))).

Thus by Lemma 5.1.1, it follows that

depth(S/I(P t
n)) = dn− 2t− 1

2t+ 1
e+ 1 = d n

2t+ 1
e.

Let e ∈ [n] and In,e := (v ∈ S be a square free monomial : deg(v) = e). Then

Cimpoeas proved the following theorem for In,e.
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Theorem 5.1.2 ( [15, Theorem 1.1]). (1) sdepth(S/In,e) = e− 1.

(2) e ≤ sdepth(In,e) ≤ n−e
e+1

+ e.

Theorem 5.1.3 ( [12, Theorem 1.4]). Let T be a Zn-graded S-module and sdepth(T ) =

0, then it follows that depth(T ) = 0. On the other hands, if depth(T ) = 0 and

dimK(Tb) = 1 for any b ∈ Zn, then sdepth(T ) = 0.

Lemma 5.1.5 ( [76, Lemma 4]). For n ≥ 2, sdepth(S/I(P 1
n)) = dn

3
e.

Example 5.1.1. For n ≥ 2, and n ≤ 2t+ 1, sdepth(S/I(P t
n)) = 1.

Proof. If n ≤ t+ 1, then by Theorem 5.1.2 sdepth(S/I(P t
n)) = 1. Now if t+ 2 ≤

n ≤ 2t + 1, then depth(S/I(P t
n)) ≥ 1 as m /∈ Ass(S/I(P t

n)), thus by Theorem

5.1.3, sdepth(S/I(P t
n)) ≥ 1. Since at+1 /∈ I(P t

n) and aiat+1 ∈ G(I(P t
n)) for all

i ∈ {1, . . . t, t+ 2, . . . , n}, therefore (I(P t
n) : at+1) = (a1, . . . at, at+2, . . . , an). Thus

by Proposition 3.7.3, it follows that

sdepth(S/I(P t
n)) ≤ sdepth(S/(I(P t

n) : at+1)) = sdepth(S/(a1, . . . at, at+2, . . . , an))

= 1.

Proposition 5.1.1. For t ≥ 2 and n ≥ 2t+ 2,

sdepth(S/I(P t
n)) ≥ d n

2t+ 1
e.

Proof. (1) If 2t + 2 ≤ n ≤ 3t + 1, then by applying Lemma 3.7.4 on the exact

sequences in case(b)(3) of Theorem 5.1.1, sdepth(S/I(P t
n)) ≥ 2 = d n

2t+1
e.

(2) If n ≥ 3t + 2, then the proof is identical to the proof of Theorem 5.1.1.

By applying Lemma 3.7.4 on the exact sequences in case(b)(4) of Theorem
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5.1.1, it follows that

sdepth(S/I(P t
n)) ≥ min

{
sdepth(S/(I(P t

n), An−1)),

t−1
min
i=0
{sdepth(S/((I(P t

n), An−t+(i−1)) : an−t+i))}
}
≥ d n

2t+ 1
e.

Theorem 5.1.4. Let n ≥ 2, then sdepth(S/I(P t
n)) = d n

2t+1
e.

Proof. The result follows by Lemma 5.1.5 for t = 1. Let t ≥ 2. If n ≤ 2t+1, then

by Example 5.1.1 the required result holds. If n ≥ 2t + 2, then by Proposition

5.1.1 it follows that

sdepth(S/I(P t
n)) ≥ d n

2t+ 1
e.

It suffices to show that sdepth(S/I(P t
n)) ≤ d n

2t+1
e, for this, consider the following

cases:

(1) If n = (2t+ 1)l, where l ≥ 1, then

v = at+1a3t+2a5t+3 · · · a(2t+1)l−t ∈ S\I(P t
n),

but af1v ∈ I(P t
n) for all f1 ∈ [n]\ supp(v), thus by Lemma 4.1.1,

sdepth(S/I(P t
n)) ≤ l = d n

2t+ 1
e.

(2) If n = (2t+ 1)l + r, where r ∈ {1, 2, 3, . . . , t+ 1} and l ≥ 1, then it follows

that

v = at+1a3t+2a5t+3 · · · a(2t+1)l−ta(2t+1)l+r ∈ S\I(P t
n),

and af2v ∈ I(P t
n) for all f2 ∈ [n]\ supp(v), so by Lemma 4.1.1,

sdepth(S/I(P t
n)) ≤ l + 1 = d n

2t+ 1
e.
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(3) If n = (2t+ 1)l + s, where s ∈ {t+ 2, t+ 3, . . . , 2t} and l ≥ 1, since

v = at+1a3t+2a5t+3 · · · a(2t+1)l+t+1 ∈ S\I(P t
n),

but af3v ∈ I(P t
n) for all f3 ∈ [n]\ supp(v), by Lemma 4.1.1, it follows that

sdepth(S/I(P t
n)) ≤ l + 1 = d n

2t+ 1
e.

From Theorems 5.1.1 and 5.1.4, the next result can be derived.

Corollary 5.1.1. The Stanley’s inequality holds for I(P t
n).

5.2 Depth and Stanley depth of cyclic modules

associated to the edge ideals of the powers

of a cycle

Here, some values and bounds are computed for depth and Stanley depth of cyclic

modules associated to the edge ideals of powers of a cycle. In the start of this

section, some results are proved, that are used to complete the main task of this

section.

Lemma 5.2.1. Let t ≥ 2 and n ≥ 3t+ 2, then S/(I(Ct
n), An−1) ∼= Sn−t/I(P t

n−t).

Proof. Since,

G(I(Ct
n)) = G(I(P t

n))∪∪t−1l=1{alal+n−t, alal+n−t+1, . . . , alan−1}∪{a1an, . . . , atan},

that gives

I(Ct
n) + An−1 =

I(P t
n) +

t−1∑
l=1

(alal+n−t, alal+n−t+1, . . . , alan−1) + (a1an, a2an, . . . , atan) + An−1.
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Thus by the proof of Lemma 5.1.2, it follows that I(P t
n)+An−1 = I(P t

n−t−1)+An−1.

As
t−1∑
l=1

(alal+n−t, alal+n−t+1, . . . , alan−1) + An−1 = An−1.

Therefore S/(I(Ct
n), An−1) = S/(I(P t

n−t−1), An−1, (a1an, a2an, . . . , atan))

∼= K[a1, a2, . . . , an−t−1, an]/
(
I(P t

n−t−1), (a1an, a2an, . . . , atan)
)
.

After renumbering the variables, it results that

K[a1, . . . , an−t−1, an]/
(
I(P t

n−t−1), (a1an, a2an, . . . , atan)
) ∼= Sn−t/I(P t

n−t).

Lemma 5.2.2. Let t ≥ 2 and n ≥ 3t+ 2 and 0 ≤ i ≤ t− 1, then

S/(I(Ct
n) : an−t+i) ∼= Sn−2t−1/I(P t

n−2t−1)[an−t+i].

Proof. Let w be a monomial generator of (I(Ct
n) : an−t+i). Then w = v

gcd(v,an−t+i)
,

where v ∈ G(I(Ct
n)). If supp(v) ∩ G(Dn−t+i) 6= ∅, then w ∈ G(Dn−t+i) and if

supp(v) ∩ G(Dn−t+i) = ∅ then w ∈ E := G(I(Ct
n)) ∩K[ai+1, ai+2, . . . , an−2t−1+i].

Thus (I(Ct
n) : an−t+i) ⊂ E + Dn−t+i. On the other hand, (I(Ct

n) : an−t+i) =

E + Dn−t+i, which further implies that S/(I(Ct
n) : an−t+i) = S/(E + Dn−t+i).

After renumbering the variables, it follows that

S/(I(Ct
n) : an−t+i) = S/(E,Dn−t+i) ∼= Sn−2t−1/I(P t

n−2t−1)[an−t+i].

Lemma 5.2.3. Let t ≥ 2, n ≥ 3t+ 2 and 0 ≤ i ≤ t− 1. Then

S/
(
(I(Ct

n), An−t+(i−1)) : an−t+i
) ∼= Sn−2t−1/I(P t

n−2t−1)[an−t+i].
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Proof. As
(
(I(Ct

n), An−t+(i−1)) : an−t+i
)

=
(
(I(Ct

n) : an−t+i), An−t+(i−1)
)
. By

using the same arguments as in the proof of Lemma 5.2.2, it follows that(
(I(Ct

n) : an−t+i), An−t+(i−1)
)

=
(
E,Dn−t+i, An−t+(i−1)

)
=
(
E,Dn−t+i

)
as An−t+(i−1) ⊂ Dn−t+i. Thus the required result follows by Lemma 5.2.2.

Corollary 5.2.1 ( [30, Corollary 10.3.7]). Let 2 ≤ e < n. Then

depth(S/Ikn,e) = max{0, n− k(n− e)− 1}.

Theorem 5.2.1. Let n ≥ 3, then

depth(S/I(Ct
n)) = 1, if n ≤ 2t+ 1;

depth(S/I(Ct
n)) ≥ d n− t

2t+ 1
e, if n ≥ 2t+ 2.

Proof. (a) If n ≤ 2t + 1, then I(Ct
n) is a squarefree Veronese ideal of degree 2.

Thus by Corollary 5.2.1, depth(S/I(Ct
n)) = 1.

(b) For n ≥ 2t+ 2, consider the following cases:

(1) If t = 1, then by [16, Proposition 1.3], depth(S/I(C1
n)) = dn−1

3
e.

(2) If t ≥ 2 and 2t + 2 ≤ n ≤ 3t + 1, then depth(S/I(Ct
n)) ≥ 1 = d n−t

2t+1
e

as m /∈ Ass(S/I(Ct
n)).

(3) For t ≥ 2, n ≥ 3t + 2 and 0 ≤ i ≤ t − 1, assume the family of short exact

sequences as follows:

0 −→ S/((I(Ct
n), An−t+(i−1)) : an−t+i)

·an−t+i−−−−→

S/(I(Ct
n), An−t+(i−1)) −→ S/(I(Ct

n), An−t+i) −→ 0

By Lemma 5.2.1, S/(I(Ct
n), An−1)) ∼= Sn−t/I(P t

n−t). Now by Lemma 5.2.3,

it follows that

S/((I(Ct
n), An−t+(i−1)) : an−t+i) ∼= Sn−2t−1/I(P t

n−2t−1)[an−t+i].
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By Theorem 5.1.1 and Lemma 3.7.5, it results that

depth(S/((I(Ct
n), An−t+(i−1)) : an−t+i)) = dn− 2t− 1

2t+ 1
e+ 1 = d n

2t+ 1
e.

Again by Theorem 5.1.1, it follows that depth(S/(I(Ct
n), An−1)) = d n−t

2t+1
e.

Thus by applying Lemma 3.7.3(1) on the family of short exact sequences,

the desired result depth(S/I(Ct
n)) ≥ d n−t

2t+1
e holds.

Corollary 5.2.2. Let n ≥ 3, If n ≥ 2t+ 2, then

depth(S/I(Ct
n)) = d n

2t+ 1
e, if n ≡ 0, t+ 1, . . . , 2t (mod(2t+ 1));

d n

2t+ 1
e − 1 ≤ depth(S/I(Ct

n)) ≤ d n

2t+ 1
e, if n ≡ 1, . . . , t (mod(2t+ 1)).

Proof. By Theorem 5.2.1, it is suffices to prove depth(S/I(Ct
n)) ≤ d n

2t+1
e, for t ≥ 2

and n ≥ 2t + 2. Since an−t /∈ I(Ct
n), thus by Corollary 3.7.2, depth(S/I(Ct

n)) ≤

depth(S/(I(Ct
n) : an−t)). Now, consider two cases:

(1) Let 2t+ 2 ≤ n ≤ 3t+ 1, then S/(I(Ct
n) : an−t) = S/(I(P t

n) : an−t), so by the

proof of Theorem 5.1.1 it follows that depth(S/(I(P t
n) : an−t)) = 2 = d n

2t+1
e.

Therefore

depth(S/I(Ct
n)) ≤ depth(S/(I(Ct

n) : an−t)) = 2 = d n

2t+ 1
e.

(2) Let n ≥ 3t+ 2, then by Lemma 5.2.2,

S/(I(Ct
n) : an−t) ∼= Sn−2t−1/I(P t

n−2t−1)[an−t].

By Lemma 3.7.5 and Theorem 5.1.1, depth(Sn−2t−1/I(P t
n−2t−1)[an−t]) =

d n
2t+1
e. Thus depth(S/I(Ct

n)) ≤ depth(S/(I(Ct
n) : an−t)) = d n

2t+1
e.
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Theorem 5.2.2. Let n ≥ 3, then

sdepth(S/I(Ct
n)) = 1, if n ≤ 2t+ 1;

sdepth(S/I(Ct
n)) ≥ d n− t

2t+ 1
e, if n ≥ 2t+ 2.

Proof. (a) If n ≤ 2t+ 1, then sdepth(S/I(Ct
n)) = 1 by Theorem 5.1.2.

(b) For n ≥ 2t+ 2, consider the following cases:

(1) If t = 1, then by [16, Proposition 1.8] sdepth(S/I(C1
n)) ≥ dn−1

3
e.

(2) If t ≥ 2 and 2t + 2 ≤ n ≤ 3t + 1, then depth(S/I(Ct
n)) ≥ 1 as m /∈

Ass(S/I(Ct
n)), thus by Theorem 5.1.3, sdepth(S/I(Ct

n)) ≥ 1 = d n−t
2t+1
e.

(3) For t ≥ 2, n ≥ 3t + 2 and 0 ≤ i ≤ t − 1, consider the family of short

exact sequences

0 −→ S/((I(Ct
n), An−t+(i−1)) : an−t+i)

·an−t+i−−−−→

S/(I(Ct
n), An−t+(i−1)) −→ S/(I(Ct

n), An−t+i) −→ 0.

By Lemma 5.2.1, S/(I(Ct
n), An−1)) ∼= Sn−t/I(P t

n−t). Now by Lemma

5.2.3, it follows that

S/((I(Ct
n), An−t+(i−1)) : an−t+i) ∼= Sn−2t−1/I(P t

n−2t−1)[an−t+i].

By Theorem 5.1.4 and Lemma 3.7.5, it follows that

sdepth(S/((I(Ct
n), An−t+(i−1)) : an−t+i)) =

dn− 2t− 1

2t+ 1
e+ 1 = d n

2t+ 1
e.

Again by Theorem 5.1.4, sdepth(S/(I(Ct
n), An−1)) = d n−t

2t+1
e. By ap-

plying Lemma 3.7.4 on the above family of short exact sequences, the

required result sdepth(S/I(Ct
n)) ≥ d n−t

2t+1
e holds.

61



Corollary 5.2.3. Let n ≥ 3, if n ≥ 2t+ 2, then

sdepth(S/I(Ct
n)) = d n

2t+ 1
e, if n ≡ 0, t+ 1, . . . , 2t (mod(2t+ 1));

d n

2t+ 1
e − 1 ≤ sdepth(S/I(Ct

n)) ≤ d n

2t+ 1
e, if n ≡ 1, . . . , t (mod(2t+ 1)).

Proof. When t = 1, then by [16, Theorem 1.9], sdepth(S/I(Ct
n)) ≤ dn

3
e. By

Theorem 5.2.2, it is suffices to show that sdepth(S/I(Ct
n)) ≤ d n

2t+1
e for t ≥ 2 and

n ≥ 2t+ 2. Since an−t /∈ I(Ct
n), thus by Proposition 3.7.3 it follows that

sdepth(S/I(Ct
n)) ≤ sdepth(S/(I(Ct

n) : an−t)).

Now, consider two cases:

(1) Let 2t+ 2 ≤ n ≤ 3t+ 1, then S/(I(Ct
n) : an−t) = S/(I(P t

n) : an−t) so by the

proof of Theorem 5.1.4, sdepth(S/(I(P t
n) : an−t)) = 2 = d n

2t+1
e. Therefore

sdepth(S/I(Ct
n)) ≤ sdepth(S/(I(Ct

n) : an−t)) = 2 = d n

2t+ 1
e.

(2) Let n ≥ 3t+ 2, then by Lemma 5.2.2

S/(I(Ct
n) : an−t) ∼= Sn−2t−1/I(P t

n−2t−1)[an−t].

By Lemma 3.7.5 and Theorem 5.1.4, sdepth(Sn−2t−1/I(P t
n−2t−1)[an−t]) =

d n
2t+1
e. Thus sdepth(S/I(Ct

n)) ≤ sdepth(S/(I(Ct
n) : an−t)) = d n

2t+1
e.

From Corollaries 5.2.2 and 5.2.3, the next result can be derived.

Corollary 5.2.4. The Stanley’s inequality holds for I(Ct
n).
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5.3 Lower bounds for Stanley depth of edge ide-

als of tth powers of paths and cycles and a

conjecture of Herzog

This section consists of some lower bounds for sdepth(I(P t
n)) and sdepth(I(Ct

n)).

These bounds are good enough to prove that the Conjecture 1.2.1 is true for I(P t
n)

and I(Ct
n). Let 0 ≤ i ≤ t− 1,

Rn−t+i := K[{a1, a2, . . . , an}\{an−t, an−t+1, . . . , an−t+i}]

be a subring of S and

B′n−t+i := (aj : aj ∈ NP t
n
(an−t+i)\{an−t, an−t+1, . . . , an−t+(i−1)}).

be a monomial prime ideal of S. Let I ⊂ Z = K[ai1 , ai1 , . . . , air ] be a monomial

ideal and Z ′ := Z[air+1]. Then one can write IZ ′ = I[air+1]. Now, recall a useful

remark of Cimpoeas.

Remark 5.3.1. [14, Remark 1.7] Let A be a monomial ideal of S, and A′ =

(A, an+1, . . . , an+m) be a monomial ideal of S ′ = S[an+1, an+2, . . . , an+m]. Then

sdepthS′(A
′) ≥ min{sdepthS(A) +m, sdepthS(S/A) + dm

2
e}.

Theorem 5.3.1. For n ≥ 2, sdepth(I(P t
n)) ≥ d n

2t+1
e+ 1.

Proof. (a) If n ≤ 2t + 1, then as the minimal generators of I(P t
n) have degree

2, by [53, Lemma 2.1] it follows that sdepth(I(P t
n)) ≥ 2 = d n

2t+1
e+ 1.

(b) For n ≥ 2t + 2, if t = 1, then by [60, Theorem 2.3], sdepth(I(P 1
n)) ≥

n− bn−1
2
c = dn−1

2
e + 1 ≥ dn

3
e + 1. Now for t ≥ 2, by using induction on n
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and consider the decomposition of I(P t
n) as a vector space in the following

way:

I(P t
n) = I(P t

n) ∩Rn−t ⊕ an−t(I(P t
n) : an−t)S.

Similarly, one can decompose I(P t
n) ∩Rn−t as follows:

I(P t
n) ∩Rn−t = I(P t

n) ∩Rn−t+1 ⊕ an−t+1(I(P t
n) ∩Rn−t : an−t+1)Rn−t.

Continuing in the same way for 1 ≤ i ≤ t− 1, it follows that

I(P t
n) ∩Rn−t+i = I(P t

n) ∩Rn−t+(i+1)⊕

an−t+(i+1)(I(P t
n) ∩Rn−t+i : an−t+(i+1))Rn−t+i.

Finally, the following decomposition of I(P t
n) can be obtained.

I(P t
n) = I(P t

n) ∩Rn−1⊕

⊕t−1i=1 an−t+i(I(P t
n) ∩Rn−t+(i−1) : an−t+i)Rn−t+i ⊕ an−t(I(P t

n) : an−t)S.

Therefore

sdepth(I(P t
n)) ≥ min

{
sdepth(I(P t

n) ∩Rn−1), sdepth((I(P t
n) : an−t)S),

t−1
min
i=1
{sdepth((I(P t

n) ∩Rn−t+(i−1) : an−t+i)Rn−t+i)}
}
.

As I(P t
n) ∩ Rn−1 = G(I(P t

n−t−1))[an], thus the induction hypothesis and

Lemma 3.7.5 yield sdepth(I(P t
n) ∩ Rn−1) ≥ dn−t−12t+1

e + 1 + 1 ≥ d n
2t+1
e + 1.

Now, it needs to show that sdepth((I(P t
n) : an−t)S) ≥ d n

2t+1
e+ 1 and

sdepth((I(P t
n) ∩Rn−t+(i−1) : an−t+i)Rn−t+i) ≥ d

n

2t+ 1
e+ 1.

For this, consider the following cases:
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(1) Let 2t + 2 ≤ n ≤ 3t + 1. If n = 2t + 2, then (I(P t
n) : an−t)S =

(a2, . . . , an−t−1, an−t+1, . . . , an)S, thus by [7, Theorem 2.2] and Lemma

3.7.5, it follows that

sdepth((I(P t
n) : an−t)S) = dn− 2

2
e+ 2 ≥ d n

2t+ 1
e+ 1.

If 2t+ 3 ≤ n ≤ 3t+ 1, then by Remark 5.1.2, it results that

(I(P t
n) : an−t)S = (G(I(P

f(n−t)
n−2t−1)), Bn−t)[an−t].

Since sdepth(I(P
f(n−t)
n−2t−1)) + |G(Bn−t)| ≥ 2, by Remark 5.1.1, it follows

that

sdepth(Sn−2t−1/I(P
f(n−t)
n−2t−1)) + d|G(Bn−t)|

2
e ≥ 2,

then by Remark 5.3.1, sdepth(G(I(P
f(n−t)
n−2t−1)), Bn−t) ≥ 2, and by Lemma

3.7.5, sdepth((I(P t
n) : an−t)S) ≥ 3 = d n

2t+1
e+ 1. Now since

(I(P t
n) ∩Rn−t+(i−1) : an−t+i)Rn−t+i) =

(G(I(P
f(n−t+i)
n−2t−1+i)), B

′
n−t+i)[an−t+i].

So by the same arguments, it follows that

sdepth((I(P t
n) ∩Rn−t+(i−1) : an−t+i)Rn−t+i) ≥ 3 = d n

2t+ 1
e+ 1.

(2) If n ≥ 3t+ 2, then by the proof of Lemma 5.1.3, it follows that

(I(P t
n) : an−t)S = (G(I(P t

n−2t−1)), Bn−t)[an−t]

and

(I(P t
n) ∩Rn−t+(i−1) : an−t+i)Rn−t+i =

(G(I(P t
n−2t−1+i)), B

′
n−t+i)[an−t+i].
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By Remark 5.3.1, it follows that

sdepth(G(I(P t
n−2t−1)), Bn−t) ≥ min

{
sdepth(G(I(P t

n−2t−1)))+

|G(Bn−t)|, sdepth(Sn−2t−1/I(P t
n−2t−1)) + d|G(Bn−t)|

2
e
}
.

The induction hypothesis gives sdepth(G(I(P t
n−2t−1))) ≥ dn−2t−12t+1

e+1 =

d n
2t+1
e, and by Theorem 5.1.4, sdepth(Sn−2t−1/I(P t

n−2t−1)) = d n
2t+1
e−1.

Therefore sdepth(G(I(P t
n−2t−1)), Bn−t) ≥ d n

2t+1
e + 1. Thus by Lemma

3.7.5, sdepth((I(P t
n) : an−t)S) > d n

2t+1
e+ 1.

Now using Remark 5.3.1 again, the following inequality holds.

sdepth(G(I(P t
n−2t−1+i)), B

′
n−t+i) ≥

min
{

sdepth(G(I(P t
n−2t−1+i))) + |G(B′n−t+i)|,

sdepth(Sn−2t−1+i/I(P t
n−2t−1+i)) + d

|G(B′n−t+i)|
2

e
}
.

The induction hypothesis yield sdepth(G(I(P t
n−2t−1+i))) ≥ dn−2t−1+i2t+1

e+

1, and by Theorem 5.1.4, it follows that sdepth(Sn−2t−1+i/I(P t
n−2t−1+i)) =

dn−2t−1+i
2t+1

e. Therefore

sdepth(G(I(P t
n−2t−1+i)), B

′
n−t+i) ≥ d

n− 2t− 1 + i

2t+ 1
e+ 1.

Thus by Lemma 3.7.5

sdepth((I(P t
n) ∩Rn−t+(i−1) : an−t+i)Rn−t+i) ≥ d

n

2t+ 1
e+ 1.

This finishes the proof.

Proposition 5.3.1. Let n ≥ 2t+ 1, then sdepth(I(Ct
n)/I(P t

n)) ≥ dn+t+1
2t+1
e.

Proof. If t = 1, then by [16, Proposition 1.10], the required result holds. Now

assume that t ≥ 2 and consider the following cases:
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(1). If 2t+ 1 ≤ n ≤ 3t+ 1, then as I(Ct
n) is a monomial ideal generated by degree

2, by [36, Theorem 2.1], sdepth(I(Ct
n)/I(P t

n)) ≥ 2 = dn+t+1
2t+1
e.

(2). If 3t + 2 ≤ n ≤ 4t + 1, then by using the method given in [36], there

exist Stanley decompositions of desired Stanley depth. Let s ∈ {1, 2, . . . t}, js ∈

{1, 2, . . . , t+ 1− s} and

L := ⊕ts=1

(
⊕t+1−s
js=1 ajsan+1−sK[ajs , ajs+t+1, an+1−s]

)
.

It is easy to observe that L ⊂ I(Ct
n)\I(P t

n). Now let ui ∈ I(Ct
n)\I(P t

n) be a

squarefree monomial such that ui /∈ L then clearly deg(ui) ≥ 3. Since

I(Ct
n)/I(P t

n) ∼= L⊕ui uiK[ supp(ui)],

thus sdepth(I(Ct
n)/I(P t

n)) ≥ 3 = dn+t+1
2t+1
e as required.

(3). If n ≥ 4t+ 2, then consider the following K-vector space isomorphism:

I(Ct
n)/I(P

t
n)
∼=

⊕tj1=1 aj1an
K[aj1+t+1, aj1+t+2, . . . , an−t−1]

(aj1+t+1aj1+t+2, aj1+t+1aj1+t+3, . . . , an−t−2an−t−1)
[aj1 , an]⊕

⊕t−1j2=1 aj2an−1
K[aj2+t+1, aj2+t+2, . . . , an−t−2]

(aj2+t+1aj2+t+2, aj2+t+1aj1+t+3, . . . , an−t−3an−t−2)
[aj2 , an−1]⊕

·

·

·

⊕2
jt−1=1 ajt−1an−t+2

K[ajt−1+t+1, ajt−1+t+2, . . . , an−2t+1]

(ajt−1+t+1ajt−1+t+2, . . . , an−2tan−2t+1)
[ajt−1 , an−t+2]⊕

a1an−(t−1)
K[at+2, at+3, . . . , an−2t]

(at+2at+3, at+2at+4, . . . , an−2t−1an−2t)
[a1, an−(t−1)].

Thus

I(Ct
n)/I(P

t
n)
∼=

⊕ts=1

(
⊕t+1−s
js=1 ajsan+1−s

(
Sjs+t+1,n−s−t/

(
G(I(P t

n)) ∩ Sjs+t+1,n−s−t
)
[ajs , an+1−s]

)
,
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where Sjs+t+1,n−s−t = K[ajs+t+1, ajs+t+2, . . . , an−s−t]. Indeed, if u ∈ I(Ct
n) such that

u 6∈ I(P t
n) then (ajsan+1−s)|u for only one pair of s and js. If (ajsan+1−s)|u then

u = aγjsa
δ
n+1−sv and v ∈ Sjs+t+1,n−s−t. Since v /∈ I(P t

n), it follows that v /∈ G(I(P t
n)) ∩

Sjs+t+1,n−s−t. Clearly

Sjs+t+1,n−s−t/G(I(P
t
n)) ∩ Sjs+t+1,n−s−t ∼= Sn−(js+2t+s)/I(P

t
n−(js+2t+s)).

Thus by Theorem 5.1.4 and Lemma 3.7.5, it follows that

sdepth(I(Ct
n)/I(P

t
n)) ≥

t
min
s=1
{dn− (js + s+ 2t)

2t+ 1
e+ 2}.

It is noted that max{js + s} = t+ 1. Therefore

sdepth(I(Ct
n)/I(P

t
n)) ≥ d

n− (3t+ 1)

2t+ 1
e+ 2 = dn+ t+ 1

2t+ 1
e.

Theorem 5.3.2. Let n ≥ 3, then

sdepth(I(Ct
n)) ≥ 2, if n ≤ 2t+ 1;

sdepth(I(Ct
n)) ≥ d n− t

2t+ 1
e+ 1, if n ≥ 2t+ 2.

Proof. (a) If n ≤ 2t + 1, then as the minimal generators of I(Ct
n) have degree

2, by [53, Lemma 2.1], sdepth(I(Ct
n)) ≥ 2.

(b) If n ≥ 2t+ 2, then assume the short exact sequence as follows:

0 −→ I(P t
n) −→ I(Ct

n) −→ I(Ct
n)/I(P t

n) −→ 0,

by Lemma 3.7.4,

sdepth(I(Ct
n)) ≥ min{sdepth(I(P t

n)), sdepth(I(Ct
n)/I(P t

n))}.

By Theorem 5.3.1, sdepth(I(P t
n)) ≥ d n

2t+1
e+ 1, and by Proposition 5.3.1, it

follows that sdepth(I(Ct
n)/I(P t

n)) ≥ dn+t+1
2t+1
e = d n−t

2t+1
e+ 1.
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Corollary 5.3.1. Let n ≥ 3, if n ≤ 2t+ 1, then

sdepth(I(Ct
n)) ≥ 2 = sdepth(S/I(Ct

n)) + 1.

If n ≥ 2t+ 2, then

sdepth(I(Ct
n)) ≥ sdepth(S/I(Ct

n)), if n ≡ 1, . . . , t (mod(2t+ 1));

sdepth(I(Ct
n)) ≥ sdepth(S/I(Ct

n)) + 1, if n ≡ 0, t+ 1, . . . , 2t (mod(2t+ 1)).

Proof. Proof follows by Corollary 5.2.3, Theorem 5.2.2 and Theorem 5.3.2.

5.4 Conclusion

In this chapter, it is verified that d n
2t+1
e is the precise value of both Stanley depth

and depth for the quotient ring of the edge ideal related to the tth power of a path

on n vertices. For n ≡ 0, t+ 1, t+ 2, . . . , 2t(mod(2t+ 1)), it is proved that d n
2t+1
e

is the value of Stanley depth and depth for the quotient ring of the edge ideal

related to a square cycle on n vertices. In the remaining cases, tight bounds are

established. Furthermore, lower bounds for the Stanley depth of the edge ideals

associated with the tth power of a path and a cycle are given. These bounds

are good enough that a positive answer is given to the Conjecture 1.2.1 for these

ideals.
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Chapter 6

Depth and Stanley depth of edge

ideals associated to some line

graphs

In this chapter, bounds for the Stanley depth and depth of cyclic modules as-

sociated to line graphs of the ladder graph Ln and circular ladder graph CLn

are given. Also, some bounds for Krull dimension of these cyclic modules are

established.

6.1 Results and discussions

Here, the edge ideals of the line graphs of Ln and CLn are denoted by In and Jn

respectively. Also, the vertices of the line graphs of Ln and CLn are labeled by

using three sets of variables {a1, a2, . . . , an}, {b1, b2, . . . , bn} and {c1, c2, . . . , cn},

see Figures 2.5 and 2.6. Let Sn := K[a1, a2, . . . , an−1, b1, b2, . . . , bn, c1, c2, . . . , cn−1]

and Sn = Sn[an, cn] be the polynomials rings in these variables over the field K.

Then In and Jn are squarefree monomial ideals of Sn and Sn respectively. With
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the labeling as shown in Figures 2.5 and 2.6, the minimal generating sets for In

and Jn can be written as follows:

G(In) =
n−1⋃
i=1

{aibi, bici, aibi+1, bi+1ci}
⋃ n−2⋃

i=1

{aiai+1, cici+1},

G(Jn) = G(In)
⋃
{a1an, c1cn, an−1an, cn−1cn, b1an, b1cn, anbn, bncn}.

Lemma 6.1.1. If 2 ≤ n ≤ 4 then depth(Sn/In) = sdepth(Sn/In) = n− 1.

Proof. If n = 2, then G(I2) = {a1b1, b1c1, a1b2, b2c1}, which is a minimal gen-

erating set of the edge ideal of C4. Thus by Proposition 3.7.2 it follows that

depth(S2/I2) = 1. If n = 3, then G(I3) = G(I2)
⋃
{a2b2, b2c2, a2b3, b3c2, a1a2, c1c2}.

Consider the following short exact sequence

0 −→ S3/(I3 : b2)
·b2−→ S3/I3 −→ S3/(I3, b2) −→ 0. (6.1)

Here (I3 : b2) = (a1, a2, c1, c2), that gives S3/(I3 : b2) ∼= K[b1, b2, b3], thus

depth(S3/(I3 : b2)) = 3. Also (I3, b2) = (a1b1, b1c1, c1c2, c2b3, b3a2, a2a1, b2), that

implies S3/(I3, b2) ∼= K[a1, a2, b1, b3, c1, c2]/(a1b1, b1c1, c1c2, c2b3, b3a2, a2a1) ∼= K[a1, a2, b1, b3, c1, c2]/I(C6),

by Proposition 3.7.2, depth(S3/(I3, b2)) = 2. By applying Depth lemma on the

short exact sequence (6.1), it follows that depth(S3/I3) ≥ 2. For the upper

bound, since b3 6∈ I3, by Corollary 3.7.2, depth(S3/I3) ≤ depth(S3/(I3 : b3)).

As (I3 : b3) = (a2, c2, I2), thus S3/(I3 : b3) ∼= S2/I2[b3], by Lemma 3.7.5, it follows

that depth(S3/(I3 : b3)) ≤ depth(S2/I2)+1 = 1+1 = 2. Hence depth(S3/I3) = 2.

If n = 4, then G(I4) = G(I3)
⋃
{a3b3, b3c3, a3b4, b4c3, a2a3, c2c3}. Consider the fol-

lowing short exact sequence

0 −→ S4/(I4 : b3)
·b3−→ S4/I4 −→ S4/(I4, b3) −→ 0. (6.2)

Here (I4 : b3) = (I2, a2, c2, a3, c3), that gives S4/(I4 : b3) ∼= S2/I2[b3, b4], thus

Lemma 3.7.5 yields depth(S4/(I4 : b3)) = depth(S2/I2) + 2 = 1 + 2 = 3. Let
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T := (I4, b3) = (I2, a2b2, b2c2, a1a2, a2a3, c1c2, c2c3, a3b4, c3b4, b3). Again assume the

short exact sequence as follows:

0 −→ S4/(T : b2)
·b2−→ S4/T −→ S4/(T, b2) −→ 0. (6.3)

Here (T : b2) = (a1, a2, c1, c2, b3, a3b4, c3b4), that gives

S4/(T : b2) ∼= K[a3, b4, c3]/(a3b4, c3b4)[b1, b2],

by Lemmas 3.7.5 and 3.7.1, depth(S4/(T : b2)) = 1 + 2 = 3.

Also (T, b2) = (a1b1, b1c1, c1c2, c2c3, c3b4, b4a3, a3a2, a2a1, b2, b3), which implies that

S4/(T, b2) ∼= K[a1, a2, a3, c1, c2, c3, b1, b4]/(a1b1, b1c1, c1c2, c2c3, c3b4, b4a3, a3a2, a2a1)

∼= K[a1, a2, a3, c1, c2, c3, b1, b4]/I(C8)

thus Proposition 3.7.2 gives that depth(S4/(T, b2)) = 3. By applying [42, Lemma

3.1] on the exact sequences (6.2), and (6.3), it follows that depth(S4/I4) = 3.

For Stanley depth, if n = 2, then by Theorem 3.7.13, sdepth(S2/I2) ≤ 1. Also, by

using the method in [36], there exists Stanley decomposition of desired Stanley

depth as follows.

S2/I2 = K[a1]⊕ b1K[b1, b2]⊕ c1K[a1, c1]⊕ b2K[b2].

Thus sdepth(S2/I2) = 1. If n = 3, then by applying Lemmas 3.7.3, 3.7.2, and The-

orem 3.7.13 on the exact sequences (6.1), it follows that sdepth(S3/I3) ≥ 2. For

upper bound, since b3 6∈ I3, by Proposition 3.7.3, sdepth(S3/I3) ≤ sdepth(S3/(I3 :

b3)). As (I3 : b3) = (a2, c2, I2), thus S3/(I3 : b3) ∼= S2/I2[b3], by Lemma 3.7.5,

it follows that sdepth(S3/(I3 : b3)) ≤ sdepth(S2/I2) + 1 = 1 + 1 = 2. Hence

sdepth(S3/I3) = 2. If n = 4, by using Lemmas 3.7.3, 3.7.2, and Theorem 3.7.13

on the exact sequences (6.2) and (6.3), it follows that sdepth(S4/I4) ≥ 3. For
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upper bound, since b4 6∈ I4, by Proposition 3.7.3, it follows that sdepth(S4/I4) ≤

sdepth(S4/(I4 : b4)). As (I4 : b4) = (a3, c3, I3), thus S4/(I4 : b4) ∼= S3/I3[b4], by

Lemma 3.7.5, it follows that sdepth(S4/(I4 : b4)) ≤ sdepth(S3/I3)+1 = 2+1 = 3.

Hence sdepth(S4/I4) = 3. This completes the proof.

Let 1 ≤ k ≤ n−1 andAk := K[an−1, an−2, . . . , an−k], Ck := K[cn−1, cn−2, . . . , cn−k],

Dk := Ak ⊗K Ck and Dk := Dk ⊗K K[b1] be the subrings of Sn. Let B0 := (0),

Bj := (bn, bn−1, . . . , bn−j+1), for 1 ≤ j ≤ n, and for 3 ≤ j ≤ n − 2, Pj−1 :=

(an−j+1an−j+2, an−j+2an−j+3, . . . , an−2an−1) and Pj−1 = (cn−j+1cn−j+2, . . . , cn−2cn−1)

are the squarefree monomial ideals of Sn. In the following result, some bounds for

depth and Stanley depth of Sn/In are given.

Theorem 6.1.1. For n ≥ 2,

dn
2
e ≤ depth(Sn/In), sdepth(Sn/In) ≤ n− 1

.

Proof. If 2 ≤ n ≤ 4, then the result follows by Lemma 6.1.1. For n ≥ 5, first to

prove dn
2
e ≤ depth(Sn/In) ≤ n−1, the induction on n is used. For 0 ≤ j ≤ n−2,

assume the following family of short exact sequences

0 −→ Sn/((In, B0) : bn)
·bn−→ Sn/(In, B0) −→ Sn/(In, B1) −→ 0 (E1)

0 −→ Sn/((In, B1) : bn−1)
·bn−1−−−→ Sn/(In, B1) −→ Sn/(In, B2) −→ 0 (E2)

0 −→ Sn/((In, B2) : bn−2)
·bn−2−−−→ Sn/(In, B2) −→ Sn/(In, B3) −→ 0 (E3)

...

0 −→ Sn/((In, Bj) : bn−j)
·bn−j−−−→ Sn/(In, Bj) −→ Sn/(In, Bj+1) −→ 0 (Ej+1)

...

0 −→ Sn/((In, Bn−2) : b2)
·b2−→ Sn/(In, Bn−2) −→ Sn/(In, Bn−1) −→ 0 (En−1)
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(1) If j = 0, then (In : bn) = (In−1, an−1, cn−1), that gives Sn/(In : bn) ∼=

Sn−1/In−1[bn], the induction hypothesis and Lemma 3.7.5 give

depth(Sn/(In : bn)) ≥ dn− 1

2
e+ 1 = dn+ 1

2
e.

(2) If j = 1, then ((In, B1) : bn−1) = (In−2, an−1, an−2, cn−1, cn−2, B1), that fur-

ther implies that Sn/((In, B1) : bn−1) ∼= Sn−2/In−2[bn−1], applying induction

hypothesis and Lemma 3.7.5, it follows that depth(Sn/((In, B1) : bn−1)) ≥

dn−2
2
e+ 1 = dn

2
e.

(3) If j = 2, then ((In, B2) : bn−2) = (In−3, an−2, an−3, cn−2, cn−3, B2), that further

implies that Sn/((In, B2) : bn−2) ∼= Sn−3/In−3[an−1, bn−2, cn−1], the induc-

tion hypothesis and Lemma 3.7.5 give that depth(Sn/((In, B2) : bn−2)) ≥

dn−3
2
e+ 3 = dn+1

2
e+ 1.

(4) If 3 ≤ j ≤ n− 3, then

((In, Bj) : bn−j) =
(
In−(j+1), (an−j+1an−j+2, an−j+2an−j+3, . . . , an−2an−1),

and

(cn−j+1cn−j+2, cn−j+2cn−j+3, . . . , cn−2cn−1), an−j, an−(j+1), cn−j, cn−(j+1), Bj

)
,

that further implies

Sn/((In, Bj) : bn−j) ∼= (Sn−(j+1)/In−(j+1))⊗K(Aj−1/Pj−1)⊗K(Cj−1/Pj−1)⊗KK[bn−j].

By applying [79, Theorem 2.2.21], it follows that

depth(Sn/((In, Bj) : bn−j)) = depth(Sn−(j+1)/In−(j+1))+depth(Aj−1/Pj−1)

+ depth(Cj−1/Pj−1) + 1.

By Lemma 3.7.1, depth(Aj−1/Pj−1) = d j−1
3
e = depth(Cj−1/Pj−1) and by

induction on n, depth(Sn−(j+1)/In−(j+1)) ≥ dn−(j+1)
2
e. Thus the following

inequality holds.

depth(Sn/((In, Bj) : bn−j)) ≥ d
n− (j + 1)

2
e+ dj − 1

3
e+ dj − 1

3
e+ 1.
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(5) If j = n− 2, then

((In, Bn−2) : b2) =
(

(a3a4, a4a5, . . . , an−2an−1), an−j, an−(j+1), cn−j, cn−(j+1),

(c3c4, . . . , cn−2cn−1), Bj

)
, thus Sn/((In, Bn−2) : b2) ∼= (An−3/Pn−3)⊗K(Cn−3/Pn−3)⊗K

K[b1, b2], by [79, Theorem 2.2.21], it follows that

depth(Sn/((In, Bn−2) : b2)) = depth(An−3/Pn−3) + depth(Cn−3/Pn−3) + 2.

By Lemma 3.7.1, depth(An−3/Pn−3) = dn−3
3
e = depth(Cn−3/Pn−3). Thus

depth(Sn/((In, Bn−2) : b2)) = dn−3
3
e+ dn−3

3
e+ 2 as desired.

Also (In, Bn−1) = (an−1an−2, . . . , a2a1, a1b1, b1c1, c1c2, c2c3, . . . , cn−2cn−1, Bn−1), that

gives Sn/(In, Bn−1) ∼= Dn−1/I(P2n−1). Thus by Lemma 3.7.1, it follows that

depth(Sn/(In, Bn−1)) = d2n−1
3
e. By applying Depth Lemma on the above family

of short exact sequences, the required lower bound for depth is holds. Now with

the help of induction hypothesis on n, the inequality holds depth(Sn/In) ≤ n−1.

For n ≥ 5, as bn 6∈ In, by Corollary 3.7.2, it follows that depth(Sn/In) ≤

depth(Sn/(In : bn)). Since Sn/(In : bn) ∼= Sn−1/In−1[bn], the induction hypothesis

and Lemma 3.7.5 yield

depth(Sn/(In : bn)) ≤ n− 1− 1 + 1 = n− 1.

Now, it remains to show the result for Stanley depth. The required lower bound

can be obtained by applying Lemmas 3.7.3, 3.7.2, and [70, Theorem 3.1] instead

of Depth Lemma, Lemma 3.7.1, and [79, Theorem 2.2.21] respectively on above

family of short exact sequences. Finally, the inequality sdepth(Sn/In) ≤ n − 1

is proved by using induction on n. For n ≥ 5, as bn 6∈ In, from Proposition

3.7.3, sdepth(Sn/In) ≤ sdepth(Sn/(In : bn)). As Sn/(In : bn) ∼= Sn−1/In−1[bn], by

induction and Lemma 3.7.5, it follows that sdepth(Sn/(In : bn)) ≤ n−1−1+1 =

n− 1. This finishes the proof.
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Remark 6.1.1. Clearly diam(L(Ln)) = n, then by Theorems 3.7.14 it follows

that

depth(Sn/In), sdepth(Sn/In) ≥ dn+ 1

3
e.

Theorem 6.1.1 shows depth(Sn/In), sdepth(Sn/In) ≥ dn
2
e. Thus in Theorem 6.1.1,

there is a better lower bound for these classes of edge ideals.

In order to compute bounds for depth and Stanley depth of the cyclic module

Sn/Jn, consider two supergraphs Un and Vn of L(Ln). The vertex and edge sets

of Un are V (Un) = V (L(Ln)) ∪ {cn} and E(Un) = E(L(Ln)) ∪ {cn−1cn, bncn}

respectively. The vertex and edge sets of Vn are V (Vn) = V (Un) ∪ {cn+1} and

E(Vn) = E(Un) ∪ {c1cn+1, b1cn+1} respectively. For examples of Un and Vn, see

Figure 6.1. Denote the edge ideals of Un and Vn with I∗n and I∗∗n respectively.

The minimal generating sets of I∗n and I∗∗n are G(I∗n) = G(In)
⋃{

cn−1cn, bncn
}

and G(I∗∗n ) = G(I∗n)
⋃{

c1cn+1, b1cn+1

}
. The bounds for depth and Stanley depth

of the cyclic modules S∗n/I
∗
n and S∗∗n /I

∗∗
n are provided in the next results, where

S∗n = Sn[cn] and S∗∗n = Sn[cn, cn+1].
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Figure 6.1: From left to right, supergraphs U6 and V6 of L(L6) respectively.

Proposition 6.1.1. Let n ≥ 2. Then dn
2
e ≤ depth(S∗n/I

∗
n), sdepth(S∗n/I

∗
n) ≤ n.

Proof. If n = 2, then by using CoCoA, it follows that depth(S∗n/I
∗
n) = sdepth(S∗n/I

∗
n) =

2. For n ≥ 3, the inequality dn
2
e ≤ depth(S∗n/I

∗
n) is proved by using induction on

n. To do this, assume the following exact sequence

0 −→ S∗n/(I
∗
n : cn)

·cn−→ S∗n/I
∗
n −→ S∗n/(I

∗
n, cn) −→ 0. (6.4)
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Here (I∗n : cn) =

(
n−2⋃
i=1

{aibi, bici, aibi+1, bi+1ci}
⋃ n−3⋃

i=1

{aiai+1, cici+1}, an−1an−2, an−1bn−1, bn, cn−1),

that gives S∗n/(I
∗
n : cn) ∼= S∗n−1/I

∗
n−1[cn]. By using induction and Lemma 3.7.5,

the following inequality holds.

depth(S∗n/(I
∗
n : cn)) ≥ dn− 1

2
e+ 1 = dn+ 1

2
e.

As (I∗n, cn) = (
n−1⋃
i=1

{aibi, bici, aibi+1, bi+1ci}
⋃ n−2⋃

i=1

{aiai+1, cici+1}, cn) = (In, cn),

that gives S∗n/(I
∗
n, cn) ∼= Sn/In. By Theorem 6.1.1, it follows that depth(S∗n/(I

∗
n, cn))

≥ dn
2
e. Therefore by applying Depth Lemma on the sequence (7.3), it follows that

depth(S∗n/I
∗
n) ≥ dn

2
e. Now, the inequality depth(S∗n/I

∗
n) ≤ n is also proved by us-

ing induction on n. For n ≥ 3, as cn 6∈ I∗n, from Corollary 3.7.2, depth(S∗n/I
∗
n) ≤

depth(S∗n/(I
∗
n : cn)). Since S∗n/(I

∗
n : cn) ∼= S∗n−1/I

∗
n−1[cn], by induction and Lemma

3.7.5, depth(S∗n/I
∗
n) ≤ n − 1 + 1 = n. It remains to show the result for Stanley

depth. For n ≥ 3, by using induction hypothesis and Lemma 3.7.3 on the ex-

act sequence (7.3), the inequality sdepth(S∗n/I
∗
n) ≥ dn

2
e holds. For upper bound

of Stanley depth, one can repeat the proof for depth by using Proposition 3.7.3

instead of Corollary 3.7.2.

Proposition 6.1.2. If n ≥ 2, then

dn
2
e ≤ depth(S∗∗n /I

∗∗
n ), sdepth(S∗∗n /I

∗∗
n ) ≤ n+ 1.

Proof. If n = 2, then by using CoCoA, depth(S∗∗n /I
∗∗
n ) = sdepth(S∗∗n /I

∗∗
n ) = 2,

and for n = 3, depth(S∗∗n /I
∗∗
n ) = sdepth(S∗∗n /I

∗∗
n ) = 3. For n ≥ 4, to prove

depth(S∗∗n /I
∗∗
n ) ≥ dn

2
e, the induction on n is used. Assume the following short

exact sequence

0 −→ S∗∗n /(I
∗∗
n : cn)

·cn−→ S∗∗n /I
∗∗
n −→ S∗∗n /(I

∗∗
n , cn) −→ 0. (6.5)
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As (I∗∗n , cn) = (
n−1⋃
i=1

{aibi, bici, aibi+1, bi+1ci}
⋃ n−2⋃

i=1

{aiai+1, cici+1}, c1cn+1, b1cn+1, cn),

that gives S∗∗n /(I
∗∗
n , cn) ∼= S∗n/I

∗
n. Therefore by Proposition 6.1.1, it follows that

depth(S∗∗n /(I
∗∗
n , cn)) ≥ dn

2
e.

Let T = (I∗∗n : cn) = (
n−2⋃
i=1

{aibi, bici, aibi+1, bi+1ci}
⋃ n−3⋃

i=1

{aiai+1, cici+1}, an−1an−2, bn

, an−1bn−1, c1cn+1, b1cn+1, cn−1) = (I∗n−1, an−1an−2, an−1bn−1, bn, cn−1).

Now consider another short exact sequence as follows:

0 −→ S∗∗n /(T : an−1)
·an−1−−−→ S∗∗n /T −→ S∗∗n /(T, an−1) −→ 0, (6.6)

(T : an−1) = (
n−3⋃
i=1

{aibi, bici, aibi+1, bi+1ci}
⋃ n−4⋃

i=1

{aiai+1, cici+1}, bn−2cn−2, cn−2cn−3,

bn−1, c1cn+1, b1cn+1, bn, cn−1, an−2) = (I∗∗n−2, bn, cn−1, an−2, bn−1),

that gives S∗∗n /(T : an−1) ∼= S∗∗n−2/I
∗∗
n−2[an−1, cn]. Thus induction on n and Lemma

3.7.5 give that depth(S∗∗n /(T : an−1)) ≥ dn−22 e + 2 = dn
2
e + 1. As (T, an−1) =

(I∗n−1, an−1, bn, cn−1), which implies S∗∗n /(T, an−1)
∼= S∗n−1/I

∗
n−1. By Proposition

6.1.1 and Lemma 3.7.5, depth(S∗∗n /(T, an−1)) ≥ dn−12 e + 1 = dn+1
2
e. Therefore

by applying Depth Lemma on the exact sequences (7.5) and (7.6), it follows

that depth(S∗∗n /I
∗∗
n ) ≥ dn

2
e. Now to prove depth(S∗∗n /I

∗∗
n ) ≤ n + 1, the induction

hypothesis is used. For n ≥ 4, as an−1cn 6∈ I∗∗n , from Corollary 3.7.2, it implies

that

depth(S∗∗n /I
∗∗
n ) ≤ depth(S∗∗n /(I

∗∗
n : an−1cn)).

Since S∗∗n /(I
∗∗
n : an−1cn) ∼= S∗∗n−2/I

∗∗
n−2[an−1, cn], by using induction hypothesis and

Lemma 3.7.5, depth(S∗∗n /I
∗∗
n ) ≤ n−2+1+2 = n+1. It remains to prove the result

for Stanley depth. For n ≥ 4, by using induction on n, and by applying Lemma

78



3.7.3 on the exact sequences (7.5) and (7.6), the inequality sdepth(S∗∗n /I
∗∗
n ) ≥ dn

2
e

holds. Similarly, one can obtain the required upper bound for Stanley depth by

using Proposition 3.7.3 instead of Corollary 3.7.2.

Theorem 6.1.2. Let n ≥ 3. Then dn
2
e ≤ depth(Sn/Jn) ≤ n − 1, and dn

2
e ≤

sdepth(Sn/Jn) ≤ n.

Proof. For 3 ≤ n ≤ 4, by using CoCoA, (for Stanley depth, SdepthLib:coc [71]

is used), depth(S3/J3) = sdepth(S3/J3) = 2, depth(S4/J4) = sdepth(S4/J4) = 3.

Now to show that depth(Sn/Jn) ≥ dn
2
e for n ≥ 5.Assume the short exact sequence

as follows:

0 −→ Sn/(Jn : an)
·an−→ Sn/Jn −→ Sn/(Jn, an) −→ Sn/(Jn, an) −→ 0. (6.7)

Let U = (Jn, an) = (
n−1⋃
i=1

{aibi, bici, aibi+1, bi+1ci}
⋃ n−2⋃

i=1

{aiai+1, cici+1}, c1cn, cn−1cn,

b1cn, bncn, an).

Now assume another short exact sequence

0 −→ Sn/(U : cn)
·cn−→ Sn/U −→ Sn/(U, cn) −→ 0. (6.8)

As (U, cn) = (
n−1⋃
i=1

{aibi, bici, aibi+1, bi+1ci}
⋃ n−2⋃

i=1

{aiai+1, cici+1}, cn, an),

that implies Sn/(U, cn) ∼= Sn/In. Thus Theorem 6.1.1 gives that depth(Sn/(U, cn)) ≥

dn
2
e.

Also (U : cn) = (
n−2⋃
i=2

{aibi, bici, aibi+1, bi+1ci}
⋃ n−3⋃

i=2

{aiai+1, cici+1}, a1a2, a1b2,

an−1an−2, an, an−1bn−1, b1, bn, c1, cn−1) = (I∗∗n−2, an, b1, bn, c1, cn−1),
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that gives Sn/(U : cn) ∼= S∗∗n−2/I
∗∗
n−2[cn]. Thus by Proposition 6.1.2 and Lemma

3.7.5 the following inequality holds.

depth(Sn/(U : cn)) ≥ dn− 2

2
e+ 1 = dn

2
e.

Let V = (Jn : an) = (
n−2⋃
i=2

{aibi, bici, aibi+1, bi+1ci}
⋃ n−3⋃

i=2

{aiai+1, cici+1}, c1b2, c1c2,

cn−1cn−2, cn−1bn−1, c1cn, cncn−1, a1, an−1, b1, bn).

Now assume the short exact sequence as follows:

0 −→ Sn/(V : cn)
·cn−→ Sn/V −→ Sn/(V, cn) −→ 0, (6.9)

(V : cn) = (
n−2⋃
i=2

{aibi, bici, aibi+1, bi+1ci}
⋃ n−3⋃

i=2

{aiai+1, cici+1}, c1, cn−1, a1, b1, bn, an−1)

= (In−2, c1, cn−1, a1, b1, bn, an−1),

that gives Sn/(V : cn) ∼= Sn−2/In−2[an, cn]. Thus by Theorem 6.1.1 and Lemma

3.7.5, it follows that

depth(Sn/(V : cn)) ≥ dn− 2

2
e+ 2 = dn

2
e+ 1.

As (V, cn) = (
n−2⋃
i=2

{aibi, bici, aibi+1, bi+1ci}
⋃ n−3⋃

i=2

{aiai+1, cici+1}, c1b2, c1c2, cn−1cn−2,

cn−1bn−1, a1, an−1, b1, bn, cn),

that gives Sn/(V, cn) ∼= S∗∗n−2/I
∗∗
n−2. By Proposition 6.1.2 and Lemma 3.7.5,

depth(Sn/(V, cn)) ≥ dn−2
2
e + 1 = dn

2
e. Therefore by applying Depth Lemma

on the exact sequences (6.7), (6.8) and (6.9), it follows that depth(Sn/Jn) ≥ dn
2
e.

Now to prove depth(Sn/Jn) ≤ n − 1. For n ≥ 5, as ancn 6∈ Jn, from Corol-

lary 3.7.2, it follows that depth(Sn/Jn) ≤ depth(Sn/(Jn : ancn)). Since Sn/(Jn :
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ancn) ∼= Sn−2/In−2[an, cn], by Theorem 6.1.1 and Lemma 3.7.5, it follows that

depth(Sn/Jn) ≤ n− 2− 1 + 2 = n− 1.

It remains to show the result for Stanley depth. For n ≥ 5, by applying Lemma

3.7.3 on the exact sequences (6.7), (6.8) and (6.9), it follows that

sdepth(Sn/Jn) ≥ dn
2
e. Similarly, one can obtain the required upper bound for

Stanley depth by using Proposition 3.7.3 instead of Corollary 3.7.2.

Remark 6.1.2. It is clear that diam(L(CLn)) = dn+1
2
e, then by Theorems 3.7.14,

depth(Sn/Jn), sdepth(Sn/Jn) ≥ dn+2
6
e. Theorem 6.1.2 shows that depth(Sn/Jn), sdepth(Sn/Jn) ≥

dn
2
e. Thus in Theorem 6.1.2, there is a better lower bound for these classes of

edge ideals.

Proposition 6.1.3. If n ≥ 2, then dim(Sn/In) ≥ n.

Proof. Let E = {a1, a2, . . . , an−1, c1, c2, . . . , cn−1} be a subset of vertex set V (L(Ln)).

The set E is a vertex cover because it covers all the edges. Now by remov-

ing ai for some 1 ≤ i ≤ n − 1 from set E then the resulting set is not a

vertex cover because the edges aibi and aibi+1 are not covered. Similarly, by

removing ci for some 1 ≤ i ≤ n − 1 from set E then the resulting set is

not a vertex cover because the edges cibi and cibi+1 are not covered. This

shows that the set E forms a minimal vertex cover of In. Thus it follows that

ht(In) ≤ 2n−2. Since Sn is a polynomial ring of dimension 3n−2, which implies

that dim(Sn/In) ≥ 3n− 2− (2n− 2) = n.

Proposition 6.1.4. Let n ≥ 3. Then dim(Sn/Jn) ≥ n.

Proof. As in the Proposition 6.1.3, one can show in a similar way that the set

F = {a1, a2, . . . , an, c1, c2, . . . , cn} forms a minimal vertex cover of Jn, therefore

ht(Jn) ≤ 2n. As Sn is a polynomial ring of dimension 3n, thus dim(Sn/Jn) ≥

n.
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Remark 6.1.3. By Theorem 6.1.1 and 6.1.2, depth(Sn/In), depth(Sn/Jn)

≤ n−1, and by Proposition 6.1.3 and 6.1.4, it follows that dim(Sn/In), dim(Sn/Jn) ≥

n. Thus graphs L(Ln) and L(CLn) are not Cohen-Macaulay.

6.2 Conclusion

In this chapter, some upper and lower bounds are established for Stanley depth

and depth of edge ideals associated to line graphs of the ladder L(Ln) and circular

ladder graphs L(CLn). Furthermore, some bounds are given for the dimension of

the quotient rings of the edge ideals related to these graphs. These bounds are

good enough that one can concluded that the graphs L(Ln) and L(CLn) are not

Cohen-Macaulay.

82



Chapter 7

Depth and Stanley depth of the

edge ideals of the strong product

of some graphs

In this chapter, some results are provided that are related to Stanley depth and

depth of the edge ideals and quotient ring of the edge ideals associated to classes

of graphs H := {Pn�Pm : n,m ≥ 1} and K := {Cn�Pm : n ≥ 3,m ≥ 1}. In first

section, Stanley depth and depth of the quotient ring of edge ideals associated

to some sub-classes of H and K are presented. In section 2 of this chapter, the

Conjecture 1.2.1 for the edge ideals related to some subclasses of H and K is

proved. In the last section, sharp upper bounds are given for Stanley depth and

depth of the quotient ring of the edge ideals associated to H and K. Let P1

denotes the null graph on one vertex that is V (P1) := {x1} and E(P1) := ∅. Let

Pn,m := Pn � Pm ∼= Pm � Pn, if m = n = 1, then P1,1
∼= P1, this trivial case is

excluded. For n ≥ 3 and m ≥ 1, Cn,m := Cn � Pm ∼= Pm � Cn.

Remark 7.0.1. |V (Pn,m)| = nm, |V (Cn,m)| = nm, |E(Pn,m)| = (m− 1) + 4(n−

1)(m− 1) + (n− 1), and |E(Cn,m)| = 3(m− 1) + 1 + |E(Pn,m)|.
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Since both graphs Pn,m and Cn,m are on nm vertices, for the sake of conve-

nience, the vertices of Pn,m and Cn,m are classified by using m sets of variables

{x1j, x2j, . . . , xnj} where 1 ≤ j ≤ m. Let Sn,m := K[∪mj=1{x1j, x2j, . . . , xnj}].

Remark 7.0.2. 1. For m,n ∈ Z+ such that m and n are not equal to 1

simultaneously, G(I(Pn,m)) is given as:

G(I(Pn,m)) = ∪n−1i=1

{
∪m−1j=1 {xijxi(j+1), xijx(i+1)(j+1), xijx(i+1)j , x(i+1)jxi(j+1),

xnjxn(j+1)}, ximx(i+1)m

}
.

2. For n ≥ 3, m ≥ 1, G(I(Cn,m)) is as follows:

G(I(Cn,m)) = G(I(Pn,m)) ∪
{
∪m−1j=1 {x1jxn(j+1), x1jxnj , x1(j+1)xnj}, x1mxnm

}
.

3. Pn,1 ∼= Pn and Cn,1 ∼= Cn.

4. For n,m ≥ 1, Pn,m ∼= Pm,n, so without loss of generality the strong prod-

uct of two paths can be represented as Pn,m with m ≤ n. Thus in some

proofs by induction on n, whenever the case is reduced where Pn′,m with

n′ < m, in that case after a suitable relabeling of vertices, Pn′,m ∼= Pm,n′ .

Therefore, one can simply replace I(Pn′,m) by I(Pm,n′) and Sn′,m/I(Pn′,m)

by Sm,n′/I(Pm,n′).

7.1 Results of cyclic modules associated to Pn,m

and Cn,m when 1 ≤ m ≤ 3

Here, the results related to depth and Stanley depth of the cyclic modules Sn,m/I(Pn,m)

and Sn,m/I(Cn,m) are presented, when m = 1, 2, 3. Let n ≥ 2 and 1 ≤ i ≤ n,

for convenience, set xi := xi1, yi := xi2 and zi := xi3, see Figures 2.7 and

2.8. Let Sn,1 := K[x1, x2, . . . , xn], Sn,2 := K[x1, x2, . . . xn, y1, y2, . . . , yn] and
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Sn,3 := K[x1, x2, . . . xn, y1,

y2, . . . , yn, z1, z2, . . . , zn]. Clearly Pn,1 ∼= Pn and Cn,1 ∼= Cn, the minimal generat-

ing sets for the edge ideals of Pn,2, Pn,3, Cn,2 and Cn,3 are given as:

G(I(Pn,2)) = ∪n−1i=1 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1} ∪ {xnyn},

G(I(Pn,3)) = ∪n−1i=1 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1}

∪{xnyn, ynzn},

G(I(Cn,2)) = G(I(Pn,2)) ∪
{
x1yn, x1xn, y1xn, y1yn

}
and

G(I(Cn,3)) = G(I(Pn,3)) ∪
{
x1yn, x1xn, y1xn, y1yn, y1zn, z1yn, z1zn}.

Remark 7.1.1. Note that for n ≥ 2, Sn,1/I(Pn,1) ∼= S/I(Pn), thus by [57, Lemma

2.8] and [76, Lemma 4], it follows that depth(Sn,1/I(Pn,1)) = sdepth(Sn,1/I(Pn,1)) =

dn
3
e. If n ≥ 3, then Sn,1/I(Cn,1) ∼= S/I(Cn), and by [16, Propositions 1.3 and 1.8],

it results that depth(Sn,1/I(Cn,1)) = dn−1
3
e ≤ sdepth(Sn,1/I(Cn,1)) ≤ dn3 e.

Lemma 7.1.1. Let n ≥ 1. Then

depth(Sn,2/I(Pn,2)) = sdepth(Sn,2/I(Pn,2)) = dn
3
e.

Proof. If n = 1, then by Remark 7.1.1, the required result holds. Let n ≥ 2,

to prove the result for depth. As diam(Pn,2) = n − 1, thus by Theorem 3.7.14,

depth(Sn,2/I(Pn,2)) ≥ dn3 e. If n = 2 or n = 3, then the reverse inequality is

trivially holds. For n ≥ 4, to show the inequality, the induction on n is used.

Since yn−1 6∈ I(Pn,2), thus by Corollary 3.7.2, it follows that

depth(Sn,2/I(Pn,2)) ≤ depth(Sn,2/(I(Pn,2) : yn−1)).

As Sn,2/(I(Pn,2) : yn−1) ∼= Sn−3,2/I(Pn−3,2)[yn−1], therefore by induction and

Lemma 3.7.5, it follows that depth(Sn,2/(I(Pn,2) : yn−1)) ≤ dn−33 e + 1 = dn
3
e.
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The proof of Stanley depth is similar by using Theorem 3.7.14 and Proposition

3.7.3.

Lemma 7.1.2. Let n ≥ 1. Then

depth(Sn,3/I(Pn,3)) = sdepth(Sn,3/I(Pn,3)) = dn
3
e.

Proof. If n = 1, then the result follows by Remark 7.1.1. If n = 2, then

S2,3/I(P2,3) ∼= S3,2/I(P3,2) so the result holds by Lemma 7.1.1. For n ≥ 3, first,

it proves that the result holds for depth. As diam(Pn,3) = n − 1, then by The-

orem 3.7.14, depth(Sn,3/I(Pn,3)) ≥ dn3 e. Now, for n = 3, the reverse inequality

depth(Sn,3/I(Pn,3)) ≤ dn3 e is trivially holds. If n = 3, then the required inequal-

ity is trivial. For n ≥ 4, the inequality is proved by using induction on n. As

y2 6∈ I(Pn,3), thus by Corollary 3.7.2, it follows that

depth(Sn,3/I(Pn,3)) ≤ depth(Sn,3/(I(Pn,3) : y2)).

Since Sn,3/(I(Pn,3) : y2) ∼= Sn−3,3/I(Pn−3,3)[y2]. Therefore the induction hypoth-

esis and Lemma 3.7.5 give that depth(Sn,3/(I(Pn,3) : y2)) ≤ dn−33 e + 1 = dn
3
e. It

remains to be shown that sdepth(Sn,3/I(Pn,3)) = dn
3
e. For this, it is similar by

using Theorem 3.7.14 and Proposition 3.7.3.

Theorem 7.1.1. Let n ≥ 3. Then

sdepth(Sn,2/I(Cn,2)) ≥ depth(Sn,2/I(Cn,2)) = dn− 1

3
e.

Proof. It is proved first that depth(Sn,2/I(Cn,2)) = dn−1
3
e. For n = 3, or n = 4,

the result is trivial. Let n ≥ 5, assume the short exact sequence as follows:

0 −→ Sn,2/(I(Cn,2) : xn)
·xn−−→ Sn,2/I(Cn,2) −→ Sn,2/(I(Cn,2), xn) −→ 0, (7.1)

by Depth Lemma

depth(Sn,2/I(Cn,2)) ≥ min{depth(Sn,2/(I(Cn,2) : xn)), depth(Sn,2/(I(Cn,2), xn))}.
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Here

(I(Cn,2) : xn) =
(
∪n−3i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−2yn−2, x1, y1, xn−1,

yn−1, yn
)
.

After renumbering the variables, Sn,2/(I(Cn,2) : xn) ∼= Sn−3,2/I(Pn−3,2)[xn]. Thus

by Lemmas 7.1.1 and 3.7.5, it follows that depth(Sn,2/(I(Cn,2) : xn)) = dn−3
3
e+1 =

dn
3
e. Let

J = (I(Cn,2), xn) =
(
∪n−2i=1 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−1yn−1, xn, xn−1yn,

yn−1yn, y1yn, x1yn
)

= (I(Pn−1,2), xn, xn−1yn, yn−1yn, y1yn, x1yn).

Assume the following exact sequence:

0 −→ Sn,2/(J : yn)
·yn−→ Sn,2/J −→ Sn,2/(J, yn) −→ 0, (7.2)

by Depth Lemma

depth(Sn,2/J) ≥ min{depth(Sn,2/(J : yn)), depth(Sn,2/(J, yn))}.

As (J, yn) = (I(Pn−1,2), xn, yn) and Sn,2/(J, yn) ∼= Sn−1,2/I(Pn−1,2). Therefore by

Lemma 7.1.1, it follows that depth(Sn,2/(J, yn)) = dn−1
3
e. Also

(J : yn) =
(
∪n−3i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−2yn−2, x1, y1, yn−1, xn, xn−1

)
.

After renumbering the variables, Sn,2/(J : yn) ∼= Sn−3,2/I(Pn−3,2)[yn]. Therefore

by Lemmas 7.1.1 and 3.7.5, it follows that depth(Sn,2/(I(Cn,2) : yn)) = dn−3
3
e+1 =

dn
3
e. If n ≡ 2(mod 3) or n ≡ 0(mod 3) then dn−1

3
e = dn

3
e. By applying Depth

Lemma on exact sequences (7.1) and (7.2), it results that depth(Sn,2/I(Cn,2)) =

dn−1
3
e as required. Now for n ≡ 1(mod 3), assume that n ≥ 7, then consider the
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following Sn,2-module isomorphism:

(I(Cn,2) : xn)/I(Cn,2) ∼= x1
K[x3, . . . , xn−1, y3, . . . , , yn−1]

(
⋃n−2
i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−1yn−1

) [x1]
⊕ y1

K[x3, . . . , xn−1, y3, . . . , , yn−1]

(
⋃n−2
i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−1yn−1

) [y1]
⊕ yn

K[x2, . . . , xn−2, y2, . . . , , yn−2]

(
⋃n−3
i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−2yn−2

) [yn]
⊕ xn−1

K[x2, . . . , xn−3, y2, . . . , yn−3]

(
⋃n−4
i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−3yn−3

) [xn−1]
⊕ yn−1

K[x2, . . . , xn−3, y2, . . . , yn−3]

(
⋃n−4
i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1}, xn−3yn−3

) [yn−1].
It is easy to see that the first three summands are isomorphic to Sn−3,2/I(Pn−3,2)[xn]

and last two summands are isomorphic to Sn−4,2/I(Pn−4,2)[xn]. Thus by Lemmas

7.1.1 and 3.7.5, it follows that

depth(I(Cn,2) : xn)/I(Cn,2)) = min{dn− 3

3
e+ 1, dn− 4

3
e+ 1} = dn− 1

3
e.

Applying Depth Lemma on the next sequence, the required result holds.

0 −→ (I(Cn,2) : xn)/I(Cn,2)
·xn−−→ Sn,2/I(Cn,2) −→ Sn,2/(I(Cn,2) : xn) −→ 0.

For Stanley depth, the required result follows by applying Lemma 3.7.4 on the

exact sequences (7.1) and (7.2).

Corollary 7.1.1. Let n ≥ 3. Then dn−1
3
e ≤ sdepth(Sn,2/I(Cn,2)) ≤ dn3 e.

Proof. As I(C3,2) is a squarefree Veronese ideal, so by using [15, Theorem 1.1],

sdepth(Sn,2/I(Cn,2)) = 1. If n ≥ 4, then by Proposition 3.7.3, it follows that

sdepth(Sn,2/I(Cn,2)) ≤ sdepth(Sn,2/(I(Cn,2) : xn)). Since Sn,2/(I(Cn,2) : xn) ∼=

Sn−3,2/I(Pn−3,2)[xn].Using Lemmas 7.1.1 and 3.7.5, it follows that sdepth(Sn,2/(I(Cn,2) :

xn)) = dn−3
3
e+ 1 = dn

3
e.

For n ≥ 2, define a supergraph of Pn,3 denoted by P∗n,3 with the set of vertices

V (P∗n,3) := V (Pn,3) ∪ {zn+1} and edge set E(P∗n,3) := E(Pn,3) ∪ {znzn+1, ynzn+1}.
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Also, define a supergraph of P∗n,3 represented by P∗∗n,3 with the set of vertices

V (P∗∗n,3) := V (P∗n,3) ∪ {zn+2} and edge set E(P∗∗n,3) := E(P∗n,3) ∪ {z1zn+2, y1zn+2}.

For examples of P∗n,m and P∗∗n,m see Fig. 7.1. Let S∗n,3 := Sn,3[zn+1] and S∗∗n,3 :=

Sn,3[zn+1, zn+2], then in the following lemmas, the results related to the depth and

Stanley depth are presented.

x1 x2 x3 x4 x5

z1 z2 z3 z4 z5

y1 y4y2 y3 y5

z6

x1 x2 x3 x4 x5

z1 z2 z3
z4 z5

y1 y4y2 y3 y5

z6
z7

Figure 7.1: From left to right; P∗5,3 and P∗∗5,3.

Lemma 7.1.3. Let n ≥ 2. Then

depth(S∗n,3/I(P∗n,3)) = sdepth(S∗n,3/I(P∗n,3)) = dn+ 1

3
e.

Proof. To prove the result for depth, as diam(P∗n,3) = n, then by Theorem 3.7.14,

depth(S∗n,3/I(P∗n,3)) ≥ dn+1
3
e. For the reverse inequality, if n = 2, then the re-

sult is trivial. For n ≥ 3, as yn /∈ I(P∗n,3), so by Corollary 3.7.2, it follows

that depth(S∗n,3/I(P∗n,3)) ≤ depth(S∗n,3/(I(P∗n,3) : yn)). Since S∗n,3/(I(P∗n,3) : yn) ∼=

(Sn−2,3/I(Pn−2,3))[yn], by Lemmas 7.1.2 and 3.7.5, it follows that depth(S∗n,3/(I(P∗n,3) :

yn)) = dn−2
3
e+1 = dn+1

3
e. Thus depth(S∗n,3/I(P∗n,3)) ≤ dn+1

3
e. The proof for Stan-

ley depth is similar by using Proposition 3.7.3 and Theorem 3.7.14.

Lemma 7.1.4. Let n ≥ 2. Then

depth(S∗∗n,3/I(P∗∗n,3)) = sdepth(S∗∗n,3/I(P∗∗n,3)) = dn+ 2

3
e.

Proof. Clearly diam(P∗∗n,3) = n+1, then by Theorem 3.7.14, depth(S∗∗n,3/I(P∗∗n,3)) ≥

dn+2
3
e. The reverse inequality is true when n = 2 or n = 3. For n ≥ 4, as

yn /∈ I(P∗∗n,3) so by Corollary 3.7.2, depth(S∗∗n,3/I(P∗∗n,3)) ≤ depth(S∗∗n,3/(I(P∗∗n,3) :

yn)). Since S∗∗n,3/(I(P∗∗n,3) : yn) ∼= (S∗n−2,3/I(P∗n−2,3))[yn], by Lemmas 7.1.3 and
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3.7.5, it follows that depth(S∗n,3/I(P∗n,3) : yn) = dn−2+1
3
e + 1 = dn+2

3
e. Thus

depth(S∗∗n,3/I(P∗∗n,3)) ≤ dn+2
3
e. Similarly, one can show the result for Stanley depth

by using Proposition 3.7.3 and Theorem 3.7.14.

Theorem 7.1.2. Let n ≥ 3 and n ≡ 0, 2 (mod 3). Then

depth(Sn,3/I(Cn,3)) = sdepth(Sn,3/I(Cn,3)) = dn− 1

3
e,

and if n ≡ 1 (mod 3), then dn−1
3
e ≤ depth(Sn,3/I(Cn,3)), sdepth(Sn,3/I(Cn,3)) ≤

dn
3
e.

Proof. To show the result for depth, for n = 3 or n = 4, the result is clear. For

n ≥ 5, assume the short exact sequence as follows:

0 −→ Sn,3/(I(Cn,3) : xn)
·xn−−→ Sn,3/I(Cn,3) −→ Sn,3/(I(Cn,3), xn) −→ 0, (7.3)

Let A := (I(Cn,3) : xn) =
(
∪n−3i=2 {xiyi, xixi+1, xiyi+1, xi+1yi, yiyi+1, yizi, yizi+1,

yi+1zi, zizi+1}, xn−2yn−2, yn−2zn−2, x1, xn−1, y1, yn−1, yn, znzn−1, zn−1zn−2, yn−2zn−1,

znz1, z1z2, y2z1
)
,

and consider the following exact sequence

0 −→ Sn,3/(A : zn)
·zn−→ Sn,3/A −→ Sn,3/(A, zn) −→ 0, (7.4)

Here

(A, zn) =
(
∪n−3i=2 {xiyi, xixi+1, xiyi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1},

xn−2yn−2, yn−2zn−2, x1, xn−1, y1, yn−1, yn, zn, zn−1zn−2, yn−2zn−1, z1z2, y2z1
)
.

After renumbering the variables, Sn,3/(A, zn) ∼= (S∗∗n−3,3/I(P∗∗n−3,3))[xn]. Thus by

Lemmas 7.1.4 and 3.7.5, it follows that depth(Sn,3/(A, zn)) = dn−3+2
3
e + 1 =
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dn−1
3
e+ 1. Also

(A : zn) =
(
∪n−3i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1},

xn−2yn−2, yn−2zn−2, x1, xn−1, z1, zn−1, y1, yn−1, yn
)
.

After renumbering the variables, Sn,3/(A : zn) ∼= (Sn−3,3/I(Pn−3,3))[xn, zn]. Thus

by Lemmas 7.1.2 and 3.7.5, it follows that depth(Sn,3/(A : zn)) = dn−3
3
e + 2 =

dn
3
e+ 1. Now let

A := (I(Cn,3), xn) =
(
∪n−2i=1 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi,

zizi+1}, xn−1yn−1, yn−1zn−1, xn, xn−1yn, yn−1yn, ynzn−1, yn−1zn, zn−1zn, ynzn, y1yn,

x1yn, y1zn, ynz1, z1zn
)

= (I(Pn−1,3), xn, xn−1yn, yn−1yn, ynzn−1, yn−1zn, zn−1zn, ynzn,

y1yn, x1yn, y1zn, ynz1, z1zn),

and the following exact sequence

0 −→ Sn,3/(A : yn)
·yn−→ Sn,3/A −→ Sn,3/(A, yn) −→ 0, (7.5)

As (A : yn) =
(
∪n−3i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1},

xn−2yn−2, yn−2zn−2, xn, x1, y1, z1, xn−1, yn−1, zn−1, zn
)
.

After renumbering the variables, Sn,3/(A : yn) ∼= Sn−3,3/I(Pn−3,3)[yn]. Therefore

by Lemmas 7.1.2 and 3.7.5, it follows that depth(Sn,3/(A : yn)) = dn−3
3
e+1 = dn

3
e.

Now let

Â := (A, yn) = (I(Pn−1,3), xn, yn, yn−1zn, zn−1zn, y1zn, z1zn),

and the following short exact sequence

0 −→ Sn,3/(Â : zn)
·zn−→ Sn,3/Â −→ Sn,3/(Â, zn) −→ 0, (7.6)

91



thus Sn,3/(Â, zn) ∼= Sn−1,3/I(Pn−1,3). Therefore by Lemma 7.1.2, it results that

depth(Sn,3/(Â, zn)) = dn− 1

3
e.

Also

(Â : zn) =
(
∪n−3i=2 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1},

xn−2yn−2, yn−2zn−2, z1, y1, zn−1, yn−1, yn, xn, xn−1xn−2, xn−1yn−2, x1x2, x1y2
)
.

After renumbering the variables, Sn,3/(Â : zn) ∼= (S∗∗n−3,3/I(P∗∗n−3,3))[zn]. Thus by

Lemmas 7.1.4 and 3.7.5, it follows that depth(Sn,3/(Â : zn)) = dn−3+2
3
e + 1 =

dn−1
3
e + 1. By applying Depth Lemma on the exact sequences (7.3), (7.4), (7.5)

and (7.6) it follows that depth(Sn,3/I(Cn,3)) ≥ dn−13 e. For upper bound, by Corol-

lary 3.7.2, depth(Sn,3/I(Cn,3)) ≤ depth(Sn,3/(I(Cn,3) : yn)). Since (Sn,3/(I(Cn,3) :

yn)) ∼= (Sn−3,3/(I(Pn−3,3))[yn], then Lemmas 7.1.2 and 3.7.5 give that depth(Sn,3/I(Cn,3)) ≤

dn
3
e, if n ≡ 2(mod 3) or n ≡ 0(mod 3) then dn−1

3
e = dn

3
e. If n ≡ 1(mod 3), then

dn−1
3
e ≤ depth(Sn,3/I(Cn,3)) ≤ dn3 e. The proof for Stanley depth is similar by

using Lemma 3.7.4 and Proposition 3.7.3.

Example 7.1.1. One can expect that depth(Sn,3/I(Cn,3)) = dn−1
3
e as in [16,

Proposition 1.3] and Theorem 7.1.1. But examples show that in the essential case

for n ≡ 1(mod 3), the upper bound in Theorem 7.1.2 is reached. For instance, if

n = 4, then depth(S4,3/I(C4,3)) = 2 = d4
3
e.

7.2 Lower bounds for Stanley depth of I(Pn,m)

and I(Cn,m) when 1 ≤ m ≤ 3

In this section, some lower bounds are given for Stanley depth of I(Pn,m) and

I(Cn,m), when m ≤ 3. These bounds together with the results of previous section
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allow to give a positive answer to the conjecture 1.2.1. The following elementary

lemma is helpful in proving the main results of this section.

Lemma 7.2.1. Let A1 and A2 be two disjoint sets of variables, I1 ⊂ K[A1] and

I2 ⊂ K[A2] be squarefree monomial ideals such that sdepthK[A1](I1) > sdepth(K[A1]/I1).

Then

sdepthK[A1∪A2](I1 + I2) ≥ sdepth(K[A1]/I1) + sdepthK[A2](I2).

Proof. Proof follows by [14, Theorem 1.3].

Remark 7.2.1. Since I(Pn,1) ∼= I(Pn), thus by [60, Theorem 2.3] and [67, Prpo-

sition 2.1], it follows that sdepth(I(Pn,1)) > sdepth(Sn,1/I(Pn,1)) = dn
3
e.

Theorem 7.2.1. Let n ≥ 1. Then sdepth(I(Pn,2)) > sdepth(Sn,2/I(Pn,2)) = dn
3
e.

Proof. Let 1 ≤ t ≤ n, then by Lemma 7.1.1, sdepth(St,2/I(Pt,2)) = d t
3
e. The

Lemma 7.1.1 is used in the proof without referring it again and again. By the

same lemma it is enough to show that sdepth(I(Pn,2)) > dn
3
e. To do it, the

induction on n is used. If n = 1, then by Remark 7.2.1, the required result holds.

If n = 2, 3, then by [53, Lemma 2.1], it follows that sdepth(I(Pn,2)) > dn3 e. Now

assume that n ≥ 4. Since xn−1 6∈ I(Pn,2), thus

I(Pn,2) = I(Pn,2) ∩ S ′ ⊕ xn−1
(
I(Pn,2) : xn−1

)
Sn,2,

where S ′ = K[x1, x2, . . . , xn−2, xn, y1, y2, . . . , yn]. Now

I(Pn,2) ∩ S ′ =
(
G(I(Pn−2,2)), xn−2yn−1, yn−2yn−1, xnyn, yn−1xn, yn−1yn

)
and

(
I(Pn,2) : xn−1

)
Sn,2 =

(
G(I(Pn−3,2)), xn−2, xn, yn−2, yn−1, yn

)
Sn,2.

As yn−1 6∈ I(Pn,2) ∩ S ′, it follows that

I(Pn,2) ∩ S ′ = (I(Pn,2) ∩ S ′) ∩ S ′′ ⊕ yn−1
(
I(Pn,2) ∩ S ′ : yn−1

)
S ′,
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where S ′′ = K[x1, . . . , xn−2, xn, y1, . . . , yn−2, yn]. Thus

I(Pn,2) = (I(Pn,2)∩S ′)∩S ′′⊕yn−1
(
I(Pn,2)∩S ′ : yn−1

)
S ′⊕xn−1

(
I(Pn,2) : xn−1

)
Sn,2,

where

(I(Pn,2) ∩ S ′) ∩ S ′′ = (G(I(Pn−2,2)), xnyn)S ′′

and

(I(Pn,2) ∩ S ′ : yn−1
)
S ′ =

(
G(I(Pn−3,2)), xn−2, yn−2, xn, yn

)
S ′.

The induction hypothesis and Lemma 7.2.1 yield

sdepth((I(Pn,2) ∩ S ′) ∩ S ′′) ≥ sdepth(Sn−2,2/I(Pn−2,2)) + sdepthK[xn,yn](xnyn).

Again by induction on n, Lemmas 7.2.1 and 3.7.5 it follows that

sdepth((I(Pn,2) ∩ S ′ : yn−1
)
S ′) ≥ sdepth(Sn−3,2/I(Pn−3,2))

+ sdepthT (xn−2, xn, yn, yn−2) + 1

and

sdepth
((
I(Pn,2) : xn−1

)
Sn,2

)
≥ sdepth(Sn−3,2/I(Pn−3,2))

+ sdepthR(xn−2, yn−2, yn−1, xn, yn
)

+ 1,

where T = [xn−2, xn, yn, yn−2] andR = K[xn−2, xn, yn, yn−2, yn−1]. Thus sdepth((I(Pn,2)∩

S ′)∩S ′′) > dn
3
e as sdepthK[xn,yn](xnyn) = 2. Applying [7, Theorem 2.2], it results

that sdepth((I(Pn,2)∩S ′ : yn−1
)
S ′) > dn

3
e and sdepth(

(
I(Pn,2) : xn−1

)
Sn,2) > dn3 e.

This completes the proof.

Now, for the case m = 3, some notations are introduced. For 3 ≤ l ≤ n−2, let

Jl := (xn−l, xn−l+1, xn−l−1, zn−l, yn−l−1, zn−l+1, zn−l−1), I(P ′l−1) := (xn−l+2xn−l+3, . . . , xn−1xn)

and I(P ′′l−1) := (zn−l+2zn−l+3, . . . , zn−1zn) be the monomial ideals of Sn,3. Now

consider the subsetsDl := {xn−l+2, xn−l+3, . . . , xn}, D′l := {zn−l+2, zn−l+3, . . . , zn−1,

94



zn} and D′′l := {xn−l, xn−l+1, zn−l, yn−l−1, zn−l+1, zn−l−1, xn−l−1}. Let Ll be a

monomial ideal of Sn,3 such that Ll = I(P ′l−1) + I(P ′′l−1) + Jl. With these no-

tation, the next result is presented as follows.

Lemma 7.2.2. Let 3 ≤ l ≤ n− 2. Then sdepthK[Dl∪D′l∪D
′′
l ]

(Ll) ≥ d l+2
3
e+ 1.

Proof. Since Ll = I(P ′l−1) + I(P ′′l−1) + Jl, by [14, Theorem 1.3], it follows that

sdepthK[Dl∪D′l∪D
′′
l ]

(Ll) ≥ min
{

sdepthK[Dl∪D′l∪D
′′
l ]

(Jl),min{sdepthK[Dl∪D′l]
(I(P ′l−1)),

sdepthK[Dl]
(K[Dl]/I(P ′l−1)) + sdepthK[D′l]

(I(P ′′l−1))}
}
. (7.7)

By using [60, Theorem 2.3] and [67, Proposition 2.1], Eq. 7.7 implies that

sdepthK[Dl∪D′l∪D
′′
l ]

(Ll) ≥ min{2l−4+4,min{2l−2−b l−2
2
c, d l−1

3
e+l−1−b l−2

2
c}}

≥ d l + 2

3
e+ 1.

Theorem 7.2.2. Let n ≥ 1. Then sdepth(I(Pn,3)) > sdepth(Sn,3/I(Pn,3)).

Proof. Let 1 ≤ t ≤ n, then by Lemma 7.1.2, sdepth(St,3/I(Pt,3)) = d t
3
e. The

Lemma 7.1.2 is used in the proof several times without referring it. Using the same

lemma it is enough to show that sdepth(I(Pn,3)) > dn3 e. To do it, the induction

on n is used. If n = 1, then by Remark 7.2.1 the required result follows. If n = 2,

the result holds true by using Theorem 7.2.1. If n = 3 then by [53, Lemma 2.1]

sdepth(I(P3,3)) > d33e. If n ≥ 4, then I(Pn,3) can be decomposed as a vector

space in the following way:

I(Pn,3) = I(Pn,3) ∩R1 ⊕ yn(I(Pn,3) : yn)Sn,3.

Similarly, decompose I(Pn,3) ∩R1 as follows:

I(Pn,3) ∩R1 = I(Pn,3) ∩R2 ⊕ yn−1(I(Pn,3) ∩R1 : yn−1)R1.
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Continuing in the same way for 1 ≤ l ≤ n− 1, it follows that

I(Pn,3) ∩Rl = I(Pn,3) ∩Rl+1 ⊕ yn−l(I(Pn,3) ∩Rl : yn−l)Rl,

where Rl := K[x1, . . . xn, y1, . . . , yn−l, z1, . . . , zn]. Finally, the following decompo-

sition of I(Pn,3) can be obtained:

I(Pn,3) = I(Pn,3) ∩Rn ⊕⊕n−1l=1 yn−l(I(Pn,3) ∩Rl : yn−l)Rl ⊕ yn(I(Pn,3) : yn)Sn,3.

Therefore

sdepth(I(Pn,3)) ≥ min
{

sdepth(I(Pn,3) ∩Rn), sdepth((I(Pn,3) : yn)Sn,3),

n−1
min
l=1
{sdepth((I(Pn,3) ∩Rl : yn−l)Rl)}

}
. (7.8)

Since

I(Pn,3) ∩Rn =
(
(z1z2, z2z3, . . . , zn−1zn)

+ (x1x2, x2x3, . . . , xn−1xn)
)
K[x1, . . . , xn, z1, . . . , zn],

thus by [14, Theorem 1.3] and [67, Proposition 2.1], it follows that sdepth(I(Pn,3)∩

Rn) > dn
3
e. As

(I(Pn,3) : yn)Sn,3 = (G(I(Pn−2,3)) + (xn, zn, xn−1, zn−1, yn−1))[yn].

Let B := K[xn, zn, zn−1, xn−1, yn−1], thus by induction on n, Lemmas 7.2.1 and

3.7.5, it follows that

sdepth((I(Pn,3) : yn)Sn,3) > sdepth(Sn−2,3/I(Pn−2,3))

+ sdepthB(xn, zn, zn−1, xn−1, yn−1) + 1.

By applying [7, Theorem 2.2], it results that sdepth((I(Pn,3) : yn)Sn,3) > dn3 e.
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(1) If l = 1, then (I(Pn,3) ∩ R1 : yn−1)R1 =
(
G(I(Pn−3,3)) + J1

)
[yn−1], where

J1 := (xn−1, xn−2, xn, zn−1, yn−2, zn, zn−2), then by induction on n, Lemmas

7.2.1 and 3.7.5, it follows that

sdepth((I(Pn,3) ∩R1 : yn−1)R1) > sdepth(Sn−3,3/I(Pn−3,3))

+ sdepthK[supp(J1)](J1) + 1,

by [7, Theorem 2.2], it follows that sdepth((I(Pn,3) ∩R1 : yn−1)R1) > dn3 e.

(2) If l = 2 and n 6= 4, then

(I(Pn,3) ∩R2 : yn−2)R2 =
(
G(I(Pn−4,3)) + J2

)
[yn−2, xn, zn],

where J2 := (xn−2, xn−1, xn−3, zn−2, zn−1, yn−3, zn−3), using the similar argu-

ments as in case(1), sdepth((I(Pn,3) ∩R2 : yn−2)R2) > dn3 e.

(3) If 3 ≤ l ≤ n−3, then (I(Pn,3)∩Rl : yn−l)Rl =
(
G(I(Pn−(l+2),3))+G(Ll)

)
[yn−l],

by induction on n, Lemmas 7.2.1 and 3.7.5, it follows that

sdepth((I(Pn,3) ∩Rl : yn−l)Rl) > sdepth(Sn−(l+2),3/(I(Pn−(l+2),3)))

+ sdepthK[Dl∪D′l∪D
′′
l ]

(Ll) + 1, (7.9)

By Eq. 7.9 and Lemma 7.2.2, it follows that

sdepth((I(Pn,3) ∩Rl : yn−l)Rl) > d
n− (l + 2)

3
e+ d l + 2

3
e+ 1 + 1 > dn

3
e.

(4) If l = n−2, then (I(Pn,3)∩Rn−2 : y2)Rn−2 = (G(Ln−2))[y2], by Lemmas 7.2.2

and 3.7.5 it follows that sdepth((I(Pn,3) ∩Rn−2 : y2)Rn−2) > dn3 e.

(5) If l = n− 1, then

(I(Pn,3)∩Rn−1 : y1)Rn−1 =
(
I(P ′n−2)+I(P ′′n−2)+Jn−1

)
K[Dn−1∪D′n−1∪D′′n−1∪{y1}],
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where G(Jn−1) = {x1, z1, x2, z2}, Dn−1 = {x3, x4, . . . , xn}, D′n−1 = {z3, . . . , zn}

and D′′n−1 = {x1, z1, x2, z2}. Using the proof of Lemma 7.2.2 and by Lemma

3.7.5 it follows that

sdepthK[Dn−1∪D′n−1∪D′′n−1∪{y1}]
(
I(P ′n−2) + I(P ′′n−2) + Jn−1

)
> dn

3
e,

that is sdepth((I(Pn,3) ∩Rn−1 : y1)Rn−1) > dn3 e.

Thus by Eq. 7.8, the required inequality sdepth(I(Pn,3)) > dn3 e holds.

Proposition 7.2.1. Let n ≥ 3. Then sdepth(I(Cn,2)/I(Pn,2)) ≥ dn+2
3
e.

Proof. For 3 ≤ n ≤ 5, the method which is given in [36] can be used to show that

there exist Stanley decompositions of desired Stanley depth. If n = 3 or n = 4,

then

I(Cn,2)/I(Pn,2) = x1xnK[x1, xn]⊕ x1ynK[x1, yn]⊕ y1xnK[y1, xn]⊕ y1ynK[y1, yn].

If n = 5, then

I(C5,2)/I(P5,2) = x1x5K[x1, x5, x3]⊕ x1y5K[x1, y5, x3]⊕ y1x5K[y1, x3, x5]⊕

y1y5K[y1, x3, y5]⊕ x1y3x5K[x1, y3, x5]⊕ x1y3y5K[x1, y3, y5]⊕

y1y3y5K[y1, y3, y5]⊕ y1y3x5K[y1, y3, x5].

Let n ≥ 6 and T := (
⋃n−3
i=3 {xiyi, xiyi+1, xi+1yi, xixi+1, yiyi+1}, xn−2yn−2

)
⊂ S̃,

where S̃ := K[x3, x4, . . . , xn−2, y3, y4 . . . , yn−2]. Then consider the K-vector space

isomorphism as follows:

I(Cn,2)/I(Pn,2) ∼= x1xn
S̃

T
[x1, xn]⊕ y1yn

S̃

T
[y1, yn]⊕ x1yn

S̃

T
[x1, yn]⊕ y1xn

S̃

T
[y1, xn].

Thus by Lemmas 7.1.1 and 3.7.5, it follows that sdepth(I(Cn,2)/I(Pn,2)) ≥ dn+2
3
e.
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For n ≥ 6, let Q = {xn−1, yn−1, xn, yn, x2, y2, x1, y1}, and consider a subgraph

C�n,3 of Cn,3 with V (C�n,3) = V (Cn,3) \Q and

E(C�n,3) = E(Cn,3) \ {e ∈ E(Cn,3) : where e has at least one end vertex in Q}.

For example of C�n,3 see Fig. 7.2.

z6
y6

z7

z8

z1

z2

z3

z4

z5

y5
x5

x6

y4

x4 y3
x3

Figure 7.2: C�8,3.

Lemma 7.2.3. Let n ≥ 6, if n ≡ 0 (mod 3), then sdepth(S�n,3/I(C�n,3)) = dn−2
3
e.

Otherwise, dn−2
3
e ≤ sdepth(S�n,3/I(C�n,3)) ≤ dn3 e.

Proof. Assume the short exact sequence as follows:

0 −→ S�n,3/(I(C�n,3) : z1)
·z1−→ S�n,3/I(C�n,3) −→ S�n,3/(I(C�n,3), z1) −→ 0, (7.10)

by Lemma 3.7.4

sdepth(S�n,3/I(C�n,3)) ≥ min{sdepth(S�n,3/(I(C�n,3) : z1)), sdepth(S�n,3/(I(C�n,3), z1))}.

As (I(C�n,3) : z1) = ((∪n−3i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi,

zizi+1}, xn−2yn−2, yn−2zn−2), yn−2zn−1, zn−2zn−1, z2, zn
)

= (I(P∗n−4,3), z2, zn),

so it follows that S�n,3/(I(C�n,3) : z1) ∼= S∗n−4,3/I(P∗n−4,3)[z1]. Therefore, by Lemmas

3.7.5 and 7.1.3, it results that

sdepth(S�n,3/(I(C�n,3) : z1)) = dn− 4 + 1

3
e+ 1 = dn

3
e.
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Now suppose that

B := (I(C�n,3), z1) = ((∪n−3i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi,

zizi+1}, xn−2yn−2, yn−2zn−2), yn−2zn−1, zn−2zn−1, zn−1zn, y3z2, z2z3, z1
)
,

Applying Lemma 3.7.4 on the following short exact sequence

0 −→ S�n,3/(B : zn)
·zn−→ S�n,3/B −→ S�n,3/(B, zn) −→ 0,

gives sdepth(S�n,3/B) ≥ min{sdepth(S�n,3/(B : zn)), sdepth(S�n,3/(B, zn))}. Here

(B : zn) = ((∪n−3i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1},

xn−2yn−2, yn−2zn−2), y3z2, z2z3, z1, zn−1
)

= (I(P∗n−4,3), z1, zn−1),

that gives S�n,3/(B : zn) ∼= S∗n−4,3/I(P∗n−4,3)[zn]. Therefore by Lemmas 3.7.5 and

7.1.3, it follows that sdepth(S�n,3/(B : zn)) = dn−4+1
3
e+ 1 = dn

3
e. Now

(B, zn) = ((
⋃n−3
i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1},

xn−2yn−2, yn−2zn−2), yn−2zn−1, zn−2zn−1, y3z2, z2z3, z1, zn
)

= (I(P∗∗n−4,3), z1, zn),

thus S�n,3/(B, zn) ∼= S∗∗n−4,3/I(P∗∗n−4,3). Therefore by Lemma 7.1.4, it follows that

sdepth(S�n,3/(B, zn)) = dn− 4 + 2

3
e = dn− 2

3
e.

For upper bound, as z1 /∈ I(C�n,3) so by Proposition 3.7.3

sdepth(S�n,3/I(C�n,3)) ≤ sdepth(S�n,3/(I(C�n,3) : z1)).

Since (S�n,3/(I(C�n,3) : z1)) ∼= (S∗n−4,3/I(P∗n−4,3))[z1]. Thus by Lemmas 3.7.5 and

7.1.3, it follows that

sdepth(S�n,3/I(C�n,3)) ≤ d
n

3
e,

if n ≡ 0(mod 3) then dn−2
3
e = dn

3
e, otherwise

dn− 2

3
e ≤ sdepth(S�n,3/I(C�n,3)) ≤ d

n

3
e.
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Proposition 7.2.2. Let n ≥ 3. Then sdepth(I(Cn,3)/I(Pn,3)) ≥ dn+2
3
e.

Proof. For 3 ≤ n ≤ 4, as the minimal generators of I(Cn,3)/I(Pn,3) have degree

2, so by [53, Lemma 2.1], sdepth(I(Cn,3)/I(Pn,3)) ≥ 2 = dn+2
3
e. If n = 5, then the

method given in [36] can be used to show that there exist Stanley decompositions

of desired Stanley depth. Let

H := x1x5K[x1, x3, x5]⊕ x1y5K[x1, x3, y5]⊕ y1x5K[x3, x5, y1]⊕ y1y5K[x3, y1, y5]

⊕z1y5K[x3, y5, z1]⊕ z1z5K[z1, z3, z5]⊕ y1z5K[y1, y3, z5]

Clearly, H ⊂ I(C5,3)/I(P5,3). Let v ∈ I(C5,3)/I(P5,3) be a sqaurefree monomial

such that v /∈ H then deg(v) ≥ 3. Since

I(C5,3)/I(P5,3) = H ⊕v vK[supp(v)].

That gives sdepth(I(C5,3)/I(P5,3)) ≥ 3 = d5+2
3
e. Now for n ≥ 6, let

U := (∪n−3i=3 {xiyi, xiyi+1, xixi+1, xi+1yi, yiyi+1, yizi, yizi+1, yi+1zi, zizi+1}, xn−2yn−2

, yn−2zn−2)

be a squarefree monomial ideal of R := K[x3, . . . , xn−2, y3, . . . , yn−2, z3, . . . , zn−2].

Then consider the K-vector space isomorphism as follows:

I(Cn,3)/I(Pn,3) ∼= y1yn
R

U
[y1, yn]⊕ x1yn

R[z2](
G(U), y3z2, z2z3

) [x1, yn]

⊕z1yn
R[x2](

G(U), y3x2, x2x3
) [z1, yn]⊕ y1xn

R[zn−1](
G(U), yn−2zn−1, zn−2zn−1

) [y1, xn]

⊕y1zn
R[xn−1](

G(U), yn−2xn−1, xn−2xn−1
) [y1, zn]

⊕x1xn
R[z1, z2, zn−1, zn](

G(U), yn−2zn−1, zn−2zn−1, zn−1zn, znz1, z1z2, y3z2, z2z3
) [x1, xn]

⊕z1zn
R[x1, x2, xn−1, xn](

G(U), yn−2xn−1, xn−2xn−1, xn−1xn, xnx1, x1x2, y3x2, x2x3
) [z1, zn].
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Clearly, it can be noted that R/U ∼= Sn−4,3/I(Pn−4,3),

R[z2](
G(U), y3z2, z2z3

) ∼= R[x2](
G(U), y3x2, x2x3

) ∼= R[zn−1](
G(U), yn−2zn−1, zn−2zn−1

)
∼=

R[xn−1](
G(U), yn−2xn−1, xn−2xn−1

) ∼= S∗n−4,3/I(P∗n−4,3),

and

R[z1, z2, zn−1, zn](
G(U), yn−2zn−1, zn−2zn−1, zn−1zn, znz1, z1z2, y3z2, z2z3

)
∼=

R[x1, x2, xn−1, xn](
G(U), yn−2xn−1, xn−2xn−1, xn−1xn, xnx1, x1x2, y3x2, x2x3

) ∼= S�n,3/I(C�n,3).

Thus by Lemmas 7.1.2, 7.1.3 and 7.2.3, it follows that

sdepth(I(Cn,3)/I(Pn,3)) ≥ min
{
dn− 4

3
e+2, dn− 4 + 1

3
e+2, dn− 2

3
e+2

}
= dn+ 2

3
e.

Theorem 7.2.3. Let 1 ≤ m ≤ 3 and n ≥ 3. Then

sdepth(I(Cn,m)) ≥ sdepth(Sn,m/I(Cn,m)).

Proof. For m = 1, I(Cn,1) = Cn. Then the result follows by [16, Theorem 1.9]

and [60, Theorem 2.3]. If m = 2 or 3, then assume the short exact sequence as

follows:

0 −→ I(Pn,m) −→ I(Cn,m) −→ I(Cn,m)/I(Pn,m) −→ 0,

then by Lemma 3.7.4, it follows that

sdepth(I(Cn,m)) ≥ min{sdepth(I(Pn,m)), sdepth(I(Cn,m)/I(Pn,m))}.

By Theorems 7.2.1 and 7.2.2, sdepth(I(Pn,m)) ≥ dn
3
e + 1, and by Propositions

7.2.1 and 7.2.2, it results that sdepth(I(Cn,m)/I(Pn,m)) ≥ dn+2
3
e = dn−1

3
e+1, this

completes the proof.
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7.3 Upper bounds for depth and Stanley depth

of cyclic modules associated to Pn,m and Cn,m

Let m ≤ n, in general, one don’t know the values of depth and Stanley depth

of Sn,m/I(Pn,m). However, in the light of above observations, the following open

question can be proposed.

Question 7.3.1. Is depth(Sn,m/I(Pn,m)) = sdepth(Sn,m/I(Pn,m)) = dn
3
edm

3
e?

For n ≥ 2, this question is confirmed for the cases when 1 ≤ m ≤ 3 see Remark

7.1.1, Lemma 7.1.1 and Lemma 7.1.2. If m = 4, some calculations are made for

depth and Stanley depth by using CoCoA, (for Stanley depth, SdepthLib:coc [71]

is used). Calculations show that depth(S4,4/I(P4,4)) = sdepth(S4,4/I(P4,4)) =

4 = d4
3
ed4

3
e, sdepth(S5,4/I(P5,4)) = 4 = d5

4
ed4

3
e, and sdepth(S6,4/I(P6,4)) = 4 =

d6
3
ed4

3
e. The upcoming result provide a partial answer to the Question 7.3.1.

Theorem 7.3.1. Let n ≥ 2. Then

depth(Sn,m/I(Pn,m)), sdepth(Sn,m/I(Pn,m)) ≤ dn
3
edm

3
e.

Proof. Without loss of generality consider that m ≤ n. First, the result is proved

for depth. If m = 1, then I(Pn,1) = I(Pn), that gives the required result by

Remark 7.1.1. For m = 2, 3 the result follows from Lemmas 7.1.1 and 7.1.2,

respectively. For m ≥ 4, this result is proved by using induction on m. Let u be

a monomial such that

u :=


x2(m−1)x5(m−1) . . . x(n−3)(m−1)xn(m−1), if n ≡ 2(mod 3);

x1(m−1)x4(m−1) . . . x(n−3)(m−1)xn(m−1), if n ≡ 1(mod 3);

x2(m−1)x5(m−1) . . . x(n−4)(m−1)x(n−1)(m−1), if n ≡ 0(mod 3).

Clearly u /∈ I(Pn,m) so by Corollary 3.7.2, it follows that

depth(Sn,m/I(Pn,m)) ≤ depth(Sn,m/(I(Pn,m) : u)).
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In all cases | supp(u)| = dn
3
e and Sn,m/(I(Pn,m) : u) ∼= (Sn,m−3/I(Pn,m−3))[supp(u)],

using induction hypothesis and Lemma 3.7.5, it follows that

depth(Sn,m/I(Pn,m)) ≤ depth(Sn,m/(I(Pn,m) : u)) ≤ dn
3
edm− 3

3
e+dn

3
e = dm

3
edn

3
e.

Similarly, one can prove the result for Stanley depth by using Proposition 3.7.3.

Remark 7.3.1. For a positive answer to Question 7.3.1, one needs to prove

that dn
3
edm

3
e is a lower bound for depth and Stanley depth of Sn,m/I(Pn,m).

The lower bound ddiam(Pn,m)+1

3
e (Theorem 3.7.14) which was helpful for the cases

when 1 ≤ m ≤ 3 is no more useful if m ≥ 4. For instance, depth(S4,4/I(P4,4)) =

sdepth(S4,4/I(P4,4)) = 4, but this lower bound shows that depth(S4,4/I(P4,4)) ≥

2 = ddiam(P4,4)+1

3
e and sdepth(S4,4/I(P4,4)) ≥ 2 = ddiam(P4,4)+1

3
e.

Theorem 7.3.2. Let n ≥ 3 and m ≥ 1. Then

depth(Sn,m/I(Cn,m)) ≤

 dn3 edm3 e, if m ≡ 0(mod 3);

dn−1
3
e+ (dm

3
e − 1)dn

3
e, if m ≡ 1, 2(mod 3).

Proof. This result is proved by using induction on m. If m = 1, then I(Cn,1) =

I(Cn), by [16, Proposition 1.3] the required result holds. For m = 2 or m = 3,

the result follows by Theorems 7.1.1 and 7.1.2 respectively. For m ≥ 4,

v :=


x2(m−1)x5(m−1) . . . x(n−3)(m−1)xn(m−1), if n ≡ 2(mod 3);

x1(m−1)x4(m−1) . . . x(n−6)(m−1)x(n−3)(m−1)x(n−1)(m−1), if n ≡ 1(mod 3);

x3(m−1)x6(m−1) . . . x(n−3)(m−1)xn(m−1), if n ≡ 0(mod 3).

Clearly v /∈ I(Cn,m) and Sn,m/(I(Cn,m) : v) ∼= (Sn,m−3/I(Cn,m−3))[supp(v)], since

in all the cases | supp(v)| = dn
3
e, if m ≡ 1, 2(mod 3) using induction hypothesis

and Lemma 3.7.5, it follows that

depth(Sn,m/(I(Cn,m) : v)) ≤ dn− 1

3
e+ (dm− 3

3
e − 1)dn

3
e+ dn

3
e

= dn− 1

3
e+ (dm

3
e − 1)dn

3
e.
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Otherwise, by Lemma 3.7.5 and induction, it follows that

depth(Sn,m/(I(Cn,m) : v)) ≤ dn
3
edm− 3

3
e+ dn

3
e = dn

3
edm

3
e.

Theorem 7.3.3. Let n ≥ 3 and m ≥ 1. Then sdepth(Sn,m/I(Cn,m)) ≤ dn
3
edm

3
e.

Proof. This result can be proved by using the similar arguments as in Theorem

7.3.2 by using Corollary 7.1.1 and Theorem 7.1.2 instead of Theorems 7.1.1 and

7.1.2.

Remark 7.3.2. The upper bounds of sdepth(Sn,m/I(Pn,m)) and sdepth(Sn,m/I(Cn,m))

as proved in Theorems 7.3.1 and 7.3.3 are too sharp. On the bases of above ob-

servations, the following question can be formulated. A positive answer to this

question proves the Conjecture 1.2.1.

Question 7.3.2. Is sdepth(I(Pn,m)), sdepth(I(Cn,m)) ≥ dn
3
edm

3
e?

7.4 Conclusion

In this chapter, the strong product of two graphs is considered, when either both

graphs are arbitrary paths or one is an arbitrary path and the other is an arbitrary

cycle. It is verified that for n ≥ 2, dn
3
e is the precise value of both Stanley depth

and depth for the cyclic modules associated to Pn,m when 1 ≤ m ≤ 3. Also, for

n ≥ 3, values and tight bounds are given for the cyclic modules associated to Cn,m

when 1 ≤ m ≤ 3. Also, it is proved that the Conjecture 1.2.1 holds for the edge

ideals associated with some subclasses of H and K. Furthermore, some sharp

upper bounds for depth and Stanley depth in the general cases are established.
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Chapter 8

Conclusion and future work

8.1 Conclusion

In this dissertation, Stanley depth and depth of the quotient ring of the edge

ideal associated with the tth power of a path and the tth power of a cycle are

determined. Lower bounds for the Stanley depth of the edge ideals associated

with the tth power of a path, and tth power of a cycle are given and with the

help of these bounds, a conjecture of Herzog is proved for these ideals. Some

upper and lower bounds for Stanley depth and depth of edge ideals associated

with line graphs of the ladder, and circular ladder graphs are established. Also,

some bounds for the dimension of the quotient rings of the edge ideals associated

to these graphs are also determined. Furthermore, the study is conducted for

Stanley depth and depth of the edge ideals and quotient rings of the edge ideals,

associated with classes of graphs obtained by taking the strong product of two

arbitrary paths or one is an arbitrary path, and the other is an arbitrary cycle.

The exact formulae for values of Stanley depth and depth for some subclasses of

the strong product of these graphs are given. Also, some sharp upper bounds are

provided for Stanley depth and depth in the general cases.
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8.2 Future work

(1) In some cases, we are unable at the moment to fix values of depth and

Stanley depth of some classes of graphs we considered so one can try to fix

these values by using some other techniques.

(2) We proved the conjecture 1.2.1 in some special cases, since it is relatively

new conjecture, so one may try to prove it in general or at least for some

special classes of ideals.

(3) For some classes of edge ideals, we confirmed that Stanley’s inequality holds,

so one may try to prove Stanley’s inequality for other classes of ideals.

(4) We determined Stanley depth and depth of edge ideals of powers of paths

and cycles, so one may try to find these invariants for the edge ideals of

powers of some other graphs.
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