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Abstract 

    

  

 

 

    

  

In this thesis heat transmission of non-Newtonian radiative nanofluids flow is inspected with reference 
to  boundary layer  description.  Carbon  nanotubes  (CNTs)  dependent fluids are being  evaluated by 
considering the geometry of curved stretchable surface. Special features, like thermal radiation and

internal  heat  generation,  which  corresponds  to  heat  transmission  along  the flow  have  been 
incorporated. Dual nature of carbon nanotubes, that is, single walled carbon nanotubes (SWCNTs) as 
well  as  multiple  walled  carbon  nanotubes  (MWCNTs)  together with blood  and slurry  mixture (base 
fluids)  have  been  utilized  for  the  composition  of  nanofluid. In  order  to  capture  the  rheological

properties of blood, Casson fluid model has been deployed. Likewise, second-grade model has been 
engaged to capture the rheological properties of slurry mixture. Appropriate similarity transformations

have  been  applied to  reduce  the  modelled  system of  nonlinear  partial  differential  equations  into  a 
system of ordinary differential equations (ODEs). To achieve the desired numerical solution of obtained

system of ODEs, NDSolve technique is employed using Mathematica. Numerous parameters appearing 
in governing equations, exert influence on focused physical quantities. Graphs have been engaged to 
capture these variations for both SWCNTs and MWCNTs. Likewise, numeric charts have been displayed 
to investigate impressions on skin friction coefficient and Nusselt number for distinct parameters.  
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Chapter 1

Introduction

This chapter educates some basic de�nitions and preliminaries. A description for boundary

layer �ow and some a¢ liated dimensionless numbers utilized in this thesis are elaborated.

Mathematical models, showcasing the interdependence of physical properties of nano�uids are

also included. Further, a deep literature review is presented along with a brief description about

the numerical technique employed.

1.1 Basic de�nitions and preliminaries

1.1.1 Compressible and incompressible �ows

Incompressible �ows refer to the �uid �ows where the �uid exhibits unvarying density across

the entire �ow �eld. Majority of the liquids are typically regarded as incompressible �uids.

However, �uid �ows where the density owns a change either in relation to time or spatial

coordinates are referred to as compressible �uid �ows. The �ow of gases is commonly considered

as compressible.

1.1.2 Steady and unsteady �ows

The �uid �ows during which all the physical characteristics (i.e. density, velocity, temperature

etc.) stay invariant over time (i.e. �ow is independent of time) but may vary from point to

1



point are regarded as steady �uid �ows. Mathematically, for any quantity 	:

@	

@t
= 0; (1.1)

For unsteady �uid �ows, at least one physical quantity is time dependent

@	

@t
6= 0; (1.2)

for some physical quantity 	.

1.1.3 Laminar and turbulent �ows

Laminar �ows are identi�ed as �ows in which �uid particles moves in parallel layers and stream

lines do not intersect each other. In contrast, turbulent �ows are elucidated with irregular and

chaotic motion, with �uid particles swirling and mixing in unpredictable patterns i.e. �uid

particles do not follow speci�c paths. Pouring honey from a jar can be described as laminar

�ow as it �ows in a smooth and steady stream. While the �ow of water in waterfalls where

water particles rush and fall in a disorderly manner can be signi�ed as turbulent �ow.

Fig. (1:1) Illustrative diagram of laminar and turbulent

�ows

2



1.1.4 Newtonian �uids

These �uids are in agreement with Newton�s law of viscosity, expressed below:

�yx = �
dxs
dy
; (1.3)

where �yx indicates shear stress in x-direction, � describes �uid�s dynamic viscosity and dxs
dy

expresses deformation rate for one-dimensional and uni-directional �ow overtop a plane surface.

Eq. (1.3), elucidates that shear stress is directly proportional to deformation rate. Water and

air are some conventional Newtonian �uids.

1.1.5 Non-Newtonian �uids

Non-Newtonian �uids are categorized as �uids possessing nonlinear relationship between shear

rate and shear stress. Consequently, viscosity of non-Newtonian �uids varies with deformation

rate. Power law model illustrates the relation between shear rate and shear stress as follows:

�yx = 

�
dxs
dy

�n
; (1.4)

where �ow behavior index is expressed as n and  signi�es consistency index. Power law model

can also be expressed as:

�yx = ̂
dxs
dy
; (1.5)

where, ̂ = 
�
dxs
dy

�n�1
elucidates apparent viscosity of the �uid.

The study of non-Newtonian �uids has acquired signi�cant engagement in the �eld of �uid

dynamics owing to their unparalleled behavior and wide-reaching applications. These �uids have

insightful importance in wide-ranging industrial units, encompassing cosmetics, food processing,

pharmaceuticals and oil drilling. Interpreting the rheological features and �ow manner of non-

Newtonian �uids is vital for enhancing processes, upgrading product quality and guaranteeing

optimal operations. Real-life applications of non-Newtonian �uids incorporate gels, paints,

slurry mixtures and even bodily �uids like mucus and blood. Many scientists proposed various

models to capture the rheological properties of di¤erent non-Newtonian �uids. Some famous

models are given below:

3



Casson �uid

Another useful model possessing diverse industrial applications is Casson �uid model. Following

equation elucidates the rheological characteristics of Casson �uid.

� jk =

8<: 2
�
�p + ps=

p
2�
�
ajk if � > �c;

2
�
�p + ps=

p
2�c
�
ajk if � < �c;

(1.6)

where ajk stands for (j; k)th component of deformation rate and � is the self product of defor-

mation rate component. Based on non-Newtonian model �c indicates critical value of product

and �p and ps portray plastic dynamic viscosity and yield stress of the �uid respectively.

Second-grade �uid

One of many proposed non-Newtonian liquids is second-grade �uid, which possesses stress tensor

relationship with dual derivatives. The second-grade �uid possess an extra stress tensor [24]

de�ned as

� = �pI+�A1 + �1A2 + �2A21; (1.7)

where p denotes pressure, I indicates identity tensor, � is dynamic viscosity, �j (j = 1; 2)

are second grade material constants and the �rst two Rivlin-Ericksen tensors A1 and A2 are

described as
A1 = (gradV)

t + (gradV);

A2 = A1(gradV) +
dA1
dt + (gradV)

tA1;

9=; (1.8)

in which d=dt is material time derivative and V is the velocity vector. This fact should be

noticed that when �1 = �2 = 0; the fundamental equation for second grade �uid reduces

to that of viscous �uid. Some common examples of second-grade �uid are latex paints and

cornstarch. Some common examples of casson �uid are honey, jelly and tomato sauce.

1.2 Conservation laws

The governing nonlinear di¤erential equations for any �ow �eld are based of conservations laws

of mechanics. The laws of conservation of mass, momentum and energy are documented as

4



follows:

1.2.1 Conservation law of mass

Conservation law of mass can be declared as: the amount of mass of �uid entering and evac-

uating the (small �xed) control volume stays the same over time i.e. _mout � _min = 0. Where

_min and _mout indicate mass of �uid entering and evacuating the control volume per unit time

respectively. Mathematically, conservation law of mass can be written as:

@�

@t
+ ~r: (�V) = 0; (1.9)

where � signi�es �uid�s density, ~r de�nes gradient operator and V stands for velocity vector.

If the density of �uid is know, then velocity of �uid can simply be determined. For steady and

incompressible �uid Eq. (1:9) yields:

~r:V = 0: (1.10)

1.2.2 Conservation law of momentum

Conservation law of mass speci�es that, the sum of all (body and surface) forces acting upon a

unit volume of �uid is equal to the time rate of change of linear momentum of a moving unit

volume of �uid. Conservation law of momentum possesses following vector form:

�
dV

dt
= �~rp+ ~r:� + �~F ; (1.11)

where d=dt stands for material derivative, p de�nes pressure, ~r:� depicts the divergence of

stress tensor � and ~F portrays the body force per unit time acting upon �uid element.

1.2.3 Conservation law of energy

Conservation law of energy states that the rate of change of kinetic and internal energies of the

control volume is same as the net rate of heat input (by means of convection and conduction)

and the rate of work done by the �uid on the surroundings. Mathematically:

�Cp
dT

dt
= ~r:

�
k~rT

�
+ �T

dp

dt
+ tr (�L) ; (1.12)

5



where Cp stands for speci�c heat capacity of substance, T de�nes temperature of �uid, k

indicates thermal conductivity, � symbolizes coe¢ cient of thermal expansion, stress tensor and

velocity gradient are indicated as � and L respectively.

1.3 Nano�uids

Nano�uids are comprised of nano-sized particles together with base liquid. These nano-sized

particles are termed as nanoparticles which consist of metals or non-metals whereas base liquids

are water, oil, propylene and ethylene glycols etc. Base liquids do not possess good thermal con-

ductivity and to cater this, nanoparticles are suspended into appropriate liquids (base liquids).

Nano�uids without any doubt are the forthcoming hotspot for the researchers investigating

�uids with heat transfer. Thermal power plants, medical instruments, fabrication of medicines,

micro-electronic device technologies, thermal transport, paper production, heat exchangers and

microelectronics are the few highlighted industrial domains for the applications of nanotechnol-

ogy. Di¤erent scientists presented di¤erent models addressing the interdependence of properties

of nanoparticles and base �uids.

1.3.1 Tiwari and Das model

This model relates the nano�uid properties as linear functions of base �uid properties and

nanoparticles. In light of this model the conservation law of mass, conservations law of linear

momentum and conservation law of energy can be expressed in following forms:

~r:V = 0;

�nf (
@V
@t + (V:

~r)V) = �~rp+ �nfr2V;
@T
@t + (V:

~r)T = �nfr2T:

9>>>=>>>; (1.13)

where �nf and �nf stands for the density and viscosity of the nano�uid while T indicates �uid�s

temperature. The physical quantities appearing in Eq. (1:13) were documented by di¤erent

scientists and are given below:
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A formula elucidating dependence of viscosity on � is proposed by Brinkmann [45] :

�nf =
�f

(1� �)2:5 ; (1.14)

The expressions for e¤ective density of nano�uid �nf , thermal di¤usivity of nano�uid �nf and

e¤ective heat capacity of nano�uid are given as [4]:

�nf = (1� �)�f + ��np;

�nf =
knf

(�Cp)nf
;

(�Cp)nf = (1� �)(�Cp)f + �(�Cp)np;

9>>>=>>>; (1.15)

A relation between solid volume fraction of nanoparticles � and e¤ective thermal conductivity

of nano�uid knf is suggested by Maxwell [11]:

knf = kf
(knp + 2kf ) + 2�(knp � kf )
(knp2 + kf )� �(knp � kf )

; (1.16)

where � de�nes the solid volume fraction of nanoparticles in nano�uid, kf and knp represents

the thermal conductivity of base �uid and nanoparticles respectively.

1.3.2 Buongiorno Model

Buongiorno�s model is based on the theory of thermal convection and uses a two-phase approach

to describe the behavior of nano�uids. The model considers the nanoparticles as a separate

phase and assumes that they are dispersed randomly in the �uid. The model takes into account

the buoyancy forces generated by the thermal convection in the nano�uid, as well as the particle-

particle and particle-�uid interactions. The model predicts that the thermal conductivity and

convective heat transfer of the nano�uid are enhanced by the presence of the nanoparticles.

One of the common nanoparticles used in fabricating nano�uids is carbon nanotubes. These

cylindrical carbon structures exhibit exceptional thermal conductivity and can signi�cantly

improve the heat transfer capabilities of the nano�uid. Let�s delve into the remarkable properties

and applications of carbon nanotubes in the realm of nano�uids, further unlocking the potential

of this cutting-edge technology.
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Carbon nanotubes

To escalate the thermal and chemical characteristics of the base �uid, many scientists and

researchers utilized carbon nanotubes (with appropriate �uids), as they possess better thermal

conductivity. Carbon nanotubes (CNTs) possess fascinating nanostructures composed entirely

of carbon atoms arranged in a tubular con�guration. They have a cylindrical shape, resembling

a rolled-up sheet of graphene. The graphene sheet is a single layer of carbon atoms arranged in

a two-dimensional honeycomb lattice, and when it rolls up into a seamless cylinder, it forms a

carbon nanotube. Carbon nanotubes have been categorized w.r.t. their shapes as Single-Wall

and Multi-Walls carbon nanotubes (SWCNTs and MWCNTs). Diverse utilization of CNTs

corresponds to many biomedical and biological applications such as, drug delivery to body

organs and cells, cancer treatments, tissues regeneration and platelet activation. CNTs are also

utilized in alloys, coating and �lms, loudspeakers and producing optical instruments. Moreover,

CNTs (Single and Multi-Walled) have favorable employment in engineering such as production

of batteries, super capacitors, transistors, solar cells, electric cables and wires. Furthermore,

CNTs also revolutionized water treatment systems and environmental remediation as they

contribute a lot in �ght against climate change.

1.4 Boundary layer �ow

In a �ow �eld, when a �uid interfaces with a solid surface during �ow, formation of boundary

layer comes into e¤ect. This happens because the �uid in direct contact with the solid surface

sticks to its surface due to the no-slip condition, leading to zero-velocity at the wall. As one

moves away from the solid surface, the �uid velocity gradually rises through a series of layers

and reaches the free stream velocity outside the boundary layer. The region where the �uid

encounters most signi�cant in�uence of frictional forces from the solid surface is exclusively

called the boundary layer. Beyond this thin layer, the �uid maintains its original free stream
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velocity, as shown in Fig. (1:2).

Fig. (1:2) Illustrative diagram of boundary layer formation

1.5 Some dimensionless numbers

1.5.1 Reynolds number

Reynolds number expresses the ratio of inertial force to viscous force. Mathematically, it can

be portrayed as:

Re =
inertial force

viscous force
=
Ul

�
; (1.17)

where characteristic length is described as l, U indicates free stream velocity and � = �
� stands

for kinematic viscosity. Reynolds number Re is utilized to distinguish turbulent and laminar

�ow descriptions. Laminar �ows possesses low Reynolds number (Re < 2000) while, turbulent

�ow exhibits high Reynolds number (Re > 4000). The �uid �ows exhibiting value for Reynolds

number between 2000 and 4000 are referred to as transition �ows.

1.5.2 Prandtl number

Prandtl number can be signi�ed as the ratio of momentum di¤usivity to thermal di¤usivity.

Mathematically, Prandtl number can be depicted as:

Pr =
Momentum diffusivity

Thermal diffusivity
=
�

�
; (1.18)

where � and � stands for thermal di¤usivity and momentum di¤usivity respectively.
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1.5.3 Nusselt number

Dimensionless Nusselt number (Nu) used in heat transfer analysis to quantify the rate of

convective heat transfer across boundary of solid surface. Mathematical expression for Nusselt

number can be written as:

Nu =
convective heat transport

conductive heat transpot
=
hL

k
; (1.19)

where L expresses characteristics length, k stands for thermal conductivity and h indicates

coe¢ cient of convective heat transfer.

1.6 Heat transfer

Heat transfer governs the movement of thermal energy from regions of higher temperature to

those of lower temperature to attain equilibrium. Heat transfer plays a crucial role in various

natural and engineered systems, in�uencing everything from weather patterns and thermal

comfort to the design of e¢ cient cooling systems and heat exchangers. Three modes of heat

transfer are convection, conduction and radiation.

1.6.1 Conduction

Heat conduction is a process of energy transfer that takes place within a medium, driven

by the dynamic interaction of its constituent molecules. At the molecular level, conduction

phenomenon arises from the collision of molecules with varying kinetic energies. When molecules

with greater kinetic energy collide with particles possessing lower kinetic energy, the particles

with lower kinetic energy absorbs energy, leading to an overall transfer of thermal energy across

the medium. The rate of conduction is calculated as follows:

Qconduction =
kA(Thotter � Tcolder)

s
; (1.20)

where k stands for thermal conductivity, A de�nes the area, s represents thickness of body,

Thotter and Tcolder portray temperatures of hotter and colder regions respectively.
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1.6.2 Convection

Convection is termed as the motion of �uid particles from regions with higher thermal energy

towards the regions possessing lower thermal energy. The density di¤erence of the �uid mole-

cules is main cause for heat convection. Depending upon the nature of �ow, convection exhibits

three types i.e. mixed convection, natural (free) convection and forced convection. Newton�s

law of cooling elucidates heat transfer mechanism as:

Qconvection = Ahf (Tw � Ts); (1.21)

where coe¢ cient of heat transfer is represented as hf , Tw and Ts indicate surface temperature

and surrounding temperature respectively.

1.6.3 Radiation

Radiation refers to the transmission of thermal energy through the emission and transmission

of photons of light in visible and infrared portion of electromagnetic spectrum. All bodies

constantly emit heat energy by the phenomenon of radiation and it does not require any medium

to take place.

1.7 Methodology

1.7.1 Shooting technique

The shooting method converts the system of PDEs into a system of ordinary di¤erential equa-

tions (ODEs) by assuming initial conditions at one end of the domain and integrating the ODEs

forward until they match the boundary conditions at the other end. By iteratively adjusting

the initial conditions, the shooting method seeks to �nd the correct values that satisfy both

the boundary conditions and the original system of PDEs. This iterative approach provides

a robust and e¢ cient way to obtain numerical solutions for complex nonlinear PDE systems,

making it a valuable tool in the realm of computational mathematics and engineering simula-

tions. The NDSolve function in Mathematica is a built-in powerful numerical solver that plays

a fundamental role in solving ordinary and partial di¤erential equations (ODEs and PDEs)

11



within the context of shooting technique. Developed by Wolfram Research, Mathematica is

a comprehensive computational software system widely utilized by researchers, engineers and

mathematicians for various mathematical and symbolic computations.

1.8 Literature review

Nano�uids is a state of the art class of colloidal suspensions, that turned out to be a primary

�eld of study which blends the wonders of nanotechnology with �uid dynamics. In contrast to

conventional �uids, these �uids are composed of nanosized particles (nanoparticles) infused into

a base �uid. These nanoparticles can be derived from a broad variety of substances including

metals, non-metals, and metal oxides etc. whereas routine base liquids are oil, water and ethyl-

ene glycol etc. This infusion of nanoparticles into base liquid results in a versatile �uid medium

featuring upgraded thermal conductivity contrary to conventional heat transfer �uids. Due

to their exceptional features, nano�uids revolutionized various industries including automotive

industry, electronics, energy systems and medical industry. In automotive industry nano�uids

are engaged for upgrading the cooling e¢ ciency of heat engines, improving performance of heat

exchangers and radiators. In electronics and energy systems nano�uids are engaged to dissipate

heat from electronic devices making them last longer. In energy storage devices nano�uids aid

in e¤ective thermal management such as enhancing the e¢ ciency of solar panels. Moreover, in

medical industry nano�uids plays in crucial role in optimizing targeted diagnostics, drug deliv-

ery and bioimaging. Due to their promising utilization in industry, �uids comprising nano-sized

particles gained exceptional attention of the researchers. Choi [1] was the explorer who laid

the groundwork for the evolution of nano�uids as a new category of thermal transmitted �uids.

He proposed the idea that adding small amounts of nanoparticles to a �uid could dramatically

enhance its thermal conductivity. Soon after this, Kim et al. [2] investigated the convective

instability and heat transmission properties of nano�uids. Buongiorno [3] documented a study

to explain the convective heat transmission in nano�uids. Tiwari and Das [4] examined the heat

transfer performance of a square cavity �lled with nano�uid under di¤erentially heated condi-

tions. The study also investigates the in�uence of the lid-driven motion on the heat transfer

performance of the nano�uid. Buongiorno�s work [3] was extended by Khan and Pop [5] in re-
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gard to boundary layer nano-liquid �ow over a stretchable sheet. The examination explored the

e¤ects of various parameters such as the stretching rate, nanoparticle volume fraction, thermal

conductivity and heat transfer characteristics of the nano�uid. The heat and mass transmission

phenomenon of nano�uid �ow past a vertical plate under natural convection conditions were

elaborated by Kuznetsov et al. [6]. Cu-H2O based nano�uid was evaluated and documented

by Raza et al. [7], by taking into account the impact of Brownian motion and thermophoresis,

which are two unique properties of nano�uids. Further literature can be seen [8� 10].

Carbon nanotubes (both single and multiple-walled) are one of the most fascinating and

promising materials of our time. These incredibly small tubes are made up of carbon atoms,

arranged in a unique way that creates a strong, �exible and highly conductive structure. They

are so small that they are measured in nanometers or billionths of a meter. Carbon nanotubes

have the strength to revolutionize a broader aspect of industries from electronics to medicine

to energy. They are already being used in everything from super-strong materials to ultra-

fast computer chips and scientists are constantly discovering new ways to harness their unique

properties. Maxwell [11] conducted a formal investigation on carbon nanotubes, exploring their

e¤ects on electricity and magnetism. Later on, Xue [12] developed a model to predict the ther-

mal conductivity of CNT-based composites. The model takes into account the microstructure

of the composites, including the orientation, length and concentration of the CNTs as well as

the thermal conductivity of the surrounding matrix material. Khan et al. [13] investigated

the dynamics of Stoke�s �rst problem for CNTs suspended nano�uids in the presence of slip

boundary condition. The results of the study show that the inclusion of CNTs enhances the

heat transmission rate and the skin friction coe¢ cient, while slip boundary condition has a

prominent impact on the �uid �ow and heat transfer performance of the nano�uid. Hayat et

al. [14] investigated the radiation e¤ects for nano�uid �ow over a rotating disk in the presence

of carbon nanotubes (CNTs) and partial slip. A mathematical model to analyze the behavior

of CNT-based nanomaterial �ow in the presence of two coaxially circulating disks was unveiled

by Khan et al. [15]. The results of the study show that the existence of CNTs enhances the

heat transmission rate and reduces the occurrence of entropy, while a¤ecting the �ow and tem-

perature �elds of the nanomaterial. Acharya et al. [16] scrutinized the mixed convective �ow

of carbon nanotubes (CNTs) over a convectively heated curved surface. Due to the prominent
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applications of carbon nanotubes many researchers tried to harness the properties of CNTs

[17� 20]:

Driven by their potential to revolutionize a wide range of industry, the study of non-

Newtonian �uids have become the principal subject for the researchers working in the �eld.

When researching non-Newtonian �uids with complexity beyond Newtonian behavior, the

second-grade �uid model is of utmost signi�cance. It helps to better understand and char-

acterize viscoelastic �uids by giving important insights about �ow characteristics of substances

like polymer solutions. The second-grade �uid model is crucial in various industries, includ-

ing polymer processing, biomedical engineering and oil drilling, where precise �uid behavior

predictions are necessary for the best design and performance. It can describe shear-thinning

and shear-thickening behaviors. In recent times Hayat and Sajid [21] ampli�ed second-grade

axisymmetric �uid �ow past an elastic sheet. Saif et al. [22] given thought to a stagnation

point stream of a second-grade nano-material in the vicinity of non-linear extending surface

with a �uctuating thickness. Hayat et al. [23] given an explanation of second-grade �uid �ow

across a porous surface. Radiative stream of a second-grade nano�uid overtop an extending

surface was illustrated by Jamshed et al. [24]. The Stefan blowing impact was incorporated by

Gowda et al. [25] to investigate the second-grade �uid �ow overtop a curved elastic surface. In

�uid �ow systems where yield stress and viscosity are important components, the Casson �uid

model is essential for understanding non-Newtonian �ow behavior. Its importance is in pre-

cisely forecasting the �ow properties of complicated materials like blood, pigments and speci�c

food items. The Casson �uid model helps us better understand �uid dynamics and facilitates

process optimization in a variety of sectors by taking the yield stress into consideration. S.

Pramanik [26] investigated the heat transfer for Casson �uid �ow of boundary layer description

incorporating thermal radiation e¤ect. Gireesha et al. [27] conducted heat and mass transfer

study for MHD Casson �uid �ow of boundary layer description through a permeable stretched

sheet via a porous material. Ali et al. [28] investigated the impacts of multi-slip e¤ects on the

magnetohydrodynamics (MHD) time-dependent Casson nano-�uid �ow passing a penetrable

stretched sheet embedded in a porous medium having suction/injection thermal di¤usion ef-

fect. Keeping radiation e¤ect in mind, Nandeppanavar et al. [29] examined transfers of heat

and mass of Casson �uid �ow across a moving vertical plate with convective surface conditions.
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M.M. Alqarni et al. [30] studied the sway of second-order chemical reaction, thermal radiation,

buoyancy and heat source of a Casson �uid overtop a circular disk and estimated its numerical

solution.

Numerous real-world applications are associated with boundary-layer �ow across a �exible

surface in manufacturing, engineering, and industrial processes such as in the creation of paper,

the processing of food, the production of �berglass, the drawing of wires and plastic �lms,

the condensation of liquid �lms, the development of crystals, the production and extraction of

polymers, the fabrication of rubber sheets, etc. Moreover, several engineers and scientists are

interested in designing and developing new appliances with rapid heating and cooling. Sakiadis

[31] started the investigation of �ow with boundary layer description due to a stretchable sheet

and presented the numerical �ndings. Along a stretched sheet, Crane [32] investigated the 2-

Dimensional (2-D) laminar �ow of a incompressible viscous �uid. Several attempts have been

made to realize this goal through theoretical and practical means, but all of these investigations

have focused on linear and non-linear stretching of surfaces, whereas �uid �ow through curved

stretching surfaces has largely gone unresearched. Sajid et al. [33] were the �rst to provide an

investigation on �uid �ow with respect to a curved stretching surface. With subject to a curved

elastic sheet, Saif et al. [34] illustrated the Darcy-Forchheimer �ow of a viscous �uid utilizing

the concept of homogenous-heterogenous reactions. Saba et al. [35] explored a 2-D boundary

layer radiative �ow and heat transport under the impact of internal heat generation. Rabeeah

et al. [36] examined the e¤ects of heat radiation on the incompressible steady Williamson �uid

�ow overtop a curved stretching surface.

1.9 Research objectives

The primary objectives of the research are listed as:

� To compare the �uid �ows owing to Casson �uid model and second-grade �uid model

�owing overtop a curved extendable surface.

� To scrutinize the impacts of carbon nanotubes on physical and thermal properties of

non-Newtonian �uids, particularly Casson �uid and second-grade �uid.
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� To capture the in�uence of thermal radiation and internal heat generation on thermal

transmission.

� To investigate the in�uence of varying solid volume fractions of carbon nanotubes on

physical properties of the base �uid.
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Chapter 2

Impact of thermal radiation and internal heat generation on

Casson nano�uid �owing by a curved stretchable surface 

with  suspension of carbon nanotubes 

In this chapter heat transmission of radiative nano�uid is inspected in regard to boundary

layer description. Carbon nanotubes (CNTs) dependent �uid is being evaluated and it �ows

overtop a curved stretching surface. Special features, like thermal radiation and internal heat

generation, which corresponds to heat transmission along the �ow have been incorporated.

Dual nature of carbon nanotubes, that is, single walled carbon nanotubes (SWCNTs) as well as

multiple walled carbon nanotubes (MWCNTs) together with Casson �uid (base �uid) have been

utilized for the composition of nano�uid. Appropriate transformations have been applied to

reduce the modelled system of nonlinear partial di¤erential equations into a system of ordinary

di¤erential equations (ODEs). To achieve the desired numerical solution of obtained system of

ODEs, NDSolve technique is employed using Mathematica. Numerous parameters appearing in

governing equations, exert in�uence on focused physical quantities. Graphs have been engaged

to capture these variations for both SWCNTs and MWCNTs. Likewise, numeric charts have

been displayed to investigate impressions on skin friction coe¢ cient and Nusselt number for

distinct parameters.
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2.1 Mathematical analysis

The �ow under consideration is 2-D steady incompressible nano�uid overtop a curved stretching

sheet at rd = R�c . To model the governing equations, curvilinear coordinates (rd; sd) have been

employed. Nano�uid under inspection is produced by adding nano-sized particles of carbon

nanotubes (SWCNTs and MWCNTs) to blood (base �uid). Moreover, thermal transmission

phenomenon is also taken into account via internal heat generation as well as thermal radiation.

Fig. (2:1) elucidates that the curved boundary being elongated in sd direction linearly with

velocity xs = asd.

Fig. (2:1) Geometrical view of the problem

Under boundary layer approximation, the equations governing the �ow are stated as:

@

@rd
((rd +R

�
c)xr) +R

�
c

@xs
@sd

= 0; (2.1)

x2s
rd +R�c

=
1

�nf

@P

@rd
; (2.2)

xr
@xs
@rd

+
R�cxs
rd +R�c

@xs
@sd

+
xsxr
rd +R�c

= � 1

�nf

R�c
rd +R�c

@P

@sd
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= �nf
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�
c)

@
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(rd +R

�
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(�Cp)nf
( ~T � ~T1): (2.4)

The associated boundary conditions are as follows:

xs = asd; xr = 0; ~T = ~Tw at rd = 0;

xs ! 0; @xs@rd
! 0; ~T ! ~T1 as rd !1:

9=; (2.5)

where xr and xs are velocities in rd and sd directions respectively, R�c is the radius of curvature

of curved sheet, base �uid�s (Casson �uid) temperature is represented as ~T , free stream tem-

perature is expressed as ~Tw, dimensionless pressure as P , radiative heat �ux as �qr, volumetric

rate of heat generation due to heat source as .

Rooseland�s [41] approximation yields radiative heat �ux term as

qr = �
4�

3aR

@ ~T 4

@rd
: (2.6)

where aR is the coe¢ cient for Rooseland mean approximation and �� is Stefan-Boltzmann con-

stant. Temperature deviation is considered in such a fashion that ~T 4 can be expanded about

~T1 using Taylor series expansion. Ignoring higher order terms:

~T 4 � 4 ~T 31 ~T � 3 ~T 41: (2.7)

Now using Eq. (2:6) and Eq. (2:7) in Eq. (2:4) we get:

xr
@ ~T

@rd
+

R�cxs
rd +R�c

@ ~T

@sd
=

knf
(�Cp)nf

 
1 +

16�� ~T 31
3aRkf (knf=kf )

! 
@2 ~T

@r2d
+

1

rd +R�c

@ ~T

@rd

!
+



(�Cp)nf
( ~T � ~T1): (2.8)

Taking RD = 16�� ~T 31
3aRkf

as correspondence to radiation parameter, following Magyari and Pan-
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tokratoras [42], Eq. (2:8) becomes:

xr
@ ~T

@rd
+

R�cxs
rd +R�c
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=
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�3

1
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1 +
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+

1
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+



(�Cp)nf
( ~T � ~T1); (2.9)

where Pr = �f
�f
, stands for Prandtl number. To simplify the governing equations, we employ

the following similarity variables:

xs = asdf
0(�); xr = � R�c

rd+R�c

p
a�ff(�); � =

q
a
�f
rd;

P = �a2s2dP (�);
~T = ~T1 +

Asd
l �(�); �(�) =

~T� ~T1
~Tw� ~T1

:

9=; (2.10)

With the help of Eq. (2:10); Eq. (2:1) is trivially satis�ed and Eqs. (2:2); (2:3) and (2:9) can

be written as:
@P

@�

1

�1
=

f 02

� + �
; (2.11)
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where � =
q

a
�f
R�c stands for dimensionless radius of curvature and �1 =


a(�Cp)f

de�nes heat

generation parameter. Further parameters �1;�2 and �3 are formulated as:

�1 = 1� �+ ��CNT�f
;

�2 =
1

(1��)2:5
�
1��+� �CNT

�f

� ;
�3 = 1�

�
1� (�Cp)CNT

(�Cp)f

�
�:

9>>>>>=>>>>>;
(2.14)

The utilization of Eq. (2:10) transform the boundary conditions into dimensionless form as:

f(0) = 0; f 0(0) = 1; �(0) = 1; f 0(1) = 0; f 00(1) = 0; �(1) = 0: (2.15)
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Getting rid of pressure from Eq. (14) and Eq. (15) we get:

�
1 +

1

�c

��
f iv +

2

� + �
f 000 � 1

(� + �)2
f 00 +

1

(� + �)3
f 0
�

+
1

�2

�
�

� + �

�
ff 000 � f 0f 00

�
+

�

(� + �)2

�
ff 00 � f 02

�
� �

(� + �)3
ff 0
�
= 0; (2.16)

whereas expression for pressure can be obtained as follows:

P =
� + �

2�
�1

0@ �
�
�+�ff

00 � �
�+�f

02 + �
(�+�)2

ff 0
�

+�2

�
1 + 1

�c

��
f 000 + 1

�+�f
00 � 1

(�+�)2
f 0
�
1A : (2.17)

Table 2.1. Thermophysical characteristics of Casson �uid and carbon nanotubes (SWCNTs

and MWCNTs).

�(Kgm�3) Cp(Jkg
�1K�1) k(Wm�1K�1)

Casson Fluid 1053 3594 0:492

SWCNTs 2600 425 6600

MWCNTs 1600 796 3300

The skin-friction coe¢ cient (Cf ) as well as local Nusselt number (Nusd) in sd direction are

de�ned as:

Cf =
� rdsd
�fu

2
w

; Nusd =
sd�qw

kf ( ~Tw � ~T1)
; (2.18)

where uw is velocity in sd-direction, � rdsd and �qw describes wall shear stress as well as wall heat

�ux in sd direction respectively as follows:

� rdsd = �nf

�
1 + 1

�c

��
@xs
@rd

� xs
rd+R�c

����
rd=0

;

�qw = �knf
�
1 + 16�� ~T 31

3aRkf (knf=kf )

�
@ ~T
@rd

���
rd=0

:

9>=>; (2.19)

Upon employing Eq. (2:10) and Eq. (2:19) into Eq. (2:18) one can obtain dimensionless
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expressions for skin-friction coe¢ cient and local Nusselt number respectively as follows:

Re
1=2
sd Cf =

1
(1��)2:5

�
1 + 1

�c

��
f 00(0)� f 0(0)

�

�
;

Re
�1=2
sd Nusd = �

knf
kf

�
1 + RD

(knf=kf )

�
�0(0);

9=; (2.20)

where Resd =
as2d
�f
expresses Reynold�s number.

2.2 Numerical solution and discussion

The evaluation of the exact solution for derived non-linear system of Eqs. (2:11), (2:13) and

(2:16) with boundary conditions (2:15) is a bit hard assignment. An e¢ cient numerical tech-

nique, namely, the shooting technique via software MATHEMATICA is utilized to get the

solution. Boundary value problem is converted into initial value problem with �rst-order di¤er-

ential equations with few missing initial constraints under the umbrella of this technique. These

missing initial constraints are selected in such a way that they must be satis�ed the asymptotic

boundary conditions. Meanwhile, Table 2.1 is also utilized to evaluate Eq. (2:14) which is in-

corporated to evaluate the exact solution for derived non-linear system of equations. Table 2.3

is generated to assess the e¤ectiveness and accuracy of the numerical technique employed in this

study. This table guarantees the validity of employed numerical technique by showcasing that

our outcomes using shooting method aligns closely with results in existing literature obtained by

Runge�Kutta�Fehlberg fourth��fth-order method. Table 2.4 serves to present a comprehensive

comparison between our results and the �ndings in existing literature, which shows an excellent

agreement. After getting the solution, this portion is compiled to investigate the actions of nu-

merous e¤ectual parameters including dimensionless radius of curvature (�), Casson parameter

(�c), solid volume fraction of carbon nanotubes (�), internal heat generation parameter (�1),

radiation parameter (RD) and Prandtl number (Pr) on velocity f 0(�) and temperature �(�)

pro�les. The action of dimensionless radius of curvature (�) on velocity pro�le is presented in

Fig. (2:2). For higher estimation of (�), the viscous force declines and the �uid encounters less

frictional force among its particles, which allows �uid to move at higher velocity. Ultimately the

velocity �eld increases for both single and multi-walled CNTs. The trends for velocity pro�le

for solid volume fraction (�) of carbon nanotubes is revealed in Fig. (2:3). A con�dent in�ation
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in velocity has been perceived as the solid volume fraction of CNTs is increased. Greater solid

volume fraction of carbon nanotubes implies enhanced thermal conductivity of �uid, which cor-

responds to higher velocity of �uid. Moreover it has been recorded that SWCNTs have slightly

less velocity as compared to MWCNTs due to greater density values of MWCNTs. These larger

density values enhanced resistance within �uid. Therefore, the velocity for SWCNTs is lower

as compared to MWCNTs. Fig. (2:4) portrays the e¤ect of Casson parameter (�c) on velocity

pro�le. It can be concluded that increment in �c causes a decline in velocity pro�le. Actually an

increment in �c causes higher drag force, which corresponds to slow liquid movement within the

boundary layer, which is the reason of decline in �uid�s velocity. Fig. (2:5) elucidates impacts

of (�) on temperature pro�le �(�). Physically greater values of � reduces the viscous force (i.e.

decay in �uid�s kinematic viscosity), which corresponds to declination of �(�). As the �uid�s

kinematic viscosity decays, �uid mobility gets enhanced and it moves faster leading to thinner

thermal boundary layer. This leads to improved convective heat transfer and more enhanced

exchange of thermal energy between �uid and its surroundings. So declination of �(�) is cer-

tain. Action of heat generation parameter (�1) on temperature pro�le �(�) is revealed in Fig.

(2:6). It is certain that increase in the values of (�1) causes an upsurge in temperature. Heat

generation parameter (�1) contains heat generation coe¢ cient. One can easily understand that

increment in (�1) corresponds to higher value for heat generation coe¢ cient which implies that

surface temperature is greater than free stream temperature. So the heat is transferred from

sheet to �uid, hence increase in temperature is quite evident. Fig. (2:7) elucidates the trends

of temperature pro�le �(�) in consequence of higher values of the solid volume fraction (�) of

carbon nanotubes. It can be viewable that temperature of the �uid as well as thermal boundary

layer increases by increasing (�). CNTs (both single and multi-walled) carries low speci�c heat

and higher thermal conductivity which allows them to e¢ ciently absorb and conduct heat. So

increasing their volume in nano�uid intensi�es �uid�s temperature signi�cantly. Trends in Fig.

(2:8) reveal the behavior of temperature pro�le caused by increasing the values of radiation

parameter (RD). As predicted, the �uid�s temperature rises quite signi�cantly as an increase

in RD. The radiation parameter (RD) contains mean absorption coe¢ cient which declines as

increase in RD consequently the heat transfer rate seems increases at every point away from

sheet. When using pure blood as base �uid, it�s worth noting that the Prandtl number of
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blood is 21, which is very high as compared to water and other common base �uids. Prandtl 

number is the ratio of momentum dixousivity to thermal di¤usivity that�s why its larger values

decline the temperature distribution. Fig. (2:9) reveals that the pressure inside the boundary 

layer rises as a result of an increase in dimensionless curvature (i.e. decrease in the value of �).

However, it can be noticed that pressure approaches towards zero distant from boundary. This 

is due to the certainty that streamlines far away from boundary adopt the same �ow pattern

as in case for �at stretching sheet. Moreover, one can see from Fig. (2.10) that pressure �uc-

tuations near and far o¤ from boundary are unimportant for the case of �at stretching surface

(i.e. � = 1000), whereas the pressure is not constant for the case of curved surface. Therefore 

a de�nite variation in pressure is recognized, extremely inside the boundary layer.

  Fig. (2:11) is generated to observe the impact of dimensionless radius of curvature (�) on skin 

friction coe¢ cient for both single and multi-walled carbon nanotubes. For higher estimation of

(�), the viscous force declines and as a consequence the resisting force declines among particles. 

So a decrease in values for skin friction coe¢ cient is obvious. Fig. (2:12) shows the action of 

dimensionless radius of curvature (�) on local Nusselt number. It can be seen that the value 

for local Nusselt number increases as an increase in (�).

Table 2.2 depicts the action of numerous parameters including Casson parameter (�c), solid

volume fraction of carbon nanotubes (�), internal heat generation parameter (�1) and radiation

parameter (RD). As Casson parameter (�c) contains plastic viscosity (�B), a rise in Casson

parameter (�c) causes a certain rise in surface drag force (Cf ). So it can be deduced that

augmentation of (�c) enhances the surface drag force (Cf ) for both single and multi-walled

carbon nanotubes. While on the other hand augmentation of (�c) causes a decrease in local

heat �ux which corresponds to lower heat transfer. So it is certain that local Nusselt number

declines as an increase in Casson parameter (�c). Furthermore, it can be noticed that an upsurge

in heat generation parameter (�1) causes no signi�cant change in skin friction coe¢ cient (Cf )

for both SWCNTs and MWCNTs. Heat generation parameter (�1) contains heat generation

coe¢ cient. One can easily perceive that upsurge in (�1) causes a considerable rise in heat

generation. So surface temperature becomes greater then free stream temperature. Hence heat

is transferred from sheet to �uid, which corresponds a rise in �uid�s temperature. Due to rise

in temperature of �uid declination of heat transfer is certain, which implies that rise in (�1)
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causes a decline in local Nusselt number.

Similarly from Table 2.2, it has been perceived that rate of heat �ux raises as an upsurge in

radiation parameter (RD) contains mean absorption coe¢ cient which generates as rise in (RD).

For this reason, the heat transfer rate seems increasing at every point away from sheet. So the

local Nusselt number gets ampli�ed as an increase in radiation parameter (RD). However, there

is no signi�cant change in skin friction coe¢ cient due to a variation in radiation parameter (RD).

As CNTs (both single and multi-walled) carry low speci�c heat and higher thermal conductivity

then Casson �uid (base �uid). So increasing their volume (�) in nano�uid ampli�es the �uid�s

temperature signi�cantly. Due to rise in temperature heat �ux declines. So it turns out that

local Nusselt number declines as an upsurge in solid volume fraction of nanoparticles. Moreover,

enhanced values for solid volume fraction (�) of CNTs drives a considerable decrease in skin

friction coe¢ cient.

Fig. (2:2) Action of (�) on f 0(�) Fig. (2:3) Action of (�) on f 0(�)
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Fig. (2:4) Action of (�c) on f 0(�) Fig. (2:5) Action of (�) on �(�)

Fig. (2:6) Action of (�1) on �(�) Fig. (2:7) Action of (�) on �(�)
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Fig. (2:8) Action of (RD) on �(�) Fig. (2:9) Action of (�) on P (� )

27
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Fig. (2:11) Action of (�) on (Cf )

Fig. (2:12) Action of (�) on (Nu)
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Table 2.2. Numerical data for local Nusselt number and skin friction coe¢ cient for various

parameters.

SWCNTs MWCNTs

� �c �1 RD Re
1=2
sd Cf Re

�1=2
sd Nusd Re

1=2
sd Cf Re

�1=2
sd Nusd

0:1 1 0:1 0:1 �2:38323 1:04614 �2:33355 1:0567

0:2 �3:07012 # 1:01474 # �2:96891 # 1:03364 #

0:3 �4:09148 # 0:983947 # �3:93757 # 1:00957 #

0:4 �5:72829 0:953411 �5:52152 0:984876

0:1 1 0:1 0:1 �2:38323 1:04614 �2:33355 1:0567

1:5 �2:08439 " 1:03143 # �2:03532 " 1:04305 #

2 �1:93374 " 1:02182 # �1:88596 " 1:0341 #

2:5 �1:84278 1:01506 �1:79557 1:0278

0:1 1 0:1 0:1 �2:38323 1:04614 �2:33355 1:0567

0:2 �2:38323 � 0:952682 # �2:33355 � 0:965403 #

0:3 �2:38323 � 0:826032 # �2:33355 � 0:843538 #

0:4 �2:38323 0:600795 �2:33355 0:635055

0:1 1 0:1 0:1 �2:38323 1:04614 �2:33355 1:0567

0:3 �2:38323 � 1:11794 " �2:33355 � 1:12947 "

0:5 �2:38323 � 1:18451 " �2:33355 � 1:19687 "

0:7 �2:38323 1:2475 �2:33355 1:26055

Table 2.3. Error analysis of the values of �Re1=2sd Cf to address the validity of numerical

method with RD = �c = �1 = 0.

Nagaraja et al. [44] Current study

� � SWCNTs MWCNTs

Percentage relative

absolute difference

0:0 5 1:15764 1:15763 1:15763 0:000864%

10 1:07349 1:07349 1:07349 0%

30 1:02352 1:02353 1:02353 0:000977%

50 1:01407 1:01405 1:01405 0:001972%
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Table 2.4. Comparative analysis of the values of �Re1=2sd Cf for distinct numerics of � and

� with RD = �1 = 0 and �c ! 0.

Abbas et al. [43] Saba et al. [35] Current study

� � SWCNTs MWCNTs SWCNTs MWCNTs

0:0 5 1:15763 1:15763 1:15763 1:15763 1:15763

10 1:07349 1:07349 1:07349 1:07349 1:07349

50 1:01405 1:01405 1:01405 1:01405 1:01405

1000 1:00079 1:00079 1:00079 1:00079 1:00079

0:1 5 � 1:43781 1:38677 1:43707 1:38669

10 � 1:32577 1:27251 1:32569 1:27247

50 � 1:27579 1:22190 1:27549 1:22186

2.3 Conclusions

This exploration consists the heat transmission through a radiative �ow of boundary layer

description together with internal heat generation of Casson nano�uid comprised of carbon

nanotubes (SWCNTs and MWCNTs) overtop a curved stretching sheet. Featured points are

listed as follow:

� The velocity pro�le f 0(�) rises as an increase in solid volume fraction (�) and dimensionless

radius of curvature (�) whereas an opposite trend is noticed for higher values of Casson

parameter (�c).

� The temperature of �uid �(�) rises due to rise in heat generation parameter (�1), solid

volume fraction (�) and radiation parameter (RD) however a reverse behavior is seen for

varying values of dimensionless radius of curvature (�). .

� For higher values of dimensionless radius of curvature (�) opposite action is noticed for

skin friction coe¢ cient and local Nusselt number for both single and multi-walled carbon

nanotubes.

� The skin friction coe¢ cient diminishes due to rise in dimensionless radius of curvature

(�) and solid volume fraction (�) for both CNTs whereas an opposite trend is noticed
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for higher values of Casson parameter (�c) and it remains invariant for di¤erent values of

heat generation parameter (�1) and radiation parameter (RD)

� Local Nusselt number diminishes for higher values of Casson parameter (�c), internal

heat generation parameter (�1) and solid volume fraction (�) however a reverse trend is

noticed for dimensionless radius of curvature (�) and radiation parameter (RD).
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Chapter 3

Second-grade �uid with carbon nanotubes �owing over a

curved stretchable surface possessing thermal radiation 

and internal heat generation e¤ects

In this chapter heat transmission of radiative nano�uid with reference to boundary layer nature

is analyze. Carbon nanotubes (CNTs) reliant liquid is being tested and it �ows on top of a

curved extending surface. To scrutinize thermal transmission through the �ow additional im-

pacts of thermal radiation as well as internal heat generation have been incorporated. Dual na-

ture of CNTs, that is, single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) have

been employed in conjunction with slurry mixture (base �uid) for the formulation of nano�uid.

Second-grade �uid model is deployed to capture the rheological properties of nano�uid. To

acquire the numerical solution of designed mathematical model, NDSolve approach is engaged

using software Mathematica. Various parameters occurring in governing equations makes an

impact on focused physical quantities. Graphs have been employed to capture these impacts for

both SWCNTs and MWCNTs. In like manner the impact of numerous factors on skin friction

coe¢ cient as well as Nusselt number have been examined using numerical charts.

Mathematical analysis3.1

The �ow under inspection is 2D-steady incompressible �ow overtop a curved extending sheet

at rd = R�c : Curvilinear coordinates have been engaged to model the governing equations.

Nano�uid being studied is composed by introducing nano-sized particles of carbon nanotubes

32



(SWCNTs and MWCNTs) to second grade �uid (base �uid). Moreover e¤ects of internal

heat generation and thermal radiation have also been utilized to inspect the process of thermal

transmission. The curved sheet is being stretched linearly in sd direction with velocity xs = asd;

where a > 0 is the stretching constant. The free stream temperature and sheet�s temperature

are represented as T1 and ~Tw respectively.

The second-grade �uid possess an extra stress tensor [24] de�ned as

� = �pI+�A1 + �1A2 + �2A21; (3.1)

where p denotes pressure, I indicates identity tensor, �� is dynamic viscosity, �j(j = 1; 2)

are second grade material constants and the �rst two Rivlin-Ericksen tensors A1 and A2 are

described as
A1 = (gradV)

t + (gradV);

A2 = A1(gradV) +
dA1
dt + (gradV)

tA1;

9=; (3.2)

in which d=dt is material time derivative and V is the velocity vector. This fact should be

noticed that when �1 = �2 = 0; the fundamental equation for second grade �uid reduces to

that of viscous �uid. Employing the above assumption under boundary layer approximation,

the equations that govern the �ow are expressed as:
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xr
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R�cxs
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�
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(3.6)

The associated constraints are as follows:

xs = asd; xr = 0; ~T = ~Tw at rd = 0

xs ! 0; @xs@rd
! 0; ~T ! ~T1 as rd !1

9=; (3.7)

where xr and xs are velocities along rd and sd directions respectively, for the curved sheet R�c

indicates its radius of curvature, ~T stands for base �uid�s (second grade �uid) temperature, P

for dimensionless pressure, qr for radiative heat �ux,  for rate of volumetric heat generation

caused by heat source.

The term for radiative heat �ux is estimated by Rooseland�s approximation [41] as:

qr = �
4��

3aR

@ ~T 4

@rd
(3.8)

where aR denotes the coe¢ cient for Rooseland mean approximation and � is Stefan-Boltzmann

constant. Temperature variation is taken into account in such fashion that ~T 4 can be expanded

about ~T1 using Taylor series expansion while omitting terms of higher order:

~T 4 � 4 ~T 31 ~T � 3 ~T 41 (3.9)

Now using Eq. (3:8) and Eq. (3:9) in Eq. (3:6) we get:
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(�Cp)nf
( ~T � ~T1) (3.10)

Taking RD =
16�� ~T 31
3aRkf

as radiation parameter [42], Eq. (3:10) takes the form:
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(�Cp)nf
( ~T � ~T1) (3.11)

where Pr = �f
�f
, symbolizes Prandtl number. To simplify the governing equations, we engage

the following similarity variables:

xs = asdf
0(&); xr = � R�c

rd+R�c

p
a�ff(&); & =

q
a
�f
rd

P = �a2s2dP (&);
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Asd
l �(&); �(&) =

~T� ~T1
~Tw� ~T1

9=; (3.12)

With the help of Eq. (3:12); Eq. (3:3) is trivially satis�ed and Eq. (3:4); Eq. (3:5) and Eq.

(3:11) can be written as:
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where � =
q

a
�f
R�c symbolizes dimensionless radius of curvature and �1 =


a(�Cp)f

stands for

heat generation parameter. Further parameters �1;�2 and �3 are formulated as:

�1 = 1� �+ ��CNT�f
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�
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(3.16)
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The utilization of Eq. (3:12) transforms Eq. (3:7) into dimensionless form as:

f(0) = 0; f 0(0) = 1; �(0) = 1;

f 0(1) = 0; f 00(1) = 0; �(1) = 0:

9=; (3.17)

Getting rid of pressure from Eq. (3:13) and Eq. (3:14) we get:
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Ultimately, pressure P can be obtained as follows:
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Table 3.1. Thermophysical characteristics of carbon nanotubes (SWCNTs and MWCNTs)

are tabulated as:

�(Kgm�3) Cp(Jkg
�1K�1) k(Wm�1K�1)

SWCNTs 2600 425 6600

MWCNTs 1600 796 3300

In sd-direction, the skin-friction coe¢ cient (Cf ) as well as local Nusselt number (Nusd) are

de�ned as:

Cf =
� rdsd
�fu

2
w

; Nusd =
(sdqw)=kf

( ~Tw � ~T1)
(3.20)

where uw is velocity in sd-direction, � rdsd and �qw describes shear stress as well as heat �ux at

curved stretchable surface in sd-direction respectively as follows:
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(3.21)

Employing Eq. (3:12) in Eq. (3:20) and Eq. (3:21) we get expressions for skin-friction coe¢ cient

as well as local Nusselt number as:

Re
1=2
sd Cf =

1
(1��)2:5 2

�
f 00(0)� f 0(0)

� + �1

�
�2f

0(0)2

� + f 0(0)f
00
(0)
��
;

Re
�1=2
sd Nusd = �

knf
kf

�
1 + RD

(knf=kf )

�
�0(0)

9=; (3.22)

where Resd =
as2d
�f
expresses local Reynolds number.

3.2 Numerical solution and discussion

The assessment of exact solution for the resultant system of non-linear Eqs. (3:13), (3:15)

and (3:18) together with boundary conditions (3:17) is a tedious task. A well systematic

technique namely, shooting method is engaged using software MATHEMATICA to get the

numerical solution. Under the aegis of this approach, a boundary value problem (BVP) is

transformed into an initial value problem (IVP) with �rst-order di¤erential equations with a
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minimal number of lacking initial constraints. These lacking initial constraints are selected in

such a way that they must satisfy the asymptotic boundary constraints. Table 3.3 is generated

to assess the e¤ectiveness and accuracy of the numerical technique employed in this study.

This table guarantees the validity of employed numerical technique by showcasing that our

outcomes using shooting method aligns closely with results in existing literature obtained by

Runge�Kutta�Fehlberg fourth��fth-order method. Table 3.4 serves to present a comprehensive

comparison between our results and the �ndings in existing literature, which shows an excellent

agreement. After achieving the solution, this section is compiled to explore the e¤ects of

numerous parameters including dimensionless curvature (�), solid volume fraction of CNTs

(�), heat generation parameter (�1), radiation parameter (RD) and Prandtl number (Pr) on

focused physical quantities i.e. velocity f 0(�) and temperature �(�) of �uid. The value for

Prandtl number for slurry mixture is chosen to be 5.83. The e¤ect of dimensionless curvature

(�) on �uid�s velocity f 0(�) is unveiled in Fig. (3:1). It can be seen that an upsurge in values

of dimensionless curvature (�) causes a decline in �uid�s velocity f 0(�). This is due to the fact

that value of � determines the �ow regime in curved surface. For low values of � (� << 1),

the �ow is considered to be in the "low-curvature" regime, where the e¤ects of curvature

are negligible. However, for high values of � (� >> 1), the �ow is in the "high-curvature"

regime, where curvature has a signi�cant in�uence on the �ow behavior. The in�uence of solid

volume fraction (�) of CNTs on velocity pro�le f 0(�) of nano�uid is unveiled in Fig. (3:2). A

certain in�ation has been noticed as the solid volume fraction (�) of CNTs is increased. As the

solid volume fraction (�) of CNTs in the �uid increases, the number of collisions between the

nanotubes and the �uid molecules also increases. These collisions cause the nanoparticles to

move around in a random manner, which is known as the Brownian motion e¤ect. This random

movement of the nanoparticles creates a more chaotic environment for the �uid molecules,

thereby enhancing their velocity. Moreover it has been noted that SWCNTs have slightly less

velocity as compared to MWCNTs due to greater density values of MWCNTs. Fig. (3:3)

portrays the in�uence of second-grade �uid parameter (�1) over �uid�s velocity f 0(�). As the

second-grade �uid parameter gets ampli�ed, the velocity rises. This is because the added

elasticity of the �uid can enhance its ability to resist deformation under shear. The �uid�s

higher elasticity allows it to absorb and store more energy, resulting in greater momentum
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transfer and increased velocity. Fig. (3:4) elucidates the impact of dimensionless curvature (�)

on temperature pro�le �(�). Physically larger values of (�) corresponds to reduction in viscous

force (i.e. decay in kinematic velocity of �uid). Decay in kinematic viscosity of �uid corresponds 

to lower heat transfer. Hence a declination in temperature pro�le �(�) is certain. Fig. (3:5)

unveils the action of solid volume fraction (�) of CNTs on temperature pro�le �(�). Carbon 

nanotubes (both single and multiple-walled) have relatively greater thermal conductivity and

lesser speci�c heat then base �uid (second grade �uid). So increasing their volume (�) in

nano�uid will cause a rise in �(�). Moreover as the volume fraction (�) of carbon nanotubes in 

the �uid increases, the movement of �uid molecules becomes more restricted and the frictional 

forces between the �uid and the solid particles increase. This increase in frictional forces results 

in an increase in heat generation, which raises the temperature of the �uid. Additionally, carbon 

nanotubes themselves can absorb heat and transfer it to the surrounding �uid, which can further

increase the temperature. Action on temperature pro�le �(�) by heat generation parameter (�1)

elucidates Fig. (3:6). The heat generation parameter (�1) is a measure of the amount of energy 

being generated per unit volume of the �uid. As the heat generation parameter (�1) increases,

the amount of energy being generated per unit volume of the �uid also increases. This leads to

an increase in the amount of heat energy transferred to the �uid, causing the temperature �(�)

of the �uid to rise. Fig. (3:7) depicts the sway of radiation parameter (RD) on temperature of

�uid �(�). As predicted, the �uid�s temperature ampli�es quite signi�cantly as an upsurge in

(RD). The radiation parameter (RD) comprises mean absorption coe¢ cient which reduces as 

increase in (RD) consequently the heat transfer rate seems increases at every point away from

sheet. Hence an increase in �uid�s temperature is certain. The e¤ect of dimensionless curvature

(�) on pressure pro�le P (�) is explained in Fig. (3:8). One can notice that an increment in value 

of (�) causes an upsurge in pressure inside the boundary layer. However pressure approaches 

to zero far away from the boundary. This is because as we move far from boundary the stream 

lines of �uid �ow conduct the same manner as for the case of �at stretching surface. Moreover 

it Fig. (3.9) guarantees that pressure variations can be neglected throughout the �ow for the

case (� = 1000) i.e. a �at stretching sheet, while it can not be neglected for curved surfaces.

Fig. (3:10) shows the impact of dimensionless curvature over skin friction coe¢ cient (Cf ). 

An ampli�cation in dimensionless curvature (�) leads to a rise in skin friction coe¢ cient (Cf ) in
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a �ow over a curved stretching surface due to the increased surface area of the curved surface.

As the dimensionless curvature (�) of the surface rises, the surface area also gets broadened,

which can lead to a higher skin friction coe¢ cient (Cf ). This is due to the fact that the

�uid molecules in contact with the surface experience a higher shear stress as the dimensionless

curvature (�) rises, resulting in a boost in skin friction coe¢ cient (Cf ). Fig. (3:11) portrays the

in�uence of dimensionless curvature (�) over local Nusselt number (Nusd). As the dimensionless

curvature of the surface rises (�), the surface area also expands, which can lead to a rise in the

convective heat transfer coe¢ cient and, subsequently, an increment in the local Nusselt number

(Nus). Additionally, the boundary layer thickness drops as the dimensionless curvature (�) of

the surface rises, resulting in an increment in heat transfer rate at the surface, which can also

contribute to a rise in the local Nusselt number (Nus). Table 3:2 displays how several factors

such as solid volume fraction of carbon nanotubes (�), radiation parameter (RD) and internal

heat generation parameter (�1) a¤ects skin-friction coe¢ cient (Cf ) and local Nusselt number

(Nusd). An increment in solid volume fraction of carbon nanotubes (�) reduces the skin friction

coe¢ cient (Cf ) due to the unique properties of carbon nanotubes. These properties, such as

their high aspect ratio and excellent thermal conductivity enhances the transfer of heat and

momentum in the �uid which leads to a reduction in skin friction coe¢ cient (Cf ). When the

second-grade �uid parameter (�1) is higher, �uid�s viscosity tends to decrease with increasing

shear rate. This decrease in viscosity with shear rate is known as shear-thinning behavior.

The shear-thinning behavior of the second-grade �uid leads to the reduction in the e¤ective

viscosity near the surface, resulting in decline of skin friction coe¢ cient (Cf ). Furthermore

thermal radiation (RD) and internal heat generation (�1) do not change the value of the local

skin friction coe¢ cient (Cf ) because they do not directly a¤ect the shear stress at the surface.

Skin friction coe¢ cient is the ratio of shear stress to the dynamic pressure of the �uid and is

based solely on the �uid properties and �ow conditions at the surface. Thermal radiation (RD)

and internal heat generation (�1) are related to the energy balance of the �uid, but they do not

directly in�uence the �uid �ow behavior at the surface. Therefore, they do not a¤ect the skin

friction coe¢ cient (Cf ).

Carbon nanotubes have enhanced thermal conductivity, which can amplify the transfer of

heat between the �uid and the surface. As the solid volume fraction of carbon nanotubes (�)
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strengthens, so does the thermal conductivity of the nano�uid, which leads to an advancement

in the local Nusselt number (Nus). Increment in second-grade �uid parameter (�1) leads to

formation of thicker boundary layer near the solid surface. The thicker boundary layer acts

as a barrier to heat transfer, reducing the convective heat transfer coe¢ cient. As a result, the

convective heat transfer decreases, resulting in lower local Nusselt number (Nus). The Nusselt

number (Nus) is a dimensionless parameter that relates the convective heat transfer coe¢ cient

to the thermal conductivity of the �uid and the characteristic length of the surface. It has been

perceived that rate of heat �ux raises as an upsurge in radiation parameter (RD) contains mean

absorption coe¢ cient which generates as rise in (RD). For this reason, the heat transfer rate

seems maximizing at every point away from sheet. So the local Nusselt number gets ampli�ed

as a rise in radiation parameter (RD). Moreover an increment in heat generation parameter

(�1) causes a reduction in local Nusselt number (Nu).

Figure (3:1) Action of (�) over f 0(�) Figure (3:2) Action of (�) over f 0(�)
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Figure (3:3) Action of (�1) over f 0(�) Figure (3:4) Action of (�) over �(�)

Figure (3:5) Action of (�) over �(�)
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Figure (3:6) Action of (�1) over �(�)



Figure (3:7) Action of (RD) over �(�) Figure (3:8) Action of (�) over P (�)
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Figure (3:9) Action of (�) over P '(�)



Figure (3:10)Action of (�) over (Cf)

Figure (3:11) Action of (�) over (Nu)
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Table 3.2. Numerical data for local Nusselt number and skin friction coe¢ cient for various

parameters.

SWCNTs MWCNTs

� �1 �1 RD Re
1=2
sd Cf Re

�1=2
sd Nusd Re

1=2
sd Cf Re

�1=2
sd Nusd

0:0 0:3 0:1 0:1 �3:09927 �1:48942 �3:09927 �1:52424

0:3 �3:56770 # �1:48227 " �3:27669 # �1:51863 "

0:5 �3:97289 # �1:44833 " �3:64933 # �1:48731 "

0:7 �5:19836 �1:37694 �4:98352 �1:41830

0:1 0:3 0:1 0:1 �3:75080 �1:57626 �3:67442 �1:59220

0:4 �3:89063 # �1:59300 # �3:80818 # �1:60926 #

0:5 �4:03592 # �1:60758 # �3:94744 # �1:62415 #

0:6 �4:18728 �1:62017 �4:09278 �1:63704

0:1 0:3 0:1 0:1 �3:26908 �1:49443 �3:14391 �1:51198

0:2 �3:26908 � �1:39034 " �3:14391 � �1:41178 "

0:3 �3:26908 � �1:25988 " �3:14391 � �1:29045 "

0:4 �3:26908 �1:16865 �3:14391 �1:21177

0:1 0:3 0:1 0:1 �3:26908 �1:49443 �3:14391 �1:51198

0:3 �3:26908 � �1:59302 # �3:14391 � �1:61358 #

0:5 �3:26908 � �1:68015 # �3:14391 � �1:70362 #

0:7 �3:26908 �1:75847 �3:14391 �1:78468
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Table 3.3. Error analysis of the values of �Re1=2�s Cf to address the validity of numerical

method with RD = �1 = �1 = 0.

Nagaraja et al. [44] Current study

� � SWCNTs MWCNTs

Percentage relative

absolute difference

0:0 5 1:15764 1:15763 1:15763 0:000864%

10 1:07349 1:07349 1:07349 0%

30 1:02352 1:02353 1:02353 0:000977%

50 1:01407 1:01405 1:01405 0:001972%

Table 3.4. Comparative analysis of the values of �Re1=2�s Cf for distinct numerics of � and

�, with RD = �1 = �1 = 0.

Abbas et al. [43] Saba et al. [35] Current study

� � SWCNTs MWCNTs SWCNTs MWCNTs

0:0 5 1:15763 1:15763 1:15763 1:15763 1:15763

10 1:07349 1:07349 1:07349 1:07349 1:07349

50 1:01405 1:01405 1:01405 1:01405 1:01405

1000 1:00079 1:00079 1:00079 1:00079 1:00079

0:1 5 � 1:43781 1:38677 1:43707 1:38669

10 � 1:32577 1:27251 1:32569 1:27247

50 � 1:27579 1:22190 1:27549 1:22186

Conclusions3.3

This investigation scrutinizes heat transmission through a radiative �ow of boundary layer

nature incorporating heat generation of second grade nano�uid containing carbon nanotubes

(SWCNTs and MWCNTs) overtop a curved extending surface. Main highlights are:

� The velocity pro�le f 0(�) gets ampli�ed as an upsurge in solid volume fraction (�) and

reduces as an increment in dimensionless curvature (�).

� The temperature �(�) of the �uid rises due to ampli�cation of heat generation para-

meter (�1), radiation parameter (RD) and solid volume fraction (�) of carbon nanotubes while
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an opposite trend is noticed for the upsurge in dimensionless curvature (�).

� The skin friction coe¢ cient (Cf ) drops due to an increment in solid volume fraction

(�) and it gets ampli�ed due to a rise in dimensionless curvature (�) and it remains invariant 

for upsurge in radiation parameter (RD) and internal heat generation (�1).

� Local Nusselt (N us) number rises as an upsurge in values of solid volume fraction (�),

dimensionless curvature (�) and internal heat generation (�1) while it diminishes as a rise in 

radiation parameter (RD).
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