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Abstract 

Klebsiella pneumoniae is a gram-negative, nosocomial bacteria reported to be the 

second most common causative agent of Urinary tract infections. UTIs are one of the 

most common extra-intestinal infections occurring across the world. About 300 million 

infections are reported worldwide annually. Virulence factors of K. pneumoniae 

contribute in causing UTIs. Over the period abuse of antibiotics has developed multi- 

drug resistant leading to the rise in number of different infections including UTIs caused 

by K. pneumoniae in Pakistan. In depth genomic studies need to be conducted to learn 

more about such strains. In this study, a local isolate of K. pneumoniae KP3 was 

characterized, gone through pangenome and comparative genome analysis with global 

strains to get the insights of the genetic diversity, resistance, and virulence profile 

among K. pneumoniae strains across the world. The local isolate KP3 was identified to 

be multi-drug resistant virulent strain with a genome size of 4.9Mb having 5067 coding 

sequences. The strain carried many resistance genes as TEM-1, tolC, CRP etc. 

responsible for causing resistance against tetracycline, rifamycin, phenicol, 

fluoroquinolone etc., more than hundred virulence factors including rmpA, rcsA hlyE,, 

pgaC etc and five plasmids two of which harbor resistance genes for Carbapenems and 

β-Lactams. MLST analysis showed KP3 belongs to ST5. Pangenome analysis of 

selected 47 strains identified 14,520 genes with 343 core genes, 2061 accessory genes 

and 11,364 unique genes indicating an open pangenome system and a close relation to 

a strain KpC5 from USA. Comparative analysis exhibited KP3 had a unique resistance 

and virulence profile which is somewhat related to other strains in causing UTIs. 

Furthermore, phylogenetic analysis revealed that KP3 is evolutionarily related to the 

reference genome HS11286 of K. pneumoniae and a UTI causing strain 

ATCCBAA_2146 from USA. This genetic information will be helpful in future for 

effective control of this MDR pathogen and develop targeted therapeutics. 
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Introduction 

Klebsiella pneumoniae is a Gram-negative opportunistic pathogen, one of very 

common nosocomial agents responsible for causing different diseases across the world 

(Clegg and Murphy, 2016). It has highly diverse phylogenetic and genomic distribution, 

also classified as one of the most commonly human disease-causing agent. Urinary tract 

infections are considered to be one of the most common infections in humans and 

Klebsiella pneumoniae is known to be the second most common etiological agent for 

both nosocomial and community acquired urinary tract infections (Florea et al., 2023). 

Different number of factors are involved in establishing UTIs including invasion 

and colonization of host defense mechanism, anatomical factors and the virulence 

factors of causative agents (Nicolle, 2002). Much like UPEC, Klebsiella pneumoniae 

also has the capability to deviate from the commensal role in the intestine flora. It has 

the ability to establish persistence in the urinary tract and act as a storage for virulence 

factors to initiate the disease (Aslam et al., 2022). Host inflammatory response is 

triggered by breaching of K. pneumoniae in the sterile environment. As a result, host 

secretes pro-inflammatory cytokines, an influx of neutrophils and the epithelial cells 

exfoliation. 

Antibiotics have been used as a treatment for years. Antibiotics are becoming 

ineffective because of their constant abuse which has led to multi-drug resistance 

(MDR). Subsequently it is leading to a very prominent increase in MDR organisms 

including Klebsiella pneumoniae and many more. Klebsiella pneumoniae has been 

known to be one of the major MDR organisms (Kwiatkowski et al., 2022). It is a major 

health threat because of its recurrence in underdeveloped countries including Pakistan. 

It has been reported to increase morbidity, mortality, and health care expenses. 
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Klebsiella pneumoniae is being studied globally for the strains involved in causing 

urinary tract infections. These studies will prove to be helpful in coming years to leave 

traditional medication behind and design pathogen specific drugs (Kline et al., 2011). 

Not enough studies are available on local K. pneumoniae strains. Therefore, it is crucial 

to design a surveillance program which will monitor the prevalence and antibiotic 

resistance as well as optimize the management of urinary tract infections in Pakistan. 

1.1 Our Contribution 

 
The current study was designed with the primary aim of evaluating the antibiotic 

resistance profile of local UTI causing K. pneumoniae strain. Moreover, it also covers 

the elucidation of factors participating in disease severity particularly the virulence 

factors. 

In the current study a draft genome of local UTI causing K. pneumoniae was 

characterized and gone through comparative genome analysis. By performing 

comparative genome analysis, we will be able to identify the phylogenetic relation 

between the local and globally available UTI causing K. pneumoniae strains also 

observe the genomic diversity among these strains. In our study we mainly focused on 

the pathogenicity of Klebsiella pneumoniae, ongoing global resistance and 

susceptibility trends, current treatment strategies, prophylactic approaches and 

alternative strategies in preventing UTIs. The findings of this study will definitely help 

in rapid diagnosing and treating Klebsiella pneumoniae and combating against 

antimicrobial resistance in Pakistan. 
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1.2 Research Objectives 

 
1 Isolation and Characterization of the local UTI causing Klebsiella pneumoniae 

 

KP3 isolate. 

 

2 Pangenome analysis among globally available UTI causing Klebsiella 

pneumoniae strains. 

3 Comparative genome analysis of Klebsiella pneumoniae strains for 

investigating genetic diversity, virulence and antibiotic resistance. 
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Literature Review 

2.1 Urinary Tract Infections 

 
Urinary tract infections (UTI) is an infection that arises anywhere within the 

urinary system including kidneys, ureters, urethra and urinary bladder (Tan and 

Chlebicki, 2016) . The presence of bacteria in urine up to >105/ml indicates urinary 

tract infection (Smelov et al., 2016) . Urinary tract infections are one of the most 

common extra-intestinal infections that occurs when the disease causing strains spread 

from the host intestine to the urinary tract where the strains gain new virulence 

properties that are responsible for colonization at mucosal surfaces of host organism 

and invade aseptic urinary tract (Abo Zaid et al., 2019; Lara-Isla et al., 2017). 

Urinary tract infections are of different types and are characterized as nosocomial 

and community acquired infections(Behzadi et al., 2019). There is a wide range of 

pathogens that can cause UTI by colonizing in the urinary tract including Gram-positive 

and Gram-Negative bacteria and few certain fungi (Smelov et al., 2016). Primary 

etiological agent for causing UTIs is Uropathogenic Escherichia coli (UPEC) but there 

are many other pathogens as well that can be associated with UTIs including Klebsiella 

spp., Enterobacter spp., Citrobacter spp., Salmonella spp., Staphylococcus 

saprophyticus, Streptococcus spp., Enterococcus faecium and many more including 

some fungal agents as well (Conover et al., 2015; Kline and Lewis, 2016). If urinary 

tract infections are left untreated and undiagnosed they can be responsible for septic 

shock, bacteremia infections and triggering sepsis in the host (Kline and Lewis, 2016). 

2.2 Epidemiology of UTIs 

 
Approximately 300 million urinary tract infections occur worldwide annually 

(Gaston et al., 2021). Urinary tract infections are the most common infections in United 
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States. These infections can be of different severity level from mild to severe sepsis, 

with 20 to 40% mortality rate (Jia et al., 2021). UTIs are a huge economic burden along 

with being a huge global burden. UTIs are responsible for causing significant morbidity 

in infant boys, older men and specially females of all ages. Frequency is affected by 

sex and age. Furthermore UTIs are more frequent in females as compared to males 

(Ejrnæs et al., 2011). 

Epidemiological studies have indicated that annual incidence of UTIs in women is 

about 12% and 50% of all women will definitely experience at least one UTI by the age 

of 32 years (Behzadi et al., 2019). Generally it is estimated 50 to 70% of women will 

experience UTIs somewhere during their lifetime, 30 to 48 % women will have a 

recurrent UTI despite getting a proper antibiotic treatment (Kot, 2019). Escherichia coli 

are responsible for causing 75% of uncomplicated and 65% of complicated UTIs 

worldwide. According to a recent study done in Timergara District Hospital, Timergara, 

Pakistan E. coli is the major cause of UTIs, other reported pathogens were Klebsiella 

spp., Enterobacter spp., Proteus mirabilis (Bullens et al., 2022). 
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Figure 1 A global overview of the prevalence of urinary tract infections (UTIs) in 

relation to the microorganisms responsible for these infections, with a specific focus on 

two categories: (a) Uncomplicated UTIs and (b) Complicated UTIs. The data sources 

for this figure are derived from a comprehensive study by (Medina and Castillo-Pino, 

2019). This figure provides a comprehensive depiction of the relative prevalence of 

UTI-causing agents in both uncomplicated and complicated cases, offering valuable 

insights into the global landscape of UTIs. 

(a) 
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2.3 Microbial Spectrum Involved in UTIs 

 
Urinary tract infections are ranked second amongst the most dominant infectious 

diseases across the world. There is a vast range of etiological microbial agents but 

Escherichia coli is the leading cause in both uncomplicated and complicated UTIs. 70 

to 90% of community-acquired and 40 to 50% of nosocomial UTIs are mainly caused 

by Uropathogenic Escherichia coli in all age groups (Togawa et al., 2015) . Other 

uropathogens responsible for developing uncomplicated UTIs are Klebsiella 

pneumoniae, Staphylococcus saprophyticus, Enterococcus spp., Group B 

Streptococcus (GBS), Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus 

aureus and Candida spp., in order of prevalence Figure 1. (Conover et al., 2015; 

Forsyth et al., 2018; Kline et al., 2011). 

Enterococcus spp., are the most prevalent uropathogens responsible for causing 

complicated Urinary tract infections followed by K. pneumoniae, Candida spp., P. 

mirabilis, S. aeruginosa, GBS and P. aeruginosa (Chen et al., 2013; White et al., 2017). 

Worldwide phylogenetic and pangenomic analysis revealed E. coli strains belong to 

polygroups represented as A, B1,B2,C, D,E, F and Escherichia cryptic clade I (Luo et 

al., 2012; Müştak et al., 2015). E and F are considered as new groups where F is 

designated as a sister group of B2 (Iranpour et al., 2015). As far as for commensal 

strains are concerned they are associated with group A or B1 (Bharadwaj et al., 2021; 

Mukherjee, 2013). 

2.4 Classification of UTIs 

 
Classification and characterization of urinary tract infections is based on different 

clinical manifestations, severity level, microbiological classification of pathogens, 
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complicating factors, infection's location in host's urinary tract and the presence or 

absence of symptoms (Medina and Castillo-Pino, 2019). 

2.4.1 Clinical Manifestations 

 
Clinical expressions of UTIs are classified as cystitis, urosepsis, pyelonephritis, 

urethritis and male adnexitis (male accessory gland infections; e.g. prostatitis) 

(Hälleberg Nyman et al., 2011; Smelov et al., 2016). Cystitis is defined as infection of 

the urinary tract infection. Bacterial infection responsible for causing swelling of 

kidneys is pyelonephritis. It is an acclivous spreading of infection from bladder to 

kidneys (Sabih and Leslie, 2023). Urosepsis is indicative bacteremia of UTI origin 

(Dreger et al., 2015). Inflammation of urethra is urethritis while acute and chronic 

infections of male urogenital tract are called as male adnexitis (Baijwan and Dhyani, 

2023). 

2.4.2 Severity Levels of UTIs 

 
Severity levels of clinical manifestations of urinary tract infections are mild, 

moderate, severe and sepsis Table 1. Urosepsis is severe as compared to cystitis 

pyelonephritis where pyelonephritis is more severe in comparison to cystitis. Severity 

grading for urosepsis includes sepsis, severe sepsis and septic shock. Whereas 

pyelonephritis presents mild and moderate infections that are treatable with 

antimicrobials where severe pyelonephritis needs proper therapy and hospitalization 

(Fang et al., 2007; Hälleberg Nyman et al., 2011; Smelov et al., 2016). 

2.4.3 Classification based on Risk Factors 

 
Risk factors for Urinary tract infections are characterized as complicated and 

uncomplicated infections. In case of uncomplicated UTIs mostly healthy people are 
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affected that have no urinary tract abnormalities (Kolman, 2019; Pietrucha-Dilanchian 

and Hooton, 2016) . Complicated UTIs are mainly caused because of factors effecting 

host's defense or urinary tract including immunosuppression, urinary obstruction, renal 

transplantation, renal failure, neurological disease leading to urine retention, pregnancy 

and indwelling catheters (Khan et al., 2020; Kolman, 2019). There are chances of 

having recurring UTIs in patients and require proper therapy (Mody et al., 2017). 

Pyelonephritis of the upper UTI and cystitis of the lower UTI may be present as 

complicated or uncomplicated infections depending upon the risk factors (Kostakioti et 

al., 2012). Different risk factors are associated with different types of UTIs. Risk factors 

for cystitis are any history of urinary tract infection, female gender, genetic 

susceptibility, sexual activity, obesity, diabetes and vaginal infection (Knottnerus et al., 

2013; O’Brien et al., 2015) ORENUC system is used for phenotyping the risk factors 

of UTIs that comprises of six groups Table 2 (Smelov et al., 2016). 
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Table 1 Clinical manifestations of different types of UTIs and severity grading. 
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Table 2 Host risk factors in UTIs categorized according to the ORENUC system 

(Johansen et al., 2011) 

 

 
2.4.4 Microbiological Characteristics of Pathogens 

 
Essential UTI causing pathogens for 70-95% of complicated UTIs and 5-10% of 

uncomplicated UTIs are E. coli and S. saprophyticus. Other agents causing UTIs 

include Klebsiella spp., and Proteus mirabilis isolated occasionally. Microbiological 

spectrum for complicated UTIs includes E.coli and different gram-positive and gram- 

negative including P. aeruginosa, Enterobacter spp., Citrobacter spp., Staphylococcus 

spp., and Enterococcus spp., (Wagenlehner et al., 2013). 
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2.4.5 Classification based on Infection's Source 

 
UTIs are one of the most common pathological conditions throughout the world 

in both health and community sector (Lee et al., 2018). Nosocomial UTIs goes up to 

40% amongst all hospital acquired infections. Risk of getting an infection is much 

increased for patients with catheters or those having urological treatments and elderly 

male patients staying for long in hospitals (Tan and Chlebicki, 2016). Originating point 

of causative agents are moist sites in hospital environment (Gupta et al., 2017). 

2.4.6 Classification based on Presence and Absence of Symptoms 

 
Lower UTIs, cystitis, upper UTIs and pyelonephritis are symptomatic with clear 

symptoms involving kidneys and bladder. Whereas in comparison asymptomatic 

infections show growth of 105 bacteria or more in a single sample of urine in men or 

two consecutive female urine samples is classified asymptomatic bacteremia (Cai et al., 

2016a; Nicolle, 2005). 

2.5 Pathogenesis 

 
The pathogenesis of mucosal infections involve a few steps including attachment 

of bacteria to the epithelium, colonization of urinary tract leading to tissue damage and 

in some cases there is clear dissemination and invasion (Vasudeva and Madersbacher, 

2014). Host factors and virulence properties play an important role in depicting 

different stages of bacteria (Mak and Kuo, 2006). Attachment and internalization of 

bacteria are very important steps in pathogenesis. Adhering capacity for bacteria is 

dependent on site of infection in urinary tract also on the presence and absence of 

fundamental structural and functional peculiarities (Spaulding and Hultgren, 2016). 
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Fimbriae adhesions of bacteria helps in the attachment to urothelium and 

colonization in the urinary tract (Jhang and Kuo, 2017). Contamination of periurethral 

regions with pathogens residing in gut leads to uncomplicated UTIs, followed by 

colonization in urethra and spread to the bladder (McLellan and Hunstad, 2016; Qiao 

et al., 2013; Robino et al., 2014). 

Formation of IBC (Intracellular bacterial communities), biofilm like masses are 

formed by bacterial access to epithelial cell cytoplasm of bladder (Darouiche et al., 

2011; Nielsen et al., 2017). Extracellular bacteria can be cleared by inflammatory 

responses whereas bacteria that evade the immune system go through multiplication 

and form biofilms (Schwartz et al., 2011). These bacteria cause tissue damage by 

producing toxins and proteases that helps in survival of bacteria by releasing essential 

nutrients. 

After colonization of bladder, bacteria may cause upper UTI or pyelonephritis by 

ascending towards the ureters and colonizing the kidneys (Spaulding and Hultgren, 

2016). For complicated UTIs a pathogen follows the same steps except the host bladder 

is compromised for instance in catheterization. Catheterization induces an immune 

response that causes accumulation of fibrinogen on catheter. This leads to UTIs when 

bacteria adhere to catheter following the formation of biofilm (Conover et al., 2015) 

2.6 Routes of Infection 

 
There are 3 major routes of infection which lead to UTIs including hematogenous, 

lymphatic and ascending routes. The most common route for establishing UTI is 

ascending route (Copp et al., 2013). Microbial pathogens originating from rectal flora 

and urethra enter into the urinary tract infection in ascending route. Pyelonephritis 

mostly occurs because of uropathogen ascending from bladder to renal pelvis via the 
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ureter. Kidney infections caused through hematogenous route is not very common in 

healthy individuals (Busch and Kadri, 2020). Sometimes the pathogen uses the 

lymphatic route for entering the host urinary tract from adjacent organs (Mody et al., 

2017). 

2.7 Klebsiella pneumoniae as a Uropathogen 

 
Klebsiella pneumoniae is a very common multi-drug resistant (MDR), 

opportunistic pathogen responsible for causing mainly nosocomial infections such as 

UTIs, pneumonia and some blood stream infections (Florea et al., 2023; Togawa et al., 

2015). It also has the ability to cause community associated infections including 

meningitis, liver abscess and endophthalmitis in healthy individuals (Russo and Marr, 

2019). Now Klebsiella pneumoniae is also classified as a unique circulating pathotype 

along with the classical Klebsiella pneumoniae (cKP), as a hypervirulent K. 

pneumoniae because of a rare case reported in Taiwan in 1980's ((Fang et al., 2007; 

Wyres et al., 2020). Some of the main characteristics of different classes of K. 

pneumoniae are mentioned in Table 3. 
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Table 3 Main characteristic of cKP, hvKP, and MDR-hvKP (Song et al., 2021). 
 

 

2.8 Virulence Factors of Klebsiella pneumoniae 

 
Klebsiella pneumoniae expresses different virulence genes that play a significant 

role in initiating a urinary tract infection. The pattern of virulence factors for UTIs will 

be different from the virulence factors of pneumonia. Virulence factors are classified 

as cell surface virulence factors and secreted virulence factors. These factors include 

adhesins, serum resistance, lipopolysaccharides (LPS), polysaccharide capsule, outer- 
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membrane proteins (OMPs), iron uptake receptors as siderophores and secretory toxins 

 

Table 4 (Kot, 2019; Zubair et al., 2019). 

 
Pathogenesis depends a lot on these virulence factors. These factors play an 

important role in colonization, bacterial adherence and persistence despite the host 

having a very effective immune mechanism (Schlager et al., 2002; Zubair et al., 2019). 

In vitro and in vivo models were established and used to investigate the interaction 

between the bacterial cells and host Figure 2. 

 

 

 
 

Figure 2 Virulence factors exhibited by Klebsiella pneumoniae are illustrated, 

highlighting the features of siderophore (Enterobactin and Yersiniabactin), fimbrae 

(Type 1 and Type 3), capsule (K1-K78), and lipopolysaccharide (LPS) composition. 

These virulence attributes play pivotal roles in the pathogenicity of K. pneumoniae, 

contributing to its ability to establish and sustain infections in host organisms (Paczosa 

and Mecsas, 2016). 
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Table 4 Virulence factors of Klebsiella pneumoniae and their roles in pathogenesis 

(Clegg and Murphy, 2016; Paczosa and Mecsas, 2016). 

 

 
 

2.8.1 Adhesins 

 
Adhesins are designated as fimbrial or afimbrial depending upon their presence 

on surface glycoprotein known as fimbriae. Pilus/fimbria act as ligands for glycolipid 

and glycoprotein receptors present on uroepithelial cells (Florea et al., 2023). Klebsiella 
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pneumoniae encodes some specific adhesins that target a wide range of host receptors 

(Behzadi et al., 2019). 

Different types of adhesins for K. pneumoniae are classified as type 1 fimbriae and type 

3 fimbriae Figure 3. Type 1 fimbriae show adherence to different mannose-containing 

structures of host cells. FimH are present at the terminal end and plays its part in 

fimbrial adhesion to mast cell and promotes mannose sensitive binding. FimA acts by 

binding to bladder and promotes biofilm formation and cellular invasion of the bladder. 

It also binds to other abiotic surfaces. Some other minor submits are functionally similar 

to UPEC Fim subunits like FimC, D, F and G (Paczosa and Mecsas, 2016). FimK is an 

additional gene identified in K. pneumonia were absent in UPEC. Fim switches play its 

role in facilitating the expression in Type 1 fimbriae in UTIs but not in lungs or GIT 

(gastrointestinal tract) (Stahlhut et al., 2012). 

 

 

Figure 3 The adherence mechanisms of Type 1 and Type 3 fimbriae in Klebsiella 

pneumoniae are summarized, highlighting their roles in host cell attachment and the 

unique gene FimK's involvement in urinary tract infections (UTIs) (Paczosa and 

Mecsas, 2016). 
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Synthesis of Type 3 fimbriae is mediated by the expressions of mrk,, B, C and D 

genes. Just like Type 1 fimbriae, Type 3 fimbriae are present and synthesized by most 

Klebsiella pneumoniae, but Type 3 is not sensitive to mannose receptors. For Type 3 

fimbriae specific host receptors are yet to be investigated Table 5. 

Table 5 Adhesins of Klebsiella pneumoniae in host cell receptor (Govindarajan and 

Kandaswamy, 2022) 
 

 

 
2.8.2 Capsule 

 
Capsule is a polysaccharide matrix coating the cell is an important factor in 

Klebsiella pneumoniae virulence and is condidered to be the most studied factor of K. 

pneumoniae. Klebsiella pneumoniae without the capsule are less virulent as compared 

to the capsular K. pneumoniae. Capsules in K. pneumoniae are comprised of strain- 
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specific polysaccharides known as K antigens i.e., K1 and K2, up K78. K1 and K2 

strains have been reported to be more virulent than other serotypes. Whereas K2 strains 

are the most prevelent strains of K. pneumoniae followed by K1 (Yeh et al., 2010; Yu 

et al., 2008). Capsule play different roles as a virulence factor in K. pneumoniae Figure 

4 (Papakonstantinou et al., 2015). It prevents phagocytosis and opsonophagocytosis of 

the bacteria by host immune system, obstructs bactericidal action of antimicrobial 

peptides for instance human beta defensins 1 to 3 (Casadevall and Pirofski, 2009). It 

also blocks complementing components like C3 from interacting with membrane which 

leads to prevention of complement-mediated opsonization and lysis. Most importantly 

it avoids the activation of immune response (Dogan et al., 2021). 

 

Figure 4 The critical role of the capsule in Klebsiella pneumoniae's virulence is 

illustrated. This capsular polysaccharide coating shields the bacterium from immune 

defenses by preventing phagocytosis, neutralizing antimicrobial peptides, and blocking 

complement activation (Paczosa and Mecsas, 2016). 

2.8.3 Siderophores 

 
Small iron-chelating compounds with high affinity secreted by bacteria and 

fungi are called siderophores. Their purpose is to help the organism in accumulating 

iron. Iron is a very limited compound and not easily available to K. pneumoniae in the 

host during the infection mainly because of the immune respnse by the host where iron 
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is an important compound for K. pneumoniae pathogenesis (Gal-Mor and Finlay, 2006). 

 

K. pneumoniae acquies iron by section of siderophores. Siderophores have a high 

affinity of stealing the iron from iron-chelating proteins of the host (Bachman et al., 

2012; Miethke and Marahiel, 2007). 

There are more than one siderophores produced by K. pneumoniae that are used in 

optimizing colonization in different tissues (Bachman et al., 2012; Zhu et al., 2021). 

Different siderophores expressed in Klebsiella pneumoniae are yersiniabactin, 

enterobactin, salmochelin and aerobactin. The affinity of siderophore in K. pneumoniae 

ranges from enterobactin with the highest to aerobactin with the lowest Figure 5 (Hsieh 

et al., 2008). Enterobactin is the main siderophore used by K. pneumoniae (Bachman 

et al., 2012). Yersiniabactin was discovered in Gram-negative Yersinia but has been 

since then identified in Klebsiella pneumoniae as well (Hsieh et al., 2008; Rijavec et 

al., 2008). Salmochelin is a c-glycosylated form of enterobactin (Russo et al., 2015). 

Aerobactin is a citrate-hydroxamate siderophore. This is not commonly expressed in 

classical nosocomial K. pneumoniae. Approximately it is expressed in only 6% of the 

classical strains (Bachman et al., 2012; Busch and Kadri, 2020). 
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Figure 5 Illustration of multiple siderophores in Klebsiella pneumoniae, with 

enterobactin being the primary one. Other siderophores include yersiniabactin, 

salmochelin, and aerobactin, each with varying affinities for iron. Aerobactin is less 

common in nosocomial K. pneumoniae strains, present in only about 6% of them 

(Paczosa and Mecsas, 2016). 

2.8.4 Lipopolysaccharides 

 
Lipolysaccharides which are a major component of the outer cell membrane of 

Gram-negative bacteria are also known as endotoxin (Kong et al., 2012). LPS plays 

both beneficial and non-beneficial roles for K. pneumoniae in case of an infection i.e., 

it is a very important factor protecting from humoral defense systems but it can also act 

as a strong immune activator Figure 6. LPS are mainly comprised of an O antigen, core 

oligosaccharide and lipid A. Genes encoding these components are wb, waa and lpx 

gene clusters (Majumdar et al., 2016). Lipid A gets inserted into bacterial membrane 

and activates inflammation. K. pneumoniae can modify lipid A to make it less 

inlfammatory and also acts as a barrier against bactericidal actions of cationic 

antimicrobial peptides (Cai et al., 2016a). O antigen being the outermost subunit of LPS 

protects against complement binding i.e., Clq binding to bacteria, that inhibits 

subsequent activation of component pathway. Instead facilitates C3b binding away 
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from outer membrane that reverts bacterial lysis (Regué et al., 2004; Shankar et al., 

2004). 

 

 
 

Figure 6 Role of LPS in Klebsiella pneumoniae in defense against the immune system 

and triggering immune responses. It consists of three parts: O antigen, core 

oligosaccharide, and lipid A (Paczosa and Mecsas, 2016). 

2.8.5 Outer membrane proteins (OMPs) 

 
Several outer membrane ptoteins have been identified in Klebsiella pneumoniae 

that play an important role in virulence of the organism (Pichavant et al., 2003). These 

outer membrane proteins include outer membrane protein A (OmpA), petidoglycan- 

associatwd lipoprotein (Pal) and murein lipoprotein (LppA). These OPMs are encoded 

by genes OmpA, Pal and LppA (Hsieh et al., 2008). OmpA playa a vital role in virulence 

of K. pneumoniae, by providing protection against innate immune response of the host 

(Jeannin et al., 2005). Studies have characterized peptidoglycan-associated lipoprotein 

(Pal) and murein lipoprotein (LppA) minimally. The role of these proteins are mainly 

to provide protection against neutrophil phagocytosis by serum components and 

neutophils  (Hsieh  et  al.,  2013).  These  proteins  also  contribute  in  selective 
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impermeability of cell membrane in a capsule and LPS independent manner along with 

providing strength against certain antibiotics and anionic detergents (March et al., 

2013). 

2.9 Antibiotic treatment of UTIs 

 
Klebsiella pneumoniae is responsible for affecting a large population every year 

therefore is a major target for antimicrobial therapy. A lot of factors are involved in 

considering the antibiotic therapeutic strategy such as gender, patient's age, history, 

underlying infections, clinical presentations and site of infection (Ejrnæs et al., 2011). 

Another important factor while selecting the antimicrobials is local resistance profile. 

Commonly used antimicrobialaused for treating UTIs are fluoroquinolones, fosfomycin 

tromethamine, nitofurantoin, β-lactams and trimethoprim. Use of these antimicrobials 

is based on their pharmonkinetic profiles, their spectrum of activity and their tolerance 

(Jancel, 2002). Fluoroquinolones like prulifoxacin, ciprofloxacin and levofloaxin are 

used for the treatment of uncomplicated cystitis (Cai et al., 2016b). 

Some specific antiobiotics used and susceptible against classical Klebsiella 

pneumoniae strain causing UTIs are meropenem, entapenem (100%), ceftazidime, 

cefoxitin, cefotaxime (94%), gentamicin (98%), amoxicillin, levofloxacin (88%), 

imipenem (86%), ciprofloxacin (84%). Whereas for hypervirulent Klebsiella 

pneumoniae the most effective antimicrobials are fostomycin (93.5%), imipenem 

(74.2%), meropenem entapenem (64%). So far imipenem has been reported to be the 

most effective against ESBL (extended spectrum beta-lactamase) producing Klebsiella 

pneumoniae strains (İDi̇L et al., 2020). For uncomplicated UTI most effective drugs 

are the combination drug trimethoprim and sulfamethoxazole, trimethoprim, β-lactams, 

nitrofurantoin, fosfomycin tromethamine and fluoroquinolones (Gupta, 2002). In case 
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of complicated UTIs the recommended antibiotic is amoxicilin-clavulanic acid (Kot, 

2019). As the use of antibiotics have increased exessively for treating UTIs, it has 

resulted in the increase of antibiotic resistance as well. This has lead to a lot of 

organisms being MDR (multi-drug resistant) organisms like Klebsiella pneumoniae 

(Ren et al., 2022). 

2.10 Global Antimicrobial Resistance 

 

Antibiotic resistance soectrum has changed a lot within few years and is 

continuously changing and is going to pose a major threat to the public health sector 

(Alvarez-Uria et al., 2018). Antimicrobual resistance in few organisms are a major 

threat specifically Escherichia coli and Klebsiella pneumoniae belonging to 

Enterobacteriaceae (Shrivastava et al., 2018). In developing countries the resistance to 

antimicrobials is significantly higher as compared to developed countries such as 

resistance to fluoroquinolones is 55.5-85.5% in developing countries whereas in 

developed countries the resistance rate is approximately 5.1-32.0% ((Kim et al., 2018; 

Kothari et al., 2023). 

2.11 Whole Genome Sequencing 

Whole Genome Sequencing (WGS) of Klebsiella pneumoniae is closely tied to 

the broader development of genomics and sequencing technologies. Here is a brief 

overview of the key milestones in the history of WGS for Klebsiella pneumoniae, 

Before the advent of high-throughput sequencing technologies, scientists relied on 

traditional molecular biology techniques to study Klebsiella pneumoniae genetics. 

These methods were labor-intensive and focused on specific genes or genetic elements. 

The development of NGS technologies, such as Illumina sequencing, marked a 

significant advancement in genomics. These technologies allowed for the rapid and 
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cost-effective sequencing of entire genomes, including those of bacterial pathogens like 

Klebsiella pneumoniae. In the mid-2000s, the first whole genome sequences of 

Klebsiella pneumoniae strains were published. These early sequences provided 

valuable insights into the genetic makeup of this pathogen. Research into Klebsiella 

pneumoniae continues, with ongoing efforts to better understand its genomics, 

pathogenesis, and mechanisms of antibiotic resistance. WGS remains a valuable tool in 

these endeavors. 
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Materials And Methods 

3.1 Study Approval and Sample Collection 

 
KP3 isolate was isolated from Fauji Foundation hospital, Rawalpindi, Pakistan after 

initial MDR confirmation and was brought to ASAB labs for further identification. The 

strain KP3 was isolated from the urine sample of a 65year old patient who was suffering 

from urinary tract interaction. The isolate KP3 was brought to the Integrated Biology 

Lab, ASAB for initial identification (cell/colony morphology, molecular and 

biochemical characterization) and to perform the antibiotic sensitivity assay. 

3.2 Preliminary Identification 

 
3.2.1 Colony Morphology 

 
The isolate KP3 was streaked on MacConkey Agar plates; a selective media for 

gram-negative species and were incubated at 37°C. After 24 hours of incubation, the 

shape, colony size, texture and margin were recorded and crosschecked with Bergey's 

Manual of Systematic Bacteriology (Bergey's Manual of systematic Bacteriology 2005) 

3.2.2 Colony Morphology 

 
To know about the cell morphology gram staining was performed. For Gram 

staining a smear of a pure culture was prepared on a glass slide. The glass side was then 

stained with Crystal violet dye (primary dye) for two minutes. Then the slide was 

stained with iodine solution for two minutes. Excessive stain is removed by flooding 

the slide with water. Purple stained were decolorized with 70% ethanol for about 1 

minute. The stain was then stained with Secondary dye i.e., safranin for 45 seconds. 

Finally, the slide was washed, air dried and examined under the microscope. 
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3.3 Biochemical Characterization 

 
After the preliminary identification, biochemical tests were performed to 

phenotypically characterize the isolated KP3. 

3.3.1 Catalase Test 

 
Catalase enzyme, an antioxidant enzyme is used by bacteria for the protection of 

cells from oxidative damage by reactive oxygen species (ROS). Catalase enzyme uses 

hydrogen peroxide (H2O2), a non-radical ROS, as its substrate and catalyze it into O2 

and H2O. Fresh colony of isolate KP3 was placed on a slide by a sterilized loop and 3% 

of H2O2 was applied to observe the bubble formation. 

3.3.2 Lactose Fermentation Test 

 
Gram negative bacteria that have the ability to ferment lactose are identified by 

Lactose fermentation test. Klebsiella pneumoniae has the ability to ferment lactose 

producing acid end products which results in the decrease in pH of the medium. A 

positive test consists of a color change from pink to red, indicating a pH change from 

basic to acidic. The isolate of KP3 was streaked on MacConkey Agar plates; a 

differentiating agar that differentiates the gram-negative bacteria based on their lactose 

metabolism and were incubated at 37° C for 24 hours. 

3.4 Antibiotic Susceptibility Assay 

 
The isolate KP3 was tested against 15 antibiotics; 

Sulphamethoxazole/Trimethoprim (SXT), Cefepime (FEP), Ciprofloxacin (CIP), 

Vancomycin (VA), Enoxacin (EN), Gentamicin (CN), Piperacillin (PRL), Kanamycin 

(K), Amoxycilin/Clavulanic Acid 2:1 (AMC), Meropenem (MEM), Ampicillin (AMP), 

Amikacin (AK), Ceftriaxone (CRO), Imipenem (IPM), Chloramphenicol (C) for 
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antibiotic susceptibility assay using Kirby-Bauer Disc Diffusion method. Briefly, the 

bacterial culture at turbidity of 0.5 McFarland was prepared from an overnight culture 

by mixing the pure colony of KP3 isolate in 1ml of normal salinity. 50µl of bacterial 

suspension was then poured. The glass spreader is used for spreading the suspension 

over Mueller-Hinton Agar (MHA) media plates to create a media lawn. The plates then 

incubated at 37°C for about 24 hours. After incubation, zones of inhibitions were 

recorded and examined according to the guidelines of Clinical and Laboratory 

Standards Institute ('CLSI', 2019). 

3.5 Glycerol Stock Preparation 

 
Aqueous solution of Glycerol acting as a cryoprotectant is used for preserving 

microbial culture at low temperatures. For broth culture, the liquid broth medium was 

inoculated with fresh culture/fresh single isolate colony of KP3 in a culture tube and 

incubated in a shaking incubator at 37°C to ensure proper aeration and nutrient 

availability overnight. Shaking incubation avoids bacterial clumping at the bottom of 

the culture tube. After incubation culture tubes are checked for bacterial growth. The 

broth became cloudy from the bacterial growth. Then about 0.5ml bacterial culture from 

LB broth was mixed in 0.5ml of 80% sterile glycerol. The cryovials were then gently 

vortexed and frozen using liquid nitrogen before it was transferred to -80°C freezer. 

Table 6 Concentration of antibiotics used for antibiotic susceptibility assay. 
 

No. Class of Antibiotics Antibiotics Concentration (µg) 

1 Sulfonamides Sulphamethoxazole/ 

Trimethoprim (SXT) 

25 

2 Cephalosporin Ceftriaxone (CRO) 30 

3 Cefepime (FEP) 30 

4 Fluoroquinolones Ciprofloxacin (CIP) 5 

5 Enoxacin (EN) 10 
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6 Glycopeptides Vancomycin (VA) 5 

7 Aminoglycosides Gentamicin (CN) 10 

8 Amikacin (AK) 30 

9 Kanantcin (K) 30 

10 Penicillin Piperacillin (PRL) 100 

11 Ampicillin (AMP) 25 

12 Amoxycillin / Clavulanic 

Acid 2:1 (AMC) 

30 

13 Carbapenem Meropenem (MEM) 10 

14 Imipenem (IPM) 10 

15 Amphenicol Chloramphenicol (C) 30 

 

3.6 Molecular Identification 

 
3.6.1 DNA Extraction 

 
The genomic DNA of KP3 isolate was extracted by the GeneJet Genomic DNA 

Purification Kit (Thermo Fischer Scientific) using the self-optimized manufacturer's 

protocol. The pellet from the fresh broth culture was suspended in 180µL of digestion 

solution followed by addition of 20µL of Proteinase K Solution. The sample was 

incubated at 56°C using a shaking water bath for almost 30 minutes. Then 20µL of 

RNase A solution was added and incubated at room temperature followed by the 

addition of 200µL of lysis solution to the sample and about 400µL of 50% ethanol. The 

prepared lysate was transferred to a GeneJet Genomic DNA Purification Column 

inserted in a collection tube. The column was centrifuged for 1 min at 6,000 × g. The 

purification column was placed into a new 2mL collection tube followed by the addition 

of 500µL of Wash Buffer I. Then it was centrifuged for 1 minute at 8,000 × g and 

500µL of Wash Buffer II was added to the purification column and centrifuged for 3 

minutes at maximum speed. The purification column was transferred to a sterile 1.5mL 
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micro centrifuge tube and about 100µL of elute buffer was added to the center of the 

purification column membrane to elute genomic DNA. It was remove incubated for 2 

minutes at room temperature and was centrifuge for 1 minute at 8,000 × g. The 

purification column was discarded and the purified DNA was stored at -20°C. 

3.6.2 DNA Quantification and Integrity 

 
Extracted DNA of the KP3 isolate was quantified using Qubit 2.0 fluorometer. 

For the quality and integrity analysis of extracted DNA, Agarose Gel Electrophoresis 

was performed using 1% agarose gel, with 1kb ladder. 

3.7 Whole-Genome Sequencing, Assembly and Annotation 

 
Whole genome sequencing of strain KP3 was performed Pusing Illumina Hi seq 

2500 platform. Genomic libraries were prepared through Nextera XT Library Prep Kit 

at MicrobesNG, Institute of Microbiology and Infection, University of Birmingham 

(Edgbaston, Birmingham). The quality for the sequenced genomes were assessed by 

FASTQC (Andrews, 2010). The raw reads trimmed by Trimmomatic v0.30 followed 

by genome assembly done by QIAGEN CLC Genomics Workbench V.20.0.4. 

Annotation of the assembled genome was done by RAST annotation tool (Aziz et al., 

2008) and then cross checked by Prokka (Seemann, 2014). 

3.8 In silico Pathogen Identification 

 
Isolate KP3 was confirmed to be Klebsiella pneumoniae by using the generated 

contigs using the KmerFinder 3.2 at The Center of Genomic Epidemiology (Larsen et 

al., 2014). 
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3.9 Reference Based Assembly 

 
K. pneumoniae reference strain HS11286 complete genome (GenBank assembly 

accession GCA_000240185.2) was retrieved from NCBI database. The sequence files 

were aligned by using QIAGEN CLC Genomics Workbench V .20.0.4 alignment tool. 

Newly generated multi-fasta .fna file of UTI causing KP3 contigs were in the specified 

order as that of the K. pneumoniae reference genome HS11286. 

3.10 Draft Genome Submission to NCBI 

 
After the assembly and alignment, the draft genome sequence of Klebsiella 

pneumoniae KP3 was submitted to NCBI database. The raw reads of K. pneumoniae 

KP3 were submitted to the Sequence Read Archive (SRA). 

3.11 Sequence Retrieval 

 
Total 46 sequences of UTI causing Klebsiella pneumoniae including whole and 

draft genome along with proteomes were retrieved from the website of NCBI 

(https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/klebsiella%20pneumon 

iae) based on the host diseases, for comparative and pangenome analysis on 25th 

October 2022. 

 
3.12 Pangenome Analysis 

 
All 47 UTI causing K. pneumoniae genomes were subjected to in-house 

pipeline PanRV to identify the highly conserved regions (Naz et al., 2019). PanRV 

consists of four modules out of which we have used one module; the pangenome 

estimation module (PGM). PGM calculates pan, core, shell and cloud genes amongst 

multiple genomes in less time and less space complexity by making use of integrated 

rapid large-scale prokaryotic pangenome  analysis pipeline, Roary. Before the 

https://www.ncbi.nlm.nih.gov/assembly/GCA_000240185.2
https://www.ncbi.nlm.nih.gov/genome/browse%23!/prokaryotes/klebsiella%20pneumoniae
https://www.ncbi.nlm.nih.gov/genome/browse%23!/prokaryotes/klebsiella%20pneumoniae
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pangenome estimation, all the genome fasta files were annotated by using Prokka as 

the input for PGM is gff file. While using PanRV different plots are obtained which 

gives information about the pan, core and unique genes. Moreover, a plot can be seen 

in the output which gives information about the addition of new genes. For the analysis, 

default parameters (95% minimum percentage identity for BLASTp and 99% sequence 

identity for core genes classification) were used. 

3.13 Multi-Locus Sequence Typing (MLST) of Klebsiella pneumoniae 

 

strains 

 
Multi-locus sequence typing (MLST) is a DNA sequence-based typing method 

used for characterizing isolates of bacterial strains using the sequences of internal 

fragments of six or seven well conserved house-keeping genes. Allelic variation at 

every locus is characterized and by comparing the set of alleles with the other profiles 

of isolates in the database a sequence type (ST) is assigned to all of the seven loci. 

MLST profile of all of the complete genomes and UTI causing KP3 was checked using 

the MLST tool version 2.0 at CGE (https://www.genomicepidemiology.org/services/) 

at default parameters (Larsen et al., 2012). 

 
3.14 Identification and Comparative Analysis of Antibiotic Resistance 

Genes 

To analyze the genetic basis of resistance and epidemiology of resistant genes in 

our local Klebsiella isolate KP3 Resistance gene identifier (RGI) tool at Comprehensive 

Antibiotic  Resistance  Database  (CARD)  (https://card.mcmaster.ca/analyze/rgi) 

(McArthur et al., 2013, Zankari et al., 2012) was used to check the resistance genes in 

the genome. The selection criteria for CARD database was set at perfect and strict with 

http://www.genomicepidemiology.org/services/)
http://www.genomicepidemiology.org/services/)
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95% identity (a widely accepted default setting in CARD RGI and similar tools because 

it strikes a good balance between sensitivity and specificity for identifying antibiotic 

resistance genes in bacterial genomes) to identify the acquired antimicrobial resistant 

genes. Resistance genes for all other selected strains were also identified on the same 

pattern. Predicted acquired resistance genes of KP3 isolate were compared with all of 

the complete genomes including reference genome (n=46) retrieved from NCBI for the 

comparison between resistance profiles and for identifying any novel resistance genes 

in the local strain KP3. 

3.15 Identification and Comparative Analysis of Virulence Genes 

 
Virulence factors are responsible for a pathogen's ability to damage or infect its 

host tissues. Identifying the virulence factors help in understanding a pathogen's 

invasion of the host cell, evasion of the immune system and initiation of an infection. 

The virulence factors for local KP3 isolate were identified through Virulence factor 

database (VFDB) (Chen et al., 2005). Virulence factors for all other selected strains 

were also identified by VFDB. Predicted virulence factors of local KP3 isolate were 

compared with all of the Klebsiella pneumoniae strains (n=46) retrieved from NCBI to 

check for any unique virulence factors in local isolate KP3. 

3.16 Identification and Comparative Analysis of Plasmids 

 
Plasmids are specific extrachromosomal DNA segments that have the ability to 

self-replicate. The plasmids may contain genes for virulence factors antimicrobial 

resistance. Plasmidfinder v.2 at CGE 

(https://www.genomicepidemiology.org/services/) was used to identify the plasmids 

for local strain Klebsiella pneumoniae KP3 (Carattoli et al., 2014). Identified plasmids 

were also checked for the presence of any antibiotic resistance and virulence genes. 

http://www.genomicepidemiology.org/services/)
http://www.genomicepidemiology.org/services/)
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Then identified plasmids in KP3 were compared with the global Klebsiella pneumoniae 

 

strains which were also identified by Plasmidfinder v.2. 

 
3.17 SNP based Phylogeny 

 
CSI Phylogeny 1.4 at CGE (https://www.genomicepidemiology.org/services/) at 

 

default parameters was used to deduce the SNP based phylogenetic relationship of local 

isolate KP3 with the Klebsiella pneumoniae strains from various different geographical 

regions for investigating evolutionary history, relationships, and functional aspects of 

organisms (Kaas et al., 2014). CSI Phylogeny points out SNPs against the simple 

reference genome Klebsiella pneumoniae HS11286, filters out the SNPs, executes site 

validation and concludes a phylogeny based on conjugated alignment of high-quality 

SNPs. Visualization of circularized SNP tree of 47 (reference strain n=1, global strains 

n=46 Klebsiella pneumoniae genomes is done via Interactive Tree of Life (iTOL) v.2 

(Letunic and Bork, 2021). 

http://www.genomicepidemiology.org/services/)
http://www.genomicepidemiology.org/services/)
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Results 

4.1 Characterization of Local Isolate KP3 

 
The local isolate KP3 showed certain growth on MacConkey Agar plates, visible 

colonies of KP3 were seen after incubating it at 37°C for 24 hours. Further analysis was 

performed for checking morphological and biochemical characteristics of the cultured 

colonies. Pink, mucoid, flat and rough KP3 colonies were observed in preliminary 

identification. The isolate was observed to be Gram-negative. The results of 

biochemical test revealed the colonies were catalase positive. On MacConkey agar 

lactose positive colonies were observed after 24 hours at 37°C. Therefore, based on 

biochemical and morphological characterization the KP3 was identified as Klebsiella 

pneumoniae. 

4.2 Phenotypic Resistance Profile 

 
AST analysis provided the phenotypic resistance profile of local strain KP3. The 

isolate KP3 was resistant against 10 antibiotics and susceptible to 5 of the antibiotics. 

Resistance was observed against Cefepime (30µg), Ciprofloxacin (5µg), Vancomycin 

(5µg), Enoxacin (10µg), Piperacillin (100µg), Kanamycin (30µg), 

Amoxycillin/Clavulanic Acid 2:1 (30µg), Ampicillin (25µg), Ceftriaxone (30µg) and 

Chloramphenicol (30µg). Whereas the isolate showed susceptibility to 

Sulphamethoxazole/Trimethoprim (25µg), Gentamicin (10µg), Meropenem (10µg), 

Amikacin (30µg), Imipenem (10µg). Resistant and susceptible antibiotics with their 

concentrations and zones of inhibition are mentioned in Table 7. 
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Table 7 Resistant and susceptible antibiotics against KP3 isolate. 
 
 

No Class of 

Antibiotics 

Antibiotics Concentration 

(µg) 

Zone 

Diameter 

(mm) 

1 Phenicol Chloramphenicol 

(C) 

30µg 0 

2 Cephalosporin Cefepime (FEP) 30µg 0 

3 Ceftriaxone (CRO) 30µg 0 

4 Fluoroquinolones Ciprofloxacin (CIP) 5µg 0 

5 Enoxacin (EN) 10µg 0 

6 Glycopeptides Vancomycin (VA) 5µg 0 

7 Penicillin Piperacillin (PRL) 100µg 0 

8 Ampicillin (AMP) 25µg 0 

9 Amoxycillin/ 

Clavulanic Acid 2:1 

(AMC) 

30µg 0 

10 Aminoglycosides Kanamycin (K) 30µg 0 

11 Gentamicin (CN) 10µg 16mm 

12 Amikacin (AK) 30µg 20mm 

13 Carbapenem Imipenem (IPM) 10µg 33mm 

14 Meropenem (MEM) 10µg 14mm 

15 Sulfonamides Sulphamethoxazole/ 

Trimethoprim 

(SXT) 

25µg 12mm 

 

 

 

4.3 DNA Extraction and Quantification 

 
GeneJet Genomic DNA Purification Kit (Thermo Fischer Scientific) extracted the 

genomic DNA of isolate KP3. The extracted DNA of isolate KP3 was quantified to be 

19.7ng/µl. 
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4.4 Whole Genome Sequencing, Assembly and Annotation 

 
1190506 paired end reads were yielded by the Illumina Sequencing Platform 2500. 

Generated paired end reads were assembled into 440 contigs by De novo assembly. 

Alignment of local isolate KP3 was checked with the reference genome K. pneumoniae 

HS11286 (GenBank assembly accession (GCA_000240185.2) through QIAGEN CLC 

Genomics Workbench V.20.0.4. Several insertion and deletion sequences were 

identified in the isolate KP3 at different positions via reference-based genome assembly 

Table 8. 

Table 8 Genomic characteristics of local strain KP3. 
 
 

Genomics Characteristics 

Size 4872042 

Number of Contigs 440 

GC content 50.9 

N50 27507 

L50 54 

CDS 4522 

Longest contig size 93628 

Smallest contig size 504 

Mean sequence 11072.8 

tRNA 64 

rRNA 5 

tmRNA 1 
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Figure 7 Circular visualization of the KP3 genome with genomic annotation, antibiotic 

resistance, and virulence genes showing some acquired antibiotic resistance genes from 

E. coli. 

4.5 Sequence Submission to NCBI 

 
Draft genome sequence of the local isolate KP3 was submitted to NCBI database 

after assembly and alignment. Raw reads of the local Klebsiella pneumoniae isolate 

KP3 were submitted to the Sequence Read Archive (SRA). Detailed are mentioned in 

Table 9. 

Table 9 Sequence Submission to NCBI. 
 
 

Submissions  

Accession number JAPDVV000000000.1 

Bio sample SAMN31437005 

Bio project PRJNA893947 
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4.6 Klebsiella pneumoniae genome Retrieval 

 
A total of 46 complete genome sequences of Klebsiella pneumoniae responsible for 

causing urinary tract infections were retrieved out of total 1332 complete genomes from 

across the world from NCBI database. All of the strains included in this study were 

reported to cause urinary tract infections in humans as we had noticed our strain to be 

UTI causing. 46 proteomes of completely sequences Klebsiella pneumoniae genomes 

were also retrieved from NCBI database on 25th October 2022. 

4.7 Multi Locus Sequence Typing analysis of Klebsiella pneumoniae 

 

Strains 

 
The MLST analysis of selected UTI causing strains (n=47) done using the scheme 

of seven housekeeping genes comprising gapA, infB, mdh, pgi, phoE, rpoB, tonB. 

MLST analysis revealed 25 different sequence types among 47 selected strains which 

showed high genetic diversity among K. pneumoniae genomes. Most recurrent 

sequence type was ST231 but isolate KP3 belonged to ST5 which identified clear 

genomic diversity and unique characteristics Figure 8. Some other STs shared by other 

strains were ST11 (n=7), ST101 (n=4), ST147 (n=3), ST258 (n=2), ST15 (n=2). Some 

different STs also found in studied strains as ST14 (n=1), ST307 (n=1), ST1440 (n=1), 

ST240 (n=1), ST661 (n=1) etc Table 10. 

Table 10 Multi Locus Sequence Type of UTI causing K. pneumoniae strains. 
 
 

Housekeeping 

 

Genes 

Sequence Types (STs) No. of Isolates 

gapA, infB, mdh, pgi, 

phoE, rpoB, tonB 

ST231 8 

ST11 7 
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 ST101 4 

ST147 3 

ST15, ST258 2 

ST5, ST14, ST16, ST307, 

ST2096, ST23, ST1440, 

ST512, ST225, ST323, ST29, 

ST2856, ST240, ST395, 

ST507,   ST661,   ST147, 

ST941, ST340, ST244 

1 isolate from each profile 

 

 

 

 

Figure 8 Pie chart illustrating sequence type diversity among UTI causing K. 

pneumoniae strains with ST231 being the most prevalent, followed by ST11, with our 

strain KP3 belonging to the ST5 sequence type. 
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4.8 Pangenome Analysis of UTI causing Klebsiella pneumoniae global 

strains 

PanRV estimated total of 17520 genes in 47 UTI causing global K. pneumoniae 

strains, with 343 core genes conserved among 99 to 100% strains, 3752 soft core 

genes among 95 to 99% strains, 2061 accessory genes among 15 to 95% strains and 

11364 unique genes among < 15% strains. Figure 9 (a). Pangenome analysis also 

revealed K. pneumoniae shows an open pangenome as the number of unique genes 

increase Figure 9 (c) and total number of genes increases with adiition of new genes 

into the pangenome Figure 9 (b). Phylogenectic tree of pangenome analysis 

visualized through iTOL showed close evolutionary relation between KP3 and KpC5 

a strain from Dallas, USA Figure 10. 
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Figure 9 Comprehensive view of the Klebsiella pneumoniae pangenome (a) A pie chart 

displaying the distribution of gene clusters within the pangenome (b) A graph 

illustrating the growth in total genes and decrease in core genes with the inclusion of 

additional K. pneumoniae genomes (c) A graph showing the increase in unique genes 

as more K. pneumoniae genomes are included emphasizing the open pan-genome 

nature of the species. 

)a( 
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Figure 10 Pangenome tree and matrix comparing the presence/absence of core and 

accessory genes among K. pneumoniae strains, highlighting the close relationship 

between our strain KP3 and KpC5 from Dallas, USA. 
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4.9 Identification and Comparative analysis of Plasmids 

 
5 plasmids were identified in the local KP3 isolate named as pKP3_1, pKP3_2, 

pKP3_3, pKP3_4 and pKP3_5 by PlasmidFinder Table 11. Further analysis was 

carried out to check the presence of antibiotic resistant and virulence genes. No 

virulence genes were identified in plasmids found in the isolate KP3. 2 of the plasmids 

pKP_3 (IncFII) and pKP_4 (IncFIA) were found to carry resistance against β-Lactams 

and Carbapenems Figure 11. IncF is the most common plasmid type found in the 

majority of the studied strains which are responsible for carrying resistance against 

major antibiotic groups such as Carbapenems and β-Lactams. 

Table 11 Plasmids identified in UTI causing Klebsiella pneumoniae strain KP3. 
 

Plasmids Most Similar 

Plasmid 

Length Identity 

Coverage 

pKP3_1 IncX3 328bp 100% 

pKP3_2 Col8282 207bp 100% 

pKP3_3 IncFII 262bp 96.18% 

pKP3_4 IncFIA 388bp 99.74% 

pKP3_5 IncFIB (AP001918) 548bp 98.91% 
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Figure 11 Visual representation of plasmids detected in the KP3 Isolate, comprising 

five distinct plasmids classified as IncX3, Col8282, IncFII, IncFIA, and IncFIB 

(AP001918). 

4.10 Identification and Comparative Analysis of Resistance Genes 

 

Different antibiotic resistance genes were identified by CARD in UTI causing 

KP3 isolate working against several classes of antibiotics including tetracycline (emrY, 

TolC, E. coli acrA, acrB, H-NS, marB), macrolide antibiotics (evgA, TolC, H-NS), 

fluoroquinolones (emrA, emrR, evgA, acrB, mdtH, AcrE, marA), phenicol antibiotic 

(catI, marA, E. coli acrA, acrB), nucleoside antibiotic (SAT-2), rifamycin antibiotic 

(TolC, marA, acrA, acrB), cephalosporin (TEM-1, AcrE, TolC, CTX-M-15, H-NS, 

marA), phosphonic acid antibiotics (mdtG), aminoglycoside antibiotics (acrD, TolC, 

cpxA), penam (evgA, TEM-1, acrE, TolC, CTX-M-15, H-NS, marA), nitroimidazole 

(msbA) which showed similarity to some extent with phenotypic antibiotic resistance 

profile oof KP3. RND, ABC, MFS antibiotic efflux pump encoding antimicribial genes 

were also identified which are responsible for providing resistance against 

aminoglycoside, nitroimidazole, fluoroquinolone, cephamycin, penam, cephalosporin, 

macrolide antibiotic, glycylcycline, tetracycline antibiotic, rifamycin antibiotic, 

phenicol antibiotic, disinfecting agents and antiseptics. Klebsiella pneumoniae adopts 
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different resistance mechanisms against antibiotics such as antibiotic inactivation, 

antibiotic efflux, reduced permeability to antibiotic, antibiotic target replacement, 

antibiotic target alteration. Some of the common resistance genes among globally 

studied K. pneumoniae strains are given in Table 12. 

Table 12 Common Resistance Genes among UTI causing K. pneumoniae strains. 
 

Antibiotic 

Resistance Genes 

AMR Gene 

 

Family 

Drug Class Resistance 

Mechanism 

rsmA Resistance- 

nodulation-cell 

division (RND) 

antibiotic efflux 

pump 

Fluoroquinolone 

antibiotic, phenicol 

antibiotic 

Antibiotic Efflux 

TEM-1 TEM beta- 

lactamase 

Monobactam, 

Cephalosporin. 
Penam 

Antibiotic 

Activation 

H-NS Major facilitator 

superfamily (MFS) 

antibiotic efflux 

pump 

Macrolide 

antibiotic, 

Fluoroquinolone 

antibiotic, 
Cephalosporin 

Antibiotic Efflux 

emrR Major facilitator 

superfamily (MFS) 

antibiotic efflux 

pump 

Fluoroquinolone 

antibiotic 

Antibiotic Efflux 

marA General Bacterial 

Porin with reduced 

permeability to 

beta-lactams 

Cephamycin, 

Tetracycline 

antibiotic, 

Rifamycin 

antibiotic, Penem, 

disinfecting agents 

and antiseptics 

Antibiotic Efflux, 

Reduced 

permeability to 

antibiotic 

CRP Resistance- 

nodulation-cell 

division (RND) 

antibiotic efflux 

pump 

Macrolide 

antibiotic, 

Fluoroquinolones, 

Penam 

Antibiotic Efflux 

msbA ATP-binding 

cassette (ABC) 

antibiotic efflux 

pump 

Nitroimidazole 

antibiotic 

Antibiotic Efflux 

CTX-M-15 CTX-M-beta- 

lactamase 

Cephalosporin, 

Penam 

Antibiotic 

Inactivation 
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vanG Glycopeptide 

resistance gene 

cluster, Van ligase 

Glycopeptide 

antibiotic 

Antibiotic target 

alteration 

 

 

 

4.11 SNP Based Phylogenetic Analysis of UTI causing K. pneumoniae 

 

Strains 

 

Single nucleotide polymorphism based phylogenetic analysis gave us an 

evolutionary relation between globally studied different UTI causing K. pneumoniae 

strains. Visualization of SNP based phylogenetic tree by iTOL with the reference 

genome of K. pneumoniae HS11286 divided the studied strains into 3 clades. UTI 

causing local K. pneumoniae strain KP3 showed the closest relation to the reference 

strain HS11286 with 83.28% similarity. KP3 was also observed to be closely related to 

ATCCBAA_2146, a strain reported from the USA. This strain also shows 83.28% 

similarity with KP3. KP3 and ATCCBAA_2146 share similar resistance and virulence 

profile but different MLST profiles which identified the genetic connections and 

evolutionary history between these strains. Circularized SNP based phylogenetic tree 

showing 47 K. pneumoniae strains is given in Figure 12. 
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Figure 12 Circularized SNP Phylogenetic Tree encompassing 47 K. pneumoniae 

Genomic Strains. This tree is accompanied by a color-coded key that provides location 

information for each strain, aiding in geographical reference and understanding of their 

genetic relationships. 

4.12 Identification and Comparative Analysis of Virulence Genes 

 

VFDB predicted over 100 different types of virulence factors in local UTI causing 

 

K. pneumoniae strain KP3 which included both secreted and structural genes. These 

virulence factors belong to different gene clusters encoding for iron acquisition system, 

immune invasion, autotransporter proteins and toxins, biofilm production, serum 

resistance, iron acquisition systems, fimbriae, flagella, outer membrane proteins, 

nutritional factors, secretion system etc Figure. Virulence factors of other studied 

strains were also checked by VFDB and further compared with the virulence factors of 

KP3. It was observed that majority of the predicted virulence factors were common 
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between KP3 and UTI causing globally selected K. pneumoniae strains. Some of the 

common virulence factors among studied strains are given in Table 13. 

 

 

Figure 13 Virulence factors in local UTI causing K. pneumoniae strain KP3. VFDB 

analysis identified over 100 virulence factors in KP3, including secreted and structural 

genes related to various functions like iron acquisition, immune evasion, toxins, and 

more. These factors were compared with those in other strains, showing significant 

commonality with globally selected K. pneumoniae strains. 

 

Table 13 A comparison of UTI causing KP3 virulence factors with the virulence 

factors of other UTI causing K. pneumoniae global strains. 
 

 

KP3 
 

F13 
 

KpC5 
 

ST23 
 

CAV1042 

 

Adhesins 
 

Adhesins 
 

Adhesins 
 

Adhesins 
 

Adhesins 

 

Flagella 
 

Flagella 
 

Flagella 
 

Flagella 
 

Flagella 

 

OMPs 
 

OMPs 
 

OMPs 
 

OMPs 
 

OMPs 

 

- 
 

Toxin 
 

Toxin 
 

Toxin 
 

Toxin 
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ATP 
 

ATP 
 

ATP 
 

ATP 
 

ATP 

 

Invasion 
 

Invasion 
 

Invasion 
 

Invasion 
 

Invasion 

 

Biofilm 

formation 

 

Biofilm 

formation 

 

Biofilm 

formation 

 

Biofilm 

formation 

 

Biofilm 

formation 

 

- 
 

Antiphagocytosis 
 

- 
 

Antiphagocytosis 
 

Antiphagocytosis 

 

 
 

*OMPs; Outer membrane protein 

*ATP;  Autotransporter protein 
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Discussion 

Ranked as the second most prevalent bacterial infections in humans, urinary tract 

infections (UTIs) are predominantly attributed to the activity of uropathogenic 

Escherichia coli (UPEC) ( Rosen and Klumpp, 2014). Other than UPEC other 

pathogens are also involved in causing UTIs such as Klebsiella pneumoniae, 

Staphylococcus saprophyticus, Enterococcus spp, Group B Streptococcus (GBS), 

Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus aureus and Candida spp 

in order of prevalence (Medina and Castillo-Pino, 2019). Klebsiella pneumoniae is 

reported to be the second most common pathogen in causing urinary tract infections. 

These strains are recognized for their capacity to elicit urinary tract diseases, they also 

inhabit the human intestinal tract as constituents of the normal microbial community. 

The spectrum of UTI severity spans from mild manifestations to severe sepsis, with 

mortality rates ranging between 20% and 40% (Zhu et al., 2021). The classification of 

UTIs encompasses both community acquired and nosocomial infections. These 

infections exhibit diverse clinical presentations, varying from symptomatic to 

asymptomatic occurrences, while also encompassing the distinction between 

complicated and uncomplicated cases. Additionally, recurrent UTIs afflict a significant 

proportion of females. These recurrent occurrences persist despite antibiotic treatment, 

frequently involving the same pathogenic agent that initiated the initial infection. 

Parallel to the uropathogenic Escherichia coli, Klebsiella pneumoniae takes a 

comparable stance in the domain of urinary tract infections. Klebsiella pneumoniae is 

often an agent of nosocomial infections, can evoke a range of disease severities, 

mirroring the array from mild manifestations to severe, life-threatening outcomes. In 

the realm of Klebsiella pneumoniae-induced UTIs, the distinction between 

uncomplicated and complicated presentations holds significance, mirroring the 
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spectrum observed in Escherichia coli-driven infections. Recurrent UTIs caused by the 

persistence of the same pathogenic strain are a huge challenge because antibiotic 

therapies despite their application frequently fail to eradicate the underlying infection 

properly allowing the causative strain to persist and trigger subsequent episodes. 

The recurrence rates of urinary tract infections have increased the antimicrobial 

resistance among Klebsiella pneumoniae strains. This leads to an increase in the 

economic burden of these infections throughout the world. K. pneumoniae strains 

harbors extragenetic material (on PAIs) that codes for genes that contribute to UTI 

pathogenesis which makes them different from the commensal strains of the K. 

pneumoniae (Alteri et al., 2009). The transferable plasmid is responsible for the wide 

spread of the virulent MDR genes of Klebsiella pneumoniae. The emergence of these 

strains carrying ESBL genes has been well documented worldwide (Kot, 2019; Peirano 

et al., 2011). Detailed work has been carried out on different K. pneumoniae lineages 

around the world but not much known about local K. pneumoniae lineages in Pakistan 

including their genetic attributes, their resistance and virulence profiles, the genetic 

diversity of K. pneumoniae strains in Pakistan and the recent antimicrobial resistance 

trends. 

Therefore, in this study we have reported the WGS of a local multidrug resistant 

UTI causing isolate KP3 and conducted a detailed comparative genome analysis with 

complete genome sequences of the global UTI causing K. pneumoniae strains (n=47) 

with the purpose to get insightful information regarding the genomic divergence and 

correlate virulence factors and antibiotic resistance profiles. The WGS and comparative 

genome analysis of local UTI causing isolate KP3 revealed that it is a virulent multidrug 

resistant strain with resistance determinants and virulence factors similar to those that 

were reported in the K. pneumoniae strains around the world. The strain KP3 possess 
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mobile genetic elements harboring the resistance gene as well as virulence gene 

responsible for disease severity and resistance against certain antibiotics specifically β- 

Lactams and carbapenems. 

The local K. pneumoniae isolate KP3 belongs to sequence type 5 which is currently 

one of the most prevalent extraintestinal K. pneumoniae lineage. Phylogenetic analysis 

of selected K. pneumoniae strains using distinct phylogenetic markers including 16s 

rRNA, pangenome, single nucleotide polymorphism (SNP) provided consistent 

branching patterns suggesting similar phylogeny for UTI causing K. pneumoniae 

strains. The local KP3 isolate is evolutionary related to K. pneumoniae reference strain 

HS11286 and a strain ATCCBAA_2146 (Chapter 5) reported from USA. Both strains 

have similar virulence and resistance profile, suggesting a common ancestral UTI 

causing K. pneumoniae strain. Moreover the pangenome of the UTI causing K. 

pneumoniae is an open pangenome (Wang et al., 2022) and further addition of WGS of 

the strains may further increase its size. Our estimation suggested a total of 17520 genes 

and 11,364 unique genes in the K. pneumoniae pangenome depicting high genomic 

diversity among the studied K. pneumoniae strains and that its evolving through 

acquisition of the genes and diversification. 

The escalation of antibiotic resistance among Klebsiella pneumoniae strains has 

grown to a critical concern on a global scale, posing substantial challenges for the 

healthcare department. The local Klebsiella pneumoniae isolate KP3 has emerged as a 

formidable multidrug resistant strain, displaying resistance to a range of antibiotics 

routinely employed for treating urinary tract infections in Pakistan. The outcomes of 

phenotypic antibiotic susceptibility testing revealed resistance across 10 distinct 

antibiotics, concordant with the results of genotypic analysis. Primarily, the isolate KP3 

harbors resistant genes within both its plasmid and genomic structure, conferring 
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resistance against this spectrum of antibiotics. Urinary tract infections resulting from 

multidrug resistant Klebsiella pneumoniae strains play a very critical role in shaping 

the therapeutic strategies. The implications extend beyond individual cases, affecting 

the viability of empiric therapy aimed for diverse microbial agents responsible for 

causing UTIs. Furthermore, the phenomenon of co-selection is accentuated, wherein 

pathogens with inherent resistance attributes are preferentially favored. This not only 

exacerbates the challenge of treatment but also perpetuates the cycle of antibiotic 

resistance. 

In contrast to previous studies conducted on Klebsiella pneumoniae our local strain 

has demonstrated a different and unique Sequence Type (ST5) which has not been 

reported before this (Zhou et al., 2020). Although the resistance mechanism identified 

in KP3 is similar to the resistance mechanism of globally reported UTI causing strains 

i.e., K. pneumoniae carries very prominent resistance against β-Lactams and 

carbapenems (Dunn et al., 2019). Same is the case with virulence factors, KP3 carries 

similar virulence factors as other globally reported K. pneumoniae strains for UTI 

(Karampatakis et al., 2023). 

Plasmid analysis of UTI causing K. pneumoniae isolate revealed that the local 

strain carries 5 plasmids designated as pKP3-1 (IncX3), pKP3-2 (Col8282), pKP3-3 

(IncFII), pKP3-4 (IncFIA) and pKP3-5 (IncFIB (AP001918) with high sequence 

similarity to already reported plasmids of K. pneumoniae (Al-Marzooq et al., 2015). 

Two of the plasmids pKP-3 (IncFII) and pKP-4 (IncFIA) were found to carry resistance 

against β-Lactams and Carbapenems. Several factors are involved in resistance genes 

dissemination among causative pathogens whereby the plasmid mediated HGT of MDR 

is the most significant mechanism. 
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Urinary tract infections are commonly encountered infections in Pakistan 

predominantly among females of all age groups and antibiotic resistance is rapidly 

growing. This has become one of the most urgent threats to public health worldwide. 

The emergence of new resistant bacteria is on the rise, endangering the efficacy of 

existing antibiotics and the resistance patterns are spreading continuously. Klebsiella 

pneumoniae is one of the most common multi-drug resistant infectious bacteria and are 

mostly resistant to β-Lactam antibiotics. Over a period of time, a steady rise in number 

of K. pneumoniae isolates in Pakistan's population has been recorded. Therefore, there 

is an urgent need to control this fast-growing antimicrobial resistant pathogen through 

approaches alternative to antibiotics for the future. 

Whole Genome Sequencing (WGS) has significantly enhanced our understanding of 

bacterial pathogens like Klebsiella pneumoniae by offering in-depth genetic insights. 

Nevertheless, it comes with several limitations for studying Klebsiella pneumoniae 

including, analyzing WGS data demands specialized bioinformatics expertise and can 

be computationally intensive. This complexity poses a challenge for smaller 

laboratories or institutions lacking the necessary resources. WGS generates vast 

datasets that may be difficult to store and manage, particularly for labs without 

dedicated infrastructure. The expenses associated with sequencing equipment, reagents, 

and computational resources for analysis can be substantial, making WGS less 

accessible to certain researchers and healthcare facilities. While WGS offers extensive 

genetic information, deciphering the functional implications of genetic variations can 

be intricate. Not all identified genetic changes through WGS will have a known or 

understood impact on the organism's biology. The accuracy and representativeness of 

WGS results depend on the quality of the initial bacterial isolate and the sampling 

process. An unrepresentative isolate can lead to biased conclusions. Although the time 
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required for WGS has reduced significantly, it may still be slower than other diagnostic 

methods like PCR, which can provide rapid results in specific clinical situations. The 

accuracy of genetic variant interpretation relies on the availability and completeness of 

reference databases. Incomplete or outdated databases can constrain the interpretation 

of WGS data. 
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Conclusion and Future Prospects 

The comparative analysis of the KP3 isolate whole genome has unveiled a 

concerning picture, it is a multi-drug resistant and virulent strain responsible for urinary 

tract infections (UTIs). This strain has been identified as part of Sequence Type 5 (ST5) 

and is closely related to the reference strain HS11286 and the USA-based strain 

ATCCBAA_2146. Additionally, our pangenome analysis has revealed a dynamic 

genetic landscape in Klebsiella pneumoniae, with an open pangenome reflecting high 

genetic diversity, continually evolving through the addition of new genome. 

The rising tide of antibiotic resistance, exacerbated by the misuse of antibiotics, 

underscores the pressing need for alternative strategies to combat UTIs in Pakistan. 

Specifically, the development of vaccines and novel drugs is imperative for the 

effective control and management of UTIs. Ongoing monitoring of UTIs is essential to 

track the prevalence of Klebsiella pneumoniae in the region and to keep a close eye on 

antibiotic resistance trends. 

In the future, there is a critical need to expand our efforts in whole genome sequencing 

of K. pneumoniae. Estimating the pangenome size of this species will enable us to 

comprehensively study its population structure and diversity. This information will be 

invaluable in the healthcare sector for implementing measures to control and prevent 

the further spread of UTIs. 

Moreover, it is imperative to recognize UTIs as a social issue, as they not only impact 

an individual's health but also disrupt their daily life, affecting quality of life, 

occupation, and relationships. By addressing UTIs holistically, we can work towards 

safeguarding public health and well-being in our community. 
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Supplementary Figure 1 Graph representing number of Conserved Genes oberved in 

Klebsiella pneumoniae pangenome analysis. 
 

 

 

 

 

Supplementary Figure 2 Graph representing number of new genes identified in 

isolate KP3. 
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