Autonomous Decision Making on User Complaints with NLP

based Deep Learning Models

By

Mariam Sabir
(Registration No: 00000320328)

Thesis Supervisor: Dr. Arslan Shaukat

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING
COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING
NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD
September 2023

Annex A
THESIS ACCEPTANCE CERTIFICATE

Certified that final copy of MS/MPhil thesis written by NS Mariam Sabir Registration
No. 00000320328, of College of E&ME has been vetted by undersigned, found complete
in all respects as per NUST Statutes/Regulations, is free of plagiarism, errors and
mistakes and is accepted as partial fulfillment for award of MS/MPhil degree. It is further

certified that necessary amendments as pointed out by GEC members of the scholar

have also been incorporated in the thesis.

Signature :

Name of Supervisor: Dr Arlen Shaukat

Date: __ & 7~ o 23

Signature of HOD: \
(Dr Usman Qamar)
Date: & 4 —

Signature of Dean:
(Brig Dr Nasir Rashi
Date: 07 SEP 2023

Dedicated to my exceptional parents: Muhammad Sabir &
Yasmin Sabir, my siblings specially Sarmad and friends specially
Qurat-ul-ain whose tremendous support and cooperation led me

to this accomplishment

Acknowledgements

All praise and glory to Almighty Allah (the most glorified, the highest) who gave me the
courage, patience, knowledge and ability to carry out this work and to persevere and complete
it satisfactorily. Undoubtedly, HE eased my way and without HIS blessings | can achieve

nothing.

I would like to express my sincere gratitude to my advisor Dr. Arslan Shaukat for his continual
assistance, motivation, dedication and invaluable guidance in my quest for knowledge. | am

blessed to have such a co-operative advisor and kind mentor for my research.

Along with my advisor, I would like to acknowledge my entire thesis committee: Dr. Ali Hassan

and Dr. Wasi Haider for their cooperation and prudent suggestions.

My acknowledgement would be incomplete without thanking the biggest source of my
strength, my family. | am profusely thankful to my beloved parents who raised me when | was

not capable of walking and continued to support me throughout in every department of my life.

Finally, I would like to express my gratitude to all my friends for always standing by my side

and the individuals who have encouraged and supported me through this entire period.

Abstract

With the advancement in technological domain, the volume of text data, particularly user
complaints in public sector, is increasing rapidly. This huge amount of data requires more
accurate and automated system for text classification, as manual sorting of this data is time-
consuming and error-prone. Addressing this challenge, our research proposes a deep learning-
based text classification system that utilizes three models; Convolutional Neural Networks
(CNN), a hybrid of Bidirectional Long Short-Term Memory (BiLSTM) and CNN, and the state-
of-the-art Bidirectional Encoder Representations from Transformers (BERT) model. These
models will interpret the context of text and classify complaints automatically into respective
departments. After preprocessing, GloVe embeddings and BERT Tokenizer are used to extract
crucial information as features from the complaints, and feed to the models for further pattern
learning and classification. Proposed models achieved over 80% classification accuracy on the
local complaint dataset, and more than 86% on the internationally acclaimed Consumer
Complaint Dataset. Among the models, BERT model outperformed, delivering better
performance with accuracy of 82% and 89.5% on the Local and Consumer Complaint Datasets
respectively. The proposed methodology will significantly improve complaint management

efficiency and serve as a foundation for future improvements in automated text classification.

Key Words: Deep Learning Models, Complaints Classification, Classification Techniques,
GloVe, RNN, CNN, LSTM, Bi-LSTM, BERT, Natural Language Processing

i

Table of Contents

ACKNOWLEDGEMENTS ..ottt et bbbttt ettt |
AB ST RACT .ttt bbb e bRt R R R bR bbbt R Rt R R b bbb n e n e 1
TABLE OF CONTENTS ...ttt sttt sttt e e esaatessentestesaenaeseeneenanrens 1l
LIST OF FIGURESottt sttt e s et e stente st et et enaeneens v
LIST OF TABLESottt sttt bttt e et e s e se et e e te et e nte et et eneeneane e \
CHAPTER 1: INTRODUCTION....cctttititeteitesiesieie e e sttt steae e e stessestessessessesassaasessessessessessessens 9
1.1 1Y [0 LAY L1 o] o S 11

1.2 Problem StatemeNnT...........cooiiiii e e 12

13 AIMS AN ODJECTIVES ...t 12

1.4 SEIUCTUIE OF THESIS. ..ttt st 13
CHAPTER 2: TECHNICAL BACKGROUNDccoiiiiiiie et 14
2.1 Natural Language ProCeSSING.......cciuciiiiiieieie e se ettt ste et sre e resre s sre e enesre e 14

0 S o 1Y (0] YA) | RSSO 15

2.1.2 LinQUIStiC FOUNUALIONS.civeiiiieiie sttt sttt sae e e nnes 15

0 I T 1= T 3T T SRS 15

2.1.4 Preprocessing TECANIGUES.cvuiiiririe oottt see e 16

N B I o Y o o] [ToF: U o] 4SSO 17

2.1.6 Challenges iN NLP: ...t sre e sreeees 17

2.1.7. Deep 1earning in NLP: ... 18

2.2 TEXE Pre-PrOCESSING ... civiiviitiie ettt sttt s be et besbe et e besnnesreers 18

2.3. Feature Extraction Techniques used in Deep learning Models.............cccceevvivenennnnn. 22

2.4, Deep Learning MOGEIS ..o s 24
2.4.1. Convolutional Neural Network (CNN):.....ccoiiiiiirie e 26

2.4.2. Recurrent Neural Networks (RNN)cccvoiiiiiiee e 27

e TR = ! = SR 29
CHAPTER 3: LITERATURE REVIEWoooiii ettt st e e 35
3.1. RESEAICN GAPS ... cveeiieiiiti sttt bbbttt ettt 43

3.2 D=z BT £SO 45

iii

CHAPTER 4: METHODOLOGY ...ttt nnesneennenne s 48

4.1. INITIAl PreprOCESSING.....vi it 49
4.2 Pre-processing Aatal.........ccccviiiiiieiiiice et 49
4.2.1. Conversion Of TEXE t0 LOWEE CASE. ...cceverirrieieiniisiisiesie et 50
4.2.2. Removing Stop Words and PUNCLUALIONccveiiiiiiiieiieneeeee e 50
G T (0] 01 1= 1= 14 o] o OSSR 51
4.2.4. Correcting SPEIHINGcoveieieie e e 51
4.2.5. LeMMALIZALION ...oviiiiiiieieieiees sttt bbb e 52
O ST o (=]2 (oo USSR 52
I T L (| =l (= U1 1 o] o OSSR 53
4.4. Data Splitting for model trainingccooviiiiiie i 55
4.5. Classification MOELccviieiiiice e et nee e 55
45.1. Convolutional Neural Network (CNN) Model............cooiiiiiiiniieec e 55
4.5.2. Hybrid BILSTM-CNN MOGEL.........ccooiiiiiiiiieiieises e 58
4.5.3. MOEl EVAIUBLIONoviieiieiieieiesce sttt s 61
454, BERT MOGEL ..ottt bttt sttt 61
CHAPTER 5: EXPERIMENTAL RESULTS ..ottt e 70
5.1 CNIN et E b e R R R bR R R bR R R bbbttt r et 70
5.1.1. DAtASELS USEU:veivieeiesieetieieseetesteseestesteestesteeseestesteeseesteaseessesseessesseaseetesseesaesneeneeseenses 70
5.1.2. ClasSifiCatiON REPOIT.......ccveiiiiiiiieiieset st 70
5.1.3. CONTUSION IMBIFIX. ...ttt sttt see st e e ens 71
5.1.4. Training & Validation ACCUIACYc.ccceveeieiiiieie sttt sttt st st sre e 73
5.1.5. Training & Validation Accuracy for 30 EPOCRS..........ccviiiriiiiinicccs e 74
5.1.6. Training & Validation LOSS.........ccueiuiiiiiiiiiieieieeeese st 75
5.2 Hybrid CNN and BIiLSTM MOEL..........cccoiiiiiiiiecee et 76
5.2, DALASEE I ..t n e re s 76
5.2.2. ClassifiCation REPOIT.........ooiiiieiii ettt seeenes 76
5.2.3. CONFUSION MALFIX....viiiiiiiectiee ettt st e et e e aesne e e srennee 77
5.2.4. Training & Validation ACCUIACYccceiiiirieieieisesi et 79
5.2.5. Training & Validation LOSS..........coouiieiiieiie ettt eees 80
5.3 BERT RESUITS....cueiiieiieieeii ettt ens 81
TR TR B T = L= 2 1 SR 81
5.3.2. ClassifiCation REPOIT..........coiiiieiieiie ettt sttt see e seeenes 81

iv

5.3.3. CONTUSTON IMABITIXvveiee ittt sete et s ettt ettt e e st e e st et e e s tb e et e saseeeeesasaaeeesassaeeesasssenessreeees 81

5.3.4. TFAINING LOSS. ...ttt ettt bbb et b e b e n e 83

5.3.5. TrAINING ACCUFACYeviteieteieeeieeieste sttt ettt b et b e n e n e 83

5.3.6. Validation ACCUIACYccveiiiiieiiiti sttt e e sttt et sb e te et s e e e te e e srennes 84

5.3.7. TESLING ACCUIACY ..e.veeveeiiectieie sttt e ste st ste et s et te s te e e be e e st e s beesbesbeate e besaeeeestaeneesreanes 84

5.3.8. TeStiNg 0N UNSEEN DALAcoveviiiiiiiiiiiiiie et 84

5.4 Performance Measures of oUr MOdEIS............ccooviiiieiiiie e 85
CHAPTER 6: CONCLUSION & FUTURE WORKcoooiiiieiiseiie e s 87
REFERENGCES ..ottt sttt b et e et et st e e seeseeneebesseseeneenneeerean 88

List of Figures

Fig 1.1: Major Customer Feedback in BUSINESS SECLON...........cccveveiieiieie e 2
Fig 2.1: Relationship of NLP and other Fields ... 6
Fig 2.2: Tasks i DOMAIN OFf NLP ..o 7
Fig 2.3: EXample Of Pre-proCeSSINGcccueiveieiieieeie et esie sttt sne e 9
Fig 2.4: Vector Representation USING GIOVEccccveii i 18
Fig 2.5: Deep Learning ArChiteCtUIE ...t 18
Fig 2.6: Convolutional Neural NEtWOIrK..........c.cooiiiiiiiiiiiieee e 19
Fig 2.7: Recurrent Neural NETWOTKcccoiiioiiiiiiice et 19
Fig 2.8: Gates Mechanism iN LSTIM ..o 27
Fig 2.9: Stacked Layers of BERT. ... 28
Fig. 2.10: Flow inside an Encoder Layer of BERTcccoiiiiiiiiiii e 30
Fig 2.11: Sizes Available iN BERTccooiiiiiiecece e 31
Fig. 2.12: Preprocessing and Vectorization by BERT TOKENIZEr.........ccccoeevveiieieevireneae, 32
Fig. 2.13: Embeddings in BERT TOKENIZENcccoiiiiiiiiiieiieieieee e 33
Fig. 4.1: Framework of our Proposed ArchiteCture.c.ccooviiiiiienenc e 33
Fig. 4.2: Samples after converting to IOWEr teXt...........ccocoveiieiiiic i 34

Fig. 4.3: Samples after removing Stop words & Punctuation..................cccc..oe.ee.. 40
Fig. 4.4: Samples after NOrmMalization.cooiiiiiiiiei e 41
Fig. 4.5: Samples after Lemmatization.............o.oviniiiiniiii e, 43
Fig. 4.6: Samples after TOKeNIzation..............oooiiiriiii e, 43
Fig. 4.7: Vector Embedding for Word Loan.ccccoeieiieie i 43
Fig. 4.8: Training & TeStiNG SUDSEL.ccoiiiiiieiie e 43
Fig. 4.9: The Layersof our CNN Model............ooooiiiii 43
Fig. 4.10: The Layers of Hybrid Model.............ccooooiiiiiiiic e 43
Fig. 4.11: Loading DAtasetcooviiiiiiie ettt 43
Fig. 4.12: Total Samples in Training & Testing SUDSEL...........cccvivieiineniieeseeeee 43
Fig. 4.13: Total Training & Testing Samples in each CIass.ccccovveiiiiiiiiiiceien, 43
Fig. 4.14: Sample after WordPiece TOKENIZatioN.ccceciveiiiiiiie i 43
Fig. 4.15: Sample after Addition of Special Token, Padding and Truncation 43
Fig. 4.16: Sentence 3 after MasKiNgccoiiiiiiiiiiiee e 43
Fig. 4.17: Creation OF TENSOT.c.ccoiiiiiiiiiieieee e bbb 43
Fig. 4.18: BERT LAYEIS. ..iiiiiiiiiieiie ittt sttt sttt sbe et sna et e et seesreenbeeneennes 43

6

Fig 5.1: Classification reports of dataset I, dataset 11, & Local dataset Il1I................ 6
Fig 5.2: Confusion Matrix of dataset I, dataset 1, & Local dataset Ill..................... 7
Fig 5.3: Training & Validation Accuracy of dataset I, 11, & Local dataset Il1............. 9
Fig 5.4: Training & Validation Accuracy for 30 Epochs on dataset I, 11, & Local I11....18
Fig 5.5: Training & Validation Loss of 30 Epochs dataset I, I, & Local Ill............... 18
Fig 5.6: 10-Fold Cross Validation Accuracy on dataset I, 11, & Local Ill.................. 19
Fig 5.7: Classification reports of dataset I, dataset 11, & Local dataset IlI.................. 6
Fig 5.8: Confusion Matrix of dataset I, dataset 11, & Local dataset Ill..................... 7
Fig 5.9: Training & Validation Accuracy of dataset I, 11, & Local dataset IlI............. 9
Fig 5.10: Training & Validation Accuracy for 30 Epochs on dataset I, Il, & Local I11....18
Fig 5.11: Training & Validation Loss of 30 Epochs dataset I, 11, & Local Ill............... 18
Fig 5.12: 10-Fold Cross Validation Accuracy on dataset I, 11, & Local Il1.................. 19
Fig 5.13: Classification reports of dataset |1, & Local dataset H1..............ccccooevvieinenne. 9
Fig 5.14: Confusion Matrix of dataset 1l..............cooiiiiiii i, 18
Fig 5.15: Confusion Matrix of dataset ... 18
Fig 5.16: Training Loss of dataset 11, & Local dataset 11c.cccoovvevieveiieiiciecenn, 19
Fig 5.17: Training Accuracy of dataset Tl...........ccceiveiiiiiiici e 19
Fig 5.18: Validation Accuracy of Dataset Il & Local Dataset Ilcccccoviiniiennnnn, 27
Fig 5.19: Testing Accuracy of Dataset 11 & Local Dataset Il...................cooeiiiinn, 28
Fig. 5.20: Testing on Unseen Sentence Sample.........cccoviieiieie e 30

List of Tables

Table 3.1: Brief Literature REVIEW ..ot 45
Table 5.1: Testing & Average Cross-Validation Accuracy of all model on dataset I......91
Table 5.2: Testing & Average Cross-Validation Accuracy of all model on dataset 1191

Table 5.3: Testing & Average Cross-Validation Accuracy of models........................ 92
Table 5.4: Accuracies on Consumer Complaints Dataset I...................coooiiiiiinn, 93
Table 5.5: Accuracies on US Consumer Finance Complaints Datasetl...................... 93

CHAPTER 1: INTRODUCTION

In today's digital era, consumers extensively use online platforms to express their feedback
concerns and complaints to respective departments and agencies as depicted in Figure 1.1.
These platforms have transformed the way public services are delivered, making them more
efficient and accessible. However, the massive influx of unstructured text data poses a
significant challenge in managing and effectively categorizing the complaints as because
manual sorting of the data is time-consuming and likely to have errors. Additionally, Natural
Language Processing NLP faces a big challenge when dealing with complaints as these can be
hard to understand because they're often missing context, might not follow grammar rules, or
could even have spelling mistakes. Consequently, existing research in this domain has not yet
utilized the models that are able capture the essential semantic and textual information of
complaint data. And historically, text classification research has relied only on traditional
classifiers like k-nearest neighbor (KNN), k-mean, support vector machines (SVM), Randon
Forest, and naive bayes (NB). These methods, although useful, still fail to extract the contextual
relationships between words in a text. For this reason, the need for robust deep learning models
coupled with Natural Language Processing (NLP) techniques to accurately classify these
consumer complaints has never been more urgent as NLP based deep learning models offers a
more advanced way to understand the contextual and semantic information from user
complaints and classify it into its respective classes.

Our Proposed System: This research focuses on developing an autonomous system capable
of interpreting the context of complaints and categorize them into respective departments by
using three deep learning models; Convolutional Neural Network (CNN), a hybrid of CNN and
Bidirectional Long Short-Term Memory (BiLSTM), and the state-of-the-art Bidirectional
Encoder Representations from Transformers (BERT) model.

Unlike traditional classifiers, Convolutional Neural Network (CNN) is specifically designed to
understand the local correlation in the text, making it excellent at short-text classification as it
captures correlations through convolution and pooling operations. Furthermore, a special kind
of Recurrent Neural Network (RNN), known as Bidirectional Long Short-Term Memory
(BILSTM), has been found to be particularly effective as it has both forward and backward
directions that allow it to excel in extracting contextual features from the text. Still, despite

these advances, rendering a single extraction method proves to be less effective in some cases.

9

For this reason, this study proposes a hybrid model combining the strengths of Convolutional
Neural Networks (CNN) and Bidirectional LSTM. The proposed model capitalizes on the
benefits of both CNN, known for its ability to process local features, and Bidirectional LSTM,
recognized for managing long-term dependencies in the text. The features extracted by these
two models are combined to form a crucial unified representation and provide meaningful
information for further classification. And hence, this hybrid model proves to be an improved
autonomous classification model for classification of user complaints.

CNN and hybrid of BILSTM-CNN perform well but a language model is considered more
effective, if it understands the context of whole sentence by differentiating the meaning of a
word based on the surrounding text as this feature is very essential when dealing with text-
based complaints. In this context, this research study utilizes third deep learning model called
Bidirectional Encoder Representations from Transformers (BERT) for classifying consumer
complaints. The model's deep understanding of language and its ability to process text
bidirectionally, allows it to understand the context of each word in relation to the entire
sentence. This capability makes it particularly effective in handling often complex language
used in consumer complaints. However, our proposed models, Convolutional Neural Network
(CNN), CNN with Bidirectional LSTM and BERT outperformed previous traditional models.

In this study, we present a novel methodology for complaint classification. Firstly, we employ
Natural Language Processing (NLP) techniques for preprocessing to refine the raw text.
Subsequently, GloVe embeddings and the BERT Tokenizer are applied to extract preliminary
feature vectors from the text. These feature vectors are fed to deep learning models to learn
new patterns better contextual information thus improving the accuracy of complaint
categorization. Moreover, this research stands as a novel effort that uses deep learning models
for classifying complaints based on their contextual and semantic information. Hence, deep
learning models with NLP are essential tools for classifying and managing consumer

complaints in today's digital and customer-centric world.

10

Fig 1.1: Customer Feedback in Business Sector [38]
1.1 Motivation

Increasing consumer complaints requires continuous advancement in solutions to ensure
customer satisfaction. Hence, an accurate, fast, reliable and scalable solution is required in this
regard. Therefore, the selected research topic utilizes deep learning models in NLP as an
alternative to the conventional customer care strategies. Deep learning models possesses the
potential to address the aforementioned constraints. Need of Deep learning in the field of
customer care can be highlighted by the following concerns.
1.1.1. The increasing dataset of consumer complaints:
Increase in the use of online banking causes rapid growth in the volume of consumer
complaints. This leads towards the difficulty in organization of these volumes, hence, causes
difficulty while managing them.
1.1.2. The growing need of accurate & scalable solution for consumer complaints
classification
For the effective and timely response of consumer’s complaints, it is essential to classify them.
Classification helps prioritize consumer’s complaints which leads to their effective
investigation. Organizing these complaints also enables authorities to identify the trend in
customer complaints hence resolving them for better services.
1.1.3. The growing potential of deep learning models for classification tasks.
Deep learning model validates its effectiveness to obtain accuracy in text classification which
makes them favorable to utilize them for consumer complaints classification. By utilizing them,
the process of classification become automatic hence, dealing with large data set could become
easier and effective.
This research work will evaluate if deep learning models can effectively classify complaints
into respective classes. For this purpose, various deep learning models will be considered, and
critical analysis will be made after evaluating them. In literature, different optimization
algorithms are utilized based on the nature of objective. So, a researcher should be vigilant in
choosing learning models for text classification that proves to be both suitable for their data set
and project requirements. Moreover, this research work will evaluate the performance of
different deep learning models by training and testing on two datasets. One dataset comprises
of 10,000 user complaints collected from a public education sector and the other dataset

contains 1,20,000 complaints collected from an international online dataset repository.

11

1.2 Problem Statement

Due to fast growth in the use of online and mobile transactions, a rapid increase in the volume of
consumer complaints is observed which causes difficulty in managing these complaints
effectively. Effective management requires accurate and timely classification of consumer
complaints so that organizations can be able to prioritize and investigate them accordingly.
Classifying them also enables organizations to identify the trends which lead them to improve
customer care service. This can be done by tuning deep learning models. Deep learning models
have been validated to obtain high level of accuracy in the field of text classification. This makes
them a useful approach for consumer complaints classification to automate the process of
classification for handling large datasets. For this purpose, various methodologies need to be
combined with machine learning techniques along with their effective tuning according to the
nature of problem needed to be solved. In that way, classification of the complaints can be made
into the respective department after successful prediction. Typically, machine learning classifiers
are utilized to classify user complaints but there is a need of efficient and effective deep learning
models which can provide more scalable and time saving approach to accurately predict the
class (department) and classify the complaints accordingly. Therefore, this research work aims
to provide valuable insights into the use of deep learning models for consumer complaints
classification. The proposed model is designed to develop and deploy deep learning models

which can offer improved accuracy and efficiency of their consumer complaints management.

1.3 Aims and Objectives

This research work aims to train various deep learning models for the classifications of
consumer complaints and critically analyze them to observe the effectiveness of each model so
that a suitable model can be selected which could be utilized to classify consumer complaints
for the respective organization.
To achieve this aim, the following objectives have been identified.
e To combine literature techniques having different feature extraction to address our
concerned problem.
e To provide timely, accurate and scalable solutions to the companies for better
management of consumer complaints which will ensure customer satisfaction towards
the organization.

To obtain the mentioned objectives, a three-step methodology is proposed. In the first step, a

12

large dataset that can be classified into multiple classes needs to be collected. After that, the
collected data needs to be pre-processed before processing into deep learning model such as
cleaning and transforming it into a suitable format. Finally, this data is subjected to deep learning
models for testing and training. Different performance metrics needed to evaluate the
performance of the models will be established.

1.4 Structure of Thesis
This work is structured as follows:

Chapter 2 describes technical background and different techniques used researchers in the
past for Text Classification.

Chapter 3 gives review of the literature and the significant work done by researchers in past
for the task of Complaints Classification. It also explains different techniques used to extract the
features and classification by researchers and the datasets that can be used.

Chapter 4 consists of the proposed methodology in detail. It includes three main modules: pre-
processing, vectorization or feature extraction and the deep learning models.

Chapter 5 consists of all the experimental results in detail with respective tables, figures, and
performance measures.

Chapter 6 concludes the research work and reveals future scope of it.

13

CHAPTER 2: TECHNICAL BACKGROUND

One of the most transformative technological domains of recent decades is Natural Language
Processing (NLP). It is redefining the ways in which we interact with machines. The primary
aim is to allow computers to comprehend, interpret, and generate human language in a valuable
and meaningful way. This field of study and application emerged in the mid-20th century,

around the same time as the advent of modern computers.
2.1. Natural Language Processing

Natural Language Processing (NLP) is a subfield of evolving artificial intelligence (Al) that
makes the interaction between humans and computers possible as depicted in Figure 2.1. It
focuses on developing classifiers and models to enable computers and machines to interpret,
and communicate in a language in a way that is meaningful and useful. NLP has gained
significant attention and has seen remarkable advancements in recent years, driven by the
availability of large-scale datasets, computational power, and innovative machine learning

techniques [16].

One of the key challenges in NLP is dealing with the ambiguity of natural language. NLP
models must be able to understand the context in which a word is used in order to disambiguate
its meaning. Another challenge in NLP is dealing with the complexity exist in human language.
Human language is full of nuances and subtleties that can be difficult for computers to capture

[17]. NLP models must be able to learn to represent the meaning of words and phrases in a way

]

that is robust to these complexities.

MACHINE J

LEARNING

Fig 2.1: Relationship of NLP and other Fields [39]
14

2.1.1 History of NLP:

The field of NLP has its roots in the early days of artificial intelligence (Al). In the 1950s and
1960s, researchers began to develop computer programs that could process natural language.
However, these early programs were limited in their capabilities. In the 1970s and 1980s, there
was a renewed interest in NLP. This was due in part to the development in the field of machine
learning classifiers that were better adopted for NLP tasks. In the 1990s, NLP saw significant
progress. This was due in part to the availability of large corpora of text data, which could be
used to train NLP models. In the 2000s, NLP has continued to advance. This is due in part to
the development of deep learning algorithms, which have presented to be very effective for

natural language processing tasks [18].

2.1.2 Linguistic Foundations

NLP relies on linguistic theories and concepts to understand and process human language
effectively. It draws from various linguistic subfields, including morphology, syntax,
semantics, and pragmatics. Morphology involves the study of word formation and the analysis
of word structure, inflection, and derivation. Syntax deals with the study of sentence structure
and the rules governing the arrangement of words. Semantics in text emphases on the context
of words, and phrases. while pragmatics examines how context influences language

interpretation and usage.

2.1.3. Tasks in NLP:

NLP encompasses a wide range of tasks [19] precisely depicted in Figure 2.2. Some of the
common tasks include:

Text classification: This is the task of assigning a category to a piece of text. For example, a
text classification model could be used to classify customer complaints into different
categories, such as "product defect,” "service issue,” or "billing error."

Text summarization: This generates a precise version of a piece of text that retains the most
important information. For example, a text summarization model could be used to generate a
summary of a news article or a research paper.

Machine translation: This is the task of translating text from one language to another. For
example, a machine translation model could be used to translate a website from English to

Spanish.
15

Question answering: This is the task of answering modeled in natural language. For example,
a question answering model could be used to answer questions about a factual topic, such as
"What is the capital of France?"

Named entity recognition: This is the task of identifying entities in corpus, such as people,
organizations, and locations. For example, a named entity recognition model could be used to
identify the names of people in a news article.

Sentiment analysis: This is the task of extracting sentiment from the text, such as whether it
IS positive, negative, or neutral. For example, a sentiment analysis model could be used to

determine whether a customer review of a product is positive or negative.

Sentiment Analysis

Information Retrieval Information Extraction

Doc A Q

Doc | n—
Doc 2 n——
Doc 3 n—

|

Machine Translation N atu ra | QuestionAnswering

Language e
Processing

Fig 2.2: Tasks in Domain of NLP [40]

2.1.4 Preprocessing Techniques

To prepare text data for analysis, NLP involves several preprocessing techniques [20] as given
below:
Tokenization: Breaking text into individual words or tokens.
Stop Word Removal: Filtering out commonly occurring words (e.g., "and,” "the") that do not
carry significant meaning.
Lemmatization: Reducing words to their base or dictionary form (e.g., "running™ to "run™).
Part-of-Speech (POS) Tagging: Assigning grammatical tags (e.g., noun, verb) to words.
Named Entity Recognition (NER): Identifying and classifying named entities such as names,
locations, and organizations.
Sentiment Analysis: Determining the emotional tone of a text (e.g., positive, negative,
neutral).

16

2.1.5 NLP Applications:

Industrial applications of NLP can be mostly categorized into 3 categories: Conversational
systems, Text Analytics, Machine translation

Conversational Systems: Using a speech or text-based interface, we may converse with an
automated computer in natural language using a conversational system. A company firm helps
to automate complex procedures with 24X7 assistance to its users. Virtual Assistants and
Chatbots are the two most frequent types of conversational gadgets. Banks, e-commerce, social
networking, and other self-provider factor-of-income systems all use these devices to serve
their clients with a wide range of services.

Machine Translation: Device translation is the venture of automatically translating one
natural language into another, retaining the means of the input text [19]. Maximum famous
software for device translation is Google translator. Other machine translation software
programs are also utilized in speech translation and teaching. Now, we will observe some
industrial packages in the following area regions: Healthcare, car, Finance, manufacturing,
retail, education, and customer service.

Text Analytics: Text Analytics additionally called textual content mining pursuits to extract
meaningful content from text, either in files, emails, or brief-form communications such as
tweets and SMS texts. Most commonplace use cases of textual content analytics on social

media analytics.

2.1.6 Challenges in NLP:

NLP poses several challenges due to the complexity of human language. Some common
challenges include:

Ambiguity: Words or phrases with multiple meanings or interpretations.

Syntax and Grammar: Variations in sentence structure, grammar rules, and syntactic
conventions across different languages.

Named Entity Ambiguity: Identifying and disambiguating named entities with similar names
or acronyms

Contextual Understanding: Capturing and leveraging contextual information for accurate
language understanding and generation

Data Limitations: The need for large, diverse, and annotated datasets to train and evaluate
NLP models effectively.

17

2.1.7. Deep learning in NLP:

Deep learning has had a major impact on NLP. Deep learning models have shown to achieve
state-of-the-art results on a wide range of NLP tasks, such as text classification, text
summarization, and machine translation [21]. Deep learning models are able to achieve these
results by learning to represent the meaning of words and phrases in a way that is robust to the
ambiguity and complexity of natural language. Deep learning models are able to learn these
representations by being trained on large datasets of text data as explained in detail in Section
4,

2.2 Text Pre-Processing

Pre-processing techniques [20] play a crucial role in deep learning-based text classification in
Natural Language Processing (NLP) as it involves transforming raw text data into a format
suitable for analysis and modeling. Deep learning has revolutionized text classification in NLP
by leveraging powerful neural network architectures to learn complex representations directly
from raw text data. Pre-processing techniques are employed to transform raw text into a
suitable format for deep learning models. These techniques ensure data consistency, handle
variations in text, and enhance the performance and efficiency of text classification tasks. It
aims to clean and structure the text, removing noise, irrelevant information, and
inconsistencies. This can lead to better performance on downstream tasks, such as text
classification, text summarization, and machine translation. This step can help to reduce the
size of the dataset. This can be important for NLP models that are trained on large datasets. By
removing stop words and noise, the size of the dataset can be reduced without significantly
affecting the performance of the model. Pre-processing techniques can also help to improve
the speed of NLP models. By normalizing text and removing stop words, NLP models can
process text more quickly. This can be important for real-time applications, such as chatbots
and search engines. It covers essential steps such as tokenization, stop word removal,
stemming, part-of-speech tagging, padding, word embeddings, data augmentation, and
strategies to handle OOV words named entity recognition. Understanding these techniques is
essential for ensuring accurate and effective NLP analysis and modeling. However, it’s
important to note that the pre-processing steps may vary depending on the specific
requirements of the task and the characteristics of the text data. Moreover, this technical
background provides a comprehensive overview of the pre-processing techniques commonly
used in NLP.

18

2.2.1. Tokenization:

Tokenization is the process of splitting text into individual words or tokens. It involves
breaking down sentences, paragraphs, or entire documents into smaller units, such as words or
sub words. Tokenization can be achieved using simple techniques like splitting on whitespace
or more advanced methods like using language-specific rules, regular expressions, or machine
learning algorithms [22] or more advanced tokenization methods such as using regular
expressions or libraries like NLTK or spaCy. Specifically, the texts_to_sequences method is
used to convert the text data into sequences of integers based on the vocabulary learned from

the training data
2.2.2. Conversion of Text into Lower Case:

In NLP, converting text into lowercase is a widely used preprocessing step with significant
advantages. Firstly, it unifies words that have the same meaning but different capitalizations
(e.g., "Bank™ and "bank™ are treated as one word). This simplifies the vector space model,
reducing the number of dimensions and making text analysis more efficient. Secondly,
lowercase conversion enhances text normalization, ensuring consistent formats across the
dataset and improving various NLP tasks like sentiment analysis and text classification.
Additionally, it reduces the vocabulary size by treating variations of a word as a single term,
reducing computational complexity during training and inference. However, a potential
drawback is the loss of semantic meaning for some terms, like "US™ (United States) and "us"
(pronoun). Thus, striking a balance between lowercase conversion and case sensitivity is

essential for optimizing NLP model performance.
2.2.3. Stop Word Removal:

Stop words are common words that do not carry significant meaning and often appear
frequently in text. Examples of stop words include "the," "and," "is," and "a." In NLP, removing
stop words is a common pre-processing step as they can add noise to the analysis without
providing valuable information. Stop word removal helps reduce the dimensionality of the data
and improves the efficiency and accuracy of subsequent NLP tasks. This can be done using a

pre-defined list of stopwords or using libraries like NLTK.

19

2.2.4. Removal of Punctuation

The removal of punctuation is an important preprocessing technique in NLP tasks to ensure
consistent and standardized text representation. By eliminating punctuation marks, such as
commas, periods, and exclamation points, each word is treated equally, regardless of its context
within the sentence. However, caution must be exercised during this process to preserve the
meaning of contraction words like "don't" that might lose their significance when separated.
Decisions on which punctuations to exclude should be carefully made based on specific use
cases. While Python's string.punctuation provides a standard list of punctuation symbols,
customizing the list according to the context can enhance the accuracy and contextual
understanding of NLP models. Striking the right balance between removing punctuation for
consistent representation and preserving the meaning of essential linguistic constructs is

essential for effective text preprocessing in NLP applications.
2.2.5. Stemming and Lemmatization:

Stemming and lemmatization are techniques used to reduce words to their base or root form.
Stemming involves removing affixes from words, such as plurals or verb conjugations, to
derive the stem or root. It relies on heuristic rules and pattern matching algorithms.
Lemmatization, on the other hand, maps words to their base or dictionary form using linguistic
rules and morphological analysis. It ensures that the resulting word is a valid word with a

semantic meaning.
2.2.6. Padding and Sequence Length:

Ensure that all input sequences have the same length by padding shorter sequences with zeros
or truncating longer sequences. This is necessary to create consistent input dimensions for the
CNN model.

2.2.7. Truncation:

Truncation is a crucial preprocessing step in NLP, involving the removal of parts of a text that
exceed a certain length or from the beginning or end of a sequence. Its primary purpose is to
standardize the length of input sequences, especially in tasks using neural network models like
BERT, GPT, or LSTM. With fixed-length inputs, models can be processed efficiently, enabling

training and evaluation on data batches. There are two common types of truncations: right
20

truncation, which retains essential information at the beginning of the text, and left truncation,
which preserves recent or relevant details at the end. The choice between left and right
truncation depends on the specific NLP task and contextual significance. However, care should
be taken not to remove critical information that could impact the model's performance.
Truncation, when combined with other preprocessing steps like tokenization and lowercasing,
ensures consistent and standardized input sequences, leading to enhanced model generalization

and performance across diverse NLP tasks.
2.2.8. Part-of-Speech (POS) Tagging:

Part-of-speech tagging involves assigning grammatical tags to words in a sentence based on
their role and context. Common POS tags include noun, verb, adjective, adverb, and pronoun.
POS tagging helps in understanding the syntactic structure of sentences, identifying
relationships between words, and disambiguating word senses. POS-tagged data is useful for

tasks like text classification, information extraction, and machine translation.
2.2.9. Named Entity Recognition (NER):

Named Entity Recognition is the process of identifying and classifying named entities in text,
such as names of people, organizations, locations, dates, and quantities. NER plays a vital role
in information extraction, question answering, and text summarization. It involves using
machine learning algorithms or rule-based approaches to identify and classify named entities

accurately.
2.2.10. Normalization and Spell Checking:

Normalization involves transforming text to a standardized format, reducing variations due to
capitalization, punctuation, and special characters. This process converts text to a standard
form. This involves tasks such as lowercasing all text, removing punctuation, and stemming
words. Normalization can help to improve the accuracy of NLP models by making text more
consistent. It ensures consistent representation and comparability of text data. Additionally,
spell checking techniques can be applied to correct spelling errors in text, enhancing the
accuracy of subsequent NLP tasks.

2.2.11. Handling Out-of-Vocabulary (OOV) Words:

In deep learning for text classification, encountering words that are not present in the pre-

trained word embeddings can pose a challenge. Techniques such as replacing OOV words with
21

a special token or learning contextualized word representations can be employed to handle

OOV words effectively.

A few basic pre-processing steps in NLP are mentioned below in the Figure 2.3.

ent back to University.”

Normalize -

<

Tokenize - <"jenna”, “went”, “back”, “to”, “university”>
) 1
SE——— =
Remove | | oo wyens” Auniversity
" “went”, “universi
Stop Words J
, "TRROR | ¢
Stem/ . — .
) -» <“jenna”, “go”, “univers”>
Lemmatize

Fig 2.3: Example of Pre-processing [41]

2.3. Feature Extraction Techniques used in Deep learning Models

Deep learning has appeared as a powerful technique for text classification in NLP, leveraging
neural network architectures to learn complex representations from raw text data. Feature
extraction techniques are employed to transform text into meaningful numerical
representations that deep learning models can process. Effective feature extraction is crucial
for capturing relevant information and patterns, enabling accurate text classification meaning
this step is important in text classification, as it allows the machine learning model to learn the

important patterns in the text that are relevant to the classification task.
2.3.1. Word Embeddings:

This is the process of representing words as vectors of real numbers. The vectors are learned
from corpus, and they are able to extract the semantic meaning of words appeared in text. Word
embeddings can be used to create feature vectors for text classification by simply taking the
feature vectors of each word in the document. They encode contextual meaning and help the
deep learning models understand the underlying meanings in the text. Pre-trained word

embeddings, such as Word2Vec, GloVe, or FastText [23] can be utilized to initialize the

22

embedding layer of deep learning models or fine-tuned during the training process.
2.3.1.1 GloVe Embeddings

GloVe (Global Vectors for Word Representation) is a widely adopted word embedding
technique in Natural Language Processing (NLP). It represents words as dense vectors in a
continuous vector space, capturing semantic relationships based on their co-occurrence
statistics in large text corpora. Word vectors place words in a space where similar words group
together and different words are farther apart. The key idea is to factorize the word co-
occurrence matrix, allowing GloVe to learn fixed-size vectors for each word. Words with
similar contexts appear closer in the embedding space, facilitating the discovery of meaningful
semantic relationships [24].

GloVe is a popular word embedding technique similar to Word2Vec, and it's used to convert
text data into numerical vectors which can be easily processed by deep learning models [23].
Word embeddings transforms words into vectors by using pre-trained word vectors file from
the GloVe (Global Vectors for Word Representation) project, developed by the Stanford NLP
Group. Each word has corresponding n-dimensional vector, implying that each word is
described by n features in the embedding space. These vectors capture semantic and syntactic
information about the words, and words have similar vectors that are similar in meaning. These
vectors are then used as input for machine and deep learning models for NLP tasks.

For this process, each sentence is converted into words and unique indexes are assigned to each
word. And embedding provides a d-dimensional vector for each index as shown in the

following Figure 2.4.

Words ‘ cycle car road tree root hotel river
Indices ’ 1 2 3 4 5 6 7
A
0.2 0.1 0.1 0.2 0.3 0.4 0.3
0.1 0.7 0.4 0.9 0.2 0.8 0.7
0.5 0.8 0.6 0.5 0.8 0.2 0.8
0.6 0.2 0.9 0.3 0.3 0.6 0.1
| |

Fig 2.4: Vector Representation using GloVe [42]

23

2.3.2. Attention Mechanisms:

Attention mechanisms enable deep learning models to target relevant parts of the text while
making class predictions. They assign weights to different words or sub words in the text,
emphasizing the most informative elements. Attention mechanisms focus on important features
and capture fine-grained details, improving the accuracy of text classification. Transformer-

based models, such as variants like BERT, extensively use attention mechanisms.
2.3.3. Transfer Learning and Fine-tuning:

Transfer learning is the process of leveraging pre-trained models on large-scale datasets to
extract features that are relevant for a specific task. Pre-trained models, such as transformer
and its variant like GPT and BERT, can be fine-tuned on task-specific data to improve text
classification performance. Fine-tuning makes the model to adapt to the specific nuances of the

target classification task.
2.3.4. Ensemble Methods:

Ensemble methods combine several models to improve the overall performance and
generalization of the text classification system. Ensemble techniques, such as model averaging
or stacking, can be applied to deep learning models for text classification. By aggregating the
predictions of multiple models, ensemble methods enhance robustness and accuracy.

2.4. Deep Learning Models

Deep learning focuses on training multiple neural networks with hidden layers to learn
hierarchical representations of data. It is inspired by the structure and function of the human
brain, where interconnected neurons processes information. Deep learning models, also known
as deep neural networks, consist of multiple layers of interconnected artificial neurons called
nodes or units. Each layer receives inputs, performs computations on them, and produces
outputs that are passed to the next layer. The layers are typically organized in a sequential
manner, with the initial layers learning low-level features and the subsequent layers learning
higher-level features. The key advantage of deep learning is its ability to learn representations

from text data, without the need for manual feature extraction. Deep neural networks can learn
24

complex patterns directly from the data, making them particularly powerful for image and
speech recognition, natural language processing, and various other domains. Training a deep
learning model involves feeding it with a large dataset and adjusting the weights and biases of
the network'’s parameters through a process called backpropagation. Backpropagation uses an
optimization approach, that is gradient descent, to iteratively update the model's parameters in
order to minimize the cost or loss function that continuously measures the difference between
actual ground truth values and predicted values.

Deep learning has shown remarkable success in past few years, largely due to advancements
in computational power, the accessibility and availability of diverse datasets, and the
development of more sophisticated neural network architectures. Deep learning models, such
as convolutional neural networks (CNNs) for image analysis and recurrent neural networks
(RNNSs) for sequential data,

Bidirectional Encoder from Transformer (BERT) have achieved state-of-the-art performance
on various complex tasks. However, training deep learning models can be computationally
intensive and requires large amounts of labeled data. Additionally, deep learning models are
often considered black boxes, making their decision-making processes less interpretable
compared to traditional machine learning models. Nevertheless, deep learning continues to
drive advancements in various fields and remains a highly active and exciting area of research

and development. Figure 2.5 shows the hierarchy of deep learning architecture.

Deep Learning Architecture
(Neural Network)

[|
Supervised Learning Unsupervised Learning
onvolutiona Recurrent Self Organizing
Neural Network il Neural Network N
Restricted Boltzmann
Gated Recurrent Unit

Fig 2.5: Deep Learning Architecture [43]

25

2.4.1. Convolutional Neural Network (CNN):

CNN is a multi-layered neural network as shown in the Figure 2.6; each layer is composed of
multiple 2D surfaces, and each plane is composed of multiple independent neurons [24]. A
group of local units is the next layer in the upper adjacent unit of input; this views local
connection originating in perceptron.
Convolutional Neural Networks (CNN) have been widely applied in computer vision tasks,
such as image recognition and text classification. However, CNNs have also shown promising
results in text classification, a fundamental task in NLP. CNN are deep learning models
designed to automatically learn hierarchical representations from input data. CNN architecture
is built on multiple layers like convolutional layers, dropout layers, pooling layers, and fully
connected layers. The core idea behind CNNs is the use of convolutional operations to extract
local patterns from the corpus. Convolution is a mathematical operation that takes a 1D input
and produces a 1D output in case of text. In the context of NLP, the input to a CNN is a
sequence of words, and the output is a feature vector that represents the relationships between
the words in the sequence.
CNN:s for text classification typically have the following architecture:
1. Anembedding layer that converts words into vectors of real numbers.
2. A convolutional layer that applies a convolution operation to the word vectors.
3. A pooling layer that down-samples the output of the convolutional layer.
4. A fully connected layer that classifies the text.
The embedding layer converts words into vectors of real numbers. This is done by using a
technique called word embedding. Word embedding is a process of representing words as
vectors of real numbers that capture the semantic meaning of words.
The convolutional layer applies a convolution operation to the word vectors. The convolution
operation looks for patterns in the word vectors. These patterns can be used to represent the
relationships between words in a sentence.
The pooling layer down-samples the output of the convolutional layer. This is done to reduce
the size of the output and to improve the computational efficiency of the CNN.
The fully connected layer classifies the text. This is done by using a technique called
classification. Classification is a process of assigning a category to a text.
Model’s parameters are further optimized after extracting features by the above-mentioned
layers to achieve accurate classification by using the steps as follow:

26

Training and Optimization:

CNNs for text classification are trained using labeled data. The model's parameters are
optimized through backpropagation and gradient descent techniques, minimizing a defined loss
function (e.g., cross-entropy). Dropout and batch normalization are proved to be regularization
techniques to prevent overfitting.

Hyperparameter Tuning:

CNNs have several hyperparameters that influence their performance, such as the number of
convolutional filters, filter sizes, pooling sizes, learning rate, and batch size. These
hyperparameters need to be carefully tuned to achieve optimal performance. Techniques like
grid search or random search can be used to explore the hyperparameter space.

Evaluation and Performance Metrics:

After training, the CNN model is evaluated using evaluation metrics such as accuracy,
precision, recall, and F1-score. Cross-validation or hold-out validation strategies can be
employed to assess the model's generalization performance.

\ 4
\ 4
Max Pooling
v
A 4
Max Pooling
v
Fully connected
A 4
Fully connected

Output layer

Input layer

Fig 2.6: Convolutional Neural Network [44]

2.4.2. Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNNs) are a class of neural networks commonly used in Natural
Language Processing (NLP) tasks due to their ability to process sequential data. Unlike
traditional feedforward neural networks, they capture contextual dependencies by propagating
information from previous words to the current word. Long Short-Term Memory (LSTM) [25]

and Gated Recurrent Unit (GRU) are popular variants of RNNSs.

The basic idea behind RNNs is to process input data one element at a time while maintaining

a hidden state that represents the network's memory or context. This hidden state is updated at

27

each time step and depends not only on the current input but also on the previous hidden state.
This mechanism allows RNNs to capture dependencies and patterns in sequences.

Architecture: The RNN consists of recurrent units, and each unit processes a single element
of the input sequence at a time. In NLP, these elements are typically words or tokens. The
recurrent units are interconnected in a way that allows information to flow from one time step

to the next.

Input Representation: To feed text data into an RNN, you need to represent words or tokens
as numerical vectors. Common approaches include word embeddings like Word2Vec, GloVe
that convert words into dense vector representations. These word embeddings can be learned

from scratch during training or loaded from pre-trained embeddings.

Sequence Processing: Each word or token in the input sequence is passed into the RNN one
at a time, along with the previous hidden state. The RNN processes the input and updates its
hidden state at each time step. The final hidden state after processing the entire sequence carries

information about the entire context of the input.

Backpropagation Through Time: Training an RNN involves using the backpropagation
algorithm to update the model's weights based on the error between the predicted output and
the true output. However, RNNs are inherently deep due to the unfolding of the recurrent
connections through time. This requires a variant of backpropagation called BPTT, which
unfolds the network in time and calculates gradients at each time step. Basic Recurrent Neural
Network is mentioned below in the Figure 2.7.

N
LaH - A

i eiv ol

Fig 2.7: Recurrent Neural Network [45]

®)
!
A

v
v

Although RNNs are effective for certain NLP tasks, they suffer from some limitations, such as
difficulty in capturing long-range dependencies (vanishing and exploding gradients) and the

inability to remember information from early time steps for long sequences. This is where Long

28

Short-Term Memory (LSTM) units come into play.

2.4.3. LSTM Based RNN

Long Short-Term Memory (LSTM) based Recurrent Neural Networks (RNNs) are a specific
type of RNN [27] designed and its key feature is its uniqgue memory cell structure, which allows
it to store and recall information over extended periods. An LSTM-based RNN contains
memory cells arranged in a layer [28]. These cells communicate with the rest of the network
through carefully regulated structures known as gates. There are three types of gates: the input
gate, which determines how much of the new information to let into the cell; the forget gate,
deciding what information to discard; and the output gate, controlling the amount of cell
information to output to the next layer [29]. These gate mechanisms allow LSTM-based RNNs
to selectively remember or forget information, making them particularly effective in tasks
requiring the understanding of long-term sequential dependencies, such as language

translation, text generation, and speech recognition.

Input Gate
Forget Gate Output Gate
1 2 3
Farget irrelevant LSTM Pass updated

information information

add/update new
information

Fig 2.8: Gates Mechanism in LSTM [29]

However, in simple terms, LSTM units act as memory components within the network, capable
of retaining context from the beginning of an input sequence. For example, if a sentence is 10
words long and the task is to predict the 11th word, the RNN processes all 10 words. In this
way, LSTM-based RNNs have revolutionized the field of sequence prediction and time-series

analysis.

2.4.4. BERT
In 2018, a significant advancement was made in the field of deep learning, particularly in the

29

realm of Natural Language Processing (NLP) - this was marked by the advent of successful
transfer learning techniques. A method that gained notable prominence was the Bidirectional
Encoder Representations for Transformers, also known as BERT. This model, because of its
exceptional performance, has set a new benchmark in NLP, redefining many language-oriented
operations. BERT's novelty lies in its capacity to understand the contextual meanings of words
by scrutinizing both the left and right contexts and textual elements [32]. In contrast to
Traditional language models, which typically analyze text in a unidirectional manner, - either
forward or backward, BERT focuses on the bidirectional functionality of Transformers. This
provides it a more holistic insight into the context of the language, ensuring a more robust
understanding of how words are used within a specific context. Figure 2.9 depicts how BERT

works with stacked layers making it state-of-the-art model.

11 2| 3| 4 *er 512

BERT

Fig 2.9: Stacked Layers of BERT [46]

2.4.5.1 Architecture

BERT consists of multiple encoder layers called Transformer Blocks, and each block contains
two main components: the self-attention mechanism and the feedforward network. The self-
attention mechanism captures dependencies and relationships between the words in the input.
This helps BERT understand how different words relate to each other and form meaningful
connections within the text. After the self-attention step, a feed-forward network is applied to
further transform the representations of the words. This network introduces non-linear
transformations to capture complex patterns and structures within the input. So basically, the

feed-forward networks enable non-linear transformations. This way the output of each layer is

30

passed to the next encoder layer, creating a stacked structure of multiple layers. Each layer
builds upon the representations learned in the previous layer, gradually refining the
understanding of the input text [32] as shown in the Figure 2.10.

l)
Add & Norm

Feed 1T
Forward

\
12 ENCODER

Nx | —("Add & Norm }

Multi-Head b
Attention
 TEEEE ST) 2 [ENCODER]
—_—
. J
Positional @_69 1 [ENCODER]
Encoding
Input
Embedding 12 3 4 2
1 [
Inputs BERT

Fig 2.10: Flow inside an Encoder Layer of BERT [32]

BERT model is available in two sizes as pre-trained model shown in Figure 2.11: BERT BASE
and BERT LARGE. BERT BASE consists of twelve encoder layers, while the LARGE version
has twenty-four encoder layers. Compared to the initial Transformer, BERT employs larger
feedforward networks with 768 and 1024 hidden units, respectively [33] Basically, the
feedforward network consists of multiple layers, and each layer contains hidden units. These
hidden units are intermediate representations within the network that help capture and
transform the information present in the input data. The size or number of hidden units
determines the dimensionality of these intermediate representations.

24 (ENCODER]
sse

ENCODER
12 ENCODER co

ENCODER

2 ENCODER 2 ENCODER

1 ENCODER

-

ENCODER

.

.

L]

w
NN
S W N) N

BERTgase BERTarcE

Fig 2.11: Sizes Available in BERT [33]

31

In BERT, two different sizes of hidden units are used: 768 for the BASE model and 1024 for
the LARGE model. These values indicate the dimensionality of the hidden representations
within the feedforward networks. A higher number of hidden units allows for more expressive
power in capturing complex patterns and representations in the input data. To put it simply,
hidden units in BERT represent intermediate features or representations within the feedforward
networks. The sizes 768 and 1024 denote the dimensionality of these representations as
mentioned in Figure 2.12. By increasing the number of hidden units, BERT can potentially
capture more intricate linguistic patterns and contextual information, which can lead to
improved performance on various language-based tasks. But the specific choice of hidden unit
sizes in BERT, such as 768 and 1024, has been determined through experimentation and
empirical evaluation to strike a balance between model complexity and performance. These
sizes have been found to work well for a wide range of NLP tasks, showcasing the effectiveness
of the chosen architectures in capturing rich semantic and syntactic information from textual

data.
Y

<CLS>

This
is S1=N=4
first
sentence

—> BERT Transformer —>
<SEP> S2=M=4

H =768

This
is
second
sentence

./
Fig 2.12: Preprocessing and Vectorization by BERT Tokenizer [47]

2.4.5.2 Training Inputs

BERT, which stands for Bidirectional Encoder Representations from Transformers, utilizes
three types of embeddings as part of its architecture: WordPiece token embeddings, Segment
embeddings, and Position embeddings as shown in the Figure 2.13. Each of these embeddings
contributes to the model's ability to understand the semantic and syntactic context of words in

sentence[34].

32

s) ()) ()) ()) ()) (o

Token

Embeddings E[CLS] Emy Edog Eis Ecute ErSEP] Ehe EI[kes EpJay Ef#ing ErSEP}
L 2 L 2 5= L J L L L L L 2 L

Segment

Embeddings EA EA EA EA EA EA EB EB EB EB EB
L 2 L 2 L 2 L 2 o= = - L L 2 L 2 =

Position

Embeddings EO El Ez E3 E4 ES Es E7 Es E9 Elo

Fig 2.13: Embeddings in BERT Tokenizer [34]

WordPiece Token Embeddings: These are embeddings for sub-word tokens. A single English
word might be represented as one or more sub-word tokens. For example, the word
‘embeddings' could be split into two tokens ‘'embed’ and '##dings'.

Segment Embeddings: BERT is designed to handle pairs of sentences for tasks such as
question-answering or natural language inference. For this reason, it needs to be able to
distinguish between the first sentence and the second sentence. To accomplish this, BERT adds
a sentence (or segment) embedding to each token indicating whether it belongs to the first
sentence or the second one. There are only two segment embeddings, one for the first sentence
and one for the second.

Position Embeddings: As BERT doesn't have recurrence or convolution which would
inherently handle sequence ordering, it needs a mechanism to incorporate the order of words
into its understanding of a sentence. Position embeddings are added to give the model
information about the position of the words in a sentence. In BERT, these are learned, not
hardcoded.

For each token, these embeddings are added together to form a single input representation [35].
So, the input at each position in the input sequence is the sum of the corresponding token,
segment, and position embedding. These combined embeddings are then passed into the
Transformer encoder. The Transformer architecture uses self-attention mechanisms and feeds
these embeddings through layers of self-attention and feed-forward neural networks. Through

training, the model learns to generate contextualized representations for each token.

33

2.4.5.3 Pre-training Model:

However, by using the above parameters, the model is pre-trained in two main steps: masked
language modeling and next sentence prediction [35].

Masked Language Modeling: In this step, a certain percentage of the input tokens (words or
sub-words) are randomly replaced with a special token called [MASK]. The model is then
trained to predict the original tokens that were replaced with [MASK]. By doing this, BERT
learns to understand the syntax, meaning, and relationships between different words in a
sentence. It essentially learns to fill in the blanks in a sentence, even when some words are
missing or replaced.

Sentence Prediction. In this next step, the model is trained to determine whether two given
sentences appear consecutively in the original text or not. The model learns to understand the
contextual flow of information and distinguish between sentences that are logically connected
and those that are not. By going through these two pre-training steps, BERT gains a deep
understanding of the syntax, and relationships within sentences and the coherence between
consecutive sentences. It learns to predict missing words and comprehend the overall structure
of text. This pre-training process equips BERT with valuable language understanding
capabilities.

2.4.5.4 Role of Special Token

Another distinctive aspect of BERT is the presence of a special token, [CLS], added as the
first input token. BERT takes a sequence of words as input, which is processed through the
stacked layers. Each layer applies self-attention to capture dependencies and relationships
within the input, followed by a feed-forward network for further transformation [36]. The
output of each layer is then passed to the subsequent encoder.

At last, the output of BERT is received that is vectors of size equal to hidden_size (768 in case
of BASE model). For tasks such as sentence classification, the focus is often on the output of
the first position, to which the special [CLS] token was supplied. This position's output
encapsulates the overall representation of the entire input sequence, providing a contextualized
embedding that can be utilized for downstream tasks.

By pre-training BERT on massive datasets and making the pre-trained models readily
available, the BERT framework has significantly reduced the time, effort, and resources

required for training language processing models from scratch.

34

CHAPTER 3: LITERATURE REVIEW

This research work encompasses literature from multiple sources including journals,
conferences, websites and case studies, focusing on User Complaints Classification. The main
objective of this section is to review the existing knowledge related to User Complaints
Classification. | have reviewed previous work that has been done to classify text in different
domains by checking databases like IEEE Xplore, ResearchGate, Springer Link, Science Direct
and other notable journals for this domain. For the purpose of searching, the keywords used
are text classification, machine learning models for complaints classification, deep learning
models, classification techniques, machine learning techniques for text classification, RNN,
CNN, Bi-LSTM, BERT. The span of publication considered for this research work is from
2001 to 2022.

In recent years, the advancement in natural language processing (NLP) has captured global
research attention. The aim is to optimize language models for better comprehension of text so
efforts from researchers all around the world focus on refining language models, leading to
varied methodologies. Some researchers work on contextual features and embeddings, while
others introduce novel models and techniques. Prior research suggests that efforts have been
made to introduce techniques that understand rules of language better specially in the field of
customer services. In this section, we will briefly discuss the contribution of multiple

researchers and their proposed techniques.

1. Dien Tran Thanh [1], and Bui Huu Loc proposed a new approach to classify articles by the
aid of natural language processing (NLP) and machine learning (ML) as with the abrupt
increase of data sources usually referred as text classification, have posed an important and
challenging role in numerous fields. Therefore, the key objective of designing the proposed
model to classify the articles by using pre-processing that includes removing of stop words,
stemming the words, and creating a vocabulary and feature extraction. Features are
extracted using bag-of-words, TF-IDF, and n-grams. And, lastly, classification of articles
is achieved by using three classifiers SVM, naive Bayes, and decision tree by evaluating
on a dataset of 10,000 articles from the VVnexpress newsletters. The experimental results
show an accuracy of approximately 92%, which is capable of comparative analysis to the
state-of-the-art results but the model was trained on small dataset of 10,000 articles having
maximum 10 classes so the model might not generate promising results on large dataset

belonging to different knowledge fields.

35

2. CNN, a feedforward network with multiple convolutional layers along with pooling
continues increasing but in contrast many researchers are proposing more efficient models
like Lai etal. [2] proposed a new method for text classification using recurrent
convolutional neural networks (RCNNs), which applied a recurrent network aimed to
capture information in terms of context instead of traditional capturing of keywords. This
approach uses RNNSs that is good at modeling sequential data, while CNNs are good at

extracting features from data.

3. CNN models rapidly gained popularity in the natural language processing (NLP) domain
for text classification but sometimes only scrutinization doesn’t yield satisfactory results
so Xuesong Tong [3] came up with a novel approach of integrating two models, negative
elements removal (NER) module to remove negative elements from the complaint text and
a character-level CNN to extract features from the data and to classify data into respective
classes. The proposed model was trained on Consumer Finance Complaints and it shows
an accuracy of 91% by classifying Consumer Complaints into 3 classes but as it was trained

for only 3 classes so it might not perform well for the system having more classes/ domains.

4. Tran Thanh Dien, Nguyen Thanh-Hai [4] proposed a deep learning method for automatic
topic classification implemented for an online submission system. The system is designed
to classify documents into one of a predefined classes/topic. The authors evaluated their
approach on five different datasets (including English, Turkish, and Vietnamese) and the
largest data set contained around 10,000 documents and 10 different topics/classes. The
proposed deep learning approach consists of two stages: the first one is feature extraction
and the 2nd stage is feature classification. In the first stage, the authors use a convolutional
neural network (CNN) to extract features from the document text. The CNN is trained on
a large corpus of text that has been manually labeled with topics. In the classification stage,
long short-term memory (LSTM) network is trained on the features extracted by the CNN
to classify the document into one of the predefined topics. The authors achieved an
accuracy around 95%. Authors' approach is a scalable but it is possible that the approach
would not perform well on a larger dataset and on different topic taxonomy from the one

used to train the model.

5. China is paying more attention to non-technical literacy of individuals such as perspective

on life, and the notion of sustainable development specially in university education. In the

36

past recent years, they evaluate individuals by conducting interviews or questionnaires that
often contains long text from students. These paragraphs, often contain unstructured and
long text that gets hard to classify by classifiers so Miao Zang [5] proposed a multi-label
classification model called MLformer that uses Longformer to do mainly two tasks. It
extracts features to get global semantic and context of the text that makes it easy to classify
with 80% accuracy on the dataset about engineering sustainability that is in Chinese
originally. The experimental results shows that the model outperforms other conventional
deep learning models like BERT. But the major drawback of this model is its small dataset.
It was trained only on 763 samples, in which only 20% of the data contained long text (of

500 to 900 Chinese characters) so it will not show promising result on new testing data.

. As population is increasing day by day, the increase in the use of transportation services
demands a system that is capable of improving quality of service by analyzing railway
complaints by passengers. This conducted research work proposes a deep learning model
for railway complaint categorization. Aforementioned model by [6] uses a bidirectional
long short-term memory (LSTM) network with an attention mechanism for feature
extraction from the text. The attention mechanism allows the model to focus on the most
important words in a complaint gathered from COMS application of Indian Railways and
classify it in one of the 14 classes. This resulted in improved accuracy upto 93% along with
F1-score of 0.93 but the major drawback of the proposed model includes the use of a small
dataset and the lack of evaluation on new/updated real-world data.

Technology plays significant role in the times of crisis like Singh, M. [7] used sentiment
analysis to track the public's response to the pandemic on Twitter using BERT model that
achieved an accuracy of 93%. In the conducted research work sentimental analysis on
COVID-19 is presented. The mentioned strategy has used five metrices for performance
evaluation that are Average Likes over the period, Intensity Analysis, Average Re-tweets
over the period, Wordcloud, Polarity, and Subjectivity. The seven intensity categories he
used to analyze the tweets are neutral to strongly negative. The pandemic has had a
profound impact on social life. Their result shows that the sentiment of tweets about the
coronavirus was generally negative, with the mean sentiment score being -0.03. However,
the sentiment of tweets from India was more positive than the sentiment of tweets from the
rest of the world. And this trend varied over time. His work showed how sentiment analysis

can be used to identify areas where public health interventions are needed. But the author

37

10.

acknowledged the limitations to their study that the tweets were collected from Twitter,

which is a platform that is used by a relatively small percentage of the population.

The exponential expansion of biomedical literature, particularly in the context of the
COVID-19 pandemic, presents a substantial obstacle to manual curation and interpretation.
This is primarily due to the accelerated pace at which new research findings are being
published and accepted. LitCovid is a comprehensive database of scholarly papers
pertaining to COVID-19, hosted within the PubMed platform. This database currently
encompasses a vast collection of over 100,000 articles, and witnesses millions of user
accesses on a monthly basis from individuals across the globe. During this particular
challenge, Qingyu Chen [8] introduced a novel approach, known as LitMC-BERT, for the
multi-label classification of biomedical literature. The classification of papers into various
labels, such as Diagnosis, Prevention, Treatment, etc., is achieved through the utilization
of a transformer-based model. This model is designed to learn and comprehend the
associations between different labels, enabling accurate classification. The model
demonstrated a level of accuracy amounting to 84% during the performance evaluation
conducted on a separate sample of 3000 articles in the LitCovid database.

The use of technology is always been in trend and a rapid growth can be seen in the field
of NLP specifically tasks related to classification or prediction to make systems more
capable and efficient but these machine learning models offer no clarification for the
predictions they made. Existing models by [9] tend to focus on predicting the output or
make prediction on the basis of the relation between input and output. However, these
approaches work like a black box so Hui Liu came up with a novel approach of generative
explanation framework called GEF that tends to classify text and generate fine-grained
human-readable explanation for the prediction the model made. Hui Liu used LSTM and
CNN as base models for classification and integrate it with GEF for generating
explanations for the decision taken. The author additionally joined CVAE+GEF to generate
even better explanations. The testing is performed on two datasets. the models achieved an
improved accuracy that surpasses all the baseline models on these datasets by generating

precise and accurate explanation.

Vasudeva Raju S [10] proposed a novel approach for topic modelling by using on BERT-
based embeddings. The data is obtained from Consumer Financial Protection Bureau

38

11.

12.

13.

(CFPB) data. BERT, or Bidirectional Encoder Representations from Transformers, uses
BERT-based embeddings that has ability of capturing the semantic relationships between
words in a way that is not possible with traditional topic modelling methods. They

evaluated their approach on a dataset of CFPB complaints.

The paper by [11] proposed a novel approach that utilizes the hybrid deep learning model
for the automatic classification of citizen e-petitions. The model generated by using
aforementioned technique combines the strengths of convolutional neural networks
(CNNs) and bidirectional long short-term memory (Bi-LSTMs) to extract both local and
sequential features from the text of the petitions. a dataset of e-petitions is used to train the
model. the data set is obtained from the Chinese bulletin board system (BBS). The results
of the experiments depicts that the proposed model achieved a weighted F1 score equal to
figure 0.8267. aforementioned figure is higher than the F1 scores of the baseline models.
The paper's findings suggest that hybrid deep learning models and decision support systems
can be used to improve the efficiency and make the method of e-petition classification more

effective in future.

In this paper by [12], Machine learning techniques were used to analyze customer reviews
about the restaurant management, food and beverage. The review holds information in text
form but Machine learning use numerical data. For that it applies NLP and preprocessed
the data after that it apply different vectorization technique which provide information in
numerical format. This article applies different classifiers, train the model and after that
test the model and check the accuracy. The main feature of this article gives comparison

chart of accuracy by different classifiers as well as with different vectorization techniques.

Business enterprises are currently reconsidering the prospect of transitioning their
operations to the online realm. In doing so, they are also reassessing various strategies that
may prove advantageous for their business endeavors. These strategies encompass the
identification and prioritization of customer concerns, the analysis of customer satisfaction,
and the enhancement of customer service. In order to address this objective, Zhuyi Rao
[13] introduced a methodology rooted in data mining principles, which entails employing
a fusion of text mining and machine learning methodologies, including Bayesian network
for feature extraction and K-mean clustering for categorization. The methodology was

assessed using a dataset of user complaints sourced from GitHub, on Chinese language

39

14.

data. The evaluation results demonstrated that the method attained a level of accuracy of
90%. One limitation of this model is its effectiveness in classifying user complaints that

are written in a specific language, because it was trained on a relatively smaller dataset.

In continuation, Qurat-ul-Ain [14] proposed NLP-based model such as Logistic
Regression, Random Forest, K-nearest neighbor and SVM using TF-IDF for the
classification of complaints. The models used same approach, a combination of natural
language processing and machine learning techniques to extract features from the text of
the complaints first and then classify them into different categories. Model achieved an

accuracy that lies between 80-83% for dataset 1 and 72-80% for local dataset.

40

Author Name &

Publish Date Dataset CEEAED Aceuracy
SVM 90.1%
Scientific -
. Naive Bayes 87.6%
Tran Thanh Dien, Articles,
Bui Huu Loc,Nguyen VNEXPRESS
Thai-Nghe [1] NEWSLETTERS
(2019) KNN 46.7%
96.49
20Newsgroups 95.20
Siwei Lai, Liheng Xu, ACEugi?hsoelto 49.19
Kang Liu, Jun Zhao [2] y 9y RCNN 47.21
(2015) Networ _
Stanford Sentiment
Treebank
91.07
. Consumer Finance | Character-level
Xuesong Tong, Bin Wu, lai lish Convolutional
Shuyang Wang, and Jinna Complaints (English), N Kk
Lv [3] Consumer Express etwor 86.85
(2018) Complaints (Chinese)
MLP 0.977
SVM 0.965
Tran Thanh Dien, Nguyen Scientific_Articles Decision Tree 0.819
Thanh-Hai [4] Turkish_News_Article
(2020) VnExpress_Newsletters
Dataset in Chinese on ML former 0.80

Miao Zang [5]
(2023)

‘Engineering
Sustainability’

41

Meenu Gupta [5]

Data from COMS app

LSTM

93%

(2021) of Indian Railways
COVID-19 Tweets
Mrityunjay Singh & | SEieeed from Twiter
érgzltl ;(umar Jakhar [6] and the tweepy APIs BERT 93%
for extracting tweets &
data scraping
LitMC-BERT 0.8022
(Qzl(;%/)u Chen [7] LitCovid BioCreative
HoC
LitMC-BERT 0.6854
CNN+GEF 79.07%
Hui Liu [8] Skytrax User Review n 0
(2019) dataset LSTM+GEF 77.9%
. Dataset from Consumer
éa(l)szuzd)eva RajuS [9] Financial Protection C-V:
Bureau (CFPB) 0.3327
FInBERT
U-Mass: -12.652
Fengmei Sun [10] Shanghai e-petition
(2022) BBS. BERT 8204

42

superdatascience.com

3 techniques are used for these models that
are Countvectorizer, TFIDF, Hashing

vectorizer respectively

Anuradha Tutika, MY V
Nagesh [11] (2019) K-NN 1. 75%
2. 78%
3. 62%
Logistic 1. 80%
Regression 2. 88%
3. 68%
SVM 1. 70%
2. 68%
3. 69%
Zhuyi Rao, Yunxiang Chinese natural
Zhang language proces_sing K-mean 90%
[12] (2022) data set from GitHub
Models for Count Vector
dataset |
Random forest | 83%
Dataset I: Consumer
Complaint from Kaggle 0
Qurat-ul-ain [13] Dataset II: ﬁ/lug)criﬁ;te\slector 83%
(2022) Local complaints -
dataset Logistic 82%
Regression
K--Nearest 78%
Neighbor
classifier

3.1. Research Gaps

In recent years, there are different types of features extraction techniques and

selection of model utilized by researchers which are explained in this section. Count

Vector and TF-IDF features rely on number of word occurrences. Features extracted

by embeddings like Word2vec, Bag-of-words provide information regarding

43

occurrence matrices. Likewise, Researchers have applied multiple machine learning
algorithms and hybrid deep learning models for better understanding of text. But
from the prior work, it is clear that a significant research gap still exists due to the
limited work done in the field of complaints classification, Thus, this scarcity in
literature makes it more challenging to develop a comprehensive and generalized

system for complaints classification.
Hence, the contributions of this paper can be summarized as:

¢ An in-depth investigation of the feature techniques, word embeddings and models

that can be used for complaints classification.

e It addresses the significance of contextual understanding in text, highlighting the
shortcomings of traditional models in extracting the context-based meanings in

complaints, which can often be vague or ambiguous.

e Asystem is proposed to enhance the classification of consumer complaints. By
integrating the capabilities of CNN and Bidirectional LSTM, and introducing BERT
model, the system emphasis on the significance of contextual understanding in text
and ensures accurate routing of complaints to their respective departments,

promoting rapid and effective response measures

44

count

3.2. Data Sets
The primary objective of this study is to assess the performance of the proposed deep learning

models and find the best approach for our problem by testing models on multiple datasets. For
this purpose, experiments have been conducted using identical settings on three datasets:
Consumer complaints dataset I, Consumer complaints dataset 11 and Local dataset IlI.

3.2.1. Dataset I:

Dataset | used in this work, is the US Consumer Finance Complaints dataset available on
Kaggle. This dataset is a collection of 555957 consumer complaints about financial products
and services. It was created by the Consumer Financial Protection Bureau (CFPB). The data is
classified into eleven categories, each representing a unique class such as credit card, retail
banking, credit card, and credit reporting, mortgage, or debt collection etc. in the bank

department. The key features in the dataset are described in the following graphs:

17500 A

Debt collection Consumer Loan Mortgage Credit card Credit reporting Student loanBank account or servicePayday loan Money transfer®ther financial service Prepaid card
product

Fig 3.1: Number of Samples in Each Class

count

1 2 3 4 5 6 7 8 9 10 11 12
month

Fig 3.2: Received complaints on the basis of months

45

3.2.2. Dataset 11:

Dataset 11 used in this work, is the dataset with the name “Consumer Complaints” available on
Kaggle and GitHub. This dataset is a collection of 1,62,421 consumer complaints about
financial products and services. It contains information about the complaints filed by the users.
The data is classified into five categories, each representing a unique class such as credit card,
retail banking, credit reporting, mortgage, and debt collection. The distribution of data samples
is given below in Figure 3.3.

count

credit_card retail_banking credit_reporting mortgages_and_loans debt_collection
product

Fig 3.3: Number of Samples in each Class

narrative product
0 purchase order day shipping amount receive pro... credit_card
1 forwarded message date tue subject please inve. . credit_card

2 forwarded message cc sent friday pdt subjectf... retail banking
3 paymeant history missing credit report speciali... credit_reporting
4

payment history missing credit report made mis... credit_reporting

Fig 3.4: First Four Samples & respective Class

46

count

2500 A

2000 A

1500 A

1000

500 4

3.2.3. Dataset I11:

Dataset Il refers to a local dataset that has been personally gathered and cleaned by using
initial preprocessing. This Local Data set contain 10 distinct classes, and each class shows a
different domain such as Scholarships, Academics, Attestation, Accreditation, Sports,
Information & Technology, Equivalency of different degrees and domains, Quality Assurance
Division, Quality Assurance Agency, and Research and Development. Each sample in the
dataset belongs to one of the respective classes. The dataset comprises 10,002 complaints that
were gathered from the organization's official website. It is worth noting that some complaints
might overlap across multiple classes/divisions, as they show various instances of similar
issues being reported. The classes are converted to labels from 1-10 as shown in the Figure 3.5
below:

1 5 6 10
targetclass

Fig 3.5: Number of Samples in each Class

complaints targetclass
0 needto upload my profile in HEC PCD Listas D... 1
1 My name is Zamin Basharat and | have done my ... 1
2 | have a friend named Basharat Ali from Skardu... 1
3 | amworking as Assistant Manager in PESCO. Th... 1
4 Dear sir, Please apprise about ranking status... 1

Fig 3.6: First Four Samples & Respective Class

47

CHAPTER 4: METHODOLOGY

In the proposed system, three distinct models have been implemented. Text samples
are subjected to preprocessing techniques. Subsequently, GloVe embeddings and
BERT Tokenizer have been utilized for feature extraction. BERT tokenizer is
employed additionally only for BERT model to extract features because BERT
model works on a specific data format prepared by its tokenizer. These processed
feature vectors are then passed into three distinct models. The first model is a
Convolutional Neural Network (CNN), specifically designed to recognize local
patterns in the extracted features. The second model is a hybrid of BiLSTM-CNN,
integrating both temporal and spatial analysis. Finally, the third model is
Bidirectional Encoder Representations from Transformer (BERT). This state-of-the-
art model uses the features extracted by BERT tokenizer and channels these feature
vectors to BERT model for deeper contextual understanding. The framework of our

proposed methodology is shown in the Figure 4.1

Data Samples

|

Class Selectionf
Result

Converting Text to
Lower Case
J
Removing
Punctuation &
I!
_ BERT
Removing Stop
Words
1 Tokenizer
. BiLSTM_CNN
Correcting
Spellings
/1 GloVe
Tokenization Emheddings
Pre-processing Feature-Extraction Models

Fig 4.1: Framework of our Proposed Architecture

48

4.1. Initial Preprocessing

Removing duplicates can help maintain a clean and organized dataset, ensuring that each data
entry is unique and contributes to accurate analysis and results. However, the data undergoes
an extensive cleaning process. The original dataset might contain repeated occurrences like
similar complaints. Duplicate instances are defined as those with identical department and
complaint descriptions, even though the date or time may differ.

The decision to remove or keep these duplicates is contentious. On one hand, removing
duplicates helps prevent overfitting during the model training process. This is particularly true
when the training set contains many similar instances. For less frequent events, the model can
properly account for the recurrence of the same incident. On the other hand, high duplicate
counts reflect that certain type of complaints occur more frequently. To optimize performance,
duplicates were removed, but it should be kept in mind that it's uncertain whether this is the
best approach.

This issue of duplicate handling needs further research, but it falls outside the scope of this

study.

4.2. Pre-processing data

Preprocessing aids in cleaning the raw text data by removing irrelevant characters, special
symbols, and unwanted formatting artifacts. This step minimizes noise, ensuring the
subsequent NLP models are fed with high-quality and consistent data. The techniques used to

preprocess the data are mentioned below:

e Converting text to lower case.

e Removing punctuation and unwanted symbols and characters.
e Removing stop words.

e Correcting spellings

e Lemmatizing

e Tokenization

49

4.2.1. Conversion of Text to Lower Case.

In the first step, we applied the process of converting all text to lowercase. This preprocessing
step involved changing all the letters in the text to their corresponding lowercase forms. The
conversion to lowercase aids in creating a standardized and normalized text corpus, minimizing
variations due to letter case and preventing the duplication of words based on their
capitalization.

As aresult, the NLP model can learn and recognize patterns from the language more accurately,
leading to improved performance in various NLP tasks. Conversion to lower text of the data

samples is shown in the Figure 4.2

Preprocessed Text

xxxX has claimed i owe them 2700 for xxxx years despite the proof of payment i sent them
canceled check and their ownpaid invoice for 2700 they continue to insist i owe them and
collection agencies are after me how can i stop this harassment for a bill i already paid four years
ago

due to inconsistencies in the amount owed that i was told by m t bank and the amount that was
reported to the credit reporting agencies

Fig 4.2: Samples after converting to lower text

4.2.2.Removing Stop Words and Punctuation

The removal of stop words and punctuation marks is an important preprocessing step in natural
language processing (NLP) to enhance the quality and efficiency of text analysis while
maintaining the original meaning of the text. Stop words are common words that occur
frequently in a language but typically carry little semantic meaning (e.g., "the," "is," "and").
Punctuation marks include characters like commas, periods, question marks, and exclamation
points.

However, we carefully cleaned the dataset by getting rid of unnecessary punctuation and
symbols like ["#3%&'()*+,-./:;<=>?@[]™_"{|}~], which are commonly found in text datasets.

Figure 4.3 shows the text sample after removing stopwords and punctuation marks.

50

Preprocessed Text

xxxx has claimed i owe them 2700 for xxxx years despite the proof of payment i sent them canceled
check and their ownpaid invoice for 2700 they continue to insist i owe them and collection agencies
are after me how can i stop this harassment for a bill i already paid four years ago
due to inconsistencies in the amount owed that i was told by m t bank and the amount that was
reported to the credit reporting agencies i was advised to write a good will letter in order to address
the issue and request the negative entry be removed from my credit report all together

Fig 4.3: Samples after removing stop words & punctuation

4.2 .3.Normalization

The text is being normalized in the next step as the objective is to normalize the words in a
given text based on three dictionaries sourced from online to improve consistency and accuracy
in text processing. These dictionaries, presumably loaded from the text files, contain mappings
of non-standard words to their normalized versions. This step replaces any non-standard word
it encounters with its normalized counterpart according to these dictionaries as shown in the
Figure 4.4.

Preprocessed Text

has claimed i owe them 2700 for years despite the proof of payment i sent them canceled check
and their ownpaid invoice for 2700 they continue to insist i owe them and collection agencies are
after me how can i stop this harassment for a bill i already paid four years ago

due to inconsistencies in the amount owed that i was told by am t bank and the amount that was

reported to the credit reporting agencies i was advised to write a good will letter in order to

address the issue and request the negative entry be removed from my credit report all together
Fig 4.4: Samples after normalization

4.2.4.Correcting Spelling

Correcting spelling in Natural Language Processing (NLP) is a common task, that identifies
words that have been misspelled and correct them with the most suitable candidate. In our
proposed methodology, Dictionary Lookup method has been used. In this method, every word
in the text is compared against a dictionary of correctly spelled words. If a word is not found

in the dictionary, it is considered misspelled. This step uses TextBlob library, which is equipped

51

with robust Natural Language Processing (NLP) functionalities, to correct spelling mistakes in
the textual data. Specifically, each word is traversed in the data sample column. The resulting
spelling-corrected text replaces the original narrative in the Data Frame. This preprocessing
step, significantly enhances the quality of text data by reducing spelling inconsistencies,

thereby paving the way for more accurate subsequent analyses.

4.2 5. Lemmatization

Lemmatization, often used for normalizing words in a text corpus. It is a more complex process,
does a better job than stemming at using the context of the word in a sentence and its Part of
Speech (POS) to determine the base or 'lemma’ of the word. It accurately transforms words to
their canonical form. For example, it converts 'are' to 'be’, and 'better' to 'good’. This makes it
especially useful when the exact form of the word is crucial for further analysis. This step uses
TextBlob's Word class to lemmatize the consumer complaint. The lambda function splits each
narrative into individual words, lemmatizes each word, then joins them back together into a

single string. Samples received after lemmatization step are mentioned in the Figure 4.5 below:

Preprocessed Text

claimed owe 2700 year despite proof payment sent canceled check ownpaid invoice 2700
continue insist owe collection agency stop harassment bill already paid four year ago

due inconsistency amount owed told bank amount reported credit reporting agency advised
write good letter order address issue request negative entry removed credit report together

Fig 4.5: Samples after Lemmatization

4.2.6 Tokenization

In this preprocessing step, we tokenized the dataset by breaking each statement down into
individual words. The NLTK package has been employed to perform this task by segmenting
the text into meaningful units, making it more manageable and suitable for analysis.
Tokenization is an important step that enhances the quality and efficiency of NLP tasks, as it
allows the NLP model to understand and process language more effectively. By breaking the
text into smaller units, we enable the model to capture meaningful information and

relationships between words, which are used for accurate analysis and prediction. In our case,

52

a tokenizer, from the Keras library, is used to tokenize text data. This process returns a
dictionary where the keys are the unique words found in the data, and the values are the
corresponding indices. Basically, this dictionary is used to convert words into their
corresponding numeric representations to prepare text data for a deep learning model. The

tokenized dataset is shown in the Figure 4.5 below.

Preprocessed Text

{'credit: 1, 'account’: 2, 'payment": 3, 'loan": 4, 'would": 5, 'bank’: 6, 'time". 7, 'report": 8, 'debt"; 9,
told": 10, 'call: 11, 'received": 12, ‘card": 13, 'mortgage": 14, '‘company": 15, 'information": 16, 'called":
17, 'day": 18, 'month': 19, 'letter: 20, 'year" 21, 'pay': 22, 'never" 23, 'get": 24, 'sent": 25, 'paid': 26,
‘number'; 27, 'back’: 28, 'said": 29, 'could": 30,

Fig 4.6: Samples after Tokenization

In our data samples, 50956 unique words are found as given below

Found 50956 unigue tokens.

{'credit” 1, "account”: 2, 'payment” 3, 'loan” 4, 'would": 5, 'bank’: 6, time': 7, 'report” 8, 'debt" 9, 'told" 10, 'call” 11, 'received' 12, 'card" 13,
'mortgage’: 14, 'company': 13, 'information”. 16, 'called”. 17, 'day". 18, 'month': 19, 'letter”. 20, 'year: 21, 'pay" 22, 'never'. 23, 'get" 24, 'sent’ 23,
'paid" 26, 'number': 27, 'back’: 28, 'said" 29, 'could': 30, 'phone” 31, Tee" 32, 'collection’ 33, 'also”: 34, 'amount” 35, 'money': 36, 'home" 37,
'made” 38, 'due” 39, 'service” 40, 'since” 41, 'asked": 42, 'u'- 43, 'check” 44, 'charge" 45, 'balance’: 46, 'well" 47 'still" 48, 'make" 49, 'even”: 50,

‘one'. 51, 'late” 52, 'interest” 53, 'date”: 54, 'agency” 55, ‘reporting”: 58, 'bill 57, 'help": 58, 'statement”: 59, 'name” 60, 'request” 61, 'contacted" 62,
'know': 63, 'complaint'; 64, 'need': 65, 'customer': 66, 'new". 67, '2015" 68, 'issue': 69, 'modification”: 70, 'document’: 71, 'dispute': 72, ‘contact’: 73,
file': 74, 'please’. 75, 'another': 76, 'address”. 77, 'want' 78, 'stated’: 79, 'like" 80, 'work’. 81, 'send'. 82, 'several. 83, take". 84, 'america” 85, 'see”
86, 'last’: 87, 'requested” 88, 'consumer': 89, 'state’ 90, first” 91, 'went 92, 'bureau” 93, 'process' 94, 'without 95, 'Targo” 96, 'representative’
97, 'chase': 98, 'trying": 99, 'got": 100, 'going” 101, 'property”. 102, 'business” 103, 'copy” 104, 'full- 105, 'week’ 106, 'provide” 107, Tinancial 108,
'notice'. 109, 'insurance’: 110, 'however" 111, rate”. 112, 'case” 113, 'right. 114, 'fund". 113, 'gmail". 116, 'claim”. 117, 'law". 118, 'mail" 119,
‘removed". 120, 'able’. 121, 'closed” 122, 'reported' 123, 'stating”- 124, 'filed': 125, 'house” 126, 'depariment’. 127, 'receive'. 128, ‘charged” 129,
'owe'" 130, 'go” 131, 'say" 132, 'spoke” 133, 'provided” 134, 'fraud': 135, 'informed". 136, 'put 137, 'monthly" 138, 'every': 139, "original” 140,
'later 141, 'onlien” 142, 'person” 143, Toreclosure': 144, 'sale’ 145, 'keep" 146, 'paying” 147, 'past’ 148, 'give" 149, 'tried" 150, 'score” 151,
‘attorney’: 152, 'show': 153, 'record': 154, 'calling'. 153, ‘remove’. 156, 'problem”. 157, 'response’. 158, 'car’: 159, 'court’: 160, 'point’: 161, 'tax" 162,
‘today". 163, ‘equifax’: 164, 'office’. 165, ‘way': 166, 'refused". 167, ‘transaction” 168, 'proof: 169, 'nothing': 170, 'applied” 171, 'anything” 172,
'took’: 173, 'done': 174, 'someone". 175, 'matter 176, 'experian. 177, 'used" 178, 'different” 179, 'use" 180, 2" 181, 'item". 182, "bankruptcy” 183,
'regarding’: 184, 'escrow” 1832, 'system': 186, 'ocwen” 187, 'current’: 188, 'immediately” 189, 'needed” 190, 'purchase” 191, 'people” 192, 'yet"
193, 'within" 194, 'order: 195, 'believe. 196, 'already': 197, 'tell- 198, 'owed": 199, 'ago” 200, 'offer’ 201, 'making": 202, 'many" 203, o' 204,
'checking": 205, 'advised" 206, 'manager’: 207, ‘correct” 208, 'find": 209, 'stop”: 210, 'lender": 211, 'fact” 212, found" 213, ‘creditor” 214, 'collect"
215, 'agreement”. 216, 'application” 217, 'given” 218, 'documentation”. 219, 'action”: 220, 'signed". 221, 'practice’: 222, 'error’. 223, 'attached" 224,
line": 225, 'reason’ 226, 'getting”: 227, 'though': 228, '3" 229, 'submitted” 230, 'legal” 231, 'fraudulent’: 232, 'disputed” 233, 'personal’ 234,

Fig 4.6: Total Samples after Tokenization

4.3. Feature Extraction

After identifying the sentence with the most words or the longest length, and converting the
sentence to maximum length that is 394 in one case by either doing padding or truncating, word
embeddings are loaded from a pre-trained GloVe (Global Vectors for Word Representation)
model. The model is trained on a massive dataset containing one billion tokens (words) and

utilizes a vocabulary of 400 thousand distinct words. The GloVe (Global Vectors for Word
53

Representation) algorithm is used for training, resulting in embedding vector sizes of 50, 100,
200, and 300 dimensions.

GloVe is a popular word embedding technique similar to Word2Vec, and it has been used to
convert text data into numerical vectors which can be easily processed by deep learning models.
Word embeddings transformed words into vectors by using 'glove.6B.300d.txt' file that is a
pre-trained word vectors file from the GloVe (Global Vectors for Word Representation)
project, developed by the Stanford NLP Group. The '300d' refers to the dimensionality of the
vectors. Each word is represented by a 300-dimensional vector, implying that each word is
described by 300 features in the embedding space. These vectors capture semantic and
syntactic information about the words, and words with similar meanings tend to have similar
vectors. These vectors are then fed as input to the model. A word embedded vector
representation for a word token 'loan' and index value 4 in our embedding matrix is given below

in Figure 4.7.

[("loan', 4)]

embedding_matrix[4] #embedded vector for token 'loan’
array([@.1347499%, 8.863568 , -B.3795899%9, -8.82872¢ , 0.34178881,
-8.0853481 , 6©.808681e63, -0.73324862, -0.47262090, -0.89482882,
@.0856%88 , -8.851773 , 0.57340998, -0.26681 , -9.8843554
-8.68673882, 6.54750882, -8.47711 , B.12997 , -B.58742883,
@.873666 , -8.56190993, 6.19243 , -B.@22735 , 6.15757 ,
@.65a08 » -8.48374999, 0.14399 , -B.569822 , B.26741081,
-8.53882@481, -0.2989%6@61, ©.32987999, 6.12313 , -1.14779997,
-8.51828998, -8.018956 , ©.02877 , -B.@815283 , -B.853114
-8.1e932 » -8.83578998, -0.46337 , B.85992082, 0.57225881,
-@.332682@81, -0.23357999, ©.8893799%, -6.4358699%, 6.35385081,
@.0e554a5 , 8.86898% , 6.13897 , B.16237990, 0.833332 ,
-8.16388992, -8.022781 , ©.14324 » -B.25878 , -B.47861990,
@.25588 » -8.23389 » -8.14936 » -B.51688999, 6.44320 .
8.49a15 » ©.25725@81, -6.45841999, 0.566940000, -0.32040881,
8.24526999, 8.91883999, 06,29245861, 0.28112 , B.l19e1s »
8.17321999, -6.3828 » ©.348229099, 6.40851999, -0.66885 .
8.046698 , -0.19625@081, -0.12028 , -9.41620061, 0.25036081,
-8.873183 , -8.33655 , B.2877 , -B.80224 , B.13783081,
-8.673832 , 8.26159 , -9.81893998, -6.3528%B81, 6.93794 .
-@.1078 , -9.8944 , -9.11647 , ©.16785 , -©.32293p01,
8.26176 » -8.37233881, 0.208868 , B.@4e3lz |, -6.18222 »
8.63121 » -9.89823 » B8.18476 , -B0.842395 |, B.435564099,
8.18483 » -8.37215999, -0.21323861, -0.33879 , B.39579990,
-8.32354990, 8.36971 , B.836881 , @.276760@l1, -8.1%lceel,

Fig 4.7: Vector Embedding for Word Loan

54

Now these embedded vectors of same length (CNN needs input samples of same length)
are ready to fed to the CNN input layer for classification.

4.4, Data Splitting for model training

Following the extraction of relevant features, data is partitioned into two subsets that is
80/20 split for this model; 80% of the dataset was utilized for training the model, while
the remaining 20% was reserved for model testing. The distribution of data points across

each class, is shown in the Figure 4.8.

Total Samples vs Training Set vs Total Testing Set

124472 EEE Total Samples
Training Set
I Testing Set

120000

100000
93354

80000 -

Count

60000 -

40000 +

20000

T
Total Samples Training set Testing set

Fig 4.8: Training & Testing Subset

4.5. Classification Model

Initially, the dataset is divided into different subsets. Training and Testing dataset. Our
method employs a supervised learning approach where the model is trained using pre-
labeled data. Consequently, the model learns and assimilates the features from the training
data. When presented with new, unseen data, the deep learning model makes predictions

based on the knowledge it has previously acquired.

4.5.1. Convolutional Neural Network (CNN) Model

The model begins with an Embedding layer. Our proposed methodology used GloVe to
pre-train embedding to initialize the weights of input embedding layer. GloVe is used to

convert the input words (indexed by 'word_index’) into dense vectors of a fixed size

55

(specified by EMBEDDING_DIM that is 300 in our case). This layer's weights are
initialized with the pre-existing 'embedding matrix' that is set of vector array, and the
'‘trainable’ parameter is set to True, allowing the layer's weights to be updated during
training. The first layer, an Embedding layer, transforms the input into dense vectors of
300 dimensions. This layer can process input sequences of length 394, yielding an output
shape of (None, 394, 300).

A Dropout layer follows the Embedding layer, dropping out 30% of the nodes to prevent
overfitting. This is followed by a ConvlD layer with 128 filters and a kernel size of 5,
employing a ReLU (Rectified Linear Unit) activation function which results in the output
shape being (None, 390, 128). Then, a MaxPooling1D layer is applied with pool size of
5, further reducing the spatial dimensions of the output from the Conv1D layer in shape
being (None, 78, 128).

Another Dropout layer is used, followed by a BatchNormalization layer, which helps in
faster convergence of the model by maintaining the mean activation close to 0 and the
activation standard deviation close to 1.

The process of ConvlD, MaxPooling1D, Dropout, and BatchNormalization is repeated to
allow the model to learn more complex features. After these layers, the model applies a
Flatten layer to convert the 2D matrix data into a vector that can be used as input to the
Dense layers. This sequence of Conv1D and MaxPooling1D layers is implemented, again
with 128 filters, a kernel size of 5, and a pool size of 5. This results in an output shape of
(None, 74, 128) for the Conv1D layer and (None, 14, 128) for the MaxPooling1D layer.
After another Dropout and BatchNormalization, the output shape remains (None, 14,
128).

A Flatten layer follows these, converting the 2D tensor into a 1D tensor, changing the
output shape to (None, 1792). Subsequently, a Dense layer with 128 units is used,
adjusting the output shape to (None, 128). This dense layer is applied using the ReLU
activation function, which serves to learn the non-linear combinations of the features.
The final layer of the model is another Dense layer with 11 units, corresponding to the
number of output classes. This layer uses the softmax activation function to output a
probability distribution over the 11 classes.

Finally, the model is compiled with the ‘'rmsprop’ optimizer and the
‘categorical_crossentropy' loss function, which is suitable for multiclass classification.
The metric used for evaluation is accuracy. This comprehensive structure allows the

model to effectively classify consumer complaints into their respective categories.

56

embedding 1 input | input: | [(None, 394)]
InputLayer output: | [(None, 394)]
A 4
embedding 1 | input: (None, 394)
Embedding output: | (None, 394, 300)
Y
dropout_3 | input: | (INone, 394, 300)
Dropout output: | (None, 394, 300)
Y
convld_2 | input: | (None, 394, 300)
ConvlD | output: | (None, 390, 128)

max_poolingld 2

input:

(None, 390, 128)

MaxPooling1D

output:

(None, 78, 128)

dropout_4

input:

(None, 78, 128)

Dropout

output:

(None, 78, 128)

y

batch_normalization_2

input:

(None, 78, 128)

BatchMNormalization

output

(None, 78, 128)

A

convld_3

input:

(None, 78, 128)

ConvlD

output:

(None, 74, 128)

max_poolingld 3

input:

(None, 74, 128)

MaxPooling1D

output:

(None, 14, 128)

dropout_5

input:

(None, 14, 128)

Dropout

output:

(None, 14, 128)

y

batch_normalization_3 | input: (None, 14, 128)
BatchNormalization output: | (None, 14, 128)
 J
flatten 1 | input: | (None, 14, 128)
Flatten | output: (None, 1792)
A
dense_2 | input: | (None, 1792)
Dense | output: | (None, 128)
4
dense_3 | input: | (None, 128)
Dense output: | (None, 11)

Fig 4.9: Layers of our CNN Model

57

4.5.2. Hybrid BiLSTM-CNN Model

Our hybrid Convolutional Neural Network (CNN) and Bidirectional Long Short-Term

Memory (BiLSTM)is a model for categorizing consumer complaints in natural language

processing (NLP) is constructed using a Sequential model from the Keras libra ry.

a. Dataset
narrative product
0 purchase order day shipping amount receive pro... credit_card
1 forwarded message date tue subject please inve... credit_card
2 forwarded message cc sent friday pdt subjectf.. retail_banking
3 payment history missing credit report speciali... credit_reporting
4 payment history missing credit report made mis... credit_reporting

c. Word embedding

. Embedding matrix e __i _
cleaning ¢ - T d. Classification model
C o .
3 r (O CNN layer
wor o o o !
splitting { ! Fully 1connected
sequence B ayer
L C ‘ ‘ o0 (BILSTM-
tokenization r) o Ol layer =L
b= ass
|_Embedding layer |
e

b. Pre-processing

Our hybrid Convolutional Neural Network (CNN) and Bidirectional Long Short-Term

Memory (BIiLSTM) model begins with an Input layer, designed to accommodate

sequences of fixed length 394.

The first layer, called the “Input™ layer, is where our model begins. It receives input

sequences each of length 394. These sequences can be understood as sentences where

each word is represented by a unique integer, which is an index into a vocabulary.

Subsequently, an "Embedding layer is incorporated to transform each integer in the

sequence into a dense vector of fixed size, which we specify as 'EMBEDDING_DIM".

Here, the initial weights of the "Embedding” layer are set to a pre-trained

“embedding_matrix’, but we allow these weights to be updated during training

(‘trainable=True").

58

The model then branches into two paths. The first path consists of a set of CNN layers
that are structured to recognize local features in the input data. The "Conv1D" layers apply
128 filters, each spanning a window of 5 words, and use a ReL. U activation function. To
prevent overfitting, "Dropout” layers randomly set a fraction of the input units to 0 during
training, and "BatchNormalization™ layers are used to normalize the activations of the
previous layer. "MaxPoolinglD" layers reduce the temporal dimension by taking the
maximum value over 5-word windows. After two such CNN blocks, a "Flatten™ layer is

used to transform the 3D output to 2D.

In parallel to the CNN branch, the input sequences are also processed by a BILSTM layer
in the second path. The "Bidirectional” LSTM layer with 100 units is capable of capturing
the temporal dependencies in both forward and backward directions in the sequence,
making it especially suitable for understanding the context in our data. A "Dropout” layer

is also used in this branch to mitigate overfitting.

The outputs of both branches are then merged together using a "Concatenate” layer. This
layer combines the feature representations learned from both the CNN and BiLSTM

branches, providing a comprehensive feature set for the subsequent layers.

Following this, we have a "Dense" layer with 128 units and ReLU activation that performs
a transformation of the input data into a 128-dimensional space. Finally, a "Dense’ layer
with 10 units and softmax activation function computes the probabilities for each of the

10 classes.

The model is compiled with the RMSprop optimizer and the categorical cross-entropy
loss function, typically used for multi-class classification problems. Then, the model is

trained using mini-batch gradient descent with a batch size of 64 for a total of 11 epochs.

This model presents a powerful approach to sequence classification tasks, leveraging the
ability of CNNs to recognize local patterns and the capability of BiLSTMs to understand
broader context. By combining these strengths, the model can understand both the

individual semantic meanings of the words and their contextual relations in a sequence.

59

input_11 input: | [(None, 394)]
InputLayer | output: | [(None, 394)]
A
embedding 10 | input: (None, 394)
Embedding output: | (None, 394, 300)

—

~

dropout_40 | input: | (None, 394, 300) bidirectional_10(lstm_10) | input: | (None, 394, 300)
Dropout output: | (None, 394, 300) Bidirectional(LSTM) output: (None, 200)
convld 20 | input: | (None, 394, 300)

ConvlD | output: | (None, 390, 128)
\ ,

max_poolingld_20 | input: | (None, 390, 128) dropout_43 | input: | (None, 200)
MaxPooling1D output: | (None, 78, 128) Dropout output: | (None, 200)

Y
dropout_41 | input: | (INone, 78, 128)
Dropout output: | (None, 78, 128)

batch_normalization_20

input:

(None, 78, 128)

BatchNormalization

output:

(None, 78, 128)

l

convld_21 | input:

(None, 78, 128)

ConvlD | output:

(None, 74, 128)

3.

max_poolingld 21 | input: | (None, 74, 128)
MaxPooling1D output: | (None, 14, 128)
dropout_42 | input: | (None, 14, 128)
Dropout output: | (None, 14, 128)

A

batch normalization 21

input:

(None, 14, 128)

BatchNormalization

output:

(None, 14, 128)

\

flatten_10

input:

(None, 14, 128)

Flatten

output:

(None, 1792)

N

concatenate_10 | input: | [(None, 1792), (None, 200)]
Concatenate output: (None, 1992)
dense_20 | input: | (None, 1992)
Dense output: | (None, 128)
dense_21 | input: | (None, 128)
Dense output: | (None, 10)

Fig 4.10: Layers of Hybrid Model

60

45.3. Model Evaluation

After training model, we evaluated model by using 10-fold cross-validation. This
approach decreases the risk of model overfitting by partitioning the dataset randomly into
ten subsets or "folds." Therefore, examining how the model's performance varies with the
volume of training data is a practical way to fine tune the model. In this context, learning
curves become invaluable tools. By observing how the model behaves on increased
training data, we can fine tune and maximize model’s performance. Although, further
insights into the model's performance are obtained using a classification report, as
elaborated in Section 5. This report provides precision, recall, and F1-score. These metrics
collectively offer a comprehensive picture of the model's performance, assisting us in

fine-tuning the model for better results.

45.4. BERT Model

Hugging Face Transformers library, an important tool in NLP, relies on TensorFlow or
PyTorch for model loading. The significant advantage of the Hugging Face Transformers
library is its ability to leverage pre-trained language models, eliminating the need for
extensive and expensive computational resources. Most models are available directly in
the library in both PyTorch and TensorFlow. This makes it function almost like an API,
providing an efficient, easily tunable.

Our proposed model includes Hugging Face Transformers library with PyTorch and
encompasses following steps:

1. Dataset Loading: This involves ingesting the raw data required for the machine
learning process.

2. Data Preprocessing: Bert preprocessing is different from the traditional approaches
used in other deep learning models. In this step, the raw data is cleaned and transformed
into a suitable format called Tensor that can be used for model training.

3. Utilizing BERT Pre-Trained Model and Tokenizer: This step involves loading the
necessary pre-trained model, such as BERT, and the corresponding tokenizer for text
manipulation.

4. Training and Evaluation: The preprocessed data is then used to train the model, after
which its performance is evaluated

5. Prediction: Finally, the trained model is employed to make predictions on unseen data.

61

4.5.4.1 Loading the Dataset Il

product narrative
0 credit_ card purchase order day shipping amount receive pro...
1 credit_ card forwarded message date tue subject please inve. ..

2 retail_banking forwarded message cc sent friday pdt subject f...
o credit_reporting payment history missing credit report speciali...
4 credit_reporting payment history missing credit report made mis...
5 credit_reporting payment history missing credit report made mis...
8 credit_reporting va date complaint experian credit bureau invol...
7 credit reporting account reported abbreviated name full name se...
8 credit reporting account reported abbreviated name full name se...

9 credit_reporting usdoexxxx account reported abbreviated name fu...

Fig 4.11: Loading Dataset 11

4.5.4.2 Data Converting Class Labels into Categorical Data

dict = {'credit_card" : 8, 'credit reporting’ : 1, 'debt collection’ : 2, 'mortgages and loans': 3, 'retail banking': 4}

df = df.replace({ product": dict})

4.5.4.3 Data Splitting for Model Training

Following the extraction of relevant features, data is partitioned into two subsets that is
90/10 split for this model; 90% of the dataset was utilized for training the model, while
the remaining 10% was reserved for model testing. The distribution of data points across

each class, is shown in the Figure 4.12

62

Count

Total Samples vs Training Set vs Total Testing Set
162411
160000 mmm Total Samples
Training Set
140000 B Testing Set
129928
120000
100000
)
[
2
S 80000
60000
20000
Total Samples Training set Testing set

Fig 4.12: Total Samples in Training & Testing Subset

Figure 4.13 shows the total samples in training & testing subset class-wise

Training and Testing Split of Total Samples

80000

60000

40000 A

20000 A

0 4 1 3
Class

Fig 4.13: Total Training & Testing Samples in each Class

63

B Original Dataset
B Training Set
B Testing Set

Input Data Modeling

4.5.4.4 WordPiece Tokenization

This breaks down words into known subwords, or into individual characters if the word

is not in the tokenizer's vocabulary. In the context of BERT (Bidirectional Encoder

Representations from Transformers), a particular kind of tokenization is employed,

known as WordPiece tokenization.

In traditional tokenization, a sentence or piece of text is split into individual words.

However, WordPiece tokenization takes this a step further by breaking words into

subwords or even single characters if the words are not in its vocabulary. This makes

BERT robust in handling out-of-vocabulary words and allows it to understand the

semantic meaning of new words based on their subwords. For instance, a word like

"unhappiness™ may be broken down into the tokens: ["un”, "##happiness"], where "##"

indicates that "happiness” is a part of the original word.

Text sample after tokenization is shown in the Figure 4.14 below

1
Original

Original: "inquiry report authorize credit granted 5ubmitted|
letter bureau investigate show got information never granted
anyone permission response inguiry still report”

I
Tokenized |

Tokenized: ["inquiry', 'report', 'author', '##ize',
"credit', 'granted’, 'submitted’, 'letter', 'bureau’,
"investigate®, ‘show', 'got', 'information’, "never’,
‘granted’, "anyone', ‘permission’', "response’, 'inquiry’,
"still', ‘report'] ‘

1
Token IDs |

Token IDs: [9934, 3189, 3166, 4697, 4923, 4379, 7864, 3661, |
4879, 8556, 2265, 2283, 2592, 2196, 4379, 3887, 66546, 3433,
8934, 2145, 3189]

Fig 4.14: Sample after WordPiece Tokenization

4.5.4.5 Addition of Special Token, Padding and Truncation

BERT requires special tokens to be added to the input. The '[CLS]' token is added at the

beginning of every sentence, and the '[SEP]' token is added at the end. If dealing with two

64

sentences, '[SEP]' is also added between them. BERT requires input with the same length
S0 sentences are padded or truncated to make the sentences of the same length. Masking
is also done to prevent the model from attending to the padding tokens. Masking is placing

1 for original words and 0 for padded labels.

After Tokenization, Padding and Truncating all sentences to 512
Padding token: "[PAD]", ID: @

Done.

Original: "inquiry report authorize credit granted submitted
letter bureau investigate show got information never granted
anyone permission response inguiry still report”

Token IDs: [181 9934 3189 3166 4697 4923 4379 7864 3661 4879 8556 2265 2288 2592
2196 4379 3887 6856 3433 9634 2145 3189 182 a e a e e

]
[ax]
L]
[ax]
L]
[ax]
]
[]
L]

DD R D0 D0 000 05000000
[ee e v T T e T v T e O w e O T v T e e T v O e e v
DO DD D0 0 00 0500 050D
[ew e T v T i O e T v T e O w w B w w J ve 'w T J w e T v
LI s T v T o I o B ow T v T w s v T L v s B v
[e v T i T e T w T i O w w w J ve w T T i e T v
DD R D0 00000 05000000
Lecow I e T v T o T v T v T e O w Y w Y B e Y v T v O v B v R v
I T v T o B o v T o T w v v T L v T Y v s v
L I e v T T e v T O o O v O v e e O v B i L« T v O v
L s v TR o T R w T ww J w w acw J ww w Y O w v O T T v R v
Lo e v T T e O T i O o O e e T w B i I T v O e
DD R D0 ®H 0050 000600000
v v T v TR v R s B T v v I v I e v v T R IR v I v

Fig 4.15: Sample after Addition of Special Token, Padding and Truncation

65

4.5.4.6 Masked Values

In pre-training, input sequences are typically padded to a fixed length to create batches of

equal size. Padding is necessary because transformer-based models process input data in

parallel, and all sequences in a batch must have the same length. To pad sequences, a

special padding token is used, which can be represented by a numerical value, such as 0.

So, masking replaces 1 for original word and 0 for padded sequences to distinguish.

129028

Number of attention masks:

512

Length of each attention mask:

-

1

-

1

-

1

=

1

=

1

-

=

=

=

-

=

-

=

=
[

Masked VWalues (Sentence 3):

L T R T DL T T B T T L. T . T . SR T T SR T TR SR T Y
DO 000 00 000 00000000000 00DD
T T T T T T T R T T R T T T T S T T S T T S T Y
DO 000 000 000 00000000000 0DDdD
oM oM R R Mo m R o R R R R R R oMo R MR R omoR
m DD E B 000050 5060 0000050050
oM oM R R Mo m R o R R R R R R oMo R MR R omoR
xR« v R v v R o < w B B T w T v L w v S v R v R s I v L w T w v
o om om o om om o om om om om om om omom om om om omom om om om om om o om
LIl B o I v v T« v v v R o < w B B T w T v L ww v v v R s I v L w T v I
mm o om o om o om
s v I v g xR v [v R v s v [v [v xR v I v v v [v v v [v R % s R ¥
m o m m o om m om om om om om om om om om om om omom om om om om om o=
L= s I v o v [v v s v [ox xR xR xR s xR v [v xR v [% R % s R ¥
s m om o om om om om om om om om om om om om om om om om omom om o= o
L B B I ¥ I I I ¥ I+ % T ¥ R % I+ R I I I % I ¥ R TR % T ¥ % % T ¥
s m om o om om om om om om om om om om om om om om om om omom om o= o
L I T v T v I v T v T w I w I v T w T v I v I w T v T v B v T v T v I v T v T v T v I v Y ¥
L L R T T T T T T T T T T S T S T T S T T S T Y
=D DD 00000 000000000000 DO
L R T L . . L . . R T T R T B T T B T T L T,
- DO O OO O 00000000 0000000 @
L R T L . . L . . R T T R T B T T B T T L T,
D00 0000000000000 0000 ®
I T T T T T T R T T R T T T T T T T S T T S Y
D0 0000000000000 000D
L T T T T T T T T T T T T L T R T T T T T S Y
Lo B I~ I v I v v B v = B w I w B T v T w v i w v v R e v v T v T w v
mom oM R Mmoo R R o R R R R R R oMo R MR R moR
Lo B I~ I v I v v B v v R w = R T w T w s = v v R v v T w i w v
mom o om
L B I v« I« R« v B« x R R« v B« Qs s Ry R an Ry w Ry RN o v QR a R« I a v I« % R aw IR« ¥
mom o om o omom
o L v I v v v v QR v s v v [v v [v I v v v [v N v v v R % v ¥
mom om om om om om om om om om om om om om om omom om om om om om o
o L v I v v v v QR x Jw v v [v v [v R v v v [v v v v R % v R ¥
L T L. . . - . . L L. . L L L . L .
L B B I ¥ I I I ¥ I+ % T ¥ R % I+ R I I I % I ¥ R TR % T ¥ % % T ¥

om m m o=
3D 0 8 00 800000000000 0060800

a,

e, @, &, &, @, @, @, @,

8, @, 8,

a,

8, &, @, @,

J
]
= —

o

- .
[%]

Fig 4.16: Sentence 3 after Masking

4.5.4.7 Conversion to Input IDs and Tensors:

Each token is then mapped to a unique ID from the tokenizer's vocabulary. And then

sequences of input IDs are converted into tensors. This is necessary because both

TensorFlow and PyTorch models operate on tensors. Tensors can have three or more

dimensions, making them useful for representing complex data structures. The ability to

work with tensors allows these libraries to perform complex computations efficiently and

on a variety of hardware, from CPUs to GPUs.

66

Input IDs: tensor([[181, 3728, 8182, ..., a, a, 8],
[181, 7316, 4878, ..., a, a, 8],
[181, 2741, 21985, ..., a, a, 8],
[181, o486, 7593, ..., a, a, 8],
[181, 2983, 27118, ..., a, 8, e],
[181, 2972, 3201, ..., 2655, 2867, 2733]])
Attention Masks: tensor([[1, 1, 1, ..., &, @, @],
[1, 1, 1, ..., @, 8, 8],
[1, 1, 1, ..., 8, 8, 8],
[1, 1, 1, ..., @, 8, 8],
[1, 1, 1, . 8, 8, 8],
[1, 1, 1, ..., 1, 1, 111}
Labels: tensor([1, 1, 2, 3, &, 1, 1, 1, 1, 1, 1, 4, 2, 1, 1, 1]}

Fig 4.17: Creation of Tensor

4.5.4.8 Model Building
Pre-trained BERT is loaded by using the Hugging Face's Transformers library. A pre-

trained BERT model has already been trained on a large corpus of text data. The benefit
of using a pre-trained model like BERT is that you can leverage this understanding for
your specific NLP task without having to train a model from scratch, which can save

significant computational resources and time.

==== Embedding Layer ====

bert.embeddings.word embeddings.weight (38522, 788)
bert.embeddings.position_embaddings.weight (512, 768)
bert.embeddings.token_type embeddings.weight (2, 768)
bert.embeddings. LayerNorm.weight (768,)
bert.embeddings.LayerNorm.bias (768,

==== First Transformer ====

bert.encoder.layer.8.attention.self.query.weight (768, 768)
bert.encoder.layer.8.attention.self.query.bias (768,
bert.encoder.layer.8.attention.self.key.weight (768, 768)
bert.encoder.layer.8.attention.self . key.bias (768,
bert.encoder.layer.8.attention.self.value.weight (768, 768)
bert.encoder.layer.8.attention.self.value.bias (768,)
bert.encoder.layer.8.attention.output.dense.weight (768, 768)
bert.encoder. layer.8.attention.output.dense.bias ({768,)
bert.encoder.layer.8.attention.output.LayerNorm.weight (768,
bert.encoder.layer.8.attention.output.LayerNorm.bias ({768,)
bert.encoder.layer.8.intermediate.dense.weight (3872, 788)
bert.encoder.layer.8.intermediate.dense.bias (3872,)
bert.encoder. layer.8.output.dense.waeight (768, 3872)
bert.encoder.layer.8.cutput.dense.bias (768,
bert.encoder.layer.8.output.LayerNorm.weight (768,)
bert.encoder.layer.8.output.LayerNorm.bias (768,)

67

Fig 4.18: BERT Layers

bert.
bert.
bert.
bert.
bert.
bert.
bert.
bert.
bert.
bert.
bert.
bert.
bert.
bert.
bert.
bert.

bert.

bert

First Transformer ====

encoder.
encoder.

encoder

encoder.
encoder.

encoder

encoder.
encoder.
encoder.

encoder

encoder.
encoder.

encoder
encoder

encoder.
encoder.

layer.
layer.
dayer.,
layer.
layer.
dayer.
layer.
layer.
layer.
.layer.
layer.
layer.
layer.
dayer,
layer.
layer.

.attention

.attention

oD D DD e oD DD 030D

.attention.
.attention.
.attention.
.attention.

.attention.
.attention.
.attention.
.attention.
.intermediate.dense.weight
.intermediate.dense.bias
.output.dense.weight
Joutput.dense.bias
.output.LayerNorm.weight
.output.LayerNorm.bias

.self,
self.
self.
self,
self,
.self,

query.weight
query.bias
key.weight
key.bias
value.weight
value.bias

output.dense.weight
output.dense.bias
output.LayerNorm.weight
output.LayerNorm.bias

Output Layer

pooler.dense.
.pooler.dense.

weight
bias

classifier.weight
classifier.bias

(768, 768
(788,

(768, 768
(768,

(768, 768
(768,

(3872, 768
(3872,
(763, 3872
(768,
(768,

)
)
)
)
)
)
)
{?68,]
)
))
)
)
)
)
)
(768,)

(768, 768)
(788,)
(5, 768)
(5,)

Fig 4.18: BERT Layers

4.5.4.9 Model Compilation

Our model employed AdamW optimizer to facilitate the training of our deep learning
neural network. The AdamW optimizer, an extension of the Adam optimizer, was chosen
for its ability to effectively handle weight decay, also known as L2 regularization, within
its adaptive learning rate framework. By initializing the optimizer with a learning rate (Ir)
of 2e-5 and an epsilon value (eps) of 1e-8 to ensure numerical stability, we ensured a
controlled and stable training process. During training iterations, the model's parameters
were updated based on the gradients computed through backpropagation. This approach

was vital for achieving optimal convergence and minimizing overfitting while learning

from the given dataset.

68

45.4.10 Model Training

Model training is a core step in the machine learning process. It's when the model "learns”
patterns from the data to make accurate predictions or decisions. Even though BERT is
already trained on a large corpus of text, it needs to adjust to the specificities of our dataset
and task. This adjustment is done during the training phase. The workflow of the training

process includes following steps:

1. Data Input: The BERT model is fed with input data, that is tokenized text converted
into tensors.

2. Forward Pass: The tensors pass through the model, and the model makes predictions
based on its current state (defined by the weights and biases it learned during pre-training).
3. Loss Calculation: A loss function calculates the difference between the model's
predictions and the actual values (the correct answers). This function quantifies how well
(or poorly) the model is performing.

4. Backpropagation: This is a process by which the model learns from its errors. The
gradient of the loss function is calculated concerning the model's parameters, and this
information is propagated back through the model. This provides insight into which
parameters should be adjusted to reduce the loss.

5. Weight Update: The model's weights are updated using an optimization algorithm,
typically something like stochastic gradient descent (SGD) or one of its variants (like
Adam). In our proposed model Adam has been used. The weights are adjusted in the
direction that minimally reduces the loss.

6. Iteration: Steps 2-5 are repeated for a certain number of iterations or epochs (complete
passes through the dataset) until the model's performance on the data is satisfactory.
After training, the model's performance is evaluated on a separate validation dataset to

ensure that it has generalized well to unseen data and has not caused overfitting.

45411 Model Evaluation

Model evaluation is the process of determining how well your model is performing, not
on the training data it learned from, but on unseen data. This step allows us to assess the
model's ability to generalize, that is, its effectiveness at handling data it has not
encountered during the training phase. The ultimate goal is to create a model that performs
well not just on the training data but on unseen data as well, as this indicates the model

will likely perform effectively in real-world scenarios.
69

CHAPTER 5: EXPERIMENTAL RESULTS

The primary goal of this study is to assess the performance of the proposed deep learning
models and find the best approach for our problem by testing models on multiple datasets. For
this purpose, experiments have been conducted using identical settings on three datasets: Local

dataset I, Consumer complaints dataset |1 and Consumer complaints dataset I11.

5.1CNN
To train CNN model, data has been split into two subsets: 80% and 20%. The model has been

trained on 80% of the data, and the remaining 20% is reserved for testing the model's
performance. After the models have been trained on the extracted features from the 80%
training set, they are then tested on the 20% testing set. This allows the evaluation of the
models' ability to generalize their learning to new, unseen data. After applying the GloVe
embeddings for feature extraction and employing CNN model, we acquired following results.
5.1.1. Datasets used:

Dataset I, dataset 11, and dataset |11 comprises of 555957 samples, 1,62,421 samples, and 10002
samples respectively. Each sample belong to one of the distinct classes. For training and testing,
these samples are split into two subsets: 80% & 20%.

5.1.2. Classification Report

A classification report provides valuable metrics such as precision, recall, f1-score, and the
number of instances in each class after the model is implemented. This tool allows us to
evaluate the overall accuracy of the model. Figure 5.1 shows the classification reports obtained

from testing set.

In case of Figure 5.1(a) that is report of dataset I, the model showcased strong ability in
distinguishing classes such as 'Prepaid card’, 'Bank account or service', 'Credit card’, 'Credit
reporting’, and 'Mortgage' display particularly high F1-scores, ranging between 0.80 to 0.94.
This suggests that the model is well-tuned for these classes and can distinguish between them
effectively. The model struggled to correctly classify 'Payday loan' with both precision and
recall being 0. This indicates a complete inability of the model to recognize this class,
potentially due to the limited data available for this category (with a support of only 27).
Another class, 'Money transfers', although having higher metrics than 'Payday loan', still
showed a relatively low F1-score of 0.49. Overall, model is indicating commendable
performance with certain areas showing lack of data samples of certain class. Similar behavior

is seen for dataset 11 but due to better distribution of samples in dataset 11, model performed

70

well by presenting F1-scores, ranging between 0.83 to 0.86.

precision recall fl-score support

Debt collection .90 8.70 8.79
Consumer Loan 8.77 8.66 8.71
Mortgage 8.86 a.76 @.81
Credit card .34 8.89 B.86
Credit reporting .86 @.86 8.86
Student loan .76 8.42 B.54
Bank account or service 0.95 8.92 B.94
Payday loan .00 8.00 8.0a
Money transfers 0.47 8.32 8.38
Other financial service .83 8.66 8.74
Prepaid card 8.91 8.83 0.87
micro avg .87 8.83 8.85
macro avg 8.74 a.64 @.83
weighted avg .87 8.83 8.85
samples avg .83 8.83 0.83
(Q)CNN on Data |

precision

credit_card 8.86

retail banking 8.85

credit_reporting 8.85

mortgages_and_loans 2.98

debt_collecticon .98

micro avg .86

mMacro avg @.87

weighted avg .86

samples avg .83

1423
g2@
1982
3132
4388
166
373e
27
152
215
532

16782
16782
16782
16782

[=]
T =~ T S R R Y= I T U = -

accuracy
macro avg
weighted avg

recall fl-score

8.71 a.78
B8.93 a.89
B.72 a.78
B8.79 a.84
B8.81 &.85
B8.83 a.85
2.7% a.83
B8.83 8.84
8.83 a.83

(c) CNN on Data Il

precision

1.08
B.85
8.73
8.51
B.68
8.86
8.78
8.79
B.7@
8.76

8.77
8.77

support

3745
14866
S2o4
4681
3387

31118
31118
31118
31118

recall fl-score

.38
.79
.58
.85
15
.87
.67
.72
.69
.74

(s T o o R = T .~ R s T T I

8.55
.82
8.59
8.64
8.72
8.87
8.72
8.76
8.7@
8.75

8.75
8.71
8.75

(b) CNN on Data Il

Fig 5.1: Classification reports of dataset I, dataset |1, & Local dataset 111

5.1.5. Confusion Matrix

The confusion matrix assists in gaining a more precise understanding of each class data, along
with evaluation of a classification model's performance. This matrix compares the true value

with the value predicted by proposed model. The diagonal elements of the matrix represent the

suppart

8
263
235
267
219
662
295
266
325

81

2561
2501
2581

true positive values, indicating correct classifications, while the off-diagonal elements depict

misclassifications. Confusion matrices given below shows the performance of CNN model,

where columns represent true classes, and rows depict predicted classes.

71

Actual

Debt collection 1054 22 125 46

Consumer Loan- 7 650 34 70

Mortgage - 51

Credit card - 4

Credit reporting - 12

Student loan - 32

Bank account or service - 18

Payday loan -

B~

Money transfers - 2

Other financial service - 21

Prepaid card -

Actual

o

Debt collection -

38 1557 150
34 32 W
76 73 238
8 14 2
48 4 103
0 2 &
31 2 8
1 22 6
4 2 11
| I |
AR
3 3 s
5 £ 3
E £ ©
2 U
=

o

]

71 15 63 0 4
98 0 27 0 27
167 2 14 0 0
218 0 17 0 2

68 0 51
26 78 4 0 2
77 3474 SN
13 3 2 0 0
56 3 0 78
12 6 0 0 1
48 0 5 o 3
1 | | | |
oD £ w £ @!
E &8 2 &8 g
g 2 F 2 5
2 8B ¥ 7 5
£ g 5 3 B
= = - o >
T & £ & g
[>
4 a S
o w) =

[¥)

[

e

=

[1*]

M
Predicted

(a)Confusion matrix of Data |

retail_banking -

credit_reporting -

mortgages_and_loans -

debt_collection -

credit_card -

2769

97

90

52

284

credit_card -

669

28

146

o

Other financial service -

1086

689

g -

retail_bankin

(c) Confusion matrix of Data Il

3500
7
0 3000
4
2500
31
2000 S
0 2
£
5 - 1500
0
-1000
2
0 - 500
449
| -0
b=
-]
[¥)
=
b
o
<]
[«

56 39
538 186
3861 179
114 3752

30 71

1 1

(=] [l

E [=

£ 3

8 i

o

[

5 &

= mI

=

o &

[¥) m

j=1]

£

Q

£
Predicted

10

0

1 0
17 3
8 5
9 5
6 53
10 1
18 13
2 9
9 4
Predicted

38

12

197

1

-

0o 4
3 13
21 14
2 14
7 9
2 =
0o 8
149 7
3 225
1 4
2 10

60

(b) Confusion matrix of Data I11

0 0 0
209 8 4
7 118 24
0 o0 (176
11 1 24
5 0 38
8 9 12
3 20 14
3 6 47
0 0 4
] L} 1
8 3 7
213
47
48
74
2802
1
=
o
5
[}
@
3
=
d—ll
o
@
=}

12000

10000

8000

- 6000

- 4000

- 2000

Fig 5.2: Confusion Matrix of dataset I, dataset Il, & Local dataset 111

72

500

400

- 300

-200

- 100

Accuracy

5.1.6. Training & Validation Accuracy

In the Figure 5.3(a), we observed a notable trend in the model's performance through the
training and validation accuracy graph. As the number of epochs increased, the training
accuracy also converges, reaching about 90% by the 8th epoch. In parallel, the validation
accuracy, shows more gradual ascent but managed to converge around 86% by the same epoch
count. To avoid overfitting, early stopping with patience of 5. This ensures that the model
captures patterns during its training phase without overfitting, thereby performing well on test

data. Similar trend is seen for dataset Il and dataset 111 as illustrated in Figure 5.3(b)&(c).

Accuracy Curves: CNN Accuracy Curves :CNN
0.86
0.8 1
0.84 - —
a 0.6
0.82 E
=
sl
0.80 - << 04
0.78 —— Training Accuracy —— Training acc
—— Validation Accuracy . — Validation acc
0.76 1 : : : : : . .
0 1 2 3 4 5 6 7 0 i 2 é _"’
Epochs Epochs
(a) Accuracy Graph of Data | (b) Accuracy Graph of Data 111

Accuracy Curves: CNN

0.86

o
@
=

Accuracy
o
o
%]

o
@
=]

0.78 —— Training Accuracy
—— Validation Accuracy

0.76

0 1 2 3 2 5 6 7
Epochs
(c) Accuracy Graph of Data Il

Fig 5.3: Training & Validation Accuracy of dataset I, I, & Local dataset Il1
73

5.1.7. Training & Validation Accuracy for 30 Epochs

To see the trend, number of epochs has been increased and the training accuracy also

converges, reaching about 98% by the 28th epoch. Conversely, the validation accuracy showed

a more stable behavior, demonstrating only minor increases after stabilizing at 85% for dataset

1, as illustrated in Figure 5.4(a). So, to avoid overfitting, early stopping with patience of 5 has

been utilized that ensures that the model captures patterns during its training phase without

overfitting, thereby performing well on test data.

0.90 A

e
@
v

Accuracy

0.75 4

0.70 A

Accuracy Curves: CNN

o

-]

o
L

Accuracy Curves: CNN

—— Training Accuracy
—— Validation Accuracy

0.9
0.8
>
o 07
o
3 0.6
4
0.5 4
—— Training Accuracy
. . 0.4
—— Validation Accuracy
T T T T T T T 031 g
0 5 10 15 20 25 30 0 5

Epochs

(a) Accuracy Graph of Data |

Accuracy Curves: CNN

Accuracy
o
[-:]
B

0.82 A

0.80 A

0.78 1

—— Training Accuracy

0.76

0 5 10 15 20 25

Epochs

(c) Accuracy Graph of Data Il

T
30

10 15 20 25

Epochs

(b) Accuracy Graph of Data 11l

Fig 5.4: Training & Validation Accuracy for 30 Epochs on dataset I, 11, & Local Il

74

30

1.0 1

0.9

0.8 1

0.6 1

0.5 1

0.4 1

5.1.8. Training & Validation Loss
In Figure 5.5, the training goes on (represented by the number of epochs on the x-axis), the loss

also called cost (on the y-axis) shows how well our model is performing. In the graph 5.5(a),
up to the 4th epoch, both training and validation loss decrease together. After that, while the
training loss keeps getting smaller, the validation loss levels-off around 0.5. It demonstrates
minor decrease after 4" epoch and stabilizes at 8" epoch. This means our model will start to
overfit after this point. To address this, we added early stopping with patience of 5 that means
after 5 epochs without improvement, training will stop to make sure our model stays general

and doesn't overfit. Overall, our model's performance looks promising in for all datasets.

Loss Curves :CNN Loss Curves :CNN
2.0
—— Training loss —— Training loss
1.8 1
—— Validation Loss — Validation Loss

1.6 9

1.4+

7

3 1.2
1.0+
0.8
0.6 1

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Epochs Epochs
(a) Loss Graph of Data | (b) Loss Graph of Data 11
Loss Curves :CNN
0.65 - —— Training loss

— Validation Loss
0.60 1

0.45 -

0.40

Epochs

(c) Loss Graph of Data 11

Fig 5.5: Training & Validation Loss of 30 Epochs dataset I, Il, & Local 111

75

The primary goal of this study is to assess the performance of the proposed deep learning
models and find the best approach for our problem by testing models on multiple datasets. For
this purpose, experiments have been conducted using identical settings on three datasets: Local

dataset I, Consumer complaints dataset 11 and Consumer complaints dataset I1I.

5.2 Hybrid CNN and BiLSTM Model
To train our hybrid model, data has been split into two subsets: 80% and 20%. The model has

been trained on 80% of the data, and the remaining 20% is reserved for testing the model's
performance. After the models have been trained on the extracted features from the 80%
training set, they are then tested on the 20% testing set. This allows the evaluation of the
models' ability to generalize their learning to new, unseen data. After applying the GloVe
embeddings for feature extraction and employing our hybrid model, we acquired following
results.

5.2.1. Dataset I:

This dataset comprises of 555957 samples, each belonging to one of eleven distinct classes.
These samples are split into two subsets: 80% & 20%.

5.2.4. Classification Report

A classification report provides valuable metrics such as precision, recall, f1-score, and the
number of instances in each class after the model is implemented. This tool allows us to
evaluate the overall accuracy of the model. Below are the classification reports obtained from
testing first deep learning model. Following are the testing classification reports produced by
proposed models. In case of dataset | given in Figure below, the model showcased strong
ability in distinguishing classes such as 'Prepaid card’, 'Bank account or service', 'Credit card',
'Credit reporting’, and 'Mortgage' display particularly high F1-scores, ranging between 0.80 to
0.94. This suggests that the model is well-tuned for these classes and can distinguish between
them effectively. The model struggled to correctly classify 'Payday loan' with both precision
and recall being 0. This indicates a complete inability of the model to recognize this class,
potentially due to the limited data available for this category (with a support of only 27).
Another class, 'Money transfers', although having higher metrics than 'Payday loan’, still
showed a relatively low Fl1-score of 0.49. Overall, model is indicating commendable
performance with certain areas showing lack of data samples of certain class. Similar behavior
is seen for dataset 111 but due to better distribution of samples in dataset 11, model performed

well by presenting F1-scores, ranging between 0.83 to 0.86.

76

precision recall

Debt collection 8.98 8.71
Consumer Loan 8.75% 8.66

Mortgage 8.88 6.74

Credit card 8.93 8.82

Credit reporting 6.89 8.83
Student loan 8.58 8.65

Bank account or service 8.95 .94
Payday loan .88 .80

Money transfers 8.46 .54

Other financial service 8.79 8.78
Prepaid card 6.89 8.77

micro avg 8.89 8.81

macro avg 8.73 8.67

weighted avg §.89 8.81

samples avg 8.81 8.81

(@)CNN on Data |

credit card
retail_banking
credit reporting
mortgages and_loans
debt_collection

micro avg
macro avg
weighted avg
samples avg

fi-score

.79
78
88
87
86
.61
.94
.88
.48
.74

O O O O O O 0 D DD

.85
.69
.85

o ® O @

support

precision

| DD ®

[v B v B

(c) CNN on Data Il

.86
.88
.84
.86
.94

.87
.86
.87
.84

1428
928
1982
3132
4338
166
3730
27
182
215
532

16782
16782
16782
16782

micro
macro

weighted
samples

[
L I o B U T W R A s B N

avg
avg
avg
avg

pre

recall fl-score

m @ @ @

m | @

.88
.93
Y
.83
.82

.84
.82
.84
.84

e B B B R

e I v B B v

.86
.89
.78
.85
.86

.85
.84
.85
B4

cision recall fl-score

1.64 .12
g.84 g.84
a.67 &.54
a.66 a.72
8.75 8.72
a.87 @.92
.79 @8.66
g8.89 @8.68
g.82 @.65
.81 a.73
&.84 a.74
a.81 a.65
&.84 a.74
g.74 a.74

(b) CNN on Data IlI

support

37445
146646
5264
4681
3367

31118
31118
31118
31118

Fig 5.1: Classification reports of dataset I, dataset 11, & Local dataset I11

5.2.5. Confusion Matrix

[acw o B T = T % T = T T % I v

[acw B T T v

.22
.54
.68
.69
.73
.89
.72
.72
.73
A7

A7
.69
A7
.74

The confusion matrix assists in gaining a more precise understanding of each class data, along

with evaluation of a classification model's performance. This matrix compares the true value

with the value predicted by proposed model. Confusion matrices given below shows the

performance of CNN model, where columns represent true classes ranging from 1 to 11, and

rows depict predicted classes, also between 1 to 11.

77

support

8
263
235
287
219
662
295
286
325

81

25e1
2581
25e1
25e1

Actual

Debt collection - 1011

Consumer Loan - 12

Mortgage - 30

Creditcard - 8

Credit reportl

ing- 6

Student loan - 18

Bank account or service - 23

Payday loan- 2

Money transf

Other financial serv

Prepaid card -

Actual

ers- 8

-
w

ice -

8]

Debt collection -

10

574

11

28

55

15

13

w

Consumer Loan -

190

60

15

23

B
@

=

Mortgage -

26

75

N

o0

Credit card -

44 57
116 1
11
0
5]

9 113
45 0
8 6
55 &)
3 12
47)
I 1
o (=
(= [
£ 3
o -
o =
g 3
= 2
o wy

o
Q

53

45

10

39

71

=
(=]

iccount or service -

(=]

Payday loan -

(a)Confusion matrix of Data |

credit_card -

retail_banking -

credit_reporting -

mortgages_and_loans -

debt _collection -

3071

335

146

86

289

credit_card -

(c) Confusion matrix of Data 11

358

105

g -

retail_bankin

23

84

~N

Money transfers -

27 5

=
W
o
(=}

o
S
]
6]

Prepaid card -

r financial service -

67

570

3894

116

porting -

credit_re

Predicted

Actual

10

38

356

237

3968

s_and_loans -

mortgage:

1 1
o | 227
0 17
0 1
0 4
0 1
0 12
0 6
0 10
0 1
| |
1 8

134

36

15

10

153

32

11

12 5 4 0 5

14

-
(=]
=]
~
1]
o

14 4 2 127 11

10 24 3 5 222

0 4 1 2 8

9 4 5 2 10
Predicted

(b) Confusion matrix of Data IlI

212

36

71

2840

debt_collection -

12000

10000

8000

-6000

~ 4000

-2000

Fig 5.2: Confusion Matrix of dataset I, dataset Il, & Local dataset I11

78

63

5.2.6. Training & Validation Accuracy

In the Figure 5.3(a), we observed a notable trend in the model's performance through the

training and validation accuracy graph. As the number of epochs increased, the training

accuracy also converges, reaching about 90% by the 6th epoch. In parallel, the validation

accuracy, shows more gradual ascent but managed to converge around 85.5% by the same

epoch count. To avoid overfitting, early stopping with patience of 3. This ensures that the

model captures patterns during its training phase without overfitting, thereby performing well

on test data. Similar trend is seen for dataset Il and dataset 111 as illustrated in Figure 5.3(b)&(c).

0.900

0.875

0.850

Accuracy

0.775 A

0.750 1

0.725 A

Accuracy Curves: BiLSTM-CNN

0.825

0.800

—— Training Accuracy
—— Validation Accuracy

Accuracy
o
[=2]

0 1 2 3 a 5 6
Epochs

(@) Accuracy Graph of Data |

Accuracy Curves: BiLSTM-CNN

Accuracy Curves :BiLSTM-CNN

0.9

e
~
.

e
n
|

e
S
1

031

— Training acc
—— Validation acc

2 a 6 8 10
Epochs

(b) Accuracy Graph of Data 11

0.90

0.88

e
w
=

Accuracy
o
o]
=

e
=2}
8}

0.80 —— Training Accuracy
—— Validation Accuracy

0.78 -

T T T
0 1 2

3
Epochs

T
4

T
6

(c) Accuracy Graph of Data Il

Fig 5.3: Training & Validation Accuracy of dataset I, 11, & Local dataset Il

79

5.2.8. Training & Validation Loss

In Figure 5.5, the training goes on (represented by the number of epochs on the x-axis), the loss
also called cost (on the y-axis) shows how well our model is performing. In the graph 5.5(a),
up to the 3' epoch, both training and validation loss decrease together. After that, while the
training loss keeps getting smaller, the validation loss levels-off around 0.5. It demonstrates
minor decrease after 4" epoch and stabilizes at 6™ epoch. This means our model will start to
overfit after this point. To address this, we added early stopping with patience of 3 that means
after 3 epochs without improvement, training will stop to make sure our model stays general
and doesn't overfit. Overall, our model's performance looks promising in for all datasets.

Loss Curves :BiLSTM-CNN L
— Training loss 1.5 —— Training loss
— Validation Loss | — Validation Loss

wn 1.2+

S

= 1.0 A
0.8 1
0.6
0.4 -

0 1 2 3 4 5 6 0 1 2 3 4 5 6 7
Epochs Epochs
(a) Loss Graph of Data | (b) Loss Graph of Data IlI

Loss Curves :BiLSTM-CNN

0.60 7 —— Training loss
—— Validation Loss

Epochs

(c) Loss Graph of Data Il

Fig 5.5: Training & Validation Loss of dataset I, Il, & Local IlI
80

5.3BERT Results

5.3.1. Dataset Il & I11:
These datasets comprise of 1,62,421 samples, and 1,002 samples respectively. Each belonging

to one of five distinct classes in case of dataset Il and nine classes (one class was excluded as
there were not enough samples of that class) for dataset I1l. These samples are split into two
subsets: 90% & 10%.

5.3.2. Classification Report
A classification report provides valuable metrics such as precision, recall, f1-score, and the

number of instances in each class after the model is implemented to evaluate the overall
accuracy of the model. Classification reports given below shows commendable results as in
Figure 5.13(a) that is report of dataset Il, the model showcased strong ability in distinguishing
in almost every class by displaying particularly high F1-scores, ranging between 0.81 to 0.94.
This suggests that the model is well-tuned for these classes and can distinguish between them

effectively. Overall, model is indicating promising performance for dataset I11 as well.

precision recall fl-score support precision recall fl-score support

) 8.83 a8 g.81 1966] 8.83 6.98 8.86 199

2 0.23 8.79 0.81 1536 2 8.74 @8.75 8.75 183

3 9.83 8.8 8.35 1782 3 8.76 .83 a8.79 162

L 5,93 5,08 5.90 2606 4 .88 .88 .88 523

5 8.77 .78 a8.78 218

B 8.83 8.76 .80 157

accuracy 8.80 32483 7 533 8 81 8.82 208

macro avg 8.87 8,85 8.36 32483 2 6. ac 8.7 .73 62
weighted avg g.89 .89 8.89 32483

accuracy a.82 1994

MCC Score: @.8387118747403625 macro avg 8.81 a.28 8.88 1994

weighted avg 8.82 a.82 a.82 1994

Testing Accuracy of BERT:89.43%
Accuracy of BERT 81.594784353685918

(2)BERT on Data Il (b) BERT on Data I
Fig 5.13: Classification reports of dataset Il, & Local dataset Il
5.3.3. Confusion Matrix
The confusion matrix assists in gaining a more precise understanding of each class data, along
with evaluation of a classification model's performance. This matrix compares the true value

with the value predicted by proposed model. Confusion matrices in Figure 5.14 shows that the
81

rate of misclassification is quite small compared to correctly predicted values e.g., in case of
class 1 mentioned in Figure 5.14, out of total 18409 samples, 17456 were classified correctly
that shows a high accuracy. Similarly other classes ranging shows same trend by predicting

maximum correct values in both dataset Il and dataset Il1.

Confusion Matrix

o 2460 204 66 43 197 16000
14000
- 206 17456 511 193 43 12000
3 10000
S 95 677 3601 133 30
g - 8000
=
- 6000
o~ 85 399 127 3112 59
- 4000
< 161 47 28 41 2419 - 2000
0 1 2 3 4

Predicted Label

Fig 5.14: Confusion Matrix of dataset 11

1 2 3 4 5 6 7 8 9
1 180 5 0 4 2 5 1 2 0
2 6 141 3 3 4 25 8 7 30
3 1 3 138 20 7 0 0 12 2
4 4 1 6 | 134 12 2 3 8 2
5 7 4 7 0 - 18 2 11 3
6 8 3 3 3 9 170 1 1 0
7 5 19 3 5 2 0 120 3 0
8 7 9 16 6 7 0 8 236 1
9 0 1 1 1 8 0 1 6 47

Fig 5.15: Confusion Matrix of dataset 111

82

5.3.4. Training Loss

In Figure 5.16(b), the trend of training loss is promising as loss is decreasing prominently. The
training loss levels-off around 0.3 at 3™ epoch without over-fitting. This value of loss is so
small, indicating the accuracy of model. Overall, BERT model's performance outperforms the
other models as seen in the both graphs.

Training loss

Training loss
1.2
0.40
0.38 1.0
0.36
@ " 0.8
S 0.34 §
0.32 0.6
0.30
0.4
0.28
0.0 0.2 0.4 0.6 0.8 LC 0.0 0.5 1.0 15 2.0 2.5 3.0
Epoch Epoch
(a) Training Loss of Data Il (b) Training Loss of Data IlI
Fig 5.16: Training Loss of dataset 11, & Local dataset 111
5.3.5. Training Accuracy
Training Accuracy
90.0
89.8
2 89.6
0
3
(9]
% 89.4
89.2
89.0
1.0 1.2 1.4 1.6 1.8 2.0

Epoch
Fig 5.17: Training Accuracy of dataset 11

83

5.3.6. Validation Accuracy

Running Validation...
Accuracy: 8.98
Validation took: @:87:87

Training complete!

(@) Average Validation Accuracy
of Data Il

Accuracy: @.82
Validation took: @:88:26

Training complete!

(b) Average Validation Accuracy of
Data Il

Fig 5.18: Validation Accuracy of Dataset Il & Local Dataset |1

5.3.7. Testing Accuracy

MCC Score: 8.8387118747493625

Testing Accuracy of BERT:89.43%

(a) Testing Accuracy of Data Il

MCC Score: B.78358885911599838
Predicting labels for 1,994 fest sentences

Test Accuracy: @.82
DONE.

(b) Testing Accuracy of Data Il

Fig 5.19: Testing Accuracy of Dataset Il & Local Dataset Il

5.3.8. Testing on Unseen Data

Excitingly, I provided an unseen sentence to the BERT model of class 4, that is retail banking,

and it accurately predicted the sentence as belonging to class 4

Original Class:
Input Sentence:
Input IDs: tensor([[

retail banking

181, 4997,

3825, 5783, 12598, 8989,

3477, 12952, 14738, 3858,

3303, 11781, 2224, 3343,
8, 8, 8, 8,
8, o, 8, 8,
8, 8, 8,

1] 1J 1J 1.‘

Predicted Class: 4

negative transfer loading transaction detail paypal negative transfer paid balan
4651,

8]], dewvice="cuda:a")
Attention Mask: tenmsor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1,1, 1, 1, @, 8, @, 8, &, 8, 8, 0, 8, 8, 6, @,
8, 8, 8,98, 9,9e,8,8,8,a,8,8,e@,8,e, 8]], dvice="cuda:g")
Logits: tensor([[-©.1426, -8.1276, -0.1267, -0.4670, -8.0188]], device="cuda:8")

18578,
14939,

7909,
11371,
a,
a,

12598,
18558,
3477,
102,
a,
a,

6087,
3477,
12952,

3477, 12952,
12952,
3477,

4997,
3602, 13751,
12952, 4853,
a,
a,
a,

4651,

Fig 5.20: Testing on Unseen Sentence Sample

84

5.4 Performance Measures of our Models

Table 5.1: Testing & Average Cross-Validation Accuracy of all model on dataset |

ACCURACY OF MODEL FOR DATASET |

Serial No. MODEL Accuracy
1 CNN 85%
2 BiLSTM 88%

CROSS-VALIDATION ACCURACY OF MODEL

Serial No. MODEL Accuracy
1 CNN 84%
2 BILSTM 85%

Table 5.2: Testing & Average Cross-Validation Accuracy of all model on dataset Il

ACCURACY OF MODEL FOR DATASET I

Serial No. MODEL Accuracy
1 CNN 85%
2 BILSTM 87%
3 BERT 89.43%

CROSS-VALIDATION ACCURACY OF MODEL
Serial No. MODEL Accuracy
1 CNN 85%
2 BiLSTM 84%
3 BERT 90%

Table 5.3: Testing & Average Cross-Validation Accuracy of all model on Local dataset Ill

ACCURACY OF MODEL FOR DATASET Il1

Serial No. MODEL Accuracy
1 CNN 76%
2 BILSTM 80%
3 BERT 82%

CROSS-VALIDATION ACCURACY OF MODEL
Serial No. MODEL Accuracy
1 CNN 75%
2 BiLSTM 75%
3 BERT 82%

85

Comparison with Prior Work on Dataset |1

Qurat-ul-ain[14] Logistic Regression 83%
Random Forest 82%
Mutlinomial NB 78%

Proposed System CNN 87%
BILSTM 88%
BERT 89.43%

Table 5.4: Accuracies on Consumer Complaints Dataset 11 [14]

Comparison with Prior Work on Dataset |

Oyewola, D.O[37] 1DCNN 76.66%
LSTM 75.53%
BIiLSTM 71.98%
TSR1DCNN 76.66%

N. T. Thomas [8] LSTM 62.825%

Proposed System CNN 87%
BILSTM 88%
BERT 89.43%

Table 5.5: Accuracies on US Consumer Finance Complaints Dataset | [37]
In Table 5.4 and 5.5, we present a performance comparison between our proposed

method and the findings from recent work. Various feature extraction techniques and
models were employed by different researchers. The results mentioned in Table 111 shows
our proposed model that is BILSTM-CNN models performed well. Subsequently, BERT,
state-of-the-art model outperformed previous models in autonomous classification of
user complaints as reported in Table 5.5.

86

6.1.

6.2.

CHAPTER 6: CONCLUSION & FUTURE WORK

Conclusion

As the digital world continues to evolve, the need for advanced models in classifying and
managing unstructured text data like consumer complaints in our case, undoubtedly
increases. Hence, the combination of deep learning models and Natural Language
Processing (NLP) techniques has a potential to give promising solutions for managing
and categorizing the vast amounts of consumer complaints online. Moreover, this
research has showcased the potential of Convolutional Neural Networks, hybrid CNN-
BiLSTM, and BERT maodels in the field of classifying consumer complaints accurately.
The CNN model was adept at capturing local correlations through its convolution and
pooling operations, proving to be beneficial for short text classification tasks. The hybrid
model, combining CNN and Bidirectional Long Short-Term Memory (BIiLSTM),
excelled in addressing both local and global semantic information, rendering it effective
for complaints. And the game-changer, however, was the BERT model. Its unique
contextual fetching power and bidirectional processing approach allowed for a deeper
understanding of language context, critical for accurate complaint classification. For this
reason, BERT proved to be a state-of-the-art model in handling consumer complaints by
showing an accuracy of 89.5%. In the same context, the CNN model achieved 85%
accuracy, while BiLSTM posted 87% on Dataset I. Additionally, on the local Dataset 11,
the performance remained competitive: CNN recorded 77% accuracy, the hybrid
BiLSTM-CNN model reported 80%, and the BERT model outperformed with 82%
testing accuracy. The results achieved on the Consumer Complaint dataset | will serve as
a baseline as it is an international acclaimed dataset. In conclusion, the application of
Autonomous Decision-Making approach on user complaints, powered by NLP and deep
learning models, enables organizations to strive for more precise complaint
categorization, leading to improved customer service and satisfaction, and ultimately, a
better digital customer experience.

Future Work
Future research should consider challenges such as multilingual datasets and non-English

languages, like Urdu in our case, which are getting the attention of ample number of
researchers. Deep learning algorithms are used, different progressing features techniques
have been selected for our problem. However, there is still room for improvement,

87

potentially through the use of hybrid models to get better results. The task of extracting
and choosing optimal feature techniques according to the problem remains crucial.
Additionally, the implementation of other ensembles using a combination of different
features presents a promising area for exploration. New and more efficient model could
be Implemented and designed with a little effort.

REFERENCES

[1] Dien, T.T., Loc, B.H. and Thai-Nghe, N., 2019, November. Article classification using natural
language processing and machine learning. In 2019 International Conference on Advanced
Computing and Applications (ACOMP) (pp. 78-84). IEEE.

[2] Lai, S., Xu, L., Liu, K. and Zhao, J., 2015, February. Recurrent convolutional neural networks
for text classification. In Proceedings of the AAAI conference on artificial intelligence (Vol. 29,
No. 1).

[3] X. Tong, B. Wu, S. Wang and J. (2018), "A Complaint Text Classification Model Based on
Character-Level Convolutional Network," 2018 IEEE 9th International Conference on Software
Engineering and Service Science (ICSESS), Beijing, China, pp. 507-511, doi:
10.1109/ICSESS.2018.8663873.

[4] Dien, T.T., Thanh-Hai, N. and Thai-Nghe, N., 2020. Deep Learning Approach for Automatic
Topic Classification in an Online Submission System. Advances in Science, Technology and
Engineering Systems Journal, 5(4), pp.700-709.

[5] Zang, M., Gao, Y., Niu, S. and Chen, X., 2023, February. Long Text Multi-label Classification.
In 2023 3rd International Conference on Neural Networks, Information and Communication
Engineering (NNICE) (pp. 438-442). IEEE.

[6] Gupta, M., Singh, A., Jain, R., Saxena, A. and Ahmed, S., 2021. Multi-class railway complaints
categorization using Neural Networks: RailNeural. Journal of Rail Transport Planning &
Management, 20, p.100265.

[7] Singh, M., Jakhar, A.K. and Pandey, S., 2021. Sentiment analysis on the impact of coronavirus
in social life using the BERT model. Social Network Analysis and Mining, 11(1), p.33.

[8] Chen, Q., Du, J., Allot, A. and Lu, Z., 2022. LitMC-BERT: transformer-based multi-label
classification of biomedical literature with an application on COVID-19 literature
curation. IEEE/ACM transactions on computational biology and bioinformatics, 19(5), pp.2584-
2595.

[9] Liu, H., Yin, Q. and Wang, W.Y., 2018. Towards explainable NLP: A generative explanation
framework for text classification. arXiv preprint arXiv:1811.00196.

[10] Raju, S.V., Bolla, B.K., Nayak, D.K. and Kh, J., 2022, April. Topic modelling on consumer
financial protection bureau data: An approach using BERT based embeddings. In 2022 IEEE 7th

International conference for Convergence in Technology (12CT) (pp. 1-6). IEEE.
88

[11] Sun, F. and Zuo, Y., 2022. Autonomous Classification and Decision-Making Support of Citizen
E-Petitions Based on Bi-LSTM-CNN. Mathematical Problems in Engineering, 2022.

[12] Tutika, A. and Nagesh, M.Y.V., 2019. Restaurant reviews classification using NLP
Techniques. Journal of Information and Computational Science, 9(11), pp.1669-1676.

[13] Rao, Z. and Zhang, Y., 2020, June. Research on Content of User Complaint Classification
Based on Data Mining. In 2020 IEEE 5th Information Technology and Mechatronics Engineering
Conference (ITOEC) (pp. 1080-1085). IEEE.

[14] Qurat-Ul-Ain, A. Shaukat and U. Saif, "NLP based Model for Classification of Complaints:
Autonomous and Intelligent System," 2022 2nd International Conference on Digital Futures and
Transformative Technologies (ICoDT2), Rawalpindi, Pakistan, 2022, pp. 1-6, doi:
10.1109/1CoDT255437.2022.9787456.

[15] Oliinyk, V.A., Vysotska, V., Burov, Y., Mykich, K. and Basto-Fernandes, V., 2020. Propaganda
detection in text data based on NLP and machine learning. In CEUR Workshop Proceedings (Vol.
2631, pp. 132-144).

[16] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K. and Kuksa, P., 2011. Natural
language processing (almost) from scratch. Journal of machine learning research, 12(ARTICLE),
pp.2493-2537.

[17] Khurana, D., Koli, A., Khatter, K. and Singh, S., 2023. Natural language processing: State of the
art, current trends and challenges. Multimedia tools and applications, 82(3), pp.3713-3744.

[18] Jones, K.S., 1994. Natural language processing: a historical review. Current issues in
computational linguistics: in honour of Don Walker, pp.3-16.

[19] Liddy, E.D., 2001. Natural language processing.

[20] Dudhabaware, R.S. and Madankar, M.S., 2014, December. Review on natural language
processing tasks for text documents. In 2014 IEEE International Conference on Computational
Intelligence and Computing Research (pp. 1-5). IEEE.

[21] North, K., Ranasinghe, T., Shardlow, M. and Zampieri, M., 2023. Deep Learning Approaches to
Lexical Simplification: A Survey. arXiv preprint arXiv:2305.12000.

[22] Webster, J.J. and Kit, C., 1992. Tokenization as the initial phase in NLP. In COLING 1992
volume 4: The 14th international conference on computational linguistics.

[23] Goldberg, Y., 2016. A primer on neural network models for natural language processing. Journal
of Artificial Intelligence Research, 57, pp.345-420.

[24] Pennington, J., Socher, R. and Manning, C.D., 2014, October. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP) (pp. 1532-1543).

[25] Chua, L.O. and Roska, T., 1993. The CNN paradigm. IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications, 40(3), pp.147-156.

[26] Yin, W., Kann, K., Yu, M. and Schutze, H., 2017. Comparative study of CNN and RNN for
natural language processing. arXiv preprint arXiv:1702.01923.

89

[27] Sherstinsky, A., 2020. Fundamentals of recurrent neural network (RNN) and long short-term
memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, p.132306.

[28] Graves, A. and Graves, A., 2012. Long short-term memory. Supervised sequence labelling with
recurrent neural networks, pp.37-45.

[29] Analytics Vidhya. (2021, March). Introduction to Long Short-Term Memory (LSTM). Analytics
Vidhya.https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-
memory-Istm/

[30] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf,
R., Funtowicz, M. and Davison, J., 2020, October. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 conference on empirical methods in natural
language processing: system demonstrations (pp. 38-45).

[31]

[32]Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and
Polosukhin, 1., 2017. Attention is all you need. Advances in neural information processing
systems, 30.

[33] Jalammar, J. The lllustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learning).
https://jalammar.github.io/illustrated-bert/

[34] Devlin, J., Chang, M.W., Lee, K. and Toutanova, K., 2018. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

[35] Jalammar, J. A Visual Guide to Using BERT for the First Time. https://jalammar.github.io/a-
visual-guide-to-using-bert-for-the-first-time/

[36] Anna Rogers, Olga Kovaleva, Anna Rumshisky; A Primer in BERTology: What We Know
About How BERT Works. Transactions of the Association for Computational Linguistics 2020;
8 842-866.

[37]0yewola, D.O., Omotehinwa, O.T. and Dada, E.G., 2023. Consumer complaints of consumer
financial protection bureau via two-stage residual one-dimensional convolutional neural network
(TSR1DCNN). Data and Information Management, p.100046.

90

https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-memory-lstm/
https://www.analyticsvidhya.com/blog/2021/03/introduction-to-long-short-term-memory-lstm/
https://jalammar.github.io/illustrated-bert/
https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

