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Abstract 
 

With the advancement in technological domain, the volume of text data, particularly user 

complaints in public sector, is increasing rapidly. This huge amount of data requires more 

accurate and automated system for text classification, as manual sorting of this data is time-

consuming and error-prone. Addressing this challenge, our research proposes a deep learning-

based text classification system that utilizes three models; Convolutional Neural Networks 

(CNN), a hybrid of Bidirectional Long Short-Term Memory (BiLSTM) and CNN, and the state-

of-the-art Bidirectional Encoder Representations from Transformers (BERT) model. These 

models will interpret the context of text and classify complaints automatically into respective 

departments. After preprocessing, GloVe embeddings and BERT Tokenizer are used to extract 

crucial information as features from the complaints, and feed to the models for further pattern 

learning and classification. Proposed models achieved over 80% classification accuracy on the 

local complaint dataset, and more than 86% on the internationally acclaimed Consumer 

Complaint Dataset. Among the models, BERT model outperformed, delivering better 

performance with accuracy of 82% and 89.5% on the Local and Consumer Complaint Datasets 

respectively. The proposed methodology will significantly improve complaint management 

efficiency and serve as a foundation for future improvements in automated text classification. 

Key Words: Deep Learning Models, Complaints Classification, Classification Techniques, 

GloVe, RNN, CNN, LSTM, Bi-LSTM, BERT, Natural Language Processing 
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CHAPTER 1: INTRODUCTION 

 
In today's digital era, consumers extensively use online platforms to express their feedback 

concerns and complaints to respective departments and agencies as depicted in Figure 1.1. 

These platforms have transformed the way public services are delivered, making them more 

efficient and accessible. However, the massive influx of unstructured text data poses a 

significant challenge in managing and effectively categorizing the complaints as because 

manual sorting of the data is time-consuming and likely to have errors. Additionally, Natural 

Language Processing NLP faces a big challenge when dealing with complaints as these can be 

hard to understand because they're often missing context, might not follow grammar rules, or 

could even have spelling mistakes. Consequently, existing research in this domain has not yet 

utilized the models that are able capture the essential semantic and textual information of 

complaint data. And historically, text classification research has relied only on traditional 

classifiers like k-nearest neighbor (KNN), k-mean, support vector machines (SVM), Randon 

Forest, and naive bayes (NB). These methods, although useful, still fail to extract the contextual 

relationships between words in a text. For this reason, the need for robust deep learning models 

coupled with Natural Language Processing (NLP) techniques to accurately classify these 

consumer complaints has never been more urgent as NLP based deep learning models offers a 

more advanced way to understand the contextual and semantic information from user 

complaints and classify it into its respective classes. 

Our Proposed System: This research focuses on developing an autonomous system capable 

of interpreting the context of complaints and categorize them into respective departments by 

using three deep learning models; Convolutional Neural Network (CNN), a hybrid of CNN and 

Bidirectional Long Short-Term Memory (BiLSTM), and the state-of-the-art Bidirectional 

Encoder Representations from Transformers (BERT) model.  

 

Unlike traditional classifiers, Convolutional Neural Network (CNN) is specifically designed to 

understand the local correlation in the text, making it excellent at short-text classification as it 

captures correlations through convolution and pooling operations. Furthermore, a special kind 

of Recurrent Neural Network (RNN), known as Bidirectional Long Short-Term Memory 

(BiLSTM), has been found to be particularly effective as it has both forward and backward 

directions that allow it to excel in extracting contextual features from the text. Still, despite 

these advances, rendering a single extraction method proves to be less effective in some cases. 
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For this reason, this study proposes a hybrid model combining the strengths of Convolutional 

Neural Networks (CNN) and Bidirectional LSTM. The proposed model capitalizes on the 

benefits of both CNN, known for its ability to process local features, and Bidirectional LSTM, 

recognized for managing long-term dependencies in the text. The features extracted by these 

two models are combined to form a crucial unified representation and provide meaningful 

information for further classification. And hence, this hybrid model proves to be an improved 

autonomous classification model for classification of user complaints. 

CNN and hybrid of BiLSTM-CNN perform well but a language model is considered more 

effective, if it understands the context of whole sentence by differentiating the meaning of a 

word based on the surrounding text as this feature is very essential when dealing with text-

based complaints. In this context, this research study utilizes third deep learning model called 

Bidirectional Encoder Representations from Transformers (BERT) for classifying consumer 

complaints. The model's deep understanding of language and its ability to process text 

bidirectionally, allows it to understand the context of each word in relation to the entire 

sentence. This capability makes it particularly effective in handling often complex language 

used in consumer complaints. However, our proposed models, Convolutional Neural Network 

(CNN), CNN with Bidirectional LSTM and BERT outperformed previous traditional models. 

 

In this study, we present a novel methodology for complaint classification. Firstly, we employ 

Natural Language Processing (NLP) techniques for preprocessing to refine the raw text. 

Subsequently, GloVe embeddings and the BERT Tokenizer are applied to extract preliminary 

feature vectors from the text. These feature vectors are fed to deep learning models to learn 

new patterns better contextual information thus improving the accuracy of complaint 

categorization. Moreover, this research stands as a novel effort that uses deep learning models 

for classifying complaints based on their contextual and semantic information. Hence, deep 

learning models with NLP are essential tools for classifying and managing consumer 

complaints in today's digital and customer-centric world.  
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                                           Fig 1.1: Customer Feedback in Business Sector [38]                                                                                                      

1.1 Motivation 

 
Increasing consumer complaints requires continuous advancement in solutions to ensure 

customer satisfaction. Hence, an accurate, fast, reliable and scalable solution is required in this 

regard. Therefore, the selected research topic utilizes deep learning models in NLP as an 

alternative to the conventional customer care strategies. Deep learning models possesses the 

potential to address the aforementioned constraints. Need of Deep learning in the field of 

customer care can be highlighted by the following concerns.  

1.1.1.  The increasing dataset of consumer complaints:  

Increase in the use of online banking causes rapid growth in the volume of consumer 

complaints. This leads towards the difficulty in organization of these volumes, hence, causes 

difficulty while managing them.  

1.1.2. The growing need of accurate & scalable solution for consumer complaints 

classification 

For the effective and timely response of consumer’s complaints, it is essential to classify them. 

Classification helps prioritize consumer’s complaints which leads to their effective 

investigation. Organizing these complaints also enables authorities to identify the trend in 

customer complaints hence resolving them for better services.  

1.1.3. The growing potential of deep learning models for classification tasks.  

Deep learning model validates its effectiveness to obtain accuracy in text classification which 

makes them favorable to utilize them for consumer complaints classification. By utilizing them, 

the process of classification become automatic hence, dealing with large data set could become 

easier and effective.   

This research work will evaluate if deep learning models can effectively classify complaints 

into respective classes. For this purpose, various deep learning models will be considered, and 

critical analysis will be made after evaluating them. In literature, different optimization 

algorithms are utilized based on the nature of objective. So, a researcher should be vigilant in 

choosing learning models for text classification that proves to be both suitable for their data set 

and project requirements. Moreover, this research work will evaluate the performance of 

different deep learning models by training and testing on two datasets. One dataset comprises 

of 10,000 user complaints collected from a public education sector and the other dataset 

contains 1,20,000 complaints collected from an international online dataset repository.  
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1.2 Problem Statement 

 
Due to fast growth in the use of online and mobile transactions, a rapid increase in the volume of 

consumer complaints is observed which causes difficulty in managing these complaints 

effectively. Effective management requires accurate and timely classification of consumer 

complaints so that organizations can be able to prioritize and investigate them accordingly. 

Classifying them also enables organizations to identify the trends which lead them to improve 

customer care service. This can be done by tuning deep learning models. Deep learning models 

have been validated to obtain high level of accuracy in the field of text classification. This makes 

them a useful approach for consumer complaints classification to automate the process of 

classification for handling large datasets. For this purpose, various methodologies need to be 

combined with machine learning techniques along with their effective tuning according to the 

nature of problem needed to be solved. In that way, classification of the complaints can be made 

into the respective department after successful prediction. Typically, machine learning classifiers 

are utilized to classify user complaints but there is a need of efficient and effective deep learning 

models which can provide more scalable and time saving approach to accurately predict the 

class (department) and classify the complaints accordingly. Therefore, this research work aims 

to provide valuable insights into the use of deep learning models for consumer complaints 

classification. The proposed model is designed to develop and deploy deep learning models 

which can offer improved accuracy and efficiency of their consumer complaints management. 

 

1.3 Aims and Objectives 

 
This research work aims to train various deep learning models for the classifications of 

consumer complaints and critically analyze them to observe the effectiveness of each model so 

that a suitable model can be selected which could be utilized to classify consumer complaints 

for the respective organization.  

To achieve this aim, the following objectives have been identified.  

• To combine literature techniques having different feature extraction to address our 

concerned problem. 

• To provide timely, accurate and scalable solutions to the companies for better 

management of consumer complaints which will ensure customer satisfaction towards 

the organization.   

To obtain the mentioned objectives, a three-step methodology is proposed. In the first step, a 
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large dataset that can be classified into multiple classes needs to be collected. After that, the 

collected data needs to be pre-processed before processing into deep learning model such as 

cleaning and transforming it into a suitable format. Finally, this data is subjected to deep learning 

models for testing and training. Different performance metrics needed to evaluate the 

performance of the models will be established.    

 

1.4 Structure of Thesis 

 
This work is structured as follows: 

 
Chapter 2 describes technical background and different techniques used researchers in the   

past for Text Classification. 

Chapter 3 gives review of the literature and the significant work done by researchers in past 

for the task of Complaints Classification. It also explains different techniques used to extract the 

features and classification by researchers and the datasets that can be used. 

Chapter 4 consists of the proposed methodology in detail. It includes three main modules: pre-

processing, vectorization or feature extraction and the deep learning models. 

Chapter 5 consists of all the experimental results in detail with respective tables, figures, and 

performance measures. 

Chapter 6 concludes the research work and reveals future scope of it. 
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CHAPTER 2: TECHNICAL BACKGROUND 

 
One of the most transformative technological domains of recent decades is Natural Language 

Processing (NLP). It is redefining the ways in which we interact with machines. The primary 

aim is to allow computers to comprehend, interpret, and generate human language in a valuable 

and meaningful way. This field of study and application emerged in the mid-20th century, 

around the same time as the advent of modern computers. 

2.1. Natural Language Processing 

Natural Language Processing (NLP) is a subfield of evolving artificial intelligence (AI) that 

makes the interaction between humans and computers possible as depicted in Figure 2.1. It 

focuses on developing classifiers and models to enable computers and machines to interpret, 

and communicate in a language in a way that is meaningful and useful. NLP has gained 

significant attention and has seen remarkable advancements in recent years, driven by the 

availability of large-scale datasets, computational power, and innovative machine learning 

techniques [16]. 

One of the key challenges in NLP is dealing with the ambiguity of natural language. NLP 

models must be able to understand the context in which a word is used in order to disambiguate 

its meaning. Another challenge in NLP is dealing with the complexity exist in human language. 

Human language is full of nuances and subtleties that can be difficult for computers to capture 

[17]. NLP models must be able to learn to represent the meaning of words and phrases in a way 

that is robust to these complexities. 

 

                                                                                        

Fig 2.1: Relationship of NLP and other Fields [39] 
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2.1.1 History of NLP: 
 

The field of NLP has its roots in the early days of artificial intelligence (AI). In the 1950s and 

1960s, researchers began to develop computer programs that could process natural language. 

However, these early programs were limited in their capabilities. In the 1970s and 1980s, there 

was a renewed interest in NLP. This was due in part to the development in the field of machine 

learning classifiers that were better adopted for NLP tasks. In the 1990s, NLP saw significant 

progress. This was due in part to the availability of large corpora of text data, which could be 

used to train NLP models. In the 2000s, NLP has continued to advance. This is due in part to 

the development of deep learning algorithms, which have presented to be very effective for 

natural language processing tasks [18]. 

 

 

2.1.2 Linguistic Foundations 
 

NLP relies on linguistic theories and concepts to understand and process human language 

effectively. It draws from various linguistic subfields, including morphology, syntax, 

semantics, and pragmatics. Morphology involves the study of word formation and the analysis 

of word structure, inflection, and derivation. Syntax deals with the study of sentence structure 

and the rules governing the arrangement of words. Semantics in text emphases on the context 

of words, and phrases. while pragmatics examines how context influences language 

interpretation and usage. 

 

2.1.3. Tasks in NLP: 
 

NLP encompasses a wide range of tasks [19] precisely depicted in Figure 2.2. Some of the 

common tasks include: 

Text classification: This is the task of assigning a category to a piece of text. For example, a 

text classification model could be used to classify customer complaints into different 

categories, such as "product defect," "service issue," or "billing error." 

Text summarization: This generates a precise version of a piece of text that retains the most 

important information. For example, a text summarization model could be used to generate a 

summary of a news article or a research paper. 

Machine translation: This is the task of translating text from one language to another. For 

example, a machine translation model could be used to translate a website from English to 

Spanish. 
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Question answering: This is the task of answering modeled in natural language. For example, 

a question answering model could be used to answer questions about a factual topic, such as 

"What is the capital of France?" 

Named entity recognition: This is the task of identifying entities in corpus, such as people, 

organizations, and locations. For example, a named entity recognition model could be used to 

identify the names of people in a news article. 

Sentiment analysis: This is the task of extracting sentiment from the text, such as whether it 

is positive, negative, or neutral. For example, a sentiment analysis model could be used to 

determine whether a customer review of a product is positive or negative. 

 

               

Fig 2.2: Tasks in Domain of NLP [40] 

 

 

2.1.4 Preprocessing Techniques 

 

To prepare text data for analysis, NLP involves several preprocessing techniques [20] as given 

below: 

Tokenization: Breaking text into individual words or tokens. 

Stop Word Removal: Filtering out commonly occurring words (e.g., "and," "the") that do not 

carry significant meaning. 

Lemmatization: Reducing words to their base or dictionary form (e.g., "running" to "run"). 

Part-of-Speech (POS) Tagging: Assigning grammatical tags (e.g., noun, verb) to words. 

Named Entity Recognition (NER): Identifying and classifying named entities such as names, 

locations, and organizations. 

Sentiment Analysis: Determining the emotional tone of a text (e.g., positive, negative, 

neutral). 
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2.1.5 NLP Applications: 
 

Industrial applications of NLP can be mostly categorized into 3 categories: Conversational 

systems, Text Analytics, Machine translation 

Conversational Systems: Using a speech or text-based interface, we may converse with an 

automated computer in natural language using a conversational system. A company firm helps 

to automate complex procedures with 24X7 assistance to its users. Virtual Assistants and 

Chatbots are the two most frequent types of conversational gadgets. Banks, e-commerce, social 

networking, and other self-provider factor-of-income systems all use these devices to serve 

their clients with a wide range of services. 

Machine Translation: Device translation is the venture of automatically translating one 

natural language into another, retaining the means of the input text [19]. Maximum famous 

software for device translation is Google translator. Other machine translation software 

programs are also utilized in speech translation and teaching. Now, we will observe some 

industrial packages in the following area regions: Healthcare, car, Finance, manufacturing, 

retail, education, and customer service. 

Text Analytics: Text Analytics additionally called textual content mining pursuits to extract 

meaningful content from text, either in files, emails, or brief-form communications such as 

tweets and SMS texts. Most commonplace use cases of textual content analytics on social 

media analytics. 

 

2.1.6 Challenges in NLP: 

 

NLP poses several challenges due to the complexity of human language. Some common 

challenges include: 

Ambiguity: Words or phrases with multiple meanings or interpretations. 

Syntax and Grammar: Variations in sentence structure, grammar rules, and syntactic 

conventions across different languages. 

Named Entity Ambiguity: Identifying and disambiguating named entities with similar names 

or acronyms 

Contextual Understanding: Capturing and leveraging contextual information for accurate 

language understanding and generation 

Data Limitations: The need for large, diverse, and annotated datasets to train and evaluate 

NLP models effectively. 
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2.1.7. Deep learning in NLP: 
 

Deep learning has had a major impact on NLP. Deep learning models have shown to achieve 

state-of-the-art results on a wide range of NLP tasks, such as text classification, text 

summarization, and machine translation [21]. Deep learning models are able to achieve these 

results by learning to represent the meaning of words and phrases in a way that is robust to the 

ambiguity and complexity of natural language. Deep learning models are able to learn these 

representations by being trained on large datasets of text data as explained in detail in Section 

4. 

2.2 Text Pre-Processing 

Pre-processing techniques [20] play a crucial role in deep learning-based text classification in 

Natural Language Processing (NLP) as it involves transforming raw text data into a format 

suitable for analysis and modeling.  Deep learning has revolutionized text classification in NLP 

by leveraging powerful neural network architectures to learn complex representations directly 

from raw text data. Pre-processing techniques are employed to transform raw text into a 

suitable format for deep learning models. These techniques ensure data consistency, handle 

variations in text, and enhance the performance and efficiency of text classification tasks. It 

aims to clean and structure the text, removing noise, irrelevant information, and 

inconsistencies. This can lead to better performance on downstream tasks, such as text 

classification, text summarization, and machine translation. This step can help to reduce the 

size of the dataset. This can be important for NLP models that are trained on large datasets. By 

removing stop words and noise, the size of the dataset can be reduced without significantly 

affecting the performance of the model. Pre-processing techniques can also help to improve 

the speed of NLP models. By normalizing text and removing stop words, NLP models can 

process text more quickly. This can be important for real-time applications, such as chatbots 

and search engines.  It covers essential steps such as tokenization, stop word removal, 

stemming, part-of-speech tagging, padding, word embeddings, data augmentation, and 

strategies to handle OOV words named entity recognition. Understanding these techniques is 

essential for ensuring accurate and effective NLP analysis and modeling. However, it’s 

important to note that the pre-processing steps may vary depending on the specific 

requirements of the task and the characteristics of the text data. Moreover, this technical 

background provides a comprehensive overview of the pre-processing techniques commonly 

used in NLP. 
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2.2.1. Tokenization: 

Tokenization is the process of splitting text into individual words or tokens. It involves 

breaking down sentences, paragraphs, or entire documents into smaller units, such as words or 

sub words. Tokenization can be achieved using simple techniques like splitting on whitespace 

or more advanced methods like using language-specific rules, regular expressions, or machine 

learning algorithms [22] or more advanced tokenization methods such as using regular 

expressions or libraries like NLTK or spaCy. Specifically, the texts_to_sequences method is 

used to convert the text data into sequences of integers based on the vocabulary learned from 

the training data 

2.2.2. Conversion of Text into Lower Case: 

In NLP, converting text into lowercase is a widely used preprocessing step with significant 

advantages. Firstly, it unifies words that have the same meaning but different capitalizations 

(e.g., "Bank" and "bank" are treated as one word). This simplifies the vector space model, 

reducing the number of dimensions and making text analysis more efficient. Secondly, 

lowercase conversion enhances text normalization, ensuring consistent formats across the 

dataset and improving various NLP tasks like sentiment analysis and text classification. 

Additionally, it reduces the vocabulary size by treating variations of a word as a single term, 

reducing computational complexity during training and inference. However, a potential 

drawback is the loss of semantic meaning for some terms, like "US" (United States) and "us" 

(pronoun). Thus, striking a balance between lowercase conversion and case sensitivity is 

essential for optimizing NLP model performance. 

2.2.3. Stop Word Removal: 

Stop words are common words that do not carry significant meaning and often appear 

frequently in text. Examples of stop words include "the," "and," "is," and "a." In NLP, removing 

stop words is a common pre-processing step as they can add noise to the analysis without 

providing valuable information. Stop word removal helps reduce the dimensionality of the data 

and improves the efficiency and accuracy of subsequent NLP tasks. This can be done using a 

pre-defined list of stopwords or using libraries like NLTK. 
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2.2.4. Removal of Punctuation 

The removal of punctuation is an important preprocessing technique in NLP tasks to ensure 

consistent and standardized text representation. By eliminating punctuation marks, such as 

commas, periods, and exclamation points, each word is treated equally, regardless of its context 

within the sentence. However, caution must be exercised during this process to preserve the 

meaning of contraction words like "don't" that might lose their significance when separated. 

Decisions on which punctuations to exclude should be carefully made based on specific use 

cases. While Python's string.punctuation provides a standard list of punctuation symbols, 

customizing the list according to the context can enhance the accuracy and contextual 

understanding of NLP models. Striking the right balance between removing punctuation for 

consistent representation and preserving the meaning of essential linguistic constructs is 

essential for effective text preprocessing in NLP applications. 

2.2.5. Stemming and Lemmatization:  

Stemming and lemmatization are techniques used to reduce words to their base or root form. 

Stemming involves removing affixes from words, such as plurals or verb conjugations, to 

derive the stem or root. It relies on heuristic rules and pattern matching algorithms. 

Lemmatization, on the other hand, maps words to their base or dictionary form using linguistic 

rules and morphological analysis. It ensures that the resulting word is a valid word with a 

semantic meaning. 

2.2.6. Padding and Sequence Length: 

 Ensure that all input sequences have the same length by padding shorter sequences with zeros 

or truncating longer sequences. This is necessary to create consistent input dimensions for the 

CNN model. 

2.2.7. Truncation: 

Truncation is a crucial preprocessing step in NLP, involving the removal of parts of a text that 

exceed a certain length or from the beginning or end of a sequence. Its primary purpose is to 

standardize the length of input sequences, especially in tasks using neural network models like 

BERT, GPT, or LSTM. With fixed-length inputs, models can be processed efficiently, enabling 

training and evaluation on data batches. There are two common types of truncations: right 
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truncation, which retains essential information at the beginning of the text, and left truncation, 

which preserves recent or relevant details at the end. The choice between left and right 

truncation depends on the specific NLP task and contextual significance. However, care should 

be taken not to remove critical information that could impact the model's performance. 

Truncation, when combined with other preprocessing steps like tokenization and lowercasing, 

ensures consistent and standardized input sequences, leading to enhanced model generalization 

and performance across diverse NLP tasks. 

2.2.8. Part-of-Speech (POS) Tagging: 

Part-of-speech tagging involves assigning grammatical tags to words in a sentence based on 

their role and context. Common POS tags include noun, verb, adjective, adverb, and pronoun. 

POS tagging helps in understanding the syntactic structure of sentences, identifying 

relationships between words, and disambiguating word senses. POS-tagged data is useful for 

tasks like text classification, information extraction, and machine translation. 

2.2.9. Named Entity Recognition (NER): 

Named Entity Recognition is the process of identifying and classifying named entities in text, 

such as names of people, organizations, locations, dates, and quantities. NER plays a vital role 

in information extraction, question answering, and text summarization. It involves using 

machine learning algorithms or rule-based approaches to identify and classify named entities 

accurately. 

2.2.10. Normalization and Spell Checking: 

Normalization involves transforming text to a standardized format, reducing variations due to 

capitalization, punctuation, and special characters. This process converts text to a standard 

form. This involves tasks such as lowercasing all text, removing punctuation, and stemming 

words. Normalization can help to improve the accuracy of NLP models by making text more 

consistent. It ensures consistent representation and comparability of text data. Additionally, 

spell checking techniques can be applied to correct spelling errors in text, enhancing the 

accuracy of subsequent NLP tasks. 

2.2.11. Handling Out-of-Vocabulary (OOV) Words:  

In deep learning for text classification, encountering words that are not present in the pre-

trained word embeddings can pose a challenge. Techniques such as replacing OOV words with 
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a special token or learning contextualized word representations can be employed to handle 

OOV words effectively. 

A few basic pre-processing steps in NLP are mentioned below in the Figure 2.3. 

    

Fig 2.3: Example of Pre-processing [41] 
 

2.3. Feature Extraction Techniques used in Deep learning Models 

Deep learning has appeared as a powerful technique for text classification in NLP, leveraging 

neural network architectures to learn complex representations from raw text data. Feature 

extraction techniques are employed to transform text into meaningful numerical 

representations that deep learning models can process. Effective feature extraction is crucial 

for capturing relevant information and patterns, enabling accurate text classification meaning 

this step is important in text classification, as it allows the machine learning model to learn the 

important patterns in the text that are relevant to the classification task. 

2.3.1. Word Embeddings:  

This is the process of representing words as vectors of real numbers. The vectors are learned 

from corpus, and they are able to extract the semantic meaning of words appeared in text. Word 

embeddings can be used to create feature vectors for text classification by simply taking the 

feature vectors of each word in the document. They encode contextual meaning and help the 

deep learning models understand the underlying meanings in the text. Pre-trained word 

embeddings, such as Word2Vec, GloVe, or FastText [23] can be utilized to initialize the 
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embedding layer of deep learning models or fine-tuned during the training process. 

2.3.1.1 GloVe Embeddings 

GloVe (Global Vectors for Word Representation) is a widely adopted word embedding 

technique in Natural Language Processing (NLP). It represents words as dense vectors in a 

continuous vector space, capturing semantic relationships based on their co-occurrence 

statistics in large text corpora. Word vectors place words in a space where similar words group 

together and different words are farther apart. The key idea is to factorize the word co-

occurrence matrix, allowing GloVe to learn fixed-size vectors for each word. Words with 

similar contexts appear closer in the embedding space, facilitating the discovery of meaningful 

semantic relationships [24].  

GloVe is a popular word embedding technique similar to Word2Vec, and it's used to convert 

text data into numerical vectors which can be easily processed by deep learning models [23]. 

Word embeddings transforms words into vectors by using pre-trained word vectors file from 

the GloVe (Global Vectors for Word Representation) project, developed by the Stanford NLP 

Group. Each word has corresponding n-dimensional vector, implying that each word is 

described by n features in the embedding space. These vectors capture semantic and syntactic 

information about the words, and words have similar vectors that are similar in meaning. These 

vectors are then used as input for machine and deep learning models for NLP tasks. 

For this process, each sentence is converted into words and unique indexes are assigned to each 

word. And embedding provides a d-dimensional vector for each index as shown in the 

following Figure 2.4. 

     

Fig 2.4: Vector Representation using GloVe [42] 
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2.3.2. Attention Mechanisms: 

Attention mechanisms enable deep learning models to target relevant parts of the text while 

making class predictions. They assign weights to different words or sub words in the text, 

emphasizing the most informative elements. Attention mechanisms focus on important features 

and capture fine-grained details, improving the accuracy of text classification. Transformer-

based models, such as variants like BERT, extensively use attention mechanisms. 

 2.3.3. Transfer Learning and Fine-tuning: 

Transfer learning is the process of leveraging pre-trained models on large-scale datasets to 

extract features that are relevant for a specific task. Pre-trained models, such as transformer 

and its variant like GPT and BERT, can be fine-tuned on task-specific data to improve text 

classification performance. Fine-tuning makes the model to adapt to the specific nuances of the 

target classification task. 

 2.3.4. Ensemble Methods: 

Ensemble methods combine several models to improve the overall performance and 

generalization of the text classification system. Ensemble techniques, such as model averaging 

or stacking, can be applied to deep learning models for text classification. By aggregating the 

predictions of multiple models, ensemble methods enhance robustness and accuracy. 

 

2.4. Deep Learning Models 

 
Deep learning focuses on training multiple neural networks with hidden layers to learn 

hierarchical representations of data. It is inspired by the structure and function of the human 

brain, where interconnected neurons processes information. Deep learning models, also known 

as deep neural networks, consist of multiple layers of interconnected artificial neurons called 

nodes or units. Each layer receives inputs, performs computations on them, and produces 

outputs that are passed to the next layer. The layers are typically organized in a sequential 

manner, with the initial layers learning low-level features and the subsequent layers learning 

higher-level features. The key advantage of deep learning is its ability to learn representations 

from text data, without the need for manual feature extraction. Deep neural networks can learn 
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complex patterns directly from the data, making them particularly powerful for image and 

speech recognition, natural language processing, and various other domains. Training a deep 

learning model involves feeding it with a large dataset and adjusting the weights and biases of 

the network's parameters through a process called backpropagation. Backpropagation uses an 

optimization approach, that is gradient descent, to iteratively update the model's parameters in 

order to minimize the cost or loss function that continuously measures the difference between 

actual ground truth values and predicted values. 

Deep learning has shown remarkable success in past few years, largely due to advancements 

in computational power, the accessibility and availability of diverse datasets, and the 

development of more sophisticated neural network architectures. Deep learning models, such 

as convolutional neural networks (CNNs) for image analysis and recurrent neural networks 

(RNNs) for sequential data,  

Bidirectional Encoder from Transformer (BERT) have achieved state-of-the-art performance  

on various complex tasks. However, training deep learning models can be computationally  

intensive and requires large amounts of labeled data. Additionally, deep learning models are 

often considered black boxes, making their decision-making processes less interpretable 

compared to traditional machine learning models. Nevertheless, deep learning continues to 

drive advancements in various fields and remains a highly active and exciting area of research 

and development. Figure 2.5 shows the hierarchy of deep learning architecture. 

 

          

    Fig 2.5: Deep Learning Architecture [43] 
 



26  

 

 

2.4.1. Convolutional Neural Network (CNN): 
 

CNN is a multi-layered neural network as shown in the Figure 2.6; each layer is composed of 

multiple 2D surfaces, and each plane is composed of multiple independent neurons [24]. A 

group of local units is the next layer in the upper adjacent unit of input; this views local 

connection originating in perceptron. 

Convolutional Neural Networks (CNN) have been widely applied in computer vision tasks, 

such as image recognition and text classification. However, CNNs have also shown promising 

results in text classification, a fundamental task in NLP. CNN are deep learning models 

designed to automatically learn hierarchical representations from input data. CNN architecture 

is built on multiple layers like convolutional layers, dropout layers, pooling layers, and fully 

connected layers. The core idea behind CNNs is the use of convolutional operations to extract 

local patterns from the corpus. Convolution is a mathematical operation that takes a 1D input 

and produces a 1D output in case of text. In the context of NLP, the input to a CNN is a 

sequence of words, and the output is a feature vector that represents the relationships between 

the words in the sequence. 

CNNs for text classification typically have the following architecture: 

1. An embedding layer that converts words into vectors of real numbers. 

2. A convolutional layer that applies a convolution operation to the word vectors. 

3. A pooling layer that down-samples the output of the convolutional layer. 

4. A fully connected layer that classifies the text. 

The embedding layer converts words into vectors of real numbers. This is done by using a 

technique called word embedding. Word embedding is a process of representing words as 

vectors of real numbers that capture the semantic meaning of words. 

The convolutional layer applies a convolution operation to the word vectors. The convolution 

operation looks for patterns in the word vectors. These patterns can be used to represent the 

relationships between words in a sentence. 

The pooling layer down-samples the output of the convolutional layer. This is done to reduce 

the size of the output and to improve the computational efficiency of the CNN. 

The fully connected layer classifies the text. This is done by using a technique called 

classification. Classification is a process of assigning a category to a text.  

Model’s parameters are further optimized after extracting features by the above-mentioned 

layers to achieve accurate classification by using the steps as follow: 
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Training and Optimization: 

CNNs for text classification are trained using labeled data. The model's parameters are 

optimized through backpropagation and gradient descent techniques, minimizing a defined loss 

function (e.g., cross-entropy). Dropout and batch normalization are proved to be regularization 

techniques to prevent overfitting. 

Hyperparameter Tuning: 

CNNs have several hyperparameters that influence their performance, such as the number of 

convolutional filters, filter sizes, pooling sizes, learning rate, and batch size. These 

hyperparameters need to be carefully tuned to achieve optimal performance. Techniques like 

grid search or random search can be used to explore the hyperparameter space. 

Evaluation and Performance Metrics: 

After training, the CNN model is evaluated using evaluation metrics such as accuracy, 

precision, recall, and F1-score. Cross-validation or hold-out validation strategies can be 

employed to assess the model's generalization performance. 

 

Fig 2.6: Convolutional Neural Network [44] 
 

 

2.4.2. Recurrent Neural Networks (RNN) 

Recurrent Neural Networks (RNNs) are a class of neural networks commonly used in Natural 

Language Processing (NLP) tasks due to their ability to process sequential data. Unlike 

traditional feedforward neural networks, they capture contextual dependencies by propagating 

information from previous words to the current word. Long Short-Term Memory (LSTM) [25] 

and Gated Recurrent Unit (GRU) are popular variants of RNNs.  

The basic idea behind RNNs is to process input data one element at a time while maintaining 

a hidden state that represents the network's memory or context. This hidden state is updated at 
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each time step and depends not only on the current input but also on the previous hidden state. 

This mechanism allows RNNs to capture dependencies and patterns in sequences. 

Architecture: The RNN consists of recurrent units, and each unit processes a single element 

of the input sequence at a time. In NLP, these elements are typically words or tokens. The 

recurrent units are interconnected in a way that allows information to flow from one time step 

to the next. 

Input Representation: To feed text data into an RNN, you need to represent words or tokens 

as numerical vectors. Common approaches include word embeddings like Word2Vec, GloVe 

that convert words into dense vector representations. These word embeddings can be learned 

from scratch during training or loaded from pre-trained embeddings. 

Sequence Processing: Each word or token in the input sequence is passed into the RNN one 

at a time, along with the previous hidden state. The RNN processes the input and updates its 

hidden state at each time step. The final hidden state after processing the entire sequence carries 

information about the entire context of the input. 

Backpropagation Through Time: Training an RNN involves using the backpropagation 

algorithm to update the model's weights based on the error between the predicted output and 

the true output. However, RNNs are inherently deep due to the unfolding of the recurrent 

connections through time. This requires a variant of backpropagation called BPTT, which 

unfolds the network in time and calculates gradients at each time step. Basic Recurrent Neural 

Network is mentioned below in the Figure 2.7.  

 

                                       Fig 2.7: Recurrent Neural Network [45] 

Although RNNs are effective for certain NLP tasks, they suffer from some limitations, such as 

difficulty in capturing long-range dependencies (vanishing and exploding gradients) and the 

inability to remember information from early time steps for long sequences. This is where Long 
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Short-Term Memory (LSTM) units come into play. 

 

2.4.3. LSTM Based RNN 

Long Short-Term Memory (LSTM) based Recurrent Neural Networks (RNNs) are a specific 

type of RNN [27] designed and its key feature is its unique memory cell structure, which allows 

it to store and recall information over extended periods. An LSTM-based RNN contains 

memory cells arranged in a layer [28]. These cells communicate with the rest of the network 

through carefully regulated structures known as gates. There are three types of gates: the input 

gate, which determines how much of the new information to let into the cell; the forget gate, 

deciding what information to discard; and the output gate, controlling the amount of cell 

information to output to the next layer [29]. These gate mechanisms allow LSTM-based RNNs 

to selectively remember or forget information, making them particularly effective in tasks 

requiring the understanding of long-term sequential dependencies, such as language 

translation, text generation, and speech recognition. 

                

                                         Fig 2.8: Gates Mechanism in LSTM [29] 

However, in simple terms, LSTM units act as memory components within the network, capable 

of retaining context from the beginning of an input sequence. For example, if a sentence is 10 

words long and the task is to predict the 11th word, the RNN processes all 10 words. In this 

way, LSTM-based RNNs have revolutionized the field of sequence prediction and time-series 

analysis. 

 

2.4.4. BERT 
 

In 2018, a significant advancement was made in the field of deep learning, particularly in the 
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realm of Natural Language Processing (NLP) - this was marked by the advent of successful 

transfer learning techniques. A method that gained notable prominence was the Bidirectional 

Encoder Representations for Transformers, also known as BERT. This model, because of its 

exceptional performance, has set a new benchmark in NLP, redefining many language-oriented 

operations. BERT's novelty lies in its capacity to understand the contextual meanings of words 

by scrutinizing both the left and right contexts and textual elements [32]. In contrast to 

Traditional language models, which typically analyze text in a unidirectional manner, - either 

forward or backward, BERT focuses on the bidirectional functionality of Transformers. This 

provides it a more holistic insight into the context of the language, ensuring a more robust 

understanding of how words are used within a specific context. Figure 2.9 depicts how BERT 

works with stacked layers making it state-of-the-art model.  

                          

                                               Fig 2.9: Stacked Layers of BERT [46] 

 

2.4.5.1 Architecture 

 

 BERT consists of multiple encoder layers called Transformer Blocks, and each block contains 

two main components: the self-attention mechanism and the feedforward network. The self-

attention mechanism captures dependencies and relationships between the words in the input. 

This helps BERT understand how different words relate to each other and form meaningful 

connections within the text. After the self-attention step, a feed-forward network is applied to 

further transform the representations of the words. This network introduces non-linear 

transformations to capture complex patterns and structures within the input. So basically, the 

feed-forward networks enable non-linear transformations. This way the output of each layer is 
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passed to the next encoder layer, creating a stacked structure of multiple layers. Each layer 

builds upon the representations learned in the previous layer, gradually refining the 

understanding of the input text [32] as shown in the Figure 2.10. 

   

                             Fig 2.10: Flow inside an Encoder Layer of BERT [32] 

 

BERT model is available in two sizes as pre-trained model shown in Figure 2.11: BERT BASE 

and BERT LARGE. BERT BASE consists of twelve encoder layers, while the LARGE version 

has twenty-four encoder layers. Compared to the initial Transformer, BERT employs larger 

feedforward networks with 768 and 1024 hidden units, respectively [33] Basically, the 

feedforward network consists of multiple layers, and each layer contains hidden units. These 

hidden units are intermediate representations within the network that help capture and 

transform the information present in the input data. The size or number of hidden units 

determines the dimensionality of these intermediate representations.  

         

                                      Fig 2.11: Sizes Available in BERT [33] 
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In BERT, two different sizes of hidden units are used: 768 for the BASE model and 1024 for 

the LARGE model. These values indicate the dimensionality of the hidden representations 

within the feedforward networks. A higher number of hidden units allows for more expressive 

power in capturing complex patterns and representations in the input data. To put it simply, 

hidden units in BERT represent intermediate features or representations within the feedforward 

networks. The sizes 768 and 1024 denote the dimensionality of these representations as 

mentioned in Figure 2.12. By increasing the number of hidden units, BERT can potentially 

capture more intricate linguistic patterns and contextual information, which can lead to 

improved performance on various language-based tasks. But the specific choice of hidden unit 

sizes in BERT, such as 768 and 1024, has been determined through experimentation and 

empirical evaluation to strike a balance between model complexity and performance. These 

sizes have been found to work well for a wide range of NLP tasks, showcasing the effectiveness 

of the chosen architectures in capturing rich semantic and syntactic information from textual 

data. 

               

               Fig 2.12: Preprocessing and Vectorization by BERT Tokenizer [47] 

 

2.4.5.2 Training Inputs 

 

BERT, which stands for Bidirectional Encoder Representations from Transformers, utilizes 

three types of embeddings as part of its architecture: WordPiece token embeddings, Segment 

embeddings, and Position embeddings as shown in the Figure 2.13. Each of these embeddings 

contributes to the model's ability to understand the semantic and syntactic context of words in 

sentence[34]. 
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                                      Fig 2.13: Embeddings in BERT Tokenizer [34] 

 

WordPiece Token Embeddings: These are embeddings for sub-word tokens. A single English 

word might be represented as one or more sub-word tokens. For example, the word 

'embeddings' could be split into two tokens 'embed' and '##dings'.  

Segment Embeddings: BERT is designed to handle pairs of sentences for tasks such as 

question-answering or natural language inference. For this reason, it needs to be able to 

distinguish between the first sentence and the second sentence. To accomplish this, BERT adds 

a sentence (or segment) embedding to each token indicating whether it belongs to the first 

sentence or the second one. There are only two segment embeddings, one for the first sentence 

and one for the second. 

Position Embeddings: As BERT doesn't have recurrence or convolution which would 

inherently handle sequence ordering, it needs a mechanism to incorporate the order of words 

into its understanding of a sentence. Position embeddings are added to give the model 

information about the position of the words in a sentence. In BERT, these are learned, not 

hardcoded. 

For each token, these embeddings are added together to form a single input representation [35]. 

So, the input at each position in the input sequence is the sum of the corresponding token, 

segment, and position embedding. These combined embeddings are then passed into the 

Transformer encoder. The Transformer architecture uses self-attention mechanisms and feeds 

these embeddings through layers of self-attention and feed-forward neural networks. Through 

training, the model learns to generate contextualized representations for each token. 

 

 

 

 



34  

2.4.5.3 Pre-training Model: 

 

However, by using the above parameters, the model is pre-trained in two main steps: masked 

language modeling and next sentence prediction [35].  

Masked Language Modeling: In this step, a certain percentage of the input tokens (words or 

sub-words) are randomly replaced with a special token called [MASK]. The model is then 

trained to predict the original tokens that were replaced with [MASK]. By doing this, BERT 

learns to understand the syntax, meaning, and relationships between different words in a 

sentence. It essentially learns to fill in the blanks in a sentence, even when some words are 

missing or replaced.  

Sentence Prediction. In this next step, the model is trained to determine whether two given 

sentences appear consecutively in the original text or not. The model learns to understand the 

contextual flow of information and distinguish between sentences that are logically connected 

and those that are not. By going through these two pre-training steps, BERT gains a deep 

understanding of the syntax, and relationships within sentences and the coherence between 

consecutive sentences. It learns to predict missing words and comprehend the overall structure 

of text. This pre-training process equips BERT with valuable language understanding 

capabilities.  

2.4.5.4 Role of Special Token 

 

 Another distinctive aspect of BERT is the presence of a special token, [CLS], added as the 

first input token. BERT takes a sequence of words as input, which is processed through the 

stacked layers. Each layer applies self-attention to capture dependencies and relationships 

within the input, followed by a feed-forward network for further transformation [36]. The 

output of each layer is then passed to the subsequent encoder.  

At last, the output of BERT is received that is vectors of size equal to hidden_size (768 in case 

of BASE model). For tasks such as sentence classification, the focus is often on the output of 

the first position, to which the special [CLS] token was supplied. This position's output 

encapsulates the overall representation of the entire input sequence, providing a contextualized 

embedding that can be utilized for downstream tasks. 

By pre-training BERT on massive datasets and making the pre-trained models readily 

available, the BERT framework has significantly reduced the time, effort, and resources 

required for training language processing models from scratch.               
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CHAPTER 3: LITERATURE REVIEW 

 

This research work encompasses literature from multiple sources including journals, 

conferences, websites and case studies, focusing on User Complaints Classification. The main 

objective of this section is to review the existing knowledge related to User Complaints 

Classification. I have reviewed previous work that has been done to classify text in different 

domains by checking databases like IEEE Xplore, ResearchGate, Springer Link, Science Direct  

and other notable journals for this domain. For the purpose of searching, the keywords used 

are text classification, machine learning models for complaints classification, deep learning 

models, classification techniques, machine learning techniques for text classification, RNN, 

CNN, Bi-LSTM, BERT. The span of publication considered for this research work is from 

2001 to 2022. 

In recent years, the advancement in natural language processing (NLP) has captured global 

research attention. The aim is to optimize language models for better comprehension of text so 

efforts from researchers all around the world focus on refining language models, leading to 

varied methodologies. Some researchers work on contextual features and embeddings, while 

others introduce novel models and techniques. Prior research suggests that efforts have been 

made to introduce techniques that understand rules of language better specially in the field of 

customer services. In this section, we will briefly discuss the contribution of multiple 

researchers and their proposed techniques. 

1. Dien Tran Thanh [1], and Bui Huu Loc proposed a new approach to classify articles by the 

aid of natural language processing (NLP) and machine learning (ML) as with the abrupt 

increase of data sources usually referred as text classification, have posed an important and 

challenging role in numerous fields. Therefore, the key objective of designing the proposed 

model to classify the articles by using pre-processing that includes removing of stop words, 

stemming the words, and creating a vocabulary and feature extraction. Features are 

extracted using bag-of-words, TF-IDF, and n-grams. And, lastly, classification of articles 

is achieved by using three classifiers SVM, naive Bayes, and decision tree by evaluating 

on a dataset of 10,000 articles from the Vnexpress newsletters. The experimental results 

show an accuracy of approximately 92%, which is capable of comparative analysis to the 

state-of-the-art results but the model was trained on small dataset of 10,000 articles having 

maximum 10 classes so the model might not generate promising results on large dataset 

belonging to different knowledge fields. 
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2. CNN, a feedforward network with multiple convolutional layers along with pooling 

continues increasing but in contrast many researchers are proposing more efficient models 

like Lai et.al. [2] proposed a new method for text classification using recurrent 

convolutional neural networks (RCNNs), which applied a recurrent network aimed to 

capture information in terms of context instead of traditional capturing of keywords. This 

approach uses RNNs that is good at modeling sequential data, while CNNs are good at 

extracting features from data. 

3. CNN models rapidly gained popularity in the natural language processing (NLP) domain 

for text classification but sometimes only scrutinization doesn’t yield satisfactory results 

so Xuesong Tong [3] came up with a novel approach of integrating two models, negative 

elements removal (NER) module to remove negative elements from the complaint text and 

a character-level CNN to extract features from the data and to classify data into respective 

classes. The proposed model was trained on Consumer Finance Complaints and it shows 

an accuracy of 91% by classifying Consumer Complaints into 3 classes but as it was trained 

for only 3 classes so it might not perform well for the system having more classes/ domains. 

4. Tran Thanh Dien, Nguyen Thanh-Hai [4] proposed a deep learning method for automatic 

topic classification implemented for an online submission system. The system is designed 

to classify documents into one of a predefined classes/topic. The authors evaluated their 

approach on five different datasets (including English, Turkish, and Vietnamese) and the 

largest data set contained around 10,000 documents and 10 different topics/classes. The 

proposed deep learning approach consists of two stages: the first one is feature extraction 

and the 2nd stage is feature classification. In the first stage, the authors use a convolutional 

neural network (CNN) to extract features from the document text. The CNN is trained on 

a large corpus of text that has been manually labeled with topics. In the classification stage, 

long short-term memory (LSTM) network is trained on the features extracted by the CNN 

to classify the document into one of the predefined topics. The authors achieved an 

accuracy around 95%. Authors' approach is a scalable but it is possible that the approach 

would not perform well on a larger dataset and on different topic taxonomy from the one 

used to train the model. 

5. China is paying more attention to non-technical literacy of individuals such as perspective 

on life, and the notion of sustainable development specially in university education. In the 
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past recent years, they evaluate individuals by conducting interviews or questionnaires that 

often contains long text from students. These paragraphs, often contain unstructured and 

long text that gets hard to classify by classifiers so Miao Zang [5] proposed a multi-label 

classification model called MLformer that uses Longformer to do mainly two tasks. It 

extracts features to get global semantic and context of the text that makes it easy to classify 

with 80% accuracy on the dataset about engineering sustainability that is in Chinese 

originally. The experimental results shows that the model outperforms other conventional 

deep learning models like BERT. But the major drawback of this model is its small dataset. 

It was trained only on 763 samples, in which only 20% of the data contained long text (of 

500 to 900 Chinese characters) so it will not show promising result on new testing data. 

6. As population is increasing day by day, the increase in the use of transportation services 

demands a system that is capable of improving quality of service by analyzing railway 

complaints by passengers. This conducted research work proposes a deep learning model 

for railway complaint categorization. Aforementioned model by [6] uses a bidirectional 

long short-term memory (LSTM) network with an attention mechanism for feature 

extraction from the text. The attention mechanism allows the model to focus on the most 

important words in a complaint gathered from COMS application of Indian Railways and 

classify it in one of the 14 classes. This resulted in improved accuracy upto 93% along with 

F1-score of 0.93 but the major drawback of the proposed model includes the use of a small 

dataset and the lack of evaluation on new/updated real-world data. 

7.  Technology plays significant role in the times of crisis like Singh, M. [7] used sentiment 

analysis to track the public's response to the pandemic on Twitter using BERT model that 

achieved an accuracy of 93%. In the conducted research work sentimental analysis on 

COVID-19 is presented. The mentioned strategy has used five metrices for performance 

evaluation that are Average Likes over the period, Intensity Analysis, Average Re-tweets 

over the period, Wordcloud, Polarity, and Subjectivity. The seven intensity categories he 

used to analyze the tweets are neutral to strongly negative. The pandemic has had a 

profound impact on social life. Their result shows that the sentiment of tweets about the 

coronavirus was generally negative, with the mean sentiment score being -0.03. However, 

the sentiment of tweets from India was more positive than the sentiment of tweets from the 

rest of the world. And this trend varied over time. His work showed how sentiment analysis 

can be used to identify areas where public health interventions are needed. But the author 
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acknowledged the limitations to their study that the tweets were collected from Twitter, 

which is a platform that is used by a relatively small percentage of the population.  

8. The exponential expansion of biomedical literature, particularly in the context of the 

COVID-19 pandemic, presents a substantial obstacle to manual curation and interpretation. 

This is primarily due to the accelerated pace at which new research findings are being 

published and accepted. LitCovid is a comprehensive database of scholarly papers 

pertaining to COVID-19, hosted within the PubMed platform. This database currently 

encompasses a vast collection of over 100,000 articles, and witnesses millions of user 

accesses on a monthly basis from individuals across the globe. During this particular 

challenge, Qingyu Chen [8] introduced a novel approach, known as LitMC-BERT, for the 

multi-label classification of biomedical literature. The classification of papers into various 

labels, such as Diagnosis, Prevention, Treatment, etc., is achieved through the utilization 

of a transformer-based model. This model is designed to learn and comprehend the 

associations between different labels, enabling accurate classification. The model 

demonstrated a level of accuracy amounting to 84% during the performance evaluation 

conducted on a separate sample of 3000 articles in the LitCovid database. 

9.  The use of technology is always been in trend and a rapid growth can be seen in the field 

of NLP specifically tasks related to classification or prediction to make systems more 

capable and efficient but these machine learning models offer no clarification for the 

predictions they made. Existing models by [9] tend to focus on predicting the output or 

make prediction on the basis of the relation between input and output. However, these 

approaches work like a black box so Hui Liu came up with a novel approach of generative 

explanation framework called GEF that tends to classify text and generate fine-grained 

human-readable explanation for the prediction the model made. Hui Liu used LSTM and 

CNN as base models for classification and integrate it with GEF for generating 

explanations for the decision taken. The author additionally joined CVAE+GEF to generate 

even better explanations. The testing is performed on two datasets. the models achieved an 

improved accuracy that surpasses all the baseline models on these datasets by generating 

precise and accurate explanation. 

10. Vasudeva Raju S [10] proposed a novel approach for topic modelling by using on BERT-

based embeddings. The data is obtained from Consumer Financial Protection Bureau 
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(CFPB) data. BERT, or Bidirectional Encoder Representations from Transformers, uses 

BERT-based embeddings that has ability of capturing the semantic relationships between 

words in a way that is not possible with traditional topic modelling methods. They 

evaluated their approach on a dataset of CFPB complaints. 

11. The paper by [11] proposed a novel approach that utilizes the hybrid deep learning model 

for the automatic classification of citizen e-petitions. The model generated by using 

aforementioned technique combines the strengths of convolutional neural networks 

(CNNs) and bidirectional long short-term memory (Bi-LSTMs) to extract both local and 

sequential features from the text of the petitions. a dataset of e-petitions is used to train the 

model. the data set is obtained from the Chinese bulletin board system (BBS). The results 

of the experiments depicts that the proposed model achieved a weighted F1 score equal to 

figure 0.8267. aforementioned figure is higher than the F1 scores of the baseline models. 

The paper's findings suggest that hybrid deep learning models and decision support systems 

can be used to improve the efficiency and make the method of e-petition classification more 

effective in future. 

12. In this paper by [12], Machine learning techniques were used to analyze customer reviews 

about the restaurant management, food and beverage.  The review holds information in text 

form but Machine learning use numerical data. For that it applies NLP and preprocessed 

the data after that it apply different vectorization technique which provide information in 

numerical format. This article applies different classifiers, train the model and after that 

test the model and check the accuracy. The main feature of this article gives comparison 

chart of accuracy by different classifiers as well as with different vectorization techniques. 

13. Business enterprises are currently reconsidering the prospect of transitioning their 

operations to the online realm. In doing so, they are also reassessing various strategies that 

may prove advantageous for their business endeavors. These strategies encompass the 

identification and prioritization of customer concerns, the analysis of customer satisfaction, 

and the enhancement of customer service. In order to address this objective, Zhuyi Rao 

[13] introduced a methodology rooted in data mining principles, which entails employing 

a fusion of text mining and machine learning methodologies, including Bayesian network 

for feature extraction and K-mean clustering for categorization. The methodology was 

assessed using a dataset of user complaints sourced from GitHub, on Chinese language 
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data. The evaluation results demonstrated that the method attained a level of accuracy of 

90%. One limitation of this model is its effectiveness in classifying user complaints that 

are written in a specific language, because it was trained on a relatively smaller dataset. 

14.  In continuation, Qurat-ul-Ain [14] proposed NLP-based model such as Logistic 

Regression, Random Forest, K-nearest neighbor and SVM using TF-IDF for the 

classification of complaints. The models used same approach, a combination of natural 

language processing and machine learning techniques to extract features from the text of 

the complaints first and then classify them into different categories. Model achieved an 

accuracy that lies between 80-83% for dataset 1 and 72-80% for local dataset. 
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Author Name & 

Publish Date Dataset  

 

Classifiers 

 

Accuracy 

 

 

 

 

Tran Thanh Dien, 

Bui Huu Loc,Nguyen 

Thai-Nghe [1] 

(2019) 

Scientific 

Articles, 

VNEXPRESS 

NEWSLETTERS 

SVM 90.1% 

Naive Bayes 87.6% 

KNN 46.7% 

Siwei Lai, Liheng Xu, 

Kang Liu, Jun Zhao [2] 

(2015) 

20Newsgroups 

Fudan set 

ACL Anthology 

Network 

Stanford Sentiment 

Treebank 

 

 

 

 

RCNN 

96.49 

95.20 

49.19 

47.21 

Xuesong Tong, Bin Wu, 

Shuyang Wang, and Jinna 

Lv [3] 

(2018) 

Consumer Finance 

Complaints (English), 

Consumer Express 

Complaints (Chinese) 

 

 

 

Character-level 

Convolutional 

Network 

 

91.0 7 
 

86.85 

Tran Thanh Dien, Nguyen 

Thanh-Hai [4] 

(2020) 

Scientific_Articles 

Turkish_News_Article 

VnExpress_Newsletters 

MLP 0.977 

SVM 0.965 

Decision Tree 0.819 

Miao Zang [5] 

(2023) 

Dataset in Chinese on 

‘Engineering 

Sustainability’ 

 

 

 

MLformer 

 

 

 

0.80 
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Meenu Gupta [5] 

(2021)  

Data from COMS app 

of Indian Railways 

 

 

 

 

LSTM 

 

 

 

 

93% 

Mrityunjay Singh &· 

Amit Kumar Jakhar [6] 

(2021) 

COVID-19 Tweets 

selected from Twitter, 

using Twitter scraper 

and the tweepy APIs 

for extracting tweets & 

data scraping 

 

 

 

 

BERT 

 

 

 

 

93% 

Qingyu Chen [7] 

(2022) 

 

LitCovid BioCreative  

HoC  

 

 

 

LitMC-BERT 

 

 

 

0.8022 

 

 

LitMC-BERT 

 

 

0.6854 

Hui Liu [8] 

(2019) 

Skytrax User Review 

dataset 

CNN+GEF 7 9.07% 

LSTM+GEF 77.9% 

Vasudeva Raju S [9] 

(2022) 

Dataset from Consumer 

Financial Protection 

Bureau (CFPB) 

 

 

 

 

 

  FinBERT 

 

 

 

C-V: 

0.3327 

 

U-Mass: -12.652 

Fengmei Sun [10] 

       (2022) 

Shanghai e-petition 

BBS. 

 

 

 

     

       BERT 

 

 

 

  

82% 
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3.1. Research Gaps 

In recent years, there are different types of features extraction techniques and 

selection of model utilized by researchers which are explained in this section. Count 

Vector and TF-IDF features rely on number of word occurrences. Features extracted 

by embeddings like Word2vec, Bag-of-words provide information regarding 

 

 

 

 

 

 

 

 

Anuradha Tutika, M Y V 

Nagesh [11] (2019) 

superdatascience.com 3 techniques are used for these models that 

are Countvectorizer, TFIDF, Hashing 

vectorizer respectively 

 

K-NN 

 

 

1. 75% 

2. 78% 

3. 62% 

Logistic 

Regression 

 

1. 80% 

2. 88% 

3. 68% 

SVM 1. 70% 

2. 68% 

3. 69% 

 

Zhuyi Rao, Yunxiang 

Zhang 

[12] (2022) 

Chinese natural 

language processing 

data set from GitHub 

 

 

 

K-mean 

 

 

 

90% 

Qurat-ul-ain [13] 

(2022) 

Dataset I: Consumer 

Complaint from Kaggle 

Dataset II: 

Local complaints 

dataset 

 

Models for 

dataset I 

Count Vector 

Random forest 83% 

Support Vector 

Machines 

83% 

Logistic 

Regression 
82% 

K--Nearest 

Neighbor 

classifier 

78% 
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occurrence matrices. Likewise, Researchers have applied multiple machine learning 

algorithms and hybrid deep learning models for better understanding of text. But 

from the prior work, it is clear that a significant research gap still exists due to the 

limited work done in the field of complaints classification, Thus, this scarcity in 

literature makes it more challenging to develop a comprehensive and generalized 

system for complaints classification.  

Hence, the contributions of this paper can be summarized as: 

• An in-depth investigation of the feature techniques, word embeddings and models 

that can be used for complaints classification. 

• It addresses the significance of contextual understanding in text, highlighting the 

shortcomings of traditional models in extracting the context-based meanings in 

complaints, which can often be vague or ambiguous. 

• A system is proposed to enhance the classification of consumer complaints. By 

integrating the capabilities of CNN and Bidirectional LSTM, and introducing BERT 

model, the system emphasis on the significance of contextual understanding in text 

and ensures accurate routing of complaints to their respective departments, 

promoting rapid and effective response measures 
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3.2. Data Sets 

The primary objective of this study is to assess the performance of the proposed deep learning 

models and find the best approach for our problem by testing models on multiple datasets. For 

this purpose, experiments have been conducted using identical settings on three datasets: 

Consumer complaints dataset I, Consumer complaints dataset II and Local dataset III. 

3.2.1. Dataset I: 

Dataset I used in this work, is the US Consumer Finance Complaints dataset available on 

Kaggle. This dataset is a collection of 555957 consumer complaints about financial products 

and services. It was created by the Consumer Financial Protection Bureau (CFPB). The data is 

classified into eleven categories, each representing a unique class such as credit card, retail 

banking, credit card, and credit reporting, mortgage, or debt collection etc. in the bank 

department. The key features in the dataset are described in the following graphs: 

 

                  
Fig 3.1: Number of Samples in Each Class

 
             Fig 3.2: Received complaints on the basis of months 
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3.2.2. Dataset II: 

Dataset II used in this work, is the dataset with the name “Consumer Complaints” available on 

Kaggle and GitHub. This dataset is a collection of 1,62,421 consumer complaints about 

financial products and services. It contains information about the complaints filed by the users. 

The data is classified into five categories, each representing a unique class such as credit card, 

retail banking, credit reporting, mortgage, and debt collection. The distribution of data samples 

is given below in Figure 3.3. 

     

     Fig 3.3: Number of Samples in each Class 

 

 

                                           
    Fig 3.4: First Four Samples & respective Class 
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3.2.3. Dataset III: 

Dataset III refers to a local dataset that has been personally gathered and cleaned by using 

initial preprocessing. This Local Data set contain 10 distinct classes, and each class shows a 

different domain such as Scholarships, Academics, Attestation, Accreditation, Sports, 

Information & Technology, Equivalency of different degrees and domains, Quality Assurance 

Division, Quality Assurance Agency, and Research and Development. Each sample in the 

dataset belongs to one of the respective classes. The dataset comprises 10,002 complaints that 

were gathered from the organization's official website. It is worth noting that some complaints 

might overlap across multiple classes/divisions, as they show various instances of similar 

issues being reported. The classes are converted to labels from 1-10 as shown in the Figure 3.5 

below: 

                                              

     

                                                         Fig 3.5: Number of Samples in each Class 

 

                                          
    

                    Fig 3.6: First Four Samples & Respective Class 
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CHAPTER 4: METHODOLOGY 

In the proposed system, three distinct models have been implemented. Text samples 

are subjected to preprocessing techniques. Subsequently, GloVe embeddings and 

BERT Tokenizer have been utilized for feature extraction. BERT tokenizer is 

employed additionally only for BERT model to extract features because BERT 

model works on a specific data format prepared by its tokenizer. These processed 

feature vectors are then passed into three distinct models. The first model is a 

Convolutional Neural Network (CNN), specifically designed to recognize local 

patterns in the extracted features. The second model is a hybrid of BiLSTM-CNN, 

integrating both temporal and spatial analysis. Finally, the third model is 

Bidirectional Encoder Representations from Transformer (BERT). This state-of-the-

art model uses the features extracted by BERT tokenizer and channels these feature 

vectors to BERT model for deeper contextual understanding. The framework of our 

proposed methodology is shown in the Figure 4.1  

                                      
                                              Fig 4.1: Framework of our Proposed Architecture 
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4.1. Initial Preprocessing 
 

Removing duplicates can help maintain a clean and organized dataset, ensuring that each data 

entry is unique and contributes to accurate analysis and results. However, the data undergoes 

an extensive cleaning process. The original dataset might contain repeated occurrences like 

similar complaints. Duplicate instances are defined as those with identical department and 

complaint descriptions, even though the date or time may differ. 

The decision to remove or keep these duplicates is contentious. On one hand, removing 

duplicates helps prevent overfitting during the model training process. This is particularly true 

when the training set contains many similar instances. For less frequent events, the model can 

properly account for the recurrence of the same incident. On the other hand, high duplicate 

counts reflect that certain type of complaints occur more frequently. To optimize performance, 

duplicates were removed, but it should be kept in mind that it's uncertain whether this is the 

best approach. 

This issue of duplicate handling needs further research, but it falls outside the scope of this 

study. 

4.2. Pre-processing data 
 

Preprocessing aids in cleaning the raw text data by removing irrelevant characters, special 

symbols, and unwanted formatting artifacts. This step minimizes noise, ensuring the 

subsequent NLP models are fed with high-quality and consistent data. The techniques used to 

preprocess the data are mentioned below: 

 

• Converting text to lower case.  

• Removing punctuation and unwanted symbols and characters.  

• Removing stop words.  

• Correcting spellings 

• Lemmatizing 

• Tokenization 
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4.2.1. Conversion of Text to Lower Case. 
 

In the first step, we applied the process of converting all text to lowercase. This preprocessing 

step involved changing all the letters in the text to their corresponding lowercase forms. The 

conversion to lowercase aids in creating a standardized and normalized text corpus, minimizing 

variations due to letter case and preventing the duplication of words based on their 

capitalization.  

As a result, the NLP model can learn and recognize patterns from the language more accurately, 

leading to improved performance in various NLP tasks. Conversion to lower text of the data 

samples is shown in the Figure 4.2   

 

 

Preprocessed Text 

xxxx has claimed i owe them 2700 for xxxx years despite the proof of payment i sent them 

canceled check and their ownpaid invoice for 2700 they continue to insist i owe them and 

collection agencies are after me how can i stop this harassment for a bill i already paid four years 

ago 

 

due to inconsistencies in the amount owed that i was told by m t bank and the amount that was 

reported to the credit reporting agencies 

         Fig 4.2: Samples after converting to lower text 

 
 

4.2.2.Removing Stop Words and Punctuation 
 

The removal of stop words and punctuation marks is an important preprocessing step in natural 

language processing (NLP) to enhance the quality and efficiency of text analysis while 

maintaining the original meaning of the text. Stop words are common words that occur 

frequently in a language but typically carry little semantic meaning (e.g., "the," "is," "and"). 

Punctuation marks include characters like commas, periods, question marks, and exclamation 

points.  

However, we carefully cleaned the dataset by getting rid of unnecessary punctuation and 

symbols like [!"#$%&'()*+,-./:;<=>?@[]^_`{|}~], which are commonly found in text datasets. 

Figure 4.3 shows the text sample after removing stopwords and punctuation marks. 
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Preprocessed Text 

xxxx has claimed i owe them 2700 for xxxx years despite the proof of payment i sent them canceled 

check and their ownpaid invoice for 2700 they continue to insist i owe them and collection agencies 

are after me how can i stop this harassment for a bill i already paid four years ago 

due to inconsistencies in the amount owed that i was told by m t bank and the amount that was 

reported to the credit reporting agencies i was advised to write a good will letter in order to address 

the issue and request the negative entry be removed from my credit report all together 

     Fig 4.3: Samples after removing stop words & punctuation 

 

 

4.2.3.Normalization 

 

The text is being normalized in the next step as the objective is to normalize the words in a 

given text based on three dictionaries sourced from online to improve consistency and accuracy 

in text processing. These dictionaries, presumably loaded from the text files, contain mappings 

of non-standard words to their normalized versions. This step replaces any non-standard word 

it encounters with its normalized counterpart according to these dictionaries as shown in the 

Figure 4.4. 

 

 

Preprocessed Text 

has claimed i owe them 2700 for years despite the proof of payment i sent them canceled check 

and their ownpaid invoice for 2700 they continue to insist i owe them and collection agencies are 

after me how can i stop this harassment for a bill i already paid four years ago  

due to inconsistencies in the amount owed that i was told by am t bank and the amount that was 

reported to the credit reporting agencies i was advised to write a good will letter in order to 

address the issue and request the negative entry be removed from my credit report all together 

                                                  Fig 4.4: Samples after normalization 

 

4.2.4.Correcting Spelling 
 

Correcting spelling in Natural Language Processing (NLP) is a common task, that identifies 

words that have been misspelled and correct them with the most suitable candidate. In our 

proposed methodology, Dictionary Lookup method has been used. In this method, every word 

in the text is compared against a dictionary of correctly spelled words. If a word is not found 

in the dictionary, it is considered misspelled. This step uses TextBlob library, which is equipped 
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with robust Natural Language Processing (NLP) functionalities, to correct spelling mistakes in 

the textual data. Specifically, each word is traversed in the data sample column. The resulting 

spelling-corrected text replaces the original narrative in the Data Frame. This preprocessing 

step, significantly enhances the quality of text data by reducing spelling inconsistencies, 

thereby paving the way for more accurate subsequent analyses. 

 

4.2.5. Lemmatization 
 

Lemmatization, often used for normalizing words in a text corpus. It is a more complex process, 

does a better job than stemming at using the context of the word in a sentence and its Part of 

Speech (POS) to determine the base or 'lemma' of the word. It accurately transforms words to 

their canonical form. For example, it converts 'are' to 'be', and 'better' to 'good'. This makes it 

especially useful when the exact form of the word is crucial for further analysis. This step uses 

TextBlob's Word class to lemmatize the consumer complaint. The lambda function splits each 

narrative into individual words, lemmatizes each word, then joins them back together into a 

single string. Samples received after lemmatization step are mentioned in the Figure 4.5 below: 

  

 

Preprocessed Text 

claimed owe 2700 year despite proof payment sent canceled check ownpaid invoice 2700 

continue insist owe collection agency stop harassment bill already paid four year ago 

 

due inconsistency amount owed told bank amount reported credit reporting agency advised 

write good letter order address issue request negative entry removed credit report together 

                                             Fig 4.5: Samples after Lemmatization 

 

4.2.6 Tokenization 

In this preprocessing step, we tokenized the dataset by breaking each statement down into 

individual words. The NLTK package has been employed to perform this task by segmenting 

the text into meaningful units, making it more manageable and suitable for analysis. 

Tokenization is an important step that enhances the quality and efficiency of NLP tasks, as it 

allows the NLP model to understand and process language more effectively. By breaking the 

text into smaller units, we enable the model to capture meaningful information and 

relationships between words, which are used for accurate analysis and prediction. In our case, 
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a tokenizer, from the Keras library, is used to tokenize text data. This process returns a 

dictionary where the keys are the unique words found in the data, and the values are the 

corresponding indices. Basically, this dictionary is used to convert words into their 

corresponding numeric representations to prepare text data for a deep learning model. The 

tokenized dataset is shown in the Figure 4.5 below.  

 

 

Preprocessed Text 

{'credit': 1, 'account': 2, 'payment': 3, 'loan': 4, 'would': 5, 'bank': 6, 'time': 7, 'report': 8, 'debt': 9, 

'told': 10, 'call': 11, 'received': 12, 'card': 13, 'mortgage': 14, 'company': 15, 'information': 16, 'called': 

17, 'day': 18, 'month': 19, 'letter': 20, 'year': 21, 'pay': 22, 'never': 23, 'get': 24, 'sent': 25, 'paid': 26, 

'number': 27, 'back': 28, 'said': 29, 'could': 30, 

                                                Fig 4.6: Samples after Tokenization 

 

In our data samples, 50956 unique words are found as given below 

 

                                                 Fig 4.6: Total Samples after Tokenization 

 

4.3. Feature Extraction 

After identifying the sentence with the most words or the longest length, and converting the 

sentence to maximum length that is 394 in one case by either doing padding or truncating, word 

embeddings are loaded from a pre-trained GloVe (Global Vectors for Word Representation) 

model. The model is trained on a massive dataset containing one billion tokens (words) and 

utilizes a vocabulary of 400 thousand distinct words. The GloVe (Global Vectors for Word 
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Representation) algorithm is used for training, resulting in embedding vector sizes of 50, 100, 

200, and 300 dimensions. 

GloVe is a popular word embedding technique similar to Word2Vec, and it has been used to 

convert text data into numerical vectors which can be easily processed by deep learning models. 

Word embeddings transformed words into vectors by using 'glove.6B.300d.txt' file that is a 

pre-trained word vectors file from the GloVe (Global Vectors for Word Representation) 

project, developed by the Stanford NLP Group. The '300d' refers to the dimensionality of the 

vectors. Each word is represented by a 300-dimensional vector, implying that each word is 

described by 300 features in the embedding space. These vectors capture semantic and 

syntactic information about the words, and words with similar meanings tend to have similar 

vectors. These vectors are then fed as input to the model. A word embedded vector 

representation for a word token 'loan' and index value 4 in our embedding matrix is given below 

in Figure 4.7. 

 

                     

 

                                            Fig 4.7: Vector Embedding for Word Loan  
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Now these embedded vectors of same length (CNN needs input samples of same length) 

are ready to fed to the CNN input layer for classification. 

 

4.4. Data Splitting for model training 

Following the extraction of relevant features, data is partitioned into two subsets that is 

80/20 split for this model; 80% of the dataset was utilized for training the model, while 

the remaining 20% was reserved for model testing. The distribution of data points across 

each class, is shown in the Figure 4.8. 

          

                                              Fig 4.8: Training & Testing Subset  

 

4.5. Classification Model 

Initially, the dataset is divided into different subsets.  Training and Testing dataset. Our 

method employs a supervised learning approach where the model is trained using pre-

labeled data. Consequently, the model learns and assimilates the features from the training 

data. When presented with new, unseen data, the deep learning model makes predictions 

based on the knowledge it has previously acquired. 

 

4.5.1. Convolutional Neural Network (CNN) Model 

 

The model begins with an Embedding layer. Our proposed methodology used GloVe to 

pre-train embedding to initialize the weights of input embedding layer. GloVe is used to 

convert the input words (indexed by 'word_index') into dense vectors of a fixed size 
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(specified by EMBEDDING_DIM that is 300 in our case). This layer's weights are 

initialized with the pre-existing 'embedding matrix' that is set of vector array, and the 

'trainable' parameter is set to True, allowing the layer's weights to be updated during 

training. The first layer, an Embedding layer, transforms the input into dense vectors of 

300 dimensions. This layer can process input sequences of length 394, yielding an output 

shape of (None, 394, 300). 

A Dropout layer follows the Embedding layer, dropping out 30% of the nodes to prevent 

overfitting. This is followed by a Conv1D layer with 128 filters and a kernel size of 5, 

employing a ReLU (Rectified Linear Unit) activation function which results in the output 

shape being (None, 390, 128). Then, a MaxPooling1D layer is applied with pool size of 

5, further reducing the spatial dimensions of the output from the Conv1D layer in shape 

being (None, 78, 128). 

Another Dropout layer is used, followed by a BatchNormalization layer, which helps in 

faster convergence of the model by maintaining the mean activation close to 0 and the 

activation standard deviation close to 1. 

The process of Conv1D, MaxPooling1D, Dropout, and BatchNormalization is repeated to 

allow the model to learn more complex features. After these layers, the model applies a 

Flatten layer to convert the 2D matrix data into a vector that can be used as input to the 

Dense layers. This sequence of Conv1D and MaxPooling1D layers is implemented, again 

with 128 filters, a kernel size of 5, and a pool size of 5. This results in an output shape of 

(None, 74, 128) for the Conv1D layer and (None, 14, 128) for the MaxPooling1D layer. 

After another Dropout and BatchNormalization, the output shape remains (None, 14, 

128). 

A Flatten layer follows these, converting the 2D tensor into a 1D tensor, changing the 

output shape to (None, 1792). Subsequently, a Dense layer with 128 units is used, 

adjusting the output shape to (None, 128). This dense layer is applied using the ReLU 

activation function, which serves to learn the non-linear combinations of the features.  

The final layer of the model is another Dense layer with 11 units, corresponding to the 

number of output classes. This layer uses the softmax activation function to output a 

probability distribution over the 11 classes.  

Finally, the model is compiled with the 'rmsprop' optimizer and the 

'categorical_crossentropy' loss function, which is suitable for multiclass classification. 

The metric used for evaluation is accuracy. This comprehensive structure allows the 

model to effectively classify consumer complaints into their respective categories. 
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                                                  Fig 4.9: Layers of our CNN Model 
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4.5.2. Hybrid BiLSTM-CNN Model 

 

Our hybrid Convolutional Neural Network (CNN) and Bidirectional Long Short-Term 

Memory (BiLSTM)is a model for categorizing consumer complaints in natural language 

processing (NLP) is constructed using a Sequential model from the Keras libra ry.  

 

 

                                                                                                    

                       
 

Our hybrid Convolutional Neural Network (CNN) and Bidirectional Long Short-Term 

Memory (BiLSTM) model begins with an Input layer, designed to accommodate 

sequences of fixed length 394. 

 

The first layer, called the `Input` layer, is where our model begins. It receives input 

sequences each of length 394. These sequences can be understood as sentences where 

each word is represented by a unique integer, which is an index into a vocabulary. 

 

Subsequently, an `Embedding` layer is incorporated to transform each integer in the 

sequence into a dense vector of fixed size, which we specify as `EMBEDDING_DIM`. 

Here, the initial weights of the `Embedding` layer are set to a pre-trained 

`embedding_matrix`, but we allow these weights to be updated during training 

(`trainable=True`). 

 

Class 

Selectio

n 

Class        

Selection  
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The model then branches into two paths. The first path consists of a set of CNN layers 

that are structured to recognize local features in the input data. The ̀ Conv1D` layers apply 

128 filters, each spanning a window of 5 words, and use a ReLU activation function. To 

prevent overfitting, `Dropout` layers randomly set a fraction of the input units to 0 during 

training, and `BatchNormalization` layers are used to normalize the activations of the 

previous layer. `MaxPooling1D` layers reduce the temporal dimension by taking the 

maximum value over 5-word windows. After two such CNN blocks, a `Flatten` layer is 

used to transform the 3D output to 2D. 

 

In parallel to the CNN branch, the input sequences are also processed by a BiLSTM layer 

in the second path. The `Bidirectional` LSTM layer with 100 units is capable of capturing 

the temporal dependencies in both forward and backward directions in the sequence, 

making it especially suitable for understanding the context in our data. A `Dropout` layer 

is also used in this branch to mitigate overfitting. 

 

The outputs of both branches are then merged together using a `Concatenate` layer. This 

layer combines the feature representations learned from both the CNN and BiLSTM 

branches, providing a comprehensive feature set for the subsequent layers. 

 

Following this, we have a ̀ Dense` layer with 128 units and ReLU activation that performs 

a transformation of the input data into a 128-dimensional space. Finally, a `Dense` layer 

with 10 units and softmax activation function computes the probabilities for each of the 

10 classes. 

 

The model is compiled with the RMSprop optimizer and the categorical cross-entropy 

loss function, typically used for multi-class classification problems. Then, the model is 

trained using mini-batch gradient descent with a batch size of 64 for a total of 11 epochs. 

 

This model presents a powerful approach to sequence classification tasks, leveraging the 

ability of CNNs to recognize local patterns and the capability of BiLSTMs to understand 

broader context. By combining these strengths, the model can understand both the 

individual semantic meanings of the words and their contextual relations in a sequence. 
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                                               Fig 4.10: Layers of Hybrid Model 
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4.5.3. Model Evaluation 

 

After training model, we evaluated model by using 10-fold cross-validation. This 

approach decreases the risk of model overfitting by partitioning the dataset randomly into 

ten subsets or "folds." Therefore, examining how the model's performance varies with the 

volume of training data is a practical way to fine tune the model. In this context, learning 

curves become invaluable tools. By observing how the model behaves on increased 

training data, we can fine tune and maximize model’s performance. Although, further 

insights into the model's performance are obtained using a classification report, as 

elaborated in Section 5. This report provides precision, recall, and F1-score. These metrics 

collectively offer a comprehensive picture of the model's performance, assisting us in 

fine-tuning the model for better results. 

 

4.5.4. BERT Model  

 

Hugging Face Transformers library, an important tool in NLP, relies on TensorFlow or 

PyTorch for model loading. The significant advantage of the Hugging Face Transformers 

library is its ability to leverage pre-trained language models, eliminating the need for 

extensive and expensive computational resources. Most models are available directly in 

the library in both PyTorch and TensorFlow. This makes it function almost like an API, 

providing an efficient, easily tunable. 

Our proposed model includes Hugging Face Transformers library with PyTorch and 

encompasses following steps: 

1. Dataset Loading: This involves ingesting the raw data required for the machine 

learning process. 

2. Data Preprocessing: Bert preprocessing is different from the traditional approaches 

used in other deep learning models. In this step, the raw data is cleaned and transformed 

into a suitable format called Tensor that can be used for model training. 

3. Utilizing BERT Pre-Trained Model and Tokenizer: This step involves loading the 

necessary pre-trained model, such as BERT, and the corresponding tokenizer for text 

manipulation. 

4. Training and Evaluation: The preprocessed data is then used to train the model, after 

which its performance is evaluated 

5. Prediction: Finally, the trained model is employed to make predictions on unseen data. 
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4.5.4.1 Loading the Dataset II 

 

 

                                                 Fig 4.11: Loading Dataset II 

 

4.5.4.2 Data Converting Class Labels into Categorical Data 

       
                                                        

 

4.5.4.3 Data Splitting for Model Training 

 

Following the extraction of relevant features, data is partitioned into two subsets that is 

90/10 split for this model; 90% of the dataset was utilized for training the model, while 

the remaining 10% was reserved for model testing. The distribution of data points across 

each class, is shown in the Figure 4.12 
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                                       Fig 4.12: Total Samples in Training & Testing Subset  

 

          Figure 4.13 shows the total samples in training & testing subset class-wise 

 

 

 
                            Fig 4.13: Total Training & Testing Samples in each Class  
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        Input Data Modeling 

 

4.5.4.4 WordPiece Tokenization 

 

This breaks down words into known subwords, or into individual characters if the word 

is not in the tokenizer's vocabulary. In the context of BERT (Bidirectional Encoder 

Representations from Transformers), a particular kind of tokenization is employed, 

known as WordPiece tokenization.  

In traditional tokenization, a sentence or piece of text is split into individual words. 

However, WordPiece tokenization takes this a step further by breaking words into 

subwords or even single characters if the words are not in its vocabulary. This makes 

BERT robust in handling out-of-vocabulary words and allows it to understand the 

semantic meaning of new words based on their subwords. For instance, a word like 

"unhappiness" may be broken down into the tokens: ["un", "##happiness"], where "##" 

indicates that "happiness" is a part of the original word.  

Text sample after tokenization is shown in the Figure 4.14 below  

 

         

                               Fig 4.14: Sample after WordPiece Tokenization 

 

4.5.4.5 Addition of Special Token, Padding and Truncation 

 

BERT requires special tokens to be added to the input. The '[CLS]' token is added at the 

beginning of every sentence, and the '[SEP]' token is added at the end. If dealing with two 
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sentences, '[SEP]' is also added between them. BERT requires input with the same length 

so sentences are padded or truncated to make the sentences of the same length. Masking 

is also done to prevent the model from attending to the padding tokens. Masking is placing 

1 for original words and 0 for padded labels. 

 

 

                            Fig 4.15: Sample after Addition of Special Token, Padding and Truncation 
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4.5.4.6 Masked Values 

In pre-training, input sequences are typically padded to a fixed length to create batches of 

equal size. Padding is necessary because transformer-based models process input data in 

parallel, and all sequences in a batch must have the same length. To pad sequences, a 

special padding token is used, which can be represented by a numerical value, such as 0. 

So, masking replaces 1 for original word and 0 for padded sequences to distinguish. 

 

                 

                                             Fig 4.16: Sentence 3 after Masking 

 

4.5.4.7 Conversion to Input IDs and Tensors:  

Each token is then mapped to a unique ID from the tokenizer's vocabulary. And then 

sequences of input IDs are converted into tensors. This is necessary because both 

TensorFlow and PyTorch models operate on tensors. Tensors can have three or more 

dimensions, making them useful for representing complex data structures. The ability to 

work with tensors allows these libraries to perform complex computations efficiently and 

on a variety of hardware, from CPUs to GPUs.  
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                                              Fig 4.17: Creation of Tensor 

4.5.4.8 Model Building 

Pre-trained BERT is loaded by using the Hugging Face's Transformers library. A pre-

trained BERT model has already been trained on a large corpus of text data. The benefit 

of using a pre-trained model like BERT is that you can leverage this understanding for 

your specific NLP task without having to train a model from scratch, which can save 

significant computational resources and time. 

 



68  

                                          Fig 4.18: BERT Layers 

       
                                       Fig 4.18: BERT Layers 

 
4.5.4.9 Model Compilation 

 

 

Our model employed AdamW optimizer to facilitate the training of our deep learning 

neural network. The AdamW optimizer, an extension of the Adam optimizer, was chosen 

for its ability to effectively handle weight decay, also known as L2 regularization, within 

its adaptive learning rate framework. By initializing the optimizer with a learning rate (lr) 

of 2e-5 and an epsilon value (eps) of 1e-8 to ensure numerical stability, we ensured a 

controlled and stable training process. During training iterations, the model's parameters 

were updated based on the gradients computed through backpropagation. This approach 

was vital for achieving optimal convergence and minimizing overfitting while learning 

from the given dataset. 
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4.5.4.10 Model Training 

 

Model training is a core step in the machine learning process. It's when the model "learns" 

patterns from the data to make accurate predictions or decisions. Even though BERT is 

already trained on a large corpus of text, it needs to adjust to the specificities of our dataset 

and task. This adjustment is done during the training phase. The workflow of the training 

process includes following steps: 

 

1. Data Input: The BERT model is fed with input data, that is tokenized text converted 

into tensors. 

2. Forward Pass: The tensors pass through the model, and the model makes predictions 

based on its current state (defined by the weights and biases it learned during pre-training). 

3. Loss Calculation: A loss function calculates the difference between the model's 

predictions and the actual values (the correct answers). This function quantifies how well 

(or poorly) the model is performing. 

4. Backpropagation: This is a process by which the model learns from its errors. The 

gradient of the loss function is calculated concerning the model's parameters, and this 

information is propagated back through the model. This provides insight into which 

parameters should be adjusted to reduce the loss. 

5. Weight Update: The model's weights are updated using an optimization algorithm, 

typically something like stochastic gradient descent (SGD) or one of its variants (like 

Adam). In our proposed model Adam has been used. The weights are adjusted in the 

direction that minimally reduces the loss. 

6. Iteration:  Steps 2-5 are repeated for a certain number of iterations or epochs (complete 

passes through the dataset) until the model's performance on the data is satisfactory. 

After training, the model's performance is evaluated on a separate validation dataset to 

ensure that it has generalized well to unseen data and has not caused overfitting. 

4.5.4.11 Model Evaluation 

 

Model evaluation is the process of determining how well your model is performing, not 

on the training data it learned from, but on unseen data. This step allows us to assess the 

model's ability to generalize, that is, its effectiveness at handling data it has not 

encountered during the training phase. The ultimate goal is to create a model that performs 

well not just on the training data but on unseen data as well, as this indicates the model 

will likely perform effectively in real-world scenarios. 
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CHAPTER 5: EXPERIMENTAL RESULTS 

 

The primary goal of this study is to assess the performance of the proposed deep learning 

models and find the best approach for our problem by testing models on multiple datasets. For 

this purpose, experiments have been conducted using identical settings on three datasets: Local 

dataset I, Consumer complaints dataset II and Consumer complaints dataset III. 

 
5.1 CNN 

To train CNN model, data has been split into two subsets: 80% and 20%. The model has been 

trained on 80% of the data, and the remaining 20% is reserved for testing the model's 

performance. After the models have been trained on the extracted features from the 80% 

training set, they are then tested on the 20% testing set. This allows the evaluation of the 

models' ability to generalize their learning to new, unseen data. After applying the GloVe 

embeddings for feature extraction and employing CNN model, we acquired following results. 

5.1.1.  Datasets used: 

Dataset I, dataset II, and dataset III comprises of 555957 samples, 1,62,421 samples, and 10002 

samples respectively. Each sample belong to one of the distinct classes. For training and testing, 

these samples are split into two subsets: 80% & 20%.  

5.1.2. Classification Report 

A classification report provides valuable metrics such as precision, recall, f1-score, and the 

number of instances in each class after the model is implemented. This tool allows us to 

evaluate the overall accuracy of the model. Figure 5.1 shows the classification reports obtained 

from testing set.  

In case of Figure 5.1(a) that is report of dataset I, the model showcased strong ability in 

distinguishing classes such as 'Prepaid card', 'Bank account or service', 'Credit card', 'Credit 

reporting', and 'Mortgage' display particularly high F1-scores, ranging between 0.80 to 0.94. 

This suggests that the model is well-tuned for these classes and can distinguish between them 

effectively. The model struggled to correctly classify 'Payday loan' with both precision and 

recall being 0. This indicates a complete inability of the model to recognize this class, 

potentially due to the limited data available for this category (with a support of only 27). 

Another class, 'Money transfers', although having higher metrics than 'Payday loan', still 

showed a relatively low F1-score of 0.49. Overall, model is indicating commendable 

performance with certain areas showing lack of data samples of certain class. Similar behavior 

is seen for dataset III but due to better distribution of samples in dataset II, model performed 
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well by presenting F1-scores, ranging between 0.83 to 0.86. 

 
 

                             (a)CNN on Data I                                                                               (b) CNN on Data III 

 

             

                                                                        (c) CNN on Data II 

                              Fig 5.1: Classification reports of dataset I, dataset II, & Local dataset III 

 

5.1.5. Confusion Matrix 

The confusion matrix assists in gaining a more precise understanding of each class data, along 

with evaluation of a classification model's performance. This matrix compares the true value 

with the value predicted by proposed model. The diagonal elements of the matrix represent the 

true positive values, indicating correct classifications, while the off-diagonal elements depict 

misclassifications. Confusion matrices given below shows the performance of CNN model, 

where columns represent true classes, and rows depict predicted classes. 
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                     (a)Confusion matrix of Data I                                                         (b) Confusion matrix of Data III  

 

             

                                                       (c) Confusion matrix of Data II 

                                    Fig 5.2: Confusion Matrix of dataset I, dataset II, & Local dataset III  
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5.1.6. Training & Validation Accuracy 

 

In the Figure 5.3(a), we observed a notable trend in the model's performance through the 

training and validation accuracy graph. As the number of epochs increased, the training 

accuracy also converges, reaching about 90% by the 8th epoch. In parallel, the validation 

accuracy, shows more gradual ascent but managed to converge around 86% by the same epoch 

count. To avoid overfitting, early stopping with patience of 5. This ensures that the model 

captures patterns during its training phase without overfitting, thereby performing well on test 

data. Similar trend is seen for dataset II and dataset III as illustrated in Figure 5.3(b)&(c). 

  

                 (a) Accuracy Graph of Data I                                                                (b) Accuracy Graph of Data III  

 

                          

                                                                   (c) Accuracy Graph of Data II  

                             Fig 5.3: Training & Validation Accuracy of dataset I, II, & Local dataset III 
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5.1.7. Training & Validation Accuracy for 30 Epochs 

 

To see the trend, number of epochs has been increased and the training accuracy also 

converges, reaching about 98% by the 28th epoch. Conversely, the validation accuracy showed 

a more stable behavior, demonstrating only minor increases after stabilizing at 85% for dataset 

1, as illustrated in Figure 5.4(a). So, to avoid overfitting, early stopping with patience of 5 has 

been utilized that ensures that the model captures patterns during its training phase without 

overfitting, thereby performing well on test data.      

 

  

                (a) Accuracy Graph of Data I                                                        (b) Accuracy Graph of Data III  

 

                           

                                                 (c) Accuracy Graph of Data II  

                          Fig 5.4: Training & Validation Accuracy for 30 Epochs on dataset I, II, & Local III                
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5.1.8. Training & Validation Loss 

In Figure 5.5, the training goes on (represented by the number of epochs on the x-axis), the loss 

also called cost (on the y-axis) shows how well our model is performing. In the graph 5.5(a), 

up to the 4th epoch, both training and validation loss decrease together. After that, while the 

training loss keeps getting smaller, the validation loss levels-off around 0.5. It demonstrates 

minor decrease after 4th epoch and stabilizes at 8th epoch. This means our model will start to 

overfit after this point. To address this, we added early stopping with patience of 5 that means 

after 5 epochs without improvement, training will stop to make sure our model stays general 

and doesn't overfit. Overall, our model's performance looks promising in for all datasets.                        

  

  

                  (a) Loss Graph of Data I                                                                     (b) Loss Graph of Data III  

 

                           

                                                              (c) Loss Graph of Data II  

                        Fig 5.5: Training & Validation Loss of 30 Epochs dataset I, II, & Local III 
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The primary goal of this study is to assess the performance of the proposed deep learning 

models and find the best approach for our problem by testing models on multiple datasets. For 

this purpose, experiments have been conducted using identical settings on three datasets: Local 

dataset I, Consumer complaints dataset II and Consumer complaints dataset III. 

 
5.2 Hybrid CNN and BiLSTM Model 

To train our hybrid model, data has been split into two subsets: 80% and 20%. The model has 

been trained on 80% of the data, and the remaining 20% is reserved for testing the model's 

performance. After the models have been trained on the extracted features from the 80% 

training set, they are then tested on the 20% testing set. This allows the evaluation of the 

models' ability to generalize their learning to new, unseen data. After applying the GloVe 

embeddings for feature extraction and employing our hybrid model, we acquired following 

results. 

5.2.1.  Dataset I: 

This dataset comprises of 555957 samples, each belonging to one of eleven distinct classes. 

These samples are split into two subsets: 80% & 20%.  

5.2.4. Classification Report 

A classification report provides valuable metrics such as precision, recall, f1-score, and the 

number of instances in each class after the model is implemented. This tool allows us to 

evaluate the overall accuracy of the model. Below are the classification reports obtained from 

testing first deep learning model. Following are the testing classification reports produced by 

proposed models.  In case of dataset I given in Figure below, the model showcased strong 

ability in distinguishing classes such as 'Prepaid card', 'Bank account or service', 'Credit card', 

'Credit reporting', and 'Mortgage' display particularly high F1-scores, ranging between 0.80 to 

0.94. This suggests that the model is well-tuned for these classes and can distinguish between 

them effectively. The model struggled to correctly classify 'Payday loan' with both precision 

and recall being 0. This indicates a complete inability of the model to recognize this class, 

potentially due to the limited data available for this category (with a support of only 27). 

Another class, 'Money transfers', although having higher metrics than 'Payday loan', still 

showed a relatively low F1-score of 0.49. Overall, model is indicating commendable 

performance with certain areas showing lack of data samples of certain class. Similar behavior 

is seen for dataset III but due to better distribution of samples in dataset II, model performed 

well by presenting F1-scores, ranging between 0.83 to 0.86. 
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                       (a)CNN on Data I                                                         (b) CNN on Data III 

 

             

                                                      (c) CNN on Data II 

                Fig 5.1: Classification reports of dataset I, dataset II, & Local dataset III 

 

5.2.5. Confusion Matrix 

The confusion matrix assists in gaining a more precise understanding of each class data, along 

with evaluation of a classification model's performance. This matrix compares the true value 

with the value predicted by proposed model. Confusion matrices given below shows the 

performance of CNN model, where columns represent true classes ranging from 1 to 11, and 

rows depict predicted classes, also between 1 to 11. 
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               (a)Confusion matrix of Data I                                    (b) Confusion matrix of Data III  

 

             

                                                 (c) Confusion matrix of Data II 

                  Fig 5.2: Confusion Matrix of dataset I, dataset II, & Local dataset III 
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5.2.6. Training & Validation Accuracy 

 

In the Figure 5.3(a), we observed a notable trend in the model's performance through the 

training and validation accuracy graph. As the number of epochs increased, the training 

accuracy also converges, reaching about 90% by the 6th epoch. In parallel, the validation 

accuracy, shows more gradual ascent but managed to converge around 85.5% by the same 

epoch count. To avoid overfitting, early stopping with patience of 3. This ensures that the 

model captures patterns during its training phase without overfitting, thereby performing well 

on test data. Similar trend is seen for dataset II and dataset III as illustrated in Figure 5.3(b)&(c).  

 

  

                 (a) Accuracy Graph of Data I                                      (b) Accuracy Graph of Data III  

                              

                                                     (c) Accuracy Graph of Data II  

                 Fig 5.3: Training & Validation Accuracy of dataset I, II, & Local dataset II           
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5.2.8. Training & Validation Loss 

 

In Figure 5.5, the training goes on (represented by the number of epochs on the x-axis), the loss 

also called cost (on the y-axis) shows how well our model is performing. In the graph 5.5(a), 

up to the 3rd epoch, both training and validation loss decrease together. After that, while the 

training loss keeps getting smaller, the validation loss levels-off around 0.5. It demonstrates 

minor decrease after 4th epoch and stabilizes at 6th epoch. This means our model will start to 

overfit after this point. To address this, we added early stopping with patience of 3 that means 

after 3 epochs without improvement, training will stop to make sure our model stays general 

and doesn't overfit. Overall, our model's performance looks promising in for all datasets.                        

  

              (a) Loss Graph of Data I                                        (b) Loss Graph of Data III  

                           

                                                 (c) Loss Graph of Data II  

                 Fig 5.5: Training & Validation Loss of dataset I, II, & Local III 
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5.3 BERT Results 

 

5.3.1. Dataset II & III: 

These datasets comprise of 1,62,421 samples, and 1,002 samples respectively. Each belonging 

to one of five distinct classes in case of dataset II and nine classes (one class was excluded as 

there were not enough samples of that class) for dataset III. These samples are split into two 

subsets: 90% & 10%.  

 

5.3.2. Classification Report 

A classification report provides valuable metrics such as precision, recall, f1-score, and the 

number of instances in each class after the model is implemented to evaluate the overall 

accuracy of the model. Classification reports given below shows commendable results as in 

Figure 5.13(a) that is report of dataset II, the model showcased strong ability in distinguishing 

in almost every class by displaying particularly high F1-scores, ranging between 0.81 to 0.94. 

This suggests that the model is well-tuned for these classes and can distinguish between them 

effectively. Overall, model is indicating promising performance for dataset III as well. 

 

 

 

 

                  (a)BERT on Data II                                                     (b) BERT on Data III 

             Fig 5.13: Classification reports of dataset II, & Local dataset III 

5.3.3. Confusion Matrix 

The confusion matrix assists in gaining a more precise understanding of each class data, along 

with evaluation of a classification model's performance. This matrix compares the true value 

with the value predicted by proposed model. Confusion matrices in Figure 5.14 shows that the 
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rate of misclassification is quite small compared to correctly predicted values e.g., in case of 

class 1 mentioned in Figure 5.14, out of total 18409 samples, 17456 were classified correctly 

that shows a high accuracy. Similarly other classes ranging shows same trend by predicting 

maximum correct values in both dataset II and dataset III.  

 

 

                        

                                     Fig 5.14: Confusion Matrix of dataset II 

   

 

                              

 

                               

 

 

 

 

 

                                            

                                          Fig 5.15: Confusion Matrix of dataset III 

 

 

 

 

 

 

 

              

 
1 2 3 4 5 6 7 8 9  

1  180 5 0 4 2 5 1 2 0  

2 6 141 3 3 4 25 8 7 30  

3 1 3 138 20 7 0 0 12 2  

4 4 1 6 134 12 2 3 8 2  

5 7 4 17 0 461 18 2 11 3  

6 8 3 3 3 9 170 1 1 0  

7 5 19 3 5 2 0 120 3 0  

8 7 9 16 6 7 0 8 236 1  

9 0 1 1 1 8 0 1 6 47  
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5.3.4. Training Loss 

 

In Figure 5.16(b), the trend of training loss is promising as loss is decreasing prominently. The 

training loss levels-off around 0.3 at 3rd epoch without over-fitting. This value of loss is so 

small, indicating the accuracy of model. Overall, BERT model's performance outperforms the 

other models as seen in the both graphs. 

 

 

(a) Training Loss of Data II                                                      

 

 

    (b) Training Loss of Data III 

 

                      Fig 5.16: Training Loss of dataset II, & Local dataset III 

 

5.3.5. Training Accuracy 

 

 

       

                                  Fig 5.17: Training Accuracy of dataset II 
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5.3.6. Validation Accuracy 

 

 

                             Fig 5.18: Validation Accuracy of Dataset II & Local Dataset II 

 

5.3.7. Testing Accuracy  

  

 

 

(a) Testing Accuracy of Data II 

 

 

(b) Testing Accuracy of Data III 

 

                                 Fig 5.19: Testing Accuracy of Dataset II & Local Dataset II 

 

5.3.8. Testing on Unseen Data 

 

Excitingly, I provided an unseen sentence to the BERT model of class 4, that is retail banking, 

and it accurately predicted the sentence as belonging to class 4 

 

    

                                     Fig 5.20: Testing on Unseen Sentence Sample 

 

(a) Average Validation Accuracy 

of Data II 

 

 

(b) Average Validation Accuracy of 

Data III 
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5.4  Performance Measures of our Models 
                         

                        Table 5.1: Testing & Average Cross-Validation Accuracy of all model on dataset I  

 

                                           ACCURACY OF MODEL FOR DATASET I 

Serial No. MODEL Accuracy 

1 CNN 85% 

2 BiLSTM 88% 

   

                                 CROSS-VALIDATION ACCURACY OF MODEL 

Serial No. MODEL Accuracy 

1 CNN 84% 

2 BiLSTM 85% 

                         

                         

                        Table 5.2: Testing & Average Cross-Validation Accuracy of all model on dataset II  

 

                                           ACCURACY OF MODEL FOR DATASET II 

Serial No. MODEL Accuracy 

1 CNN 85% 

2 BiLSTM 87% 

3 BERT 89.43% 

   

                                 CROSS-VALIDATION ACCURACY OF MODEL 

Serial No. MODEL Accuracy 

1 CNN 85% 

2 BiLSTM 84% 

3 BERT 90% 

 

 
                        Table 5.3: Testing & Average Cross-Validation Accuracy of all model on Local dataset III  

 

                                           ACCURACY OF MODEL FOR DATASET III 

Serial No. MODEL Accuracy 

1 CNN 76% 

2 BiLSTM 80% 

3 BERT 82% 

                                 CROSS-VALIDATION ACCURACY OF MODEL 

Serial No. MODEL Accuracy 

1 CNN 75% 

2 BiLSTM 75% 

3 BERT 82% 
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    Comparison with Prior Work on Dataset II 

Reference Models 
80/20 Testing 

Accuracy 

Qurat-ul-ain[14] Logistic Regression 83% 

Random Forest 82% 

Mutlinomial NB 78% 

Proposed System CNN 87% 

BiLSTM 88% 

BERT 89.43% 

 Table 5.4: Accuracies on Consumer Complaints Dataset II [14] 

 

    Comparison with Prior Work on Dataset I 

Reference Models 
80/20 Testing 

Accuracy 

Oyewola, D.O[37] 1DCNN 76.66% 

LSTM  75.53% 

BiLSTM 71.98% 

TSR1DCNN 76.66% 

N. T. Thomas [8] LSTM 62.825% 

Proposed System CNN 87% 

BiLSTM 88% 

BERT 89.43% 

  Table 5.5: Accuracies on US Consumer Finance Complaints Dataset I [37] 

In Table 5.4 and 5.5, we present a performance comparison between our proposed 

method and the findings from recent work. Various feature extraction techniques and 

models were employed by different researchers. The results mentioned in Table III shows 

our proposed model that is BiLSTM-CNN models performed well. Subsequently, BERT, 

state-of-the-art model outperformed previous models in autonomous classification of 

user complaints as reported in Table 5.5. 
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CHAPTER 6: CONCLUSION & FUTURE WORK 

 

 
6.1. Conclusion 

 
As the digital world continues to evolve, the need for advanced models in classifying and 

managing unstructured text data like consumer complaints in our case, undoubtedly 

increases. Hence, the combination of deep learning models and Natural Language 

Processing (NLP) techniques has a potential to give promising solutions for managing 

and categorizing the vast amounts of consumer complaints online. Moreover, this 

research has showcased the potential of Convolutional Neural Networks, hybrid CNN-

BiLSTM, and BERT models in the field of classifying consumer complaints accurately. 

The CNN model was adept at capturing local correlations through its convolution and 

pooling operations, proving to be beneficial for short text classification tasks. The hybrid 

model, combining CNN and Bidirectional Long Short-Term Memory (BiLSTM), 

excelled in addressing both local and global semantic information, rendering it effective 

for complaints. And the game-changer, however, was the BERT model. Its unique 

contextual fetching power and bidirectional processing approach allowed for a deeper 

understanding of language context, critical for accurate complaint classification. For this 

reason, BERT proved to be a state-of-the-art model in handling consumer complaints by 

showing an accuracy of 89.5%. In the same context, the CNN model achieved 85% 

accuracy, while BiLSTM posted 87% on Dataset I. Additionally, on the local Dataset II, 

the performance remained competitive: CNN recorded 77% accuracy, the hybrid 

BiLSTM-CNN model reported 80%, and the BERT model outperformed with 82% 

testing accuracy. The results achieved on the Consumer Complaint dataset I will serve as 

a baseline as it is an international acclaimed dataset. In conclusion, the application of 

Autonomous Decision-Making approach on user complaints, powered by NLP and deep 

learning models, enables organizations to strive for more precise complaint 

categorization, leading to improved customer service and satisfaction, and ultimately, a 

better digital customer experience.  

 

6.2. Future Work  
Future research should consider challenges such as multilingual datasets and non-English 

languages, like Urdu in our case, which are getting the attention of ample number of 

researchers. Deep learning algorithms are used, different progressing features techniques 

have been selected for our problem. However, there is still room for improvement, 
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potentially through the use of hybrid models to get better results. The task of extracting 

and choosing optimal feature techniques according to the problem remains crucial. 

Additionally, the implementation of other ensembles using a combination of different 

features presents a promising area for exploration. New and more efficient model could 

be Implemented and designed with a little effort.  
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