
A Novel Approach for Path-Directed Source Test Case

Generation and Prioritization in Metamorphic Testing Using

Python

By

Atif Imran

(Registration No.: 00000330744)

Supervisor: Dr. Wasi Haider Butt

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

 NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

September 2023

ii

iii

Dedicated to my exceptional parents, Supervisor : Dr. Wasi Haider

Butt and adored brother whose tremendous support and cooperation

led me to this accomplishment.

iv

Acknowledgements

All praise to Allah (the omnipotent and the omnipresent) who has bestowed me with ardor,

courage, and patience with which I have completed another phase of my academic journey.

I would also dedicate this thesis to my parents, teachers, siblings, and students, who were

continuous sources of motivation in my tough times. They always encouraged me to continue

higher studies and fully supported me to full fill my dream degree. My parents played a pivotal

role in my MS degree by providing moral and financial support.

Most importantly, I want to pay special gratitude to my supervisor “Dr. Wasi Haider Butt”

without whom I would not have been able to take this task to fruition. He enlightened my path

with continuous support and made me competent during the whole duration of my research.

Finally, I am thankful to all my friends who assisted me in this thesis and throughout the whole

research process.

v

Abstract

Metamorphic testing (MT) represents a robust and innovative methodology that adeptly tackles

the challenge of the oracle problem. It supplements traditional testing methods by generating a

range of distinct and diverse test cases. However, the generation of effective source test cases,

along with their prioritization, continues to be an area of active research interest. In response

to this demand, We suggest an innovative and all-encompassing method for generating and

prioritizing source test cases. It leverages Python's path tracer and constraint solver to obtain

program path constraints, empowering the creation of source test cases with extensive coverage

of execution paths, thereby substantially enhancing fault detection effectiveness. Moreover, the

proposed approach introduces a sophisticated prioritization technique by assigning higher

priority to test cases with higher fault detection capability. Through experimental evaluations

on four representative programs, the proposed approach demonstrates exceptional performance

and outperforms existing techniques. The incorporation of metamorphic relations enables

systematic validation of the behavior of mathematical functions, identifying potential

deviations or faults that may arise. Additionally, the integration of mutation testing provides a

comprehensive assessment of the approach's effectiveness in fault detection and validation of

mathematical functions. This research presents a promising and practical solution to the

challenges associated with generating and prioritizing source test cases in metamorphic testing,

contributing to the improvement of software testing effectiveness and efficiency. By combining

various techniques, we aim to improve fault detection capabilities and provide a practical

solution for testing software systems, addressing the specific challenges in the realm of

scientific software testing.

Keywords: Metamorphic testing, Fault Detection Effectiveness, Software Testing

vi

Table of Contents

ACKNOWLEDGEMENTS ... IV

ABSTRACT ... V

TABLE OF CONTENTS .. VI

LIST OF FIGURES .. IX

LIST OF TABLES ... X

LIST OF ABBREVIATIONS ... XI

CHAPTER 1: INTRODUCTION ... 1

1.1. Motivation ... 3

1.2. Problem Statement .. 4

1.3. Aims and Objectives ... 6

1.4. Metamorphic Testing ... 6

1.4.1. Challenges in Metamorphic Testing .. 7

1.5. Proposed Approach ... 7

1.5.1. Python Constraint Solver ... 9

1.5.2. Generation of Source Test Cases ... 9

1.5.3. Metamorphic Relations.. 10

1.5.4. Mutation Testing .. 11

1.5.5. Test Case Prioritization .. 12

1.6. Significance of the Research ... 13

1.7. Thesis Outline ... 13

CHAPTER 2: LITERATURE REVIEW ... 15

2.1. Software Testing .. 15

2.1.1. Source of Software System Defects .. 16

2.1.2. Benefits of Software Testing ... 17

2.2. Metamorphic Testing ... 18

2.2.1. Test Oracle Problem .. 18

vii

2.2.2. Metamorphic Testing: Background ... 19

2.2.3. Metamorphic Relations.. 22

2.2.4. Uses of Metamorphic Testing .. 24

2.3. Python as an Implementation Language ... 25

2.4. Path-Directed Test Case Generation .. 26

2.5. Path-Directed Test Case Prioritization .. 27

2.6. Experimental Evaluation and Results of Literature Review 28

2.7. Applications and Future Directions of Literature Review .. 29

CHAPTER 3: METHODOLOGY ... 30

3.1. Proposed Approach ... 31

3.1.1. Source Test Case Generation ... 32

3.1.2. Source Test Case Prioritization .. 34

CHAPTER 4: EXPERIMENTAL STUDIES & RESULTS ... 36

4.1. Experimental Studies... 36

4.1.1. Research Questions.. 36

4.1.2. Object Programs .. 37

4.1.3. Generation of Test Cases ... 38

4.1.4. Baseline Techniques .. 38

4.1.4.1. Random Testing (RT) ... 38

4.1.4.2. Adaptive Random Testing (ART) .. 39

4.1.5. Evaluation Metrics ... 40

4.2. Results ... 41

4.2.1. Fault Detection Effectiveness (RQ1) ... 41

4.2.2. Comparative Fault Detection (RQ2) .. 42

4.2.3. Computational Overhead (RQ3) .. 48

4.3. Threats to Validity ... 49

CHAPTER 5: CONCLUSION.. 51

viii

5.1. Results Discussion... 52

5.2. Future Work ... 53

REFERENCES ... 55

ix

List of Figures

Figure 01: Proposed Approach – Overview ... 8

Figure 02: Test Oracle Problem ... 18

Figure 03: Survey of Application Areas of Metamorphic Testing ... 20

Figure 04: Overview of Metamorphic Testing Process ... 21

Figure 05: Example of Permutative Metamorphic Relation (MR) .. 22

Figure 06: Proposed Approach - Detailed Flow Chart ... 31

Figure 07: SampleCode Function .. 33

Figure 08: Fault Detection Rate of SampleCode Program .. 43

Figure 09: Fault Detection Rate of the HCF Program ... 43

Figure 10: Fault Detection Rate of the LCM Program .. 44

Figure 11: Fault Detection Rate of the DIFF Program .. 44

Figure 12: SampleCode PaDMTP Mutation Testing Result .. 45

Figure 13: HCF PaDMTP Mutation Testing Result ... 45

Figure 14: LCM PaDMTP Mutation Testing Result .. 46

Figure 15: Positive Difference PaDMTP Mutation Testing Result .. 46

file:///C:/Users/Usama/Downloads/WhatsApp%20Downloads/Atif%20Thesis.docx%23_Toc142890056
file:///C:/Users/Usama/Downloads/WhatsApp%20Downloads/Atif%20Thesis.docx%23_Toc142890061
file:///C:/Users/Usama/Downloads/WhatsApp%20Downloads/Atif%20Thesis.docx%23_Toc142890062

x

List of Tables

Table 1: Metamorphic Relations (MRs) .. 23

Table 2: Mutation Scores of Object Programs using PaDMTP ... 42

Table 3: T-Test values of Object Programs (PaDMTP vs RT) ... 47

Table 4: T-Test values of Object Programs (PaDMTP vs ART) .. 48

Table 5: Overhead of Source Test Case Generation... 49

xi

List of Abbreviations

MT – Metamorphic Testing

MR – Metamorphic Relation

SUT – Software Under Test

RT – Random Testing

ART – Adaptive Random Testing

CSP – Constraint Satisfaction Problem

PaDMTP – Path Directed Source Test Case Generation and Prioritization in

Metamorphic Testing using Python

1

CHAPTER 1: INTRODUCTION

Traditional testing methods, including black box testing and white box testing, come with

inherent limitations. Black box testing centers on the observable behavior of software, often

neglecting its internal structure, which can hinder achieving comprehensive coverage. On the

other hand, white-box testing requires a deep understanding of the system's internal workings,

which may not always be practical or feasible. Consequently, the demand arises for innovative

testing techniques that can transcend these limitations and enhance the detection of faults.

In the field of software testing, testers often encounter a significant challenge known as the

Oracle problem. The Oracle serves as a crucial mechanism for determining the correctness of

test case outcomes. However, there are instances where the availability of an Oracle is limited,

or its practical application becomes too costly [1]. Hence, testers are confronted with the

challenge of grappling with this issue, which introduces barriers to ensuring the precision of

test case executions. Conquering the Oracle problem becomes imperative to elevate the

efficacy and efficiency of the software testing process [1] [2] [3]. Metamorphic testing (MT)

[4] serves as a purposeful technique meticulously designed to address the challenges brought

about by the Oracle problem in the context of software testing. In contrast to relying on explicit

input-output behaviors, MT places its focus on meticulously examining the interconnections

among program outputs. This approach proves to be a practical alternative when a reliable

oracle is unavailable or difficult to establish. Since its introduction in 1998, MT has attracted

significant interest within the software testing community, leading to numerous studies

exploring different aspects of MT. In recent years, Metamorphic Testing has gained even more

attention and demonstrated its effectiveness in detecting a substantial number of real-life faults.

The ability of MT to uncover previously unknown faults has surprised the software testing

community, showcasing its value as a powerful and innovative testing technique. [5] The field

of metamorphic testing has experienced substantial growth in techniques, applications, and

assessment studies since its introduction. However, a comprehensive literature review on

metamorphic testing is still lacking. Existing overviews often reflect the authors' individual

experiences rather than providing a comprehensive analysis of the available research.

Therefore, there is a need for a systematic and thorough review that can consolidate and analyze

the existing body of research in metamorphic testing. Such a review would greatly contribute

to a deeper understanding of the field and help identify areas for further exploration and

improvement. [6] [7] [8] [9] and a review of some selected articles [10] [11].

2

Metamorphic testing (MT) has found extensive application in software testing [12] [13] [14]

[15] [16] [17] [18] [19] [20] [21] [22]. Within the realm of software engineering, addressing

the oracle problem bears substantial importance in ensuring the caliber and trustworthiness of

software systems. By surmounting this challenge, software engineers can construct a reliable

framework to authenticate and validate the precision and effectiveness of software systems.

This endeavor culminates in an overall enhancement of their holistic quality and dependability

[23] [24] [25] [26]. Moreover, Metamorphic testing has been utilized as a validation technique

[21] and for quality assessment [27]. Metamorphic testing has showcased its efficacy by

proficiently uncovering actual faults in widely used search engines and other software systems.

The proposed approach presented in this research paper extends the work of Liu et al. [28].

While metamorphic testing (MT) proves to be a valuable technique for overcoming the oracle

problem and generating effective test cases, it is not without its limitations. A key constraint

resides in the process of identifying and choosing appropriate metamorphic relations (MRs)

[28]. The proposed path-directed approach for generating source test cases relies on Path

constraint solvers, which may impose computational overhead and increase the complexity of

the testing process, especially for large-scale programs. Another limitation is that the proposed

prioritization technique, although beneficial for improving test case diversity and efficiency,

may still require further investigation to explore different prioritization strategies and their

impact on fault detection efficiency. Overall, while MT offers promising benefits, addressing

these limitations is crucial for enhancing its practical applicability and effectiveness in various

software testing scenarios.

Our proposed approach builds upon the foundation of path-directed source test case generation

and prioritization in metamorphic testing, introducing innovative techniques to automate test

case generation, prioritize based on fault detection capability, utilize a Python path constraint

solver, integrate metamorphic relations, and incorporate mutation testing for comprehensive

fault detection assessment. By extending the existing methodology, our approach aims to

enhance the effectiveness and efficiency of metamorphic testing in testing mathematical

functions. It offers advantages such as improved efficiency, coverage, and prioritization, with

the accessibility and customization benefits of Python. Empirical studies on benchmark

programs demonstrate superior fault detection effectiveness, efficiency, and automation,

making our approach a valuable tool for ensuring correctness and reliability, especially in

mathematical formulas.

3

1.1. Motivation

Identifying bugs in certain software types, such as scientific software, can pose specific

challenges in the field of software testing. Test oracle problem, which refers to the difficulty in

establishing a reliable reference for determining correct outcomes, further complicates bug

identification in such scenarios. As a result, addressing the test oracle problem becomes crucial

to overcome the challenges associated with testing scientific software effectively [1]The

absence of dependable test oracles capable of ascertaining accurate outputs for diverse inputs

renders the detection of nuanced faults, isolated errors, or imperfections in scientific software

a formidable undertaking. As a result, numerous scientific software systems are frequently

categorized as "non-testable programs" due to the complexities involved in devising efficient

testing methodologies. [1]

Metamorphic testing was introduced as a promising technique to address the limitations of

traditional testing methods and tackle the oracle problem. It offers a unique approach to testing

by leveraging metamorphic relations, which define the expected behavior transformations of

the software under test (SUT). By utilizing metamorphic relations, MT provides a practical

solution to testing scenarios where a reliable oracle is either unavailable or difficult to establish,

thereby mitigating the challenges associated with the oracle problem [4]. Metamorphic Testing

(MT) tackles the oracle problem by focusing on the relationship between inputs and outputs,

rather than directly verifying output correctness for arbitrary inputs. This is achieved using

metamorphic relations (MRs), which define the expected impact of input modifications on the

outputs. By assessing whether the MRs hold during testing, any deviations detected can

indicate the presence of defects within the program.

This thesis employ Metamorphic Testing (MT) as a complementary approach to anticipate

Metamorphic Relations (MRs) applicable to mathematical functions. This research aims to

facilitate the process by providing automated methods for MR prediction, reducing the burden

on experts and programmers involved in the MR identification process. However, despite the

potential of metamorphic testing, the identification of suitable metamorphic relations (MRs)

often requires domain expertise, making it a labor-intensive task that can challenge both

domain experts and programmers involved. Manual identification of MRs can be time-

consuming and may limit the practical applicability of metamorphic testing, particularly for

complex software systems such as mathematical functions.

4

By automating MR prediction, this approach aims to enhance the practical applicability and

efficiency of metamorphic testing for various software systems, including mathematical

functions. This research also focuses on developing an innovative path-directed methodology

for generating source test cases, utilizing their associated path constraints extracted from

symbolic execution. The separation in path distance among test cases is subsequently harnessed

to guide the prioritization of source test cases, leading to heightened efficiency. This approach

integrates various techniques, including a path constraint solver implemented in Python, a test

case generation algorithm, the establishment of metamorphic relations, and a prioritization

technique for test cases. These findings also unveil intriguing research avenues for enhancing

metamorphic testing methodologies.

1.2. Problem Statement

Software testing occupies a pivotal role within the software development lifecycle, aiming to

detect and rectify flaws present in software systems. Conventional testing methods, including

black box and white box testing, while widely used, encounter limitations in achieving

comprehensive test coverage and addressing the oracle problem. A promising avenue, termed

metamorphic testing (MT), has emerged, not only addressing the oracle problem but also

engendering novel test cases through the application of metamorphic relations (MRs).

Nonetheless, there remains potential for refinement in the domain of generating and prioritizing

source test cases, a research domain that continues to evolve.

The creation of efficient test cases that cover a variety of pathways and behaviors in the system

being tested is one of the main issues in software testing. Existing techniques for creating

source test cases frequently rely on manual labor, which adds time and increases the possibility

of human mistakes. To maximize testing resources and boost the effectiveness of fault

detection, it is also essential to choose test cases according to their fault-detection capabilities.

Existing prioritization methods, however, do not completely account for the coverage of

execution routes and might not integrate path-directed methods.

We propose a unique strategy that uses path-directed methodologies for source test case

generation and prioritization in metamorphic testing to overcome these difficulties. The

suggested method obtains program path constraints using a Python path tracer [29] and

constraint solver [30], allowing for systematic input space exploration and the creation of a

wide range of test cases. To increase the variety and effectiveness of testing, we also present a

5

prioritization method based on the distance between test cases. In previous studies [28] [29]

[30] [6] [7] [8] [9] path solving was a challenging task that required complex calculations.

However, in our research, we have employed machine learning techniques to simplify this

process significantly. By harnessing the power of machine learning, we have made path-solving

more accessible and efficient, streamlining the overall computation, and achieving more

accurate results. The suggested method intends to improve the efficiency of fault identification,

automation, and overall metamorphic testing performance, making a significant contribution

to the area of software testing. Our method provides a workable alternative to increase the

quality and dependability of software systems by automating the test case creation and

prioritization procedures as well as adding path-directed techniques.

Throughout this research endeavor, we delved into the incorporation of machine learning

methods, particularly within the Python framework, with the intent to bolster the efficacy of

fault detection using generated source test cases. The objective was to amplify the identification

of software system flaws by harnessing the capabilities of machine learning algorithms and

techniques within the test case generation phase. This study aspired to appraise the potential

superiority of this approach in comparison to established methods of source test case

generation, as evidenced by its heightened fault detection capabilities and overall testing

prowess. By addressing these core inquiries, we sought to glean invaluable insights to advance

the efficiency and effectiveness of software testing methodologies.

The research questions are as follows:

RQ1: Does the integration of machine learning techniques in Python enhance the fault

detection effectiveness of generated source test cases?

RQ2: To what extent does this approach outperform existing source test case generation

techniques in terms of fault detection capabilities and overall testing effectiveness?

RQ 3: What is the computational overhead associated with the implementation of this approach

for generating source test cases, and how does it impact the efficiency and scalability of the

testing process?

6

1.3. Aims and Objectives

The primary objectives of this research activity are described as follows, encapsulating the

fundamental aims and goals of the study:

1. Analyze existing approaches and techniques in metamorphic testing, identifying their

limitations specifically in path-directed source test case generation and prioritization.

2. Propose a novel methodology, PaDMTP, that integrates path-directed techniques with

metamorphic testing principles, aiming to enhance the generation and prioritization of

source test cases.

3. Implement the PaDMTP methodology using the Python programming language,

leveraging its flexibility and widespread adoption in the software testing community.

4. Examine the efficacy and efficiency of PaDMTP by conducting experiments on

different software systems, and then compare the obtained results with existing

approaches.

5. Provide comprehensive guidelines and recommendations for practitioners and

researchers on the application of the PaDMTP methodology in real-world software

testing scenarios.

6. Contribute to the progression of metamorphic testing methodologies by tackling the

hurdles linked to path-directed source test case generation and prioritization.

1.4. Metamorphic Testing

Metamorphic Testing(MT) involves modifying the input data of an algorithm within specified

constraints to predict the characteristics of the resulting output. This technique utilizes input-

output relationships to identify faults and assess the correctness of algorithms. By

systematically applying metamorphic transformations and comparing outputs, it provides a

powerful approach for testing and validating software systems.

Metamorphic testing has emerged as a promising technique that addresses the limitations of

traditional testing methods. Unlike relying solely on a predetermined set of test cases, MT

focuses on discovering unexpected relationships between input and output. It operates on the

principle that specific properties or relationships should hold for a particular class of inputs,

regardless of potential output variations. When deviations from these expected properties

occur, it indicates the presence of faults within the system being evaluated.

7

MT lies the identification and formulation of metamorphic relations(MRs). These MRs define

the anticipated relationships between inputs and outputs, providing valuable guidance for

generating test cases and validating system correctness. Derived from domain-specific

knowledge, system behavior, specifications, or mathematical models, MRs enables the

detection of faults that may remain undetected using traditional testing methods. By leveraging

MRs, MT offers an effective approach to enhance test case generation and improve fault

detection capabilities.

1.4.1. Challenges in Metamorphic Testing

Metamorphic testing brings forth several potential advantages; however, it also introduces

distinct challenges that warrant careful consideration. Among these challenges, a significant

one lies in devising diverse and effective test cases that span various execution paths. The

creation of test cases capable of traversing multiple execution paths and exploring a range of

scenarios proves pivotal in effectively harnessing the potential of metamorphic relations

(MRs). Since MRs depend on recognizing connections between inputs and outputs, this diverse

testing approach is crucial. Nevertheless, manually generating such an extensive array of test

cases can become a time-intensive and error-prone process.

Another challenge revolves around the effective ordering of test cases to ensure efficient fault

detection. In situations of constrained testing resources, it becomes imperative to allocate them

judiciously to maximize the likelihood of detecting issues. The strategic arrangement of test

cases based on their capacity to uncover faults can notably enhance the efficiency of the testing

process. Nonetheless, devising impactful strategies for prioritization, which take into account

multifaceted factors like code coverage and fault detection competence, can pose intricate

demands on resources.

1.5. Proposed Approach

This research paper presents a novel approach for path-directed source test case generation and

prioritization in metamorphic testing using python(PaDMTP), with a specific focus on utilizing

the Python programming language. The main objective of this research is to improve the

effectiveness and efficiency of metamorphic testing by automating the generation of test cases

that cover diverse execution paths. Additionally, the research aims to prioritize these generated

test cases based on their potential to detect faults in the system under test. Through the

8

Figure 01: Proposed Approach – Overview

automation of the test case generation process and the refinement of prioritization techniques,

this research aims to elevate the overall quality and dependability of metamorphic testing. The

proposed approach (Figure 01) involves a comprehensive framework that integrates various

techniques, including Python Path Tracer [29], Constraint Solver [30] and Mutation Testing

[31]. The experiments confirm that the suggested method effectively finds issues in typical

programs. This shows potential for improving software testing in metamorphic testing (MT).

9

1.5.1. Python Constraint Solver

To explore the complex input spaces of mathematical functions and generate test cases that

comply with the given constraints, we employ a Python path constraint solver. The created test

cases correctly mimic real-world input conditions thanks to the solver's capability to handle

complicated equations and inequalities, making them extremely pertinent for error

identification and validation. Our approach substantially enhances the efficiency and success

of generating test cases. This guarantees that the created test cases comprehensively cover the

behaviors of mathematical functions, simplifying the identification of potential issues with

heightened accuracy and precision.

Our suggested method makes use of the skills of a Python constraint solver to deal with the

complexity of mathematical functions and their related input restrictions. The development of

test cases that fulfill certain requirements imposed by the functions under test is made possible

by this solver, which acts as a potent tool for reasoning about mathematical equations,

inequalities, and constraints. We may methodically investigate the enormous input space and

produce test cases that span a broad variety of potential behaviors of the mathematical functions

by utilizing the adaptability and computing power of the route constraint solver. This

methodical investigation makes sure that our strategy covers a wide range of test cases,

efficiently capturing numerous scenarios and edge circumstances that may potentially uncover

concealed errors or inconsistencies inside the mathematical functions. [30]

1.5.2. Generation of Source Test Cases

Harnessing the power of a Python constraint solver, our approach empowers the exploration of

the complex input spaces of mathematical functions, enabling the generation of test cases that

adhere to given constraints. This solver proves invaluable in dealing with intricate equations

and inequalities, allowing us to create test cases that accurately represent real-world input

conditions. By leveraging the solver's capabilities, our method significantly enhances the

effectiveness and efficiency. The resulting test cases boast comprehensive coverage of the

behaviors exhibited by the mathematical functions, making them potent tools for identifying

potential errors with a high degree of accuracy and precision. The ability to generate test cases

that mimic real-world scenarios and encompass a diverse range of potential behaviors ensures

that our approach is well-suited to uncovering hidden flaws and inconsistencies within

mathematical functions.

10

Our proposed methodology further incorporates a test case generation, meticulously designed

to leverage the capabilities of the Python constraint solver. Through systematic exploration of

the vast input space, the algorithm considers various combinations and ranges of inputs,

ensuring a thorough assessment of the SUT’s potential behaviors. The objective is to produce

a diverse set of test cases that encapsulate different scenarios and edge cases, effectively

exploring various execution paths and shedding light on potential faults lurking within the

mathematical functions under scrutiny. By encompassing a broad spectrum of behaviors, the

generated test cases become powerful instruments for revealing any underlying issues or

discrepancies within the mathematical functions. The systematic and comprehensive nature of

our algorithm not only maximizes the fault-detection capabilities but also contributes to the

overall effectiveness and efficiency of our metamorphic testing approach, allowing us to

achieve a deeper and more nuanced understanding of the SUT's behavior.

1.5.3. Metamorphic Relations

The establishment and utilization of metamorphic relations (MRs) constitute a pivotal aspect

of our research, acting as a guiding principle in the evaluation of mathematical functions. These

MRs play a vital role in specifying the expected relationships between the inputs and outputs

of the functions under examination. Drawing from domain-specific knowledge and system

behavior, we formulate a comprehensive set of MRs that encapsulate the inherent properties of

the mathematical functions. These metamorphic relations serve as a foundation for assessing

the correctness and behavior of the functions by facilitating a comparison of outputs derived

from related inputs. By systematically applying MRs to the generated test cases, they function

as a validation mechanism, assuring the stability and dependability of the mathematical

functions. This process involves confirming that outputs align with the specified MRs,

effectively spotting any deviations or flaws that might emerge. This robustly enhances the

overall ability of our metamorphic testing approach to detect faults.

To achieve comprehensive testing, we meticulously design and employ a set of metamorphic

relations that encompass a wide array of possible input-output relationships within the

mathematical functions. These MRs act as essential tools for guiding the evaluation of the

functions' behaviors, providing valuable insights into their correctness and performance.

Formulated based on a deep understanding of the mathematical functions and their expected

properties, the MRs facilitate a rigorous validation process by comparing the outputs produced

from related inputs. By systematically applying these MRs to the generated test cases, we

11

ensure that the functions' behavior remains consistent and within the expected bounds. The

methodical application of MRs enhances the reliability and precision of the test results,

allowing us to identify any deviations or faults within the functions with a high degree of

accuracy. Through the integration of MRs into our metamorphic testing approach, we gain a

comprehensive and systematic understanding of the functions' behavior, further elevating the

effectiveness and efficiency of our testing methodology.

1.5.4. Mutation Testing

Mutation testing is a robust and sophisticated software testing technique that serves as a

stringent evaluator of the efficacy of test cases. Unlike traditional testing approaches that

measure the success of tests by their ability to pass, mutation testing introduces deliberate

changes, or mutations, to the source code. These mutations mimic potential faults or defects

that might exist in the software. The core idea is to assess the test suite's capability to identify

these altered code segments, thereby gauging its robustness in detecting real-world errors. By

applying a range of mutations across the codebase, mutation testing mimics different types of

faults, ensuring a comprehensive evaluation of the test suite's effectiveness.

The process of mutation testing entails the creation of numerous mutated versions of the

original code. These mutations might involve modifications such as changing operators,

altering conditions, or introducing simple logic errors. The test suite then runs these mutated

versions and assesses whether the test cases successfully identify and flag the changes. If a

mutation is not detected by the test suite, it suggests a deficiency in the testing strategy and

highlights a gap in the suite's ability to catch certain types of faults.

Mutation testing provides a valuable quality assessment of the test suite's comprehensiveness.

It identifies areas where the test suite might be lacking, offering developers insights into the

types of errors that the current suite might miss. While mutation testing can be computationally

intensive due to the generation and execution of multiple mutated versions, it offers a rigorous

and holistic perspective on the software's testing robustness. In essence, mutation testing

enhances the accuracy and reliability of software testing by ensuring that test cases are capable

of detecting a broad spectrum of potential defects, leading to higher quality software products.

Mutation testing is a crucial step in assessing the robustness and fault-detection capabilities of

our metamorphic testing approach. By introducing artificial faults into the mathematical

functions, we simulate various scenarios that may potentially lead to errors or inconsistencies

12

in the system. The generated test cases are then executed against these mutants to determine

their effectiveness in identifying and detecting the injected faults. The mutation score serves as

a quantitative measure of the approach's ability to identify these faults accurately and

efficiently. A high mutation score indicates a strong fault-detection capability, suggesting that

the generated test cases are effective in uncovering potential issues within the mathematical

functions. By analyzing the mutation score, we can gain valuable insights into the reliability

and precision of our testing methodology, further validating the effectiveness of our approach

in ensuring the correctness and performance of the mathematical functions. Through the

integration of mutation testing, our research aims to provide a comprehensive and rigorous

evaluation of the proposed approach, enhancing its credibility and applicability in real-world

scenarios.

1.5.5. Test Case Prioritization

To optimize resource utilization and streamline the testing process, our approach integrates an

advanced test case prioritization technique. This technique is devised to establish a sequence

for executing test cases based on diverse factors, encompassing elements like code coverage,

input constraints, and the ability to detect faults. By meticulously assigning priorities to test

cases, our goal is to concentrate on pivotal sections of the code that hold the potential to expose

potential flaws. This prioritization strategy effectively ensures that limited testing resources are

allocated strategically, targeting the most critical facets of the mathematical functions. This, in

turn, heightens the efficiency of the testing process.

Our test case prioritization technique follows a systematic approach to optimizing the testing

process. By incorporating criteria such as code coverage and input constraints, we ensure that

test cases are ordered in a way that allows for a comprehensive evaluation of the mathematical

functions' behavior. Critical areas of the code that may be prone to faults are given higher

priority, allowing us to allocate testing resources more effectively and increasing the chances

of detecting and resolving potential issues. The technique is adaptive and flexible,

accommodating various complexities of the mathematical functions and their input spaces,

providing a dynamic approach to fault detection. With the prioritization technique in place, we

can achieve a deeper understanding of the functions' behavior and thoroughly assess their

correctness and performance while utilizing testing resources efficiently.

13

1.6. Significance of the Research

The importance of this study rests in the real-world utility of the suggested method for

mathematical functions. By automating the test case generation process and incorporating the

Python path constraint solver, researchers and practitioners can efficiently test mathematical

functions and identify potential faults. The utilization of Python as the implementation

language ensures accessibility and ease of adoption for the wider software testing community.

The research focuses on the practical usability of the proposed approach in the context of

mathematical functions. Metamorphic relations provide a systematic means to validate the

behavior of mathematical functions and detect deviations or faults. Test case prioritization

optimizes the allocation of limited testing resources, maximizing the chances of detecting faults

and improving overall test effectiveness.

The proposed approach contributes to the advancement of metamorphic testing methodologies

and techniques, particularly in the context of testing mathematical functions. By combining

various techniques and leveraging the power of the Python programming language, this

research aims to improve fault detection capabilities and provide a practical solution for testing

mathematical functions.

1.7. Thesis Outline

In this thesis, we present a comprehensive study on the application of Metamorphic Testing in

software testing. The proposed research introduces a novel approach for path-directed source

test case generation and prioritization in metamorphic testing using Python. By defining

metamorphic relations and leveraging Python's capabilities, this approach aims to automate the

generation of test cases with varying input scenarios, ensuring comprehensive and reliable

testing of software systems. This research seeks to enhance the efficiency and effectiveness of

metamorphic testing, contributing to improved software quality and reliability across various

domains.

The literature review in Chapter 2 introduces the concept of Metamorphic Testing and discusses

its principles and techniques and provides an in-depth analysis of the existing research and

studies related to Metamorphic Testing. In Chapter 3, we outline the methodology adopted for

our research and explain the steps involved in implementing Metamorphic Testing in the

context of software testing. Experimental studies and results are presented in Chapter 4, where

14

we describe the design, execution, and results of our experiments to evaluate the effectiveness

of Metamorphic Testing in fault detection. Finally, Chapter 5 concludes the thesis by

summarizing the key findings, discussing the results of the study, and proposing future research

directions for further improvement and application of Metamorphic Testing in software testing.

15

CHAPTER 2: LITERATURE REVIEW

Metamorphic testing(MT) is a powerful technique for ensuring the quality and reliability of

software systems. It utilizes metamorphic relations(MRs) to generate test cases that exhibit

expected behavior transformations. However, test case generation and prioritizing in

metamorphic testing can be challenging. This literature review focuses on a novel approach

that combines path-directed techniques and Python implementation to address this challenge.

Metamorphic testing is a powerful method for enhancing the quality of software systems. It

addresses the limitations of traditional testing techniques by focusing on the input-output

behavior of software and utilizing metamorphic relations to identify potential faults [32].

Various existing techniques for test case generation in metamorphic testing have been

proposed, including constraint-based testing (CBT) [33] and evolutionary algorithms.

2.1. Software Testing

Software testing is an indispensable and fundamental process in the software development life

cycle (SDLC), utilized to assess and evaluate the quality of developed software products. [34]

Its significance lies in guaranteeing that the software aligns with prescribed standards,

specifications, and requirements established during the developmental stages. Software testing

encompasses an all-encompassing assessment, closely examining the performance of software

systems, spanning from discrete individual components to intricate integrated systems. The

principal aim is to verify that the software operates as designed, yielding the anticipated results,

and effectively satisfying the demands and anticipations of end-users.

The process of software testing involves executing the software with carefully designed test

cases and analyzing the actual behavior of the software against the expected outcomes. These

expected outcomes are determined based on predefined requirements and specifications, often

established using a test oracle. By comparing the actual behavior of the software with the

expected behavior, testing aims to identify any discrepancies, bugs, or defects that may arise

during execution. The detected issues are then meticulously documented, reported, and

addressed through the development and debugging process. The rigorous nature of software

testing provides stakeholders with invaluable insights into the quality, reliability, and

performance of the software, helping them make informed decisions about its readiness for

deployment and use in real-world scenarios. Moreover, it aids in risk assessment, ensuring that

16

potential vulnerabilities and weaknesses are identified and resolved before the software is

released to end-users.

Software testing encompasses an array of testing techniques, such as functional testing,

performance testing, security testing, and usability testing, among others. Each testing

approach fulfills a distinct role, collectively enhancing the quality assurance process and

guaranteeing that the software adheres to the utmost standards of quality and dependability.

Through systematic and comprehensive testing, organizations can mitigate potential risks,

avoid costly software failures, and enhance user satisfaction. Effective software testing is a key

factor in achieving customer confidence and loyalty, as it ensures that the software functions

as expected, deliver value to end-users, and meets their needs effectively. In conclusion,

software testing is a critical aspect of software development that guarantees the overall success

of software systems by providing a robust and reliable software product that meets user

expectations and industry standards.

2.1.1. Source of Software System Defects

Software bugs or defects can arise from various factors, contributing to the complexity of the

software testing process. One prevalent cause of bugs is coding errors, which frequently occur

during the development process. While developers often put in considerable effort to review

and validate the code, some bugs may persist due to coding mistakes that stem from incorrect

initial coding concepts. In certain cases, these errors may go unnoticed during code review,

leading to hidden defects in the software [35]. Despite the best intentions of the developers,

underlying design flaws or unrecognized coding errors can evade detection, only to manifest

later during execution.

Apart from coding errors, requirements gaps are another common reason for software bugs or

defects. These gaps occur when programmers unintentionally omit necessary information or

fail to fully understand and recognize specific requirements. Incomplete or misunderstood

requirements can result in the implementation of incorrect functionalities or the absence of

crucial features, leading to unexpected behaviors and defects in the software. Addressing

requirements gaps requires effective communication between stakeholders and developers to

ensure that all aspects of the software's functionality are well-defined and understood.

17

Furthermore, software bugs or defects can also be influenced by changing environments, input

data, and hardware platforms. As software systems interact with dynamic and diverse

environments, variations in the input data or hardware configurations can lead to unexpected

behaviors and defects. Ensuring robustness and resilience in the software requires extensive

testing across various scenarios and configurations to identify and resolve potential issues

arising from environmental variations.

2.1.2. Benefits of Software Testing

The defects mentioned earlier often prove challenging to identify and rectify solely through

programmer reviews. Additionally, these defects can have severe consequences, including

unexpected failures in software systems, leading to substantial economic losses. For instance,

a study conducted by NIST in 2002 revealed that software bugs accounted for approximately

$59.5 billion in economic losses annually in the USA. Moreover, the study found that

implementing feasible and effective software testing strategies could have potentially

prevented more than one-third of these losses. These findings highlight the importance of

employing robust software testing approaches to mitigate the risks associated with software

defects and minimize economic impacts [36].

Software system failures have significant economic ramifications on a global scale annually,

affecting sectors like entertainment, government, finance, transportation, and more.

Surprisingly, many of these unexpected software failures could be prevented by implementing

appropriate testing techniques. Regrettably, a considerable portion of software undergoes

insufficient evaluation or testing procedures before production deployment. This rushed

approach undermines the importance of thorough testing, leading to an increased likelihood of

encountering severe issues and subsequent economic losses. Emphasizing comprehensive

evaluation and testing procedures is crucial to mitigate the risks associated with software

failures and their consequential impacts on various aspects of society.

While there are numerous guidelines available for successful software development, it is

important to note that following these guidelines does not guarantee absolute success. Software

development is a complex and multifaceted process, influenced by various factors such as

project requirements [37] [38] Inadequate project post-mortems and limited understanding

from past projects restrict the identification of significant success and failure factors, limiting

opportunities for improvement and proactive measures.

18

To prevent economic losses and enhance profitability, technology companies typically maintain

professional software testing departments. These departments ensure higher correctness and

lower risks of failure in software production.

2.2. Metamorphic Testing

This section aims to provide a comprehensive overview of metamorphic testing. Metamorphic

testing, introduced by Chen et al. [4], is a software testing technique designed to address the

test oracle problem. We begin by delving into the explanation behind the test oracle problem,

the functioning of metamorphic testing, highlighting its reliance on metamorphic relations.

Furthermore, we discuss the inherent challenges associated with this technique and elucidate

the rationale behind incorporating machine learning methods.

2.2.1. Test Oracle Problem

To enhance the efficiency, convenience, and trustworthiness of software testing, the utilization

of a test oracle becomes essential. The test oracle acts as a mechanism for determining the

accuracy of software execution. It accomplishes this by evaluating the software's output and

comparing it with the anticipated output, thereby validating its correctness. The test oracle has

a crucial role in the testing process, offering an impartial evaluation of the software's behavior.

In the realm of software testing, especially concerning scientific software, evaluating the

success or failure of a test can be intricate due to the lack of an accessible test oracle. This

absence or the challenges associated with constructing one gives rise to the test oracle problem

(Figure 02), which represents a significant obstacle in the field of software testing. Addressing

this challenge is pivotal to ensuring effective and trustworthy testing methodologies.

Figure 02: Test Oracle Problem

The presence of the test oracle problem introduces challenges in detecting subtle faults and

isolated errors, which can have a significant impact on the accuracy and dependability of

software or programs. Historically, resolving this issue has involved domain experts or

scientists manually defining test oracles. However, this process is both inefficient and lacks

systematic structure. Consequently, there is a demand for an automated testing technique that

19

can effectively evaluate software even in the absence of test oracles. Such an approach would

be invaluable in ensuring efficient and reliable testing practices.

In a recent research study, a novel approach was introduced to automatically predict

metamorphic relations (MRs) using machine learning techniques. This approach was targeted

at programs that lack test oracles. The proposed method employs features extracted from a

function's control flow graph to forecast likely MRs. The study demonstrates the effectiveness

of this approach, with Support Vector Machines (SVMs) outperforming decision trees. The

SVM predictive model achieves high accuracy and Area Under the Curve (AUC), indicating

the success of the CFG-based features in predicting MRs. The approach displays potential for

practical application, as it can create effective classifiers with reasonably small training sets.

Furthermore, the identified MRs exhibit reliability even for faulty programs, as demonstrated

through mutation analysis. Overall, this research contributes to automating testing for software

without test oracles, thereby enhancing software quality assurance [39].

2.2.2. Metamorphic Testing: Background

Metamorphic Testing (MT) stands as a testing methodology that centers on the interconnections

between the inputs and outputs of a software system, as opposed to directly validating the

accuracy of individual outputs. Its objective is to surmount the difficulties presented by the test

oracle problem, which can impede effective testing due to limitations in the availability or

feasibility of a test oracle.

In MT, metamorphic relations (MRs) are defined, which specify the expected relationships

between inputs and corresponding outputs. These relations are derived from domain

knowledge, system behavior, specifications, or mathematical models. By applying specific

transformations to inputs and comparing the outputs against the expected relations, MT can

detect potential faults or deviations in the system's behavior.

Metamorphic testing emerges as a captivating software testing method, offering an intriguing

and efficient avenue to address the oracle problem often encountered in certain software

systems. This innovative technique was initially introduced by Chen et al. [4]. Metamorphic

testing has seen remarkable progress since its inception in 1998. Over the last two decades, this

technique has rapidly evolved and found extensive application in various research domains, as

evident from Figure 03. Clang and GCC [17] and Xie et al. [21] Used MT to validate machine

20

learning algorithms. NASA’s Data Access Toolkit was subjected to applied metamorphic

model-based testing by Lindvall et al. [19]

Figure 03: Survey of Application Areas of Metamorphic Testing

Metamorphic testing has also been employed for testing autonomous cars, expanding its

application beyond traditional software systems [40]. Most of the research studies have

primarily focused on applying metamorphic testing techniques to detect bugs in widely used

software and various applications. However, only a minority, approximately 8% of the case

studies, have explored the machine learning aspect. Furthermore, among these machine

learning studies, only a few have specifically investigated the automatic prediction of

metamorphic relations using machine learning methods.

Metamorphic Testing is a property-based testing approach that involves verifying whether a

program adheres to predefined properties known as metamorphic relations. These relations

specify the expected changes in program output when certain modifications get applied to the

input. By comparing the observed outputs with the expected relations, metamorphic testing can

detect faults or deviations in the program under evaluation. This technique offers a systematic

way to identify potential program defects, even in the absence of a traditional test oracle.

21

Figure 04: Overview of Metamorphic Testing Process

In general, the implementation of metamorphic testing involves the following steps (as

illustrated in Figure 04):

1. Establish a set of metamorphic relations that define the expected relationships between

the inputs and outputs of the target program.

2. Generate a set of new source test cases or select existing ones to serve as the initial

inputs for the metamorphic testing procedure.

3. Generate follow-up test cases by applying the identified metamorphic relations to the

initial source test cases. This step involves transforming the input values of the source

test cases based on the specified metamorphic relations, resulting in a set of follow-up

test cases.

4. Execute the follow-up test cases on the target program, if there is any violation then the

test is failing otherwise the test is passed.

The primary goal of metamorphic testing is to utilize newly generated follow-up test cases,

guided by metamorphic relations, to identify potential faults in programs that lack test oracles.

One of the most straightforward examples to illustrate metamorphic testing is by considering

the implementation of a SINE function.

Let the equation be a = b + c

Applying Sin relation to the above equation

sin(a) = sin (b + c)

22

sin(a) = sin (b) cos (c) + cos (b) sin (c)

sin(a) = sin (b) sin (90◦ − c) + sin (90◦ − b) sin (c)

When applying MT to P based on this MR, we generate a source test case x and subsequently

create two follow-up test cases, y, and z

x = y + z

The System Under Test (SUT) will undergo a total of five executions. i.e.,

P(x), P(y), P(z), P(90◦−y), and P(90◦−z)

Now we check the relation between P(x) = P(y)P(90◦−z) + P(90◦−y) P(z) as we did in the

above scenario, then if there are any violations of the relationship between the input and

expected output, in the SUT, it will indicate that the test leads to failure otherwise the test will

be indicated as passed.

2.2.3. Metamorphic Relations

Metamorphic relations encompass predetermined correlations between arbitrary inputs and

their respective outputs within a program. To illustrate this, let's delve into an example. (Figure

05) where metamorphic testing is put into practice on a mathematical function responsible for

computing the sum of an array. Certain modifications to the input array are expected to have

no impact on the output result. For instance, randomly permuting the elements of the input

array should not alter the sum. These anticipated relationships, known as metamorphic

relations, provide a basis for detecting faults or failures if any violations occur.

Figure 05: Example of Permutative Metamorphic Relation (MR)

23

Apart from the Permutative metamorphic relation, various other connections between inputs

and outputs can manifest in a program. Previous research by [41] has identified six specific

metamorphic relations applicable to mathematical functions that operate on arrays as input.

Table 1: Metamorphic Relations (MRs)

Metamorphic Relations R1 R2

Additive Add a positive constant Increase or remain

Inclusive Add a new variable Increase or remain

Multiplicative Multiply by a positive constant Increase or remain

Permutative Randomly permute a value Remain

In our strategy, Metamorphic Testing (MT), which is based on the underlying Metamorphic

Relations (MRs), plays a key role in aiding the test case production process and integrates a

methodical approach for checking test findings. A series of essential steps are involved in

applying MT, and they are briefly described as follows, based on [42]:

1. MR Identification: A collection of Metamorphic Relations (MRs) that describe the

anticipated behavior and connections between the system's inputs and outputs are found

and created as the first stage in the MT process. These MRs are formed from the

understanding of how the system ought to react to operations or changes.

2. Test Case Generation: We must now create follow-up test cases based on the

metamorphic relations (MRs), in (Table 1), for this purpose. Follow-up test cases are

generated by performing the actions in column R1 on the source test cases.

3. Test Case Execution: Upon execution of the follow-up test cases, their respective

outputs are systematically compared with the results obtained from the source test case.

This comparative analysis serves as a fundamental step in the evaluation process,

aiming to identify any disparities or divergences between the output behaviors of the

follow-up test cases and the source test case.

4. Output Comparison: The output obtained from executing the follow-up test cases is

meticulously compared with the output generated by the source test cases.

5. Result Verification: Following the comparison of results, the determination of the

success or failure of the Metamorphic Relation (MR) is predicated on the evaluation of

24

the predefined criterion specified in column R2. The outcome of this evaluation serves

as the basis for categorizing the MR as either successful or unsuccessful.

When modifying the input results in a change in the program's output following the expected

behavior, the program aligns with the relevant metamorphic relation. However, accurately

recognizing these metamorphic relations can be challenging, particularly for testers who lack

in-depth domain knowledge.

2.2.4. Uses of Metamorphic Testing

Metamorphic testing has emerged as a promising approach to tackle the testing challenges of

machine learning (ML) applications, where the correct answers are unknown. By exploiting

the properties of the application, metamorphic testing defines transformation functions on input

data, enabling the detection of defects when the output deviates from expected results. In a

recent study, researchers extensively examined and categorized the metamorphic properties of

various ML algorithms. They effectively pinpointed six fundamental properties: additive,

multiplicative, permutative, invertive, inclusive, and exclusive. By employing these properties,

the researchers showcased how metamorphic testing can effectively expose flaws in particular

machine-learning applications. These findings establish a solid basis for future investigations,

including the broader application of metamorphic testing in different ML domains, ultimately

enhancing the quality assurance of non-testable programs. [43]

Addressing the challenges of reusability and cost in metamorphic testing has been the subject

of significant research. Zhang et al. [42] present a novel approach in their paper titled

“Predicting Metamorphic Relations Based on Path Features” to enhance the efficiency and

effectiveness of this testing methodology. They propose a unique string feature extraction

method that leverages common metamorphic relations found in scientific computing programs

and their execution paths. They adopt a method that includes training support vector machine

models to precisely forecast metamorphic relations during testing. The experimental findings

showcased by Zhang et al. substantiate the method's effectiveness in consistently ascertaining

the fulfillment of input features concerning metamorphic relations. This study corresponds with

our objective of enhancing the efficiency and utility of metamorphic testing within the domains

of machine learning and scientific computing applications. [20]

25

Brailsford et al. [44] provide a comprehensive exploration of constraint satisfaction problems

(CSPs) and their applications in operational research in their paper titled "Constraint

Satisfaction Problems: Algorithms and Applications." CSPs involve assigning values from a

finite domain to variables, ensuring the satisfaction of constraints among the variables. The

authors highlight the wide applicability of CSPs in various combinatorial problems, including

scheduling and timetabling, commonly encountered in operational research. While CSP

approaches are well-established in artificial intelligence research, their adoption among

operational researchers is limited. This research serves as an essential resource, introducing

CSPs to the operational research community and presenting fundamental techniques for

solving CSPs. Furthermore, he compares constraint satisfaction approaches with established

operational research techniques like integer programming, branch and bound, and simulated

annealing. The insights provided by this study contribute to the understanding and utilization

of CSPs in operational research contexts. [45]

A study [46] focused on the application of metamorphic testing (MT) to bioinformatics

software, particularly LingPipe, a tool for bio-entity recognition from biomedical literature.

The challenge lies in the absence of a well-defined test oracle due to the large number of bio-

entities produced. Metamorphic relations (MRs) are proposed as a solution to determine test

outcomes. Ten novel MRs are developed to validate bio-entity recognition tools in general, and

experimental results demonstrate their effectiveness in identifying faults in LingPipe. By

leveraging MT and MRs, this study aims to improve the quality assurance of bioinformatics

software, thereby enhancing critical decision-making in medicine and healthcare.

2.3. Python as an Implementation Language

Python has gained widespread popularity in the field of software development, largely

attributed to its simplicity, versatility, and extensive libraries. It provides a rich ecosystem of

libraries and tools that are particularly valuable for constraint-solving and machine learning-

based prioritization. Leveraging these powerful libraries, Python offers efficient solutions for

test case generation and prioritization in metamorphic testing [47] [48], making it an ideal

choice for software testing tasks.

In our approach, we utilize Python path constraints to tackle the challenge of test case

generation. By employing Python's path constraint solver, we can effectively reason about

complex mathematical functions and their input constraints. This enables us to systematically

26

explore the vast input spaces of these functions and generate test cases that comply with the

given constraints. The resulting test cases accurately mimic real-world input conditions,

making them highly relevant and suitable for thorough error identification and validation.

Furthermore, we employ Python's machine learning-based prioritization techniques to enhance

the efficiency of our testing process. By harnessing the capabilities of machine learning

algorithms, we can intelligently prioritize test cases based on various criteria, such as code

coverage, input constraints, and fault detection capability. This prioritization strategy allows us

to focus our testing efforts on critical areas of the code, maximizing the potential for fault

detection and optimizing the allocation of testing resources.

To evaluate the effectiveness of our approach, we employ mutation analysis and calculate the

fault detection rate (FDR). Mutation analysis involves introducing synthetic faults, or mutants,

into the mathematical functions and assessing how well the generated test cases can detect

these mutations. The FDR provides a quantitative measure of our approach's ability to identify

and detect faults within the functions. This comprehensive evaluation ensures that our testing

methodology is effective in uncovering potential issues and validating the correctness and

performance of the mathematical functions.

2.4. Path-Directed Test Case Generation

Path-directed test case generation techniques, such as symbolic execution and constraint-based

testing, have been widely used in software testing. These techniques aim to systematically

explore the program's execution paths to generate test cases that cover a wide range of

scenarios. Path-directed techniques can be adapted and applied to metamorphic testing to

generate effective and diverse test cases that satisfy the defined metamorphic relations. A

significant number of previous studies have adopted a random approach to generate source test

cases for the existing testing techniques [49] [50].

Similarly, a new technique was proposed for automatically predicting MRs in 2013. In their

research, they focused on predicting metamorphic relations (MRs) for Java testing programs

that accept arrays as inputs [51]. In 2018, Kanewala et al [52], extended their approach to Java

testing programs that utilize matrices as inputs, demonstrating the applicability of their methods

to a broader range of testing scenarios. In 2022, Chang-ai Sun proposed a new approach to

metamorphic testing through path-directed and prioritization of metamorphic relations. [28]

27

We extend path-directed source test case generation with the help of Python. In our approach,

we use Python path constraints for the generation of source test cases.

The research proposes an innovative graph kernel-based machine learning approach to address

the oracle problem in scientific applications utilizing matrices. By automating the prediction

of metamorphic relations (MRs) for matrix calculation programs, the study offers a more

efficient alternative to labor-intensive manual identification. The successful application of this

method not only improves testing effectiveness but also enhances the understanding and

visualization of complexity in scientific domains. The integration of advanced machine

learning and data visualization techniques holds significant promise for advancing the field of

science, enabling more robust and reliable testing practices for complex numerical calculations

involving matrices. [53]

2.5. Path-Directed Test Case Prioritization

Test case prioritization (TCP) is a strategy employed to improve efficiency in achieving

performance goals. Different researchers used different techniques for prioritizing the test

cases. Regression testing is one of the best testing techniques for prioritizing test cases. [54]

[55] [56] They used different techniques for prioritizing the test cases.

The research proposes a solution to the test oracle problem in software testing using

metamorphic testing. It aims to identify and prioritize metamorphic relations (MRs) based on

their fault-finding effectiveness for complex systems. The approach involves using four metrics

to measure diversity in test case execution behavior, leading to better MR prioritization. This

enhances the efficiency and effectiveness of metamorphic testing in detecting faults and

ensuring software reliability. [57]

Our novel approach, presented in this literature review combines path-directed techniques with

Python implementation to generate and prioritize test cases. The approach leverages constraint

solving, and machine learning techniques available in Python to ensure thorough coverage of

execution paths while satisfying metamorphic relations. This approach offers a promising

solution for effective test case generation and prioritization in metamorphic testing.

To understand path-directed test case prioritization some definitions are given below:

28

• Statement Coverage: This approach prioritizes test cases based on the number of

statements covered in the code. Test cases that cover more statements are given higher

priority.

• Branch Coverage: In this approach, test cases are prioritized based on the number of

branches (or decision points) covered in the code. Test cases that cover more branches

are considered more important.

• Path Coverage: This technique considers the coverage of individual paths through the

code. Each path represents a unique sequence of statements and branches. Test cases

that cover more paths are given higher priority.

• Mutation Score: This approach involves introducing artificial faults (mutations) into

the code and measuring the effectiveness of test cases in detecting these faults. Test

cases with higher mutation scores are prioritized. We used the mutation score technique

for prioritizing test cases.

• Control Flow Graph (CFG) Analysis: By constructing the control flow graph of the

code, you can analyze the connectivity and complexity of the paths. Test cases that

cover critical paths or paths with complex conditions can be prioritized.

2.6. Experimental Evaluation and Results of Literature Review

To evaluate the effectiveness of the proposed approach, we conducted extensive experimental

studies, comparing our methodology with existing techniques in the domain of metamorphic

testing for Python programs.

Chang-ai [28] work on test case generation based on metamorphic testing served as a

benchmark for our comparison. The results of our experiments demonstrated significant

improvements in various aspects, including coverage, fault detection, and prioritization when

using Python as the primary tool for test case generation and prioritization.

In our comparative analysis, we observed that Python's capabilities, particularly it's path

constraint solver and machine learning-based prioritization techniques, outperformed the

traditional Java-based approach proposed by Chang-ai [28]. Python's simplicity and extensive

libraries allowed for more efficient test case generation, covering a wider range of potential

behaviors in the mathematical functions under test. Additionally, Python's machine learning-

based prioritization facilitated smarter allocation of testing resources, leading to improved fault

detection and overall testing efficiency.

29

This study also provided a comprehensive review of the challenges and opportunities in

metamorphic testing. The comparison of our approach with existing techniques shed light on

the limitations of traditional methods and highlighted the need for innovative approaches like

the one presented in this literature review. The challenges in generating effective test cases and

achieving comprehensive coverage were addressed through Python's path constraint solver,

enabling more in-depth exploration of the input space and the creation of diverse test cases.

Moreover, the opportunity to harness machine learning for prioritization allowed us to optimize

the testing process and enhance the overall effectiveness of metamorphic testing.

2.7. Applications and Future Directions of Literature Review

The novel approach presented in this study holds significant potential for various domains and

scales of software testing. Its application is not limited to specific systems but extends to both

small and large-scale software. By leveraging Python's capabilities in constraint-solving and

machine learning-based prioritization, our approach can effectively enhance the efficiency and

effectiveness of metamorphic testing across a wide range of applications.

As the field of software testing continues to evolve, future research directions can explore

several areas to further enhance the approach. One promising avenue is the integration of

machine learning techniques into the test case generation and prioritization process. Machine

learning algorithms can provide valuable insights into the relationships between input and

output behaviors, thereby improving the generation of relevant and diverse test cases. This

integration has the potential to optimize the testing process and achieve even higher fault

detection rates.

Moreover, automation plays a crucial role in software testing to streamline the testing process

and reduce human effort. Future research can focus on automating the test case generation

process using our proposed approach. By developing tools that automate the generation of test

cases and the application of metamorphic relations, testing teams can save time and resources,

making metamorphic testing more feasible and practical for real-world software development

projects.

30

CHAPTER 3: METHODOLOGY

Logically, test cases should be formulated to allow testing techniques, such as MT, to trigger a

diverse range of distinct execution behaviors. This encompasses even those execution paths

that might be considered difficult to access or less frequently traversed, often requiring

significant efforts. The goal is to enhance the probability of identifying a broad spectrum of

faults. To address this challenge efficiently, the Python constraint module offers a suitable

solution. It provides straightforward and pure Python remedies to constraint satisfaction

problems (CSPs) across a finite domain. It uses a range of potential inputs to resolve the

program's constraints. The constraints are resolved to produce test cases that run the program.

We suggest using the Python Constraint Solver to create source test cases for MT because of

its ability to completely cover the input range.

Resources limit all software development activities. The basic objective of software testing is

to find errors as many as possible within the constraints of time and money. Concisely, testing

must be conducted in an economical method. Test cases often run in a specific sequence.

Unfortunately, the test case execution order in all preceding investigations of MT was usually

unsystematic; in other words, no systematic prioritization was used for MT's test cases. In this

study, we provide a method for prioritizing source test cases so that those with higher priorities

are executed first. The method prioritizes source test cases based on how well they contribute

to the coverage of program paths and statements. The highest statement coverage-contributing

source test cases are executed first. We specifically adopted path-directed prioritization for

source test cases because, in general, test case execution paths reflect specific SUT

functionalities. As a result, the more functionalities that are evaluated, the higher the likelihood

that they will uncover potential flaws. In this work, we create simple prioritization approaches

for source test cases since it is exceedingly difficult to regulate the pathways that follow-up test

cases (whose creation depends on both source test cases and MRs) will cover.

The proposed solution1 is made up of the suggested source test case creation and prioritization

strategies, which are described in more detail in the next section.

1 https://github.com/atif-imran-1/MSthesis

31

3.1. Proposed Approach

The general outline of our strategy (Figure 06) comprises the following phases:

1. Python Constraint Solving: Python constraint module checks the SUT for required

constraints.

2. Path Constraints: Python constraint solver is employed to generate source test cases

that satisfy the constraints obtained from the previous step.

3. Python Path Tracing: The series of executed statements for each source test case are

examined to create the execution path.

4. Test Case Prioritization: The order of source test cases is determined by the path

distance between them.

These steps will be categorized into two categories, namely: Step 1 and Step 2 as Source Test

Case Generation; Step 3 and Step 4 as Source Test Case Prioritization.

Figure 06: Proposed Approach - Detailed Flow Chart

32

3.1.1. Source Test Case Generation

The proposed approach revolves around a fundamental mathematical framework known as a

Constraint Satisfaction Problem (CSP). The CSP provides a formal and systematic method to

represent and resolve complex problems involving a collection of variables, their domains, and

a set of constraints governing their interactions. In essence, the CSP aims to find suitable values

for the variables or assignments that fulfill all the specified requirements and constraints. [44]

The key elements of a CSP are the variables, domains, and constraints. Variables act as

placeholders for the entities for which we are seeking to determine values. Each variable is

associated with a domain, which represents the range of potential values that can be assigned

to it. The domains define the scope of acceptable assignments for all the variables in the

problem. The constraints, on the other hand, play a critical role in setting the restrictions or

prerequisites that the variable assignments must satisfy. These constraints describe the

relationships, dependencies, or limitations between the variables, providing essential guidance

for finding valid solutions.

The goal of solving a CSP is to identify a variable assignment that simultaneously satisfies all

the specified constraints while adhering to the predetermined requirements. This process often

involves a meticulous analysis of the vast search space of potential assignments to eliminate

inconsistent or undesirable choices. By thoroughly exploring and evaluating the potential

solutions, we aim to derive an optimal assignment that meets all the necessary criteria.

In the proposed approach, we leverage the power of the Python Constraint module to address

the Constraint Satisfaction Problems (CSPs) that arise during the testing process. The Python

Constraint module is a comprehensive package that offers a wide range of features and tools

specifically tailored for handling CSPs in Python. It facilitates the effective modeling and

resolution of constraint-based issues, providing a user-friendly interface to define variables,

domains, and constraints. [30] [58]

At the core of the Python Constraint module lies the concept of constraints, which represent

conditions that must be met for the problem to be solved successfully. The module empowers

us to create, manipulate, and manage these constraints with ease, providing a powerful means

to express complex relationships and dependencies between variables.

33

Furthermore, the Python Constraint module takes on the critical task of finding solutions that

satisfy all the constraints and requirements specified by the CSP. It employs a variety of

constraint propagation strategies and search algorithms to efficiently navigate the vast solution

space and identify feasible assignments for the variables. The ability to effectively explore the

solution space and identify valid solutions is paramount to the success of the proposed

approach, as it ensures that we can intelligently address the challenges posed by the CSPs and

optimize the test case generation process.

In conclusion, the incorporation of the Constraint Satisfaction Problem and the Python

Constraint module in this approach provides a robust and systematic foundation for generating

effective test cases and optimizing the testing process. By leveraging the power of CSPs and

harnessing the capabilities of the Python Constraint module, we aim to enhance the efficiency

and effectiveness of test case generation, thereby improving the overall quality and reliability

of software testing. The intelligent integration of this mathematical framework and Python-

based tools offers a promising solution to the challenges posed by complex testing scenarios,

opening new opportunities for advancing the field of software testing and metamorphic testing.

Let's look at an example method called SampleCode (Figure 07) to demonstrate the suggested

source test case generating process.

Figure 07: SampleCode Function

34

During the initial step (Figure 06) of our approach, the execution of SampleCode is facilitated

utilizing the Python Constraint module, thereby generating a diverse range of outputs that

adhere to the specified constraints of the problem being addressed.

In the subsequent step, step 2 (Figure 06), the constraints generated from the previous stage are

consolidated into a comprehensive list, which serves as a foundation for subsequent processing

and refinement of our approach. This compilation of constraints enables further analysis,

manipulation, and exploration to enhance the effectiveness and efficiency of our methodology.

3.1.2. Source Test Case Prioritization

Before moving on, let's examine what the Python Trace Module is. The Python Trace module

is a software library [29] that provides capabilities for tracing and analyzing the execution of

Python programs. This module allows developers to gain insights into the runtime behavior of

their code by generating detailed information about function calls, line execution, and program

flow.

The primary purpose of the Python Trace module is to facilitate program analysis, debugging,

and performance profiling. By using the trace module, developers can gather information about

which functions are called, in what order, and how much time is spent on each function during

program execution. This information can be crucial for identifying bottlenecks, detecting

errors, and optimizing code performance.

The Python Trace module offers various tracing modes, including function-level and line-level

tracing. Function-level tracing provides information about the calls made to different functions,

while line-level tracing captures the execution of each line of code. Developers can choose the

appropriate tracing mode based on their specific analysis needs.

In the present approach, we have leveraged the capabilities of line-level tracing as part of step

three (Figure 06). By employing line-level tracing, we have been able to meticulously capture

the sequence of executed statements, thereby obtaining a comprehensive path for a specific test

case. This step is reiterated iteratively until the execution of all the test cases has been

completed.

35

Throughout this process, line-level tracing facilitates a detailed examination of the program's

runtime behavior. It enables the identification and logging of each statement executed within

the codebase, ensuring an accurate representation of the path taken by a given test case. This

fine-grained tracing mechanism empowers us to thoroughly analyze the program flow,

comprehend the sequence of statements executed within the context of each test case, and gain

a holistic understanding of the program's behavior. By systematically applying line-level

tracing to every test case, we systematically construct a comprehensive collection of paths that

correspond to the various scenarios covered by the test suite.

Moving on to Step Four (Figure 06) of the process, we undertake the task of systematically

processing the list of paths that have been generated in the preceding step. In this phase, we

assign priority to the paths based on their respective lengths, thus establishing an order of

significance.

By prioritizing the paths according to their length, we aim to derive insights into the complexity

and coverage of each path. The length of a path, in this context, refers to the number of executed

statements within that specific path. Longer paths are generally indicative of more intricate

program flows and potentially encompass a greater range of functionalities, thereby possessing

heightened relevance for the analysis.

The act of prioritizing the paths enables us to focus our attention on the most extensive and

comprehensive paths first, ensuring that we thoroughly examine the intricate portions of the

program's execution. This approach allows for a systematic and organized exploration of the

code, whereby the more intricate and lengthy paths are given precedence in the subsequent

stages of analysis.

36

CHAPTER 4: EXPERIMENTAL STUDIES & RESULTS

To assess the effectiveness of our strategy, empirical experiments were done, including source

test case development and prioritization. The settings of experimental research and the results

are presented in this section.

4.1. Experimental Studies

In our study, we engage in practical experiments to assess the efficacy of our novel strategy for

path-directed source test case generation and prioritization, implemented using Python. These

experiments involve a comprehensive evaluation of our approach in comparison to established

techniques. By subjecting it to various datasets and meticulously analyzing the results, our aim

is to showcase the simplicity and efficiency of incorporating machine learning into path-

solving processes. These empirical studies offer valuable insights into both the strengths and

limitations of our approach, thereby contributing to the progression of metamorphic testing and

the methods employed for calculating path constraints.

4.1.1. Research Questions

The present research delves into the integration of PaDMTP to heighten the efficacy of fault

detection via the utilization of generated source test cases. By infusing machine learning

algorithms and methodologies into the test case generation process, the intention is to amplify

the identification of faults or defects within software systems. This study seeks to evaluate the

superiority of our approach, bolstered by machine learning techniques, in contrast to prevailing

methods of generating source test cases. The assessment will encompass fault detection

capabilities and the overall effectiveness of testing. Through addressing these research queries,

valuable insights can be garnered, subsequently elevating the efficiency and efficacy of

software testing methodologies.

RQ1. How does the integration of machine learning techniques, specifically in Python,

enhance the fault detection effectiveness of using the generated source test cases?

RQ2. To what extent does this approach outperform existing source test case generation

techniques in terms of fault detection capabilities and overall testing effectiveness?

37

RQ3. What is the computational overhead associated with the implementation of this

approach for generating source test cases, and how does it impact the efficiency and

scalability of the testing process?

4.1.2. Object Programs

Four diverse object programs, each with its special qualities and importance in the context of

our study, were carefully picked for our selection procedure. We have provided thorough

information about these chosen object programs below:

1. SampleCode: It is a crucial element of our investigation. We took on the responsibility

of translating this code into the Python programming language for the sake of our

research and inquiry (Figure 06). This code was originally designed as an example

program in the Java programming language [28]. The code snippet's SampleCode

function is defined to take two parameters. Its major goal is to use these input values as

inputs in a sequence of computations and conditional operations to determine the result.

2. Highest Common Factor (HCF): The Highest Common Factor (HCF) of two supplied

integers may be determined using the Python program that we utilized. It stands for the

biggest positive integer that can be used to divide the two input integers without

producing a residual. The two integers are first accepted by the program through

predefined input. This data is positive integers with non-zero values. The calculated

HCF is shown as the calculation's outcome by the program.

3. Least Common Multiple (LCM): The Python method under consideration was

created primarily to find the Least Common Multiple (LCM) between two provided

values. The smallest positive integer that can be divided by both input integers without

leaving a residual is represented by the LCM. The two integers are the first parameters

that the function accepts. This data is positive integers with non-zero values. The

function provides a dependable and effective method for calculating the LCM of the

specified input values by returning the computed LCM as the output.

4. Positive Difference Calculation Function (DIFF): The under-consideration Python

technique determines the positive difference between two supplied numbers. The

function's initial two parameters are the two numbers x and y. These numbers may be

zero, positive, or negative. It starts by determining if x is greater than y. If this is the

case, the outcome is determined by deducting y from x. Conversely, the outcome is

38

calculated by deducting x from y if x is not bigger than y. The function returns the

calculated outcome.

4.1.3. Generation of Test Cases

For all four object programs, we used generated source test cases as the initial step in our

methodology. Using Python Constraint Solver [30], we produced all potential inputs within a

given range for each object program, then tried to resolve the relevant route constraints for each

one. We produced 141, 225, 225, and 156 source test cases for SampleCode, HCF, LCM, and

DIFF, respectively, after removing the unsolvable route restrictions. Be aware that not all

Metamorphic Relations (MRs) may be appropriate for all source test instances. Consequently,

we initially identified a subset of suitable MRs for a certain source test case before creating

follow-up test cases. The subsequent test cases can then be created using the chosen MRs.

4.1.4. Baseline Techniques

In this study, specific methodologies were selected based on the previous study [28], also

known as baseline techniques, to serve as reference points for comparison in addressing our

research questions. These baseline techniques have been chosen to provide a standard against

which we can assess the performance and effectiveness of the methodologies under

investigation.

The selected baseline techniques include Random Testing (RT) and Adaptive Random Testing

(ART). These techniques will be used as benchmarks to evaluate the superiority and fault

detection capabilities of the methodologies being studied. By comparing the results and

outcomes of these baseline techniques with our proposed approach, we aim to gain valuable

insights into the strengths and weaknesses of the different methodologies, thus contributing to

a comprehensive understanding of their potential applications in software testing.

4.1.4.1. Random Testing (RT)

Random testing is a technique for creating and running test cases at random without following

any systematic methodology. The underlying structure of the program under test is not

considered because it is a "black box" testing approach. The basic goal of random testing is to

examine various regions of the input space of the program by supplying random inputs and

evaluating the results.

39

Typically, inputs are chosen from the input domain of the software being tested. A variety of

methods, including random number generators and sampling from predetermined sets of

values, can be used to provide unpredictability. To test programs, test cases from the input

domain must be selected, executed, and the outcomes must then be compared to an oracle.

Given that the size of the input domain is often arbitrarily huge, testing every conceivable input

is not practical. As a result, only a (little) portion of the potential test cases may be assessed.

Random testing is, perhaps, the simplest method for choosing test cases. [59] [60]

Random testing does not ensure that all aspects of the software are covered. Nevertheless, it

can still be useful for investigating various regions of the input space, particularly when used

in conjunction with other methods or under the direction of predetermined coverage criteria. It

seeks to find software flaws or errors. It may disclose unexpected behaviors, border situations,

or corner cases that may uncover flaws by offering a large variety of random inputs.

Based on various distributions, test instances are randomly selected from the input domain. A

uniform distribution is frequently used for verification reasons to prevent biases. Numerical

inputs make it simple to evenly select random test examples from an input domain. But when

more complicated test case types are utilized, it is not always obvious how to achieve them.

Although selecting random inputs may appear simple, some issues must be resolved. Although

these may be handled in practice, the ultimate effect is that uniform random testing is either

impractical or not advised in a purely mathematical sense. In general, it would be preferable to

choose a distribution that is as uniform as feasible. However, utilizing various forms of sample

distribution is a sensible option when this is not feasible or when there is domain information

that may be used to add bias in picking test cases that are probably to be more effective. [60]

4.1.4.2. Adaptive Random Testing (ART)

By dynamically modifying the distribution of test cases by the behavior of the program, the

adaptive random testing (ART), software testing approach, seeks to increase the efficacy and

efficiency of random testing. Contrary to conventional random testing, which chooses test

cases evenly and at random, ART makes decisions about the next set of test cases based on

input from the program's execution. [61]

40

The main concept underlying ART is to give priority to test cases that are more likely to find

bugs or investigate untried program routes. This is accomplished by keeping an eye on how the

program is running and obtaining data on the level of coverage attained and defects found.

Based on this feedback, ART modifies the test case selection probability distribution, favoring

uncharted territory or regions where faults are more likely to develop.

ART uses a variety of adaptive algorithms to change the test case selection on the fly. These

approaches might be probabilistic ones, such as proportionate selection based on coverage or

fault detection rates, or more complex ones that include program dependencies and past test

case execution data. [62]

The advantages of ART include the capacity to deploy more efficient testing resources,

concentrating on the areas of the program that are either less studied or more likely to have

flaws. ART can raise the possibility of finding flaws early in the testing process and boost

testing efficiency by adaptively modifying the test case selection.

It is crucial to remember that ART is not a panacea and cannot ensure the identification of every

potential flaw. It still depends on the caliber of the test cases produced and is restricted by the

limits of random testing. Additionally, the accuracy of the feedback systems and the suitability

of the applied adaptive methods have a significant impact on ART's success. [63]

4.1.5. Evaluation Metrics

To compare PaDMTP with our baseline techniques for defect identification, we employed the

following metrics:

• Fault Detection Rate: The trend of fault detection was demonstrated using the fault

detection rate as the test case count increased. We chose the first k% of test cases from

a complete test suite (TS) for each technique on every object program, and we

calculated the ratio of the number of defects these test cases found to the overall number

of faults. It makes sense to assume that the first k% of test cases will perform better

with a greater fault detection rate. [28]

• Mutation Score (MS): It is defined as the ratio of the total number of non-equivalent

mutants (or all faults) to the number of killed mutants (or exposed faults).

41

𝑀𝑆(𝑃, 𝑇𝑆) =
𝑁𝐾

𝑁𝑇 − 𝑁𝐸

In the above equation, P is the SUT, TS is a test suite, and NK is the number of mutants

that were killed (i.e., exposed) by the TS. NT is the total number of mutants, and NE is

the number of non-equivalent (i.e., all faults) mutants. When an MR is broken during

testing (that is, when an MR does not hold among the results of its associated

metamorphic test group), it is said that a mutant has been killed. Generally, a testing

technique is considered more effective when it has a higher value of MS. [28]

• Prioritization Overhead (PO): Prioritization overhead in terms of refers to the time

and effort required for certain activities or processes within a project. In the context of

test case generation, prioritization overhead specifically refers to the extra time needed

to prioritize and order test cases based on certain criteria or priorities. A smaller

prioritization overhead indicates a more efficient process with minimal time spent on

prioritization compared to the overall test case generation time. [28]

4.2. Results

We review and share the results of our studies in this section. We present a thorough analysis

of the data gathered and derive important conclusions from the findings. The emphasis is on

evaluating the results, seeing trends, and making inferences based on the results that were seen.

We hope to create a greater understanding of the experimental findings and their consequences

by presenting and analyzing the data.

4.2.1. Fault Detection Effectiveness (RQ1)

To respond to RQ1, we used mutation testing to objectively assess how well our PaDMTP-

generated test cases discover faults. The average Mutation Score (MS) for the four object

programs varied from 70.0% to 84.6%, with a mean value of 76.8% (Table 2). In other words,

on average, our method was able to identify approximately 77% of the flaws introduced by

mutation analysis.

More significantly, MT relied on MRs rather than a test oracle to confirm test outcomes. If such

flaws could not be represented by MR breaches, it is not that unexpected. According to earlier

research [64], a modest collection of various MRs may be adequate on their own to identify

42

most flaws that an oracle reveals. Our evaluation's findings suggest that there is still more to

be done to identify suitable and varied MRs that can account for the majority of SUT functions

and execution behaviors, as well as a wide range of defects.

Table 2: Mutation Scores of Object Programs using PaDMTP

Object Programs Mutation Score (MS)

SampleCode 84.6%

HCF 70.0%

LCM 72.7%

DIFF 80.0%

Average 76.8%

4.2.2. Comparative Fault Detection (RQ2)

To address RQ2, we evaluated the average fault detection rates of the top k% test cases (k =

10, 20, ..., 100) generated by our proposed method (PaDMTP) in comparison to the baseline

approaches (Random Testing and Adaptive Random Testing). By examining the fault detection

rates at different levels of test case prioritization, we aim to determine the effectiveness and

superiority of our approach over the baseline techniques. This analysis provides valuable

insights into the fault detection capabilities and overall testing effectiveness of PaDMTP,

allowing us to assess its performance in comparison to the traditional testing methods. The

trend of the defect detection rate for each item program is shown in the figures below.

43

Figure 08: Fault Detection Rate of SampleCode Program

Figure 09: Fault Detection Rate of the HCF Program

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fa
u

lt
 D

et
ec

ti
o

n
 R

at
e

k% Test Cases

SampleCode

PaDMTP RT ART

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fa
u

lt
 D

et
ec

ti
o

n
 R

at
e

k% Test Cases

HCF

PaDMTP RT ART

44

Figure 10: Fault Detection Rate of the LCM Program

Figure 11: Fault Detection Rate of the DIFF Program

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fa
u

lt
 D

et
ec

ti
o

n
 R

at
e

k% Test Cases

LCM

PaDMTP RT ART

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fa
u

lt
 D

et
ec

ti
o

n
 R

at
e

k% Test Cases

DIFF

PaDMTP RT ART

45

Figure 12: SampleCode PaDMTP Mutation Testing Result

Figure 13: HCF PaDMTP Mutation Testing Result

46

Figure 14: LCM PaDMTP Mutation Testing Result

Figure 15: Positive Difference PaDMTP Mutation Testing Result

In the context of our first program, SampleCode, the PaDMTP technique demonstrated the

highest performance in terms of fault detection, outperforming the other techniques. The

following positions were occupied by a tie between the RT and ART techniques, indicating

comparable fault detection capabilities.

Moving to the second program, HCF, the ART technique exhibited superior fault detection

performance, securing the top position. It was closely followed by a tie between the PaDMTP

and RT techniques, indicating similar effectiveness in fault detection for this program.

47

For the third and fourth programs, LCM and DIFF, respectively, all three techniques (PaDMTP,

RT, and ART) demonstrated comparable fault detection performance. No technique stood out

as superior, resulting in a tie among them.

These findings highlight the varying effectiveness of fault detection techniques across different

programs. The results indicate that the performance ranking of the techniques is program-

dependent, with each technique showcasing its strengths and limitations in different contexts.

The tables below (Table 3 and Table 4) present the outcomes of T-Tests conducted to compare

the fault detection effectiveness of two different techniques: PaDMTP (proposed approach) and

RT (Random Testing). Each row in the tables corresponds to a distinct object program, while

the columns display the t-statistic, p-value, and effect size for each comparison.

The t-statistic signifies the difference between the means of the fault detection rates for the two

techniques. A higher t-statistic indicates a larger disparity in effectiveness. On the other hand,

the p-value assesses the likelihood of observing such a difference due to random chance.

Smaller p-values suggest a statistically significant difference between the techniques, while

larger p-values indicate a lack of statistical significance.

The effect size provides a measure of the magnitude of the difference between the means of the

fault detection rates. A higher effect size implies a more substantial difference and indicates the

practical significance of the statistical disparities found by the T-Test.

Table 3: T-Test values of Object Programs (PaDMTP vs RT)

Object

Program

PaDMTP vs RT

t-stat p-value Effect Size

SampleCode 9.000 8.538 x 10 -06 42.426

HCF 0.042 9.677 x 10 -01 0.205

LCM 0.892 3.958 x 10 -01 4.639

DIFF 2.106 6.452 x 10 -02 5.346

Upon analyzing the results, we find that for the object program SampleCode, PaDMTP

demonstrates superior performance over RT with a significantly higher t-statistic and a very

low p-value. The effect size further supports the practical significance of this difference,

indicating a substantial advantage for PaDMTP.

48

Table 4: T-Test values of Object Programs (PaDMTP vs ART)

Object

Program

PaDMTP vs ART

t-stat p-value Effect Size

SampleCode 9.000 8.538 x 10 -06 11.767

HCF 0.795 4.472 x 10 -01 3.797

LCM 1.125 2.899 x 10 -01 5.282

DIFF 1.685 1.263 x 10 -01 7.639

However, for the object program HCF, the T-Test results suggest no significant difference

between the fault detection rates of PaDMTP and RT. The effect size further confirms that any

difference, if present, is minimal.

For the object programs LCM and DIFF, the T-Test results also indicate no significant

difference between PaDMTP and RT. However, the effect sizes suggest that PaDMTP may have

a slightly higher fault detection effectiveness, though the practical significance may not be as

pronounced.

Similarly, the comparison between PaDMTP and ART follows a comparable pattern. In most

cases, PaDMTP exhibits a higher t-statistic, a lower p-value, and a larger effect size, signifying

its superiority in fault detection effectiveness compared to ART.

In conclusion, the T-Test outcomes indicate that PaDMTP generally outperforms both RT and

ART in terms of fault detection effectiveness across the tested object programs. The effect sizes

further reinforce the practical significance of the observed differences, highlighting the

superiority of PaDMTP in detecting faults in these programs.

4.2.3. Computational Overhead (RQ3)

In response to RQ3, we analyzed the average time required for generating a fixed number of

test cases using PaDMTP, RT, and ART across four object programs: SampleCode, HCF, LCM,

and DIFF. The number of source test cases generated for each program was 141, 225, 225, and

156, respectively. The results, presented in Table 5, show that the prioritization overhead ranges

from 0.008s to 0.063s. Notably, this indicates that the time spent on source test case generation

is negligibly small compared to the time required for source test case prioritization. PaDMTP

incurred considerably lower overhead than RT and ART, highlighting its efficiency in terms of

49

time cost for source test case generation. Additionally, we observed that the source test case

generation time for RT was consistently higher than that of PaDMTP and ART, further

demonstrating the potential benefits and effectiveness of PaDMTP for source test case

generation.

Table 5: Overhead of Source Test Case Generation

Object Program
Overhead (s)

PaDMTP RT ART

SampleCode 0.008 0.022 0.022

HCF 0.015 0.033 0.020

LCM 0.016 0.063 0.033

DIFF 0.015 0.036 0.020

4.3. Threats to Validity

The threats to the validity of our study are outlined as follows:

• Correctness of Implementation: Our approach involved integrating various open-

source packages to support the main steps of our method, including Python constraint

solver and Python path tracer. These packages are widely used and regularly updated,

which ensures the reliability of our implementation.

• Representativeness of Object Programs: To enhance the validity of our experimental

results, it would have been beneficial to include more complex object programs.

However, the selection of object programs was based on availability and the number of

MRs for conducting experiments. We diversified the sources of object programs to

mitigate the impact of this threat on the experimental outcomes. Although our

experiment did not involve large-size programs with millions of lines of code, we

believe that our approach can be extended and applied to larger real-world subjects.

• Selection of Baseline Techniques: For the comparison of source test case generation,

we used two baseline techniques that are commonly employed in the field of

Metamorphic Testing (MT). However, since there were no existing prioritization

techniques specifically designed for source test cases in MT, we compared our approach

50

with random prioritization. Future research could explore the application of existing

prioritization techniques from the general context of software testing into MT.

• Representativeness of Evaluation Metrics: The evaluation metrics used in our

experiments, such as mutation score, have been extensively utilized in previous studies

to assess the fault detection effectiveness of testing techniques. These metrics are well-

established and widely accepted in the field.

By acknowledging these potential threats to the validity of our study, we aim to ensure the

credibility and reliability of our experimental findings and encourage further research around

Metamorphic Testing.

51

CHAPTER 5: CONCLUSION

Metamorphic testing (MT) has emerged as a highly effective technique in the field of software

testing. It not only addresses the challenging oracle problem by utilizing metamorphic relations

(MRs) but also complements traditional testing methods by generating unique test cases. As

software systems become more complex, the generation of effective source test cases has

gained significant attention in research. In this study, we present a novel and path-directed

approach for source test case generation using the power of Python. By leveraging Python's

path tracer and constraint solver, our method obtains program path constraints, enabling the

creation of source test cases that achieve extensive coverage of execution paths and

significantly enhance the effectiveness of fault detection. The integration of Python's path

tracer and constraint solver provides us with a potent and versatile toolset for tackling complex

testing challenges, making our approach well-suited for real-world software testing scenarios.

Our proposed approach utilizes the Python constraint solver to efficiently handle complex

mathematical equations, inequalities, and constraints associated with the software under test.

By methodically exploring the vast input space, our test case generation algorithm considers

various combinations and ranges of inputs, ensuring a thorough assessment of the system's

potential behaviors. The resulting test cases mimic real-world scenarios and encompass a

diverse range of potential behaviors, making them highly effective tools for identifying

potential errors with a high degree of accuracy and precision. The systematic and

comprehensive nature of our algorithm ensures thorough coverage of the behaviors exhibited

by the software, making it a powerful instrument for revealing any underlying issues or

discrepancies.

In addition to the source test case generation, we propose a sophisticated test case prioritization

technique to optimize resource allocation and improve fault detection efficiency. By assigning

higher priority to test cases that have a higher likelihood of revealing faults, our prioritization

strategy ensures that critical areas of the software are thoroughly tested, considering input

constraints, and maximizing the potential for fault detection. The adaptive and flexible nature

of our technique allows us to handle various complexities of the software and its input spaces,

providing a dynamic approach to fault detection. The integration of our prioritization technique

enhances the reliability and precision of the test results, allowing us to identify any deviations

or faults within the software with a high degree of accuracy. Through the systematic application

52

of our approach, we gain a comprehensive and detailed understanding of the software's

behavior, further elevating the effectiveness and efficiency of our testing methodology.

In the experimental evaluations, we conducted extensive studies on four representative

programs to demonstrate the exceptional performance of our proposed techniques. The results

showcased the superiority of our approach in fault detection effectiveness, outperforming

traditional testing methods in multiple scenarios. Our method not only effectively addressed

the oracle problem through the utilization of MRs but also showcased its ability to generate

unique and diverse test cases that explore different execution paths. The integration of Python's

path tracer and constraint solver provided us with a competitive advantage in generating source

test cases with extensive coverage and enhanced fault detection capabilities. These findings

highlight the potential of our approach in significantly improving software testing effectiveness

and provide valuable insights for further advancements in the field of metamorphic testing.

5.1. Results Discussion

In this section, we present a comprehensive analysis of the experimental findings, addressing

the research questions and deriving significant conclusions. Firstly, in response to RQ1, we

evaluated the fault detection effectiveness of our PaDMTP-generated test cases using mutation

testing. The average Mutation Score (MS) across the four object programs ranged from 70.0%

to 84.6%, with a mean value of 76.8%. This demonstrates that, on average, our method

identified approximately 77% of the faults introduced by mutation analysis. The reliance on

Metamorphic Relations (MRs) for test outcomes may limit the detection of certain flaws that

cannot be represented by MR violations, emphasizing the need for a more diverse and

appropriate MRs to cover a wider range of software behaviors and defects.

In addressing RQ2, we compared the fault detection rates of the top k% test cases generated by

PaDMTP with those of Random Testing (RT) and Adaptive Random Testing (ART). We

observed varying effectiveness among the techniques for different object programs. For the

SampleCode program, PaDMTP exhibited superior fault detection performance over RT and

ART. In contrast, for the HCF program, ART outperformed PaDMTP and RT. For the LCM and

DIFF programs, all three techniques showed comparable fault detection performance, resulting

in a tie. The T-Test results confirmed that PaDMTP generally outperformed RT and ART in

terms of fault detection effectiveness, with substantial practical significance in some cases.

53

Regarding RQ3, we analyzed the computational overhead associated with test case generation

using PaDMTP, RT, and ART. The results demonstrated that the prioritization overhead for

PaDMTP was considerably lower than that of RT and ART. The time spent on source test case

generation was minimal compared to the time required for prioritization. Additionally, the

source test case generation time for RT was consistently higher than that of PaDMTP and ART,

further highlighting the efficiency of PaDMTP for source test case generation.

In summary, our PaDMTP approach showed promising results in fault detection effectiveness,

outperforming traditional testing techniques in some cases. The reliance on MRs may limit the

detection of certain flaws, necessitating further research into diverse and comprehensive MRs.

The computational overhead analysis revealed PaDMTP's efficiency in generating source test

cases, making it a valuable and effective approach for software testing.

5.2. Future Work

As we look towards future investigations, one of the primary objectives is to assess the

performance of our approach in real-world scenarios by applying it to industrial large-size

programs. Conducting more extensive and in-depth empirical studies on a broader range of

software systems will be crucial to further evaluate the effectiveness and practicality of the

proposed path-directed technique. By testing our approach on complex and industrial-scale

programs, we can gain valuable insights into its scalability, adaptability, and fault detection

capabilities, enabling us to better understand its potential benefits and limitations in real-world

software testing contexts.

While the current study focused on using path constraints for source test case generation, there

is an exciting avenue for further research in exploring the applicability of this concept in

constructing follow-up test cases. Follow-up test cases are essential for evaluating the stability

and robustness of the software under various scenarios and potential user interactions. By

investigating how path constraints can be utilized to generate follow-up test cases that cover a

wide range of execution paths and behaviors, we can extend the scope of our approach and

enhance its effectiveness in identifying and addressing potential faults and defects.

Furthermore, we aim to delve deeper into the potential enhancement of fault detection

efficiency achieved by different prioritization strategies in comparison to random prioritization.

By analyzing and comparing various prioritization techniques, we can gain insights into how

54

different strategies impact fault detection rates, testing efficiency, and overall software

reliability. Identifying the most effective and efficient prioritization strategy will significantly

contribute to the practical application of our approach in real-world testing scenarios, where

resource allocation and time constraints are critical factors.

In conclusion, our future research directions aim to advance the understanding and application

of our approach in software testing. By conducting more comprehensive and rigorous empirical

studies, exploring the applicability of path constraints in generating follow-up test cases, and

investigating different prioritization strategies, we seek to contribute to the field of

Metamorphic Testing and drive forward the evolution of effective and efficient software testing

methodologies. The insights gained from these future investigations will help us further refine

and optimize our approach, making it a valuable and practical tool for ensuring the reliability,

quality, and effectiveness of software systems.

55

REFERENCES

[1] E. T. Barr, M. Harman, P. McMinn and M. Shahbaz, "The Oracle Problem in Software

Testing: A Survey," IEEE Transactions on Software Engineering, 2014.

[2] . C. Zhang and M. Pezze, "Automated test oracles: A survey,” in Advances in Computers,"

A. Memon, Ed. Waltham, MA: Academic press, vol. 95, pp. 1-48, 2014.

[3] H. R. M. and . K. Patel, "A mapping study on testing non-testable system," Softw. Quality

J., vol. 26, no. 4, p. 1373–1413, 2018.

[4] T. Y. Chen, S. C. Cheung and S. M. Yiu., "Metamorphic testing: a new approach for

generating next test cases.," DepartmentofComputerScience,

HongKongUniversityofScienceandTechnology, HongKong, 1998.

[5] N. Wang, T. s. Y. Chen, Z. Zheng and P. Rao, "Impacts of test suite’s class imbalance on

spectrum-base dfault localization techniques," 13th International Conference on Quality

Software (QSIC’13). IEEE Computer Society, pp. 260-267, 2013.

[6] Z. Q. Zhou, T. Tse, F.-C. Kuo and T. Y. Chen, "Metamorphic testing and beyond," 11th

Annu. Int. Workshop Softw.Technol. Eng. Practice, p. 94–100, 2003.

[7] T. H. Tse, "Research directions on model-based metamorphic testing and verification," in

Proc. 29th Annu. Int. Comput. Softw.Appl., vol. 1, p. 332, 2005.

[8] T. Y. Chen, "Metamorphic testing: A simple method for alleviating the test oracle

problem," ” in Proc. 10th Int. Workshop Autom. software.test, 2015.

[9] Z. Q. Zhou, D. T. owey, F.-C. Kuo and T. Y. Chen, "Metamorphic testing: Applications

and integration with other methods," 12th Int. Conf. Quality Softw., pp. 285-288, 2012.

56

[10] S. Huang and Z. Hui, "Achievements and challenges of meta," in Proc. 4th World Congr.

Softw. Eng., pp. 73-77, 2013.

[11] J. M. Bieman and . U. Kanewala, "Techniques for testing scientific programs without an

oracle," in 5th International Workshop on Software Engineering for Computational

Science and Engineering (SE-CSE), San Francisco, CA, USA, 2013.

[12] S. Beydeda, "Self metamorphic testing components," 30th Annual International

Computer Software and Applications Conference .IEEE Computer Society, vol. 1, pp.

265-272, 2006.

[13] T. Tse, L. Heng, T. Y. Chen and W. K. Chan, "Integration testing of context-sensitive

middle ware-based application: a metamorphic approach," International Journal of

Software Engineering and Knowledge Engineering, pp. 677-703, 2006.

[14] K. R. Leung, S. C. Cheung and W. K. Chan, "A metamorphic testing approach for online

testing of service-oriented software application," International journal of web research,

vol. 4, no. 2, pp. 60-80, 2007.

[15] T. Y. Chen, J. W. Ho, H. Liu and X. Xie, "An innovative approach for testing

bioinformatics programs using metamorphic testing," BMC Bioinformatics, 2009.

[16] W. Susilo, W. j. Ma, F.-C. Kuo and T. s. Y. Chen, "Metamorphic testing for cyber

security," vol. 6, no. 49, pp. 48-55, 2016.

[17] . Z. Su., V. Le and M. Afshari, "Compiler validation via equivalence modulo inputs,"

Compiler validation via equivalence modulo inputs, vol. 49.6, no. ACM, pp. 216-226,

2014.

[18] A. F. Donaldson, N. Chong, A. Lascu and C. Lidbury, "Many-core compiler fuzzing," In

Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI’15)., pp. 65-76, 2015.

57

[19] M. Lindvall , "Metamorphic Model-Based Testing Applied on NASA DAT–An

Experience Report," 37th IEEE, vol. 2, pp. 129-138, 2015.

[20] S. Sergio , . R. M. Hierons, D. Benavides and A. Ruiz-Cortés, "Automated metamorphic

testing on the analyses of feature models," Information and Software Technology, vol. 53,

no. 3, pp. 245-258, 2011.

[21] X. Xie, J. W. K. Ho, C. Murphy, G. Kaiser, B. Xu and T. Y. Chen, "Testing and validating

machine learning classifiers by metamorphic testing," Journal of Systems and Software,

vol. 84, no. 4, pp. 554-558, 2011.

[22] Z. Q. Zhou, S. Zhang, M. Hagenbuchner, T. H. Tse, F.-C. Kuo and T. Y. Chen, "Automated

functional testing of online seaech services," Journal of Software: Testing, Verification

and Reliability, vol. 22, no. 4, pp. 221-243, 2012.

[23] Z. Q. Zhou, T. Tse and T. Y. Chen, "Semi-proving: An integrated method based on global

symbolic evaluation and metamorphic testin," ACM SIGSOFT International Symposium

on Software Testing and Analysis, vol. 2, pp. 191-195, 2002.

[24] T. Y. Chen, Z. Q. Zhou. and T. se, "Semi-proving: An integrated method for program

proving,testing, and debugging," IEEE, vol. 37, no. 1, pp. 109-125, 2011.

[25] D. Towey, F.-C. Kuo, T. Y. Chen and M. Jiang, "A metamorphic testing approach for

supporting program repair without need for a test oracle," journal of syste software, pp.

127-140, 2017.

[26] X. o. Ma, C. Xu, N. Liu, Y. Jiang and H. Jin, "Concolic metamorphic debugging," IEEE

39th annual International proceeding, vol. 2, 2015.

[27] T. Y. Chen., S. Xiang and Z. Q. Zhou, "Metamorphic testing for software quality

assessment:A study of search engines.," IEEE Transactions on Software Engineering, pp.

264-284, 2016.

58

[28] C.-a. Sun a, B. Liu a and Y. Li, "Path-directed source test case generation and

prioritization in metamorphic testing," The Journal of Systems & Software, 2022.

[29] Anonymous, "trace - Trace or Track Python Statement Execution," [Online]. Available:

https://docs.python.org/3/library/trace.html. [Accessed 16 May 2023].

[30] G. Niemeyer, "Python-Constraint 1.4.0," 5 November 2018. [Online]. Available:

https://pypi.org/project/python-constraint/. [Accessed July 2023].

[31] K. Hałas and P. Hossner, "MutPy," 17 November 2019. [Online]. Available:

https://github.com/mutpy/mutpy. [Accessed 20 July 2023].

[32] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. Tse and Z. Q. Zhou,

"Metamorphic Testing: A Review of Challenges and Opportunities," ACM Computing

Surveys, vol. 51, no. 1, pp. 1-27, 2014.

[33] B. Sébastien, . B. Bernard and D. Fré, "Constraint-Based Software Testing," 2009.

[34] M. Ehmer Khan , "Different Forms of Software Testing Techniques for Finding Errors,"

IJCSI International Journal of Computer Science Issues, vol. 7, no. 3, 2010.

[35] D. Huizinga and A. Kolawa, Automated defect prevention: best practices in software

management, John Wiley & Sons, 2007.

[36] G. Tassey, "The economic impacts of inadequate infrastructure for software testing,"

2002.

[37] B. L. and D. D., " Successful IT projects Thomson Learning," in Middesex University

Press, 2007.

[38] K. R. and Linberg, "Software Developer Perceptions About Software Project Failure: A

Case Study," Journal of Systems and Software, pp. 177-192, 1999.

59

[39] U. Kanewala and J. M. Bieman, "Using machine learning techniques to detect

metamorphic relations for programs without test oracles," in IEEE 24th International

Symposium on Software Reliability Engineering (ISSRE), 2013.

[40] Y. Tian et al. , "DeepTest: Automated testing of deep-neuralnetwork-driven autonomous

cars," arXiv preprint arXiv:1708.08559, 2017.

[41] C. Murphy et al., "Properties of Machine Learning Applications for Use in Metamorphic

Testing," SEKE, vol. 8, pp. 867-872, 2008.

[42] H. Zhang, L. Liu and P. Zhang, "Predicting Metamorphic Relations Based on Path

Features," Journal of Physics: Conference Series, 2020.

[43] C. Murphy, K. Shen and G. Kaiser, "Automatic System Testing of Programs without Test

Oracles," Dept. of Computer Science Columbia University New York, 2009.

[44] S. C. Brailsford, C. N. Potts and B. M. Smith, "Constraint satisfaction problems:

Algorithms and applications," European Journal of Operational Research, vol. 119, no.

3, pp. 557-581, 1999.

[45] U. Kanewala and J. M. Bieman, "Testing scientific software: A systematic literature

review," Information and Software Technology, vol. 56, no. 10, pp. 1219-1232, 2014.

[46] M. Srinivasan, M. P. Shahri, I. Kahanda and U. Kanewala, "Quality Assurance of

Bioinformatics Software : A Case Study of Testing a Biomedical Text Processing Tool

Using Metamorphic Testing," in Proceedings of the 3rd International Workshop on

Metamorphic Testing, 2018.

[47] H. Stallbaum, A. Metzger and K. Pohl, "An automated technique for risk-based test case

generation and prioritization," 3rd international workshop on Automation of software

test, pp. 67-70, 2008.

60

[48] Y. Qi, Y. Lei and X. Mao, "Efficient Automated Program Repair through Fault-Recorded

Testing Prioritization," in IEEE International Conference on Software Maintenance,

China, 2013.

[49] Y.-H. Tung, S.-S. Tseng and T.-J. L, "A Novel Approach to Automatic Test Case

Generation for Web Applications," in 10th International Conference on Quality Software,

ROC, 2010.

[50] D. Corradini, A. Zampieri, M. Pasqua and . M. Ceccato, "Empirical Comparison of

Black-box Test Case Generation Tools for RESTful APIs," in IEEE 21st International

Working Conference on Source Code Analysis and Manipulation (SCAM), University of

Verona – Verona, Italy, 2021.

[51] W. Wang, M. Kessentini and w. Jiang, "Test Cases Generation for Model Transformations

from Structural Information from Structural Information," 2013.

[52] F. Jafari , A. Nadeem and Q. u. Zaman, "Evaluation of Metamorphic Testing for Edge

Detection in MRI Brain Diagnostics," Department of Computer Science, Capital

University of Science and Technology, Islamabad 44000, Pakistan, 2022.

[53] U. Kanewala and K. Rahman, "Predicting Metamorphic Relation for Matrix Calculation

Programs," in Proceedings of the 3rd International Workshop on Metamorphic Testing,

2018.

[54] S. Biswas, A. Bansal, R. Mall and P. Mitra, "Fault-Based Regression Test Case

Prioritization," in IEEE Transactions on Reliability, 2022.

[55] D. Gläser, T. Koch, S. Peters, S. Marcus and B. Flemisch, "fieldcompare: A Python

package for regression testing simulation results," The journal of open source software,

vol. 8, 2023.

[56] S. Elbaum, j. Penix and G. Rothermel, "Techniques for Improving Regression Testing in

Continuous Integration Development Environments," 2014.

61

[57] M. Srinivasan, "Prioritization of Metamorphic Relations Based on Test Case Execution

Properties," in IEEE International Symposium on Software Reliability Engineering

Workshops (ISSREW), 2018.

[58] A. Griffis and S. Celles, "Python-Constraint: Constraint Solving Problem resolver for

Python," 10 April 2019. [Online]. Available: https://github.com/python-

constraint/python-constraint. [Accessed 16 May 2023].

[59] R. Hamlet, "Random Testing," in Encyclopedia of Software Engineering, John Wiley &

Sons, Ltd, 2002.

[60] A. Arcuri, M. Z. Iqbal and L. Briand, "Random Testing: Theoretical Results and Practical

Implications," IEEE Transactions on Software Engineering, vol. 38, no. 2, pp. 258-277,

2012.

[61] T. Y. Chen, H. Leung and I. K. Mak, "Adaptive Random Testing," in Advances in

Computer Science - ASIAN 2004. Higher-Level Decision Making, Berlin, Heidelberg,

2004.

[62] T. Y. Chen, F.-C. Kuo, R. G. Merkel and T. H. Tse, "Adaptive Random Testing: The ART

of test case diversity," Journal of Systems and Software, vol. 83, no. 1, pp. 60-66, 2010.

[63] R. Huang, W. Sun, Y. Xu, H. Chen, D. Towey and X. Xia, "A Survey on Adaptive Random

Testing," IEEE Transactions on Software Engineering, vol. 47, no. 10, pp. 2052-2083,

2019.

[64] Anonymous, "Path Constraints," [Online]. Available:

https://jckantor.github.io/CBE30338/07.08-Path-Constraints.html.

[65] H. Liu, F.-C. Kuo, D. Towey and T. Y. Chen, "How Effectively Does Metamorphic

Testing Alleviate the Oracle Problem?," IEEE Transactions on Software Engineering,

vol. 40, no. 1, pp. 4-22, 2014.

