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Abstract 

 

Metamorphic testing (MT) represents a robust and innovative methodology that adeptly tackles 

the challenge of the oracle problem. It supplements traditional testing methods by generating a 

range of distinct and diverse test cases. However, the generation of effective source test cases, 

along with their prioritization, continues to be an area of active research interest. In response 

to this demand, We suggest an innovative and all-encompassing method for generating and 

prioritizing source test cases. It leverages Python's path tracer and constraint solver to obtain 

program path constraints, empowering the creation of source test cases with extensive coverage 

of execution paths, thereby substantially enhancing fault detection effectiveness. Moreover, the 

proposed approach introduces a sophisticated prioritization technique by assigning higher 

priority to test cases with higher fault detection capability. Through experimental evaluations 

on four representative programs, the proposed approach demonstrates exceptional performance 

and outperforms existing techniques. The incorporation of metamorphic relations enables 

systematic validation of the behavior of mathematical functions, identifying potential 

deviations or faults that may arise. Additionally, the integration of mutation testing provides a 

comprehensive assessment of the approach's effectiveness in fault detection and validation of 

mathematical functions. This research presents a promising and practical solution to the 

challenges associated with generating and prioritizing source test cases in metamorphic testing, 

contributing to the improvement of software testing effectiveness and efficiency. By combining 

various techniques, we aim to improve fault detection capabilities and provide a practical 

solution for testing software systems, addressing the specific challenges in the realm of 

scientific software testing. 

Keywords: Metamorphic testing, Fault Detection Effectiveness, Software Testing
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CHAPTER 1: INTRODUCTION 

Traditional testing methods, including black box testing and white box testing, come with 

inherent limitations. Black box testing centers on the observable behavior of software, often 

neglecting its internal structure, which can hinder achieving comprehensive coverage. On the 

other hand, white-box testing requires a deep understanding of the system's internal workings, 

which may not always be practical or feasible. Consequently, the demand arises for innovative 

testing techniques that can transcend these limitations and enhance the detection of faults. 

In the field of software testing, testers often encounter a significant challenge known as the 

Oracle problem. The Oracle serves as a crucial mechanism for determining the correctness of 

test case outcomes. However, there are instances where the availability of an Oracle is limited, 

or its practical application becomes too costly [1]. Hence, testers are confronted with the 

challenge of grappling with this issue, which introduces barriers to ensuring the precision of 

test case executions. Conquering the Oracle problem becomes imperative to elevate the 

efficacy and efficiency of the software testing process [1] [2] [3]. Metamorphic testing (MT) 

[4] serves as a purposeful technique meticulously designed to address the challenges brought 

about by the Oracle problem in the context of software testing. In contrast to relying on explicit 

input-output behaviors, MT places its focus on meticulously examining the interconnections 

among program outputs. This approach proves to be a practical alternative when a reliable 

oracle is unavailable or difficult to establish. Since its introduction in 1998, MT has attracted 

significant interest within the software testing community, leading to numerous studies 

exploring different aspects of MT. In recent years, Metamorphic Testing has gained even more 

attention and demonstrated its effectiveness in detecting a substantial number of real-life faults. 

The ability of MT to uncover previously unknown faults has surprised the software testing 

community, showcasing its value as a powerful and innovative testing technique. [5] The field 

of metamorphic testing has experienced substantial growth in techniques, applications, and 

assessment studies since its introduction. However, a comprehensive literature review on 

metamorphic testing is still lacking. Existing overviews often reflect the authors' individual 

experiences rather than providing a comprehensive analysis of the available research. 

Therefore, there is a need for a systematic and thorough review that can consolidate and analyze 

the existing body of research in metamorphic testing. Such a review would greatly contribute 

to a deeper understanding of the field and help identify areas for further exploration and 

improvement. [6] [7] [8] [9] and a review of some selected articles [10] [11]. 
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Metamorphic testing (MT) has found extensive application in software testing [12] [13] [14] 

[15] [16] [17] [18] [19] [20] [21] [22]. Within the realm of software engineering, addressing 

the oracle problem bears substantial importance in ensuring the caliber and trustworthiness of 

software systems. By surmounting this challenge, software engineers can construct a reliable 

framework to authenticate and validate the precision and effectiveness of software systems. 

This endeavor culminates in an overall enhancement of their holistic quality and dependability 

[23] [24] [25] [26]. Moreover, Metamorphic testing has been utilized as a validation technique 

[21] and for quality assessment [27]. Metamorphic testing has showcased its efficacy by 

proficiently uncovering actual faults in widely used search engines and other software systems. 

The proposed approach presented in this research paper extends the work of Liu et al. [28]. 

While metamorphic testing (MT) proves to be a valuable technique for overcoming the oracle 

problem and generating effective test cases, it is not without its limitations. A key constraint 

resides in the process of identifying and choosing appropriate metamorphic relations (MRs) 

[28]. The proposed path-directed approach for generating source test cases relies on Path 

constraint solvers, which may impose computational overhead and increase the complexity of 

the testing process, especially for large-scale programs. Another limitation is that the proposed 

prioritization technique, although beneficial for improving test case diversity and efficiency, 

may still require further investigation to explore different prioritization strategies and their 

impact on fault detection efficiency. Overall, while MT offers promising benefits, addressing 

these limitations is crucial for enhancing its practical applicability and effectiveness in various 

software testing scenarios. 

Our proposed approach builds upon the foundation of path-directed source test case generation 

and prioritization in metamorphic testing, introducing innovative techniques to automate test 

case generation, prioritize based on fault detection capability, utilize a Python path constraint 

solver, integrate metamorphic relations, and incorporate mutation testing for comprehensive 

fault detection assessment. By extending the existing methodology, our approach aims to 

enhance the effectiveness and efficiency of metamorphic testing in testing mathematical 

functions. It offers advantages such as improved efficiency, coverage, and prioritization, with 

the accessibility and customization benefits of Python. Empirical studies on benchmark 

programs demonstrate superior fault detection effectiveness, efficiency, and automation, 

making our approach a valuable tool for ensuring correctness and reliability, especially in 

mathematical formulas. 
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1.1. Motivation 

Identifying bugs in certain software types, such as scientific software, can pose specific 

challenges in the field of software testing. Test oracle problem, which refers to the difficulty in 

establishing a reliable reference for determining correct outcomes, further complicates bug 

identification in such scenarios. As a result, addressing the test oracle problem becomes crucial 

to overcome the challenges associated with testing scientific software effectively [1]The 

absence of dependable test oracles capable of ascertaining accurate outputs for diverse inputs 

renders the detection of nuanced faults, isolated errors, or imperfections in scientific software 

a formidable undertaking. As a result, numerous scientific software systems are frequently 

categorized as "non-testable programs" due to the complexities involved in devising efficient 

testing methodologies. [1] 

Metamorphic testing was introduced as a promising technique to address the limitations of 

traditional testing methods and tackle the oracle problem. It offers a unique approach to testing 

by leveraging metamorphic relations, which define the expected behavior transformations of 

the software under test (SUT). By utilizing metamorphic relations, MT provides a practical 

solution to testing scenarios where a reliable oracle is either unavailable or difficult to establish, 

thereby mitigating the challenges associated with the oracle problem [4]. Metamorphic Testing 

(MT) tackles the oracle problem by focusing on the relationship between inputs and outputs, 

rather than directly verifying output correctness for arbitrary inputs. This is achieved using 

metamorphic relations (MRs), which define the expected impact of input modifications on the 

outputs. By assessing whether the MRs hold during testing, any deviations detected can 

indicate the presence of defects within the program. 

This thesis employ Metamorphic Testing (MT) as a complementary approach to anticipate 

Metamorphic Relations (MRs) applicable to mathematical functions. This research aims to 

facilitate the process by providing automated methods for MR prediction, reducing the burden 

on experts and programmers involved in the MR identification process. However, despite the 

potential of metamorphic testing, the identification of suitable metamorphic relations (MRs) 

often requires domain expertise, making it a labor-intensive task that can challenge both 

domain experts and programmers involved. Manual identification of MRs can be time-

consuming and may limit the practical applicability of metamorphic testing, particularly for 

complex software systems such as mathematical functions. 
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By automating MR prediction, this approach aims to enhance the practical applicability and 

efficiency of metamorphic testing for various software systems, including mathematical 

functions. This research also focuses on developing an innovative path-directed methodology 

for generating source test cases, utilizing their associated path constraints extracted from 

symbolic execution. The separation in path distance among test cases is subsequently harnessed 

to guide the prioritization of source test cases, leading to heightened efficiency. This approach 

integrates various techniques, including a path constraint solver implemented in Python, a test 

case generation algorithm, the establishment of metamorphic relations, and a prioritization 

technique for test cases. These findings also unveil intriguing research avenues for enhancing 

metamorphic testing methodologies. 

1.2. Problem Statement 

Software testing occupies a pivotal role within the software development lifecycle, aiming to 

detect and rectify flaws present in software systems. Conventional testing methods, including 

black box and white box testing, while widely used, encounter limitations in achieving 

comprehensive test coverage and addressing the oracle problem. A promising avenue, termed 

metamorphic testing (MT), has emerged, not only addressing the oracle problem but also 

engendering novel test cases through the application of metamorphic relations (MRs). 

Nonetheless, there remains potential for refinement in the domain of generating and prioritizing 

source test cases, a research domain that continues to evolve. 

The creation of efficient test cases that cover a variety of pathways and behaviors in the system 

being tested is one of the main issues in software testing. Existing techniques for creating 

source test cases frequently rely on manual labor, which adds time and increases the possibility 

of human mistakes. To maximize testing resources and boost the effectiveness of fault 

detection, it is also essential to choose test cases according to their fault-detection capabilities. 

Existing prioritization methods, however, do not completely account for the coverage of 

execution routes and might not integrate path-directed methods. 

We propose a unique strategy that uses path-directed methodologies for source test case 

generation and prioritization in metamorphic testing to overcome these difficulties. The 

suggested method obtains program path constraints using a Python path tracer [29] and 

constraint solver [30], allowing for systematic input space exploration and the creation of a 

wide range of test cases. To increase the variety and effectiveness of testing, we also present a 
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prioritization method based on the distance between test cases. In previous studies [28] [29] 

[30] [6] [7] [8] [9] path solving was a challenging task that required complex calculations. 

However, in our research, we have employed machine learning techniques to simplify this 

process significantly. By harnessing the power of machine learning, we have made path-solving 

more accessible and efficient, streamlining the overall computation, and achieving more 

accurate results. The suggested method intends to improve the efficiency of fault identification, 

automation, and overall metamorphic testing performance, making a significant contribution 

to the area of software testing. Our method provides a workable alternative to increase the 

quality and dependability of software systems by automating the test case creation and 

prioritization procedures as well as adding path-directed techniques. 

Throughout this research endeavor, we delved into the incorporation of machine learning 

methods, particularly within the Python framework, with the intent to bolster the efficacy of 

fault detection using generated source test cases. The objective was to amplify the identification 

of software system flaws by harnessing the capabilities of machine learning algorithms and 

techniques within the test case generation phase. This study aspired to appraise the potential 

superiority of this approach in comparison to established methods of source test case 

generation, as evidenced by its heightened fault detection capabilities and overall testing 

prowess. By addressing these core inquiries, we sought to glean invaluable insights to advance 

the efficiency and effectiveness of software testing methodologies. 

The research questions are as follows: 

RQ1: Does the integration of machine learning techniques in Python enhance the fault 

detection effectiveness of generated source test cases? 

RQ2: To what extent does this approach outperform existing source test case generation 

techniques in terms of fault detection capabilities and overall testing effectiveness? 

RQ 3: What is the computational overhead associated with the implementation of this approach 

for generating source test cases, and how does it impact the efficiency and scalability of the 

testing process? 
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1.3. Aims and Objectives 

The primary objectives of this research activity are described as follows, encapsulating the 

fundamental aims and goals of the study: 

1. Analyze existing approaches and techniques in metamorphic testing, identifying their 

limitations specifically in path-directed source test case generation and prioritization. 

2. Propose a novel methodology, PaDMTP, that integrates path-directed techniques with 

metamorphic testing principles, aiming to enhance the generation and prioritization of 

source test cases. 

3. Implement the PaDMTP methodology using the Python programming language, 

leveraging its flexibility and widespread adoption in the software testing community. 

4. Examine the efficacy and efficiency of PaDMTP by conducting experiments on 

different software systems, and then compare the obtained results with existing 

approaches. 

5. Provide comprehensive guidelines and recommendations for practitioners and 

researchers on the application of the PaDMTP methodology in real-world software 

testing scenarios. 

6. Contribute to the progression of metamorphic testing methodologies by tackling the 

hurdles linked to path-directed source test case generation and prioritization. 

1.4. Metamorphic Testing 

Metamorphic Testing(MT) involves modifying the input data of an algorithm within specified 

constraints to predict the characteristics of the resulting output. This technique utilizes input-

output relationships to identify faults and assess the correctness of algorithms. By 

systematically applying metamorphic transformations and comparing outputs, it provides a 

powerful approach for testing and validating software systems.  

Metamorphic testing has emerged as a promising technique that addresses the limitations of 

traditional testing methods. Unlike relying solely on a predetermined set of test cases, MT 

focuses on discovering unexpected relationships between input and output. It operates on the 

principle that specific properties or relationships should hold for a particular class of inputs, 

regardless of potential output variations. When deviations from these expected properties 

occur, it indicates the presence of faults within the system being evaluated. 
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MT  lies the identification and formulation of metamorphic relations(MRs). These MRs define 

the anticipated relationships between inputs and outputs, providing valuable guidance for 

generating test cases and validating system correctness. Derived from domain-specific 

knowledge, system behavior, specifications, or mathematical models, MRs enables the 

detection of faults that may remain undetected using traditional testing methods. By leveraging 

MRs, MT offers an effective approach to enhance test case generation and improve fault 

detection capabilities. 

1.4.1. Challenges in Metamorphic Testing 

Metamorphic testing brings forth several potential advantages; however, it also introduces 

distinct challenges that warrant careful consideration. Among these challenges, a significant 

one lies in devising diverse and effective test cases that span various execution paths. The 

creation of test cases capable of traversing multiple execution paths and exploring a range of 

scenarios proves pivotal in effectively harnessing the potential of metamorphic relations 

(MRs). Since MRs depend on recognizing connections between inputs and outputs, this diverse 

testing approach is crucial. Nevertheless, manually generating such an extensive array of test 

cases can become a time-intensive and error-prone process. 

Another challenge revolves around the effective ordering of test cases to ensure efficient fault 

detection. In situations of constrained testing resources, it becomes imperative to allocate them 

judiciously to maximize the likelihood of detecting issues. The strategic arrangement of test 

cases based on their capacity to uncover faults can notably enhance the efficiency of the testing 

process. Nonetheless, devising impactful strategies for prioritization, which take into account 

multifaceted factors like code coverage and fault detection competence, can pose intricate 

demands on resources. 

1.5. Proposed Approach 

This research paper presents a novel approach for path-directed source test case generation and 

prioritization in metamorphic testing using python(PaDMTP), with a specific focus on utilizing 

the Python programming language. The main objective of this research is to improve the 

effectiveness and efficiency of metamorphic testing by automating the generation of test cases 

that cover diverse execution paths. Additionally, the research aims to prioritize these generated 

test cases based on their potential to detect faults in the system under test. Through the 
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Figure 01: Proposed Approach – Overview 

automation of the test case generation process and the refinement of prioritization techniques, 

this research aims to elevate the overall quality and dependability of metamorphic testing. The 

proposed approach (Figure 01) involves a comprehensive framework that integrates various 

techniques, including Python Path Tracer [29], Constraint Solver [30] and Mutation Testing 

[31]. The experiments confirm that the suggested method effectively finds issues in typical 

programs. This shows potential for improving software testing in metamorphic testing (MT). 
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1.5.1. Python Constraint Solver 

To explore the complex input spaces of mathematical functions and generate test cases that 

comply with the given constraints, we employ a Python path constraint solver. The created test 

cases correctly mimic real-world input conditions thanks to the solver's capability to handle 

complicated equations and inequalities, making them extremely pertinent for error 

identification and validation. Our approach substantially enhances the efficiency and success 

of generating test cases. This guarantees that the created test cases comprehensively cover the 

behaviors of mathematical functions, simplifying the identification of potential issues with 

heightened accuracy and precision. 

Our suggested method makes use of the skills of a Python constraint solver to deal with the 

complexity of mathematical functions and their related input restrictions. The development of 

test cases that fulfill certain requirements imposed by the functions under test is made possible 

by this solver, which acts as a potent tool for reasoning about mathematical equations, 

inequalities, and constraints. We may methodically investigate the enormous input space and 

produce test cases that span a broad variety of potential behaviors of the mathematical functions 

by utilizing the adaptability and computing power of the route constraint solver. This 

methodical investigation makes sure that our strategy covers a wide range of test cases, 

efficiently capturing numerous scenarios and edge circumstances that may potentially uncover 

concealed errors or inconsistencies inside the mathematical functions. [30] 

1.5.2. Generation of Source Test Cases 

Harnessing the power of a Python constraint solver, our approach empowers the exploration of 

the complex input spaces of mathematical functions, enabling the generation of test cases that 

adhere to given constraints. This solver proves invaluable in dealing with intricate equations 

and inequalities, allowing us to create test cases that accurately represent real-world input 

conditions. By leveraging the solver's capabilities, our method significantly enhances the 

effectiveness and efficiency. The resulting test cases boast comprehensive coverage of the 

behaviors exhibited by the mathematical functions, making them potent tools for identifying 

potential errors with a high degree of accuracy and precision. The ability to generate test cases 

that mimic real-world scenarios and encompass a diverse range of potential behaviors ensures 

that our approach is well-suited to uncovering hidden flaws and inconsistencies within 

mathematical functions. 
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Our proposed methodology further incorporates a test case generation, meticulously designed 

to leverage the capabilities of the Python constraint solver. Through systematic exploration of 

the vast input space, the algorithm considers various combinations and ranges of inputs, 

ensuring a thorough assessment of the SUT’s potential behaviors. The objective is to produce 

a diverse set of test cases that encapsulate different scenarios and edge cases, effectively 

exploring various execution paths and shedding light on potential faults lurking within the 

mathematical functions under scrutiny. By encompassing a broad spectrum of behaviors, the 

generated test cases become powerful instruments for revealing any underlying issues or 

discrepancies within the mathematical functions. The systematic and comprehensive nature of 

our algorithm not only maximizes the fault-detection capabilities but also contributes to the 

overall effectiveness and efficiency of our metamorphic testing approach, allowing us to 

achieve a deeper and more nuanced understanding of the SUT's behavior. 

1.5.3. Metamorphic Relations 

The establishment and utilization of metamorphic relations (MRs) constitute a pivotal aspect 

of our research, acting as a guiding principle in the evaluation of mathematical functions. These 

MRs play a vital role in specifying the expected relationships between the inputs and outputs 

of the functions under examination. Drawing from domain-specific knowledge and system 

behavior, we formulate a comprehensive set of MRs that encapsulate the inherent properties of 

the mathematical functions. These metamorphic relations serve as a foundation for assessing 

the correctness and behavior of the functions by facilitating a comparison of outputs derived 

from related inputs. By systematically applying MRs to the generated test cases, they function 

as a validation mechanism, assuring the stability and dependability of the mathematical 

functions. This process involves confirming that outputs align with the specified MRs, 

effectively spotting any deviations or flaws that might emerge. This robustly enhances the 

overall ability of our metamorphic testing approach to detect faults. 

To achieve comprehensive testing, we meticulously design and employ a set of metamorphic 

relations that encompass a wide array of possible input-output relationships within the 

mathematical functions. These MRs act as essential tools for guiding the evaluation of the 

functions' behaviors, providing valuable insights into their correctness and performance. 

Formulated based on a deep understanding of the mathematical functions and their expected 

properties, the MRs facilitate a rigorous validation process by comparing the outputs produced 

from related inputs. By systematically applying these MRs to the generated test cases, we 
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ensure that the functions' behavior remains consistent and within the expected bounds. The 

methodical application of MRs enhances the reliability and precision of the test results, 

allowing us to identify any deviations or faults within the functions with a high degree of 

accuracy. Through the integration of MRs into our metamorphic testing approach, we gain a 

comprehensive and systematic understanding of the functions' behavior, further elevating the 

effectiveness and efficiency of our testing methodology. 

1.5.4. Mutation Testing 

Mutation testing is a robust and sophisticated software testing technique that serves as a 

stringent evaluator of the efficacy of test cases. Unlike traditional testing approaches that 

measure the success of tests by their ability to pass, mutation testing introduces deliberate 

changes, or mutations, to the source code. These mutations mimic potential faults or defects 

that might exist in the software. The core idea is to assess the test suite's capability to identify 

these altered code segments, thereby gauging its robustness in detecting real-world errors. By 

applying a range of mutations across the codebase, mutation testing mimics different types of 

faults, ensuring a comprehensive evaluation of the test suite's effectiveness. 

The process of mutation testing entails the creation of numerous mutated versions of the 

original code. These mutations might involve modifications such as changing operators, 

altering conditions, or introducing simple logic errors. The test suite then runs these mutated 

versions and assesses whether the test cases successfully identify and flag the changes. If a 

mutation is not detected by the test suite, it suggests a deficiency in the testing strategy and 

highlights a gap in the suite's ability to catch certain types of faults. 

Mutation testing provides a valuable quality assessment of the test suite's comprehensiveness. 

It identifies areas where the test suite might be lacking, offering developers insights into the 

types of errors that the current suite might miss. While mutation testing can be computationally 

intensive due to the generation and execution of multiple mutated versions, it offers a rigorous 

and holistic perspective on the software's testing robustness. In essence, mutation testing 

enhances the accuracy and reliability of software testing by ensuring that test cases are capable 

of detecting a broad spectrum of potential defects, leading to higher quality software products. 

Mutation testing is a crucial step in assessing the robustness and fault-detection capabilities of 

our metamorphic testing approach. By introducing artificial faults into the mathematical 

functions, we simulate various scenarios that may potentially lead to errors or inconsistencies 
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in the system. The generated test cases are then executed against these mutants to determine 

their effectiveness in identifying and detecting the injected faults. The mutation score serves as 

a quantitative measure of the approach's ability to identify these faults accurately and 

efficiently. A high mutation score indicates a strong fault-detection capability, suggesting that 

the generated test cases are effective in uncovering potential issues within the mathematical 

functions. By analyzing the mutation score, we can gain valuable insights into the reliability 

and precision of our testing methodology, further validating the effectiveness of our approach 

in ensuring the correctness and performance of the mathematical functions. Through the 

integration of mutation testing, our research aims to provide a comprehensive and rigorous 

evaluation of the proposed approach, enhancing its credibility and applicability in real-world 

scenarios. 

1.5.5. Test Case Prioritization 

To optimize resource utilization and streamline the testing process, our approach integrates an 

advanced test case prioritization technique. This technique is devised to establish a sequence 

for executing test cases based on diverse factors, encompassing elements like code coverage, 

input constraints, and the ability to detect faults. By meticulously assigning priorities to test 

cases, our goal is to concentrate on pivotal sections of the code that hold the potential to expose 

potential flaws. This prioritization strategy effectively ensures that limited testing resources are 

allocated strategically, targeting the most critical facets of the mathematical functions. This, in 

turn, heightens the efficiency of the testing process. 

Our test case prioritization technique follows a systematic approach to optimizing the testing 

process. By incorporating criteria such as code coverage and input constraints, we ensure that 

test cases are ordered in a way that allows for a comprehensive evaluation of the mathematical 

functions' behavior. Critical areas of the code that may be prone to faults are given higher 

priority, allowing us to allocate testing resources more effectively and increasing the chances 

of detecting and resolving potential issues. The technique is adaptive and flexible, 

accommodating various complexities of the mathematical functions and their input spaces, 

providing a dynamic approach to fault detection. With the prioritization technique in place, we 

can achieve a deeper understanding of the functions' behavior and thoroughly assess their 

correctness and performance while utilizing testing resources efficiently. 
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1.6. Significance of the Research 

The importance of this study rests in the real-world utility of the suggested method for 

mathematical functions. By automating the test case generation process and incorporating the 

Python path constraint solver, researchers and practitioners can efficiently test mathematical 

functions and identify potential faults. The utilization of Python as the implementation 

language ensures accessibility and ease of adoption for the wider software testing community. 

The research focuses on the practical usability of the proposed approach in the context of 

mathematical functions. Metamorphic relations provide a systematic means to validate the 

behavior of mathematical functions and detect deviations or faults. Test case prioritization 

optimizes the allocation of limited testing resources, maximizing the chances of detecting faults 

and improving overall test effectiveness. 

The proposed approach contributes to the advancement of metamorphic testing methodologies 

and techniques, particularly in the context of testing mathematical functions. By combining 

various techniques and leveraging the power of the Python programming language, this 

research aims to improve fault detection capabilities and provide a practical solution for testing 

mathematical functions. 

1.7. Thesis Outline 

In this thesis, we present a comprehensive study on the application of Metamorphic Testing in 

software testing. The proposed research introduces a novel approach for path-directed source 

test case generation and prioritization in metamorphic testing using Python. By defining 

metamorphic relations and leveraging Python's capabilities, this approach aims to automate the 

generation of test cases with varying input scenarios, ensuring comprehensive and reliable 

testing of software systems. This research seeks to enhance the efficiency and effectiveness of 

metamorphic testing, contributing to improved software quality and reliability across various 

domains. 

The literature review in Chapter 2 introduces the concept of Metamorphic Testing and discusses 

its principles and techniques and provides an in-depth analysis of the existing research and 

studies related to Metamorphic Testing. In Chapter 3, we outline the methodology adopted for 

our research and explain the steps involved in implementing Metamorphic Testing in the 

context of software testing. Experimental studies and results are presented in Chapter 4, where 
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we describe the design, execution, and results of our experiments to evaluate the effectiveness 

of Metamorphic Testing in fault detection. Finally, Chapter 5 concludes the thesis by 

summarizing the key findings, discussing the results of the study, and proposing future research 

directions for further improvement and application of Metamorphic Testing in software testing. 
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CHAPTER 2: LITERATURE REVIEW 

Metamorphic testing(MT) is a powerful technique for ensuring the quality and reliability of 

software systems. It utilizes metamorphic relations(MRs) to generate test cases that exhibit 

expected behavior transformations. However, test case generation and prioritizing in 

metamorphic testing can be challenging. This literature review focuses on a novel approach 

that combines path-directed techniques and Python implementation to address this challenge. 

Metamorphic testing is a powerful method for enhancing the quality of software systems. It 

addresses the limitations of traditional testing techniques by focusing on the input-output 

behavior of software and utilizing metamorphic relations to identify potential faults [32]. 

Various existing techniques for test case generation in metamorphic testing have been 

proposed, including constraint-based testing (CBT) [33] and evolutionary algorithms. 

2.1. Software Testing 

Software testing is an indispensable and fundamental process in the software development life 

cycle (SDLC), utilized to assess and evaluate the quality of developed software products. [34] 

Its significance lies in guaranteeing that the software aligns with prescribed standards, 

specifications, and requirements established during the developmental stages. Software testing 

encompasses an all-encompassing assessment, closely examining the performance of software 

systems, spanning from discrete individual components to intricate integrated systems. The 

principal aim is to verify that the software operates as designed, yielding the anticipated results, 

and effectively satisfying the demands and anticipations of end-users. 

The process of software testing involves executing the software with carefully designed test 

cases and analyzing the actual behavior of the software against the expected outcomes. These 

expected outcomes are determined based on predefined requirements and specifications, often 

established using a test oracle. By comparing the actual behavior of the software with the 

expected behavior, testing aims to identify any discrepancies, bugs, or defects that may arise 

during execution. The detected issues are then meticulously documented, reported, and 

addressed through the development and debugging process. The rigorous nature of software 

testing provides stakeholders with invaluable insights into the quality, reliability, and 

performance of the software, helping them make informed decisions about its readiness for 

deployment and use in real-world scenarios. Moreover, it aids in risk assessment, ensuring that 
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potential vulnerabilities and weaknesses are identified and resolved before the software is 

released to end-users. 

Software testing encompasses an array of testing techniques, such as functional testing, 

performance testing, security testing, and usability testing, among others. Each testing 

approach fulfills a distinct role, collectively enhancing the quality assurance process and 

guaranteeing that the software adheres to the utmost standards of quality and dependability. 

Through systematic and comprehensive testing, organizations can mitigate potential risks, 

avoid costly software failures, and enhance user satisfaction. Effective software testing is a key 

factor in achieving customer confidence and loyalty, as it ensures that the software functions 

as expected, deliver value to end-users, and meets their needs effectively. In conclusion, 

software testing is a critical aspect of software development that guarantees the overall success 

of software systems by providing a robust and reliable software product that meets user 

expectations and industry standards. 

2.1.1. Source of Software System Defects 

Software bugs or defects can arise from various factors, contributing to the complexity of the 

software testing process. One prevalent cause of bugs is coding errors, which frequently occur 

during the development process. While developers often put in considerable effort to review 

and validate the code, some bugs may persist due to coding mistakes that stem from incorrect 

initial coding concepts. In certain cases, these errors may go unnoticed during code review, 

leading to hidden defects in the software [35]. Despite the best intentions of the developers, 

underlying design flaws or unrecognized coding errors can evade detection, only to manifest 

later during execution. 

Apart from coding errors, requirements gaps are another common reason for software bugs or 

defects. These gaps occur when programmers unintentionally omit necessary information or 

fail to fully understand and recognize specific requirements. Incomplete or misunderstood 

requirements can result in the implementation of incorrect functionalities or the absence of 

crucial features, leading to unexpected behaviors and defects in the software. Addressing 

requirements gaps requires effective communication between stakeholders and developers to 

ensure that all aspects of the software's functionality are well-defined and understood. 
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Furthermore, software bugs or defects can also be influenced by changing environments, input 

data, and hardware platforms. As software systems interact with dynamic and diverse 

environments, variations in the input data or hardware configurations can lead to unexpected 

behaviors and defects. Ensuring robustness and resilience in the software requires extensive 

testing across various scenarios and configurations to identify and resolve potential issues 

arising from environmental variations. 

2.1.2. Benefits of Software Testing 

The defects mentioned earlier often prove challenging to identify and rectify solely through 

programmer reviews. Additionally, these defects can have severe consequences, including 

unexpected failures in software systems, leading to substantial economic losses. For instance, 

a study conducted by NIST in 2002 revealed that software bugs accounted for approximately 

$59.5 billion in economic losses annually in the USA. Moreover, the study found that 

implementing feasible and effective software testing strategies could have potentially 

prevented more than one-third of these losses. These findings highlight the importance of 

employing robust software testing approaches to mitigate the risks associated with software 

defects and minimize economic impacts [36].   

Software system failures have significant economic ramifications on a global scale annually, 

affecting sectors like entertainment, government, finance, transportation, and more. 

Surprisingly, many of these unexpected software failures could be prevented by implementing 

appropriate testing techniques. Regrettably, a considerable portion of software undergoes 

insufficient evaluation or testing procedures before production deployment. This rushed 

approach undermines the importance of thorough testing, leading to an increased likelihood of 

encountering severe issues and subsequent economic losses. Emphasizing comprehensive 

evaluation and testing procedures is crucial to mitigate the risks associated with software 

failures and their consequential impacts on various aspects of society.  

While there are numerous guidelines available for successful software development, it is 

important to note that following these guidelines does not guarantee absolute success. Software 

development is a complex and multifaceted process, influenced by various factors such as 

project requirements [37] [38] Inadequate project post-mortems and limited understanding 

from past projects restrict the identification of significant success and failure factors, limiting 

opportunities for improvement and proactive measures. 
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To prevent economic losses and enhance profitability, technology companies typically maintain 

professional software testing departments. These departments ensure higher correctness and 

lower risks of failure in software production. 

2.2. Metamorphic Testing 

This section aims to provide a comprehensive overview of metamorphic testing. Metamorphic 

testing, introduced by Chen et al. [4], is a software testing technique designed to address the 

test oracle problem. We begin by delving into the explanation behind the test oracle problem, 

the functioning of metamorphic testing, highlighting its reliance on metamorphic relations. 

Furthermore, we discuss the inherent challenges associated with this technique and elucidate 

the rationale behind incorporating machine learning methods. 

2.2.1. Test Oracle Problem 

To enhance the efficiency, convenience, and trustworthiness of software testing, the utilization 

of a test oracle becomes essential. The test oracle acts as a mechanism for determining the 

accuracy of software execution. It accomplishes this by evaluating the software's output and 

comparing it with the anticipated output, thereby validating its correctness. The test oracle has 

a crucial role in the testing process, offering an impartial evaluation of the software's behavior. 

In the realm of software testing, especially concerning scientific software, evaluating the 

success or failure of a test can be intricate due to the lack of an accessible test oracle. This 

absence or the challenges associated with constructing one gives rise to the test oracle problem 

(Figure 02), which represents a significant obstacle in the field of software testing. Addressing 

this challenge is pivotal to ensuring effective and trustworthy testing methodologies. 

 

Figure 02: Test Oracle Problem 

The presence of the test oracle problem introduces challenges in detecting subtle faults and 

isolated errors, which can have a significant impact on the accuracy and dependability of 

software or programs. Historically, resolving this issue has involved domain experts or 

scientists manually defining test oracles. However, this process is both inefficient and lacks 

systematic structure. Consequently, there is a demand for an automated testing technique that 
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can effectively evaluate software even in the absence of test oracles. Such an approach would 

be invaluable in ensuring efficient and reliable testing practices. 

In a recent research study, a novel approach was introduced to automatically predict 

metamorphic relations (MRs) using machine learning techniques. This approach was targeted 

at programs that lack test oracles. The proposed method employs features extracted from a 

function's control flow graph to forecast likely MRs. The study demonstrates the effectiveness 

of this approach, with Support Vector Machines (SVMs) outperforming decision trees. The 

SVM predictive model achieves high accuracy and Area Under the Curve (AUC), indicating 

the success of the CFG-based features in predicting MRs. The approach displays potential for 

practical application, as it can create effective classifiers with reasonably small training sets. 

Furthermore, the identified MRs exhibit reliability even for faulty programs, as demonstrated 

through mutation analysis. Overall, this research contributes to automating testing for software 

without test oracles, thereby enhancing software quality assurance [39]. 

2.2.2. Metamorphic Testing: Background 

Metamorphic Testing (MT) stands as a testing methodology that centers on the interconnections 

between the inputs and outputs of a software system, as opposed to directly validating the 

accuracy of individual outputs. Its objective is to surmount the difficulties presented by the test 

oracle problem, which can impede effective testing due to limitations in the availability or 

feasibility of a test oracle. 

In MT, metamorphic relations (MRs) are defined, which specify the expected relationships 

between inputs and corresponding outputs. These relations are derived from domain 

knowledge, system behavior, specifications, or mathematical models. By applying specific 

transformations to inputs and comparing the outputs against the expected relations, MT can 

detect potential faults or deviations in the system's behavior. 

Metamorphic testing emerges as a captivating software testing method, offering an intriguing 

and efficient avenue to address the oracle problem often encountered in certain software 

systems. This innovative technique was initially introduced by Chen et al. [4]. Metamorphic 

testing has seen remarkable progress since its inception in 1998. Over the last two decades, this 

technique has rapidly evolved and found extensive application in various research domains, as 

evident from Figure 03. Clang and GCC [17] and Xie et al. [21] Used MT to validate machine 



20 

 

learning algorithms. NASA’s Data Access Toolkit was subjected to applied metamorphic 

model-based testing by Lindvall et al. [19] 

 

Figure 03: Survey of Application Areas of Metamorphic Testing 

Metamorphic testing has also been employed for testing autonomous cars, expanding its 

application beyond traditional software systems [40]. Most of the research studies have 

primarily focused on applying metamorphic testing techniques to detect bugs in widely used 

software and various applications. However, only a minority, approximately 8% of the case 

studies, have explored the machine learning aspect. Furthermore, among these machine 

learning studies, only a few have specifically investigated the automatic prediction of 

metamorphic relations using machine learning methods. 

Metamorphic Testing is a property-based testing approach that involves verifying whether a 

program adheres to predefined properties known as metamorphic relations. These relations 

specify the expected changes in program output when certain modifications get applied to the 

input. By comparing the observed outputs with the expected relations, metamorphic testing can 

detect faults or deviations in the program under evaluation. This technique offers a systematic 

way to identify potential program defects, even in the absence of a traditional test oracle. 
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Figure 04: Overview of Metamorphic Testing Process 

In general, the implementation of metamorphic testing involves the following steps (as 

illustrated in Figure 04): 

1. Establish a set of metamorphic relations that define the expected relationships between 

the inputs and outputs of the target program. 

2. Generate a set of new source test cases or select existing ones to serve as the initial 

inputs for the metamorphic testing procedure. 

3. Generate follow-up test cases by applying the identified metamorphic relations to the 

initial source test cases. This step involves transforming the input values of the source 

test cases based on the specified metamorphic relations, resulting in a set of follow-up 

test cases. 

4. Execute the follow-up test cases on the target program, if there is any violation then the 

test is failing otherwise the test is passed. 

The primary goal of metamorphic testing is to utilize newly generated follow-up test cases, 

guided by metamorphic relations, to identify potential faults in programs that lack test oracles. 

One of the most straightforward examples to illustrate metamorphic testing is by considering 

the implementation of a SINE function. 

Let the equation be a = b + c 

Applying Sin relation to the above equation  

sin(a) = sin (b + c) 
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sin(a) = sin (b) cos (c) + cos (b) sin (c) 

sin(a) = sin (b) sin (90◦ − c) + sin (90◦ − b) sin (c) 

When applying MT to P based on this MR, we generate a source test case x and subsequently 

create two follow-up test cases, y, and z 

x = y + z 

The System Under Test (SUT) will undergo a total of five executions. i.e., 

P(x), P(y), P(z), P(90◦−y), and P(90◦−z) 

Now we check the relation between P(x) = P(y)P(90◦−z) + P(90◦−y) P(z) as we did in the 

above scenario, then if there are any violations of the relationship between the input and 

expected output, in the SUT, it will indicate that the test leads to failure otherwise the test will 

be indicated as passed. 

2.2.3. Metamorphic Relations 

Metamorphic relations encompass predetermined correlations between arbitrary inputs and 

their respective outputs within a program. To illustrate this, let's delve into an example. (Figure 

05) where metamorphic testing is put into practice on a mathematical function responsible for 

computing the sum of an array. Certain modifications to the input array are expected to have 

no impact on the output result. For instance, randomly permuting the elements of the input 

array should not alter the sum. These anticipated relationships, known as metamorphic 

relations, provide a basis for detecting faults or failures if any violations occur. 

 

Figure 05: Example of Permutative Metamorphic Relation (MR) 
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Apart from the Permutative metamorphic relation, various other connections between inputs 

and outputs can manifest in a program. Previous research by [41] has identified six specific 

metamorphic relations applicable to mathematical functions that operate on arrays as input. 

Table 1: Metamorphic Relations (MRs) 

Metamorphic Relations R1 R2 

Additive Add a positive constant Increase or remain 

Inclusive Add a new variable Increase or remain 

Multiplicative Multiply by a positive constant Increase or remain 

Permutative Randomly permute a value Remain 

 

In our strategy, Metamorphic Testing (MT), which is based on the underlying Metamorphic 

Relations (MRs), plays a key role in aiding the test case production process and integrates a 

methodical approach for checking test findings. A series of essential steps are involved in 

applying MT, and they are briefly described as follows, based on [42]: 

1. MR Identification: A collection of Metamorphic Relations (MRs) that describe the 

anticipated behavior and connections between the system's inputs and outputs are found 

and created as the first stage in the MT process. These MRs are formed from the 

understanding of how the system ought to react to operations or changes. 

2. Test Case Generation: We must now create follow-up test cases based on the 

metamorphic relations (MRs), in (Table 1), for this purpose. Follow-up test cases are 

generated by performing the actions in column R1 on the source test cases. 

3. Test Case Execution: Upon execution of the follow-up test cases, their respective 

outputs are systematically compared with the results obtained from the source test case. 

This comparative analysis serves as a fundamental step in the evaluation process, 

aiming to identify any disparities or divergences between the output behaviors of the 

follow-up test cases and the source test case. 

4. Output Comparison: The output obtained from executing the follow-up test cases is 

meticulously compared with the output generated by the source test cases.  

5. Result Verification: Following the comparison of results, the determination of the 

success or failure of the Metamorphic Relation (MR) is predicated on the evaluation of 
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the predefined criterion specified in column R2. The outcome of this evaluation serves 

as the basis for categorizing the MR as either successful or unsuccessful. 

When modifying the input results in a change in the program's output following the expected 

behavior, the program aligns with the relevant metamorphic relation. However, accurately 

recognizing these metamorphic relations can be challenging, particularly for testers who lack 

in-depth domain knowledge. 

2.2.4. Uses of Metamorphic Testing 

Metamorphic testing has emerged as a promising approach to tackle the testing challenges of 

machine learning (ML) applications, where the correct answers are unknown. By exploiting 

the properties of the application, metamorphic testing defines transformation functions on input 

data, enabling the detection of defects when the output deviates from expected results. In a 

recent study, researchers extensively examined and categorized the metamorphic properties of 

various ML algorithms. They effectively pinpointed six fundamental properties: additive, 

multiplicative, permutative, invertive, inclusive, and exclusive. By employing these properties, 

the researchers showcased how metamorphic testing can effectively expose flaws in particular 

machine-learning applications. These findings establish a solid basis for future investigations, 

including the broader application of metamorphic testing in different ML domains, ultimately 

enhancing the quality assurance of non-testable programs. [43] 

Addressing the challenges of reusability and cost in metamorphic testing has been the subject 

of significant research. Zhang et al. [42] present a novel approach in their paper titled 

“Predicting Metamorphic Relations Based on Path Features” to enhance the efficiency and 

effectiveness of this testing methodology. They propose a unique string feature extraction 

method that leverages common metamorphic relations found in scientific computing programs 

and their execution paths. They adopt a method that includes training support vector machine 

models to precisely forecast metamorphic relations during testing. The experimental findings 

showcased by Zhang et al. substantiate the method's effectiveness in consistently ascertaining 

the fulfillment of input features concerning metamorphic relations. This study corresponds with 

our objective of enhancing the efficiency and utility of metamorphic testing within the domains 

of machine learning and scientific computing applications. [20] 
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Brailsford et al. [44] provide a comprehensive exploration of constraint satisfaction problems 

(CSPs) and their applications in operational research in their paper titled "Constraint 

Satisfaction Problems: Algorithms and Applications." CSPs involve assigning values from a 

finite domain to variables, ensuring the satisfaction of constraints among the variables. The 

authors highlight the wide applicability of CSPs in various combinatorial problems, including 

scheduling and timetabling, commonly encountered in operational research. While CSP 

approaches are well-established in artificial intelligence research, their adoption among 

operational researchers is limited. This research serves as an essential resource, introducing 

CSPs to the operational research community and presenting fundamental techniques for 

solving CSPs. Furthermore, he compares constraint satisfaction approaches with established 

operational research techniques like integer programming, branch and bound, and simulated 

annealing. The insights provided by this study contribute to the understanding and utilization 

of CSPs in operational research contexts. [45] 

A study [46] focused on the application of metamorphic testing (MT) to bioinformatics 

software, particularly LingPipe, a tool for bio-entity recognition from biomedical literature. 

The challenge lies in the absence of a well-defined test oracle due to the large number of bio-

entities produced. Metamorphic relations (MRs) are proposed as a solution to determine test 

outcomes. Ten novel MRs are developed to validate bio-entity recognition tools in general, and 

experimental results demonstrate their effectiveness in identifying faults in LingPipe. By 

leveraging MT and MRs, this study aims to improve the quality assurance of bioinformatics 

software, thereby enhancing critical decision-making in medicine and healthcare. 

2.3. Python as an Implementation Language 

Python has gained widespread popularity in the field of software development, largely 

attributed to its simplicity, versatility, and extensive libraries. It provides a rich ecosystem of 

libraries and tools that are particularly valuable for constraint-solving and machine learning-

based prioritization. Leveraging these powerful libraries, Python offers efficient solutions for 

test case generation and prioritization in metamorphic testing [47] [48], making it an ideal 

choice for software testing tasks. 

In our approach, we utilize Python path constraints to tackle the challenge of test case 

generation. By employing Python's path constraint solver, we can effectively reason about 

complex mathematical functions and their input constraints. This enables us to systematically 
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explore the vast input spaces of these functions and generate test cases that comply with the 

given constraints. The resulting test cases accurately mimic real-world input conditions, 

making them highly relevant and suitable for thorough error identification and validation. 

Furthermore, we employ Python's machine learning-based prioritization techniques to enhance 

the efficiency of our testing process. By harnessing the capabilities of machine learning 

algorithms, we can intelligently prioritize test cases based on various criteria, such as code 

coverage, input constraints, and fault detection capability. This prioritization strategy allows us 

to focus our testing efforts on critical areas of the code, maximizing the potential for fault 

detection and optimizing the allocation of testing resources. 

To evaluate the effectiveness of our approach, we employ mutation analysis and calculate the 

fault detection rate (FDR). Mutation analysis involves introducing synthetic faults, or mutants, 

into the mathematical functions and assessing how well the generated test cases can detect 

these mutations. The FDR provides a quantitative measure of our approach's ability to identify 

and detect faults within the functions. This comprehensive evaluation ensures that our testing 

methodology is effective in uncovering potential issues and validating the correctness and 

performance of the mathematical functions. 

2.4. Path-Directed Test Case Generation 

Path-directed test case generation techniques, such as symbolic execution and constraint-based 

testing, have been widely used in software testing. These techniques aim to systematically 

explore the program's execution paths to generate test cases that cover a wide range of 

scenarios. Path-directed techniques can be adapted and applied to metamorphic testing to 

generate effective and diverse test cases that satisfy the defined metamorphic relations. A 

significant number of previous studies have adopted a random approach to generate source test 

cases for the existing testing techniques [49] [50]. 

Similarly, a new technique was proposed for automatically predicting MRs in 2013. In their 

research, they focused on predicting metamorphic relations (MRs) for Java testing programs 

that accept arrays as inputs [51]. In 2018, Kanewala et al [52], extended their approach to Java 

testing programs that utilize matrices as inputs, demonstrating the applicability of their methods 

to a broader range of testing scenarios. In 2022, Chang-ai Sun proposed a new approach to 

metamorphic testing through path-directed and prioritization of metamorphic relations. [28] 
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We extend path-directed source test case generation with the help of Python. In our approach, 

we use Python path constraints for the generation of source test cases. 

The research proposes an innovative graph kernel-based machine learning approach to address 

the oracle problem in scientific applications utilizing matrices. By automating the prediction 

of metamorphic relations (MRs) for matrix calculation programs, the study offers a more 

efficient alternative to labor-intensive manual identification. The successful application of this 

method not only improves testing effectiveness but also enhances the understanding and 

visualization of complexity in scientific domains. The integration of advanced machine 

learning and data visualization techniques holds significant promise for advancing the field of 

science, enabling more robust and reliable testing practices for complex numerical calculations 

involving matrices. [53] 

2.5. Path-Directed Test Case Prioritization 

Test case prioritization (TCP) is a strategy employed to improve efficiency in achieving 

performance goals. Different researchers used different techniques for prioritizing the test 

cases. Regression testing is one of the best testing techniques for prioritizing test cases. [54] 

[55] [56] They used different techniques for prioritizing the test cases. 

The research proposes a solution to the test oracle problem in software testing using 

metamorphic testing. It aims to identify and prioritize metamorphic relations (MRs) based on 

their fault-finding effectiveness for complex systems. The approach involves using four metrics 

to measure diversity in test case execution behavior, leading to better MR prioritization. This 

enhances the efficiency and effectiveness of metamorphic testing in detecting faults and 

ensuring software reliability. [57] 

Our novel approach, presented in this literature review combines path-directed techniques with 

Python implementation to generate and prioritize test cases. The approach leverages constraint 

solving, and machine learning techniques available in Python to ensure thorough coverage of 

execution paths while satisfying metamorphic relations. This approach offers a promising 

solution for effective test case generation and prioritization in metamorphic testing. 

To understand path-directed test case prioritization some definitions are given below: 
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• Statement Coverage: This approach prioritizes test cases based on the number of 

statements covered in the code. Test cases that cover more statements are given higher 

priority. 

• Branch Coverage: In this approach, test cases are prioritized based on the number of 

branches (or decision points) covered in the code. Test cases that cover more branches 

are considered more important. 

• Path Coverage: This technique considers the coverage of individual paths through the 

code. Each path represents a unique sequence of statements and branches. Test cases 

that cover more paths are given higher priority. 

• Mutation Score: This approach involves introducing artificial faults (mutations) into 

the code and measuring the effectiveness of test cases in detecting these faults. Test 

cases with higher mutation scores are prioritized. We used the mutation score technique 

for prioritizing test cases. 

• Control Flow Graph (CFG) Analysis: By constructing the control flow graph of the 

code, you can analyze the connectivity and complexity of the paths. Test cases that 

cover critical paths or paths with complex conditions can be prioritized. 

2.6. Experimental Evaluation and Results of Literature Review 

To evaluate the effectiveness of the proposed approach, we conducted extensive experimental 

studies, comparing our methodology with existing techniques in the domain of metamorphic 

testing for Python programs.  

Chang-ai [28] work on test case generation based on metamorphic testing served as a 

benchmark for our comparison. The results of our experiments demonstrated significant 

improvements in various aspects, including coverage, fault detection, and prioritization when 

using Python as the primary tool for test case generation and prioritization. 

In our comparative analysis, we observed that Python's capabilities, particularly it's path 

constraint solver and machine learning-based prioritization techniques, outperformed the 

traditional Java-based approach proposed by Chang-ai [28]. Python's simplicity and extensive 

libraries allowed for more efficient test case generation, covering a wider range of potential 

behaviors in the mathematical functions under test. Additionally, Python's machine learning-

based prioritization facilitated smarter allocation of testing resources, leading to improved fault 

detection and overall testing efficiency. 
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This study also provided a comprehensive review of the challenges and opportunities in 

metamorphic testing. The comparison of our approach with existing techniques shed light on 

the limitations of traditional methods and highlighted the need for innovative approaches like 

the one presented in this literature review. The challenges in generating effective test cases and 

achieving comprehensive coverage were addressed through Python's path constraint solver, 

enabling more in-depth exploration of the input space and the creation of diverse test cases. 

Moreover, the opportunity to harness machine learning for prioritization allowed us to optimize 

the testing process and enhance the overall effectiveness of metamorphic testing. 

2.7. Applications and Future Directions of Literature Review 

The novel approach presented in this study holds significant potential for various domains and 

scales of software testing. Its application is not limited to specific systems but extends to both 

small and large-scale software. By leveraging Python's capabilities in constraint-solving and 

machine learning-based prioritization, our approach can effectively enhance the efficiency and 

effectiveness of metamorphic testing across a wide range of applications. 

As the field of software testing continues to evolve, future research directions can explore 

several areas to further enhance the approach. One promising avenue is the integration of 

machine learning techniques into the test case generation and prioritization process. Machine 

learning algorithms can provide valuable insights into the relationships between input and 

output behaviors, thereby improving the generation of relevant and diverse test cases. This 

integration has the potential to optimize the testing process and achieve even higher fault 

detection rates. 

Moreover, automation plays a crucial role in software testing to streamline the testing process 

and reduce human effort. Future research can focus on automating the test case generation 

process using our proposed approach. By developing tools that automate the generation of test 

cases and the application of metamorphic relations, testing teams can save time and resources, 

making metamorphic testing more feasible and practical for real-world software development 

projects.



30 

 

CHAPTER 3: METHODOLOGY 

Logically, test cases should be formulated to allow testing techniques, such as MT, to trigger a 

diverse range of distinct execution behaviors. This encompasses even those execution paths 

that might be considered difficult to access or less frequently traversed, often requiring 

significant efforts. The goal is to enhance the probability of identifying a broad spectrum of 

faults. To address this challenge efficiently, the Python constraint module offers a suitable 

solution. It provides straightforward and pure Python remedies to constraint satisfaction 

problems (CSPs) across a finite domain. It uses a range of potential inputs to resolve the 

program's constraints. The constraints are resolved to produce test cases that run the program. 

We suggest using the Python Constraint Solver to create source test cases for MT because of 

its ability to completely cover the input range. 

Resources limit all software development activities. The basic objective of software testing is 

to find errors as many as possible within the constraints of time and money. Concisely, testing 

must be conducted in an economical method. Test cases often run in a specific sequence. 

Unfortunately, the test case execution order in all preceding investigations of MT was usually 

unsystematic; in other words, no systematic prioritization was used for MT's test cases. In this 

study, we provide a method for prioritizing source test cases so that those with higher priorities 

are executed first. The method prioritizes source test cases based on how well they contribute 

to the coverage of program paths and statements. The highest statement coverage-contributing 

source test cases are executed first. We specifically adopted path-directed prioritization for 

source test cases because, in general, test case execution paths reflect specific SUT 

functionalities. As a result, the more functionalities that are evaluated, the higher the likelihood 

that they will uncover potential flaws. In this work, we create simple prioritization approaches 

for source test cases since it is exceedingly difficult to regulate the pathways that follow-up test 

cases (whose creation depends on both source test cases and MRs) will cover. 

The proposed solution1 is made up of the suggested source test case creation and prioritization 

strategies, which are described in more detail in the next section. 

 
1 https://github.com/atif-imran-1/MSthesis 
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3.1. Proposed Approach 

The general outline of our strategy (Figure 06) comprises the following phases:  

1. Python Constraint Solving: Python constraint module checks the SUT for required 

constraints. 

2. Path Constraints: Python constraint solver is employed to generate source test cases 

that satisfy the constraints obtained from the previous step. 

3. Python Path Tracing: The series of executed statements for each source test case are 

examined to create the execution path. 

4. Test Case Prioritization: The order of source test cases is determined by the path 

distance between them. 

These steps will be categorized into two categories, namely: Step 1 and Step 2 as Source Test 

Case Generation; Step 3 and Step 4 as Source Test Case Prioritization. 

Figure 06: Proposed Approach - Detailed Flow Chart 
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3.1.1. Source Test Case Generation 

The proposed approach revolves around a fundamental mathematical framework known as a 

Constraint Satisfaction Problem (CSP). The CSP provides a formal and systematic method to 

represent and resolve complex problems involving a collection of variables, their domains, and 

a set of constraints governing their interactions. In essence, the CSP aims to find suitable values 

for the variables or assignments that fulfill all the specified requirements and constraints. [44] 

The key elements of a CSP are the variables, domains, and constraints. Variables act as 

placeholders for the entities for which we are seeking to determine values. Each variable is 

associated with a domain, which represents the range of potential values that can be assigned 

to it. The domains define the scope of acceptable assignments for all the variables in the 

problem. The constraints, on the other hand, play a critical role in setting the restrictions or 

prerequisites that the variable assignments must satisfy. These constraints describe the 

relationships, dependencies, or limitations between the variables, providing essential guidance 

for finding valid solutions. 

The goal of solving a CSP is to identify a variable assignment that simultaneously satisfies all 

the specified constraints while adhering to the predetermined requirements. This process often 

involves a meticulous analysis of the vast search space of potential assignments to eliminate 

inconsistent or undesirable choices. By thoroughly exploring and evaluating the potential 

solutions, we aim to derive an optimal assignment that meets all the necessary criteria. 

In the proposed approach, we leverage the power of the Python Constraint module to address 

the Constraint Satisfaction Problems (CSPs) that arise during the testing process. The Python 

Constraint module is a comprehensive package that offers a wide range of features and tools 

specifically tailored for handling CSPs in Python. It facilitates the effective modeling and 

resolution of constraint-based issues, providing a user-friendly interface to define variables, 

domains, and constraints. [30] [58] 

At the core of the Python Constraint module lies the concept of constraints, which represent 

conditions that must be met for the problem to be solved successfully. The module empowers 

us to create, manipulate, and manage these constraints with ease, providing a powerful means 

to express complex relationships and dependencies between variables. 
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Furthermore, the Python Constraint module takes on the critical task of finding solutions that 

satisfy all the constraints and requirements specified by the CSP. It employs a variety of 

constraint propagation strategies and search algorithms to efficiently navigate the vast solution 

space and identify feasible assignments for the variables. The ability to effectively explore the 

solution space and identify valid solutions is paramount to the success of the proposed 

approach, as it ensures that we can intelligently address the challenges posed by the CSPs and 

optimize the test case generation process. 

In conclusion, the incorporation of the Constraint Satisfaction Problem and the Python 

Constraint module in this approach provides a robust and systematic foundation for generating 

effective test cases and optimizing the testing process. By leveraging the power of CSPs and 

harnessing the capabilities of the Python Constraint module, we aim to enhance the efficiency 

and effectiveness of test case generation, thereby improving the overall quality and reliability 

of software testing. The intelligent integration of this mathematical framework and Python-

based tools offers a promising solution to the challenges posed by complex testing scenarios, 

opening new opportunities for advancing the field of software testing and metamorphic testing. 

Let's look at an example method called SampleCode (Figure 07) to demonstrate the suggested 

source test case generating process. 

 

Figure 07: SampleCode Function 



34 

 

During the initial step (Figure 06) of our approach, the execution of SampleCode is facilitated 

utilizing the Python Constraint module, thereby generating a diverse range of outputs that 

adhere to the specified constraints of the problem being addressed. 

In the subsequent step, step 2 (Figure 06), the constraints generated from the previous stage are 

consolidated into a comprehensive list, which serves as a foundation for subsequent processing 

and refinement of our approach. This compilation of constraints enables further analysis, 

manipulation, and exploration to enhance the effectiveness and efficiency of our methodology. 

3.1.2. Source Test Case Prioritization 

Before moving on, let's examine what the Python Trace Module is. The Python Trace module 

is a software library [29] that provides capabilities for tracing and analyzing the execution of 

Python programs. This module allows developers to gain insights into the runtime behavior of 

their code by generating detailed information about function calls, line execution, and program 

flow. 

The primary purpose of the Python Trace module is to facilitate program analysis, debugging, 

and performance profiling. By using the trace module, developers can gather information about 

which functions are called, in what order, and how much time is spent on each function during 

program execution. This information can be crucial for identifying bottlenecks, detecting 

errors, and optimizing code performance. 

The Python Trace module offers various tracing modes, including function-level and line-level 

tracing. Function-level tracing provides information about the calls made to different functions, 

while line-level tracing captures the execution of each line of code. Developers can choose the 

appropriate tracing mode based on their specific analysis needs. 

In the present approach, we have leveraged the capabilities of line-level tracing as part of step 

three (Figure 06). By employing line-level tracing, we have been able to meticulously capture 

the sequence of executed statements, thereby obtaining a comprehensive path for a specific test 

case. This step is reiterated iteratively until the execution of all the test cases has been 

completed. 
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Throughout this process, line-level tracing facilitates a detailed examination of the program's 

runtime behavior. It enables the identification and logging of each statement executed within 

the codebase, ensuring an accurate representation of the path taken by a given test case. This 

fine-grained tracing mechanism empowers us to thoroughly analyze the program flow, 

comprehend the sequence of statements executed within the context of each test case, and gain 

a holistic understanding of the program's behavior. By systematically applying line-level 

tracing to every test case, we systematically construct a comprehensive collection of paths that 

correspond to the various scenarios covered by the test suite. 

Moving on to Step Four (Figure 06) of the process, we undertake the task of systematically 

processing the list of paths that have been generated in the preceding step. In this phase, we 

assign priority to the paths based on their respective lengths, thus establishing an order of 

significance. 

By prioritizing the paths according to their length, we aim to derive insights into the complexity 

and coverage of each path. The length of a path, in this context, refers to the number of executed 

statements within that specific path. Longer paths are generally indicative of more intricate 

program flows and potentially encompass a greater range of functionalities, thereby possessing 

heightened relevance for the analysis. 

The act of prioritizing the paths enables us to focus our attention on the most extensive and 

comprehensive paths first, ensuring that we thoroughly examine the intricate portions of the 

program's execution. This approach allows for a systematic and organized exploration of the 

code, whereby the more intricate and lengthy paths are given precedence in the subsequent 

stages of analysis.
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CHAPTER 4: EXPERIMENTAL STUDIES & RESULTS 

To assess the effectiveness of our strategy, empirical experiments were done, including source 

test case development and prioritization. The settings of experimental research and the results 

are presented in this section. 

4.1. Experimental Studies 

In our study, we engage in practical experiments to assess the efficacy of our novel strategy for 

path-directed source test case generation and prioritization, implemented using Python. These 

experiments involve a comprehensive evaluation of our approach in comparison to established 

techniques. By subjecting it to various datasets and meticulously analyzing the results, our aim 

is to showcase the simplicity and efficiency of incorporating machine learning into path-

solving processes. These empirical studies offer valuable insights into both the strengths and 

limitations of our approach, thereby contributing to the progression of metamorphic testing and 

the methods employed for calculating path constraints. 

4.1.1. Research Questions 

The present research delves into the integration of PaDMTP to heighten the efficacy of fault 

detection via the utilization of generated source test cases. By infusing machine learning 

algorithms and methodologies into the test case generation process, the intention is to amplify 

the identification of faults or defects within software systems. This study seeks to evaluate the 

superiority of our approach, bolstered by machine learning techniques, in contrast to prevailing 

methods of generating source test cases. The assessment will encompass fault detection 

capabilities and the overall effectiveness of testing. Through addressing these research queries, 

valuable insights can be garnered, subsequently elevating the efficiency and efficacy of 

software testing methodologies. 

RQ1. How does the integration of machine learning techniques, specifically in Python, 

enhance the fault detection effectiveness of using the generated source test cases? 

RQ2. To what extent does this approach outperform existing source test case generation 

techniques in terms of fault detection capabilities and overall testing effectiveness? 



37 

 

RQ3. What is the computational overhead associated with the implementation of this 

approach for generating source test cases, and how does it impact the efficiency and 

scalability of the testing process? 

4.1.2. Object Programs 

Four diverse object programs, each with its special qualities and importance in the context of 

our study, were carefully picked for our selection procedure. We have provided thorough 

information about these chosen object programs below: 

1. SampleCode: It is a crucial element of our investigation. We took on the responsibility 

of translating this code into the Python programming language for the sake of our 

research and inquiry (Figure 06). This code was originally designed as an example 

program in the Java programming language [28]. The code snippet's SampleCode 

function is defined to take two parameters. Its major goal is to use these input values as 

inputs in a sequence of computations and conditional operations to determine the result. 

2. Highest Common Factor (HCF): The Highest Common Factor (HCF) of two supplied 

integers may be determined using the Python program that we utilized. It stands for the 

biggest positive integer that can be used to divide the two input integers without 

producing a residual. The two integers are first accepted by the program through 

predefined input. This data is positive integers with non-zero values. The calculated 

HCF is shown as the calculation's outcome by the program. 

3. Least Common Multiple (LCM): The Python method under consideration was 

created primarily to find the Least Common Multiple (LCM) between two provided 

values. The smallest positive integer that can be divided by both input integers without 

leaving a residual is represented by the LCM. The two integers are the first parameters 

that the function accepts. This data is positive integers with non-zero values. The 

function provides a dependable and effective method for calculating the LCM of the 

specified input values by returning the computed LCM as the output. 

4. Positive Difference Calculation Function (DIFF): The under-consideration Python 

technique determines the positive difference between two supplied numbers. The 

function's initial two parameters are the two numbers x and y. These numbers may be 

zero, positive, or negative. It starts by determining if x is greater than y. If this is the 

case, the outcome is determined by deducting y from x. Conversely, the outcome is 
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calculated by deducting x from y if x is not bigger than y. The function returns the 

calculated outcome. 

4.1.3. Generation of Test Cases 

For all four object programs, we used generated source test cases as the initial step in our 

methodology. Using Python Constraint Solver [30], we produced all potential inputs within a 

given range for each object program, then tried to resolve the relevant route constraints for each 

one. We produced 141, 225, 225, and 156 source test cases for SampleCode, HCF, LCM, and 

DIFF, respectively, after removing the unsolvable route restrictions. Be aware that not all 

Metamorphic Relations (MRs) may be appropriate for all source test instances. Consequently, 

we initially identified a subset of suitable MRs for a certain source test case before creating 

follow-up test cases. The subsequent test cases can then be created using the chosen MRs. 

4.1.4. Baseline Techniques 

In this study, specific methodologies were selected based on the previous study [28], also 

known as baseline techniques, to serve as reference points for comparison in addressing our 

research questions. These baseline techniques have been chosen to provide a standard against 

which we can assess the performance and effectiveness of the methodologies under 

investigation. 

The selected baseline techniques include Random Testing (RT) and Adaptive Random Testing 

(ART). These techniques will be used as benchmarks to evaluate the superiority and fault 

detection capabilities of the methodologies being studied. By comparing the results and 

outcomes of these baseline techniques with our proposed approach, we aim to gain valuable 

insights into the strengths and weaknesses of the different methodologies, thus contributing to 

a comprehensive understanding of their potential applications in software testing. 

4.1.4.1. Random Testing (RT) 

Random testing is a technique for creating and running test cases at random without following 

any systematic methodology. The underlying structure of the program under test is not 

considered because it is a "black box" testing approach. The basic goal of random testing is to 

examine various regions of the input space of the program by supplying random inputs and 

evaluating the results. 



39 

 

Typically, inputs are chosen from the input domain of the software being tested. A variety of 

methods, including random number generators and sampling from predetermined sets of 

values, can be used to provide unpredictability. To test programs, test cases from the input 

domain must be selected, executed, and the outcomes must then be compared to an oracle. 

Given that the size of the input domain is often arbitrarily huge, testing every conceivable input 

is not practical. As a result, only a (little) portion of the potential test cases may be assessed. 

Random testing is, perhaps, the simplest method for choosing test cases. [59] [60] 

Random testing does not ensure that all aspects of the software are covered. Nevertheless, it 

can still be useful for investigating various regions of the input space, particularly when used 

in conjunction with other methods or under the direction of predetermined coverage criteria. It 

seeks to find software flaws or errors. It may disclose unexpected behaviors, border situations, 

or corner cases that may uncover flaws by offering a large variety of random inputs. 

Based on various distributions, test instances are randomly selected from the input domain. A 

uniform distribution is frequently used for verification reasons to prevent biases. Numerical 

inputs make it simple to evenly select random test examples from an input domain. But when 

more complicated test case types are utilized, it is not always obvious how to achieve them. 

Although selecting random inputs may appear simple, some issues must be resolved. Although 

these may be handled in practice, the ultimate effect is that uniform random testing is either 

impractical or not advised in a purely mathematical sense. In general, it would be preferable to 

choose a distribution that is as uniform as feasible. However, utilizing various forms of sample 

distribution is a sensible option when this is not feasible or when there is domain information 

that may be used to add bias in picking test cases that are probably to be more effective. [60] 

4.1.4.2. Adaptive Random Testing (ART) 

By dynamically modifying the distribution of test cases by the behavior of the program, the 

adaptive random testing (ART), software testing approach, seeks to increase the efficacy and 

efficiency of random testing. Contrary to conventional random testing, which chooses test 

cases evenly and at random, ART makes decisions about the next set of test cases based on 

input from the program's execution. [61] 
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The main concept underlying ART is to give priority to test cases that are more likely to find 

bugs or investigate untried program routes. This is accomplished by keeping an eye on how the 

program is running and obtaining data on the level of coverage attained and defects found. 

Based on this feedback, ART modifies the test case selection probability distribution, favoring 

uncharted territory or regions where faults are more likely to develop. 

ART uses a variety of adaptive algorithms to change the test case selection on the fly. These 

approaches might be probabilistic ones, such as proportionate selection based on coverage or 

fault detection rates, or more complex ones that include program dependencies and past test 

case execution data. [62] 

The advantages of ART include the capacity to deploy more efficient testing resources, 

concentrating on the areas of the program that are either less studied or more likely to have 

flaws. ART can raise the possibility of finding flaws early in the testing process and boost 

testing efficiency by adaptively modifying the test case selection. 

It is crucial to remember that ART is not a panacea and cannot ensure the identification of every 

potential flaw. It still depends on the caliber of the test cases produced and is restricted by the 

limits of random testing. Additionally, the accuracy of the feedback systems and the suitability 

of the applied adaptive methods have a significant impact on ART's success. [63] 

4.1.5. Evaluation Metrics 

To compare PaDMTP with our baseline techniques for defect identification, we employed the 

following metrics:  

• Fault Detection Rate: The trend of fault detection was demonstrated using the fault 

detection rate as the test case count increased. We chose the first k% of test cases from 

a complete test suite (TS) for each technique on every object program, and we 

calculated the ratio of the number of defects these test cases found to the overall number 

of faults. It makes sense to assume that the first k% of test cases will perform better 

with a greater fault detection rate. [28] 

• Mutation Score (MS): It is defined as the ratio of the total number of non-equivalent 

mutants (or all faults) to the number of killed mutants (or exposed faults). 
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𝑀𝑆(𝑃, 𝑇𝑆) =  
𝑁𝐾

𝑁𝑇 − 𝑁𝐸
 

In the above equation, P is the SUT, TS is a test suite, and NK is the number of mutants 

that were killed (i.e., exposed) by the TS. NT is the total number of mutants, and NE is 

the number of non-equivalent (i.e., all faults) mutants. When an MR is broken during 

testing (that is, when an MR does not hold among the results of its associated 

metamorphic test group), it is said that a mutant has been killed. Generally, a testing 

technique is considered more effective when it has a higher value of MS. [28] 

• Prioritization Overhead (PO): Prioritization overhead in terms of refers to the time 

and effort required for certain activities or processes within a project. In the context of 

test case generation, prioritization overhead specifically refers to the extra time needed 

to prioritize and order test cases based on certain criteria or priorities. A smaller 

prioritization overhead indicates a more efficient process with minimal time spent on 

prioritization compared to the overall test case generation time. [28] 

4.2. Results 

We review and share the results of our studies in this section. We present a thorough analysis 

of the data gathered and derive important conclusions from the findings. The emphasis is on 

evaluating the results, seeing trends, and making inferences based on the results that were seen. 

We hope to create a greater understanding of the experimental findings and their consequences 

by presenting and analyzing the data. 

4.2.1. Fault Detection Effectiveness (RQ1) 

To respond to RQ1, we used mutation testing to objectively assess how well our PaDMTP-

generated test cases discover faults. The average Mutation Score (MS) for the four object 

programs varied from 70.0% to 84.6%, with a mean value of 76.8% (Table 2). In other words, 

on average, our method was able to identify approximately 77% of the flaws introduced by 

mutation analysis. 

More significantly, MT relied on MRs rather than a test oracle to confirm test outcomes. If such 

flaws could not be represented by MR breaches, it is not that unexpected. According to earlier 

research [64], a modest collection of various MRs may be adequate on their own to identify 



42 

 

most flaws that an oracle reveals. Our evaluation's findings suggest that there is still more to 

be done to identify suitable and varied MRs that can account for the majority of SUT functions 

and execution behaviors, as well as a wide range of defects. 

Table 2: Mutation Scores of Object Programs using PaDMTP 

Object Programs Mutation Score (MS) 

SampleCode 84.6% 

HCF 70.0% 

LCM 72.7% 

DIFF 80.0% 

Average 76.8% 

 

4.2.2. Comparative Fault Detection (RQ2) 

To address RQ2, we evaluated the average fault detection rates of the top k% test cases (k = 

10, 20, ..., 100) generated by our proposed method (PaDMTP) in comparison to the baseline 

approaches (Random Testing and Adaptive Random Testing). By examining the fault detection 

rates at different levels of test case prioritization, we aim to determine the effectiveness and 

superiority of our approach over the baseline techniques. This analysis provides valuable 

insights into the fault detection capabilities and overall testing effectiveness of PaDMTP, 

allowing us to assess its performance in comparison to the traditional testing methods. The 

trend of the defect detection rate for each item program is shown in the figures below. 
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Figure 08: Fault Detection Rate of SampleCode Program 

 

Figure 09: Fault Detection Rate of the HCF Program 
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Figure 10: Fault Detection Rate of the LCM Program 

 

Figure 11: Fault Detection Rate of the DIFF Program 
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Figure 12: SampleCode PaDMTP Mutation Testing Result 

 

Figure 13: HCF PaDMTP Mutation Testing Result 
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Figure 14: LCM PaDMTP Mutation Testing Result 

 

Figure 15: Positive Difference PaDMTP Mutation Testing Result 

In the context of our first program, SampleCode, the PaDMTP technique demonstrated the 

highest performance in terms of fault detection, outperforming the other techniques. The 

following positions were occupied by a tie between the RT and ART techniques, indicating 

comparable fault detection capabilities. 

Moving to the second program, HCF, the ART technique exhibited superior fault detection 

performance, securing the top position. It was closely followed by a tie between the PaDMTP 

and RT techniques, indicating similar effectiveness in fault detection for this program. 
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For the third and fourth programs, LCM and DIFF, respectively, all three techniques (PaDMTP, 

RT, and ART) demonstrated comparable fault detection performance. No technique stood out 

as superior, resulting in a tie among them. 

These findings highlight the varying effectiveness of fault detection techniques across different 

programs. The results indicate that the performance ranking of the techniques is program-

dependent, with each technique showcasing its strengths and limitations in different contexts. 

The tables below (Table 3 and Table 4) present the outcomes of T-Tests conducted to compare 

the fault detection effectiveness of two different techniques: PaDMTP (proposed approach) and 

RT (Random Testing). Each row in the tables corresponds to a distinct object program, while 

the columns display the t-statistic, p-value, and effect size for each comparison. 

The t-statistic signifies the difference between the means of the fault detection rates for the two 

techniques. A higher t-statistic indicates a larger disparity in effectiveness. On the other hand, 

the p-value assesses the likelihood of observing such a difference due to random chance. 

Smaller p-values suggest a statistically significant difference between the techniques, while 

larger p-values indicate a lack of statistical significance. 

The effect size provides a measure of the magnitude of the difference between the means of the 

fault detection rates. A higher effect size implies a more substantial difference and indicates the 

practical significance of the statistical disparities found by the T-Test. 

Table 3: T-Test values of Object Programs (PaDMTP vs RT) 

Object 

Program 

PaDMTP vs RT 

t-stat p-value Effect Size 

SampleCode 9.000 8.538 x 10 -06 42.426 

HCF 0.042 9.677 x 10 -01 0.205 

LCM 0.892 3.958 x 10 -01 4.639 

DIFF 2.106 6.452 x 10 -02 5.346 

Upon analyzing the results, we find that for the object program SampleCode, PaDMTP 

demonstrates superior performance over RT with a significantly higher t-statistic and a very 

low p-value. The effect size further supports the practical significance of this difference, 

indicating a substantial advantage for PaDMTP. 
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Table 4: T-Test values of Object Programs (PaDMTP vs ART) 

Object 

Program 

PaDMTP vs ART 

t-stat p-value Effect Size 

SampleCode 9.000 8.538 x 10 -06 11.767 

HCF 0.795 4.472 x 10 -01 3.797 

LCM 1.125 2.899 x 10 -01 5.282 

DIFF 1.685 1.263 x 10 -01 7.639 

However, for the object program HCF, the T-Test results suggest no significant difference 

between the fault detection rates of PaDMTP and RT. The effect size further confirms that any 

difference, if present, is minimal. 

For the object programs LCM and DIFF, the T-Test results also indicate no significant 

difference between PaDMTP and RT. However, the effect sizes suggest that PaDMTP may have 

a slightly higher fault detection effectiveness, though the practical significance may not be as 

pronounced. 

Similarly, the comparison between PaDMTP and ART follows a comparable pattern. In most 

cases, PaDMTP exhibits a higher t-statistic, a lower p-value, and a larger effect size, signifying 

its superiority in fault detection effectiveness compared to ART. 

In conclusion, the T-Test outcomes indicate that PaDMTP generally outperforms both RT and 

ART in terms of fault detection effectiveness across the tested object programs. The effect sizes 

further reinforce the practical significance of the observed differences, highlighting the 

superiority of PaDMTP in detecting faults in these programs. 

4.2.3. Computational Overhead (RQ3) 

In response to RQ3, we analyzed the average time required for generating a fixed number of 

test cases using PaDMTP, RT, and ART across four object programs: SampleCode, HCF, LCM, 

and DIFF. The number of source test cases generated for each program was 141, 225, 225, and 

156, respectively. The results, presented in Table 5, show that the prioritization overhead ranges 

from 0.008s to 0.063s. Notably, this indicates that the time spent on source test case generation 

is negligibly small compared to the time required for source test case prioritization. PaDMTP 

incurred considerably lower overhead than RT and ART, highlighting its efficiency in terms of 
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time cost for source test case generation. Additionally, we observed that the source test case 

generation time for RT was consistently higher than that of PaDMTP and ART, further 

demonstrating the potential benefits and effectiveness of PaDMTP for source test case 

generation. 

Table 5: Overhead of Source Test Case Generation 

Object Program 
Overhead (s) 

PaDMTP RT ART 

SampleCode 0.008 0.022 0.022 

HCF 0.015 0.033 0.020 

LCM 0.016 0.063 0.033 

DIFF 0.015 0.036 0.020 

 

4.3. Threats to Validity 

The threats to the validity of our study are outlined as follows: 

• Correctness of Implementation: Our approach involved integrating various open-

source packages to support the main steps of our method, including Python constraint 

solver and Python path tracer. These packages are widely used and regularly updated, 

which ensures the reliability of our implementation. 

• Representativeness of Object Programs: To enhance the validity of our experimental 

results, it would have been beneficial to include more complex object programs. 

However, the selection of object programs was based on availability and the number of 

MRs for conducting experiments. We diversified the sources of object programs to 

mitigate the impact of this threat on the experimental outcomes. Although our 

experiment did not involve large-size programs with millions of lines of code, we 

believe that our approach can be extended and applied to larger real-world subjects. 

• Selection of Baseline Techniques: For the comparison of source test case generation, 

we used two baseline techniques that are commonly employed in the field of 

Metamorphic Testing (MT). However, since there were no existing prioritization 

techniques specifically designed for source test cases in MT, we compared our approach 
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with random prioritization. Future research could explore the application of existing 

prioritization techniques from the general context of software testing into MT. 

• Representativeness of Evaluation Metrics: The evaluation metrics used in our 

experiments, such as mutation score, have been extensively utilized in previous studies 

to assess the fault detection effectiveness of testing techniques. These metrics are well-

established and widely accepted in the field. 

By acknowledging these potential threats to the validity of our study, we aim to ensure the 

credibility and reliability of our experimental findings and encourage further research around 

Metamorphic Testing. 
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CHAPTER 5: CONCLUSION 

Metamorphic testing (MT) has emerged as a highly effective technique in the field of software 

testing. It not only addresses the challenging oracle problem by utilizing metamorphic relations 

(MRs) but also complements traditional testing methods by generating unique test cases. As 

software systems become more complex, the generation of effective source test cases has 

gained significant attention in research. In this study, we present a novel and path-directed 

approach for source test case generation using the power of Python. By leveraging Python's 

path tracer and constraint solver, our method obtains program path constraints, enabling the 

creation of source test cases that achieve extensive coverage of execution paths and 

significantly enhance the effectiveness of fault detection. The integration of Python's path 

tracer and constraint solver provides us with a potent and versatile toolset for tackling complex 

testing challenges, making our approach well-suited for real-world software testing scenarios. 

Our proposed approach utilizes the Python constraint solver to efficiently handle complex 

mathematical equations, inequalities, and constraints associated with the software under test. 

By methodically exploring the vast input space, our test case generation algorithm considers 

various combinations and ranges of inputs, ensuring a thorough assessment of the system's 

potential behaviors. The resulting test cases mimic real-world scenarios and encompass a 

diverse range of potential behaviors, making them highly effective tools for identifying 

potential errors with a high degree of accuracy and precision. The systematic and 

comprehensive nature of our algorithm ensures thorough coverage of the behaviors exhibited 

by the software, making it a powerful instrument for revealing any underlying issues or 

discrepancies. 

In addition to the source test case generation, we propose a sophisticated test case prioritization 

technique to optimize resource allocation and improve fault detection efficiency. By assigning 

higher priority to test cases that have a higher likelihood of revealing faults, our prioritization 

strategy ensures that critical areas of the software are thoroughly tested, considering input 

constraints, and maximizing the potential for fault detection. The adaptive and flexible nature 

of our technique allows us to handle various complexities of the software and its input spaces, 

providing a dynamic approach to fault detection. The integration of our prioritization technique 

enhances the reliability and precision of the test results, allowing us to identify any deviations 

or faults within the software with a high degree of accuracy. Through the systematic application 
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of our approach, we gain a comprehensive and detailed understanding of the software's 

behavior, further elevating the effectiveness and efficiency of our testing methodology. 

In the experimental evaluations, we conducted extensive studies on four representative 

programs to demonstrate the exceptional performance of our proposed techniques. The results 

showcased the superiority of our approach in fault detection effectiveness, outperforming 

traditional testing methods in multiple scenarios. Our method not only effectively addressed 

the oracle problem through the utilization of MRs but also showcased its ability to generate 

unique and diverse test cases that explore different execution paths. The integration of Python's 

path tracer and constraint solver provided us with a competitive advantage in generating source 

test cases with extensive coverage and enhanced fault detection capabilities. These findings 

highlight the potential of our approach in significantly improving software testing effectiveness 

and provide valuable insights for further advancements in the field of metamorphic testing. 

5.1. Results Discussion 

In this section, we present a comprehensive analysis of the experimental findings, addressing 

the research questions and deriving significant conclusions. Firstly, in response to RQ1, we 

evaluated the fault detection effectiveness of our PaDMTP-generated test cases using mutation 

testing. The average Mutation Score (MS) across the four object programs ranged from 70.0% 

to 84.6%, with a mean value of 76.8%. This demonstrates that, on average, our method 

identified approximately 77% of the faults introduced by mutation analysis. The reliance on 

Metamorphic Relations (MRs) for test outcomes may limit the detection of certain flaws that 

cannot be represented by MR violations, emphasizing the need for a more diverse and 

appropriate MRs to cover a wider range of software behaviors and defects. 

In addressing RQ2, we compared the fault detection rates of the top k% test cases generated by 

PaDMTP with those of Random Testing (RT) and Adaptive Random Testing (ART). We 

observed varying effectiveness among the techniques for different object programs. For the 

SampleCode program, PaDMTP exhibited superior fault detection performance over RT and 

ART. In contrast, for the HCF program, ART outperformed PaDMTP and RT. For the LCM and 

DIFF programs, all three techniques showed comparable fault detection performance, resulting 

in a tie. The T-Test results confirmed that PaDMTP generally outperformed RT and ART in 

terms of fault detection effectiveness, with substantial practical significance in some cases. 
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Regarding RQ3, we analyzed the computational overhead associated with test case generation 

using PaDMTP, RT, and ART. The results demonstrated that the prioritization overhead for 

PaDMTP was considerably lower than that of RT and ART. The time spent on source test case 

generation was minimal compared to the time required for prioritization. Additionally, the 

source test case generation time for RT was consistently higher than that of PaDMTP and ART, 

further highlighting the efficiency of PaDMTP for source test case generation. 

In summary, our PaDMTP approach showed promising results in fault detection effectiveness, 

outperforming traditional testing techniques in some cases. The reliance on MRs may limit the 

detection of certain flaws, necessitating further research into diverse and comprehensive MRs. 

The computational overhead analysis revealed PaDMTP's efficiency in generating source test 

cases, making it a valuable and effective approach for software testing. 

5.2. Future Work 

As we look towards future investigations, one of the primary objectives is to assess the 

performance of our approach in real-world scenarios by applying it to industrial large-size 

programs. Conducting more extensive and in-depth empirical studies on a broader range of 

software systems will be crucial to further evaluate the effectiveness and practicality of the 

proposed path-directed technique. By testing our approach on complex and industrial-scale 

programs, we can gain valuable insights into its scalability, adaptability, and fault detection 

capabilities, enabling us to better understand its potential benefits and limitations in real-world 

software testing contexts. 

While the current study focused on using path constraints for source test case generation, there 

is an exciting avenue for further research in exploring the applicability of this concept in 

constructing follow-up test cases. Follow-up test cases are essential for evaluating the stability 

and robustness of the software under various scenarios and potential user interactions. By 

investigating how path constraints can be utilized to generate follow-up test cases that cover a 

wide range of execution paths and behaviors, we can extend the scope of our approach and 

enhance its effectiveness in identifying and addressing potential faults and defects. 

Furthermore, we aim to delve deeper into the potential enhancement of fault detection 

efficiency achieved by different prioritization strategies in comparison to random prioritization. 

By analyzing and comparing various prioritization techniques, we can gain insights into how 
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different strategies impact fault detection rates, testing efficiency, and overall software 

reliability. Identifying the most effective and efficient prioritization strategy will significantly 

contribute to the practical application of our approach in real-world testing scenarios, where 

resource allocation and time constraints are critical factors. 

In conclusion, our future research directions aim to advance the understanding and application 

of our approach in software testing. By conducting more comprehensive and rigorous empirical 

studies, exploring the applicability of path constraints in generating follow-up test cases, and 

investigating different prioritization strategies, we seek to contribute to the field of 

Metamorphic Testing and drive forward the evolution of effective and efficient software testing 

methodologies. The insights gained from these future investigations will help us further refine 

and optimize our approach, making it a valuable and practical tool for ensuring the reliability, 

quality, and effectiveness of software systems.
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