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Abstract

The purpose of this dissertation is to analyze various algebraic properties, including

Stanley depth, depth, regularity, and the projective dimension of the quotient rings

obtained from the powers of edge ideals corresponding to caterpillar trees or a forest

comprising these trees. The study establishes lower and upper bounds for the Stanley

depth, depth, and the projective dimension of these quotient rings. Furthermore, the

precise values of the regularity for the above quotient rings are also given.
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Introduction

Abstract algebra is a branch of mathematics that focuses on algebraic structures,

including rings and modules. In this context, algebraic and geometric invariants are

utilized to characterize rings and modules. Stanley depth, depth, projective dimension

and regularity are examples of such geometric and algebraic invariants used to describe

modules and rings, respectively.

Stanley depth, introduced by Stanley in 1982, is an important invariant for finitely

generated Zn-graded modules over commutative rings. Stanley also proposed a rela-

tionship between Stanley depth and module’s depth, known as Stanley’s conjecture

given in [28]. However, Duval et al. in [11] demonstrated that Stanley’s conjecture is

invalid for modules of the form X/N , where X is the ring of polynomials over a field

and N is a monomial ideal. Despite this, identifying classes of modules that still fulfill

Stanley’s inequality remains a challenging task. Few results related to Stanley depth

are given in [7, 12, 15, 17, 18].

In recent decades, investigating the regularity of the powers of ideals that are ho-

mogeneous has emerged as a focal point. This research initiative originated from a

significant theorem, demonstrated by Cutkosky-Herzog-Trung in [8] and Kodiyalam in

[31]. The theorem establishes that for an ideal A which is homogenous in a standard

graded algebra over a field, the regularity function reg(At) exhibits an asymptotic lin-

earity. Several researchers have investigated the values and bounds for the projective

dimension and regularity of edge ideals. See [2, 3, 5, 9] for more information on these

two invariants.

In this thesis bounds for the Stanley depth, Depth and projective dimension of the

quotient ring corresponding to the powers of the edge ideals of caterpillars and a forest

vii



of such caterpillars are computed. Also exact values of regularity for such structures

are calculated.

Chapter 1 of this thesis provides an introduction to the fundamental concepts of

Ring and Module Theory, covering the basic definitions, examples, and results related

to these algebraic structures. Additionally, the basic definition and examples of graph

theory are also included, which will be utilized in the study.

Chapter 2 presents an overview of Stanley depth, depth, regularity and projective

dimension. It discusses different results associated with these algebraic invariants and

provides a few examples. The chapter also states the Stanley’s conjecture and out-

lines the method for determining the Stanley depth of squarefree monomial ideals and

quotient rings associated to these ideals.

In chapter 3, bounds for the depth, projective dimension and Stanley depth of the

quotient ring corresponding to the powers of the edge ideals of caterpillars and a forest

of such caterpillars are computed. Moreover, we determine the exact value for the

regularity of the considered quotient rings, along with the regularity values for the

quotient rings corresponding to the powers of the edge ideals of the considered forests.

viii



Chapter 1

Preliminaries

The basic concepts related to rings, modules and also a few basic definitions of

graph theory are discussed in this chapter. A few examples are provided for a better

understanding.

Ring Theory is the study of rings, initially studied in the 1800’s. Emmy Noether

introduced the general concept of commutative rings. Initially, the focus was on com-

mutative rings, but later the study expanded to include non-commutative rings.

Module Theory, is the study of modules. A module is an algebraic object with a

ring associated with it, where the ring acts on the module.

Graph Theory involves the study of graphs and encompasses operations on graphs.

This chapter introduces fundamental terminologies of Graph Theory and provides ex-

amples of graphs that will be used in subsequent chapters of the study.

1.1 Ring Theory

This section explores various properties of rings, providing examples along the way.

Several definitions outlining distinct categories of rings and their corresponding prop-

erties are examined and elaborated upon. The concept of ideals and a few related

operations is also discussed.

Definition 1.1.1. A ring X with two binary operations namely addition “ + ” and

multiplication “ × ” is a set such that the following hold:
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• with respect to addition X is an abelian group,

• multiplication is associative i.e (d × e) × f = d × (e × f) and also distributive

over addition i.e

1. d× (e+ f) = (d× e) + (d× f),

2. (e+ f)× d = (e× d) + (f × d), ∀ d, e, f ∈ X .

Definition 1.1.2. Let X be a ring. Then,

• X is known as a ring having multiplicative identity if ∃ u such that ∀ d ∈
X , d× u = u× d = d,

• If d× e = e× d, ∀ d, e ∈ X , then X is said to be a commutative ring.

The rings considered throughout this thesis are commutative rings having identity.

Example 1.1.1. Following are a few examples of rings:

• R,Z and Q are commutative rings with identity.

• For n ≥ 2 the ring nZ is a commutative ring without identity.

1.1.1 Polynomial Ring

Definition 1.1.3. Let X be a commutative ring with unity. For n ≥ 0 and ri ∈
X P (Y ) = r0 + r1Y + r2Y

2 + · · · + rn−1Y
n−1 + rnY

n is termed as a polynomial in

indeterminate Y having co-efficients ri.

Definition 1.1.4. Let X be a commutative ring. The set of formal symbols X [Y ] =

r0+r1Y +r2Y
2+· · ·+rn−1Y

n−1+rnY
n : n ≥ 0, ri ∈ X} is called the ring of polynomials

over X in the variable Y .

Example 1.1.2. R[Y ], Q[Y ] and Z[Y ] are few examples of polynomial rings.

2



1.1.2 Noetherian Ring

Definition 1.1.5. (Chain conditions) Let Q be a poset w.r.t ≤. Then the following

are equivalent:

• Every increasing sequence x1 ≤ . . . ≤ xp ≤ . . . in Q is stationary i.e ∃ p such

that xm = xp ∀ m ≥ p,

• A maximal element is present in every non-empty subset of Q.

If Q represents the set containing all the ideals of the ring X which is ordered

by the relation ⊆ then the first chain condition is called the ascending chain

condition.

Definition 1.1.6. A ring X is termed to be Noetherian if it has an ascending chain

condition on its ideal.

Example 1.1.3. Z, which is the ring of integers is a Noetherian ring.

1.1.3 Graded Ring

Definition 1.1.7. Let X be a ring and G be an abelian group then X is graded

(G-graded) if X =
⊕

i∈G Xi is a direct sum decomposition of abelian groups and if

XiXj ⊆ Xi+j∀ i, j ∈ G.

Example 1.1.4. The ring X [x, y] is a Z - graded ring as X [x, y] = X ⊕ (Xx+X y)⊕
(Xx2 + X y2 + Xxy)⊕ (Xx3 + X y3 + Xx2y + Xxy2)⊕ · · ·.

Definition 1.1.8. Let z ∈ Zn; then h ∈ X is said to be homogeneous having degree

z if h has the form axz where a ∈ K. The ring of polynomials X = X [x1, . . . , xd] in d

variables is Zd - graded having graded components

Xz =

{
Kxz, if z ∈ Zd

+,
0 , otherwise.
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1.1.4 Ring Homomorphisms and Quotient Rings

Definition 1.1.9. For rings X and Y , a map ζ : X −→ Y is a homomorphism that

satisfies the following:

• ζ(d+ e) = ζ(d) + ζ(e),

• ζ(de) = ζ(d)ζ(e), where d ∈ X and e ∈ Y .

Definition 1.1.10. Suppose X and Y are rings and if ζ : X −→ Y is a homomorphism

then the kernal of ζ is given as ker ζ = {d ∈ X : ζ(d) = 0} and the image of ζ is defined

as ζ(X ) = {e ∈ Y : e = ζ(d)}.

Example 1.1.5. The map ζ : Z −→ Zn defined as ζ(z) = z(mod n) is a ring homo-

morphism with ker ζ = nZ and Im ζ = Zn.

Definition 1.1.11. Let X be a ring with ideal A, then the quotient ring X/A is the set

of cosets of A in X , with addition and multiplication defined as (d1 +A) + (d2 +A) =

(d1 + d2) + A and (d1 + A)(d2 + A) = d1d2 + A.

1.1.5 Ideals and Their Properties

Definition 1.1.12. Let A ⊆ X , then A is said to be an ideal of X if

• A is an additive abelian subgroup of X ,

• If a ∈ A and d ∈ X , then the product da ∈ A, i.e dA ⊆ A and also ad ∈ A, i.e

Ad ⊆ A.

Example 1.1.6. For the ring Z its ideals are of the type nZ, where n ∈ Z.

Every ideal is a subring but the converse doesnot necessarily hold. For example Z is

a subring of Q but not an ideal of Q.

Definition 1.1.13. Let A and B be the ideals of X . Then
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• A+B is the sum of ideals A and B given by A+B = {a+ b : a ∈ A, b ∈ B},

• AB is the product of A and B given by AB = {a1b1+a2b2+· · ·+arbr : a1, . . . , ar ∈
A, b1, . . . , br ∈ B},

• The intersection A ∩B is defined as A ∩B = {a ∈ X : a ∈ A and a ∈ B}.

Example 1.1.7. Let l, p ∈ Z+. If A = (l) = lZ and B = (p) = pZ be ideals of X = Z.

Then

• A+B = gcd(l, p)Z,

• A ∩B = lcm(l, p)Z,

• AB = (lp) = lpZ.

Example 1.1.8. Let A = 2Z and B = 8Z then, A + B = 2Z, A ∩ B = 8Z and

AB = 16Z.

Definition 1.1.14. Suppose A and B are two ideals of X then the ideal quotient of

A and B also called the colon ideal is given by (A : B) = {a ∈ X : aB ⊆ A}.

Definition 1.1.15. In a ring X , a maximal ideal N is a proper ideal that has no other

proper ideal lying between it and the entire ring X .

1.1.6 Monomial Ideals

Definition 1.1.16. Let X = K[x1, . . . , xd] where K represents a field. The product

xa1
1 xa2

2 . . . xad
n , with ai ∈ {0, 1, 2, . . . } is called a monomial of X . A monomial is square

free when ai ∈ {0, 1}.

Definition 1.1.17. An ideal A ⊆ X = K[x1, . . . , xd] if generated by monomials is

classified as a monomial ideal. Furthermore, we denote by G(A) the set of monomials

in A that are minimal w.r.t divisibility.

Example 1.1.9. Let X = K[x1, . . . , x7]. Then A = (x2
6x2, x

2
3x1, x4, x3) is a monomial

ideal and B = (x1x2, x3x5, x4) is a monomial ideal which is square free.

5



Definition 1.1.18. Let X = K[x1, . . . , xn], A = (u1, . . . , un) and B = (v1, . . . , vm) are

monomial ideals of X . Then

• A+B = (u1, u2, . . . , un, v1, v2, . . . , vm),

• AB = (u1v1, . . . , u1vm, u2v1, . . . , u2vm, unv1, . . . , unvm),

• A2 = (u2
1, u1u2, . . . , u2u1, . . . , u2un, . . . , unu1, . . . , u

2
n),

• A ∩B = {lcm(u, v) : u ∈ G(A), v ∈ G(B)},

• A : B = ∩v∈G(B)(A : v) = { u
gcd(u,v)

: u ∈ G(A)}.

Example 1.1.10. Let A and B be monomial ideals of X = K[x1, x2, x3] such that

A = (x1x2, x
2
1x3, x2x

2
3, x1x

2
3) and B = (x1x3, x

2
2x3, x

2
1). Then

• A+B = (x1x2, x
2
1x3, x2x

2
3, x1x3, x

2
2x3, x

2
1) = (x1x2, x2x

2
3, x1x3, x

2
2x3, x

2
1),

• AB = (x2
1x2x3, x1x

3
2x3, x

3
1x2, x

3
1x

2
3, x

2
1x

2
2x

2
3, x

4
1x3, x1x2x

3
3, x

3
2x

3
3, x

2
1x2x

2
3, x

2
1x

3
3, x1x

2
2x

3
3,

x3
1x

2
3) = (x2

1x2x3, x1x
3
2x3, x

3
1x2, x

3
1x

2
3, x

4
1x3, x1x2x

3
3, x

3
2x

3
3, x

2
1x

3
3),

• A ∩ B = (x1x2x3, x1x
2
2x3, x

2
1x2, x

2
1x3, x

2
1x

2
2x3, x

2
1x3, x1x2x

2
3, x

2
2x

2
3, x

2
1x2x

2
3, x1x

2
3

x1x
2
2x

2
3, x

2
1x

2
3) = (x1x2x3, x

2
1x2, x

2
1x3, x2x

2
3, x1x

2
3),

• A : B = (A : x1x3) ∩ (A : x2
2x3) ∩ (A : x2

1)

= ( x1x2

gcd(x1x2,x1x3)
,

x2
1x3

gcd(x2
1x3,x1x3)

,
x2x2

3

gcd(x2x2
3,x

2
2x3)

,
x1x2

3

gcd(x1x2
3,x1x3)

) ∩ ( x1x2

gcd(x1x2,x2
2x3)

,

x2
1x3

gcd(x2
1x3,x2

2x3)
,

x2x2
3

gcd(x2x2
3,x

2
2x3)

,
x1x2

3

gcd(x1x2
3,x

2
2x3)

) ∩ x1x2

gcd(x1x2,x2
1)
,

x2
1x3

gcd(x2
1x3,x2

1)
,

x2x2
3

gcd(x2x2
3,x

2
1)
,

x1x2
3

gcd(x1x2
3,x

2
1)
)

= (x2, x1, x3, x3) ∩ (x1, x
2
1, x3, x1x3) ∩ (x2, x3, x2x

2
3, x

2
3)

= (x1, x2, x3) ∩ (x1, x3) ∩ (x2, x3) = (x1x2, x1x3, x2x3, x3).
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1.2 Module Theory

This section delves into the properties of modules, presents examples, and discusses

a few important results in Module Theory.

Definition 1.2.1. Let X be a commutative ring. An X -module is a set N along with

a binary operation on N , with which N is an abelian group and an action X acts on

N that is a map X ×N → N defined as ∗(r, n) = rn which satisfies the following :

• (d+ e)n = dn+ en ∀ d, e ∈ X and n ∈ N ,

• (de)(n) = d(en) ∀ d, e ∈ X and n ∈ N ,

• d(n+m) = dn+ dm ∀ d ∈ X and n,m ∈ N .

If the ring contains unity then we have one more axiom that is,

• 1n = n ∀ n ∈ N .

Example 1.2.1. If X represents a ring and A ⊆ X is the ideal of X , then X/A is an

X -module under the scalar multiplication d(b+ A) = db+ A ∀ d ∈ X , b+ A ∈ X/A.

Definition 1.2.2. For a ring X and X -module N , a subset O ⊆ N which is non empty

is a submodule of N if O is a subgroup of N which is an additive group which also

satisfies the module axioms using the scalar multiplication on N .

1.2.1 Noetherian Modules

Definition 1.2.3. For a ring X , an X -module N is considered Noetherian if every in-

creasing sequence of X -submodules of N eventually becomes stationary. Additionally,

a finitely generated X -module N is also Noetherian.

Example 1.2.2. A finite additive abelain group G, which is a Z-module is Noetherian.

7



1.2.2 Free Modules

Definition 1.2.4. Let F be an X -module. If F has a non-empty basis A, then F is

called a free X -module.

Example 1.2.3. Let X be a ring. Then X n = {(a1, a2, . . . , an); ai ∈ X} is a free

module with basis {c1, c2, . . . , cn}, where ci = (0, . . . , 0, 1, 0, . . . , 0) with 1 at the ith

position.

1.2.3 Graded Modules

Definition 1.2.5. For a G-graded ring X and an X -module N we say that N is graded

(G-graded) if N =
⊕

i∈GNi is a direct sum decomposition of abelian groups and N is

graded (G-graded) if XiNj ⊆ Ni+j∀ i, j ∈ G.

Definition 1.2.6. An X - module N is said to be Zn-graded if N =
⊕

i∈Zn Ni and

XiNj ⊂ Ni+j for all i, j ∈ Zn.

1.2.4 Exact Sequences

Definition 1.2.7. A sequence of X -modules and X -homomorphisms given by

. . . −→ Ni−1
hi−−→ Ni

hi+1−−−→ Ni+1
hi+2−−−→ . . .

is termed as exact at Ni if the condition Im(hi) = ker(hi+1) is satisfied. The sequence

is said to be exact if it is exact at every Ni.

Definition 1.2.8. The sequence

0 −→ N ′ h−−→ N k−−→ N ′′ −→ 0

is said to be an exact sequence if and only if h is one-one, k is onto and the condition

Im(h) = ker(k) is satisfied. Such a sequence is termed as a short exact sequence.

Example 1.2.4. Let n ≥ 2. Then the sequence

0 −→ Z h−−→ Z k−−→ Z/nZ −→ 0

is said to be a short exact sequence where h : Z −→ Z is defined as h(x) = nx and

k : Z −→ Z/nZ is defined as k(x) = x+ nZ.

8



1.2.5 Module Homomorphisms and Quotient Modules

Definition 1.2.9. For a ring X and X -modules, N and O, a map ζ : N −→ O is an

X -module homomorphism if it respects the X -module structure of N and O that is

• ζ(n+ p) = ζ(n) + ζ(p) ∀ n, p ∈ N and

• ζ(dn) = dζ(n) ∀ n ∈ N and d ∈ X .

Definition 1.2.10. Let X be ring and if ζ : N −→ O is an X -module homomorphism

then we define the kernal of ζ as ker ζ = {n ∈ N : ζ(n) = 0} and the image of ζ is

defined as ζ(N ) = {o ∈ O : o = ζ(n)}.

Example 1.2.5. Let X be ring and N = X n, then for each i ∈ {1, 2, . . . , n}, the

projection map πi : X n −→ X defined as πi((h1, h2, . . . , hn)) = hi is a homomorphism

and we have kerπi = {(h1, . . . , hi−1, 0, hi+1, . . . , hn) : h1, . . . , hi−1, hi+1, . . . , hn ∈ X}
and Imπi = X n.

Definition 1.2.11. Consider a ring X , an X -module N , and a submodule O of N .

The abelian quotient group N /O = {n + O : n ∈ N}, can be transformed into a

X -module by defining scalar multiplication as d(n+O) = dn+O.

1.3 Graph Theory

We discuss a few basics related to Graph Theory in this section.

Definition 1.3.1. A graph say G comprises of a set of vertices given by V (G) and a

set of edges given by E(G). Additionally, each edge is associated with a relation that

connects two vertices, known as its endpoints, which may or may not be distinct.

Definition 1.3.2. A loop represents an edge which has the same endpoints. Edges

sharing the same pair of endpoints are called multiple edges. A graph without any

multiple edges or loops is a simple graph.

9



Definition 1.3.3. For every pair of vertices in a graph G, if there exists a single path

that joins these vertices, then that graph is termed as connected. The component

of any connected graph G is a connected subgraph that is not present in any other

subgraph which is larger.

Definition 1.3.4. The number of edges which are incident to a vertex represents the

degree of a graph and a vertex having degree 1 is said to be a pendant vertex. The

distance between two vertices is determined by the shortest length of a path that

connects those vertices and the diameter of a connected graph G is the maximum

distance between any two of the vertices.

Definition 1.3.5. A graph having n vertices such that there is an edge which connects

the adjacent vertices is said to be a path graph denoted as Pn. A graph having n vertices

such that there is an edge which connects the adjacent vertices and also the first and

the last vertex is known as a cycle graph and is denoted by Cn.

(a) Path (b) Cycle

Figure 1.1

Definition 1.3.6. A graph in which any two vertices are joined by a unique path is

termed as tree graph. A caterpillar tree is a tree which becomes a path after removing

its pendant vertices. A graph in which every component is a tree is a forest.

10



(a) Tree (b) Caterpillar

Figure 1.2

Definition 1.3.7. The set of edges having no common vertices is a matching in the

graph G. An induced matching is such a matching that forms a subgraph of G which

is also induced and indmat(G) = max{|M | : M is an induced matching in G} denotes

the induced matching number.

Definition 1.3.8. A graph G is considered to be chordal if it lacks any induced cycle

with a length that is greater than 3.
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Chapter 2

Stanley Depth, Depth, Regularity and
Projective Dimension

In this section the above mentioned invariants of an X -module N and a few re-

lated results are discussed. The ring considered throughout this section is a ring of

polynomial in d variables that is X = X [x1, . . . , xd].

2.1 Depth

In this subsection the concept of depth in the context of graded modules is discussed.

A few preliminary definitions followed by some well established results are given which

set the groundwork for subsequent discussions.

Definition 2.1.1. For an X -module N , a non-zero element d ∈ X is a regular element

on N if whenever the product dn = 0 where n ∈ N implies that n = 0.

Definition 2.1.2. Let N be an X -module and d1, d2, . . . , dn be a sequence of elements

of the ring X . This sequence is defined as N -regular if:

• dj is regular on N /(d1, d2, . . . , dn) for any j and

• N = N /(d1, d2, ..., dn)N .

Example 2.1.1. Consider X = K[x1, x2, x3, x4] as a module over itself. Then as x1 is

regular on X/(0)X , x2 is regular on X/(x1)X , x3 is regular on X/(x1, x2)X and x4 is

regular on X/(x1, x2, x3)X , so x1, x2, x3, x4 is the N -regular sequence in X .

12



Definition 2.1.3. The depth of the X -module N finitely generated over the Noethe-

rian ring N , w.r.t the unique maximal ideal m, is defined to be the common length of

all the maximal regular sequences in the ideal m when considered on N .

2.1.1 Few Results Related to Depth

Lemma 2.1.4 ([4, Proposition 1.2.9]). For a given short exact sequence 0 −→ N1 −→
N2 −→ N3 −→ 0 of modules which is considered over a local ring or a graded Noethe-

rian ring having local X0, we have

• depth(N2) ≥ min{depth(N3), depth(N1)},

• depth(N1) ≥ min{depth(N2), depth(N3) + 1},

• depth(N3) ≥ min{depth(N1)− 1, depth(N2)}.

Lemma 2.1.5 ([15, Lemma 3.6]). Let A be the monomial ideal of a ring X . If

X ′ = X [y] is a ring of polynomials over X in the variable y. Then depth(X ′/AX ′) =

depth(X/A) + 1.

Lemma 2.1.6 ([10, Lemma 2.12]). Let A1 ⊂ X1 = K[x1, . . . , xr] and A2 ⊂ X2 =

K[xr+1, xr+2, . . . , xd] be monomial ideals where 1 ≤ r ≤ d. If X = X1 ⊗K X2.

Then depthX (X1/A1 ⊗K X2/A2) = depthX (X/(A1X + A2X )) = depthX1
(X1/A1) +

depthX2
(X2/A2).

Proposition 2.1.2 ([26, Corollary 1.3]). Consider a monomial ideal A of the ring X .

Then for any monomial x /∈ A depth(X/A) ≤ depth(X/(A : x)).

Corollary 2.1.3 ([6, Corollary 1.6]). Let A ⊆ X be a monomial ideal. Then sdepth(X/A) =

0 iff depth(X/A) = 0.

Theorem 2.1.4 ([13, Proposition 4.3]). Consider a graph G having c connected com-

ponents and let A = A(G) and d = d(G) represent the diameter of the graph G. Then

for t ≥ 1, we have depth ≥ c− t.

Lemma 2.1.5 ([20, Lemma 2.8]). Let A = A(Pn) be an edge ideal of a path graph with

n ≥ 2. Then depth(X/A) = ⌈n
3
⌉.
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2.2 Stanley Depth

This subsection explores the concept of Stanley depth, a combinatorial property

associated with modules. A concise overview of the Stanley’s conjecture, an outline of

a methodology for determining the Stanley depth and a few results are then discussed.

Definition 2.2.1. Consider a Zd-graded X -module N which is finitely generated. Let

nK[Z] be the subspace of N which is generated by the elements of the type ny, where

n is an element in N and is homogenous, y is a monomial in the ring of polynomial

K[Z], and Z is a subset of {x1, . . . , xd}. If say uK[Z] is a free K[Z]-module, then it

is referred to as a Stanley space having dimension equal to |Z|. For the module N
its Stanley decomposition is its representation as a finite direct sum of these Stanley

spaces. The Stanley depth of

D : N =
s⊕

k=1

ukK[Zk]

is sdepth(D) = min{|Zk|: k = 1, . . . , s} and that of N is the number sdepth(N ) =

max{sdepth(D) : D is a Stanley decomposition of N}.

2.2.1 Stanley’s Conjecture

Stanley in 1982 [28] gave a conjecture which stated that for a Zd-graded X -module N
which is finitely generated, we have that sdepth(N ) ≥ depth(N ). Duval et al in [11]

disproved this conjecture later with the help of a counterexample for the module of the

type X/N . An algorithm for the computation of Stanley depth is provided in [16] by

Ichim et al..

2.2.2 Method for the Computation of Stanley Depth for Square-
free Monomial Ideals

In 2009, Herzog et al. in [15] introduced an innovative approach for computing the

lower bound of the Stanley depth of monomial ideals. This method involves utilizing

posets and is designed to achieve this computation in a fixed number of steps. Let A
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be a squarefree monomial ideal having generating set as G(A) = {e1, . . . , em}. Now

the characteristic poset of A w.r.t g = (1, . . . , 1), written as Q(1,...,1)
I is defined to be

Q(1,...,1)
I = {γ ⊂ [n] | γ contains supp(ej) for, some j},

where supp(ej) = {i : xi|ej} ⊆ [n] := {1, . . . , n}. For each ρ, σ ∈ Q(1,...,1)
I where ρ ⊆ σ,

and

[ρ , σ] = {γ ∈ Q(1,...,1)
I : ρ ⊆ γ ⊆ σ}.

Let Q : Q(1,...,1)
I = ∪k

j=1[γj , ηj] be a partition of Q(1,...,1)
I , and for every j, suppose

s(j) ∈ {0, 1}n is the tuple with supp(xs(j)) = γj, then the Stanley decomposition D(Q)

of A is given by

D(Q) : A =
r⊕

j=1

xs(j)K[{xk | k ∈ ηj}].

Clearly, sdepthD(Q) = min{|η1|, . . . , |ηr|} and

sdepth(A) = max{sdepthD(Q) | Q is a partition of Q(1,...,1)
I }.

Example 2.2.1. Consider A = (x1x4, x2x5, x3x4x5) ⊂ K[x1, x2, x3, x4, x5] and B = 0.

Set σ1 = (1, 0, 0, 1, 0), σ2 = (0, 1, 0, 0, 1) and σ3 = (0, 0, 1, 1, 1). Thus A is generated by

xσ1 , xσ2 , xσ3 and choose g = (1, 1, 1, 1, 1). The poset Q = Qg
A/B is given by:

Q = {(1, 0, 0, 1, 0), (0, 1, 0, 0, 1), (1, 1, 0, 1, 0), (1, 1, 0, 0, 1), (1, 0, 1, 1, 0), (1, 0, 0, 1, 1),

(0, 1, 1, 0, 1), (0, 1, 0, 1, 1), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (1, 1, 1, 0, 1), (1, 1, 0, 1, 1),

(1, 0, 1, 1, 1), (0, 1, 1, 1, 1), (1, 1, 1, 1, 1)}.
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Partitions of Q are given by:

Q1 : [(1, 0, 0, 1, 0), (1, 0, 0, 1, 0)]
⋃

[(0, 1, 0, 0, 1), (0, 1, 0, 0, 1)]
⋃

[(1, 1, 0, 1, 0), (1, 1, 0, 1, 0)]
⋃

[(1, 0, 0, 1, 1), (1, 0, 0, 1, 1)]
⋃

[(1, 1, 0, 0, 1), (1, 1, 0, 0, 1)]
⋃

[(1, 0, 1, 1, 0), (1, 0, 1, 1, 0)]
⋃

[(0, 1, 1, 0, 1), (0, 1, 1, 0, 1)]
⋃

[(0, 1, 0, 1, 1), (0, 1, 0, 1, 1)]
⋃

[(0, 0, 1, 1, 1), (0, 0, 1, 1, 1)]
⋃

[(1, 1, 1, 1, 0), (1, 1, 1, 1, 0)]
⋃

[(1, 1, 1, 0, 1), (1, 1, 1, 0, 1)]
⋃

[(1, 1, 0, 1, 1), (1, 1, 0, 1, 1)]
⋃

[(1, 0, 1, 1, 1), (1, 0, 1, 1, 1)]
⋃

[(0, 1, 1, 1, 1), (0, 1, 1, 1, 1)]
⋃

[(1, 1, 1, 1, 1), (1, 1, 1, 1, 1)],

Q2 : [(1, 0, 0, 1, 0), (1, 1, 0, 1, 0)]
⋃

[(0, 1, 0, 0, 1), (1, 1, 0, 0, 1)]
⋃

[(1, 0, 1, 1, 0), (1, 1, 1, 1, 0)]
⋃

[(1, 0, 0, 1, 1), (1, 1, 0, 1, 1)]
⋃

[(0, 1, 1, 0, 1), (1, 1, 1, 0, 1)]
⋃

[(0, 1, 0, 1, 1), (0, 1, 1, 1, 1)]
⋃

[(0, 0, 1, 1, 1), (1, 0, 1, 1, 1)]
⋃

[(1, 1, 1, 1, 1), (1, 1, 1, 1, 1)],

Q3 : [(1, 0, 0, 1, 0), (1, 1, 1, 1, 0)]
⋃

[(0, 1, 0, 0, 1), (1, 1, 1, 0, 1)]
⋃

[(1, 0, 0, 1, 1), (1, 1, 0, 1, 1)]
⋃

[(0, 1, 0, 1, 1), (0, 1, 1, 1, 1)]
⋃

[(0, 0, 1, 1, 1), (1, 0, 1, 1, 1)]
⋃

[(1, 1, 1, 1, 1), (1, 1, 1, 1, 1)].

Now the corresponding Stanley decomposition is

D(Q1) := x1x4K[x1, x4]⊕ x2x5K[x2, x5]⊕ x1x2x4K[x1, x2, x4]⊕ x1x2x5K[x1, x2, x5]

⊕ x1x3x4K[x1, x3, x4]⊕ x1x4x5K[x1x4x5]⊕ x2x3x5K[x2, x3, x5]⊕

x2ϱ4x5K[x2, x4, x5]⊕ x3x4x5K[x3, x4, x5]⊕ x1x2x3x4K[x1, x2, x3, x4]⊕

x1x2x3x5K[x1, x2, x3, x5]⊕ x1x2x4x5K[x1, x2, x4, x5]

⊕ x1x3x4x5K[x1, x3, x4, x5]⊕ x2x3x4x5K[x2, x3, x4, x5]

⊕ x1x2x3x4x5K[x1, x2, x3, x4, x5],

D(Q2) := x1x4K[x1, x2, x4]⊕ x2x5K[x1, x2, x5]⊕ x1x3x4K[x1, x2, x3, x4]⊕

x1x4x5K[x1, x2, x4, x5]⊕ x2x3x5K[x1, x2, x3, x5]⊕ x2x4x5K[x2, x3, x4, x5]

⊕ x3x4x5K[x1, x3, x4, x5]⊕ x1x2x3x4x5K[x1, x2, x3, x4, x5],
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D(Q3) := x1x4K[x1, x2, x3, x4]⊕ x2x5K[x1, x2, x3, x5]⊕ x1x4x5K[x1, x2, x4, x5]⊕

x2x4x5K[x2, x3, x4, x5]⊕ x3x4x5K[x1, x3, x4, x5]

⊕ x1x2x3x4x5K[x1, x2, x3, x4, x5].

Then

sdepth(A) ≥ max{sdepth(D(Q1)) , sdepth(D(Q2)) , sdepth(D(Q3))}

= max{2, 3, 4}

= 4.

Example 2.2.2. Let X = K[x1, x2, x3, x4, x5, x6], consider A = (x1x3, x2x5, x4x6, x1x4x6).

Then select g = (1, 1, 1, 1, 1, 1) and the poset Q = Qg
X/A is given by:

Q = {(0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0),

(0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1), (1, 1, 0, 0, 0, 0), (1, 0, 0, 1, 0, 0), (1, 0, 0, 0, 1, 0),

(1, 0, 0, 0, 0, 1), (0, 1, 1, 0, 0.0), (0, 1, 0, 1, 0.0), (0, 0, 1, 1, 0, 0), (0, 0, 0, 1, 1, 0),

(0, 0, 1, 0, 0, 1), (0, 0, 0, 1, 1, 0), (0, 0, 0, 1, 0.1).(0, 0, 0, 0, 1, 1), (1, 1, 0, 1, 0, 0),

(1, 0, 0, 1, 1, 0), (1, 0, 0, 0, 1, 1), (0, 1, 1, 1, 0, 0), (0, 0, 1, 1, 1, 0), (0, 0, 1, 1, 0, 1),

(0, 0, 1, 0, 1, 1), (0, 0, 0, 1, 1, 1), (0, 0, 1, 1, 1, 1)}.
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The partitions of Q can be written as :

Q1 : [(0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0)]
⋃

[(0, 1, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0)]
⋃

[(0, 0, 1, 0, 0, 0), (0, 0, 1, 0, 0, 0)]
⋃

[(0, 0, 0, 1, 0, 0), (0, 0, 0, 1, 0, 0)]
⋃

[(0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 1, 0)]
⋃

[(0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 1)]
⋃

[(1, 1, 0, 0, 0, 0), (1, 1, 0, 0, 0, 0)]
⋃

[(1, 0, 0, 1, 0, 0), (1, 0, 0, 1, 0, 0)]
⋃

[(0, 1, 0, 1, 0, 0), (0, 1, 0, 1, 0, 0)]
⋃

[(0, 0, 1, 1, 0, 0), (0, 0, 1, 1, 0, 0)]
⋃

[(0, 0, 0, 1, 1, 0), (0, 0, 0, 1, 1, 0)]
⋃

[(0, 0, 0, 1, 0, 1), (0, 0, 0, 1, 0, 1)]
⋃

[(0, 0, 0, 0, 1, 1), (0, 0, 0, 0, 1, 1)]
⋃

[(1, 1, 0, 1, 0.0), (1, 1, 0, 1, 0, 0)]
⋃

[(1, 0, 0, 1, 1, 0), (1, 0, 0, 1, 1, 0)]
⋃

[(1, 0, 0, 0, 1, 1), (1, 0, 0, 0, 1, 1)]
⋃

[(0, 0, 0, 1, 1, 0), (0, 0, 0, 1, 1, 0)]
⋃

[(0, 0, 0, 0, 1, 1), (0, 0, 0, 0, 1, 1)]
⋃

[(1, 1, 0, 1, 0, 0), (1, 1, 0, 1, 0, 0)]
⋃

[(1, 0, 0, 1, 1, 0), (1, 0, 0, 1, 1, 0)]
⋃

[(1, 0, 0, 0, 1, 1), (1, 0, 0, 0, 1, 1)]
⋃

[(0, 1, 1, 1, 0, 0), (0, 1, 1, 1, 0, 0)]
⋃

[(0, 0, 1, 1, 1, 0), (0, 0, 1, 1, 1, 0)]
⋃

[(0, 0, 1, 1, 0, 1), (0, 0, 1, 1, 0, 1, )]
⋃

[(0, 0, 0, 1, 1, 1), (0, 0, 0, 1, 1, 1)]
⋃

[(0, 0, 1, 1, 1, 1), (0, 0, 1, 1, 1, 1, )],

Q2 : [(0, 0, 0, 0, 0, 0), (1, 1, 0, 1, 0, 0)]
⋃

[(0, 0, 1, 0, 0, 0), (0, 1, 1, 1, 0, 0)]
⋃

[(0, 0, 0, 0, 1, 0), (1, 0, 0, 1, 1, 0)]
⋃

[(0, 0, 0, 0, 0, 1), (1, 0, 0, 0, 1, 1)]
⋃

[(0, 0, 0, 1, 1, 0), (0, 0, 1, 1, 1, 0)]
⋃

[(0, 0, 1, 0, 0, 1), (0, 0, 0, 1, 0, 1)]
⋃

[(0, 0, 0, 1, 0, 1), (0, 0, 0, 1, 1, 1)].

So the corresponding Stanley decomposition is of the partitions will be

D(Q1) := K[x1]⊕ x2K[x2]⊕ x3K[x3]⊕ x4K[x4]⊕ x5K[x5]⊕ x6K[x6]⊕

x1x2K[x1, x2]⊕ x1x4K[x1, x4]⊕ x2x4K[x2, x4]⊕ x3x4K[x3, x4]

⊕ x4x5K[x4, x5]⊕ x4x6K[x4, x6]⊕ x5x6K[x5, x6]⊕ x1x2x4K[x1, x2, x4]

⊕ x1x4x5K[x1, x4, x5]⊕ x1x5x6K[x1, x5, x6]⊕ x4x5K[x4, x5]

⊕ x4x5K[x4, x5]⊕ x5x6K[x5, x6]⊕ x1x2x4K[x1, x2, x4]⊕ x1x4x5K[x1, x4, x5]

⊕ x1x5x6K[x1, x5, x6]⊕ x2x3x4K[x2, x3, x4]⊕ x3x4x5K[x3, x4, x5]

⊕ x3x4x6K[x3, x4, x6]⊕ x4x5x6K[x4, x5, x6]⊕ x3x4x5x6K[x3, x4, x5, x6],
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D(Q2) := K[x1, x2, x4]⊕ x3K[x2, x3, x4]⊕ x5K[x1, x4, x5]⊕ x6K[x1, x5, x6]⊕

x4x5K[x3, x4, x5]⊕ x3x6K[x4, x6]⊕ x4x6K[x4, x5, x6].

Then

sdepth(Q/A) ≥ max{sdepth(D(Q1)) , sdepth(D(Q2))}

= max{1, 3}

= 3.

2.2.3 Few Results Related to Sdepth

Lemma 2.2.2 ([26, Lemma 2.2]). For a short exact sequence 0 −→ N1 −→ N2 −→
N3 −→ 0 of X - modules which are Zn-graded we have sdepth(N2) ≥ min{sdepth(N1),

sdepth(N3)}.

Lemma 2.2.3 ([15, Lemma 3.6]). Let A be a monomial ideal of a ring X . If X ′ =

X [y] is a ring of polynomials over X in the variable y. Then sdepth(X ′/IX ′) =

sdepth(X/A) + 1.

Lemma 2.2.4 ([10, Lemma 2.13]). Let A1 ⊂ X1 = K[x1, ...., xr] and A2 ⊂ X2 =

K[xr+1, xr+2, . . . , xd] be monomial ideals where 1 ≤ r ≤ d. If X = X1 ⊗K X2. Then

sdepthX (X1/A1 ⊗K X2/A2) ≥ sdepthX1
(X1/A1) + sdepthX2

(X2/A2).

Proposition 2.2.3 ([7, Proposition 2.7]). Consider a monomial ideal A of a ring X .

Then for any monomial x /∈ A, sdepth(X/A) ≤ sdepth(X/(A : x)).

Proposition 2.2.4 ([15, Proposiiton 3.4]). Let an ideal A ⊆ X be generated by u

elements. Then sdepth(A) ≥ max{1, d− u+ 1}.

Proposition 2.2.5 ([15, Proposition 3.8]). Let a complete intersection monomial ideal

A ⊆ X be generated by a minimal set of u elements. Then sdepth(A) = d− ⌈u
2
⌉.

Theorem 2.2.6 ([23, Theorem 2.3]). Let A ⊆ X be monomil ideal which is generated

by a minimal set of u elements. Then, we have sdepth(A) ≥ max{1, d− ⌊u
2
⌋}.

Theorem 2.2.7 ([13, Theorem 4.18]). Consider a graph G having c connected compo-

nents and let A = A(G) and d = d(G) represent the diameter of the graph G. Then for

the first three powers that is 1 ≤ t ≤ 3, we have that sdepth(X/At) ≥ {⌈d−4t+5
3

⌉+c−1.}
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2.3 Regularity

Definition 2.3.1. For a field K let X = K[x1, . . . , xd] be a ring of polynomials in

d variables over the given field. Then for a Z-graded X -module N which is finitely

generated having a minimal free resolution

0 −→
⊕
h∈Z

X (−h)βp,h(N )−→
⊕
h∈Z

X (−h)βp−1,h(N )−→.....−→
⊕
h∈Z

X (−h)β0,h(N ) −→ 0

the regularity of N is reg(N ) = max{h− k : βk,h (N ) ̸= 0}.

2.3.1 Few Results Related to Regularity

Lemma 2.3.1 ([5, Theorem 4.7]). Consider a monomial ideal A in the ring X , and

let xi be one of the variables in X . Then

• reg(X/A) = reg(X/(A : xi)) + 1, if reg(X/(A : xi)) ≥ reg(X/(A, xi)),

• reg(X/A) ∈ reg(X/(A, xi)) + 1, reg(X/(A, xi)), if reg(X/(A : xi)) = reg(X/(A, xi)),

• reg(X/A) = reg(X/(A, xi)) if reg(X/(A : xi)) ≤ reg(X/(A, xi)).

Lemma 2.3.2 ([21, Lemma 3.6]). Consider a monomial ideal A in the ring X . If X ′ =

X [y] is a ring of polynomials over X in the variable y. Then reg(X ′/A) = reg(X/A).

Lemma 2.3.2 ([32, lemma 8]). Let X1 = K[x1, . . . , xr] and X2 = K[xr+1, . . . , xd] be

rings of polynomials and A1 and A2 be edge ideals of X1 and X2, respectively. Then

reg(X/(A1X + A2X )) = reg(X1/A1) + reg(X2/A2).

Proposition 2.3.3 ([19, Lemma 2.2]). For a simple graph G which is finite we have,

reg(X/A(G)) ≥ indmat(G).

Lemma 2.3.4 ([3, Proposition 3.1.1]). Let A = A(Pn) ⊂ X , where Pn is a path of

length n. Then reg(X/A(Pn)) = ⌈n
3
⌉.
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2.4 Projective Dimension

Definition 2.4.1. For a field K let X = K[x1, . . . , xd] be the ring of polynomials in

d variables over the given field. Then for a Z-graded X -module N which is finitely

generated having a minimal free resolution

0 −→
⊕
h∈Z

X (−h)βp,h(N )−→
⊕
h∈Z

X (−h)βp−1,h(N )−→.....−→
⊕
h∈Z

X (−h)β0,h(N ) −→ 0

the projective dimension of N is given by pdim(N ) = max{k : βk,h (N ) ̸= 0}.

2.4.1 Few Results Related to Projective Dimension

Lemma 2.4.1 ([4, Theorem 1.3.3]). (Auslander–Buchsbaum formula) Suppose X is a

local Noetherian ring and is also commutative, and N is a non-zero X -module which is

finitely generated and has finite projective dimension. Then, the sum of the projective

dimension and the depth of the module N is equal to the dimension of the ring X this

is pdim(N ) + depth(N ) = depth(X ).

Lemma 2.4.2 ([9, Lemma 5.1]). For A a square-free monomial ideal, and any subset

of the variables T relabeled as T = {x1, . . . , xd}, either ∃ a d with 1 ≤ d ≤ j such that

pdim(X/A) = pdim(X/((A, x1, . . . , xd1) : xd)) or pdim(X/A) = pdim(X/(S, x1, . . . , xj)).

Lemma 2.4.3 ([3, Proposition 3.1.1]). Let A = A(Pn) ⊂ X , where Pn is a path of

length n. Then pdim(X/A(Pn)) = ⌈2n
3
⌉.

Theorem 2.4.4 ([9, Theorem 2.6]). Let A ⊂ X be a monomial ideal which is square-

free. Then reg(A∇) = pdim(X/A). Also we have A∇∇ = A, so reg(A) = pdim(X/A∇),

where ∇ represents the Alexander Dual.

Proposition 2.4.5 ([3, Proposition 5.0.6]). Let Cn be an n length cycle. Then

pdim(X/A(Cn) =

{
⌈2n

3
⌉ if 3 | (n− 1)

⌈2(n−1)
3

⌉ if 3 ∤ (n− 1).
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Chapter 3

Algebraic Invariants of the Powers of
Edge Ideals of Caterpillars and some
Forests

In this chapter a caterpillar graph is defined as in Definition 3.1.1. We compute

bounds for the depth and sdepth of the quotient ring corresponding to the powers of

the edge ideals of these caterpillars and also the bounds for the projective dimension.

When considering a forest of p connected caterpillars a lower bound for the depth and

sdepth of the quotient rings which are associated to the powers of the edge ideals of

such forests is also calculated. The exact value for the regularity of the considered

quotient rings is also computed along with the values of regularity for the quotient

rings which are associated to the powers of the edge ideals of the considered forests.

3.1 Preliminaries

We discuss a few preliminaries first which aid in proving the Theorems given in

this chapter. These basic results include a few Lemma’s which help in simplifying the

structures under study and a few other basic Theorems related to bipartite graphs and

trees in general are given.

Lemma 3.1.1 ([1, Theorem 2.6 and 2.9]). Let A = A(Sk). Then

• depth(X/A) = sdepth(X/A) = 1,
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• depth(X/At), sdepth(X/At) ≥ 1.

Lemma 3.1.2 ([20, Lemma 2.6]). Suppose G is bipartite having edge ideal A. Then

for all t ≥ 1 depth(X/At) ≥ 1 and depth(X/At) = 1 for a large t if the graph is tree.

Lemma 3.1.3 ([20, Lemma 2.10]). Let G be a graph and A = A(G). Let xi be a leaf

of G and xj be the unique neighbor of xi. Then (At : xixj) = At−1 for any t ≥ 2.

Lemma 3.1.4 ([20, Lemma 2.5]). Consider a monomial ideal A which is square free

in a polynomial ring X , and let M be a monomial in X . Suppose y is a variable such

that y doesnot divide M . Let B be the extension in X of the minor of A formed by

keeping y = 0. For any t ≥ 1, it holds that ((At : M), y) = ((Bt : M), y).

Lemma 3.1.5. If A = A(CPm1,..,mp), then for t ≥ 1, (At, xp) = (At(CPm1,..,mp−1), xp).

Proof: It is clear that (At(CPm1,..,mp−1), xn) ⊆ (At, xp). Conversely, if x ∈ At is a

monomial which is not divisible by xp, then, by the definition of G(A), we get that

x ∈ At(CPm1,..,mp−1).

Theorem 3.1.6 ([20, Theorem 3.4]). Consider a forest G having c connected compo-

nents, denoted as G1, . . . , Gc, and let A = A(G). For each connected component Gi,

let di be its diameter, and define d as d = max{di}. Then for t ≥ 1, depth(X/At) ≥
max{⌈d−t+2

3
⌉+ c− 1, c},

Theorem 3.1.7 ([25, Theorem 2.7]). Consider a forest G having c connected compo-

nents, denoted as G1, . . . , Gc, and let A = A(G). For each connected component Gi,

let di be its diameter, and define d as d = max{di}. Then for t ≥ 1, sdepth(X/At) ≥
max{⌈d−t+2

3
⌉+ c− 1, c}.

Corollary 3.1.8 ([20, Corollary 3.7]). Consider a forest G having c connected compo-

nents, denoted as G1, . . . , Gc, and let A = A(G). For each connected component Gi,

let di be its diameter, and define d as d = max{di} and let q denote the number of

near leaves in the component with d as its diameter. Then for t ≥ 1., depth(X/At) ≥
max{⌈d−t+q

3
⌉+ c− 1, c}.
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Corollary 3.1.9 ([25, Corollary 3.2]). Consider a forest G having c connected compo-

nents, denoted as G1, . . . , Gc, and let A = A(G). For each connected component Gi,

let di be its diameter, and define d as d = max{di} and let q denote the number of

near leaves in the component with d as its diameter. Then for t ≥ 1. sdepth(X/At) ≥
max{⌈d−t+q

3
⌉+ c− 1, c}.

Lemma 3.1.10 ([27, Lemma 2.26]). Let A = A(Sk). Then reg(X/A(Sk)) = 1.

Theorem 3.1.11 ([2, Theorem 4.7]). Consider a forest G with the edge ideal A =

A(G), and let indmat(G) be the induced matching number of G. For all t ≥ 1, the

regularity of the t-th power of the ideal A is given by reg(At) = 2t+ indmat(G) − 1.

Lemma 3.1.12 ([14, Corollary 6.9]). For a chordal graph G, the regularity of the quo-

tient ring X/A(G) is equal to the induced matching number of G that is reg(X/A(G)) =

indmat(G).

Remark 3.1.13. Consider a graph G having c connected components, and let k1,

k2,...,kc be the induced matching numbers of the connected components of G respec-

tively. Then the induced matching number of G is equal to k1 + k2 +...+ kc.

3.2 Bounds for the Invariants of the First Power of
the Edge Ideals of Caterpillars

In this section a caterpillar is defined and bounds for the the three invariants the

depth, sdepth and projective dimension of the squarefree case of the quotient ring X/A

are given. For the fourth invariant the regularity, an exact value is calculated.

Definition 3.2.1. Let p ≥ 1 and mi ≥ 1 be integers, where Mi = {xi1, xi2, ..., ximi
},

1 ≤ i ≤ p and Pp is a path on p vertices {x1, ..., xp}. We define a caterpillar by

CP(m1,...,mp), where p equals the number of vertices on the path Pp and the set Mi

denotes the pendant vertices on each xi respectively.
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x1

x11 x12

x2

x21 x22

x3

x31x32
x33

Figure 3.1: CP(2,2,3)

Theorem 3.2.2. Let p ≥ 1,mi ≥ 1,m = min{m1, . . . ,mp},M = max{m1, . . . ,mp}
and A = A(CP(m1,...,mp)). Then

⌈p
2
⌉+ ⌈p− 1

2
⌉(m) ≤ depth(X/A), sdepth(X/A) ≤ ⌈p

2
⌉+ ⌈p− 1

2
⌉(M).

Proof: For p = 1, the result is derived from Lemma 3.1.1. First we state the proof for

p = 2.

Consider the short exact sequence

0 −→ X/(A : x2)
.x2−→X/A−→X/(A, x2) −→ 0.

Note that

X/(A : x2) ∼= K[x2, x11, x12, ..., x1m1 ].

Thus

depth(X/A : x2)) = 1 +m1 ≥ 1 +m.

Also we have

X/(A, x2) ∼= K[CP(m1)]/A(CP(m1))⊗K[x21, x22, ..., x2m2 ].

Thus

depth(X/A, x2)) = 1 +m2 ≥ 1 +m.
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Also, using Lemma 2.1.2 we get

depth(X/A : x2)) = 1 +m1 ≤ 1 +M.

So, by Lemma 2.1.4, we get

1 +m ≤ depth(X/A) ≤ 1 +M.

Without loss of generality if we let m1 = m, then

depth(X/A) = 1 +m1 = 1 +m.

For n ≥ 3, consider the short exact sequence

0 −→ X/(A : xp)
.xp−→X/A−→X/(A, xp) −→ 0.

Note that

X/(A : xp) ∼= (K[CP(m1,...mp−2)]/I(CP(m1,...mp−2)))⊗K[xn,Mp−1]

and

X/(A, xp) ∼= (K[CP(m1,...mp−1)]/I(CP(m1,...mp−1)))⊗K[Mp].

So, by induction we have

depth(X/A : xp)) = depth(K[CP(m1,...mp−2)]/I(CP(m1,...mp−2))) + 1 +mp−1

≥ ⌈p−2
2
⌉+ ⌈p−3

2
⌉(min{m1, ...,mp−2}) + 1 +mp−1

≥ ⌈p
2
⌉+ ⌈p−3

2
⌉(m) +m

≥ ⌈p
2
⌉+ ⌈p−3

2
⌉(m) +m

= ⌈p
2
⌉+ ⌈p−1

2
⌉(m)

and

depth(X/A, xp)) = depth(K[CP(m1,...mp−1)]/I(CP(m1,...mp−1))) +mp

≥ ⌈p−1
2
⌉+ ⌈p−2

2
⌉(min{m1, ...,mp−1}) +mp

≥ ⌈p−1
2
⌉+ ⌈p−2

2
⌉(m) +m

= ⌈p−1
2
⌉+ ⌈p

2
⌉(m).
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Also

depth(X/A : xp)) = depth(K[CP(m1,...mp−2)]/I(CP(m1,...mp−2))) + 1 +mp−1

≤ ⌈p−2
2
⌉+ ⌈p−3

2
⌉(max{m1, ...,mp−2}) + 1 +mp−1

≤ ⌈p
2
⌉+ ⌈p−3

2
⌉(M) +mp−1

≤ ⌈p
2
⌉+ ⌈p−3

2
⌉(M) +M

= ⌈p
2
⌉+ ⌈p−1

2
⌉(M).

So, by the Lemma 2.1.4 and Proposition 2.1.2

⌈p
2
⌉+ ⌈p− 1

2
⌉(m) ≤ depth(X/A) ≤ ⌈p

2
⌉+ ⌈p− 1

2
⌉(M).

By using Lemma 2.2.2 instead of the Depth lemma we have a similar proof for sdepth.

Corollary 3.2.3 ([27, Theorem 2.5]). Let p ≥ 1,mi ≥ 1,m = min{m1, . . . ,mp},M =

max{m1,m2, . . . ,mp} and A = A(CP(m1,...,mp)). If m = M . Then

depth(X/A), sdepth(X/A) = ⌈p
2
⌉+ ⌈p− 1

2
⌉(M).

Corollary 3.2.4. Let p ≥ 1, mi ≥ 1, m = min{m1,m2, . . . ,mp}, M = max{m1,m2, . . . ,

mp} and A = A(CP(m1,...,mp)). Then

p+

p∑
i=1

mi − ⌈p
2
⌉ − ⌈p− 1

2
⌉(m) ≤ pdim(X/A) ≤ p+

p∑
i=1

mi − ⌈p
2
⌉ − ⌈p− 1

2
⌉(M).

Proof: As depth(X ) = p+
∑p

i=1 mi, so using Lemma 2.4.1 and Theorem 3.2.2 we get

p+

p∑
i=1

mi − ⌈p
2
⌉ − ⌈p− 1

2
⌉(m) ≤ pdim(X/A) ≤ p+

p∑
i=1

mi − ⌈p
2
⌉ − ⌈p− 1

2
⌉(M).

Theorem 3.2.5. Let p ≥ 1,mi ≥ 1 and A = I(CP(m1,...,mp)). Then we have

reg(X/A) = ⌈p
2
⌉.

Proof: For p = 1, we get the result from Lemma 3.1.10.

For p = 2, we have

27



X/(A : x1) ∼= K[x1,M2],

so

reg(X/(A : x1)) = 0

and

X/(A, x1) ∼= K[CP(m2)]/I(CP(m2))⊗K[M1].

So

reg(X/(A, x1)) = 1.

So, by Lemma 2.3.1 we get

reg(X/A) = 1.

Let p ≥ 3, then we have the given isomorphisms

X/(A : xp−1) ∼= (K[CP(m1,...mp−3)]/A(CP(m1,...mp−3)))⊗K[xp−1,Mp−2, xp,Mp]

and

X/(A, xp−1) ∼= (K[CP(m1,...mp−2)]/A(CP(m1,...mp−2)))⊗K[CP(mp)]/A(CP(mp))⊗K[Mp−1].

So, by induction we have

reg(X/(A : xn−1)) = reg(K[CP(m1,...mn−3)]/A(CP(m1,...mn−3))) = ⌈p− 3

2
⌉

and

reg(X/(A, xp−1)) = reg(K[CP(m1,...mp−2)]/A(CP(m1,...mp−2)))+reg(K[CP(mp)]/A(CP(mp)))

= ⌈p−2
2
⌉+ 1 = ⌈p

2
⌉.

Thus, using Lemma 2.3.1 we get

reg(X/A) = ⌈p
2
⌉.
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3.3 Bounds for the Invariants of Higher Powers of the
Edge Ideals of Caterpillars and some Forests

In this section bounds for the depth, sdepth and projective dimension of the X/At

associated to the powers of the edge ideals are given. For regularity we have exact

values.

Note : For convenience label the vertices {xp1, xp2, . . . , xpmp} by l1, l2, . . . , lmp . Let

Sj = K[A]/(l1, l2, . . . , lj) and Ij = I ∩ Sj, where 1 ≤ j ≤ mp.

Theorem 3.3.1. Let p ≥ 2, t,mi ≥ 1 and A = I(CP(m1,...,mp)). Then we have

depth(X/At), sdepth(X/At) ≥ max{⌈2(p− t) + 1

2
⌉, 1}.

Proof : Since CP(m1,...,mp) is a bipartite graph so for all t ≥ 1 the result is derived from

Lemma 3.1.2 and depth(X/At) ≥ 1.

For p ≥ 2 and t = 1, we get the result from Theorem 3.2.2. For p = 2 and t ≥ 1 we

get the desired result from Lemma 3.1.2. For p = 3 and t ≥ 3 the result also follows

from Lemma 3.1.2.

We first prove for p = 3 and t = 2.

Consider the short exact sequence

0 −→ X/(A2 : x3)
.x3−→X/A2−→X/(A2, x3) −→ 0.

From Lemma 3.1.5 we have

X/(A2, x3) ∼= X/(A2(CP(m1,m2,m3)), x3) ∼= K[CP(m1,m2)]/A
2(CP(m1,m2))⊗K[M3].

So

depth(X/(A2, x3)) ≥ max{1, 1}+m3 ≥ 1 + 1 = 2.

Now consider the family of short exact sequences as

0 −→ X0/(A
2
0 : x3l1)

.l1−→X0/(A
2
0 : x3)−→X0/((A

2
0 : x3), l1) −→ 0,
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0 −→ X1/(A
2
1 : x3l2)

.l2−→X1/(A
2
1 : x3)−→X1/((A

2
1 : x3), l2) −→ 0,

...
...

...

0 −→ Xj−1/(A
2
j−1 : x3lj)

.lj−→Xj−1/(A
2
j−1 : x3)−→Xj−1/((A

2
j−1 : x3), lj) −→ 0.

By Lemma 3.1.3

depth(Xj−1/(A
2
j−1 : x3lj)) = depth(Xj−1/(Aj−1))

and by Theorem 3.2.2

depth(Xj−1/(A
2
j−1 : x3lj)) ≥ max{⌈2(3− 1) + 1

2
⌉, 1} = max{⌈5

2
⌉, 1} = 3.

Since using Lemma 3.1.4 we have

Xj−1/((A
2
j−1 : x3), lj) ∼= Xj/((A

2
j : x3).

So, consider another short exact sequence as

0 −→ Xj/((A
2
j : x3x2)

.x2−→Xj/((A
2
j : x3)−→Xj/((A

2
j : x3), x2) −→ 0.

By Lemma 3.1.3 and Theorem 3.2.2

depth(Xj/(A
2
j : x3x2)) = depth(Xj/Aj) ≥ max{⌈2(3− 2) + 1

2
⌉, 1} = max{⌈3

2
⌉, 1} = 2

and

Xj/((A
2
j : x3), x2) ∼= K[CP(m1)]/A

2(CP(m1))⊗K[x3,M2].

So

depth(Xj/((A
2
j : x3), x2)) ≥ max{1, 1}+ 1 + 1 ≥ 3

and

depth(Xj/((A
2
j : x3)) ≥ 3.
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Hence

depth(Xj−1/(A
2
j−1

: x3), lj) ≥ 3

and so

depth(X/A2) ≥ 2.

Now let p ≥ 4 and t ≥ 2, then consider the following short exact sequence

0 −→ X/(At : xp)
.xp−→X/At−→X/(At, xp) −→ 0.

From Lemma 3.1.5 we have

X/(At, xp) ∼= K[CP(m1,...,mp−1)]/A
t(CP(m1,...,mp−1))⊗K[Mp].

So

depthX/(At, xp) ≥ max{⌈2(p− 1− t) + 1

2
⌉, 1}+mp ≥ max{⌈2p− 2− 2t+ 1

2
⌉, 1}+ 1

= max{⌈2p−2t−1
2

⌉, 1}+ 1 ≥ max{⌈2(p−t)+1
2

⌉, 1}.

Now consider the family of short exact sequences as

0 −→ X0/(A
t
0 : xpl1)

.l1−→X0/(A
t
0 : xp)−→X0/((A

t
0 : xp), l1) −→ 0,

0 −→ X1/(A
t
1 : xpl2)

.l2−→X1/(A
t
1 : xp)−→X1/((A

t
1 : xp), l2) −→ 0,

...
...

...

0 −→ Xj−1/(A
t
j−1

: xplj)
.lj−→Xj−1/(A

t
j−1 : xp)−→Xj−1/((A

t
j−1 : xp), lj) −→ 0.

By Lemma 3.1.3

depth(Xj−1/(A
t
j−1 : xplj)) = depth(X−1/(A

t−1
j−1))

and by Theorem 3.2.2

depth(Xj−1/(A
t
j−1 : xpxj)) ≥ max{⌈2(p− (t− 1)) + 1

2
⌉, 1}
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= max{⌈2p−2t+2+1
2

⌉, 1}

= max{⌈2(p−t)+3
2

⌉, 1}.

≥ max{⌈2(p−t)+1
2

⌉, 1}.

Since using Lemma 3.1.4 we get

Xj−1/((A
t
j−1 : xp), lj) ∼= Xj/((A

t
j : xp).

So, consider another short exact sequence as

0 −→ Xj/((A
t
j : xpxp−1)

.xp−1−→Xj/((A
t
j : xp−1)−→Xj/((A

t
j : xp), xp−1) −→ 0.

By Lemma 3.1.3 and Theorem 3.2.2

depth(Xj/(A
t
j : xpxp−1)) = depth(Xj/A

t−1
j )

≥ max{⌈2(p−1−(t−1))+1
2

⌉, 1}

= max{⌈2(p−t)+1
2

⌉, 1}

and

Xj/((A
t
j : xp), xp−1) ∼= K[CP(m1,...,mp−2)]/A

t(CP(m1,...,mp−2))⊗K[xp,Mp−1].

So

depth(Xj/((A
t
j : xp), xp−1)) ≥ max{⌈2(p−2−t)+1

2
⌉, 1}+ 1 +mp−1

≥ max{⌈2p−4−2t+1
2

⌉, 1}+ 1 + 1

= max{⌈2p−2t−3
2

⌉, 1}+ 2

≥ max{⌈2(p−t)+1
2

⌉, 1}

and

depth(Xj/((A
t
j : xp)) ≥ max{⌈2(p− t) + 1

2
⌉, 1}.

Hence

depth(Xj−1/(A
t
j−1 : xp), lj) ≥ max{⌈2(p− t) + 1

2
⌉, 1}
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and so

depth(X/At) ≥ max{⌈2(p− t) + 1

2
⌉, }.

Proof for sdepth is same using Lemma 2.2.2 instead of Lemma 2.1.4.

Corollary 3.3.2. Let p ≥ 1,mi ≥ 1 and A = I(CP(m1,...,mp)), then

indmat(G) = ⌈p
2
⌉.

Proof: As, the considered caterpillar is a tree, so it is a chordal graph. Using Lemma

3.1.12 and Theorem 3.2.5 we get

indmat(G) = ⌈p
2
⌉.

Corollary 3.3.3. Let p ≥ 1,mi ≥ 1 and A = I(CP(m1,...,mp)), then we have

reg(X/At) = 2t+ ⌈p
2
⌉ − 2.

Proof: From Theorem 3.1.11 we have

reg(At) = 2t+ indmat(G)− 1.

From Corollary 3.3.2

indmat(G) = ⌈p
2
⌉.

So

reg(At) = 2t+ ⌈p
2
⌉ − 1.

Hence

reg(X/At) = 2t+ ⌈p
2
⌉ − 2.

Theorem 3.3.4. Let G be a forest with c connected components CP(m11,m21, . . . ,mp11),

CP(m12,m22, . . . ,mp22), . . . , CP(m1c,m2c, . . . ,mpcc) and let pi ≥ 1, where 1 ≤ i ≤ p

represent the number of vertices on the path of each CP(m1i,m2i, . . . ,mpii) respectively.

Let p = max{pi}, mi ≥ 1 and A = A(G). Then we have

depth(X/At), sdepthX/At) ≥ max{⌈2(p− t) + 1

2
⌉+ c− 1, c}

for all t ≥ 1.

33



Proof : For t = 1 and c = 1, the result is derived from Theorem 3.3.1. For t = 1 and

c ≥ 2, it follows from [26, Lemma 6.2.7]. Thus for t = 1 and any value of c the result

holds. Let t ≥ 2. If p = 1, then from Theorem 3.1.6 we have that depth(X/At) ≥ c.

Now let p = 2 and without loss of generality say p = p1, then consider the following

short exact sequence

0 −→ X/(At : x21)
.x21−→X/At−→X/(At, x21) −→ 0.

We have

X/(At, x21) ∼= V (G)−N(x21)/(J
t, x21)⊗K[M21].

where J denotes the edge ideal formed by deleting the vertex x21.

So depth(X/(At, x21)) ≥ max{⌈2(1−t)+1
2

⌉+c−1, c}+m21 ≥ max{⌈2−2t+1
2

⌉+c−1, c}+1.

≥ max{⌈3−2t
2

⌉+ c− 1, c}+ 1

≥ max{⌈2(p−t)+1
2

⌉+ c− 1, c}.

For convenience label the vertices of the set Mp11 by l11, l21, . . . , lj1 and we also let

Xj1 = K[A]/(l11, l21, . . . , lj1) and Ij1 = I ∩ Xj1, where 1 ≤ j1 ≤ mp1 .

Now consider the family of short exact sequences as

0 −→ X0/(A
t
0 : x21l11)

.l11−→X0/(A
t
0 : x21)−→X0/((A

t
0 : x21), l11) −→ 0,

0 −→ X1/(A
t
1 : x21l21)

.l21−→X1/(A
t
1 : x21)−→X1/((A

t
1 : x21), l21) −→ 0,

...
...

...

0 −→ Xj1−1/(A
t
j1−1 : x21lj1)

.lj1−→Xj1−1/(A
t
j1−1 : x21)−→Xj1−1/((A

t
j1−1 : x21), lj1) −→ 0.

By Lemma 3.1.3 we get

depth(Xj1−1/(A
t
j1−1 : x21lj1)) = depth(Xj1−1/(A

t−1
j1−1)).

Using induction we get
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depth(Xj1−1/(A
t
j1−1 : x21lj1)) ≥ max{⌈2(2−(t−1))+1

2
⌉+ c− 1, c}

= max{⌈2(3−t)+1
2

⌉+ c− 1, c}

= max{⌈6−2t+1
2

⌉+ c− 1, c}

= max{⌈7−2t
2

⌉+ c− 1, c}

≥ max{⌈2(p−t)+1
2

⌉+ c− 1, c}.

Since using Lemma 3.1.4 we have

Xj1−1/((A
t
j1−1 : x21), lj1) ∼= Xj1/((A

t
j1)) : x21).

So we consider another short exact sequence as

0 −→ Xj1/((A
t
j1 : x21x11)

.x11−→Xj1/((A
t
j1 : x21)−→Xj1/((A

t
j1 : x21, x11) −→ 0.

By Lemma 3.1.3 we have

depth(Xj1/(A
t
j1 : x21x11)) = depth(Xj1/A

t−1
j1 )

≥ max{⌈2(1−(t−1))+1
2

⌉+ c− 1, c}

= max{⌈2(2−t)+1
2

⌉+ c− 1, c}

= max{⌈5−2t
2

⌉+ c− 1, c}.

≥ max{⌈2(p−t)+1
2

⌉+ c− 1, c}

and

Xj1/((A
t
j1 : x21), x11) ∼= V (G)−N(x11, x21)/(J

t : x21)⊗K[x21,M11].

So, depth(Xj1/((A
t
j1 : x21), x11)) ≥ max{⌈2(0−t)+1

2
⌉+ c− 1− 1, c− 1}+ 1 +m11

≥ max{⌈1−2t
2

⌉+ c− 2, c− 1}+ 2.

≥ max{⌈2(p−t)+1
2

⌉+ c− 1, c}

and

depth(Xj1/((A
t
j1 : x21)) ≥ max{⌈2(p− t) + 1

2
⌉+ c− 1, c}.

Hence

depth(Xj1−1/(Aj1−1t : x21), lj1) ≥ max{⌈2(p− t) + 1

2
⌉+ c− 1, c},
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and so

depth(X/At) ≥ max{⌈2(p− t) + 1

2
⌉+ c− 1, c}.

Let p ≥ 3, then consider the following short exact sequence

0 −→ X/(At : xp11)
.xp11−→X/At−→X/(At, xp11) −→ 0.

We have

X/(At, xp11)
∼= V (G)−N(xp11)/(J

t, xp11)⊗K[Mp11],

where J denotes the edge ideal formed by deleting the vertex xp11.

So

depth(X/(At, xp11)) ≥ max{⌈2(p− 1− t) + 1

2
⌉+ c− 1, c}+mp11

≥ max{⌈2p−2−2t+1
2

⌉+ c− 1, c}+ 1

= max{⌈2p−2t−1
2

⌉+ c− 1, c}+ 1

≥ max{⌈2(p−t)+1
2

⌉+ c− 1, c}.

Now consider the family of short exact sequences as

0 −→ X0/(A
t
0 : xp11l11)

.l11−→X0/(A
t
0 : xp11)−→X0/((A

t
0 : xp11), l11) −→ 0,

0 −→ X1/(A
t
1 : xp11l21)

.l21−→X1/(A
t
1 : xp11)−→X1/((A

t
1 : xp11), l21) −→ 0,

...
...

...

0 −→ Xj1−1/(A
t
j1−1 : xp11lj1)

.lj1−→Xj1−1/(A
t
j1−1 : xp11)−→Xj1−1/((A

t
j1−1 : xp11), lj1 −→ 0.

By Lemma 3.1.3 we get

depth(Xj1−1/(A
t
j1−1 : xp11lj1) = depth(Xj1−1/(A

t−1
j1−1))

and using induction we get
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depth(Xj1−1/(A
t
j1−1 : xp11lj1) ≥ max{⌈2(p− (t− 1)) + 1

2
⌉+ c− 1, c}

= max{⌈2p−2t+2+1
2

⌉+ c− 1, c}

= max{⌈2(p−t)+3
2

⌉+ c− 1, c}

≥ max{⌈2(p−t)+1
2

⌉+ c− 1, c}.

Since using Lemma 3.1.4 we have

Xj1−1/((A
t
j1−1 : xp11), lj1

∼= Xj1/((A
t
j1 : xp11).

So, we consider another short exact sequence as

0 −→ Xj1/((A
t
j1 : xp11xp11−1)

.xp11−1−→ Xj1/((A
t
j1 : xp11)−→Xj1/((A

t
j1 : xp11), xp11−1) −→ 0.

By Lemma 3.1.3

depth(Xj1/(A
t
j1 : xp11xp11−1)) = depth(Xj1/A

t−1
j1 )

≥ max{⌈2(p−1−(t−1))+1
2

⌉+ c− 1, c}

= ⌈2(p−t)+1
2

⌉+ c− 1, c}

and

Xj1/((A
t
j1 : xp11), xp11−1) ∼= V (G)−N(xp11−1, xp11)/(J

t : xp11)⊗K[xp11,Mp11−1].

So

depth(Xj1/((A
t
j1 : xp11), xp1−1) ≥ max{⌈2(p− 2− t) + 1

2
⌉+ c− 1, c}+ 1 +mp11−1

≥ max{⌈2(p−t)−3
2

⌉+ c− 1, c}+ 2

≥ max{⌈2(p−t)+1
2

⌉+ c− 1, c}.

and

depth(Xj/((A
t
j : xp11)) ≥ max{⌈2(p− t) + 1

2
⌉+ c− 1, c}.

Hence
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depth(Xj1−1/(A
t
j1−1 : xp11), lj1) ≥ max{⌈2(p− t) + 1

2
⌉+ c− 1, c}

and so

depth(X/At) ≥ max{⌈2(p− t) + 1

2
⌉+ c− 1, c}.

Proof for sdepth is same using Lemma 2.2.2 instead of Lemma 2.1.4.

Corollary 3.3.5. Let G be a forest with c connected components CP(m11,m21, . . . ,mp11),

CP(m12,m22, . . . ,mp22), . . . , CP(m1c,m2c, . . . ,mpcc) and let ni ≥ 1, where 1 ≤ i ≤ p

represent the number of vertices on the path of each CP(m1i,m2i, . . . ,mpii) respectively.

Let p = max{pi}, mi ≥ 1 and A = A(G). Then we have

pdim(X/A) ≥ p+

p∑
i=1

mi −max{⌈2(p− t) + 1

2
⌉+ c− 1, c}.

Proof: As depth(X ) = p+
∑p

i=1 mi, so using Lemma 2.4.1 and Theorem 3.3.4 we get,

pdim(X/A) ≥ p+

p∑
i=1

mi −max{⌈2(p− t) + 1

2
⌉+ c− 1, c}.

Corollary 3.3.6. Let G be a forest having c connected components CP(m11,m21, . . . ,mp11),

CP(m12,m22, . . . ,mp22), . . . , CP(m1c,m2c, . . . ,mcc) and let ni ≥ 1, where 1 ≤ i ≤ p

represent the number of vertices on the path of each CP(m1i,m2i, . . . ,mpii) respectively.

Let p = p1 + · · ·+ pi,mi ≥ 1 and A = A(G). Then for t ≥ 1 we have

reg(X/At) = 2t+ ⌈p
2
⌉ − 2.

Proof: From Theorem 3.1.11 we have

reg(At) = 2t+ ⌈p
2
⌉ − 1.

Hence using this and Remark 3.1.13

reg(X/At) = 2t+ ⌈p
2
⌉ − 2.
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Chapter 4

Conclusion

In this dissertation different algebraic invariants namely the Stanley depth, depth,

regularity and projective dimension, within the framework of quotient rings associated

to the powers of edge ideals of caterpillar trees and their forest arrangements are

studied. The bounds calculated for the depth here are stronger than the ones given

in [20] for trees and the ones calculated for Stanley depth are stronger than the ones

given for forests in [25]. The caterpillar considered here is the one for which mi ≥ 1

that is there is no vertex on the path Pn of the caterpillar on which there are no

pendant vertices. In the future, focus could be directed towards caterpillars for which

there exists at least one vertex on Pn that has no pendant vertices attached to it, thus

completely covering the entire class of caterpillars.
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