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Abstract

Graph theory is a major mathematical discipline that provides a powerful

framework to solve complex problems that can be modeled in the form of

graphs. Its applications are diversified into a number of scientific fields. It

is widely used in analyzing the structure of molecules and predicting their

physicochemical properties. One of the major concepts used to quantify these

properties is topological indices. A topological index is a graph invariant that

can be utilized to scrutinize the structure and topology of molecules under

different conditions. One of such topological indices is the Harmonic index

which has received a lot of attention in recent years. In this thesis, we will

determine the extremal values of Harmonic index of chemical trees with given

number of vertices of maximum degree.
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Chapter 1

Introduction to Graph Theory

Modeling real-life problems mathematically is a common practice that hu-

mans have engaged in for centuries. Converting a real-world problem into a

mathematical form makes it easier to analyze and solve it using mathematical

techniques.

The emergence of graph theory, a branch of mathematics, can also be

attributed to such modeling of a real-world problem known as ”The Seven

Bridges of Königsberg”. Königsberg was a city situated on the banks of

Pregel River. The river consisted of two islands as well. There were seven

bridges which connected islands to each other and to the city. The problem

was to figure out a walk through the city of Königsberg such that each bridge

is traversed only once, with the starting and ending point being the same. In

1735, a mathematician, named Leonhard Euler, proved that it is impossible

for such a path to exist. He proved that such a path could exist only if the

landmasses would have even number of bridges connected to them which was

not the case in Königsberg problem. It is important to note that Euler did

not make any mention of modern graph theory terms like graph, vertex or

edge. However, the basic structure of his argument shares some similarities

with the modern graph theory. The diagram he used to illustrate the problem

is given in Fig. 1.1

1
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(a) Geographic Map (b) Graphic Representation

Figure 1.1: The Königsberg Bridges

The Euler’s solution to Königsberg bridge problem opened avenues for

other mathematicians to explore further concepts in graph theory. However,

this was not until 19th century. In 1847, Gustav Kirchoff, a German physicist,

made some significant research in electrical networks which then laid the

foundation of some new concepts regarding trees in graphs. He gave the

famous Kirchoff’s Theorem which is useful in finding the number of spanning

trees in a connected undirected graph. After 10 years, Arthur Cayley, worked

on trees that were generated from the enumeration of molecular isomers. On

the way to finding out the isomers of saturated hydrocarbons, he found out

that these isomers can be diagrammatically expressed in the form of trees.

Around the same time period, two significant problems gained the pop-

ularity. One of them was four-color conjecture and the other one was a

puzzle formulated by William Rowan Hamilton. The four-color conjecture

was that any map can be colored using only four colors such that no two

regions sharing a boundary would have the same color. This conjecture was

published by Arthur Cayley in 1879 and has been famous since forever. The

Hamiltonian puzzle invented by Sir William Hamilton in 1859 involved find-

ing a route on a dodecahedron (a polyhedron with 12 faces) that traverses

through each vertex and ends on the starting vertex. These two problems

grabbed attention of many mathematicians which resulted in concepts like

Hamiltonian cycles, Hamiltonian paths etc. However, there were no impor-
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tant achievements made throughout the next half-century. Then, early 20th

century witnessed a reawakening in interest in graph theory.

In the last 30 years, the field of graph theory has experienced exponential

growth and has expanded into numerous branches. Consequently, graph

theory has become an area of interest not only for mathematicians, but also

for researchers in fields such as chemistry, physics, transportation, and social

network analysis, and many more to list.

1.1 Graph Terminologies

Graph theory is the field of study within mathematics that provides a way to

model and analyze complex systems and relationships using graphs. A graph

is a mathematical entity consisting of nodes and edges. The nodes represent

the objects and the edges represent the pairwise relationships among these

objects. Graphs aid in analyzing these relationships and deducing results

theoretically that would be a very tedious task, otherwise.

A graph G is a collection of three elements: two sets V (G) and E(G) and

a function FG:

1. V (G) is a set of vertices in graph G.

2. E(G) is a set of edges in G.

3. FG represents a function that assigns each element of E(G) an unordered

pair of elements in V (G).

Diagrammatically, vertices are represented by points and edges are rep-

resented by lines or arcs.

Let V (G) = {x1, x2, x3, x4, x5, x6}, E(G) = {m1,m2,m3,m4,m5,m6},
FG(m1) = {x1, x2}, FG(m2) = {x1, x3}, FG(m3) = {x2, x3}, FG(m4) =

{x3, x4}, FG(m5) = {x4, x5} and FG(m6) = {x4, x6}. Then G is a graph

as shown in Fig. 1.2
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Figure 1.2: The Graph G

If FG(e) = {u, v}, then we write e = uv or vu. If e = uv, then u and

v are known as endpoints of e and e is said to be incident with u and v.

The cardinal number of the vertex set of G is called the order of G. The

cardinal number of the edge set of G is called the size of graph G. A set of

edges such that each edge joins the same pair of vertices is called multiple

edges. An edge with endpoints being the same is known as loop. A vertex u

is called the neighbor of vertex v in G if an edge e exists such that e = uv.

The notation NG(u) is used to represent the collection of all neighbors of u.

The degree of a vertex v is the number of vertices that share an edge with

v. The notation degG(v) is used to represent the degree of v. If there is a

loop at vertex v, v will be counted twice. Two adjacent vertices have an edge

joining them. A vertex of degree 0 is called an isolated vertex. A vertex of

degree 1 is called a pendant vertex. The non-increasing sequence of degrees

of vertices of a graph is called the sequence of the graph. An independent

set of vertices is the subset of V (G) such that no two vertices in the set are

adjacent to each other.
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Figure 1.3: Graph G′

A walk in a graph is an alternating sequence of a finite number of vertices

and edges such that both vertices and edges can be repeated. The number

of edges in the walk while counting repeated edges each time as they appear

is called length. Fig. 1.4 shows a graph containing a walk with sequence

v0, e1, v2, e2, v1, e3, v3, e4, v2, e5, v4, e6, v3, e3, v1, e0, v0. It is a closed walk as

the starting and ending points are same.

Figure 1.4: A walk

A trail in a graph can be described as a walk in which no edge appears

twice. Fig. 1.5 shows a trail with sequence v0, e0, v1, e1, v2, e2, v0, e3, v3, e4, v2.
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It is an open trail as the starting and ending points are not the same.

Figure 1.5: A Trail

A walk with distinct vertices and edges is called a path. The length of a

path is the count of edges it consists. A path of length n is denoted by Pn.

Fig. 1.6 shows a path of length 5.

Figure 1.6: Path P5

A cycle is a trail in which only starting and the ending vertices are re-

peated. A cycle of length n is denoted by Cn. Fig. 1.7 depicts a cycle of

cycle of length 6. The length of the shortest cycle is called girth.
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Figure 1.7: Cycle C6

Two vertices u and v in a graph G are at a distance equal to the length

of the shortest path connecting them and is represented by the notation

dG(u, v). The distance between most distant vertices is termed as the diame-

ter of the graph G and is represented by the notation diam(G). The notation

e(v) is used to represent eccentricity of v that is described as the distance

between v and the vertex that is farthest away from it.

A graph G is said to be isomorphic to graph H if there exists a bijective

map from the vertex set of G to that of H that maps every edge in G to an

edge in H. Fig. 1.8 shows two isomorphic graphs.

Figure 1.8: Isomorphic Graphs
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1.2 Graph Representation in Data Structures

In order to use graphs in computer programming, they are represented using

matrices. Adjacency matrix and incidence matrix are two most common

ways to represent graphs using matrices. Let G be a graph of order n. The

adjacency matrix of G is a matrix of order n× n where the ijth entry is the

number of edges joining the vertices i and j. The adjacency matrix of graph

given in Fig. 1.3 is

A =



0 2 1 1 0 0

2 0 1 0 1 0

1 1 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0


.

The incidence matrix of G is matrix of order n ×m where n and m are

the order and the size of the graph G and the ijth entry is 1 if ith vertex is

incident to jth edge and 0 otherwise. The incidence matrix of graph G′ given

in Fig. 1.3 is given by

I =



1 1 1 1 0 0 0

1 1 0 0 1 0 1

0 0 0 1 0 1 1

0 0 1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0


.

1.3 Classification of Graphs

Graphs can be classified into different categories according to their structure.

A graph that neither have any edge with the same endpoints nor two or more

edges that share the same pair of vertices is called a simple graph. A graph

G is said to be a null graph if |V (G)| = |E(G)| = 0. A graph G is said to be
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an empty graph if |V (G)| ≠ 0 and |E(G)| = 0.

A directed graph is a graph in which each edge has a direction represented

by an arrowhead. An undirected graph has its edges without any directions.

A graph with all vertices having equal degrees is called a regular graph.

A graph with every vertex of degree k is called a k-regular graph. If the

vertex set of a graph can be decomposed into two independent subsets then

such a graph is called a bipartite graph. If the vertex set of a graph can be

decomposed into k-independent subsets, then it is called a k-partite graph.

A graph is called a complete graph if each vertex of the graph is connected to

all other vertices. A complete bipartite graph is a bipartite graph such that

each vertex of one independent set is adjacent to every other vertex of the

other independent set. A connected graph is a graph such that there exists

at least one path between each pair of vertices.

(a) Bipartite Graph (b) Complete Graph K4

(c) Complete Bipar-
tite Graph

Figure 1.9: Different types of Graphs

A connected graph with no cycle is called a tree. A caterpillar is a tree

such that removing all pendant vertices results into a path. A caterpillar with

exactly one non-pendant vertex is called a star. A broom is a tree consisting

of a path and pendant vertices attached to one end of the path. A tree with

maximum degree 4 is called a chemical tree.
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(a) A Tree (b) A Star

(c) A Caterpillar (d) A Chemical Tree

Figure 1.10: Trees

1.4 Some Basic Results in Graph Theory

We will mention some results that will be used later.

Theorem 1.4.1. [1] The total sum of degrees of vertices of a graph is equal

to twice of number of edges.

Theorem 1.4.2. [1] Let H be a graph with |V (H)| = p. Then, following

statements are equivalent

(a) H has no cycle and has p− 1 edges.

(b) H has p− 1 edges and is connected.

(c) H is connected and has no cycle.

Theorem 1.4.3. [1] In a tree, there exists exactly one path between each pair

of vertices.

Theorem 1.4.4. [1] Let T be a tree of order n ≥ 2. Then T has at least two

pendant vertices.
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1.5 Applications of Graph Theory

There is a multitude of fields where graph theory serves as a gateway to

many complex problems. Its applications are not confined to network prob-

lems. The circumference of its applicability extends from analyzing molecu-

lar structures to interpreting the patterns in cosmic constellations. We will

discuss the applications of graph theory in detail.

Network analysis: Graph theory plays a pivotal role in network analysis

by detangling the complexities of the connections among different entities

in the networks by implementing the concepts of centrality, transitivity and

connectivity.

Internet and web algorithms: Graph theory is employed in page ranking

algorithms in search engines which basically depend upon the importance of

the web pages. The internet is a collection of web pages that are interlinked.

Thus, it can be represented by a graph with directions such that the web

pages are represented with vertices and their links with directed edges. Thus,

a vertex with most edges is more likely to be the most important page and

thus would be on the top of the list in the search results.

Operations research and optimization: Graph theory aids in finding so-

lutions to many problems in optimization and operation research. Famous

problems like traveling salesman problem, routing and schedulin problems

and the maximum flow problem are solved by incorporating theoretical graph

concepts.

Computer science and algorithms: Graph theory is extensively used in

designing computer algorithms. Data structures like trees can be represented

using graphs.

Social network analysis: Graph theory enables the study of social rela-

tionships and interactions in social networks. It helps identify influential

individuals (e.g., key opinion leaders), analyze information diffusion, detect

communities or clusters, and study the spread of influence or diseases through

networks.

Bioinformatics and systems biology: Graph theory is extensively used



CHAPTER 1. INTRODUCTION TO GRAPH THEORY 12

in analyzing biological data and modeling biological systems. Graph-based

algorithms help identify functional modules, predict protein functions, and

analyze genetic relationships.

Image segmentation and computer vision: Graph theory is applied in

image processing. Graph-based segmentation algorithms divide an image

into meaningful regions based on pixel similarities and connectivity.

Chemistry and molecular modeling: As mentioned earlier, chemical graph

theory is utilized in analyzing molecular structures, predicting properties,

and designing drugs. Graph theory enables the representation of molecules

as graphs and the application of graph algorithms to study their properties

and interactions.

Transportation and logistics: Graph theory is applied to optimize trans-

portation networks, route planning, and vehicle scheduling. It aids in finding

the shortest or most efficient routes, minimizing costs, and improving logis-

tics operations.

Graph theory is enormously used in transportation networks for the prob-

lems of route planning, vehicle scheduling, finding the most efficient paths,

reducing logistics costs and improving logistics operations.

Linguistics and natural language processing: In linguistics, graph theory

is used to analyze language structures, such as syntax trees and semantic

networks. Graph-based algorithms are applied in natural language process-

ing for tasks like text summarisation, sentiment analysis, and information

extraction.

These are just a few instances of how graph theory is applied frequently.

It is an invaluable tool in many scientific, technological, and practical fields

due to its adaptability and application.



Chapter 2

Topological Indices

In this chapter, we explore the realm of chemical graph theory along with

discussing its evolution over the years. We also discuss the emergence of

topological indices and their applications in chemical graph theory. We also

give a brief overview of the previous research on these indices. We also focus

on one of the most important topological indices, that is, the Harmonic index.

2.1 Chemical Graph Theory

Chemical graph theory is one of the most common branches of graph theory.

It primarily focuses on the modelling of the structure of molecules in the form

of graphs. The vertices are used to represent atoms, the degrees represent the

valency of the atom and the edges represent the covalent bonds. The analysis

of such graphs gives information about the properties of the molecules, thus

avoiding expensive and time-taking laboratory techniques.

If one looks at the developmental graph of chemical graph theory, one

may notice that its journey was episodic and fluctuating in nature. While

for a decade or two, it saw an explosive growth followed by sheer negligence in

the next. At the outset of chemical graph theory, the chemists used graphs to

enumerate the isomers of small alkanols and alkanes. Nowadays, the reason of

C5H12, C3H8 and C4H10 having 3, 1 and 2 isomers, respectively is stated that

13
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only that many graphic representations of their molecules are possible.[2]

In the 1950s and 1960s, the field of chemical graph theory gained signifi-

cant momentum with the advent of computers and the development of effi-

cient algorithms for graph analysis. Pioneering work was done by chemists

such as Alexander Balaban, Haruo Hosoya, and Ivan Gutman, who con-

tributed to the development of various graph invariants and algorithms for

chemical structure analysis.

Chemical graph theory has been applied in various forms for more than

two centuries and is highly suitable for the study of chemical phenomena.

Its earliest application in the 18th century involved representing chemical

interactions. In the 19th century, graphs were used to solve practical prob-

lems like enumerating chemical isomers. Throughout the 20th century, the

applications of graph theory in chemistry expanded significantly, becoming

so extensive and advanced that it would require a comprehensive treatise to

review them all.

The popularity of chemical graph theory has grown substantially in recent

years, as evidenced by the increasing number of research papers published

in the field. The future of graph theory in chemistry appears promising,

and further growth in the field is expected. It is possible that graph theory

will prove to be one of the most powerful mathematical tools available to

chemists.

2.2 Topological Indices

In chemical graph theory, there are numerical parameters known as topo-

logical indices which are used to study the graphs representing the chemical

structure of the molecules.

With the inception of structure theory, many chemists tried to analyze

and estimate the properties of the synthetic products before they were man-

ufactured. Then, a few of these products were synthesized and the accuracy

of the predictions was analyzed.
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The pharmaceutical industry requires to bring changes to the formulas of

the medicines in order to combat the problem of reduction in effectiveness of

these medicines. They also need to deal with the infections that keep being

discovered with time. The traditional way to solve these problems was to go

for the products expected to give desired results regardless of the fact that

they were natural or synthetic, and then to process the main components of

those products to reduce the negative or unwanted results and hence increase

their positive effects. The cost of this method increased as after the cell-based

experimentation, there was a need to test these products on animals. After

animal testing, the drug was made available in the market by the permission

of FDA. As a result, the manufacturing cost of a drug that made it to the

market was about millions of dollars. This made it essential for the drug

companies to collect the revenue back within a very short period of time in

order to invest more in research. Consequently, the need to analyze huge

number of molecular structures rapidly emerged. At this point, quantum-

chemistry calculations were executed to expedite the process. However, these

calculations are very complex and can be very costly, and might not be able

to scrutinize millions of structures simultaneously. This scenario set the scene

for the emergence of topological indices which are simpler to calculate and

deal with [3].

The topological indices are used to analyze the topology of a molecule

in order to determine its physicochemical properties. They are defined in

such a way that they remain unchanged under graph isomorphisms. They

are based on different structural properties of the graph like degree, distance

and eccentricity. The two most commonly used topological indices are degree-

based indices and distance-based vertices.

Harry Wiener invented the first ever topological index in 1947, known

as Wiener index, to study the boiling points of alkanes [4]. Wiener index

sparked the interest of the researchers and hence, an extensive research was

carried out on this index. As Wiener index turned out to be very useful in the

chemical analysis of molecules, more topological indices were defined. There
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is Hosoya index, which is calculated by enumerating the vertices which are

not adjacent. The Estrada index is calculated on the basis of spectrum of

the graph. Randić, Zagreb and Sombor indices are calculated on the basis of

degree of vertices of the graph. The list of famous indices and their formulas

is given in Table 2.1.

There has been immense work done on the chemical trees in relation with

different topological indices. Extremal chemical trees with respect to Wiener,

atomic bond connectivity, Estrada, Sombor, Harmonic and Randić index and

many other indices have been determined in [5–10]. Extremal chemical trees

with perfect matching with respect to Sombor index are obtained in [11].

The extremal Randić index for chemical trees with k pendant vertices are

also found in [12].
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Topological Index Notation Formula

Randić Index R(H)
∑

rs∈E(H)

1√
degH(r)degH(s)

First Zagreb Index M1(H)
∑

rs∈E(H)

degH(r) + degH(s)

Second Zagreb Index M2(H)
∑

rs∈E(H)

degH(r)degH(s)

Atom Bond Connectivity Index ABC(H)
∑

rs∈E(H)

√
degH(r) + degH(s)− 2

degH(r)degH(s)

Sum-Connectivity Index Xα

∑
rs∈E(H)

(degH(r) + degH(s))
α

Hyper Zagreb Index HM(H)
∑

rs∈E(H)

(degH(r) + degH(s))
2

Redefined First Zagreb Index ReZH1(H)
∑

rs∈E(H)

degH(r) + degH(s)

degH(r)degH(s)

Redefined Second Zagreb Index ReZH2(H)
∑

rs∈E(H)

degH(r)degH(s)

degH(r) + degH(s)

Geometric-Arithmetic Index HA(H)
∑

rs∈E(H)

2
√

degH(r)degH(s)

degH(r) + degH(s)

Sombor Index SO(H)
∑

rs∈E(H)

√
degH(r)2 + degH(s)2

Narumi-Katayama Index NK(H) r∈V (H)degH(r)

Sigma Index σ(H)
∑

rs∈E(H)

(degH(r)− d(s))2

Forgotten Index F (H)
∑

r∈V (H)

degH(r)
3

Table 2.1: Topological Indices
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2.3 Harmonic Index

Among the various topological indices in chemical graph theory, one that

holds particular significance is the harmonic index which is defined as

H(G) =
∑

uv∈E(G)

2

degG(u) + degG(v)
,

where uv is an edge joining vertex u and vertex v of graph G with edge set

E(G). Harmonic index is a degree-based index and was first introduced in

1987 [13]. There has been extensive work done on this index. Lv [14] worked

on the Harmonic index of the graphs with exactly one cycle and matching

number a. Zhong [15] studied the extremal values of Harmonic index with

girth l. In [16], the lower bounds are determined in the class of graphs with

exactly one cycle and diameter d. The authors of [17] characterized the ex-

tremal graphs in the class of total graphs. Sun [18] determined the maximum

and minimum values of Harmonic index among the class of quasi-trees and

two-trees. Liu [19] determined the chemical trees with the smallest Harmonic

index and k vertices having degree 1. In [20] and [21], authors studied how

Harmonic index is related with other topological indices. Hu [22] analyzed

the relationship between the domination number and Harmonic index. Deng

[23] worked on smallest four values of Harmonic index among trees. In [24],

the author did his research on triangle-free graphs with extremal values of

Harmonic index. In [25], the unicyclic graphs with girth l are studied and

the maximum and minimum values of Harmonic index are obtained.

2.4 Harmonic Index of Some Basic Graphs

In this section, we give some results on the values of Harmonic index of some

basic graphs.

Theorem 2.4.1. [26] Let K be a simple connected graph such that |V (K)| ≥
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3. Then

H(K) ≥ (2n− 2)

n
.

Theorem 2.4.2. [27] Let T be a tree with n vertices and maximum degree

∆ and n ≡ a(mod ∆− 1). Then

H(T ) ≥



2n2 − 4n+ 2

n(2 + ∆) + 4− 4∆
if a = 0

2n2 − 4n+ 2

n(2 + ∆)− 3∆
if a = 1

2n2 − 4n+ 2

n(2 + ∆)0− 2− 2∆
if a = 2

2n2 − 4n+ 2

4 + n(2 + ∆)− 3− 2∆ + r(r − 2)
if a ≥ 3.

Theorem 2.4.3. [27] Let T be a tree with maximum degree ∆ and |V (T )| =
k. Then

H(T ) ⩽


2

(
k − 1−∆

2 +∆
+

2∆+ 1− k

1 + ∆
+

k −∆− 1

3

)
if ∆ >

k − 1

2

2

(
∆

3
+

∆

∆+ 2
+

k − 2∆− 1

4

)
if ∆ ≤ k − 1

2
.

Theorem 2.4.4. [19] Let T be a tree such that ∆ ≤ 4 and |V (T )| = p. Then

H(T ) ≥



7n

20
− 1

12
p ≡ 0(mod 3)

7n

20
− 13

140
p ≡ 1(mod 3)

7n

20
− 3

20
p ≡ 2(mod 3).

Theorem 2.4.5. [26] Let T be a tree such that ∆ ≤ 4 and |V (T )| ≥ 5. Then

H(T ) ≤ 3n− 1

6
.



Chapter 3

Maximum Harmonic Index for

Chemical Trees with Given

Vertices of Maximum Degree

In the realm of chemical graph theory, the theory of topological indices cen-

ters around some key and extensively explored problems. These problems

revolve around identifying structures that achieve the most extreme values

of a particular topological index while adhering to specific constraints and

establishing the most accurate lower and upper limits for a given topological

index. In this chapter, we determine the largest values of the Harmonic index

for chemical trees with k vertices of degree 4.

3.1 Preliminaries

Let

S = {(u, v) ∈ N× N\(1, 1) | 1 ≤ u ≤ v ≤ 4},

20
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where N is the set of natural numbers. Harmonic index for chemical trees

can also be expressed as

H(T ) =
∑

(u,v)∈S

2

u+ v
muv. (3.1.1)

In [28], following relations are given:

2m11 +m12 +m13 +m14 = n1 (3.1.2a)

m12 + 2m22 +m23 +m24 = 2n2 (3.1.2b)

m13 +m23 + 2m33 +m34 = 3n3 (3.1.2c)

m14 +m24 +m34 + 2m44 = 4n4 (3.1.2d)

where mij is the number of edges connecting vertices of degree i to vertices

of degree j and ni is the number of vertices with degree i. Clearly,

n = n1 + n2 + n3 + n4. (3.1.3)

By Handshaking lemma,

2(n− 1) = n1 + 2n2 + 3n3 + 4n4. (3.1.4)

Lemma 3.1.1. Let f(x) = 2
(a−b)+x

− 2
a+x

, where a > b > 0 and x > 0.

Then f is a strictly decreasing function.

Proof. We see that

df

dx
=

2

(a+ x)2
− 2

((a− b) + x)2
< 0.

Thus f(x) is a strictly decreasing function.

Let CT (n, k) be the class of chemical trees of order n with exactly k

vertices of degree 4, where k ≥ 1. It is important to know that for a tree of

order n with k vertices of degree 4 to be graphically feasible, n ≥ 3k + 2. In
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this chapter, we will determine the largest values of the Harmonic index for

chemical trees with k vertices of degree 4.

Lemma 3.1.2. Let T ∈ CT (n, k) has the maximum Harmonic index among

the trees in CT (n, k). Then

(i) n3 = 0.

(ii) n1 = 2k + 2 and n2 = n− 3k − 2.

Proof. (i). On the contrary, assume that there is a vertex p of degree 3 in T .

Let p1, p2 and p3 be the neighbors of p. We discuss two cases:

Case 1. When at most one neighbor of p has degree 4.

As there is at most one neighbor of p with degree 4, we can assume without

loss of generality that 1 ≤ degT (p1), degT (p2) ≤ 3 and 1 ≤ degT (p3) ≤ 4. Let

s ̸∈ NT (p) be the pendant vertex of T and let P be a p, s-path. Without loss

of generality, assume that p1 does not lie on P . Let NT (s) = {s′}. Clearly,

2 ≤ degT (s
′) ≤ 4. Let

T ′ = T − p1p+ p1s.

Clearly, degT ′(p) = degT (p) − 1 = 2, degT ′(s) = degT (s) + 1 = 2 and

degT ′(w) = degT (w) for all w ∈ V (T )\{p, s}. Obviously, T ′ ∈ CT (n, k).

Now, we show H(T ′)−H(T ) > 0 to obtain a contradiction.

H(T ′)−H(T ) =
2

degT (p1) + degT (s) + 1
+

2

degT (s) + 1 + degT (s′)

+
2

degT (p)− 1 + degT (p2)
+

2

degT (p)− 1 + degT (p3)

− 2

degT (p1) + degT (p)
− 2

degT (s) + degT (s′)

− 2

degT (p) + degT (p2)
− 2

degT (p) + degT (p3)

=
2

degT (p1) + 2
+

2

2 + degT (s′)
+

2

2 + degT (p2)

+
2

2 + degT (p3)
− 2

degT (p1) + 3
− 2

1 + degT (s′)
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− 2

3 + degT (p2)
− 2

3 + degT (p3)

=
2

2 + degT (p1)
− 2

3 + degT (p1)
+

2

2 + degT (s′)

− 2

1 + degT (s′)
+

2

2 + degT (p2)
− 2

3 + degT (p2)

+
2

2 + degT (p3)
− 2

3 + degT (p3)
.

Now, by using the inequalities 1 ≤ degT (p1), degT (p2) ≤ 3, 1 ≤ degT (p3) ≤ 4

and 2 ≤ degT (s
′) ≤ 4 along with Lemma 3.1.1, we obtain

H(T ′)−H(T ) ≥ 2

2 + 3
− 2

3 + 3
+

2

2 + 2
− 2

3 + 3
+

2

2 + 3
− 2

1 + 2
+

2

2 + 4

− 2

3 + 4
= 0.014 > 0.

Case 2. When at least two neighbors of p have degree 4.

As there are at least two neighbors of p with degree 4, we can assume without

loss of generality that degT (p2) = degT (p3) = 4 and 1 ≤ degT (p1) ≤ 4. Let

s be a pendant vertex and P be a p, s-path containing the edge p3. Let

NT (s) = {s′}. Clearly, 2 ≤ degT (s
′) ≤ 4. Let

T ′′ = T − p2p− p3p+ ps+ p2p3.

Clearly, degT ′′(p) = degT (p) − 1 = 2, degT ′′(s) = degT (s) + 1 = 2 and

degT ′′(w) = degT (w) for all w ∈ V (T )\{p, s}. Obviously, T ′′ ∈ CT (n, k).

Now, we show H(T ′′)−H(T ) > 0 to obtain a contradiction.

H(T ′′)−H(T ) =
2

degT (p2) + degT (p3)
+

2

degT (s) + 1 + degT (s′)

+
2

degT (p)− 1 + degT (p1)
+

2

degT (p)− 1 + degT (s) + 1

− 2

degT (p) + degT (p1)
− 2

degT (p) + degT (p2)
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− 2

degT (p) + degT (p3)
− 2

degT (s) + degT (s′)

=
2

4 + 4
+

2

2 + degT (s′)
+

2

2 + degT (p1)
+

2

2 + 2

− 2

3 + degT (p1)
− 2

3 + 4
− 2

3 + 4
− 2

1 + degT (s′)

=
2

2 + degT (s′)
− 2

1 + degT (s′)
+

2

2 + degT (p1)

− 2

3 + degT (p1)
+

2

4 + 4
+

2

2 + 2
− 2

3 + 4
− 2

3 + 4
.

Now, by using 1 ≤ degT (p1) ≤ 4 and 2 ≤ degT (s
′) ≤ 4 along with Lemma

3.1.1, we obtain

H(T ′′)−H(T ) ≥ 2

2 + 2
− 2

1 + 2
+

2

2 + 4
− 2

3 + 4
+

2

4 + 4
+

2

2 + 2

− 2

3 + 4
− 2

3 + 4
= 0.059 > 0,

which contradicts the fact that T has maximum Harmonic index. Therefore,

T has no vertex of degree 3, that is, n3 = 0 in T .

(ii) Using Equations (3.1.4) and (3.1.3) and the fact that n3 = 0 by Lemma

3.1.2(i), we get

n1 + 2n2 = 2n− 2− 4k,

n1 + n2 = n− k.
(3.1.5)

The solution of system (3.1.5) is n1 = 2k + 2 and n2 = n − 3k − 2. This

completes the proof.

Lemma 3.1.3. Let T ∈ CT (n, k) has maximum Harmonic index among the

trees in CT (n, k). Let s, r ∈ V (T ) such that degT (s) = degT (r) = 4. Let z

be an internal vertex on s, r-path. Then degT (z) = 4.

Proof. On the contrary, assume that degT (z) ̸= 4. Clearly, degT (z) ̸= 1.

By Lemma 3.1.2(i), degT (z) ̸= 3. Therefore, we only need to prove that

degT (z) ̸= 2. On the contrary, we assume degT (z) = 2. Obviously, there
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exist two vertices p and q of degree 4 on s, r-path such that p, q-path contains

z and all its internal vertices have degree 2. Now, we will consider two cases.

Case 1. When dT (p, q) = 2.

Clearly, dT (p, q) = 2 implies that NT (z) = {p, q}. Let t be a pendant vertex

in T and t′ be its neighbor. Without loss of generality, assume that zt- path

contains q. Let

T ′ = T − pz − qz + pq + zt.

Clearly, degT ′(t) = degT (t) + 1 = 2, degT ′(z) = degT (z) − 1 = 1 and

degT ′(w) = degT (w) for all w ∈ V (T )\{t, z}. Obviously, T ′ ∈ CT (n, k).

Now, we show H(T ′)−H(T ) > 0 using Lemma 3.1.1 to obtain a contradic-

tion.

H(T ′)−H(T ) =
2

degT (p) + degT (q)
+

2

degT (t) + 1 + degT (z)− 1

+
2

degT (t) + 1 + degT (t′)
− 2

degT (t) + degT (t′)

− 2

degT (z) + degT (p)
− 2

degT (z) + degT (q)

≥ 2

4 + 4
+

2

2 + 1
+

2

2 + 2
− 2

1 + 2
− 2

2 + 4
− 2

2 + 4
= 0.083 > 0.

This contradicts the fact that T has largest Harmonic index.

Case 2. When dT (p, q) ≥ 3.

Let p1 and q1 be the neighbors of p and q, respectively lying on p, q-path.

Let q′1 be the neighbor of q1 other than q. Let t be a pendant vertex in T

and t′ be its neighbor. Clearly, 2 ≤ degT (t
′) ≤ 4. Let

T ′′ = T − qq1 − pp1 + pq + p1t.

Clearly, degT ′′(t) = degT (t) + 1 = 2, degT ′′(q1) = degT (q1) − 1 = 1 and

degT ′′(w) = degT (w) for all w ∈ V (T )\{t, q1}. Obviously, T ′′ ∈ CT (n, k).
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Now, we show H(T ′′)−H(T ) > 0 using Lemma 3.1.1 to obtain a contradic-

tion.

H(T ′′)−H(T ) =
2

degT (p) + degT (q)
+

2

degT (t) + 1 + degT (p1)

+
2

degT (q1)− 1 + degT (q′1)
+

2

degT (t) + 1 + degT (t′)

− 2

degT (q1) + degT (q)
− 2

degT (q1) + degT (q′1)

− 2

degT (t) + degT (t′)

− 2

degT (p) + degT (p1)

=
2

4 + 4
+

2

2 + 2
+

2

1 + 2
+

2

2 + 2
− 2

2 + 4
− 2

2 + 2

− 2

1 + 2
− 2

4 + 2
= 0.083 > 0,

which is a contradiction to the fact that T has maximum Harmonic index.

Hence, d(z) = 4 in T .

Lemma 3.1.4. Let T ∈ CT (n, k) with 3k + 2 ≤ n ≤ 5k + 4 has maximum

Harmonic index among the trees in CT (n, k). Then

(i) m13 = m23 = m33 = m34 = 0.

(ii) m44 = k − 1.

(iii) m22 = 0.

(iv) m12 = n− 3k − 2, m24 = n− 3k − 2, m14 = 5k + 4− n.

Proof. (i). This result is a direct consequence of Lemma 3.1.2(i).

(ii). This result is a direct consequence of Lemma 3.1.3.

(iii). On the contrary, assume that T has an edge e = pq with degT (p) =

degT (q) = 2. We first show that there must exist an edge e′ = st with

degT (s) = 1 and degT (t) = 4. To prove this using contradiction, assume that
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there is no such edge, that is, m14 = 0. Now, by using Lemmas 3.1.2, 3.1.4(i)

and 3.1.4(ii) to solve the system in Equations (3.1.2a) - (3.1.2d), we obtain

m22 = n− 5k− 4. This implies m22 ≤ 0 if 3k+ 2 ≤ n ≤ 5k+ 4 and hence, a

contradiction. Therefore, e′ = st ∈ E(T ) with degT (s) = 1 and degT (t) = 4.

Let p1 and q1 be the neighbors of p and q other than q and p respectively.

Without loss of generality, let P be a p, s-path containing the vertex q. Let

T ′ = T − pp1 + p1s.

Clearly, degT ′(p) = degT (p) − 1 = 1, degT ′(s) = degT (s) + 1 = 2 and

degT ′(w) = degT (w) for all w ∈ V (T )\{p, s}. Obviously, T ′ ∈ CT (n, k).

Now, we show H(T ′)−H(T ) > 0 to obtain a contradiction.

H(T ′)−H(T ) =
2

degT (p1) + degT (s) + 1
+

2

degT (p)− 1 + degT (q)

+
2

degT (s) + 1 + degT (t)
− 2

degT (p) + degT (p1)

− 2

degT (p) + degT (q)
− 2

degT (s) + degT (t)

=
2

degT (p1) + 2
+

2

1 + 2
+

2

2 + 4
− 2

2 + degT (p1)
− 2

2 + 2

− 2

2 + 4
= 0.1 > 0,

which is a contradiction since T has maximum Harmonic index. Hence,

m22 = 0 in T for 3k + 2 ≤ n ≤ 5k + 4.

(iv). Solving the system in Equations (3.1.2a) - (3.1.2d) for unknowns m14,

m24 and m12 by using the values of n1, n2 and n3 from Lemma 3.1.2 and the

values of m13, m23, m33, m34, m44 and m22 we obtain

m12 = n− 3k − 2,

m24 = n− 3k − 2,

m14 = 5k + 4− n.
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This finishes the proof.

Lemma 3.1.5. Let T ∈ CT (n, k) with n > 5k + 4 has maximum Harmonic

index among the trees in CT (n, k). Then

(i) m13 = m23 = m33 = m34 = 0.

(ii) m44 = k − 1.

(iii) m14 = 0.

(iv) m12 = 2k + 2, m24 = 2k + 2, m22 = n− 5k − 4.

Proof. (i). This result is a direct consequence of Lemma 3.1.2(i).

(ii). This result is a direct consequence of Lemma 3.1.3.

(iii). On the contrary, assume that T has an edge e = st with degT (s) =

1, degT (t) = 4. We first show that e′ = pq ∈ E(T ) with degT (p) = degT (q) =

2. To prove this using contradiction, assume that m22 = 0. Now, by using

Lemmas 3.1.2, 3.1.5(i) and 3.1.5(ii) to solve the system in Equations (3.1.2a) -

(3.1.2d), we obtain, m14 = 5k+4−n. This impliesm14 < 0 for n > 5k+4 and

hence, a contradiction. Now, by using the same argument and transformation

as in Lemma 3.1.4(iii), we can conclude that m14 = 0 in T for n > 5k + 4.

(iv). Solving the system in Equations (3.1.2a) - (3.1.2d) for unknowns m22,

m24 and m12 by using the values of n1, n2 and n3 from Lemma 3.1.2 and the

values of m13, m23, m33, m34, m44 and m14 we obtain

m12 = 2k + 2,

m24 = 2k + 2,

m22 = n− 5k − 4.

This completes the proof.
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3.2 Main Results

In this section, we obtain the values of Harmonic index maximum trees in

CT (n, k) and provide the minimum trees that attain these upper bounds.

Theorem 3.2.1. Let T ∈ CT (n, k) has maximum Harmonic index among

the trees in CT (n, k). Then

H(T ) =

3
5
n− 3

4
k − 13

20
3k + 2 < n ≤ 5k + 4,

1
2
n− 1

4
k − 1

4
n > 5k + 4,

Proof. Case 1. When 3k + 2 ≤ n ≤ 5k + 4.

The Harmonic index of T can be obtained by using the values of muv for

(u, v) ∈ S from Lemma 3.1.4 in Equation (3.1.1) as follows:

H(T ) =
3

5
n− 3

4
k − 13

20
.

This value of H(T ) will be obtained if T ∼= T 1(n, k) where T 1(n, k) is a tree

as shown in Fig. 3.1.
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(a) If n = 3k + 2.

(b) If n− 3k − 2 is odd.

(c) If n− 3k − 2 is even.

Figure 3.1: T 1(n, k)

Case 2. When n > 5k + 4.

The Harmonic index of T can be obtained by using the values of muv for

(u, v) ∈ S from Lemma 3.1.5 in Equation (3.1.1) as follows:

H(T ) =
1

2
n− 1

4
k − 1

4
.

This value of H(T ) will be obtained if T ∼= T 2(n, k) where T 2(n, k) is a tree

as shown in Fig. 3.2.
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Figure 3.2: T 2(n, k)



Chapter 4

Minimum Harmonic Index for

Chemical Trees with Given

Vertices of Maximum Degree

In the domain of chemical graph theory, topological indices theory addresses

crucial problems: identifying structures with extreme values while adhering

to constraints and determining precise bounds for a given index. In this

chapter, we determine the smallest values of the Harmonic index for chemical

trees with k vertices of degree 4.

4.1 Preliminaries

Consider the following subsets of CT (n, k):

CT 1(n, k) = {T ∈ CT (n, k) | 3k + 2 ≤ n ≤ 4k, k ≥ 2} ∪ {T ∈ CT (n, k)

| n ∈ {3k + 2}, k = 1},

CT 2(n, k) = {T ∈ CT (n, k) |

4k < n < 5k − 2, k ≥ 4} ∪ {T ∈ CT (n, k) | n = 4k + 1, k = 2},

CT 3(n, k) = {T ∈ CT (n, k) | n ≥ 5k − 2, k ≥ 3} ∪ {T ∈ CT (n, k)

32
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| n ≥ 3k + 4, k ∈ {1, 2}.

Lemma 4.1.1. Let T ∈ CT (n, k) has the smallest Harmonic index among

the trees in CT (n, k). Then n2 ≤ 1.

Proof. On the contrary, assume that n2 > 1. Let p and q be two vertices

with degT (p) = degT (q) = 2. We consider two cases:

Case 1. When p and q are adjacent.

Let p1 be the neighbor of p other than q and q1 be the neighbor of q other

than p. Let

T ′ = T − pp1 + qp1.

Clearly, degT ′(p) = degT (p) − 1 = 1, degT ′(q) = degT (q) + 1 = 3 and

degT ′(w) = degT (w) for all w ∈ V (T )\{p, q}. Obviously, T ′ ∈ CT (n, k).

Now, we show that H(T ′) − H(T ) > 0 by using Lemma 3.1.1 to obtain a

contradiction.

H(T ′)−H(T ) =
2

degT (p1) + degT (q) + 1
+

2

degT (q) + 1 + degT (p)− 1

+
2

(degT (q) + 1) + degT (q1)
− 2

degT (p1) + degT (p)

− 2

degT (p) + degT (q)
− 2

degT (q) + degT (q1)

=
2

degT (p1) + 3
+

2

3 + 1
+

2

3 + degT (q1)
− 2

degT (p1) + 2

− 2

2 + 2
− 2

2 + degT (q1)

≤ 2

4 + 3
+

2

3 + 1
+

2

3 + 4
− 2

4 + 2
− 2

2 + 2
− 2

2 + 4
= −0.095 < 0.

This contradicts our assumption and hence, there cannot be two adjacent

vertices of degree 2 in T .

Case 2. When p and q are non-adjacent.
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Let degT (p) = degT (q) = 2. Let p1 and p2 be the neighbors of p and q1 and

q2 be the neighbors of q. Without loss of generality, assume that there exists

a path P starting from p to q with p1 and q1 lying on it. By Case 1, degrees

of p1, p2, q1 and q2 cannot be equal to 2. Let

T ′′ = T − pp2 + qp2.

Clearly, degT ′′(p) = degT (p) − 1 = 1, degT ′′(q) = degT (q) + 1 = 3 and

degT ′′(w) = degT (w) for all w ∈ V (T )\{p, q}. Obviously, T ′′ ∈ CT (n, k).

Now, we show that H(T ′′) − H(T ) < 0 by using Lemma 3.1.1 to obtain a

contradiction.

H(T ′′)−H(T ) =
2

degT (p2) + degT (q) + 1
+

2

degT (q1) + (degT (q) + 1)

+
2

degT (q2) + (degT (q) + 1)
+

2

(degT (p)− 1) + degT (p1)

− 2

degT (p2) + degT (p)
− 2

degT (q1) + degT (q)

− 2

degT (q2) + degT (q)
− 2

degT (p) + degT (p1)

=
2

degT (p2) + 3
+

2

degT (q1) + 3
+

2

degT (q2) + 3

+
2

1 + degT (p1)
− 2

degT (p2) + 2
− 2

degT (q1) + 2

− 2

degT (q2) + 2
− 2

2 + degT (p1)

=
2

degT (p2) + 3
− 2

degT (p2) + 2
+

2

degT (q1) + 3

− 2

degT (q1) + 2
+

2

degT (q2) + 3
− 2

degT (q2) + 2

+
2

1 + degT (p1)
− 2

2 + degT (p1)
.

We know that 3 ≤ degT (p1) ≤ 4. Hence, by Lemma 3.1.1, we obtain

H(T ′′)−H(T ) ≤ 2

4 + 3
− 2

4 + 2
+

2

4 + 3
− 2

4 + 2
+

2

4 + 3
− 2

4 + 2
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+
2

1 + 3
− 2

2 + 3
= −0.0043 < 0.

This completes the proof.

Lemma 4.1.2. Assume that T ∈ CT (n, k) is a minimum chemical tree

among the trees in CT (n, k) such that n− k is even. Then

(i) n2 = 0.

(ii) n1 =
n
2
+ k

2
+ 1, n3 =

n
2
− 3k

2
− 1.

Proof. (i). By Lemma 4.1.1, let n2 = 1. Then n − k ≡ 0 (mod 2) implies

that n− k = 2t, t ≥ 1. By Equation (3.1.3), we get n1 + n3 = 2t− 1. Since

there are no vertices of odd degrees other than vertices of degree 1 and 3,

n1 + n3 must be even. This gives us a contradiction. Hence n2 = 0.

(ii). Using Equations (3.1.3), (3.1.4) and n2 = 0, we get

n = n1 + n3 + k,

n1 + 3n3 = 2n− 2− 4k.
(4.1.1)

The solution of the system (4.1.1) is n1 = n
2
+ k

2
+ 1 and n3 = n

2
− 3k

2
− 1

which completes the proof.

Lemma 4.1.3. Assume that T ∈ CT (n, k) is a minimum chemical tree

among the trees in CT (n, k) such that n− k is odd. Then

(i) n2 = 1.

(ii) n1 =
n+k+1

2
, n3 =

n−3k−3
2

.

Proof. (i). By Lemma 4.1.1, let n2 = 0. Then n − k ≡ 1 (mod 2) implies

that n − k = 2t + 1, t ≥ 1. By Equation (3.1.3), we get n1 + n3 = 2t + 1.

Since there are no vertices of odd degrees other than vertices of degree 1 and
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3, n1 + n3 must be even. This gives us a contradiction. Hence n2 = 1.

(ii). Using Equations (3.1.3), (3.1.4) and n2 = 1, we get

n = n1 + n3 + 1 + k,

n1 + 3n3 = 2n− 3− 4k.
(4.1.2)

The solution of the system (4.1.2) is n1 = n+k+1
2

and n3 = n−3k−3
2

which

completes the proof.

Lemma 4.1.4. Assume that T ∈ CT 1(n, k) is a minimum tree such that

n− k is even. Then

(i) m44 ̸= 0 when k ≥ 2.

(ii) m22 = m12 = m23 = m24 = 0.

(iii) m13 = 0.

(iv) m33 = 0.

(v) m34 =
3n
2
− 9k

2
− 3, m14 =

n
2
+ k

2
+ 1, m44 = 4k − n+ 1.

Proof. (i). On the contrary, assume that m44 = 0 when k ≥ 2. Then

Equation (3.1.2d) implies that

m14 +m24 +m34 = 4k. (4.1.3)

Now, consider Equation (3.1.2a). It is easy to see that m14 ≤ n1 since

m11, m12, m13 ≥ 0. Also, by Lemma 4.1.2(i), we have m24 = 0. Then,

Equation (4.1.3) becomes

m34 = 4k −m14

≥ 4k − (
n

2
+

k

2
+ 1) (Using Lemma 4.1.2(ii))

≥ 4k − (
4k

2
+

k

2
+ 1) (Since T ∈ CT 1(n, k))

=
3k

2
− 1. (4.1.4)
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Now, consider Equation (3.1.2c). It is easy to see that m34 ≤ 3n3 since m13,

m23, m33 ≥ 0. As T ∈ CT 1(n, k), by using n ≤ 4k and the value of n3 from

Lemma 4.1.2 in Equation (3.1.2c), we obtain m34 ≤ 3k
2
− 3 which contradicts

Equation (4.1.4). Hence, m44 ̸= 0 in T .

(ii). This result is a direct consequence of Lemma 4.1.2(i).

(iii). On the contrary, assume that e = pq ∈ E(T ) such that degT (p) = 1 and

degT (q) = 3. Let NT (q)\{p} = {q1, q2}. By Lemma 4.1.4(i), e′ = st ∈ E(T )

such that degT (s) = degT (t) = 4. Without loss of generality, assume a path P

exists connecting q and s and containing the edge qq1. Clearly, degT (q1) ≥ 3

since n2 = 0 by Lemma 4.1.2. Let

T ′ = T − pq − qq1 − st+ pq1 + sq + qt.

Clearly, degT ′(w) = degT (w) for all w ∈ V (T ). Obviously, T ′ ∈ CT 1(n, k).

Now, by showing H(T ′) − H(T ) < 0 by using Lemma 3.1.1, we obtain a

contradiction.

H(T ′)−H(T ) =
2

degT (s) + degT (q)
+

2

degT (q) + degT (t)

+
2

degT (p) + degT (q1)
− 2

degT (p) + degT (q)

− 2

degT (s) + degT (t)
− 2

degT (q) + degT (q1)

=
2

4 + 3
+

2

3 + 4
+

2

1 + degT (q1)
− 2

1 + 3
− 2

4 + 4

− 2

3 + degT (q1)

=
2

4 + 3
+

2

3 + 4
− 2

1 + 3
− 2

4 + 4
+

2

1 + degT (q1)

− 2

3 + degT (q1)

≤ 2

4 + 3
+

2

3 + 4
− 2

1 + 3
− 2

4 + 4
+

2

1 + 3
− 2

3 + 3
= −0.011 < 0,
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which is a contradiction since T has smallest Harmonic index. Hence, m13 =

0 in T .

(iv). On the contrary, assume that e = pq ∈ E(T ) such that degT (p) = 3 and

degT (q) = 3. Let NT (q)\{p} = {q1, q2}. By Lemma 4.1.4(i), e′ = st ∈ E(T )

such that degT (s) = degT (t) = 4. Without loss of generality, assume there

exists a path P connecting q and s and containing the edge qq1. Let

T ′ = T − pq − qq1 − st+ pq1 + sq + qt.

Clearly, degT ′(w) = degT (w) for all w ∈ V (T ). Obviously, T ′ ∈ CT 1(n, k).

Now, we show that H(T ′)−H(T ) < 0 to obtain a contradiction.

H(T ′)−H(T ) =
2

degT (s) + degT (q)
+

2

degT (q) + degT (t)

+
2

degT (p) + degT (q1)
− 2

degT (p) + degT (q)

− 2

degT (s) + degT (t)
− 2

degT (q) + degT (q1)

=
2

4 + 3
+

2

3 + 4
+

2

3 + degT (q1)
− 2

3 + 3
− 2

4 + 4

− 2

3 + degT (q1)
= −0.011 < 0,

which is a contradiction since T has smallest Harmonic index. Hence, m33 =

0.

(v). Solving the system in Equations (3.1.2a) - (3.1.2d) for unknowns m34,

m14 and m44 by using the values of n1, n2 and n3 from Lemma 4.1.2 and the

values of m33, m13, m23, m22, m12 and m24 from Lemma 4.1.4, we obtain

m34 =
3n

2
− 9k

2
− 3,

m14 =
n

2
+

k

2
+ 1,

m44 = 4k − n+ 1.



CHAPTER 4. MINIMUM HARMONIC INDEX 39

This finishes the proof.

Lemma 4.1.5. Assume that T ∈ CT 1(n, k) is a minimum tree such that

n− k is odd. Then

(i) m44 ̸= 0 when k ≥ 2.

(ii) m22 = 0.

(iii) m12 = 0.

(iv) m23 = 0.

(v) m13 = 0.

(vi) m33 = 0.

(vii) m34 =
3n−9k−9

2
, m14 =

n+k+1
2

, m24 = 2 and m44 = 4k − n+ 1.

Proof. (i). On the contrary, assume that m44 = 0. This implies that

m14 +m24 +m34 = 4k. (4.1.5)

We know that m14 ≤ n1 since m11, m12, m13 ≥ 0. Also, by Lemma 4.1.3(i),

n2 = 1 which implies m24 ≤ 2. This implies

m34 = 4k −m14 −m24

≥ 4k − n+ k + 1

2
− 2 (Using Lemma 4.1.3(ii))

≥ 4k − 4k + k + 1

2
− 2k (Since T ∈ CT 1(n, k))

=
3k

2
− 3

2
. (4.1.6)

On the other hand, we know that m34 ≤ 3n3 since m13, m23, m33 ≥ 0 . As

T ∈ CT 1(n, k), by using n ≤ 4k and the value of n3 from Lemma 4.1.2, we

obtain m34 ≤ 3k
2
− 9

2
but this contradicts Equation (4.1.6). Hence, m44 ̸= 0.
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(ii). This result is a direct consequence of Lemma 4.1.3(ii).

(iii). On the contrary, assume that e = pq ∈ E(T ) such that degT (p) = 1

and degT (q) = 2. Let NT (q)\{p} = {q1}. Clearly, degT (q1) ≥ 3 since

n2 = 1 by Lemma 4.1.3. By Lemma 4.1.4(i), e′ = st ∈ E(T ) such that

degT (s) = degT (t) = 4. Let

T ′ = T − pq − qq1 − st+ pq1 + sq + qt.

Clearly, degT ′(w) = degT (w) for all w ∈ V (T ). Obviously, T ′ ∈ CT 1(n, k).

Now, we show that H(T ′) − H(T ) > 0 by using Lemma 3.1.1 to obtain a

contradiction.

H(T ′)−H(T ) =
2

degT (s) + degT (q)
+

2

degT (q) + degT (t)

+
2

degT (p) + degT (q1)
− 2

degT (p) + degT (q)

− 2

degT (s) + degT (t)
− 2

degT (q) + degT (q1)

=
2

4 + 2
+

2

2 + 4
+

2

1 + degT (q1)
− 2

1 + 2
− 2

4 + 4

− 2

2 + degT (q1)

=
2

4 + 2
+

2

2 + 4
− 2

1 + 2
− 2

4 + 4
+

2

1 + degT (q1)

− 2

2 + degT (q1)

≤ 2

4 + 2
+

2

2 + 4
− 2

1 + 2
− 2

4 + 4
+

2

1 + 3
− 2

2 + 3
= −0.15 < 0,

which is a contradiction since T has smallest Harmonic index. Hence, m12 =

0.

(iv). On the contrary, assume that e = pq ∈ E(T ) such that degT (p) = 3

and degT (q) = 2. Let NT (q)\{p} = {q1}. By Lemma 4.1.5, e′ = st ∈ E(T )
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such that degT (s) = degT (t) = 4. Let

T ′ = T − pq − qq1 − st+ pq1 + sq + qt.

Clearly, degT ′(w) = degT (w) for all w ∈ V (T ). Obviously, T ′ ∈ CT 1(n, k).

Now, by showing H(T ′) − H(T ) < 0 by using Lemma 3.1.1, we obtain a

contradiction.

H(T ′)−H(T ) =
2

degT (s) + degT (q)
+

2

degT (q) + degT (t)

+
2

degT (p) + degT (q1)
− 2

degT (p) + degT (q)

− 2

degT (s) + degT (t)
− 2

degT (q) + degT (q1)

=
2

4 + 2
+

2

2 + 4
− 2

3 + 2
− 2

4 + 4
+

2

3 + degT (q1)

− 2

2 + degT (q1)

≤ 2

4 + 2
+

2

2 + 4
− 2

3 + 2
− 2

4 + 4
+

2

3 + 4
− 2

2 + 4
= −0.03 < 0,

which is a contradiction since T has smallest Harmonic index. Hence, m23 =

0.

(v). The proof of this case is similar to Lemma 4.1.4(iii).

(vi). The proof of this case is similar to Lemma 4.1.4(iv).

(vii). Solving the system in Equations (3.1.2a) - (3.1.2d) for unknowns m34,

m14, m24 and m44 by using the values of n1, n2 and n3 from Lemma 4.1.3

and the values of m33, m13, m23, m22 and m12 from Lemma 4.1.5, we obtain

m34 =
3n− 9k − 9

2
,

m14 =
n+ k + 1

2
,

m24 = 2,

m44 = 4k − n+ 1.
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This completes the proof.

Lemma 4.1.6. Assume that T ∈ CT 2(n, k) is a minimum tree such that

n− k is even. Then

(i) m22 = m12 = m23 = m24 = 0.

(ii) m44 = 0.

(iii) m13 = 0.

(iv) m34 =
7k
2
− n

2
− 1, m14 =

n
2
+ k

2
+ 1, m33 = n− 4k − 1.

Proof. (i). This result is a direct consequence of Lemma 4.1.2(i).

(ii). On the contrary, assume that m44 ̸= 0. Then m13 and m33 must not

both be 0. To prove this, assume that both m13 and m33 are zero. Equations

(3.1.2a) - (3.1.2d) along with Lemma 4.1.6(i) imply m14 = n1 and m34 = 3n3

andm44 = 4k−n1−3n3. By using values of n1 and n2 from Lemma 4.1.2, m44

becomes 8k+2−2n which further implies that m44 ≤ 0 for n ≥ 4k+1 which

is a contradiction as T ∈ CT 2(n, k). Hence, when m13 ̸= 0 or m33 ̸= 0, then

by using the argument and the transformation similar to those in Lemma

4.1.4(iii) or 4.1.4(iv), respectively, we can conclude that m44 = 0.

(iii). On the contrary, assume that m13 ̸= 0, that is, e = st ∈ E(T ) such

that degT (s) = 1 and degT (t) = 3. This implies that

m14 < n1

=
n

2
+

k

2
+ 1 (Using Lemma 4.1.2(ii))

<
5k − 2

2
+

k

2
+ 1 (Since T ∈ CT 2(n, k))

= 3k.

This implies that there exists a vertex p with degree degT (p) = 4 with at

most 2 pendent vertices. Let p1 and p2 be the non-pendant neighbors of p.

Let t1 and t2 be the neighbors of t other than s. Without loss of generality,

let P be the path joining t and p containing the edges tt1 and p1p. By Lemma



CHAPTER 4. MINIMUM HARMONIC INDEX 43

4.1.2(i), n2 = 0 which implies that degT (p2) ̸= 2. Also, Lemma 4.1.6(ii), we

have m44 = 0 which implies degT (p2) ̸= 4. Hence, degT (p2) = 3. Let r and z

be the neighbors of p2 other than p. Let

T ′ = T − p2r − p2z + sr + tr.

Clearly, degT ′(p2) = degT (p2)− 2, degT ′(s) = degT (s)+ 2 and degT ′(w) =

degT (w) for all w ∈ V (T )\{p2, s}. Obviously, T ′ ∈ CT 2(n, k). Now, we show

that H(T ′)−H(T ) < 0 to obtain a contradiction.

H(T ′)−H(T ) =
2

degT (q) + degT (s) + 2
+

2

degT (z) + degT (s) + 2

+
2

degT (s) + 2 + degT (t)
+

2

degT (p) + degT (p2)− 2

− 2

degT (p) + degT (p2)
− 2

degT (p2) + degT (r)

− 2

degT (p2) + degT (z)
− 2

degT (s) + degT (t)

=
2

degT (r) + 3
+

2

degT (z) + 3
+

2

3 + 3
+

2

4 + 1
− 2

4 + 3

− 2

3 + degT (r)
− 2

3 + degT (z)
− 2

1 + 3
= −0.05 < 0,

which is a contradiction since T has the smallest Harmonic index. Hence,

m13 = 0.

(iv). Solving the system in Equations (3.1.2a) - (3.1.2d) for unknowns m34,

m14 and m33 by using the values of n1, n2 and n3 from Lemma 4.1.2 and the

values of m12, m24, m22, m23, m13 and m44 from Lemma 4.1.6, we obtain

m34 =
7k

2
− n

2
− 1,

m14 =
n

2
+

k

2
+ 1,

m33 = n− 4k − 1.
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This finishes the proof.

Lemma 4.1.7. Assume that T ∈ CT 2(n, k) is a minimum tree such that

n− k is odd. Then

(i) m22 = 0.

(ii) m12 = 0.

(iii) m44 = 0.

(iv) m13 = 0.

(v) m24 = 2 and m23 = 0.

(vi) m34 =
7k−n−5

2
, m14 =

n+k+1
2

, m33 = n− 4k − 1.

Proof. (i). This result is a direct consequence of Lemma 4.1.3(i).

(ii). On the contrary assume that m12 ̸= 0, that is, e = st ∈ E(T ) such

that degT (s) = 1 and degT (t) = 2. Let t1 be the other neighbor of t. Let

p be a vertex of degree 4. Let NT (p) = {p1, p2, p3, p4}. Let P be the path

connecting p and t and containing the edges tt1 and pp4. Let

T ′ = T − pp1 − pp2 − pp3 + sp1 + sp2 + sp3.

Clearly, degT ′(p) = degT (p) − 3, degT ′(s) = degT (s) + 3 and degT ′(w) =

degT (w) for all w ∈ V (T )\{p, s}. Obviously, T ′ ∈ CT 2(n, k). Now, by

showing H(T ′)−H(T ) < 0 using Lemma 3.1.1, we obtain a contradiction.

H(T ′)−H(T ) =
2

degT (p1) + degT (s) + 3
+

2

degT (p2) + degT (s) + 3

+
2

degT (p3) + degT (s) + 3
+

2

degT (s) + 3 + degT (t)

+
2

degT (p4) + degT (p)− 3
− 2

degT (p) + degT (p4)

− 2

degT (p) + degT (p1)
− 2

degT (p) + degT (p2)
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− 2

degT (p) + degT (p3)
− 2

degT (s) + degT (t)

=
2

degT (p1) + 4
+

2

degT (p2) + 4
+

2

degT (p3) + 4
+

2

4 + 2

+
2

degT (p4) + 1
− 2

4 + degT (p4)
− 2

degT (p1) + 4

− 2

degT (p2) + 4
− 2

degT (p3) + 4
− 2

1 + 2

=
2

4 + 2
− 2

1 + 2
+

2

degT (p4) + 1
− 2

4 + degT (p4)

≤ 2

4 + 2
− 2

1 + 2
+

2

3 + 1
− 2

4 + 3
= −0.11 < 0,

which is a contradiction since T has the smallest Harmonic index. Hence,

m12 = 0.

(iii). On the contrary, assume that m44 ̸= 0, that is, e = st ∈ E(T ) with

degT (s) = degT (t) = 4. Then m13, m23 and m33 must not all be 0. To

prove this, assume that all of m13, m23 and m33 are equal to zero. Equations

(3.1.2a) - (3.1.2d) along with Lemmas 4.1.7(i) and 4.1.7(ii) imply m14 = n1,

m24 = 2n2 and m34 = 3n3 and m44 = 4k − n1 − 3n3 − 2n2. By using values

of n1, n2 and n3 from Lemma 4.1.3, m44 becomes 8k − 1− 2n which further

implies that m44 > 0 if n < 4k− 1
2
which is a contradiction as T ∈ CT 2(n, k).

Hence, when m13 ̸= 0, m33 ̸= 0 or m23 ̸= 0, then by using the argument

and the transformation similar to those in Lemmas 4.1.4(iii), 4.1.4(iv) or

4.1.5(iv), we can conclude that m44 = 0.

(iv). On the contrary, assume that m13 ̸= 0, that is, e = st ∈ E(T ) such

that degT (s) = 1 and degT (t) = 3. This implies that

m14 < n1

=
n+ k + 1

2
(Using Lemma 4.1.3(ii))

<
5k − 1 + k + 1

2
+

6k

2k
(Since T ∈ CT 2(n, k))

= 3k.
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This implies that there exists a vertex p with degree degT (p) = 4 with at

most 2 pendent vertices. Let p1 and p2 be the non-pendant neighbors of p.

Let t1 and t2 be the neighbors of t other than s. Without loss of generality,

let P be the path joining t and p containing the edges tt1 and p1p. By Lemma

4.1.7(iii),m44 = 0 which implies degT (p2) ̸= 4. Hence, degT (p2) ∈ {2, 3}. The
case when degT (p2) = 3 proceeds in a similar way as in Lemma 4.1.6(iii). For

the case when degT (p2) = 2, let r be the neighbor of p2 other than p. Let

T ′ = T − p2r + sr.

Clearly, degT ′(p2) = degT (p2)− 1, degT ′(s) = degT (s)+ 1 and degT ′(w) =

degT (w) for all w ∈ V (T )\{p2, s}. Obviously, T ′ ∈ CT 2(n, k). Now, we show

that H(T ′)−H(T ) < 0 to obtain a contradiction.

H(T ′)−H(T ) =
2

degT (r) + degT (s) + 1
+

2

degT (s) + 1 + degT (t)

+
2

degT (p) + degT (p2)− 1
− 2

degT (p) + degT (p2)

− 2

degT (p2) + degT (r)
− 2

degT (s) + degT (t)

=
2

degT (r) + 2
+

2

2 + 3
+

2

4 + 1
− 2

4 + 2
− 2

2 + degT (r)

− 2

1 + 3
= −0.03 < 0,

which is a contradiction since T has the smallest Harmonic index. Hence,

m13 = 0.

(v). On the contrary assume that m24 ̸= 2. Clearly, m24 ≯ 2 as n2 = 1 by

Lemma 4.1.3. Let p be the vertex with degT (p) = 2. Let p1 and p2 be its

neighbors. Next, we consider the following cases.

Case 1: When degT (p1) = degT (p2) = 3

Let s be any vertex with degree 4. Let s′ be the non-pendant neighbor of s.
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Clearly, degT (s
′) = 3 by Lemma 4.1.7(iii). Let

T ′ = T − pp1 − pp2 − ss′ + sp+ s′p+ p1p2.

Clearly, degT ′(w) = degT (w) for all w ∈ V (T ). Obviously, T ′ ∈ CT 2(n, k).

Now, by showing H(T ′) − H(T ) < 0 by using Lemma 3.1.1, we obtain a

contradiction.

H(T ′)−H(T ) =
2

degT (s) + degT (p)
+

2

degT (s′) + degT (p)

+
2

degT (p1) + degT (p2)
− 2

degT (p) + degT (p1)

− 2

degT (p2) + degT (p)
− 2

degT (s) + degT (s′)

=
2

4 + 2
+

2

3 + 2
+

2

3 + 3
− 2

2 + 3
− 2

3 + 2
− 2

4 + 3
= −0.019 < 0

which is a contradiction since T has minimum Harmonic index.

Case 2. When degT (p1) = 4 and degT (p2) = 3

By Lemma 4.1.3, n1 =
n+k+1

2
. It can easily be seen that for 4k < n < 5k− 2,

5k−1
2

< n1 < 6k−1
2

or 2k < n1 < 3k. This implies that there exists a vertex

with degree 4 and with exactly 3 pendant neighbors and there exists another

vertex with degree 4 and at most 2 pendant neighbors.

Subcase 1: When p1 has three pendant neighbors.

Let t be another vertex of degree 4 with at most 2 pendant neighbors.

Let t1 and t2 be the non-pendant neighbors of t. As m44 = 0 by Lemma

4.1.7(iii), so degT (t1) = degT (t2) = 3. Let P be the path connecting p1 and

t and containing the edges p1p and t2t. Let

T ′′ = T − tt1 − tt2 + pt+ p2t.

Clearly, degT ′′(w) = degT (w) for all w ∈ V (T ). Obviously, T ′′ ∈ CT 2(n, k).
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Now, we show that H(T ′′)−H(T ) < 0 to obtain a contradiction.

H(T ′′)−H(T ) =
2

degT (t) + degT (p)
+

2

degT (p2) + degT (t)

+
2

degT (t1) + degT (t2)
− 2

degT (t) + degT (t1)

− 2

degT (t2) + degT (t)
− 2

degT (p) + degT (p2)

=
2

4 + 2
+

2

4 + 3
+

2

3 + 3
− 2

2 + 3
− 2

4 + 3
− 2

4 + 3
= −0.019 < 0,

which is a contradiction since T has minimum Harmonic index.

Subcase 2: When p1 has at most 2 pendant neighbors.

Let p′1 be the non-pendant neighbor of p1 other than p. Let P be the maximal

path that starts from p1, contains p1u and ends at a vertex, say q. It is clear

that q is a pendant vertex. Let s be the neighbor of q. By Lemmas 4.1.7(ii)

and 4.1.7(iv), degT (s) = 4. The maximality of path P also implies that s

has 3 pendant vertices. Let s′ be the non-pendant neighbor of s. Obviously,

degT (s
′) = degT (p

′
1) = 3 as m44 = 0 by Lemma 4.1.7(iii). Let

T̂ = T − p′1p1 − pp2 − s′s+ ps+ p1s
′ + p′1p2.

Clearly, degT̂ (w) = degT (w) for all w ∈ V (T ). Obviously, T̂ ∈ CT 2(n, k).

Now, we show that H(T̂ )−H(T ) < 0 to obtain a contradiction.

H(T̂ )−H(T ) =
2

degT (s) + degT (p)
+

2

degT (p′1) + degT (p2)

+
2

degT (p1) + degT (s′)
− 2

degT (p′1) + degT (p1)

− 2

degT (p2) + degT (p)
− 2

degT (s′) + degT (s)

=
2

4 + 2
+

2

3 + 4
+

2

3 + 3
− 2

3 + 4
− 2

2 + 3
− 2

4 + 3
= −0.019 < 0,



CHAPTER 4. MINIMUM HARMONIC INDEX 49

which is a contradiction since T has minimum Harmonic index. Therefore

m24 = 2. This further implies m23 = 0.

(vi). Solving the system in Equations (3.1.2a) - (3.1.2d) for unknowns m34,

m14 and m33 by using the values of n1, n2, n3 from Lemma 4.1.3 and the

values of m12, m22, m24, m23, m13 and m44 from Lemma 4.1.7, we obtain

m34 =
7k − n− 5

2
,

m14 =
n+ k + 1

2
,

m33 = n− 4k − 1.

This completes the proof.

Lemma 4.1.8. Assume that T ∈ CT 3(n, k) is a minimum tree such that

n− k is even. Then

(i) m12 = m22 = m23 = m24 = 0.

(ii) m44 = 0.

(iii) m14 = 3k.

(iv) m34 = k, m13 =
n
2
− 5k

2
+ 1, m33 =

n
2
− 3k

2
− 2.

Proof. (i). This result is a direct consequence of Lemma 4.1.2(i).

(ii). The proof of this case is the same as that of Lemma 4.1.6(iii).

(iii). On the contrary assume that m14 ̸= 3k. Clearly, m14 ≯ 3k because that

would imply the existence of a vertex of degree 4 with 4 pendant neighbors.

So, we consider the case when m14 < 3k. If m14 < 3k then m13 > 0.

Assume that m13 = 0 to prove this using contradiction. As m12 = 0 by

Lemma 4.1.8(i), therefore Equation (3.1.2a) becomes m14 = n1 which implies

n1 < 3k. By using the value of n1 from Lemma 4.1.2(ii), we obtain n
2
+ k

2
+

1 < 3k which further implies that n < 5k − 2 which is a contradiction as

T ∈ CT 3(n, k). Hence m13 ̸= 0. This implies e = st ∈ E(T ) such that

degT (s) = 1 and degT (t) = 3. Moreover, m14 < 3k implies that there exists
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a vertex p with degree degT (p) = 4 with at most 2 pendent vertices. Let p1

and p2 be the non-pendant neighbors of p. Let t1 and t2 be the neighbors

of t other than s. Without loss of generality, let P be the path joining t

and p containing the edges tt1 and p1p. As by Lemma 4.1.8(ii), m44 = 0, it

implies that degT (p2) ̸= 4. Also, by Lemma 4.1.2, n2 = 0, it implies that

degT (p2) ̸= 2. Hence, degT (p2) = 3. Let r and z be the neighbors of p2 other

than p. Let

T ′ = T − p2r − p2z + sr + zs.

Clearly, degT ′(p2) = degT (p2) − 2, degT ′(s) = degT (s) + 2 and degT ′(w) =

degT (w) for all w ∈ V (T )\{p2, s}. Obviously, T ′ ∈ CT 3(n, k). Now, we show

that H(T ′)−H(T ) < 0 to obtain a contradiction.

H(T ′)−H(T ) =
2

degT (r) + degT (s) + 2
+

2

degT (z) + degT (s) + 2

+
2

degT (s) + 2 + degT (t)
+

2

degT (p) + degT (p2)− 2

− 2

degT (p) + degT (p2)
− 2

degT (p2) + degT (r)

− 2

degT (p2) + degT (z)
− 2

degT (s) + degT (t)

=
2

degT (r) + 3
+

2

degT (z) + 3
+

2

3 + 3
+

2

4 + 1
− 2

4 + 3

− 2

3 + degT (r)
− 2

3 + degT (z)
− 2

1 + 3
= −0.05 < 0,

which is a contradiction since T has the smallest Harmonic index. Hence,

m14 = 3k.

(iv). Solving the system in Equations (3.1.2a) - (3.1.2d) for unknowns m34,

m13 and m33 by using the values of n1, n2 and n3 from Lemma 4.1.2 and the

values of m12, m22, m23, m24, m14 and m44 from Lemma 4.1.8, we obtain

m34 = k,
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m13 =
n

2
− 5k

2
+ 1,

m33 =
n

2
− 3k

2
− 2.

This finishes the proof.

Lemma 4.1.9. Assume that T ∈ CT 3(n, k) is a minimum chemical tree such

that n− k is odd. Then

(i) m22 = 0.

(ii) m12 = 0.

(iii) m44 = 0.

(iv) m23 = 1.

(v) m14 = 3k.

(vi) m24 = 1, m13 =
n−5k+1

2
, m33 =

n−3k−5
2

, m34 = k − 1.

Proof. (i). This result is a direct consequence of Lemma 4.1.3(i).

(ii). The proof of this case is similar to that of Lemma 4.1.7(ii).

(iii). The proof of this case is same as that of Lemma 4.1.7(iii).

(iv). On the contrary assume that m23 ̸= 1. Let p be the vertex with degree

2 and let p1 and p2 be its neighbors. It can easily be seen that m23 cannot

be more than 2 as n2 = 1 by Lemma 4.1.3. This leaves us with 2 cases:

Case 1. When degT (p1) = degT (p2) = 3.

This case is similar to Case 1 of Lemma 4.1.7(iv).

Case 2. When degT (p1) = degT (p2) = 4.

If m24 = 2, then m13 cannot be 0. To prove this, assume that m13 = 0. By

Equation (3.1.2a), this implies

m14 = n1

=
n+ k + 1

2
(Using Lemma 4.1.3(ii))
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>
5k − 3 + k + 1

2
(Since T ∈ CT 3(n, k))

= 3k − 1.

However, it is clear that m14 < 3k for k ≥ 2 and n ≥ 10 as m24 = 2 and

hence, a contradiction. Let e = st ∈ E(T ) such that degT (s) = 3 and

degT (t) = 1. Without loss of generality, assume that p1 does not lie on the

path connecting p and s. Let

T ′ = T − pp1 + tp1.

Clearly, degT ′(p) = degT (p) − 1, degT ′(t) = degT (t) + 1 and degT ′(w) =

degT (w) for all w ∈ V (T )\{p, t}. Obviously, T ′ ∈ CT 3(n, k). Now, we show

that H(T ′)−H(T ) < 0 to obtain a contradiction.

H(T ′)−H(T ) =
2

degT (t) + 1 + degT (p1)
+

2

degT (p)− 1 + degT (p2)

+
2

degT (t) + 1 + degT (s)
− 2

degT (p) + degT (p1)

− 2

degT (p) + degT (p2)
− 2

degT (t) + degT (s)

=
2

2 + 4
+

2

1 + 4
+

2

2 + 3
− 2

2 + 4
− 2

2 + 4
− 2

3 + 1
= −0.030 < 0.

This contradicts our assumption that T is the tree with the minimum Har-

monic index.

(v). On the contrary assume that m14 ̸= 3k. Clearly, m14 ≯ 3k because

that would imply the existence of a vertex of degree 4 with 4 pendant neigh-

bors. So, we consider the case when m14 < 3k. If m14 < 3k, then m13 > 0.

Assume that m13 = 0 to prove this using contradiction. As m12 = 0 by

Lemma 4.1.9(ii), therefore Equation (3.1.2a) becomes m14 = n1 which im-

plies n1 < 3k. By using the value of n1 from Lemma 4.1.3(ii), we obtain
n+k+1

2
< 3k which further implies that n < 5k − 1 which is a contradiction
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as T ∈ CT 3(n, k). Hence m13 ̸= 0. Moreover, m14 < 3k implies that there

exists a vertex p with degT (p) = 4 with at most 2 pendent vertices. Let p1

and p2 be the non-pendant neighbors of p. Let t1 and t2 be the neighbors of

t other than s. Without loss of generality, let P be the path joining t and p

containing the edges tt1 and p1p. As by Lemma 4.1.9(iii), we have m44 = 0,

it implies that degT (p2) ̸= 4. Therefore, degT (p2) ∈ {2, 3}. The case when

degT (p2) = 3 proceeds in a similar way as in Lemma 4.1.8. For the case when

degT (p2) = 2, let r be the neighbor of p2 other than p. Let

T ′ = T − p2r + sr.

Clearly, degT ′(p2) = degT (p2) − 1, degT ′(s) = degT (s) + 1 and degT ′(w) =

degT (w) for all w ∈ V (T )\{p2, s}. Obviously, T ′ ∈ CT 3(n, k). Now, we show

that H(T ′)−H(T ) < 0 to obtain a contradiction.

H(T ′)−H(T ) =
2

degT (r) + degT (s) + 1
+

2

degT (s) + 1 + degT (t)

+
2

degT (p) + degT (p2)− 1
− 2

degT (p) + degT (p2)

− 2

degT (p2) + degT (r)
− 2

degT (s) + degT (t)

=
2

degT (r) + 2
+

2

2 + 3
+

2

4 + 1
− 2

4 + 2

− 2

−
2

1 + 3
= −0.03 < 0,

which is a contradiction since T has the smallest Harmonic index. Hence,

m13 = 0.

(vi). Solving the system in Equations (3.1.2a) - (3.1.2d) for unknowns m34,

m13, m24 and m33 by using the values of n1, n2 and n3 from Lemma 4.1.3,

and the values of m12, m22, m23, m14 and m44 from Lemma 4.1.9, we obtain

m24 = 1,
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m13 =
n− 5k + 1

2
,

m33 =
n− 3k − 5

2
,

m34 = k − 1.

This completes the proof.

4.2 Main Results

In this section, we obtain the values of the Harmonic index of minimum trees

in CT (n, k) and provide the minimum trees that attain these lower bounds.

Theorem 4.2.1. Let T ∈ CT (n, k) and has minimum Harmonic index.

Then

H(T ) =



11
5

T ∈ CT (n, k) with n = 6 and k = 1,

53n−12k−29
140

T ∈ CT 1(n, k) and n-k is even,

159n−39k−71
420

T ∈ CT 1(n, k) and n-k is odd,

41n−14k−23
105

T ∈ CT 2(n, k) and n-k is even,

41n−7k−19
105

T ∈ CT 2(n, k) and n-k is odd,

5
12
n− 37

140
k − 1

6
T ∈ CT 3(n, k) and n-k is even,

5
12
n− 41

28
k − 19

140
T ∈ CT 3(n, k) and n-k is odd.

Proof. Case 1. When T ∈ CT (n, k) with n = 6 and j = 1.

When n = 6 and j = 1, n3 = 0, n1 = 4 and n2 = 1 by Lemma 4.1.3. Using

these values in Equations (3.1.2a) - (3.1.2d), we obtain m22 = m23 = m13 =

m33 = m33 = 0, m24 = 1, m12 = 1 and m14 = 3. Using these values in

Equations 2.1, we obtain

H(T ) =
11

5
.

This value of H(T ) will be obtained if T ∼= T0(6, 1) where T0(6, 1) is a tree

as shown in Fig. 4.1.
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Figure 4.1: T0(n, k)

Case 2. When T ∈ CT 1(n, k) and n− k is even.

Using the values of muv for (u, v) ∈ S from Lemma 4.1.4 in Equation (3.1.1),

we obtain

H(T ) =
53n− 12k − 29

140
.

This value of H(T ) will be obtained if T ∼= T1(n, k) where T1(n, k) is a tree

as shown in Fig. 4.2.

Figure 4.2: T1(n, k)

Case 3. When T ∈ CT 1(n, k) and n− k is odd.

Using the values of muv for (u, v) ∈ S from Lemma 4.1.5 in Equation (3.1.1),

we obtain

H(T ) =
159n− 39k − 71

420
.

This value of H(T ) will be obtained if T ∼= T2(n, k) where T2(n, k) is a tree

as shown in Fig. 4.3.

Figure 4.3: CT2(n, k)

Case 4. When T ∈ T2(n, k) and n− k is even
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Using the values of muv for (u, v) ∈ S from Lemma 4.1.6 in Equation (3.1.1),

we obtain

H(T ) =
41n− 14k − 23

105
.

This value of H(T ) will be obtained if T ∼= T3(n, k) where T3(n, k) is a tree

as shown in Fig. 4.4.

Figure 4.4: CT3(n, k)

Case 5. When T ∈ CT 2(n, k) and n− k is odd.

Using the values of muv for (u, v) ∈ S from Lemma 4.1.7 in Equation (3.1.1),

we obtain

H(T ) =
41n− 7k − 19

105
.

This value of H(T ) will be obtained if T ∼= T4(n, k) where T4(n, k) is a tree

as shown in Fig. 4.5.

(a) If k = 2

(b) If k ≥ 3

Figure 4.5: T4(n, k)

Case 6. When T ∈ CT 3(n, k) and n− k is even.

Using the values of muv for (u, v) ∈ S from Lemma 4.1.8 in Equation (3.1.1),
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we obtain

H(T ) =
5

12
n− 37

140
k − 1

6
.

This value of H(T ) will be obtained if T ∼= T5(n, k) where T5(n, k) is a tree

as shown in Fig. 4.6.

(a) If k = 1

(b) If k ≥ 2

Figure 4.6: T5(n, k)

Case 7. When T ∈ CT 3(n, k) and n− k is odd.

Using the values of muv for (u, v) ∈ S from Lemma 4.1.9 in Equation (3.1.1),

we obtain

H(T ) =
5

12
n− 41

28
k − 19

140
.

This value of H(T ) will be obtained if T ∼= T6(n, k) where T6(n, k) is a tree

as shown in Fig. 4.7.
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(a) If k = 1

(b) If k ≥ 2

Figure 4.7: T6(n, k)

4.3 Summary

In conclusion, this thesis aimed to explore the application of graph theory

and chemical graph theory in analyzing chemical structures through the lens

of topological indices. The first chapter provided a comprehensive overview

of the basics of graph theory, establishing a foundation for understanding

subsequent discussions.

The second chapter delved into the realm of chemical graph theory, focus-

ing specifically on topological indices. The study of topological indices allows

for the quantification of structural properties of chemical compounds, aiding

in their characterization and prediction of various chemical properties. The

Harmonic Index was highlighted as a specific topological index, mentioning

its extremal values for various graphs.

The third and fourth chapters of this thesis were dedicated to finding the

maximum and minimum values of Harmonic index of chemical trees with

given order and a specified number of vertices of maximum degree.
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tivity index of trees. Discrete Applied Mathematics, 157(13):2828–2835,

2009.
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