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Abstract

Gutman and Trinajstic proposed the notion of a degree-based index in 1972. Topo-

logical indices based on vertex degree play a signi�cant role in graph theory by captur-

ing important structural information about graphs, connectivity and centrality mea-

sures, and the identi�cation of in�uential vertices. These are also valuable in graph

classi�cation tasks and network modeling, assisting in the categorization of graphs and

the comprehension of real-world networks.

One of those vertex based topological indices namely Sombor index was introduced

by Gutman in 2020. Being a relatively nascent �eld, Sombor index has captured the

interest of researchers, driving it to become an essential concept in the �eld of chemical

graph theory.

In this work, we �nd a chemical tree with maximum Sombor index amoung the class

of chemical trees with the �xed number of vertices of maximum degree. Similarly, we

�nd a chemical tree with minimum Sombor index amoung the class of chemical trees

with the �xed number of vertices of maximum degree.
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Chapter 1

Introduction to graph theory

This chapter is concerned with the basic concepts and de�nitions associated with

graph theory. Recently, graph theory has emerged as a signi�cant mathematical tool.

It is a �eld of study that examines the properties and relationships of graphs, which

consist of vertices connected by edges. It is an essential tool in numerous disciplines,

including computer science, mathematics, and network analysis. Graph theory encom-

passes multiple domains, such as connectivity, paths, cycles, planarity, graph coloring,

chemical, spectral and algebraic graph theory each examining particular aspects of

graphs and their characteristics. Graph theory enables us to acquire insights into com-

plex systems, optimize network designs, and address issues in a variety of disciplines

by researching these branches.

1.1 Origin and evolution of graph theory

The work of Swiss mathematician Leonhard Euler in the 18th century established

graph theory as a mathematical �eld. In 1736, Euler addressed the "Seven Bridges

of Königsberg" problem [1], which involved �nding a path through the city namely

Königsberg that would cross all of its seven bridges only once, ultimately returning

to the starting point. Euler used the notion of a "graph" to describe Königsberg's

land masses (vertices) and bridges (edges), allowing him to deal with the problem

mathematically.
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Following Euler's groundbreaking contributions, other mathematicians further pro-

gressed the �eld of graph theory. Augustin-Louis Cauchy, a French mathematician,

made fundamental contributions to graph theory in the early 19th century by explor-

ing planar graphs.

Later, in the 20th century, the discipline of graph theory gained more prominence and

observed major developments. Pioneers like Frank Harary, Paul Erd®s, and William

Tutte made key contributions to graph theory in areas like connectivity, graph coloring

and graph algorithms. Their work broadened the scope of graph theory, making it a

major area of study. The ongoing research and exploring of graph theory continue to

uncover new insights and applications, making it an in�uential and continually evolving

�eld of study.

Figure 1.1: (a) Königsberg seven bridge problem (b) Graphical representation

1.2 Introduction and representation of graphs

In this section, we give well known de�nitions of graph theory.

1.2.1 Graphs and some basic de�nitions

A graph is a fundamental structure, mathematically used to represent relationships

between objects. It is made up of three components: vertices, edges and incidence
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function. Edges or edge set is represented by E(G) and it signify links or interactions

between pairs of vertices, whereas vertices (also called nodes) or vertex set is repre-

sented by V (G) and it represent distinct things. The incidence function IG maps each

edge into a pair of vertices. An edge between vertex vi and vj is represented by ij.

The order of a graph refers to the total number of vertices it consists of and denoted

by n or V (G), whereas the total number of edges is referred as size of graph denoted

by m. In Figure 1.1 n = 4 and m = 7.

Incident edges on a vertex are the edges that are directly connected to it. Degree of

vertex is the number of edges incident to it and is denoted by deg(v). Edges between the

same pair of vertices are multiple edges and loops are edges that has sane starting and

ending vertex, making a self-connection. In Figure 1.1 (b), vertices A and B, A and C

have multiple edges. Adjacent vertices are those vertices that are end points of an edge,

whereas non-adjacent vertices do not have an edge between them. Neighbors of a vertex

are its adjacent vertices and are denoted by N(v), as in Figure 1.1, N(C) = {A,D}.

A connected graph has a path between any pair of vertices, ensuring that each ver-

tex is reachable from any other vertex. In contrast, a disconnected graph consists of

multiple components, indicating there are at least two vertices that have no path be-

tween them. Components of a graph are the maximal connected subgraphs. A graph

whose vertices and edges are subset of another graph is called a subgraph. A maxi-

mal connected subgraph is one to which no vertex can be added without breaking its

connectedness. A pendant vertex is also known as a leaf and has degree 1, whereas

isolated vertex has degree 0. A simple graph is one with no multiple edges or loops. In

a graph, clique is a set of vertices that are pairwise adjacent, while independent set a

set of vertices that are pairwise non-adjacent.
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Figure 1.2: Simple graph

Two graphs G = (V , E) and G1 = (V1, E1), if there exist bijections ϕ : V → V1 and

ψ : E → E1, that preserve the endpoint relations of G and G1 are said to be isomorphic

that is, if vi ∈ V is an endpoint of ei ∈ E then ϕ(vi) ∈ V1 is an endpoint of ψ(ei) ∈ E1
denoted by G ∼= G1. Apparently Isomorphic graphs must have equal number of ver-

tices of each degree, same number of vertices and edges but these conditions are not

su�cient for graphs to be called isomorphic to each other. Isomorphic graphs exhibit

same fundamental structure, have similar connection patterns, retaining vertices asso-

ciations. This indicates that any traits or characteristics that apply to one graph apply

to its isomorphic counterpart.

Figure 1.3: Isomorphic graphs
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1.2.2 Graph representation

There are several ways of graph representations, one of them is matrix representation.

Matrix representation is widely used to store graphic data. Now we will discuss two

types of matrix representation

A square matrix that depicts the relationships between vertices in a graph is known

as an adjacency matrix. Adjacency matrix is denoted by A(G) = [aij], in which aij is

the number of edges in G with endpoints vi and vj and is de�ned as

aij =

{
1, if there is an edge between vertex vi and vj
0, otherwise.

Adjacency matrix for the graph in Figure 1.2 is,

A(G) =


0 1 0 0 0
1 0 1 1 0
0 1 0 1 0
0 1 1 0 1
0 0 0 1 0


An incidence matrix is a graph representation that uses rows to represent vertices

and columns to represent edges. Incidence matrix is denoted by M(G) = [mij], in

which mij is de�ned as

mij =

{
1, if vi is an endpoint of ej
0, otherwise.

Incidence matrix for the graph in Figure 1.2 is,

M(G) =


1 0 0 0 0
1 1 0 1 0
0 1 1 0 0
0 0 1 1 1
0 0 0 0 1


1.3 Fundamental concepts related to graphs

In this section, we furnish fundamental concepts related to graphs.
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1.3.1 Graph structures

Graph structures are essential elements that form the building blocks of graph theory.

They describe the connections and relationships between vertices and edges, allowing

us to study and analyze graph characteristics and behavior. Few are discussed next.

A walk in a graph, is an alternating sequence v0, e1, v1, e2, v2, . . . , vn−1, en, vn of ver-

tices and edges, such that ei = vi−1vi. It symbolizes a journey or traversal across

the graph, with each step moving from one vertex to an adjacent vertex connected

by an edge. Walks can be closed or open depending on whether their starting and

end points are same or di�erent respectively. A path is a simple graph of sequence

v0, e1, v1, e2, v2, . . . , vn−1, en, vn such that, ei = vi−1vi and vi ̸= vj for all i, j ∈ V (G).

Length of a path is number of edges in it and path of n vertices is denoted by Pn.

Trail is a walk that allows repetition of vertices while ensuring that each edge is only

appears once. A trail is closed if its �rst and last vertex are the same. A circuit is a

closed trail. Cycle is a trail where only starting and ending vertices are repeated. A

cycle of length n is denoted by Cn.

Figure 1.4: (a) Open walk, path P5 (b) Closed walk, trail
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Figure 1.5: (a) Cycle C5 (b) Circuit

Trees are another important graph structure �rst studied by Cayley in 1857 [2]. A

tree is a connected graph, in which every pair of vertices have exactly one path between

them. That is, a tree is connected graph that contains no cycle. Trees are commonly

used to depict hierarchical connections or organized data structures, and their features

allow fast searching and sorting algorithms to be implemented.

1.3.2 The �rst theorem of graph theory

Theorem 1.3.1. [3](Handshaking Lemma) If G is any graph with edge set E(G), then

∑
v∈V(G)

deg(v) = 2E(G).

1.3.3 Graph metrices

Graph metrices are quantitative measures that give useful information about a

graph's basic characteristics and attributes. Some of these are discussed next.

In a graph, the length of shortest path between a pair of vertices is distance between

them. Distance between a vertex vx and another vertex vy is denoted by d(vx, vy). A
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graph's diameter is denoted by diam(G) and is de�ned as

diam(G) = max{d(vx, vy) | vx, vy ∈ V (G)}.

The eccentricity calculates how distant a vertex is from the graph's furthest vertex.

Eccentricity of some vertex vx denoted by e(vx) is mathematically de�ned as

e(vx) = max{d(vx, vw) | vw ∈ V (G)}.

The radius of a graph represented by rad(G) de�ned as

rad(G) = min{e(vx) | vx ∈ V (G)}.

Center of a graph is denoted by C(G) and mathematically de�ned as

C(G) = {vx ∈ V (G) | e(vx) = rad(G)}.

1.3.4 Graph operations

A cut-edge, also known as a bridge, is a graph edge that, if deleted, would increase

the number of components in that graph. If e is an edge that is removed from graph

G then the resulting graph is denoted by G − e. In Figure 1.2, e1 and e5 are cut-edges.

A cut-vertex, is such a vertex in a graph that removing it, would increase the number

of components. In Figure 1.2, v2 and v4 are cut-vertices.

1.3.5 Extremal graphs

In graph theory, extremal graphs are graphs that have speci�c properties or char-

acteristics that make them distinctive or optimal within a particular class of graphs.

The study of extremal graphs focuses on discovering maximum and minimum values of

graph parameters under particular limitations or circumstances. Mantel [5] and Paul

Turan [6] worked for the advancement of extremal graph theory.
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1.4 Some special graphs

Graphs are classi�ed into numerous categories depending on their features and prop-

erties in graph theory. An undirected graph has edges that have no direction or orien-

tation. The edges re�ect symmetric interactions between vertices, thus moving from

one vertex to another via the edges is feasible in both directions. While, A directed

graph, also known as a digraph, is a graph with edges that have a de�ned direction or

orientation. The edges are shown by arrows, demonstrating the direction of vertices.

A weighted graph is one in which every edge has a numerical number or weight given

to it. These weights indicate a numerical quantity such as distance, cost or capacity.

A graph whose vertices can be divided into two disjoint independent sets in G and

union is V (G) bipartite graph. If there is an edge connecting each pair of vertices, the

graph is complete.. Kn denotes a complete graph with n vertices. A complete bipartite

graph is one in which the vertices may be divided into two subsets not having an edge

between vertices of same subset and their must be edge between vertices of di�erent

subsets. It is written as Kni,nj
, where ni and nj are the number of vertices in each

independent set.

Figure 1.6: Complete graphs: K1,K2,K4 and K5
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Figure 1.7: (a) Bipartite graph (b) Complete bipartite graph K2,3

A pseudograph is a graph with multiple edges and loops. A regular graph is such a

graph in which all of the vertex degrees are the same. A k-regular graph is one with

every vertex having a degree k. An in�nite graph is one with an in�nite number of

vertices or edges. An empty graph, is a graph where there is no edge between all the

vertices. An null graph is one that contains no vertices and edges. An Eulerian graph

contains an Eulerian cycle, which is a cycle that visits each edge precisely once. In

Eulerian graph, degree of each vertex is even.

A broom graph is a tree that consists of a path and all the pendant vertices are

attached on one end of that path. A rooted tree is a tree that has one vertex identi�ed

as the root vertex. A caterpillar is a tree in which a path is formed by deleting all of

the leaf vertices. Chemical tree T is a tree satisfying dT (v) ≤ 4 for each v ∈ V (T ).

10



Figure 1.8: (a) Tree (b) Rooted tree

Figure 1.9: (a) Caterpillar (b) Broom

1.5 Chemical graph theory

Chemical graph theory is a �eld of graph theory concerned with the mathematical

modelling, study of molecular structures and chemical reactions. Sylvester [4] and Cay-

ley [2] were pioneers of introducing chemical graphs in mathematics literature. It gives
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a framework for comprehending the interactions between atoms, bonds and molecules

using graph theory concepts like vertices (atoms) and edges (bonds). Researchers can

get insights into numerous elements of chemical systems, such as molecular structure

[12], reactivity, and characteristics, by employing graph theory methodologies [13].

Some fundamental topics and techniques in chemical graph theory are as follows:

(i) Molecules structures are represented as graphs, with vertices as atoms and edges

as bonds. Depending on whether the bonds have a de�nite orientation or not, the

graph can be either directed or undirected.

(ii) Molecular descriptors are quantitative metrics that capture numerous properties of

a molecule. Graph invariants or other mathematical procedures can be used to deter-

mine them from the graph representation.

(iii) Symmetry in chemical systems is signi�cant because it determines the physical and

chemical characteristics of molecules. Graph theory provides techniques for analyzing

molecular graph symmetry and calculating symmetry groups.

(iv) Topological indices are numerical numbers that are generated from graph invari-

ants and are used to characterize molecule structures as well as predict attributes like

boiling point, stability and biological activity.

(v) Chemical graph theory may also be applied to the study of chemical processes.

Graph algorithms can be used to analyze chemical reaction paths, rates, and other

features.

(vi) Quantitative structure-activity relationship QSAR and structure-property relation-

ship QSPR models are used to predict a molecule's activity or characteristics based on

structural factors [15, 14].

(vii) In chemical graph theory, several graph algorithms are used to tackle speci�c

issues. These methods allow researchers to e�ectively analyse enormous chemical

databases, search for comparable compounds, and explore chemical space.
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Chapter 2

Topological indices and known results

Topological indices are numerical parameters obtained from molecular graph of a

chemical compound. In 1947, Harry Wiener [7] introduced and used it to compare

the boiling temperatures of several alkane isomers. Since then chemical data bases

has recorded over 3000 topological graph indices. Topological indices were further

developed in early 1970s [10, 11].

Topological indices provide quantitative measures of the molecular structure and are

used to correlate structural features with various properties of interest, such as boiling

point, viscosity, toxicity and biological activity. In chemo informatics, drug discovery,

and computational chemistry, topological indices are commonly used. Topological in-

dices are graph invariants, which means they are independent of the individual atom or

bond labelling and rely entirely on the topology of the molecular graph. They extract

structural information from the graph. Topological indices may be computed through

the use of mathematical formulae or algorithms. Topological indices are interesting

because they can capture crucial structure properties without explicitly considering

atom spatial arrangement. Topological indices are now computationally e�cient and

broadly applicable, allowing researchers to make predictions and correlations based

only on molecular connection. Further Applications of topological indices are provided

in [8, 9].

13



2.1 Classes of topological indices

There are two main classes of topological indices which are:

(i) Topological indices w.r.t. distances.

(ii) Topological indices w.r.t. degrees.

2.1.1 Topological indices w.r.t. distances

Harold Wiener initially proposed distance-based topological indices in 1947 [7], par-

ticularly the Wiener index. Distance-based topological indices assess the topological

properties of a molecular network using the distances between atoms. The distance

between two atoms is de�ned as the minimum amount of bonds or edges required to

join them.

Di�erent distance-based topological indices capture di�erent aspects of molecular

structure. The Wiener index, for example, is de�ned as the sum of all pairwise dis-

tances between atoms in a molecular network. It calculates the total molecule size

and branching. Other distance-based indices, including Balaban index, concentrate on

speci�c distance connections and connectivity patterns in the molecular network. Here

is a simpli�ed distance-based topological indices representation,

Distance based index = f(d1, d2, ..., dn).

Here, f denotes a mathematical function or operation that combines the distances and

d1, d2, ..., dn are the distances in between pairs of atoms in the molecular graph.

Researchers may extract quantitative descriptors that correspond with numerous

physio-chemical features, such as boiling temperatures, melting points and bio-activity,

by computing distance-based topological indices. These indices give useful insights

into chemical compound structure-property interactions, assisting in the creation and

optimization of medications, materials, and other chemical substances. Some of the

topological indices w.r.t. distances are listed in Table 2.1, where m and n are total

number of edges and vertices in a graph G respectively.
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Names of indices Mathematical formulas References
Wiener index

∑
v,w∈V(G) dG(v, w) [7]

Platt number
∑m

i=1 d(ei) [22]
Szeged index

∑
vw∈E(G) nv(vw)nu(vw) [28]

Hyper-Wiener
index

1
2

∑
w⊆V (G)

∑
v⊆V (G)[dG(w, v) + (dG(w, v))

2] [21]

Balaban index

m

γ + 1

∑
wv∈E(G)

1√
σG(w)σG(u)

;

γ = m− n+ c, σG(u) =
∑

w∈V(G) dG(u,w),
c=constant

[17]

Schultz index 1

2

∑
w,v∈V (G)(dw + dv)dG(w, v) [29]

Gordon-
Scantlebury
index

∑
w∈V (G)(dv)

2

2
− |m| [25]

Non-self-
centrality num-
ber

∑
x ̸=z|ϵ(x)− ϵ(z)|;

ϵ(x) = max{dG(x, z) | z ∈ V (G)} [27]

Harary number 1

2

∑
w,v∈V (G)

1

dG(w, v)
[30]

Balaban centric
index

∑R
g=1 n

2
g [18]

Average eccen-
tricity index

1
n

∑
z∈V (G) ϵ(z);

ϵ(z) = max{dG(z, w) | ∀w ∈ V (G)} [24]

Total eccentric-
ity index

∑
z∈V (G) ϵ(z);

ϵ(z) = max{dG(z, w) | ∀w ∈ V (G)} [19]

Eccentricity
based geometric-
arithmetic

∑
zw∈E(G)

2
√
ϵ(z).ϵ(w)

ϵ(z) + ϵ(w)
;

ϵ(z) = max{dG(z, v) | ∀v ∈ V (G)}
[20]

Zagreb eccen-
tricity index

∑
zw∈E(G)[ϵ(z) + ϵ(w)];

ϵ(z) = max{dG(z, v) | ∀v ∈ V (G)} [23, 26]

Eccentric dis-
tance sum

∑
z∈V(G)

∑
w∈GV (G) ϵ(w)dG(z, w);

ϵ(w) = max{dG(w, v) | ∀v ∈ V (G)} [31]

Table 2.1: Topological indices w.r.t. distances

`
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2.1.2 Topological indices w.r.t. degrees

Gutman and Trinajstic established and extended degree-based topological indicies

such as Zagreb indices in 1972 [10], which have been used for over 50 years. A set of

mathematical descriptors known as degree-based topological indices is used to char-

acterise the structural features of graphs or molecules. These indices are determined

by the number of vertices in the graph or the chemical structure. Here is a simpli�ed

Topological indices w.r.t. degrees representation,

Degree based index =
∑

xy∈E(G)(dG(x), dG(y)) =
∑

xy∈E(G)(dG(y), dG(x)).

Here, f denotes a mathematical function that is symmetric and combines the degrees.

Because of their computational e�ciency, degree-based indices have been extensively

studied and used. They obtain crucial structural information about graphs or molecules

and can be employed in QSAR research, chemical similarity analysis, or graph theory

applications. By re�ecting the e�ect of local connection patterns, these indices provide

insights into molecular attributes like as boiling temperatures, toxicity, or biological

activities.

There have been several more degree-based indexes developed, each concentrating

on a di�erent feature of graph or molecule structure. Speci�c vertex degrees, degree

sequences, or combinations of degrees and other structural features may be considered

by these indices. Some of these indices are mentioned in Table 2.2.
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Names of indices Mathematical formulas References
First Zargeb in-
dex

∑
z∈V(G) d

2
z(G) =

∑
zw∈E(G) dz(G) + dw(G) [10]

Second Zargeb
index

∑
zw∈E(G)(dz(G))(dw(G)) [10]

Randi¢ index ∑
wz∈E(G)

1√
(dw(G))(dz(G))

[21]

Atom-bond con-
nectivity index

√
du(G) + dGv(G)− 2

(du(G))(dv(G))
[34]

Harmonic index 2

du(G) + dv(G)
[36, 40]

Sum connectiv-
ity index

1√
du(G) + dv(G)

[39]

Augmented Za-
greb index

[
(du(G))(dv(G))

du(G) + dv(G)− 2

]3
[37]

Geometric-
arithmetic index

√
(du(G))(dv(G))

1
2
[du(G) + dv(G)]

[35]

Sigma index
∑

uv∈E(G)(du(G)− dv(G))2 [38]
Hyper Zargeb
index

∑
uv∈E(G)(du(G) + dv(G))2 [33]

Hyper Zargeb
coindex

∑
uv∈E(G)(du(G)dv(G))2 [38]

Inverse degree
index

∑
vw∈E(G)

(dv(G))2 + (dw(G))2

(dv(G))2(dw(G))2
[37]

Forgotten index
∑

x∈V(G) d
3
x(G) [41]

Forgotten coin-
dex

∑
wv∈E(G)[(dw(G))2 + (dv(G))2] [42]

Sombor index
∑

wv∈E(G)

√
(dw(G))2 + (dv(G))2 [32]

Table 2.2: Topological indices w.r.t. degrees
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2.2 Analysis of Sombor index

In this section, we introduce Sombor index and its variants.

Sombor index

A well known and widely used degree of vertex based topological index is Sombor

index, introduced and studied by Gutman [32]. It has been applied in various �elds,

including chemistry, bioinformatics, and network analysis. Sombor index of a graph G
in [32, 46] is de�ned as

SO(G) =
∑

uv∈E(G)

√
(du(G))2 + (dv(G))2. (2.1)

The sum encompasses all edges within G. The expression
√
(du(G))2 + ((G))2 demon-

strates the degree radius of the edge uv in G. This degree radius represents the distance
between the ordered pair (du(G), dv(G)) and the origin (0, 0), du(G) ≤ dv(G).

Reduced Sombor index

The reduced Sombor index denoted by SOred(G) refers to the distance in between

the degree point of any edge in a graph G and the degree point of an isolated edge,

which is de�ned as (1, 1). It can be de�ned as

SOred(G) =
∑

uv∈E(G)

√
(du(G)− 1)2 + (dv(G)− 1)2.

Average Sombor index

The average Sombor index, represented by SOavg(G) is the distance in between degree
points of a graph G and the average degree point (2m(G)

n(G) ,
2m(G)
n(G) ), is calculated as follows

SOavg(G) =
∑

uv∈E(G)

√(
du(G)−

2m(G)
n(G)

)2

+

(
dv(G)−

2m(G)
n(G)

)2

.
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Sombor indices of some special graphs

Sombor indices of some special graphs of order n can be seen in Table 2.3.

Names of graphs Sombor index

Complete graph SO(Kn) =
n(n− 1)2√

2
Complement of complete graph SO(K ′

n) = 0

Cycle graph SO(Cn) = 2
√
2n

Star graph SO(Sn) = (n− 1)
√
n2 − 2n+ 2

Bipartite graph when n is even SO(G) ≤ n3

√
32

Bipartite graph when n is odd SO(G) ≤ n2
√
n2 + 1−

√
n2 + 1√

32
Path n ≥ 3 SO(Pn) = 2

√
5 + 2(n− 3)

√
2

Table 2.3: Sombor index of some special graphs

2.2.1 Some basic results of Sombor index

In this section, we give some known results about Sombor index.

Theorem 2.2.1. [43] Let G be a graph with size m and smallest degree δ. Then

SO(G) ≤ Z1(G) + (
√
2− 2)δm,

where Z1(G) is the �rst Zagreb index of graph G. Furthermore, the equality holds if

and only if G is a regular graph.

Theorem 2.2.2. [43] Let G be a graph with n vertices and m edges. The maximum

degree is represented as ∆ , while its smallest degree is δ > 0. Then

SO(G) ≥
√
∆2 + δ2Z1(G) +

√
2∆δm+

√
2δδm√

2
√

(∆2 + δ2) + ∆ + δ
,

The equality holds if and only if G is a regular graph.

Theorem 2.2.3. [43] Let G be a graph with m edges. Assuming that G has a maximum

degree of ∆ and a smallest degree δ > 0. Then

SO(G) ≤
[
∆

δ
+
δ

∆

]
mZ2(G),
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where Z2(G) is the second Zagreb index of graph G. Furthermore, the equality occurs

if and only if G is a regular graph or a bipartite semi-regular graph.

Theorem 2.2.4. [43] Let G be a graph with n vertices. Assuming that G has a maxi-

mum degree of ∆ and smallest degree δ > 0. Then

SO(G) ≥ 2Z2(G) + n∆δ2√
2(∆ + δ)

,

The equality occurs if and only if G is a regular graph or a bipartite semi-regular graph.

Theorem 2.2.5. [44] Consider a graph G of size m. Then

SO(G).R(G) ≥
√
2m2,

where R(G) is Randi¢ index of graph G and equality occurs if and only if G is regular.

Theorem 2.2.6. [45] Assume that G is a chemical graph of order n. Then,

SO(G) = 8
√
2n,

equality holds if and only if G is 4-regular graph.

Theorem 2.2.7. [45] Assume that G is a chemical tree of order n. Then,

8
√
2v ≥ SO(G) ≥ 2

√
5 + 2

√
2(n− 3).

The right inequality changes into equality if and only if G is isomorphic to a Pn graph.

The left inequality changes into equality if and only if G is isomorphic to a 4-regular

graph.

Theorem 2.2.8. [45] Assume that Cn is a chemical tree of order n ≥ 3. Then,

SO(G) ≤ 2
√
17 + 4

√
2

3
n− 20

√
2− 2

√
17

3
.

Equality occurs if and only if Cn does not have a vertex of degree 2 and 3.

Theorem 2.2.9. [45] Assume that Cn be chemical trees with n vertices, consider the

following subsets of Cn,

C00 = {T ∈ Cn : dG(v2) = dG(v3) = 0}

C10 = {T ∈ Cn : dG(v2) = 1, dG(v3) = 0}

C01 = {T ∈ Cn : dG(v2) = 0, dG(v3) = 1}.
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Then, maximum value of Sombor index amoung all chemical trees of order n is

attained in:

(i) T ∈ C00(n) if n ≡ 2(mod 3) for n ≥ 5.

(ii) T ∈ C10(n) with m1,2 = 0 if n ≡ 0(mod 3) for n ≥ 9.

(iii) T ∈ C01(n) with m1,3 = 0 if n ≡ 1(mod 3) for n ≥ 13.

Figure 2.1: Trees in C00

Figure 2.2: Trees in C10
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Figure 2.3: Trees in C01

Monotonic functions and extermal Sombor index

Lemma 2.2.1. Let f(x) =
√

(s− t)2 + x2 −
√
s2 + x2, where s > t > 0 and x > 0 are

real numbers. Then f(x) is a strictly increasing function.

Proof.

df(x)

dx
=

x√
x2 + (s− t)2

− x√
x2 + s2

> 0.

Thus f(x) is a strictly increasing function.

Lemma 2.2.2. Let f(x) =
√
s2 + x2 −

√
(s− t)2 + x2, where s > t > 0 and x > 0 are

real numbers. Then f(x) is a strictly decreasing function.

Proof.

df(x)

dx
=

x√
x2 + s2

− x√
x2 + (s− t)2

< 0.

Thus f(x) is a strictly decreasing function.
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Chapter 3

Maximum Sombor index of chemical

trees with given vertices of maximum

degree

In the �eld of chemical graph theory, the study of topological indices mainly deals with

addressing signi�cant and extensively researched problems. These studies focus on the

identi�cation of chemical structures that attain the maximum or minimum values of

speci�c topological indices while adhering to prede�ned criteria. Assume that C(n, k)
be a class of chemical trees of order n and �xed vertex k of degree 4 for k ≥ 1. In this

chapter, we focus on determining the maximum Sombor index values of C(n, k).

3.1 Preliminaries

In this section, we provide some lemmas and terminologies of chemical graph theory

that are required in sequel. Let

A = {(u, v) ∈ N× N\(1, 1) : 1 ≤ u ≤ v ≤ 4},

where N is the set of natural numbers. Sombor index for chemical trees can also be

expressed as

SO(T ) =
∑

(u,v)∈A

√
u2 + v2 mu,v. (3.1)
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In [45], following relations are given:

n1 + n2 + n3 + n4 = n, (3.2a)

n1 + 2(n2) + 3(n3) + 4(n4) = 2(n− 1), (3.2b)

2(m1,1) +m1,2 +m1,3 +m1,4 = n1, (3.2c)

m1,2 + 2(m2,2) +m2,3 +m2,4 = 2n2, (3.2d)

m1,3 +m2,3 + 2(m3,3) +m3,4 = 3n3, (3.2e)

m1,4 +m2,4 +m3,4 + 2(m4,4) = 4n4. (3.2f)

Lemma 3.1.1. Assume that a tree T ∈ C(n, k) has maximum Sombor index. Then

n2 ≤ 1.

Proof. On contrary, assume that n2 > 1. Let {u, v} ∈ V (T ) such that dT (u) = dT (v) =

2. We consider two cases:

Case 1. When uv ∈ E(T ). Let u1 ∈ NT (u)\{v} and v1 ∈ NT (v)\{u}. Let T ∗ be

another tree obtained from T , as follows:

T ∗ = T − uu1 + vu1.

Then T ∗∈ C(n, k). Clearly, dT ∗(z) = dT (z) for all z ∈ {V (T )\{u, v}} where dT (v)+1 =

dT ∗(v) and dT (u)− 1 = dT ∗(u). Then we get

SO(T ∗)− SO(T ) =
√
d2T (u1) + (dT (v) + 1)2 +

√
(dT (u)− 1)2 + (dT (v) + 1)2

+
√
(dT (v) + 1)2 + d2T (v1)−

√
d2T (u1) + d2T (u)−

√
d2T (u) + d2T (v)

−
√
d2T (v) + d2T (v1)

=
√
d2T (u1) + (2 + 1)2 +

√
(2− 1)2 + (2 + 1)2

+
√
(2 + 1)2 + d2T (v1)−

√
d2T (u1) + 22 −

√
22 + 22

−
√
22 + d2T (v1)
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=
√
d2T (u1) + 9 +

√
1 + 9 +

√
9 + d2T (v1)−

√
d2T (u1) + 4

−
√
4 + 4−

√
4 + d2T (v1)

=
√
16 + 9 +

√
10 +

√
9 + 16−

√
16 + 4−

√
8−

√
4 + 16

= 1.3895 > 0.

By using Lemma 2.2.1, we obtain SO(T ∗) − SO(T ) > 0, which is a contradiction

since T has maximum Sombor index. Hence, there cannot be adjacent vertices of

degree 2 in T .

Case 2. When uv /∈ E(T ). Let {u1, u2} ∈ NT (u) and {v1, v2} ∈ NT (v). Without loss

of generality, assume that there exists a u, v−path where u1 and v1 are lying on it.

Then it is clear that dT (u1) ≥ 2 and dT (v1) ≥ 2.

Subcase 1. When at most 1 vertex in {u1, u2, v1, v2} has degree 4. Without loss of

generality, assume dT (u2) = 4. Let T ∗ be another tree obtained from T , as follows:

T ∗ = T − uu2 + vu2.

Then T ∗∈ C(n, k). Clearly, dT ∗(z) = dT (z) for all z ∈ {V (T )\{v, u}} where dT ∗(u) =

dT (u)− 1 and dT ∗(v) = dT (v) + 1. Then we get

SO(T ∗)− SO(T ) =
√
d2T (u2) + (dT (v) + 1)2 +

√
d2T (v1) + (dT (v) + 1)2

+
√
(dT (v2)2 + (dT (v) + 1)2 +

√
(dT (u)− 1)2 + d2T (u1)

−
√
d2T (u2) + d2T (u)−

√
d2T (v1) + d2T (v)−

√
d2T (v2) + d2T (v)

−
√
d2T (u) + d2T (u1)

=
√
d2T (u2) + 32 +

√
d2T (v1) + 32 +

√
d2T (v2) + 32 +

√
12 + d2T (u1)

−
√
d2T (u2) + 22 −

√
d2T (v1) + 22 −

√
d2T (v2) + 22 −

√
22 + d2T (u1)

=
√
42 + 32 +

√
32 + 32 +

√
32 + 32 +

√
12 + 22 −

√
42 + 22

−
√
32 + 22 −

√
32 + 22 −

√
22 + 22

= 1.20 > 0.
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By using Lemmas 2.2.1 and 2.2.2, we obtain SO(T ∗)− SO(T ) > 0, which is a contra-

diction since T has maximum Sombor index.

Subcase 2. When at least two vertices in {u1, u2, v1, v2} have degree 4. Without loss

of generality, assume dT (u1) = dT (u2) = 4. Let T ∗ be another tree obtained from T ,

as follows:

T ∗ = T − uu1 − uu2 + u1u2 + vu.

Then T ∗∈ C(n, k). Clearly, dT ∗(z) = dT (z) for all z ∈ {V (T )\{v, u}} where dT ∗(u) =

dT (u)− 1 and dT ∗(v) = dT (v) + 1. Then we get

SO(T ∗)− SO(T ) =
√
d2T (u1) + d2T (u2) +

√
d2T (v1) + (dT (v) + 1)2

+
√
(dT (v) + 1)2 + (dT (u)− 1)2 +

√
(dT (v) + 1)2 + d2T (v2)

−
√
d2T (u1) + d2T (u)−

√
d2T (u) + d2T (u2)−

√
d2T (v) + d2T (v1)

−
√
d2T (v) + d2T (v2)

=
√
d2T (u1) + d2T (u2) +

√
d2T (v1) + 32 +

√
32 + 12 +

√
32 + d2T (v2)

−
√
d2T (u1) + 22 −

√
22 + d2T (u2)−

√
22 + d2T (v1)−

√
22 + d2T (v2)

=
√
42 + 42 +

√
42 + 32 +

√
32 + 12 +

√
32 + 42

−
√
42 + 22 −

√
22 + 42 −

√
22 + 42 −

√
22 + 42

= 0.930 > 0.

Using Lemma 2.2.2, we obtain SO(T ∗)− SO(T ) > 0, which is a contradiction since T

has maximum Sombor index. Thus n2 ≤ 1. This �nishes the proof.

Lemma 3.1.2. Assume that a tree T ∈ C(n, k) has maximum Sombor index and n−k

is even. Then

(i) n2 = 0

(ii) n1 =
n
2
+ k

2
+ 1, n3 =

n
2
− 3k

2
− 1.

Proof.
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(i) Since n − k is even, that is, n − k = 2l, for some positive integer l. On contrary,

assume that n2 ≥ 1. By Lemma 3.1.1, n2 ≤ 1. Thus n2 = 1. We consider two cases:

Case 1. When both n and k = n4 are even, that is, n = 2l1 and n4 = 2l2 for some

positive integers l1 and l2. Substituting n, n2 and n4 in Equation (3.2a) we obtain

2l1 = n1 + 1 + n3 + 2l2. (3.3)

Using Lemma 1.3.1, we know that n1 + n3 = 2l3 for some positive integer l3. Now

Equation (3.3) becomes

2l1 ̸= 2l3 + 2l2 + 1, (3.4)

Equation (3.4) contradicts Equation (3.3). Hence n2 = 0.

Case 2. When both n and k = n4 are odd, that is, n = 2l1 − 1 and n4 = 2l2 − 2 for

some positive integers l1 and l2. Substituting n, n2 and n4 in Equation (3.2a) we obtain

2l1 − 1 = n1 + 1 + n3 + 2l2 − 1.

By using the same argument as in Case 1, we can conclude that n2 = 0.

(ii) By Part (i), n2 = 0. Thus Equations (3.2a) and (3.2b) become

n = n1 + n3 + k (3.5)

2n− 2 = n1 + 3n3 + 4k. (3.6)

Simultaneously solving Equations (3.5) and (3.6), we obtain

n1 =
n

2
+
k

2
+ 1,

n3 =
n

2
− 3k

2
− 1.

This �nishes the proof.
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Lemma 3.1.3. Assume that a tree T ∈ C(n, k) has maximum Sombor index and n−k

is odd. Then

(i) n2 = 1

(ii) n1 =
n+k+1

2
, n3 =

n−3k−3
2

.

Proof.

(i) Since n − k is odd, that is, n − k = 2l − 1, for some integer l. By Lemma 3.1.1,

n2 ≤ 1. On contrary, we assume that n2 = 0. We consider two cases:

Case 1. When n is even and k = n4 is odd, that is, n = 2l1 and n4 = 2l2 − 1 for some

positive integers l1 and l2. Substituting n, n2 and n4 in Equation (3.2a), we obtain

2l1 = n1 + 0 + n3 + 2l2 − 1. (3.7)

Using Lemma 1.3.1, we know that n1 + n3 = 2l3 for some integer l3. Now Equation

(3.6) becomes

2l1 ̸= 2l3 + 2l2 − 1, (3.8)

Equation (3.8) contradicts Equation (3.7). Hence n2 = 1.

Case 2. When n is odd and k = n4 is even, that is, n = 2l1 − 1 and n4 = 2l2 for some

positive integers l1 and l2. Substituting n, n2 and n4 in (3.2a) we obtain

2l1 − 1 = n1 + 0 + n3 + 2l2

By using the same argument as in Case 1, we can conclude that n2 = 1.

(ii) By Part (i), n2 = 1. Thus Equations (3.2a) and (3.2b) become

n = n1 + 1 + n3 + k (3.9)

2n− 2 = n1 + 2 + 3n3 + 4k. (3.10)
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Simultaneously solving Equations (3.9) and (3.10), we obtain

n1 =
n+ k + 1

2
,

n3 =
n− 3k − 3

2
.

This completes the proof.

Consider the following subsets of C(n, k):

C1(n, k) = {T ∈ C(n, k) : 3k + 3 ≤ n ≤ 4k, k ≥ 3}, (3.11a)

C2(n, k) = {T ∈ C(n, k) : 4k < n < 5k − 2, k ≥ 4} ∪ {T ∈ C(n, k) : n = 9, k = 2},
(3.11b)

C3(n, k) = {T ∈ C(n, k) : n ≥ 5k − 2, k ≥ 3} ∪ {T ∈ C(n, k) : n ≥ 3k + 4, k ∈ {1, 2}}.
(3.11c)

Lemma 3.1.4. Assume that a tree T ∈ C1(n, k) has maximum Sombor index and n−k
is even. Then

(i) m4,4 ̸= 0

(ii) m2,2 = m1,2 = m2,3 = m2,4 = 0

(iii) m1,3 = m3,3 = 0

(iv) m3,4 =
3n
2
− 9k

2
− 3, m1,4 =

n
2
+ k

2
+ 1, m4,4 = 4k − n+ 1.

Proof.

(i) On contrary, assume that m4,4 = 0. From Equation (3.2f), we get

m1,4 +m2,4 +m3,4 = 4k. (3.12)

It is obvious by Equation (3.2c) that m1,4 ≤ n1. Also, by Lemma 3.1.2 (i), n2 = 0.

Then Equation (3.12) becomes

m3,4 = 4k −m1,4,
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m3,4 ≥ 4k − n1. (3.13)

From Lemma 3.1.2 (ii), we know that n1 = n
2
+ k

2
+ 1. By Equation (3.11a), we have

n ≤ 4k. Now Equation (3.12) becomes

m3,4 ≥ 4k − (n
2
+ k

2
+ 1),

m3,4 ≥ 3k
2
− 1. (3.14)

Also we know by Equation (3.2e) that m3,4 ≤ 3n3. Now substituting n3 =
n
2
− 3k

2
− 1

from Lemma 3.1.2 (ii), we get

m3,4 ≤ 3k
2
− 3. (3.15)

Equation (3.15) contradicts Equation (3.14). Hence, m4,4 ̸= 0.

(ii) This result is a direct consequence of Lemma 3.1.2 (i).

(iii) On contrary, we assume that m1,3 ̸= 0 (or m3,3 ̸= 0) that is, uv ∈ E(T ) such

that dT (u) = 1 (or dT (u) = 3) and dT (v) = 3. Let {v1, v2} = NT (v)\{u}. By (i) we

know that there is an edge xy ∈ E(T ) such that dT (x) = dT (y) = 4. Without loss

of generality, assume vx−path containing vv1. Now, Let T ∗ be another tree obtained

from T , as follows:

T ∗ = T − uv − vv1 − xy + uv1 + xv + vy.

Then T ∗ ∈ C1(n, k). Clearly, dT ∗(z) = dT (z) for all z ∈ V (T ). Then we get

SO(T ∗)− SO(T ) =
√
d2T (x) + d2T (v) +

√
d2T (v) + d2T (y) +

√
d2T (u) + d2T (v1)

−
√
d2T (u) + d2T (v)−

√
d2T (x) + d2T (y)−

√
d2T (v) + d2T (v1)

=
√
42 + 32 +

√
32 + 42 +

√
12 + d2T (v1)−

√
12 + 32 −

√
42 + 42

−
√
32 + d2T (v1)

=
√
42 + 32 +

√
32 + 42 +

√
12 + 32 −

√
12 + 32 −

√
42 + 42

−
√
32 + 32

= 0.10 > 0.
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By using Lemma 2.2.1, we obtain SO(T ∗)−SO(T ) > 0, which is a contradiction since

T has maximum Sombor index. Hence, m1,3 = 0 (or m3,3 = 0).

(iv) Using the values of n1, n2 and n3 from Lemma 3.1.2 and the values of edges

obtained from (i) to (iii) in Equations (3.2c),(3.2e) and (3.2f), we obtain

m1,4 =
n

2
+
k

2
+ 1,

m3,4 =
3n

2
− 9k

2
− 3,

m4,4 = 4k − n+ 1.

This �nishes the proof.

Lemma 3.1.5. Assume that a tree T ∈ C1(n, k) has maximum Sombor index and n−k
is odd. Then

(i) m4,4 ̸= 0

(ii) m2,2 = m1,2 = 0

(iii) m2,3 = m1,3 = m3,3 = 0

(iv) m3,4 =
3n−9k−9

2
, m1,4 =

n+k+1
2

, m2,4 = 2, m4,4 = 4k − n+ 1 .

Proof.

(i) On contrary, assume that m4,4 = 0. Using in Equation (3.2e), we get

m1,4 +m2,4 +m3,4 = 4k. (3.16)

Clearly by Equation (3.2c) we have m1,4 ≤ n1. By Lemma 3.1.3 (i), m2,4 ≤ 2 and by

Lemma 3.1.3 (ii), n1 =
n+k+1

2
. By Equation (3.11a) we have n ≤ 4k. This implies

m3,4 = 4k −m1,4 −m2,4

≥ 4k − n+ k + 1

2
− 2

≥ 4k − 4k + k + 1

2
− 2
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m3,4 ≥ 3k−5
2
. (3.17)

Also we know by Equation (3.2e) that m3,4 ≤ 3n3. Now by Lemma 3.1.3(ii) we know

that n3 =
n−3k−3

2
, we get

m3,4 ≤
3k − 9

2
. (3.18)

Equation (3.18) contradicts Equation (3.17). Hence, m4,4 ̸= 0.

(ii) Proof of m2,2 = 0 is the direct consequence of Lemma 3.1.3 (i). Now on contrary,

assume that m1,2 ̸= 0, that is, there exists an edge uv ∈ E(T ) such that dT (u) = 1

and dT (v) = 2. Let NT (v)\{u} = {v1}. By (i), there is an edge xy ∈ E(T ) such

that dT (x) = dT (y) = 4. Without loss of generality assume that there exist u, x−path
containing y. Let T ∗ be another tree obtained from T , as follows:

T ∗ = T − uv − vv1 − xy + uv1 + xv + vy.

Then T ∗ ∈ C1(n, k). Clearly, dT ∗(z) = dT (z) for all z ∈ V (T ). Then we get

SO(T ∗)− SO(T ) =
√
d2T (x) + d2T (v) +

√
d2T (v) + d2T (y) +

√
d2T (u) + d2T (v1)

−
√
d2T (u) + d2T (v)−

√
d2T (x) + d2T (y)−

√
d2T (v) + d2T (v1)

=
√
42 + 22 +

√
22 + 42 +

√
12 + d2T (v1)−

√
12 + 22 −

√
42 + 42

−
√
22 + d2T (v1)

=
√
42 + 22 +

√
22 + 42 +

√
12 + 32 −

√
12 + 22 −

√
42 + 42

−
√
22 + 32

= 0.60 > 0.

By using Lemma 2.2.1, we obtain SO(T ∗)−SO(T ) > 0, which is a contradiction since

T has maximum Sombor index. Hence, m1,2 = 0.

(iii) On contrary, assume that m2,3 ̸= 0. Then there exists an edge uv ∈ E(T ) such

that dT (u) = 3 and dT (v) = 2. Let NT (v)\{u} = {v1}. By (i) we know that an edge
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xy ∈ E(T ) such that dT (x) = dT (y) = 4. Without loss of generality assume that there

exist v1, x−path containing y. Let T ∗ be another tree obtained from T , as follows:

T ∗ = T − uv − vv1 − xy + uv1 + xv + vy.

Then T ∗ ∈ C1(n, k). Clearly, dT ∗(z) = dT (z) for all z ∈ V (T ). Then we get

SO(T ∗)− SO(T ) =
√
d2T (x) + d2T (v) +

√
d2T (v) + d2T (y) +

√
d2T (u) + d2T (v1)

−
√
d2T (u) + d2T (v)−

√
d2T (x) + d2T (y)−

√
d2T (v) + d2T (v1)

=
√
42 + 22 +

√
22 + 42 +

√
32 + d2T (v1)−

√
32 + 22 −

√
42 + 42

−
√
22 + d2T (v1)

=
√
42 + 22 +

√
22 + 42 +

√
32 + 42 −

√
32 + 22 −

√
42 + 42

−
√
22 + 42

= 0.20 > 0.

By using Lemma 2.2.2, we obtain SO(T ∗)−SO(T ) > 0, which is a contradiction since

T has maximum Sombor index. Hence, m2,3 = 0.

Proofs of m1,3 = 0 and m3,3 = 0 are similar to Lemma 3.1.4(iii).

(iv) By putting the values of n1, n2 and n3 from Lemma 3.1.3 and values of edges

obtained from (i) to (iii) in Equations (3.2c) to (3.2f) we obtain

m1,4 =
n+ k + 1

2
,

m2,4 = 2,

m3,4 =
3n− 9k − 9

2
,

m4,4 = 4k − n+ 1.

This completes the proof.

Lemma 3.1.6. Assume that a tree T ∈ C2(n, k) has maximum Sombor index and n−k
is even. Then

(i) m2,2 = m1,2 = m2,3 = m2,4 = 0
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(ii) m4,4 = 0

(iii) m1,3 = 0

(iv) m3,4 =
7k
2
− n

2
− 1, m1,4 =

n
2
+ k

2
+ 1, m3,3 = n− 4k − 1.

Proof.

(i) This result is a direct outcome of Lemma 3.1.2 (i).

(ii) On contrary, assume that m4,4 ̸= 0, that is, there exists an edge xy ∈ E(T ) with

dT (x) = dT (y) = 4. First we claim that m1,3 ̸= 0 and m3,3 ̸= 0. To prove this, on

contrary assume that m1,3 = 0 and m3,3 = 0. Using (i) in Equations (3.2c) and (3.2f)

imply,

m1,4 = n1, (3.19)

m3,4 = 3n3. (3.20)

Using Equations (3.19) and (3.20) in (3.2f) we obtain 2m4,4 = 4k − n1 − 3n3. By

substituting the values of n1 and n3 from Lemma 3.1.2 we have m4,4 = 4k − n + 1

further implies that m4,4 ≤ 0. Using Equation (3.11b), we have n ≥ 4k + 1 which is a

contradiction. Now, we discuss two cases.

Case 1. If m1,3 ̸= 0 then m4,4 = 0.

Proof is similar to Lemma 3.1.4 (iii).

Case 2. If m3,3 ̸= 0 then m4,4 = 0.

Proof is similar to Lemma 3.1.4 (iv).

(iii) On contrary, assume that m1,3 ̸= 0, then there exists an edge xy ∈ E(T ) such

that dT (x) = 1 and dT (y) = 3. This indicates that m1,4 < n1. Now by using value of

n1 from Lemma 3.1.2 (ii), we get m1,4 <
n
2
+ k

2
+ 1. Using Equation (3.11b), we get

m1,4 <
5k−2
2

+ k
2
+1 = 3k. This implies that there exists a vertex u with degree dT (u) = 4

with at most 2 pendent vertices. Let {u1, u2, s, t} ∈ NT (u) and {y1, y2} ∈ NT (y)\ {x}
where dT (u1) ̸= 1 and dT (u2) ̸= 1. Without loss of generality, assume that there exist

34



a yu−path containing yy1 and u1u. Now dT (u2) = 3 as by (i) and (ii) we have m2,4 = 0

and m4,4 = 0, respectively. Let T ∗ be another tree obtained from T , as follows:

T ∗ = T − u2s− u2t+ xw + xz.

Then T ∗ ∈ C2(n, k). Clearly dT ∗(z) = dT (z) for all z ∈ {V (T )\{u2, x}} where dT ∗(u2) =

dT (u2)− 2 and dT ∗(x) = dT (x) + 2. Then we get

SO(T ∗)− SO(T ) =
√
d2T (s) + (dT (x) + 2)2 +

√
d2T (t) + (dT (x) + 2)2

+
√
(dT (x) + 2)2 + d2T (y) +

√
d2T (u) + (dT (u2)− 2)2

−
√
d2T (u) + d2T (u2)−

√
d2T (u2) + d2T (s)

−
√
d2T (u2) + d2T (t)−

√
d2T (x) + d2T (y)

=
√
d2T (s) + 32 +

√
d2T (t) + 32 +

√
32 + 32 +

√
42 + 12

−
√
42 + 32 −

√
32 + d2T (w)−

√
32 + d2T (z)−

√
12 + 32

= 0.20 > 0.

Here, we obtain SO(T ∗)− SO(T ) > 0, which is a contradiction since T has maximum

Sombor index. Hence, m1,3 = 0.

(iv) By using the values of n1 and n3 from Lemma 3.1.2 (ii) and the values of edges

obtained from (i) to (iii) in Equations (3.2c) to (3.2f), we obtain

m3,4 =
7k

2
− n

2
− 1,

m1,4 =
n

2
+
k

2
+ 1,

m3,3 = n− 4k − 1.

This completes the proof.

Lemma 3.1.7. Assume that a tree T ∈ C2(n, k) has maximum Sombor index and n−k
is odd. Then

(i) m2,2 = m1,2 = 0
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(ii) m4,4 = 0

(iii) m1,3 = 0

(iv) m2,4 = 2

(v) m2,3 = 0, m3,4 =
7k−n−5

2
, m1,4 =

n+k+1
2

, m3,3 = n− 4k − 1.

Proof.

(i) By Lemma 3.1.3 (i) it is given that n2 = 1. It is obvious that m2,2 = 0. Next,

on contrary assume that m1,2 ̸= 0, that is, there exists an edge xy ∈ E(T ) such that

dT (x) = 1 and dT (y) = 2. Let y1 ∈ NT (y)\ {x} and dT (u) = 4 where {u1, u2, u3, u4} =

NT (u). Without loss of generality, assume that their exist a uy−path containing yy1

and uu4. Let T ∗ be another tree obtained from T , as follows:

T ∗ = T − uu1 − uu2 − uu3 + xu1 + xu2 + xu3.

Then T ∗ ∈ C2(n, k). Clearly, dT ∗(z) = dT (z) for all z ∈ V (T )\{u, x} where dT ∗(u) =

dT (u)− 3 and dT ∗(x) = dT (x) + 3. Then we get

SO(T ∗)− SO(T ) =
√
d2T (u1) + (dT (x) + 3)2 +

√
d2T (u2) + (dT (x) + 32)

+
√
d2T (u3) + (dT (x) + 3)2 +

√
(dT (x) + 3)2 + d2T (y)

+
√
d2T (u4) + (dT (u)− 3)2 −

√
d2T (u) + d2T (u4)−

√
d2T (u) + d2T (u1)

−
√
d2T (u) + d2T (u2)−

√
d2T (u) + d2T (u3)−

√
d2T (x) + d2T (y)

=
√
d2T (u1) + 42 +

√
d2T (u2) + 42 +

√
d2T (u3) + 42 +

√
42 + 22

+
√
d2T (u4) + 12 −

√
42 + d2T (u4)−

√
42 + d2T (u1)−

√
42 + d2T (u2)

−
√

42 + d2T (u3)−
√
12 + 22

=
√
42 + 22 +

√
32 + 12 −

√
42 + 32 −

√
12 + 22

= 0.398 > 0.

By using Lemma 2.2.1, we obtain SO(T ∗)−SO(T ) > 0, which is a contradiction since

T has maximum Sombor index. Hence, m1,2 = 0.
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(ii) On contrary, assume that m4,4 ̸= 0, that is, there exists xy ∈ E(T ) where dT (x) =

dT (y) = 4. First we claim that m1,3 ̸= 0 ,m2,3 ̸= 0 and m3,3 ̸= 0. On contrary, assume

that m1,3 = m2,3 = m3,3 = 0. Using (i) in Equations (3.2c) and (3.2e) imply,

m1,4 = n1 (3.21)

m2,4 = 2n2 (3.22)

m3,4 = 3n3 (3.23)

Using Equations (3.21), (3.22) and (3.23) in (3.2f) we obtainm4,4 = 4k−n1−3n3−2n2.

By using values of n1, n2 and n3 from Lemma 3.1.3 we get, m4,4 = 4k − n + 1, which

further implies that m4,4 ≤ 0. By Equation (3.11b), we have n ≥ 4k + 1 which is a

contradiction. Hence we get m4,4 = 0 when m1,3 = m2,3 = m3,3 = 0. Next there arise

three cases to check m4,4 when m1,3 ̸= 0 or m2,3 ̸= 0 or m3,3 ̸= 0.

Case 1. If m1,3 ̸= 0 then m4,4 = 0.

Proof is similar to Lemma 3.1.4(ii).

Case 2. If m2,3 ̸= 0 then m4,4 = 0.

Proof is similar to Lemma 3.1.4(ii).

Case 3. If m3,3 ̸= 0 then m4,4 = 0.

Proof is similar to Lemma 3.1.4(ii).

(iii) On contrary, assume that m1,3 ̸= 0. Then, there exists xy ∈ E(T ) such that

dT (x) = 1 and dT (y) = 3. This implies that m1,4 < n1 =
n+k+1

2
. By Equation (3.11b),

we get m1,4 <
5k−1+k+1

2
+ 6k

2
= 3k. This indicates that there exists a vertex u with

degree dT (u) = 4 with at most 2 pendent vertices. The rest of the proof proceeds in a

similar way as of Lemma 3.1.6 (iii).

(iv) On contrary, assume that m2,4 ̸= 2. We know that m2,4 ≯ 2 as n2 = 1 by

Lemma 3.1.3 (i). We assume that m2,4 < 2 and u ∈ V (T ) where dT (u) = 2 where

{u1, u2} ∈ NT (u). We consider the following cases:
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Case 1: dT (u1) = dT (u2) = 3.

Let dT (x) = 4, x′ ∈ NT (x) and dT (x
′) ̸= 1. Without loss of generality, assume that

there exist a ux−path containing uu2 and x′x. Let T ∗ be another tree obtained from

T , as follows:

T ∗ = T − uu1 − uu2 + xu+ x′u+ u1u2.

Then T ∗ ∈ C2(n, k). Clearly, dT ∗(z) = dT (z) for all z ∈ V (T ). Then we get

SO(T ∗)− SO(T ) =
√
d2T (x) + d2T (u) +

√
d2T (x

′) + d2T (u) +
√
d2T (u1) + d2T (u2)

−
√
d2T (u) + d2T (u1)−

√
d2T (u2) + d2T (u)−

√
d2T (x) + d2T (x

′)

=
√
42 + 22 +

√
d2T (x

′) + 22 +
√
32 + 32 −

√
22 + 32 −

√
32 + 22

−
√

42 + d2T (x
′)

=
√
42 + 22 +

√
32 + 22 +

√
32 + 32 −

√
22 + 32 −

√
32 + 22

−
√
42 + 32

= 0.10 > 0.

By using Lemma 2.2.1, we obtain SO(T ∗)−SO(T ) > 0, which is a contradiction since

T has maximum Sombor index.

Case 2. d(u1) = 4 and dT (u2) = 3.

By (i), we know that m1,2 = m2,2 = 0 and by Lemma 3.1.3(ii), we know that m1,4 =

n1 = n+k+1
2

. By Equation (3.11b) we get 5k+1
2

< n1 <
6k−1
2

or 2k < n1 < 3k. This

indicates that there exists a degree 4 vertex that has exactly 3 pendant neighbors and

there exists another degree 4 vertex that has at most 2 pendant neighbors.

Sub case 1: When u1 has three pendant neighbors.

Let dT (y) = 4 has at most two pendant neighbors. Let {y1, y2} ∈ NT (y) such that

dT (y1) ̸= 1 and dT (y2) ̸= 1. As m4,4 = 0 by (ii), so dT (y1) = dT (y2) = 3. Without loss

of generality, assume that there exist a u1y1−path containing u2u and y2y. Let T ∗ be

another tree obtained from T , as follows:

T ∗ = T − yy1 − yy2 + uy + u2y + y1y2.
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Then T ∗ ∈ C2(n, k). Clearly, dT ∗(z) = dT (z) for all z ∈ V (T ). Then we get

SO(T ∗)− SO(T ) =
√
d2T (y) + d2T (u) +

√
d2T (u2) + d2T (y) +

√
d2T (y1) + d2T (y2)

−
√
d2T (y) + d2T (y1)−

√
d2T (y2) + d2T (y)−

√
d2T (u) + d2T (u2)

=
√
42 + 22 +

√
42 + 32 +

√
32 + 32 −

√
22 + 32 −

√
42 + 32

−
√
42 + 32

= 0.10 > 0.

Here, we obtain SO(T ∗)− SO(T ) > 0, which is a contradiction since T has maximum

Sombor index.

Sub case 2: When u1 has at most two pendant neighbors.

Let y ∈ NT (u1)\ {u} where dT (y) ̸= 1. Let x ∈ NT (v) where dT (v) = 1 by (i) and (iii),

dT (x) = 4. Without loss of generality, assume that there exist a u1v−path such that it

contains u1u. The maximality of path also implies that x has 3 pendant vertices. Let

x′ ∈ NT (x) and dT (x′) ̸= 1. Using (ii) and Lemma 3.1.3 (i), we have dT (x′) = dT (y) = 3

as m4,4 = 0. Let T ∗ be another tree obtained from T , as follows:

T ∗ = T − yu1 − uu2 − x′x+ ux+ u1x
′ + yu.

Then T ∗ ∈ C2(n, k). Clearly, dT ∗(z) = dT (z) for all z ∈ V (T ). Also

SO(T ∗)− SO(T ) =
√
d2T (x) + d2T (u) +

√
d2T (y) + d2T (u) +

√
d2T (u1) + d2T (x

′)

−
√
d2T (y) + d2T (u1)−

√
d2T (u2) + d2T (u)−

√
d2T (x

′) + d2T (x)

=
√
42 + 22 +

√
32 + 42 +

√
32 + 32 −

√
32 + 42 −

√
22 + 32

−
√
42 + 32

= 0.10 > 0.

Here, we obtain SO(T ∗)− SO(T ) > 0, which is a contradiction since T has maximum

Sombor index. Hence, m2,4 = 2.

(v) By putting the values of n1, n2 and n3 from Lemma 3.1.3 and m1,2 = m2,2 = m1,3 =
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m4,4 = 0 and m2,4 = 2 in Equations (3.2c) to (3.2f), we obtain

m3,4 =
7k − n− 5

2
,

m1,4 =
n+ k + 1

2
,

m3,3 = n− 4k − 1,

m2,3 = 0.

This completes the proof.

Lemma 3.1.8. Assume that a tree T ∈ C3(n, k) has maximum Sombor index and n−k
is even. Then

(i) m1,2 = m2,2 = m2,3 = m2,4 = m4,4 = 0

(ii) m1,4 = 3k

(iii) m3,4 = k, m1,3 =
n
2
− 5k

2
+ 1, m3,3 =

n
2
− 3k

2
− 2.

Proof.

(i) This result is a direct outcome of Lemma 3.1.2(i) and 3.1.6(ii).

(ii) On contrary, assume that m1,4 ̸= 3k. Then we have m1,4 ≯ 3k because if m1,4 > 3k,

then tree is not connected. Now consider the case when m1,4 < 3k. If m1,4 < 3k, then

m1,3 > 0. To prove this using contradiction, assume that m1,3 ≤ 0, as edges cannot be

negative so m1,3 = 0. Using m1,2 = 0 from (i) and Equation (3.2c), we get

m1,4 = n1. (3.24)

But, as we considered

m1,4 < 3k. (3.25)

By Equations (3.24) and (3.25), we have

n1 < 3k.
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By Lemma 3.1.2 (ii), we get

n

2
+
k

2
+ 1 < 3k,

n < 5k − 2.

This contradicts our statement that T ∈ C3(n, k). Hence m1,3 ̸= 0. This indicates

there exists an edge e = xy ∈ E(T ) such that dT (x) = 1 and dT (y) = 3 with {y1, y2} ∈
NT (y)\{x}. Moreover, m1,4 < 3k indicates that there exists a vertex u with dT (u) = 4

with at most 2 pendent vertices. Let {u1, u2} ∈ NT (u) such that dT (u1) ̸= 1 and

dT (u2) ̸= 1. Without loss of generality, assume there exists a yu−path containing

yy1 and u1u. Now dT (u2) = 3 since by Part (i) we have m2,4 = m4,4 = 0. Let

{s, t} ∈ NT (u2)\{u}. Let T ∗ be another tree obtained from T , as follows:

T ∗ = T − u2s− u2z + xs+ tx.

Then T ∗ ∈C3(n, k). Clearly, dT ∗(z) = dT (z) for all z ∈ V (T )\{u2, x} where dT ∗(u2) =

dT (u2)− 2 and dT ∗(x) = dT (x) + 2. Then we get

SO(T ∗)− SO(T ) =
√
d2T (s) + (dT (x) + 2)2 +

√
d2T (t) + (dT (x) + 2)2

+
√
(dT (x) + 2)2 + d2T (y) +

√
d2T (u) + (dT (u2)− 2)2

−
√
d2T (u) + d2T (u2)−

√
d2T (u2) + d2T (w)

−
√
d2T (u2) + d2T (t)−

√
d2T (x) + d2T (y)

=
√
d2T (s) + 32 +

√
d2T (t) + 32 +

√
32 + 32 +

√
42 + 12

−
√
42 + 32 −

√
32 + d2T (w)−

√
32 + d2T (z)−

√
12 + 32

= 0.20 > 0.

Here, we obtain SO(T ∗)− SO(T ) > 0, which is a contradiction since T has maximum

Sombor index. Hence, m1,4 = 3k.

(iii) By using the values of n1 and n3 from Lemma 3.1.2 (ii) and the values of edges
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obtained from (i) and (ii) in Equations (3.2c) to (3.2f), we get

m3,4 = k,

m1,3 =
n

2
− 5k

2
+ 1,

m3,3 =
n

2
− 3k

2
− 2.

This �nishes the proof.

Lemma 3.1.9. Assume that a tree T ∈ C3(n, k) has maximum Sombor index and n−k
is odd. Then

(i) m2,2 = m1,2 = m4,4 = 0, m2,3 = 1

(ii) m1,4 = 3k

(iii) m2,4 = 1, m1,3 =
n−5k+1

2
, m3,3 =

n−3k−5
2

, m3,4 = k − 1.

Proof.

(i) The proof of m2,2 = m1,2 = m4,4 = 0 is direct consequence of Lemma 3.1.3 (i) and

3.1.7 (i) and (ii). On contrary, assume that m2,3 ̸= 1. Let dT (u) = 2 and {u1, u2} ∈
NT (u). It can easily be seen that m2,3 ≯ 2 as n2 = 1 by Lemma 3.1.3(i). Further we

will discuss two cases:

Case 1. d(u1) = d(u2) = 3.

This case is similar to Lemma 3.1.7 (iv).

Case 2. d(u1) = d(u2) = 4.

If m2,4 = 2, then m1,3 ̸= 0. To prove this, assume that m1,3 = 0. Equation (3.2f)

becomes m1,4 = n1 =
n+k+1

2
. Using Equation (3.11c), we get m1,4 >

5k−3+k+1
2

= 3k−1.

We obtain a contradiction since n > 5k − 3 by Equation (3.11c). Assume that there

exist an edge xy ∈ E(T ) such that dT (x) = 3 and dT (y) = 1. Without loss of generality,

assume that there exist a ux−path such that u1 does not lie on it. Let T ∗ be another

tree obtained from T , as follows:

T ∗ = T − uu1 + yu1.
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Then T ∗ ∈ C3(n, k). Clearly, dT ∗(z) = dT (z) for all z ∈ V (T )\{u, y} where dT ∗(u) =

dT (u)− 1 and dT ∗(y) = dT (y) + 1. Then we get

SO(T ∗)− SO(T ) =
√
(dT (y) + 1)2 + d2T (u1) +

√
(dT (u)− 1)2 + d2T (u2)

+
√
(dT (y) + 1)2 + d2T (x)−

√
d2T (u) + d2T (u1)

−
√
d2T (u) + d2T (u2)−

√
d2T (y) + d2T (x)

=
√
22 + 42 +

√
12 + 42 +

√
22 + 32 −

√
22 + 42 −

√
22 + 42

−
√
32 + 12

= 0.09 > 0.

Here, we obtain SO(T ∗)− SO(T ) > 0, which is a contradiction since T has maximum

Sombor index. Hence m2,3 = 1.

(ii) On contrary, assume that m1,4 ̸= 3k. m1,4 ≯ 3k because that would imply the

existence of a vertex of degree 4 with four pendant neighbors. So, we just need to

prove the case when m1,4 < 3k. First we claim that if m1,4 < 3k, then m1,3 > 0 for

n ≥ 5k − 3, k ≥ 3. On contrary, assume that m1,3 = 0.

Using m1,2 = 0 and m1,3 = 0 in Equation (3.2c) we get,

m1,4 = n1. (3.26)

But, as we assumed that,

m1,4 < 3k. (3.27)

By Equations (3.26) and (3.27), we have

n1 < 3k.

By Lemma 3.1.3 (ii), we get

n+ k + 1

2
< 3k,

n < 5k − 1.

Here, we get contradiction since T ∈ C3(n, k). Hence m1,3 ̸= 0 and m1,4 = 3k.
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(iii) By using the values of n1, n2 and n3 from Lemma 3.1.3 and the values obtained

from (i) and (ii) in Equations (3.2c) to (3.2f), we get

m2,4 = 1,

m1,3 =
n− 5k + 1

2
,

m3,3 =
n− 3k − 5

2
,

m3,4 = k − 1.

This completes the proof.

3.2 Main Results

In this section, we �nd values of maximum Sombor index in C(n, k) and provide trees

that attain these maximum values.

Theorem 3.2.1. Let T ∈ C(n, k) and has maximum Sombor index. Then

SO(T ) =



√
17n+ (4

√
2−

√
17)k − 4

√
2

if T ∈ C(n, k) for n = 3k + 2 and k ≥ 1,

3
√
17 + 3

√
5

if T ∈ C(n, k) for n = 3k + 3 and k = 1,

(15+
√
17−8

√
2

2
)n+ (

√
17−45+32

√
2

2
)k +

√
17 + 4

√
2− 15

if T ∈ C1(n, k) and n− k is even,

(15+
√
17−8

√
2

2
)n+ (

√
17−45+32

√
2

2
)k +

√
17−45
2

+ 4
√
2 + 4

√
5

if T ∈ C1(n, k) and n− k is odd,

(6
√
2+

√
17−5

2
)n+ (35+

√
17−24

√
2

2
)k +

√
17− 5− 3

√
2

if T ∈ C2(n, k) and n− k is even,

(6
√
2+

√
17−5

2
)n+ (35+

√
17−24

√
2

2
)k + 4

√
5− 3

√
2 +

√
17−25
2

if T ∈ C2(n, k) and n− k is odd,

(
√
10+3

√
2

2
)n+ (5 + 3

√
17− 5

√
10+9

√
2

2
)k +

√
10− 6

√
2

if T ∈ C3(n, k) and n− k is even,

(
√
10+3

√
2

2
)n+ (5 + 3

√
17− 5

√
10+9

√
2

2
)k +

√
13− 5 + 2

√
20+

√
10

2

if T ∈ C3(n, k) and n− k is odd.
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Proof. Case 1. For T ∈ C1(n, k) and n− k is even. By putting the values of mu,v for

(u, v) ∈ A from Lemma 3.1.4 in Equation (3.1), we obtain

SO(T ) =

(
15 +

√
17− 8

√
2

2

)
n+

(√
17− 45 + 32

√
2

2

)
k +

√
17 + 4

√
2− 15.

Case 2. For T ∈ C1(n, k) and n−k is odd. By putting the values of mu,v for (u, v) ∈ A

from Lemma 3.1.5 in Equation (3.1), we obtain

SO(T ) =

(
15 +

√
17− 8

√
2

2

)
n+

(√
17− 45 + 32

√
2

2

)
k +

√
17− 45

2
+ 4

√
2 + 4

√
5.

Case 3. For T ∈ C2(n, k) and n−k is even. By putting the values ofmu,v for (u, v) ∈ A

from Lemma 3.1.6 in Equation (3.1), we obtain

SO(T ) =

(
6
√
2 +

√
17− 5

2

)
n+

(
35 +

√
17− 24

√
2

2

)
k +

√
17− 5− 3

√
2.

Case 4. For T ∈ C2(n, k) and n−k is odd. By putting the values of mu,v for (u, v) ∈ A

from Lemma 3.1.7 in Equation (3.1), we obtain

SO(T ) =

(
6
√
2 +

√
17− 5

2

)
n+

(
35 +

√
17− 24

√
2

2

)
k + 4

√
5− 3

√
2 +

√
17− 25

2
.

Case 5. For T ∈ C3(n, k) and n−k is even. By putting the values ofmu,v for (u, v) ∈ A

from Lemma 3.1.8 in Equation (3.1), we obtain

SO(T ) =

(√
10 + 3

√
2

2

)
n+

(
5 + 3

√
17− 5

√
10 + 9

√
2

2

)
k +

√
10− 6

√
2.

Case 6. For T ∈ C3(n, k) and n−k is odd. By putting the values of mu,v for (u, v) ∈ A

from Lemma 3.1.9 in Equation (3.1), we obtain

SO(T ) =

(√
10 + 3

√
2

2

)
n+

(
5 + 3

√
17− 5

√
10 + 9

√
2

2

)
k+

√
13−5+

2
√
20 +

√
10

2
.
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Figure 3.1: Trees with maximum Sombor index in C(n, k) when n = 3k + 2 and k ≥ 1

Figure 3.2: Tree with maximum Sombor index in C(n, k) when n = 3k + 3 for k = 1

Figure 3.3: Tree with maximum Sombor index in C1(n, k) when n− k is even
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Figure 3.4: Tree with maximum Sombor index in C1(n, k) when n− k is odd

Figure 3.5: Tree with maximum Sombor index in C2(n, k) when n− k is even

Figure 3.6: Tree with maximum Sombor index in C2(n, k) when n− k is odd
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Figure 3.7: Tree with maximum Sombor index in C3(n, k) when n− k is even

Figure 3.8: Tree with maximum Sombor index in C3(n, k) when n− k is odd
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Chapter 4

Minimum Sombor index of chemical

trees with given vertices of maximum

degree

Assume that C(n, k) be a class of chemical trees of order n and �xed vertex k of degree

4 for k ≥ 1. In this chapter, we focus on determining the minimum Sombor index

values of C(n, k).

4.1 Preliminaries

In this section, we provide some lemmas that are required in sequel.

Lemma 4.1.1. Assume that a tree T ∈ C(n, k) has minimum Sombor index. Then

(i) n3 = 0

(ii) n1 = 2k + 2 and n2 = n− 3k − 2.

Proof.

(i) On contrary, assume that there is a vertex u of degree 3 in T . Let NT (u) =

{u1, u2, u3}. We will discuss two cases:

Case 1. The number of neighbors of u having degree 4 is 0 or 1. Without loss of

generality, assume that dT (u3) = 4 and 1 ≤ dT (u1), dT (u2) ≤ 3. Let x be the pendant
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vertex such that x ̸∈ NT (u). Without loss of generality, assume that there exist a

u, x−path and u1 does not lie on it. Let NT (x) = {x′}. Clearly, 2 ≤ dT (x
′) ≤ 4. Let

T ∗ be another tree obtained from T , as follows:

T ∗ = T − u1u+ u1x.

Then T ∗∈ C(n, k). Clearly, dT ∗(z) = dT (z) for all z ∈ V (T )\{u, x} where dT ∗(u) =

dT (u)− 1 and dT ∗(x) = dT (x) + 1. Then we get

SO(T ∗)− SO(T ) =
√
d2T (u1) + (dT (x) + 1)2 +

√
(dT (x) + 1)2 + d2T (x

′)

+
√
(dT (u)− 1)2 + d2T (u2) +

√
(dT (u)− 1)2 + d2T (u3)

−
√
d2T (u1) + d2T (u)−

√
d2T (x) + d2T (x

′)

−
√
d2T (u) + d2T (u2)−

√
d2T (u) + d2T (u3)

=
√
d2T (u1) + 22 +

√
22 + d2T (x

′) +
√
22 + d2T (u2) +

√
22 + d2T (u3)

−
√
d2T (u1) + 32 −

√
12 + d2T (x

′)−
√
32 + d2T (u2)−

√
32 + d2T (u3)

=
√
32 + 22 +

√
22 + 22 +

√
22 + 32 +

√
22 + 42 −

√
32 + 32

−
√
12 + 22 −

√
32 + 32 −

√
32 + 42

= −1.20 < 0.

By using Lemmas 2.2.1 and 2.2.2, we obtain SO(T ∗)− SO(T ) < 0, which is a contra-

diction since T has minimum Sombor index.

Case 2. When 2 or 3 neighbors of u having degree four. Let d(u2) = d(u3) = 4. With-

out loss of generality, assume that there exist a ux−path, dT (x) = 1 where NT (x) = x′.

Clearly, 2 ≤ dT (x
′) ≤ 4. Let T ∗ be another tree obtained from T , as follows:

T ∗ = T − u2u− u3u+ ux+ u2u3.

Then T ∗∈ C(n, k). Clearly, dT ∗(z) = dT (z) for all z ∈ V (T )\{u, x} where dT ∗(u) =

dT (u)− 1 and dT ∗(x) = dT (x) + 1. Then we get
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SO(T ∗)− SO(T ) =
√
d2T (u2) + d2T (u3) +

√
(dT (x) + 1)2 + d2T (x

′)

+
√
(dT (u)− 1)2 + d2T (u1) +

√
(dT (u)− 1)2 + d2T (x) + 1

−
√
d2T (u) + d2T (u1)−

√
d2T (u) + d2T (u2)

−
√
d2T (u) + d2T (u3)−

√
d2T (x) + d2T (x

′)

=
√
42 + 42 +

√
22 + d2T (x

′) +
√
22 + d2T (u1) +

√
22 + 22

−
√

32 + d2T (u1)−
√
32 + 42 −

√
32 + 42 −

√
12 + d2T (x

′)

=
√
42 + 42 +

√
22 + 22 +

√
22 + 42 +

√
22 + 22 −

√
32 + 42

−
√
32 + 42 −

√
32 + 42 −

√
12 + 22

= −1.450 < 0.

Using Lemmas 2.2.1 and 2.2.2, we obtain SO(T ∗)−SO(T ) < 0, which is a contradiction

since T has minimum Sombor index. Therefore, n3 = 0.

(ii) Using Part (i) in Equations (3.2b) and (3.2a), we get

n1 + 2n2 = 2n− 2− 4k, (4.1)

n1 + n2 = n− k. (4.2)

Solving Equation (4.1) and (4.2) simultaneously, we get

n1 = 2k + 2,

n2 = n− 3k − 2.

This completes the proof.

Lemma 4.1.2. Assume that a tree T ∈ C(n, k) has minimum Sombor index, then there

does not appear any degree 2 vertex on any path connecting any two degree 4 vertices.

Proof. On contrary, assume that there exist vertices dT (u) = dT (v) = 4, such that the

path joining them has vertices of degree 2.
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Case 1. When dT (u, v) = 2. Let x ∈ NT (u, v). Clearly, dT (x) = 2. Let dT (y) = 1

and NT (y) = {y′}. Clearly, dT (x) = 2 and 2 ≤ dT (y
′) ≤ 4. We Let T ∗ be another tree

obtained from T , as follows:

T ∗ = T − ux− vx+ uv + xy.

Then T ∗∈ C(n, k). Clearly, dT ∗(z) = dT (z) for all z ∈ V (T )\{y, x}, where dT ∗(x) =

dT (x)− 1 and dT ∗(y) = dT (y) + 1. Then we get

SO(T ∗)− SO(T ) =
√
d2T (u) + d2T (v) +

√
(dT (y) + 1)2 + (dT (x)− 1)2

+
√
(dT (y) + 1)2 + (d2T (y

′)−
√
d2T (x) + (d2T (u)

−
√
d2T (x) + d2T (v)−

√
d2T (y) + d2T (y

′)

=
√
42 + 42 +

√
22 + 12 +

√
22 + (d2T (y

′)−
√
22 + 42 −

√
22 + 42

−
√

12 + d2T (y
′)

=
√
42 + 42 +

√
22 + 12 +

√
22 + 22 −

√
22 + 42

−
√
22 + 42 −

√
12 + 22

= −0.45 < 0.

By using Lemma 2.2.2, we obtain SO(T ∗)−SO(T ) < 0, which is a contradiction since

T has minimum Sombor index.

Case 2. When dT (u, v) ≥ 3. Without loss of generality, assume that there exist a

uv−path and {u1, v1} ∈ NT (u, v) lying on it, respectively. Clearly, dT (u1) = dT (v1) =

dT (v
′
1) = 2. Let dT (y) = 1 and NT (y) = {y′}. Clearly 2 ≤ dT (y

′) ≤ 4. Let T ∗ be

another tree obtained from T , as follows:

T ∗ = T − vv1 − uu1 + uv + u1y.

Then T ∗∈ C(n, k). Clearly, dT ∗(z) = dT (z) for all z ∈ V (T )\{y, v1} where dT ∗(y) =

dT (y) + 1 and dT ∗(v1) = dT (v1)− 1. Then we get
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SO(T ∗)− SO(T ) =
√
d2T (u) + d2T (v) +

√
(dT (y) + 1)2 + d2T (u1)

+
√
(dT (v1)− 1)2 + (d2T (v

′
1) +

√
(dT (y) + 1)2 + (d2T (y

′)

−
√
d2T (v1) + d2T (v)−

√
d2T (v1) + d2T (v

′
1)

−
√
d2T (y) + d2T (y

′)−
√
d2T (u) + d2T (u1)

=
√
42 + 42 +

√
22 + 22 +

√
12 + 22 +

√
22 + d2T (y

′)

−
√
22 + 42 −

√
22 + 22 −

√
12 + d2T (y

′)−
√
42 + 22

=
√
42 + 42 +

√
22 + 22 +

√
12 + 22 +

√
22 + 22 −

√
22 + 42

−
√
22 + 22 −

√
12 + 22 −

√
42 + 22

= −0.45 < 0.

By using Lemma 2.2.2, we obtain SO(T ∗)−SO(T ) < 0, which is a contradiction since

T has minimum Sombor index. Hence, there does not appear any dT (2) on any path

connecting any two dT (4).

Consider the following subsets of C(n, k):

C4(n, k) = {T ∈ C(n, k) : 3k + 2 ≤ n ≤ 5k + 4}, (4.3a)

C5(n, k) = {T ∈ C(n, k) : n > 5k + 4}. (4.3b)

Lemma 4.1.3. Assume that a tree T ∈ C4(n, k) has minimum Sombor index. Then

(i) m1,3 = m2,3 = m3,3 = m3,4 = 0, m4,4 = k − 1.

(ii) m2,2 = 0

(iii) m1,2 = n− 3k − 2, m2,4 = n− 3k − 2, m1,4 = 5k + 4− n.

Proof.

(i) The proof of this part is direct consequence of Lemmas 4.1.1 (i) and 4.1.2.
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(ii) On contrary, assume that T has an edge uv ∈ E(T ) where dT (u) = dT (v) = 2. First,

we will show that if T has such an edge, then there must exist an edge xy ∈ E(T ) with

dT (x) = 1 and dT (y) = 4. To prove this using contradiction, assume that there is no

such edge that is, m1,4 = 0. Now, by solving Equations (3.2c) to (3.2f), for unknowns

m1,2, m2,4 and m2,2, we obtain the following,

m1,2 = 2k + 2,

m2,4 = 2k + 2,

m2,2 = n− 5k − 4.

This implies m2,2 > 0 if n > 5k + 4 which is not possible because of Equation (4.1).

This implies m2,2 = 0 if m1,4 = 0 which is in contradiction with our initial assumption

that T has an edge uv with dT (u) = dT (v) = 2. Hence, if T has such edge, then there

must exist an edge xy with dT (x) = 1 and dT (y) = 4. Without loss of generality,

assume that there exist a ux−path containing v where {u1, v1} ∈ NT (u, v) lying on it,

respectively. Let u1 and v1 be the neighbors of u and v respectively. Let T ∗ be another

tree obtained from T , as follows:

T ∗ = T − uu1 + u1x.

Then T ∗∈ C4(n, k). Clearly, dT ∗(z) = dT (z) for all z ∈ V (T )\{u, x} where dT ∗(u) =

dT (u)− 1 and dT ∗(x) = dT (x) + 1. Then we get

SO(T ∗)− SO(T ) =
√
d2T (u1) + (dT (x) + 1)2 +

√
(dT (u)− 1)2 + d2T (v)

+
√
(dT (x) + 1)2 + d2T (y)−

√
d2T (u) + d2T (u1)−

√
d2T (u) + d2T (v)

−
√
d2T (x) + d2T (y)

=
√
d2T (u1) + 22 +

√
12 + 22 +

√
22 + 42 −

√
22 + d2T (u1)

−
√
22 + 22 −

√
22 + 42

= −0.59 < 0.

Here, we obtain SO(T ∗)− SO(T ) < 0, which is a contradiction since T has minimum

Sombor index. Hence, m2,2 = 0.
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(iii) Now, solving the system of Equations (3.2c) to (3.2f) by using the values obtained

from (i) and (ii) we get,

m1,2 = n− 3k − 2,

m2,4 = n− 3k − 2,

m1,4 = 5k + 4− n.

This completes the proof.

Lemma 4.1.4. Assume that a tree T ∈ C5(n, k) has minimum Sombor index. Then

(i) m1,3 = m2,3 = m3,3 = m3,4 = 0 , m4,4 = k − 1

(ii) m1,4 = 0

(iii) m1,2 = 2k + 2, m2,4 = 2k + 2, m2,2 = n− 5k − 4.

Proof.

(i) The proof of this part is direct consequence of Lemmas 4.1.1 (i) and 4.1.2.

(ii) On contrary, assume that T has an edge xy ∈ E(T ) with dT (x) = 1, dT (y) = 4.

Then, there must exist an edge uv ∈ E(T ) with dT (u) = dT (v) = 2. To prove this, on

contrary assume that there is no such edge that is m2,2 = 0. By solving the Equations

(3.2c), (3.2d), (3.2e) and (3.2f) we obtain the following,

m1,2 = n− 3k − 2,

m2,4 = n− 3k − 2,

m1,4 = 5k + 4− n.

This implies m1,4 > 0 if n < 5k + 4 which is not possible because of Equation (4.3b).

This implies m1,4 = 0 if m2,2 = 0 which is in contradiction with our initial assumption

that T has an edge xy with dT (x) = 1 and dT (y) = 4. Hence, if m1,4 ̸= 0, then m2,2 ̸= 0

for n > 5k + 4. Let u1 and v1 be the neighbors of u and v respectively. Without loss
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of generality, assume that there exist a u, x-path containing v ending at some pendant

vertex. Let T ∗ be another tree obtained from T , as follows:

T ∗ = T − uu1 + u1x.

Then T ∗∈ C5(n, k). Clearly, dT ∗(z) = dT (z) for all z ∈ V (T )\{x, u} where dT ∗(u) =

dT (u)− 1 and dT ∗(x) = dT (x) + 1. Then we get

SO(T ∗)− SO(T ) =
√
d2T (u1) + (dT (x) + 1)2 +

√
(dT (u)− 1)2 + d2T (v)

+
√
(dT (x) + 1)2 + d2T (y)−

√
d2T (u) + d2T (u1)−

√
d2T (u) + d2T (v)

−
√
d2T (x) + d2T (y)

=
√
d2T (u1) + 22 +

√
12 + 22 +

√
22 + 42 −

√
22 + d2T (u1)

−
√
22 + 22 −

√
22 + 42

= −0.59 < 0.

Here, we obtain SO(T ∗)− SO(T ) < 0, which is a contradiction since T has minimum

Sombor index. Hence, m1,4 = 0.

iii Now, solving the system of Equations (3.2c) to (3.2f) by using the values of edges

obtained from (i) to (ii) we get,

m1,2 = 2k + 2,

m2,4 = 2k + 2,

m2,2 = n− 5k − 4.

This completes the proof.

4.2 Main Results

In this section, we will �nd values of minimum Sombor index in C(n, k) and provide

trees that attain these minimum values.
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Theorem 4.2.1. Let T ∈ C(n, k) and has minimum Sombor index . Then

SO(T ) =


(3
√
5−

√
17)n+ (4

√
2− 9

√
5 + 5

√
17)k + 4

√
17− 6

√
5− 4

√
2

if T ∈ C4(n, k)
2
√
2n+ (6

√
5− 6

√
2)k − 12

√
2 + 6

√
5

if T ∈ C5(n, k)

Proof. Case 1. For T ∈ C4(n, k) . By putting the values of mu,v for (u, v) ∈ A from

Lemma 4.1.3 in Equation (3.1), we obtain

SO(T ) = (3
√
5−

√
17)n+ (4

√
2− 9

√
5 + 5

√
17)k + 4

√
17− 6

√
5− 4

√
2.

Case 2. For T ∈ C5(n, k) . By putting the values of mu,v for (u, v) ∈ A from Lemma

4.1.4 in Equation (3.1), we obtain

SO(T ) = 2
√
2n+ (6

√
5− 6

√
2)k − 12

√
2 + 6

√
5.

Figure 4.1: Tree with minimum Sombor index in C4(n, k)
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Figure 4.2: Tree with minimum Sombor index in C5(n, k)
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Chapter 5

Summary

In this thesis, the fundamental concepts of graph theory are discussed in detail. A

brief introduction to chemical graph theory is given. Chemical graph theory aids in

predicting the molecular properties by representing molecules in the form of graphs.

This is usually done by �nding topological indices, which are numerical parameters

that remain unchanged under graph isomorphism. One of these topological indices is

Sombor index. This thesis also encompasses determining the largest and the smallest

values of Sombor index of chemical trees with given number of vertices of maximum

degree.
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