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ABSTRACT 

Falls and associated medical conditions are a serious concern in healthcare, especially among 

elderly people. The ratio of older people is growing every year, making it even more crucial to 

have effective fall prevention and detection systems in place. The main objective of this research 

is to provide a comprehensive solution from dataset creation to application of effective modeling 

techniques in the context of Fall Detection systems (FDS). A new dataset is presented based on 

scripted Activities of Daily Life (ADL) performed by elderly people. This representative data 

combined with young volunteer’s simulated falls data is the key differentiation to offer a relevant 

basis for prediction. The proposed work intends to develop a binary classification framework that 

can analyze the data and correctly categorize falls and no falls by distinguishing falls from complex 

fall like activities of daily life (ADL). Recurrent Neural Networks (RNNs) having the ability to 

handle sequential data and capture temporal dependencies are used in this research for robust fall 

detection based on smartphone accelerometer data. The accuracy of FDS is most of the time 

assessed by the performance metrics only, without performing organized testing on varied set of 

data. Adequate strategies along with thorough testing across several datasets is imperative for a 

reliable FDS. To add to the sophistication of this research the employed fall detection techniques 

are assessed using a variety of public datasets. Proposed models are evaluated for the reference 

new dataset and two other publicly available datasets. With all these considerations the proposed 

approach and model has shown better performance as compared to previously adopted models. 

 

Keywords: Accelerometer, fall detection, Deep Learning, smart phone data, Random Forest, 

BiLSTM, feature selection, Machine Learning 
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Chapter 1 

 

1. INTRODUCTION 

 

In this chapter the introduction to fall detection, techniques and categories of fall detection systems 

are discussed. Moreover, the significance of fall detection has been highlighted. The research 

problem, research questions and methodology of how research was conducted are also mentioned 

in this chapter. 

1.1 Falls 

Falls are commonly defined as “inadvertently coming to rest on the ground, floor or other lower 

level, excluding intentional change in position to rest in furniture, wall or other objects” [1]. It is 

important to have a universally agreed definition of Fall to avoid misinterpretations. To understand 

the reason and basis, a fall from the perspective of elderly is a sudden jerk or state when they lose 

balance. However, in medical terms it is a serious incident that can lead to injuries, hospitalization 

and even to death.[2]. 

How often a person falls is directly related to age factor and aged people are more susceptible to 

falling. Approximately 28-35% of people aged 65 and over fall each year and increasing to 32-

42% for those over 70 years of age. 

Different risk factors also contribute to vulnerability and can be categorized as Behavioral factors 

that relate to use of multiple medications, excess alcohol intake, lack of exercise and inappropriate 

footwear. Falls can result from a complex interplay of various biological, physiological, and 

environmental factors. Some of the biological factors that can contribute to an increased risk of 

falls include muscle weakness, impaired balance and Gait, dizziness and vertigo, neurological 

conditions, cardiovascular issues, chronic conditions like diabetes and conditions like dementia 

that can lead to confusion and poor decision-making, increasing the likelihood of accidents. 

Environmental factors also play a significant role in contributing to falls, especially in homes and 
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public spaces. These factors can create hazards that increase the risk of accidents. Irrespective of 

the cause for a fall, it can be critical if the injured person does not get quick assistance. 

Falls can also have economic impacts on both individuals and society. These impacts can be seen 

in various sectors, including healthcare, workplace productivity, and insurance costs. Falls can 

cause physical injury and mental trauma which can even lead to anxiety and depression in elderly 

people. According to a factsheet shared by WHO in April 2021, falls are a major public health 

problem globally. An estimated 684,000 fatal falls occur each year, and over 80% of fall-related 

fatalities occur in low- and middle-income countries, with regions of the Western Pacific and 

Southeast Asia accounting for 60% of these deaths [3]. 

The control mechanism and strategies for improving the overall environment that can help to 

reduce the elderly fall occurrences and provide emergency relief in case of an event are broadly 

termed as fall prevention or fall detection [4]. While this is active research domain for past two 

decades, the focus of this study is on improving the accuracy fall detection. 

1.2 Fall Detection Techniques 

Fall detection techniques aim to identify when an individual experiences a sudden drop to the 

ground or a loss of balance. These techniques can be broadly categorized into several types based 

on the technology and sensors used. Here are some of the common fall detection techniques: 

Inertial Measurement Units (IMUs): IMUs consist of accelerometers and gyroscopes and are 

often integrated into wearable devices like smartwatches or fitness trackers. They can measure 

changes in acceleration and orientation, allowing them to detect sudden movements associated 

with falls. 

Pressure Sensors: These sensors are often embedded in floors, carpets, or mattresses and can 

detect changes in pressure caused by a person falling or lying on them. 

Computer Vision: Cameras or depth-sensing devices can be used to monitor an individual's 

movements. By analyzing the video feed or the depth data, fall-like motions can be detected. 

Audio Analysis: Microphones can be used to analyze the sounds associated with a fall, such as 

impact or vocal distress, to trigger an alert. 
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Machine Learning Algorithms: Various machine learning techniques can be applied to data 

collected from different sensors to detect fall patterns and distinguish them from normal activities.  

Radio Frequency (RF) Signal Analysis: By analyzing radio frequency signals (like Wi-Fi or 

RFID), changes in the signal pattern caused by a fall can be detected. 

Vital Sign Monitoring: In some cases, fall detection systems may combine information from heart 

rate monitors or other medical devices to detect falls and related health events. 

Smart Home Devices Integration: Fall detection can be achieved by integrating data from various 

smart home devices, such as motion sensors, door/window sensors, and smart cameras. 

Location Tracking: GPS or other localization technologies can be used to monitor a person's 

movement and detect sudden changes or deviations from the expected pattern, which might 

indicate a fall. 

Fall Detection Apps: Some mobile applications utilize smartphone sensors (accelerometers, 

gyroscopes) to monitor the user's movements and detect falls. 

It's important to note that no single technique is foolproof, and a combination of different methods 

or sensor data fusion may be employed to improve accuracy and reduce false alarms. Additionally, 

user privacy and data security should be taken into consideration when implementing fall detection 

systems, especially in sensitive environments like healthcare facilities or private homes. 

1.3 Categorization of Fall Detection Techniques 

Different strategies for fall detection as briefly discussed above can be broadly categorized into 

context aware systems or wearable based systems. 

Context-aware systems for fall detection take advantage of various contextual information in 

addition to the standard accelerometer and gyroscope data typically used in fall detection. These 

additional context-aware features help enhance the accuracy of fall detection and reduce false 

positives or negatives. By incorporating context-aware elements, fall detection systems can better 

understand the user's situation, reduce false alarms, and provide more personalized and timely 

assistance in the event of a fall. As technology continues to advance, we can expect even more 

sophisticated context-aware systems that further improve fall detection capabilities and enhance 

overall user safety and well-being. 



4 

 

Wearable-based fall detection systems utilize sensors and wearable devices to monitor an 

individual's movements and detect potential falls. These systems are designed to be worn on the 

body, such as on the wrist, waist, chest, or as a pendant. They have many advantages like they 

provide immediate assistance, continuous monitoring, mobility and independence, user friendly 

design and long battery life. Despite these advantages, wearable-based fall detection systems may 

also have some limitations. They can generate false positives or negatives, and the accuracy of fall 

detection can vary based on device placement and user behaviour. Additionally, wearable devices 

might not be suitable for individuals who have difficulty wearing or using them consistently. 

To overcome the limitations posed by most of the wearable devices another sensor-based detection 

mechanism is using smartphones sensors. Smartphone-based fall detection systems have gained 

significant importance due to their potential to improve the safety and well-being of individuals, 

especially the elderly and those at risk of falling. Sensors are embedded in the phone and with 

widespread adoption of smartphones it is easy to carry for the elderly. This research is also based 

on smartphone-based fall detection. 

1.4 Motivation 

Elderly Falls is posing dramatic challenges in the public health domain and mostly Fall Detection 

systems are either context aware or wearable based. In the context aware systems sensors are either 

placed in the environment or rely on vision-based techniques that further raise privacy concerns. 

For the wearable systems they carry additional cost and elderly may forget to carry them. A very 

few solutions are based on smartphones, and they also are not optimal enough. 

By incorporating the proposed Deep Learning techniques, robust and optimal solution for Fall 

detection can be devised. To make the systems more effective representative datasets that take 

elderly ADLs and young adult’s simulated fall data can be taken as input and comprehensive 

testing across several datasets can be performed. 

In the above-mentioned perspective, multidimensional analysis of FDS can be performed by using 

efficient DL techniques to support the healthcare professionals in elderly care. Therefore, a Deep 

learning model is chosen to improve FDS using smartphone sensor data. 
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1.5 Problem Statement  

Recent studies narrated that old people are reluctant to perform any physical, intellectual, and 

tangible functionalities [5]. Accordingly, older people face trouble performing routine work like 

strolling, running, eating, and getting ready [6]-[8]. The consequences of falls can contribute to 

health decline and overall mortality in older adults over time. It is known through studies that 

approx. 35% of aged people experience a fall each year [9]. These facts and figures and the 

continuous rise in elderly population signify how inevitable it is to have means and measures that 

can reduce the risks of falls and timely detect their occurrence to generate alarms for immediate 

assistance. To support the efforts and create a conducive environment, WHO has devised an action 

plan with defined goals as part of United Nations (UN) program termed as Decade of Healthy 

Ageing 2021–2030. This constitutes 10 years of concerted, catalytic, sustained collaboration. 

Older people themselves will be at the center of this plan, which will bring together governments, 

civil society, international agencies, professionals, academia, the media, and the private sector to 

improve the lives of older people, their families, and their communities [10]. To ensure the success 

of this program and its objectives, it is imperative for the countries worldwide to keep innovating 

and developing enhanced systems that can fulfill the health care needs of elderly people. 

1.6 Aims and Objectives 

Following are the objectives of this research.  

1. To generate a representative dataset that gives basis for the accurate fall detection. 

2. To propose a solution based on accelerometer data collected from smartphone. 

3. To design and develop a robust Fall Detection model based on Recurrent Neural 

Network design. 

4. To do comparative analysis of ML and DL techniques in the context of Fall Detection.  

5. To analyze and evaluate the performance of proposed model by using different 

proprietary and public datasets. 

Following Fig 1.1 gives a high-level view of this research for detecting falls. 
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Figure 1-1 High-level view 

1.7 Areas of Application 

A smartphone-based fall detection system has various areas of application, primarily centred 

around improving safety and well-being for individuals, especially the elderly and those with 

certain medical conditions. Some of the key areas of application include: 

1. Elderly Care: Fall detection systems can be particularly useful for the elderly population, 

who are more susceptible to falls and related injuries. The system can automatically detect 

falls and alert caregivers, family members, or medical personnel, ensuring timely 

assistance. 

2. Medical Monitoring: Individuals with certain medical conditions or mobility issues can 

benefit from fall detection systems. These conditions may include epilepsy, Parkinson's 

disease, multiple sclerosis, etc. The system can monitor for potential falls and enable 

caregivers or medical professionals to intervene if needed. 

3. Emergency Response: A fall detection system can be integrated with emergency response 

services. If a fall is detected, the system can automatically notify emergency services, 

providing the user's location and other relevant information to ensure prompt assistance. 

4. Workplace Safety: In industrial or construction settings, where workers might be exposed 

to hazardous conditions, a fall detection system can be employed to enhance safety. If a 
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worker falls and is unable to signal for help, the system can alert supervisors or on-site 

safety personnel. 

5. Home Automation: Fall detection can be integrated into smart home systems. If a fall is 

detected, the system can automatically turn on lights, send notifications to family members 

or caregivers, and even call for emergency help. 

6. Health and Wellness Tracking: For fitness enthusiasts or individuals keen on monitoring 

their overall health, a fall detection system can be an added feature in health and wellness 

apps. It can help track falls, analyze patterns, and provide insights into potential risk 

factors. 

7. Assisted Living Facilities: Fall detection systems can be deployed in assisted living 

facilities or nursing homes to improve resident safety. Caregivers can be alerted 

immediately in the event of a fall, ensuring rapid response, and reducing the risk of 

complications. 

8. Public Health Programs: Governments or public health organizations can utilize fall 

detection systems as part of initiatives to monitor and support the elderly population or 

individuals with specific medical conditions. 

It's important to note that while smartphone-based fall detection systems have shown promise in 

these areas, they may not be 100% accurate, and false alarms can occur. These systems should be 

viewed as complementary tools to enhance safety and care, rather than as a replacement for 

medical attention or human monitoring. Additionally, privacy considerations and user consent 

should be considered when implementing such systems. 
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1.8 Thesis Outline 

This thesis is structured into following chapters: 

• Chapter 2: Literature review and detailed study on fall detection systems and past research 

done in this regard are provided in this chapter. 

• Chapter 3: Proposed Framework, Methodology with different stages and their 

significance, newly proposed dataset and reference public datasets are covered in this 

chapter. 

• Chapter 4: This chapter provides a detailed account of experimental setup and 

implementation details for model training and validation. Results of training and evaluation 

are also discussed in detail in this chapter.  

• Chapter 5: Conclusion and Future work is presented in this chapter. 

 



9 

 

Chapter 2 

2. LITERATURE REVIEW 

Artificial Intelligence (AI) based solutions are proven to be a great enabler in this regard. May 

it be through generative AI, robots or machine learning and deep learning techniques; AI is 

entirely reshaping the healthcare services landscape [11]. In recent years, many studies are 

conducted on detecting and avoiding falls. Researchers have mainly explored three types of 

methods i.e. context aware systems, wearable systems and ambient/fusion systems. 

Solutions built on artificial intelligence (AI) have shown to be excellent enablers in this area. 

Artificial intelligence (AI) is fundamentally changing the landscape of healthcare services, 

whether through generative AI, robotics, machine learning, or deep learning approaches [12]. 

Several research has been done in recent years on detecting and preventing falls. From these 

categories, four approaches namely context aware systems, wearable systems, ambient/fusion 

systems, and smartphone-based systems have been the major focus of research. 

 

Figure 2-1. Categories of Fall Detection 
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2.1 Context Sensitive fall detection 

Context-sensitive fall detection refers to technology and research that aim to improve the 

accuracy and reliability of fall detection by considering various contextual factors surrounding 

the fall event. These factors can include the user's environment, activity, physiological data, 

and more. The goal is to develop systems that can differentiate between actual falls and benign 

activities that might mimic a fall-like motion, thus reducing false alarms and improving overall 

system performance. These solutions can be powered by computer vision, use camera, radars 

or sensors attached to devices. As they often collect and process sensitive user information, 

research is conducted to ensure the privacy and security of user data. Techniques for data 

anonymization, secure context sharing, and user consent mechanisms are also explored. 

As represented in Fig 2.2 below the context aware systems have many sub-branches.  

 

Figure 2-2 Context Aware Systems for Fall Detection 

  



11 

 

A recent study and detailed review of the fall detection methods is done by Newaz et. al. [13] 

and a list of strategies based on Information of Things (IoT), biomedical assistive technology 

and wearables along with the gaps in each research is provided. It also reviews the ethical 

considerations in each research along with shortcomings. Xiong [14] has used a skeleton-based 

3D approach that is trained using neural network (S3D-CNN) and classifies the public and 

proprietary datasets for fall and no fall. This research claims best accuracy of 99% as compared 

to existing studies. Debard et al. [15] have used surveillance camera images from simulated 

environment for elderly fall detection. They used the aspect ratio, fall angle, head state and 

center speed features to extract fall specific data. They have then applied motion detection 

techniques along with classification algorithm to specify a fall event. However, it restricts the 

elderly to indoor environment and thus not feasible enough. Moreover, such systems are prone 

to difficulties such as limited coverage, expensive installation costs, false alarms, and privacy 

concerns (particularly in video-based systems). 

C. Mosquera-Lopez et. al. [16] has presented research on fall detection system for the patients 

of multiple sclerosis (MS) disease who are prone to frequent falls due to vulnerability 

associated with disease and that increases with time. A context-aware system, using inertial 

and time of flight sensors is developed that used acceleration and movement features. This 

system has shown a sensitivity of 92.14%, and significantly reduced false alarms. 

The above list provides a snapshot of the diverse research in the field of context-sensitive 

systems. The ongoing development of artificial intelligence, machine learning, and sensor 

technologies continues to fuel advancements in this field. 

2.2 IoT enabled fall detection 

IoT (Internet of Things) based fall detection research focuses on utilizing interconnected 

devices and technologies to detect and respond to falls, particularly in elderly individuals. 

Wearable devices play a crucial role in this area by providing continuous monitoring and real-

time data collection. These systems have embedded smart electronic gadgets within the micro 

controllers that can be tied to the clothing or worn on the body as inserts or frill [17]. These 

devices continuously monitor the wearer's movements and provide data that can be analyzed 

to determine if a fall has occurred. Wearable gadgets for fall detection are usually coupled with 

the inertial sensors; for example, accelerometer, gyroscope, inertial measurement units (IMU), 

pressure sensors and barometric altimeter. The main advantage of such systems is that they are 
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cost-effective. IoT technology has become more affordable over time, making these fall 

detection systems relatively less costly as compared to traditional monitoring solutions or 

hiring round-the-clock caregivers. Devices can be attached to multiple body locations and offer 

flexible portability rendering the devices relatively easy to operate. Despite many advantages 

and penetration IoT fall detection systems may sometimes generate false alarms (false 

positives) or fail to detect actual falls (false negatives). Factors like sudden movements, 

incorrect sensor positioning, or rapid changes in posture could trigger false alarms. On the other 

hand, a fall might not always trigger the sensors, leading to missed alerts. Fig 2.3 shows the 

main components of an IoT enabled solution. 

 

Figure 2-3 IoT-enabled System 

Waheed M. et. al. [18] has used wearable sensors to detect elderly falls by employing strategies 

to reduce the noise in image data and provides solution for missing data values. The suggested 

noise-tolerant fall detection system focuses on Recurrent Neural Networks (RNNs) and 

BiLSTM memory stack. Two publicly available datasets SisFall and UP-Fall are used in this 

study and system shows improved performance in all aspects with accuracy of 97.21% and 

97.41%, sensitivity of 96.97% and 99.77%, and specificity of 93.18% and 91.45%, on the input 

datasets respectively. Kim et. al. [19] in their paper has envisioned a complete healthcare 

solution based on Augmented Relaity (AR) and IoT-enabled software system for the 

caregivers. It includes monitoring and alerts service for the elderly and their attendants and 

families. It uses the techniques of object detection combined with information retrieval from 

devices placed in the vicinity of elderly on the pattern of a smart city solution. The evaluation 

shows great performance in all the relevant aspects of processing time, prediction, latency and 
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connection for information and alert transmission with values as less as between 767ms and 

1,283ms. 

Bugarin et. al [20] has designed a vision enforced solution using camera. This research applied 

Random Forest machine learning algorithms along with deep learning techniques from 

MobileNetv2 CNN based MediaPipe Pose with improved results and a message with video 

sent to the listed contacts in the integrated alarm system. M. Amir et. al. [21] In this threshold-

based detection method is proposed that has used ADXL335 accelerometer as an embedded 

sensor in the wearable device. The transmitter or FDS-Tx is worn and tied to the clothes to 

record data and is sent back to the cloud system through XBee module. IoT controller does the 

computation and sends the analysis to cloud connected server. It gave remarkable results with 

97% sensitivity, 69% specificity and 83% accuracy.  

Matos-Carvalho et. al [22] has tested a deep leaning model LSTM with different combination 

of layers for improving the accuracy and performance for classification of fall data gathered 

from wearable devices and embedded sensors. The study gives a basis and proves the 

hypothesis that how using multiple layers of LSTM impacts the system output and achieves a 

99.13% of accuracy with 4.35% of loss values. It is expected that the results and experiments 

would help the researchers looking for an ideal deep leaning algorithm for prediction and 

classification of sequential data.  

2.3 Smartphone based fall detection 

In comparison to the above techniques, smartphones (SPs) equipped with dedicated detection 

technology is a far more viable option. Smartphones have become a necessity and almost every 

adult in most countries carries a mobile (smart) phone. Effective communication, user friendly 

interfaces and enhanced hardware are important factors that encourage the researchers to build 

smartphone-based solutions. Smartphones have all the built-in features that make them the 

most suitable choice for efficient healthcare monitoring including the availability of multiple 

sensors, connectivity, processing power and easy adoption especially for elderly people. 

 

Fig 2.4 gives a pictorial representation of different layers of smartphone-based fall detection. 
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Figure 2-4 Smartphone based fall detection. 

Researchers have carried out studies based on smartphones with a combination of approaches. 

L. Ren and Y. Peng [23] developed a global classification of current fall related research based 

on four aspects: fall detection and prevention systems based on different sensor devices and 

analysis algorithms, low-power technologies, and sensor placement in fall-related systems. 

Stampfler T. et al [24] in their research have screened 267 studies and provided an account of 

15 studies that detailed pervasive fall detection and alerting applications based on smartphone 

accelerometers. S. Usmani et al [25] have visualized the application of Machine Learning 

techniques for smartphone and wearable device sensors. It gives a detailed account of recent 

trends and studies covering datasets, ML algorithms and performance metrics. Sensors or 

wearable based fall detection frameworks and Smartphone based fall detection systems have 

been widely reviewed by A. Singh et al [26]. Recently, Lee et al. [27] proposed enhanced 

threshold-based fall detection system in which one more threshold value was incorporated to 

classify fall events from the normal activities of daily living (ADLs). The system achieved an 

accuracy of 99.38% whereas 650 test activities including 11 distinct types of daily tasks were 

carried out.  

A. Chelli et.al [28] have tested the performance of four machine learning algorithms i.e., 

artificial neural network (ANN), K -nearest neighbors (KNN), quadratic support vector 

machine (QSVM), and ensemble bagged tree (EBT) using smartphone’ acceleration and 
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angular velocity data. By applying specific feature extraction techniques, they achieved the 

best possible performance. Abdullah et. al. [29] used an app called Physics Toolbox Sensor 

Suite to gather smartphone accelerometer data and applied a neural network-based 

classification algorithm to distinguish falls from regular life activities.  

2.4 Fall Detection Methods 

Every technology needs some basic principles, rules, and regulations to work smoothly. 

Clarifying the different types of falls aids in methodological research. In addition, it contributes 

to and leads the development of new algorithms. Falls must be considered in all possible 

circumstances. There are some shared traits as well as crucial differences between these falls. 

There are three commonly applied methods for detecting falls: a straightforward 

analytical/threshold-based method, machine learning based methods and deep learning-based 

methods. A detailed account of research done using these methods specific to smartphone 

sensors is given below. 

2.4.1 Threshold-based Methods 

Analytical/threshold-based methods for fall detection are algorithms designed to identify falls 

based on specific criteria or thresholds. These methods often rely on data from sensors or 

wearable devices to monitor a person's movements and detect unusual patterns that may 

indicate a fall. Less computing power is required by these systems. They are also less complex 

than other modern algorithms. The accuracy of the framework often depends on predetermined 

limit values.These systems capture information on human movement using the various mobile 

phone sensors (such as the accelerometer, gyroscope, magnetometer, and so forth). The sensor 

data is then compared to predefined threshold levels. When a fall is detected, warning agencies 

are often used to alert the rescue agencies and medical aid authorities. 

Wang et al. [30] proposed a study in which two novel inertial parameters i.e., acceleration 

cubic-product-root magnitude (ACM) and angular velocity cubic product- root magnitude 

(AVCM) were introduced to work on the selectivity of threshold-based fall recognition 

techniques. To improve accuracy, Tsinganos et al. [31] devised a threshold-based technique 

and used the K nearest neighbor (KNN). The system achieved accuracy equivalent to related 

studies with 97.53% sensitivity and 94.89% specificity. Pipanmaekaporn et al. [32] proposed 

a technique that focuses on reducing false positives by finding feature patterns in data from an 

integrated accelerometer sensor. The found patterns are employed as features in the 
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construction of a robust and reliable classifier for fall detection using decision tree learning. 

The experimental findings using the Mobi Fall dataset, a benchmark for assessing fall detection 

systems in mobile phones showed that the proposed technique outperforms two accelerometer-

based fall detection algorithms for smartphones in terms of performance and false positive 

rates. 

Even though threshold-based algorithms use less processing, provide the highest accuracy, and 

are simple to implement; threshold-based systems often struggle to accurately distinguish 

between actual falls and normal movements or activities that might trigger the threshold. The 

challenge lies in finding the optimal threshold values that can correctly identify all classes.  

2.4.2 Machine Learning-based Methods 

Machine learning algorithms play a crucial role in fall detection by enabling automated and 

accurate identification of falls and non-fall activities based on sensor data. They can 

automatically analyze sensor data, such as accelerometer readings from wearable devices, 

without the need for manual intervention. This allows continuous monitoring of individuals 

and immediate detection of potential falls. They can adapt to variations in individual 

movements and fall patterns. They can learn from new data and continuously improve their 

performance, making them more reliable over time. Sensor data, especially from wearable 

devices, can be noisy and prone to artifacts. ML algorithms can be designed to handle noisy 

data and still make accurate predictions, thus increasing the robustness of the fall detection 

system. 

The significance and application of machine learning algorithms is increasing as more and 

more research is taking place in this field. Already, plenty of research is done using support 

vector machines (SVMs), k-nearest neighbors (k-NN), decision trees (DT) and random forest 

(RF) to categorize falls from regular life activities.  

Asier Brull Mesanza ei al. proposed SVM-based fall detection system which used data 

provided by a Sensor-enabled Tip which can be attached to different Assistive Devices for 

Walking (ADW) [33]. The model used two modules connected in series. The first one detects 

all falls, while the second differentiates between user and ADW falls. This latter module is 

designed to avoid false positives due to ADW accidental falls. Feature evaluation of training 

data set is implemented to detect the most relevant features to design each Machine Learning-

based module. Once the training dataset is processed by the Random Forest (RF) Algorithm, a 
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set of SVMs will be trained to implement algorithm of each module. The proposed approach 

provided high Fall Detection Ratios of over 90%. Gunale et.al.[34] in their research have used 

k-nearest neighbor classifier and given a novel method for identifying falls. They have used 

distinct features related to Orientation angle, ratio of fitted ellipse, Motion Coefficient, and 

Silhouette threshold. They achieved accuracy above 95% using video sequence data. Palmerini 

et. al. [35] have performed extensive research on acceleration signals recorded by an inertial 

sensor on the lower back and obtained data of 143 real-world falls from the FARSEEING 

repository. Using multiphase machine learning approaches attained sensitivity of 80%, and a 

very low false alarm rate of 0.56/hour.  

Diana Yacchirema ei al. [36] proposed IOT and ensemble machine learning algorithm-based 

fall detection system for indoor environment. The wearable device is embedded with a 3D axis 

accelerometer for capturing the movements of elderly people in real time. The acceleration 

readings are then processed and analyzed using an ensemble random forest (RF) model. This 

model also alerts emergency services in case a fall is detected. The accuracy of this model was 

above 94%. 

Shahzad et al. [37] have devised a mobile application that captures the falls and sends alerts. 

This is based on a proprietary dataset called FallDroid based on the simulated fall and ADL 

data of adults between the age of 28 to 60 years. Derived from FallDroid the android app is 

also termed FallDroid. In this research the accelerometer data obtained from smartphone 

sensors is used for training the classifier. Features are extracted using threshold-based 

mechanism and then machine learning based multiple kernel learning support vector machine 

(MKL-SVM) algorithm is applied. This study used smartphone data collected from thigh and 

waist locations. Remarkable performance improvements have been noted especially for waist 

location data providing accuracy of 97.8%, sensitivity 99.5%, and specificity 95.2% This study 

has used as a benchmark by many recent researchers for classifying the potential fall and trickly 

ADL data from real falls. 

2.4.3 Deep Learning-based Methods 

Deep learning (DL) algorithms use deep neural networks to automatically learn hierarchical 

representations from raw sensor data. Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs) are commonly used for fall detection tasks. Instead of using 

traditional feature extraction techniques, pattern recognition tasks are carried out in deep 

learning-based frameworks. Deep learning models are made up of several layers. Each layer 
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separates a chunk of the provided data or simulates certain changes in the data. The last layer 

consists of artificial neurons.  

Deep learning models can automatically learn relevant features from raw data without requiring 

manual feature engineering. This is beneficial as it reduces the need for domain-specific 

knowledge and potentially uncovers patterns that might not be apparent through manual feature 

extraction. Xiaodan et al. [38] employed the DL techniques to devise a novel model using 

Gated Recurrent Units (GRU) architecture. The results are tested using two open datatsets for 

fall detection and validated against six ML classifiers and while it outperformed them an 

accuracy of 99.56% was achieved. Abdullah [39] proposed a solution in which the 

classification between fall and the non-fall event was done using data collected from a smart 

phone sensor (tri-axial accelerometer) and neural net pattern recognition app. They achieved a 

classification accuracy of 90.6%.  

Escaño et. al. [40] endeavored to come up with a single solution that can be applicable for two 

types of classification problems i.e. fall detection and human identification. It is claimed that 

the single model need not be trained specially for any new subject rather the proposed model 

is equally good for new data and servs as a universal algorithm for both tasks which is a great 

achievement. Wang [41] analyze various lightweight and shallow neural networks that require 

lesser storage and computational resources. The research concludes with a lightweight 

supervised convolutional neural network achieving 99.9% detection accuracy for resource 

constraint wearable sensors. 
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2.5 Datasets used for Fall Detection 

For the identification and study of falls, researchers have developed or used a variety of 

datasets. The most important are tFall, UMAFall, UPFall, MobiFall, and DLR datasets. A brief 

account of the research based on common datasets with prediction and outcomes is discussed 

here. 

The UP-Fall dataset is a publicly available dataset based on different human activities related 

to fall detection and was generated by Espinosa et al. [42]. They provided a fall detection 

system that uses several cameras and a 2D CNN inference strategy to analyze images in certain 

time frames. Additionally, they provided an optical flow method for obtaining characteristics 

that accumulates information on the total velocity in two subsequent images. The proposed 

multi-vision-based technology recognizes human falls with an accuracy of 95.64% when 

compared to state-of-the-art methods utilizing a straightforward CNN network design. 

According to Casilari et al. [43], UMAFall is an innovative collection of movement traces 

collected by meticulous simulation of several predetermined activities of daily life, along with 

recordings of falls. The UMAFall dataset was collected by placing sensors on the bodies of 

subject for tracing their movement. It generated data from five locations for which separate 

sensors were attached to the body. By tracking the movements of 17 experimental subjects, it 

distinguishes between three different types of falls. The data included magnetometer sensor 

data, acceleration and gyroscope data and sampling data from smartphone. Several "Fall 

Detection" datasets have been used for calculating experimental results published in this 

research.  

Martínez-Villaseñor et al. [44] presents the Fall Detection Dataset based on raw data of daily 

movements collected from 17 young adults. There were 11 types of activities recorded in data 

in addition to fall events. The objective of collecting and making this dataset available for 

research was to aid the efforts of detecting falls using recent trends and advancements of 

machine learning. It also provides a range of experimental video and machine learning options, 

including pattern recognition. Using acceleration data from cellphones, Micucci et al. [45] 

offered an amazing work that presents a comprehensive dataset for human activity detection.  
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The efficiency of the suggested dataset has been demonstrated by the authors through the 

presentation of thorough statistics, experimental settings, and benchmark results. In conclusion, 

this research is a significant addition that offers future researchers a helpful tool to assess their 

models. 

While fall detection is an active research topic for past two decades and researchers have used 

different techniques to improve the accuracy of detection and enhance the performance of 

applied algorithms, it is felt that there are still gaps to come up with a generalized solution. In 

these studies, limited datasets are used that undermine the efficacy of the model. The accuracy 

and relevance of sensor data is an important factor like most of existing research work is based 

on simulated young adults’ data that is not equally applicable for elderly. Difficulties in dataset 

collection and scarcity in publicly available datasets are major impediments for the 

development of impactful algorithms for fall detection. These gaps are considered and 

addressed in this research as outlined in the next chapters. 
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Chapter 3 

 

3. PROPOSED FRAMEWORK 

To cover the identified gaps, we propose a robust high-performance smartphone-based fall 

detection system for elderly. A new dataset is generated from accelerometer signals that is 

better representative of old age population. A subset related to thigh location data is used in 

this research. From literature review it is also established that proper evaluation of designed 

algorithms is not conducted using several datasets that reduces the prediction validity. To 

overcome these missing aspects, we have used four datasets for performance analysis. 

The proposed model's core intelligence is provided by ML and DL techniques, feature selection 

with ranking, enabling multidimensional analysis of data dynamically, all this aids in 

improving performance of the classification model. Fig 3.1 below gives a general overview of 

the proposed framework. 

 

Figure 3-1Overview of Proposed Framework 

3.1 Methodology 

The proposed methodology employs smartphone accelerometer data that detects potential falls 

with the built-in accelerometer sensor on a smartphone that measures the acceleration recorded 

by the device during movement of the subject/person. When a fall occurs, the acceleration 
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pattern changes in a distinctive way and serves as criteria for fall detection algorithm. The main 

considerations in this research are: 

1) Provides a thigh location smartphone-based solution for fall detection systems by using a 

newly generated Dataset of the elderly activities of daily life (ADLs) along other Smartphone 

based datasets. 

2) A threshold-based algorithm is applied for screening the data and to discard the fall like 

ADLs in first instance. 

3) After Data pre-processing, feature extraction and feature ranking techniques are enforced to 

improve the accuracy of algorithms. 

4) Data is then fed to classification models i.e., Random Forest (ML based algorithm) and to a 

DL based model BiLSTM. 

5) The models learn to distinguish fall patterns from ADLs based on the extracted and selected 

features. 

6) The trained model is then evaluated on a couple of datasets to assess its performance and to 

come up with an optimal solution. 

3.2  Smartphone Accelerometer Data 

The design of a reliable, robust, and easy to deploy solution to effectively detect elderly falls 

must have some basic characteristics like it must be based on representative data, should be 

tested using cross-dimensional datasets for the purpose of generalization and later when used 

to facilitate the alerts for medical assistance it must be easy to deploy and easy to use which 

are derived from the basic design and architecture.  

Adequate strategies and comprehensive testing across several datasets are imperative to the 

success and effectiveness of FDS and the proposed system considers all these crucial factors. 

Smartphone continuously collects accelerometer data, which includes three axes: X, Y, and Z. 

These axes represent the device's movement in three dimensions. 

1. X-axis: Represents the acceleration along the horizontal axis, usually left-right 

movement. 

2. Y-axis: Represents the acceleration along the vertical axis, usually up-down movement. 
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3. Z-axis: Represents the acceleration along the depth axis, usually forward-backward 

movement. 

Fig 3.2 represents how smartphone sensor data is used for fall detection system design. 

 

Figure 3-2 Smartphone Accelerometer sensor 

Accelerometers measure acceleration in units of gravity (g) or meters per second squared 

(m/s²). When the object is at rest on a flat surface, the acceleration data should show 

approximately 1g in the Z-axis due to the Earth's gravity. The X and Y axis should show values 

close to zero since there is no movement. When the object is in motion or subjected to 

acceleration, the accelerometer data will show fluctuations in all three axes, capturing the 

changes in movement and orientation over time. These fluctuations can be used to analyze 

various physical activities, gestures, or movements. 

3.3 Data Acquisition 

Existing research on fall detection systems usually relies (or are adjusted/- trained) on limited 

set of human fall data that is basically non-representative of the real fall events [46]. Capturing 

real-life fall events is a rigorous process which involves a costly infrastructure to capture the 

fall events. Moreover, the accuracy of a FDS is most of the time assessed by the performance 

metrics only without performing organized testing on varied set of data. A list of public datasets 

used for robust testing of the algorithm is also provided hereunder. 

3.3.1  FallMEdADL Dataset 
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To overcome the data limitation, collaboration with a Korean institute has been done for 

collection of data based on scripted activities performed by the elderly to generate elderly ADL 

data. We here present the new smartphone accelerometer-based ADL dataset named 

FallMEdADL.  

This elderly ADL data combined with data from young volunteers’ simulated falls, serve as a 

better representative dataset for effective modeling. 

Protocols used for Data Collection 

For this activity, thirty-five volunteers (26 male and 9 females; age: above 60 years, weight: 

59 ± 10.5, and height: 166.7 ± 7.68) were asked to perform the scripted set of fall-like ADLs. 

We mainly focused on fall-like ADLs that can be easily misinterpreted as falls [37] and an 

exhaustive list is given in Table 3.1. 

Participants used a commercially available smartphone securely placed at thigh position in their 

pant pocket during the experiments. The smartphone's built-in accelerometer recorded tri-axial 

acceleration data at a frequency sample of 100 Hz (100 rows of data per sec). To ensure data 

quality, we carefully calibrated and synchronized the smartphones before each experiment. A 

consent form was also signed by the participants while the privacy & compliance team of the 

institute had reviewed and approved the entire process. 

Based on the experiments, 178 elderly ADLs were recorded from thigh location that were 

marked as potential falls. This elderly data combined with young adults’ fall data comprising 

of 175 fall events is used in the classification algorithm. We believe that this dataset will also 

assist further study of fall prevention and elderly care by acting as a baseline for assessing fall 

detection algorithms.  

This dataset is intended to be published and made available to the researchers who are urged 

to access it for educational purposes. 
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Table 3-1 Fall-Like ADLs considered for Data Collection 

No. Description 

1. Walking i) upstairs ii) downstairs iii) few steps iv) quick & slow walking 

2. Lying down i) on floor 

3. Jumping i) Gently ii) quickly 

4. Sitting on i) sofa ii) chair iii) floor iv) ground v) car 

5. Bending down to pick something from floor 

6. Sensor Hit i) a pole ii) by a person 

7. Standing i) bending knees ii) from sofa/chair 

3.3.2 FallDroid Dataset 

The second important dataset used for cross evaluation is FallDroid dataset proposed by [37] 

and is a proprietary dataset. This contains complex fall-like ADL events that are tricky for the 

classification algorithm. This dataset has 287 potential fall ADL and 175 fall events. For this 

experiment, twenty people volunteered including 17 males and 3 females with an average age 

of 28.45±2.72, weight of 66.15±10.83 and height of 170.7 ± 7.68 participated in the data 

collection. Young adults performed simulated falls (forward, backward, lateral left, and right) 

and nine different types of ADLs (standing up from sitting, sitting down, bending down, lying 

down, moving up and down stairs, hit instance of the smartphone, jogging, running, and 

jumping). The smartphone accelerometer sensor data from two LG G2 phones that were used 

to record data. The participants carried two smart phones, one on the waist location tied to belt 

and second one placed at thigh location in the pant pocket. An application configured in 

smartphones collected data at a sampling rate of 64Hz. 

3.3.3 Mobiact Dataset 

To validate the proposed solution across multiple datasets the third dataset used is a public 

dataset collected by Biomedical Informatics and released by Vavoulas et al. 2016 [48] and out 

of available two versions the updated version is used in this study. 

A Samsung Galaxy S3 smartphone is used for experiments and was placed in the pant pockets 

of participants. Using the built-in sensors of gyroscopes, accelerometer, and angular position 

the data was collected with Sensor-DelayFastest option enabled to attain the maximum feasible 

sampling rate. 

This version listed 12 different ADLs along with 4 different types of falls from a total of 66 

subjects with more than 3200 trials were captured. This included the motionless state of the 
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subject and activities like walking, jogging, and standing etc. and a detailed account of these is 

presented in [48].  

From this publicly available dataset we have used the accelerometer sensor data only collected 

from the pant pocket position. 

3.3.4 UniMib SHAR Dataset 

This is the fourth dataset used for testing the robustness of proposed algorithms. It is a publicly 

available dataset collected by Software Architecture Laboratory (sal) [49]. 

It is based on accelerator samples acquired using a Samsung Galaxy Nexus 19250 smartphone 

and used for activity recognition and fall detection. The data was captured at a sampling rate 

of 50 Hz from the built-in triaxial accelerometer The dataset includes 11,771 samples collected 

from 30 subjects with 24 males and 6 females of ages ranging between 18 to 60 years. The 

ADLs and fall related activities were performed at least five times by the subjects. 

The scripted set of fall-like ADLs and simulated falls were performed while the phone was 

placed in both left and right pant pockets simultaneously. Different classes and groups of 

acquired data were made based on ADLs and Falls. The raw accelerometer signals given in the 

dataset were used in this study. [50] 

3.4 Data Preprocessing 

3.4.1 Data Filtering 

A pre-screening of data is done by applying a simple threshold-based algorithm that filters the 

fall-like ADLS by applying inactivity and posture tests. Two accelerometer features, namely 

AAMV and TAV relevant to acceleration and Tilt angle variation are used to apply this filter 

check. To search for fall-like events/peaks within the recorded dataset a variable size window 

is detected around impact and when AAMV < .6 with TAV> 10° then it is marked as a fall 

event.  

A fall happens at once and with no repeated instances and same is translated with respect to 

acceleration that reaches a peak value of 3-g threshold for fall, and for 5 seconds no further 

activity is observed and acceleration of 1-g corresponding to gravitational acceleration is 

observed that confirms a fall. A detailed account of this Threshold-based algorithm for data 

filtering is available in the FallDroid paper [37]. 
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By applying this algorithm to FallMEdADL data the number of fall-like ADLs was filtered to 

178 as compared to original 533 fall-like elderly ADLs.  

Similarly, passing the FallDroid dataset to algorithm resulted in filtered potential fall related 

ADLs that were shrinked to 196 as compared to original 287 fall-like events. For Mobiact 

dataset, the threshold value was 1.9g and consequently 768 falls and 2106 ADLs were detected. 

For UniMiB SHAR, the threshold value set in the algorithm was 2.4g. This  value is different 

from the FallDroid dataset because by setting this value, all fall events passed the threshold 

and were considered in the final dataset as per basic requirement of fall detection. As a result, 

308 fall events and 202 ADLs were detected.  

While this algorithm is simple and computationally efficient, yet it is sensitive to environmental 

noise and could not correctly detect more complex falls. For this reason, machine learning and 

deep learning algorithms are used as second step for accurate fall detection. 

3.4.2 Down sampling 

To use a balanced dataset have applied down-sampling on the UniMib SHAR dataset and used 

900 ADLs out of total 2106 and it was carefully ensured that a representation from all types of 

ADLs is included in the subset of data. 

3.5 Feature Extraction 

Feature extraction involves transforming the raw accelerometer readings into meaningful 

representations that capture important information about the movement patterns. Some 

common features that can be extracted from accelerometer data for fall detection include: 

1. Statistical Features: Mean, median, standard deviation, variance, skewness, kurtosis, 

etc., calculated over a window of time. 

2. Frequency Domain Features: Using techniques like Fast Fourier Transform (FFT) to 

analyze the frequency components of the signal. 

3. Time-Domain Features: Root Mean Square (RMS), zero-crossing rate, correlation 

between different axes, etc. 

4. Machine Learning-Derived Features: Features obtained from applying machine 

learning algorithms on the raw data, such as peak detection, slope detection, etc. 

The formula and details of these and other significant features are given in table 3.2. 
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From the accelerometer data features relevant to fall detection are extracted based on the values 

of Acceleration vector magnitude (AVM). A threshold-based algorithm is used for feature 

extraction that monitors the acceleration values and when a peak is detected (define as a value 

of 3g) an impact window is activated. After a wait of 3.5 seconds if no further activity or peaks 

are noted and subject comes to an acceleration of 1g then it is tagged as a potential fall [37]. 

The threshold value can be adjusted to account for the recoded traits of data and falls between 

1.5g-3g which is very low and helps to curtail false negatives. Fig 3.2 below provides its 

pictorial representation. 

 

Figure 3-3 Simple Fall Detection using Threshold. 

Depending on the context of research and objectives a varying combination of features can be 

gathered from rich accelerometer data. For this study, data extraction techniques as briefly 

explained above are used to collect a subset of features relevant to falls and probable falls to 

be used for fall detection. The focus is on the features that provide valuable insights into the 

behaviour or movements to be analyzed that are then incorporated in the classification 

algorithms.  
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A list with description of the features extracted for this research based on research done by [37] 

is given in Table 3.2 below. 

Table 3-2 Features extracted from Accelerometer Signals 

Feature 

No. 

Feature Name Description 

1 Avg Absolute acceleration 

magnitude variation 

(AAMV) 

AAMV [𝑛] = (1/N) Σ𝑖∈𝑤 𝑖𝑛 |AVM[𝑖 + 1]-AVM[𝑖]| 

2 Mean Mean = Σ𝑖∈𝑤 𝑖𝑛 AVM[𝑖] / N 

3 Median N (odd): Med = AccelerationValues[(N + 1) / 2] 
N (even): Med = (AccelerationValues[N / 2] + 

AccelerationValues[(N / 2) + 1]) / 2 

4 Range R = Max(AccelerationValues) - Min(AccelerationValues) 

5 Step Count Index (SCI) SCI = ∑(√(ax^2 + ay^2 + az^2)) / g 

6-8 Net Axis Acceleration 

along x,y,z axis SAA 
SAA𝑥/𝑦/𝑧 = Σ 𝑖∈𝑤𝑖𝑛 |𝐴𝑥/𝑦/𝑧 [𝑖]| 

 

9 Summed Magnitude Area 

(SMA) 
SMA = Σ 𝑖∈𝑤𝑖𝑛 (|𝐴𝑥 [𝑖]| + |𝐴𝑦 [𝑖]| + |𝐴𝑧 [𝑖]|) 

 

10-12 The Angle variation with 
tilt (TAV 
along x,y,z) 

Avg (TA[i] = arccos ( Alp[i]/AVMlp [i] )) 

13 Impact Duration Index 
(IDI) 

IDI = EndTime i  – StartTime i 

14 Maximum Peak Index 
(MPI) 

MPI = PeakValue / g 
 

PeakValue is the magnitude of the highest peak in 
acceleration. 
Magnitude = √(ax^2 + ay^2 + az^2) 
g is the acceleration due to gravity (approximately 9.81 m/s²) 

15 Maximum Value Index 

(MVI) 

MVI = Max(|ax|, |ay|, |az|) / g 

 
|ax|, |ay|, |az| are the absolute values of the acceleration 
components along the x, y, and z axes respectively. 

g is the acceleration due to gravity (approximately 9.81 m/s²) 

16 Peak Duration Index (PDI) PDI = PeakTime − StartTime/T 

T = Total Duration of Window 

17 Activity Ratio Index (ARI) ARI = (Σ|a(t)|) / (N * g)  

Σ|a(t)| is the sum of the absolute magnitudes of acceleration 

values over a certain time window.  

N is the number of samples within the time window. g is the 
acceleration due to gravity (approximately 9.81 m/s²). 
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18 Activity Ratio Index (FFI) ARI = (Count of High Activity Instances) / (Total Number 

of Instances) 

19 Variance Var = (1/Total Number of Samples) Σ𝑖∈𝑤 𝑖𝑛 (𝑋𝑖 − 𝑀𝑒𝑎𝑛) 

20 Standard Deviation Std = (√(1/Total Number of Samples)) Σ𝑖∈𝑤 𝑖𝑛 (𝑋𝑖 − 𝑀𝑒𝑎𝑛) 

21 Root mean Square (RMS) RMS = √(𝑥0
2 + 𝑥1

2 + 𝑥2
2 + ⋯ + 𝑥N-1

2)/ Total Number of 

Samples 

 

3.6 Feature Selection 

Feature selection helps to choose a subset of relevant features from the extracted features that 

are given as input to the machine learning model and to BiLSTM. By selecting the most 

important and relevant features only, efficiency and performance of the model is improved. It 

also helps to avoid overfitting. 

Different feature selection techniques depending on the type of data, model and specific to 

implementation framework can be used. For this study ‘rankfeatures’ function available in 

MATLAB Statistics and Machine Learning Toolbox is applied with “entropy” and “roc” as the 

criteria to assess the significance of each feature.[51] 

For the BiLSTM implementation we have again selected important features by using Mutual 

Information (MI) and Eigenvector Centrality (EC) methods. These functions are available in 

the Feature Selection library (FSlib) [52] in MATLAB Toolbox. Mutual Information is a 

widely used metric for feature selection in various data analysis tasks, including fall detection. 

It is used to quantify the amount of information that two random variables share. In the context 

of feature selection, it helps to determine the relevance of each feature (attribute) with respect 

to target variable (e.g., fall or no-fall label) in the dataset. Relevant to fall detection, the 

variables share some mutual or common information measured using this function. Through 

ranking the features having high mutual information would be ranked higher and thus are best 

suited for use in the classification. The features with low mutual information are discarded.  

Eigenvector Centrality (EC) is a filter-based method in which features are visualized as nodes 

in affinity graph and then the nodes with central position represents the importance [53]. For 

the sake of selecting features, they can be ranked first based on the notion of centrality (EC) or 

can be directly selected. Neighboring nodes are evaluated for their importance and then 

importance is determined. This method also helps to reduce the number of irrelevant features 

from the dataset, and this improves the classification accuracy and performance. 
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Before applying feature selection, data is split into training and testing datasets with the purpose 

of assessing the performance of proposed models and ensure that they generalize well to new, 

unseen data. Using the training datasets, performance is further enhanced as explained above 

by selecting best features before data is fed to the models. 

3.7 Classification Algorithms 

The objective of this study is to improve the accuracy of fall detection by selecting a 

representative dataset specifically collected from elderly and to test the robustness of the 

solution a couple of other data sets are employed as well. The choice of classification model 

on one hand is based on the data stream and at the same time need to evaluate against available 

benchmarks already available using the reference data sets. To attain these results two 

classification models namely Random Forest and BiLSTM are used and new dataset 

FallMEdADL is used as input to both models with promising results. 

3.7.1 Random Forest 

Random Forest is a machine learning algorithm that can be used for a variety of tasks, including 

fall detection. Fall detection involves identifying instances when a person experiences a sudden 

drop or collapse, which could indicate a potential fall and subsequent need for assistance. It is 

an ensemble learning method that combines multiple decision trees to make more accurate 

predictions. Random Forest builds a collection of decision trees during the training phase. Each 

decision tree is trained on a different subset of the training data, and they operate independently. 

At each node of every decision tree, a random subset of features is considered for splitting. 

This randomness helps prevent overfitting and decorrelates the trees. During the prediction 

phase, each decision tree in the forest independently classifies the input data. The class with 

the most "votes" from the individual trees becomes the final prediction.  
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Fig 3.4 shows the typical working of a Random Forest algorithm. 

 

Figure 3-4 Random Forest Algorithm 

 

3.7.2 Bidirectional Long Short-Term Memory (BiLSTM) 

Using Bidirectional Long Short-Term Memory (BiLSTM) networks for fall detection is a 

feasible and effective approach. BiLSTMs are a type of recurrent neural network (RNN) 

architecture that can capture both past and future context in sequences, making them well-

suited for tasks like fall detection where temporal dependencies are important. 

BiLSTMs process the sequential data in two directions: from the beginning to the end (forward 

pass) and from the end to the beginning (backward pass). This bidirectional processing allows 

the network to capture dependencies not only on the past but also on the future, enhancing its 

ability to understand the context of the input sequence. Within the BiLSTM architecture, each 

time step in the sequence is processed by an LSTM cell. 

The BiLSTM network is trained using labeled data, where the input sequences are associated 

with fall or non-fall labels. During training, the network learns to adjust its internal parameters 

(weights and biases) to minimize the difference between its predictions and the actual labels. 

Once trained, the BiLSTM model can be used to predict fall events in real-time. Given a new 
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sequence of input data, the model produces an output indicating the likelihood of a fall 

occurrence. Fig 3.5 shows a simple architecture of BiLSTM classifier. 

 

Figure 3-5Architecture of BiLSTM Classifier 

 

The results of classification algorithms are analyzed using performance metrics related to 

accuracy, sensitivity, and specificity.  
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Fig 3.6 depicts how different modules and data interact with each other. A detailed account of 

experimental setup and implementation details is presented in next chapter. 

 

 

Figure 3-6 Complete Workflow of Proposed solution 
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Chapter 4 

 

4 EXPERIMENTAL SETUP & RESULTS 

In this chapter, we will explain in detail the experimental setup where the learning and concepts 

of machine learning and deep learning classification are put into implementation. This phase 

includes defining the parameters, like number of splits, layer configurations, activation 

functions, and performance metrics selected and applied for evaluation of results. The training 

process, with convergence criteria along with application of feature selection techniques are 

also discussed. 

4.1 Experimental Setup for FallMEdADL Dataset 

In sections 3.3 and 3.4 above, the data preparation methods and functions applied prior to 

utilizing the data to train the models are described in detail. Section 3.5 describes the features 

of the dataset that are used to train the ML models. Feature selection techniques are also 

discussed at length in section 3.6. The next step after feature extraction is to determine the 

optimum model for both RF and BiLSTM classification models in terms of hyperparameters. 

Both models are implemented in MATLAB R2023a.  

Different hyperparameters like “No of units”, “Nu of Splits”, and “n estimators” are applied 

and tested with different values to enhance the predictive capability of the model. The RF 

model was trained and evaluated by iteratively choosing the number of trees from 1-50. The 

MaxNumSplits parameter was set to 15 and the Method was set to classification and 

TreeBagger ensemble for classification is used. The 5-fold cross-validation was used to ensure 

the fairness of results. A total of 100 iterations were performed on each number of trees and 

averaged out the results to find out the best tree value for which maximum performance was 

achieved. Figure 4.1a shows the best performance was achieved for 24 numbers of trees for 

new dataset and 35 number of trees for FallDroid, Mobiact and UniMib Shar datasets.  

A graph is created showing the best accuracies and error rates. A forest is created based on the 

best estimator value with a given “max depth” and “min sample leaf”.  

The graphical view of the first trained classification tree while doing iterations is shown below 

in Fig 4.1 where value ‘1’ represents a Fall and value ‘-1’ depicts ‘No-Fall’. 
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Figure 4-1 Implemented Classification Tree Instance 

In the case of the BiLSTM model, the best model was found by iteratively choosing the value 

of the number of units from 1-90 for a single BiLSTM layer. The complete architecture for the 

BiLSTM model is shown in Figure 4.2. 

 

Figure 4-2 Implemented BiLSTM Architecture 
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A total of 100 iterations were performed on each number of units and averaged out the results 

to find out the best number of units for which maximum performance was achieved. Tests 

revealed that 63 units in the BiLSTM layer gave the best output and used as the hyper-

parameter. 

A typical training instance of BiLSTM Training Progress is shown in Fig 4.3 below.  

 

Figure 4-3 Training Progress of an instance of BiLSTM 

Table 4.1 shows the hyper parameter values used for both RF and BiLSTM classification 

models. 

Table 4-1 Hyperparameters used for Classification Models 

S. No. Classification Model Hyper Parameters 

1. Random Forest Splits = 15 

No of folds = 5 

Tested with Trees = 1-50 

Best results at Trees = 35 

 

2. BiLSTM Optimizer = Adam 

No of epochs=200 

Batch size = 4 

Learning rate = .001 

Dropout = .2 

Units Tested = 1-90 

Best results with units = 63 
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The results of RF and BiLSTM for the hyperparameter tuning are shown in Fig 4.4 and Fig 4.5 

respectively. 

 

Figure 4-4 Avg. Performance of Random Forest 

 

Figure 4-5 Avg. Performance of BiLSTM  
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After this, the two FS techniques were applied to improve the performance, efficiency, and 

interpretability of the models and to reduce overfitting.  

For applying ‘Mut-Inf’ on the 21 features for FallMEdADL dataset, it was first split into an 

80:20 ratio. The training set was sent as input parameter to the Muteinf function implemented 

in MATLAB FSlib library. This function returns the feature vector based on ranking from the 

most important to less important. These features were then sent iteratively one by one from top 

to bottom to find fit for both RF and BiLSTM models. A total of 100 iterations were performed 

to find out the average performance for all 21 features. For the RF model 15 features gave the 

best average performance and for the BiLSTM model 9 features were ranked as of high 

importance and gave the best results.  

In the case of ‘ECFS’ function for feature selection, the best average performance for the RF 

model was achieved with 19 features and for the BiLSTM model with 16 features respectively. 

A detailed account of feature selection techniques is given under section 3.6. 

Figure 4.6 shows the occurrence of features in the top 15 out of all 21 features for the RF 

model which shows that these features were selected repeatedly in all iterations and are 

prominent features.  

 

Figure 4-6 Performance of RF using MI FS Technique 



40 

 

Figure 4.7 shows the occurrence of features in the top 9 out of all 21 features for the BiLSTM 

model.  

 

Figure 4-7 Performance of BiLSTM using MI FS Technique 

 

4.2  Overall Testing on FallMEdADL, FallDroid, UniMiB SHAR, and Mobiact 

Dataset 

This critical phase serves as the foundation upon which our entire research effort is built, 

defining the parameters and methodologies that govern the acquisition of knowledge through 

computational analysis. Also, in this research we present the cross evaluation and analysis 

using 4 multiple datasets comprising both public datasets and proprietary datasets along with 

new elderly data. 

Performance evaluation metrics such as accuracy, sensitivity, and specificity are commonly 

used in the field of ML and DL, particularly in binary classification tasks. These metrics help 

assess the performance of a classification model by comparing its predictions to the actual 

ground truth. Accuracy is one of the most basic and intuitive metrics. It measures the overall 

correctness of the model's predictions. It is calculated as the ratio of the number of correct 
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predictions (both true positives and true negatives) to the total number of predictions (true 

positives, true negatives, false positives, and false negatives). 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

where: 

• TP (True Positives): The number of positive instances correctly predicted as 

positive. 

• TN (True Negatives): The number of negative instances correctly predicted as 

negative. 

• FP (False Positives): The number of negative instances incorrectly predicted as 

positive. 

• FN (False Negatives): The number of positive instances incorrectly predicted as 

negative. 

Sensitivity (also known as Recall or True Positive Rate) measures the ability of the model to 

correctly identify positive instances (the ones that belong to the positive class). It is the ratio 

of true positive predictions to the total number of actual positive instances. 

Sensitivity = TP / (TP + FN) 

Specificity: Specificity measures the ability of the model to correctly identify negative 

instances (the ones that belong to the negative class). It is the ratio of true negative 

predictions to the total number of actual negative instances. 

Specificity = TN / (TN + FP) 

These metrics provide valuable insights into the strengths and weaknesses of a classification 

model and can help guide the model optimization process based on the specific requirements 

of the application. To ensure the effectiveness of these metrices we had done the data 

preprocessing and datasets were balanced. The classification models envisaged and discussed 

in section 4.1 applied on the FallMEdADL dataset are evaluated on the reference datasets of 

FallDroid, UniMiB SHAR and Mobiact datasets to ensure robust testing of algorithms 

employed. All these datasets after the feature extraction step were first evaluated on the RF 

model by using both FS techniques. The RF model proposed on the FallDroid dataset remain 

fixed by setting the number of trees=35 and MaxNumSplits=15. RF model was trained and 

tested on the 15 features dataset using a total of 100 iterations and the average performance 

was calculated.  
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For the ECFS technique, the top 19 features were fixed, and the RF model was trained and 

tested on 19 features dataset and average performance was computed. For the BiLSTM model, 

the FallDroid dataset performed best for the single layer with the number of units=63. So, the 

model parameters along with other training options listed in Table 4.1 remain the same. 

Moreover, for MI FS and FC FS techniques, the top 9 features and 16 features were fixed 

respectively and the BiLSTM model was trained and tested on the 9 and 16 features dataset. A 

total of 30 iterations were performed and the average performance was computed. 

In the case of the UniMiB SHAR dataset, for the MI FS technique, the best ranked features 

were the top 15 and top 9 for the RF and BiLSTM models respectively. For ECFS, the 

occurrence of features in the top 19 and top 16 for RF and BiLSTM models respectively. 

After applying the feature selection, RF and BiLSTM models were trained and tested for the 

four datasets to get generalized results. Their performance is evaluated based on measures of 

accuracy, sensitivity, and specificity. Table 4.2 shows the results of all the average performance 

measures for the four reference datasets using RF algorithm with feature selection. 

Table 4-2 Avg performance of RF Classifier using all datasets  

Dataset Accuracy Sensitivity Specificity 

FallMEdADL 97.36% 97.12% 94.66% 

FallDroid 92.30%  93.09% 91.60% 

Mobiact 95.05% 97.10% 93.30% 

UniMib SHAR 97.30% 99.38% 94.13% 

 

Table 4.3 shows the results of all the average performance measures for the four reference 

datasets using BiLSTM algorithm with feature selection. 

Table 4-3 Avg performance of BiLSTM Classifier using all datasets  

Dataset Accuracy Sensitivity Specificity 

FallMEdADL 98.23% 96.94% 99.09% 

FallDroid 95.81% 93.31% 97.66% 

Mobiact 98.42% 98.50% 97.84% 

UniMib SHAR 98.30% 99.48% 96.40% 
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Table 4.4 compares the performance of newly proposed dataset with BiLSTM classification 

with the three other datasets. Shahzad et al. [37] applied different ML algorithms on the 

FallDroid dataset and reported higher accuracy of 91.70% for the MKL-SVM algorithm which 

is less than the performance achieved by BiLSTM model. This study has thus improved the 

prediction results as compared to other techniques applied earlier for the FallDroid dataset and 

provides new direction to the researchers. Ivascu et al. [54] reported results on the UniMiB 

SHAR dataset for the RF model with an accuracy of 96.21% which was slightly lower than our 

reported results (See Table 4.3). Moreover, the probability of predicting falls as compared to 

ADLs (Sensitivity) is higher for BiLSTM and RF model. Alawneh et al. [55] proposed results 

on UniMiB SHAR (AF-2) provided a dataset for the BiLSTM model and achieved an accuracy 

of 99.25% which is slightly comparable with our achieved an accuracy of 98.24% ±1.53. 

However, there is no significant difference in the accuracies achieved by both models. Ajerla 

et al. [56] employed the LSTM model along with the reliefF filter-based FS technique on the 

Mobiact dataset and achieved an accuracy of 99% which is again less than the newly dataset-

based accuracy.  

Table 4-4 Avg performance against multiple datasets  

Research 

Reference 

Dataset Classifier Accuracy Sensitivity Specificity 

Current FallMEdADL BiLSTM 98.23% 96.94% 99.09% 

 FallDroid BiLSTM 95.81% 93.31% 97.66% 

 Mobiact BiLSTM 98.42% 98.50% 97.84% 

 UniMib SHAR BiLSTM 98.30% 99.48% 96.40% 

[37] FallDroid MKL-SVM 91.70% 95.83% 88.01% 

[39] UniMib SHAR BiLSTM 99% N/A N/A 

 

However, the performance of the methodologies discussed in the previous research are not 

matchable both with respect to performance but also by considering the complexity and 

relevance of dataset. The datasets used in the past accounted for simple daily life activities and 

did not have tricky ADLs that were like falls and could become a potential source of more false 

negatives. In addition to that new research is based on elderly representative data of daily 

activities. 
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Chapter 5 

 

5 CONCLUSION and FUTURE WORK 

5.1  Conclusion 

The research presents implementation and comparison of deep learning and machine learning 

techniques. It also presents a new elderly ADL dataset that when used as input has given 

remarkable results. In addition to this new dataset two publicly available datasets and a 

proprietary dataset that contained complex ADLs resembling falls are used for evaluation of 

classifiers. The ability of a model or algorithm to generalize its learnings from the dataset to 

new, unseen data depends on the dataset's diversity and relevance to real-world scenarios. A 

biased or incomplete dataset can limit the applicability of research findings. We have tested 

and proved that new elderly data that is better representative for elderly fall detection results in 

higher prediction accuracies and less false alarms or false negatives. This new dataset will be 

published as well with the intent that researchers can use it for better analysis and prediction. 

Generally, also when comparing the acceleration of elderly movements, they are naturally 

different from young adult and all research currently relies on the young adult’s data with 

average age between 28 to 60. While it is understandable to not get fall data from elderly 

avoiding any mishaps or injuries, yet the ADL data as used in this research can be collected 

and compared with probable fall data.  Application of BiLSTM and RF on the new dataset 

along with feature selection techniques on the new dataset FallMEdADL has attained the 

maximum average accuracy of 99.80%. Also, these architecture and techniques are tested 

against 3 other reference datasets and results are compared. This robust testing across multiple 

datasets has given a sound basis for generalization of the algorithms. 

 

5.2  Future Work 

To serve the purpose of elderly care and fall detection, the research can be enhanced by 

developing an android app for the smartphones that incorporate the proposed solution. Then a 

comparison of online and offline analysis using the newly proposed dataset is also suggested. 

In addition to making this an end-to-end working solution from fall detection to emergency 
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alarm and response mechanism; the new dataset FALLMEdADL can also be enhanced. 

Currently, data is collected from single location and work is already in progress to gather 

elderly ADL data from other locations of Belly, Hand, and Bag. Future study can be based on 

developing and analyzing the classification algorithms that can effectively consider the 

additional information and come up with an even more generalized and trustworthy solution. 
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