## BIM-BASED KNOWLEDGE MANAGEMENT SYSTEM FOR CONSTRUCTION COST CLAIMS

BY

## **MEER HUMZA**

## (NUST MS CE&M 090000203392)

**Master of Science** 

in

## **Construction Engineering and Management**



**Department of Construction Engineering and Management** 

National Institute of Transportation

School of Civil and Environmental Engineering

National University of Sciences and Technology

Islamabad, Pakistan

This is to certify that the

thesis titled

## BIM-BASED KNOWLEDGE MANAGEMENT SYSTEM FOR CONSTRUCTION COST CLAIMS

Submitted by

### **MEER HUMZA**

## (NUST2017MSCE&M00000203392)

has been accepted towards the partial fulfillment

of the requirements for the degree of

Master of Science in Construction Engineering and Management

## Dr.-Ing. Abdur Rehman Nasir

Supervisor / Assistant Professor

Department of Construction Engineering and Management

School of Civil and Environmental Engineering (SCEE)

National University of Sciences and Technology (NUST)

### THESIS ACCEPTANCE CERTIFICATE

Certified that final copy of MS thesis written by Meer Humza (Registration No. NUST2017MSCE&M00000203392), of PG Wing – SCEE has been vetted by undersigned, found complete in all respects as per NUST Statutes / Regulations, is free of plagiarism, errors, and mistakes and is accepted as partial fulfillment for award of MS/MPhil degree. It is further certified that necessary amendments as pointed out by GEC members of the scholar have also been incorporated in the said thesis.

| DrIng. Abdur Rehman Nasir |
|---------------------------|
|                           |
|                           |

Signature (HOD):\_\_\_\_\_

Date: \_\_\_\_\_

Signature (Dean/Principal):\_\_\_\_\_

Date: \_\_\_\_\_

This work is dedicated to my beloved Laala (Father), Abayi (Mother) & siblings.

## ACKNOWLEDGEMENTS

Thanks to Almighty ALLAH, the benevolent and the merciful, who gave me courage during my whole life. I want to thank MY FAMILY for supporting me in every possible way to achieve this and every chapter of my life. I also owe thanks to the National University of Science & Technology for helping financially, without which this endeavor was not possible. I want to thank and pay respect from the depths of my heart to my Supervisor, Dr. -Ing. Abdur Rehman Nasir, who proved to be a beacon of light, guided me during this journey and trusted me to achieve this goal. I acknowledge many thanks to GEC members for providing their precious time and encouragement.

## **TABLE OF CONTENTS**

| LIST OF ABBREVIATIONS viii                                    |
|---------------------------------------------------------------|
| LIST OF EQUATIONSix                                           |
| LIST OF TABLESx                                               |
| LIST OF FIGURESxi                                             |
| ABSTRACT xiii                                                 |
| 1 INTRODUCTION                                                |
| 1.1 PREFACE                                                   |
| 1.2 PROBLEM STATEMENT                                         |
| 1.3 RESEARCH OBJECTIVES                                       |
| 1.4 SIGNIFICANCE OF STUDY                                     |
| 2 LITERATURE REVIEW                                           |
| 2.1 BACKGROUND                                                |
| 2.2 CONSTRUCTION CLAIMS                                       |
| 2.2.1 Cost Claims                                             |
| 2.2.2 Disruption, Prolongation, and Acceleration Claims       |
| 2.3 CONTRACT STRATEGY FOR COST CLAIMS                         |
| 2.3.1 FIDIC19877                                              |
| 2.3.2 FIDIC1999                                               |
| 2.3.3 FIDIC 2017                                              |
| 2.3.4 NEC3 Engineering and Construction Contracts (NEC3 ECC)9 |
| 2.4 GUIDELINES FOR COMPREHENSIVE COST CLAIMS                  |
| PREPARATION11                                                 |
| 2.5 WHICH FORMULA IS TO BE USED FOR HOME OFFICE               |
| OVERHEADS CALCULATION?                                        |
| 2.5.1 Hudson's Formula12                                      |
| 2.5.2 Emden's Formula13                                       |
| 2.5.3 Eichleay's Formula13                                    |
| 2.6 CLAIMS MANAGEMENT15                                       |

| 2.7  | DEVELOPMENT IN CLAIMS MANAGEMENT            | 16     |
|------|---------------------------------------------|--------|
| 2.8  | INEFFICIENCIES IN MANAGEMENT OF CONSTRUCTIO | N COST |
| CLAI | MS FROM LITERATURE                          | 16     |
| 2.9  | BIM CONCEPTS & BENEFITS                     |        |
| 2.10 | BIM PLATFORMS                               |        |
| 2.11 | API                                         |        |
| 2.1  | 1.1 Revit API                               |        |
| 2.12 | Role of BIM in Cost Claims Management       | 27     |
| 3 I  | RESEARCH METHODOLOGY                        |        |
| 3.1  | INTRODUCTION                                |        |
| 3.2  | RESEARCH DESIGN                             |        |
| 3.3  | VERIFICATION OF ISSUES IN COST CLAIMS IN    |        |
| CONS | STRUCTION INDUSTRY                          |        |
| 3.4  | PROTOTYPE DEVELOPMENT                       |        |
| 3.5  | PROTOTYPE EVALUATION                        |        |
| 4 I  | RESULTS AND DISCUSSIONS                     |        |
| 4.1  | PREAMBLE                                    |        |
| 4.2  | BIM-CCMS FRAMEWORK                          |        |
| 4.3  | SIGNIFICANCE OF DYNAMO                      |        |
| 4.3  | .1 Import Schedule Script:                  | 41     |
| 4.3  | .2 Delay Calulations                        | 41     |
| 4.3  | .3 Baseline and Actual Model                | 41     |
| 4.3  | .4 Check Liability                          |        |
| 4.3  | .5 Direct Cost of Varied Material           | 43     |
| 4.3  | .6 Man & Machinery Cost                     | 44     |
| 4.3  | .7 Overhead Costs                           | 44     |
| 4.3  | .8 Claim Summary                            | 45     |
| 4.4  | BIM-CCMS TEMPLATE ARCHITECTURE              | 46     |
| 4.4  | .1 Assessment Panel                         |        |
| 4.4  | .2 Contract Panel                           | 49     |

| 4.         | 4.3 Cost Panel                    | 51 |  |  |
|------------|-----------------------------------|----|--|--|
| 4.         | 4.4 Visualization Panel           | 57 |  |  |
| 4.         | 4.5 Summary Panel                 | 57 |  |  |
| 4.         | 4.6 Printing the Output           |    |  |  |
| 4.5        | EVALUATION RESULTS                | 63 |  |  |
| 4.6        | FEEDBACK FOR SYSTEM FROM EXPERTS: | 70 |  |  |
| 5          | CONCLUSIONS AND RECOMMENDATIONS   | 72 |  |  |
| 5.1        | DISCUSSION                        | 72 |  |  |
| 5.2        | CONCLUSION                        | 72 |  |  |
| 5.3        | LIMITATIONS                       | 73 |  |  |
| 5.4        | RECOMMENDATIONS                   | 74 |  |  |
| 5.5        | FUTURE RESEARCH DIRECTIONS        | 74 |  |  |
| REF        | ERENCES                           | 75 |  |  |
| APPENDIX-A |                                   |    |  |  |
| APPENDIX-B |                                   |    |  |  |
| APP        | APPENDIX-C96                      |    |  |  |

## LIST OF ABBREVIATIONS

| AEC      | Architectural, Engineering & Construction         |  |  |
|----------|---------------------------------------------------|--|--|
| AIA      | American Institute of Architects                  |  |  |
| API      | Application Programming Interface                 |  |  |
| B-CMS    | BIM-based Claims Management System                |  |  |
| BIM      | Building Information Modeling                     |  |  |
| BIM-CCMS | BIM-base Cost Claims Management System            |  |  |
| CAD      | Computer Aided Designs                            |  |  |
| DNP      | Defects Notification Period                       |  |  |
| FIDIC    | International Federation for Consulting Engineers |  |  |
| GCC      | General Conditions of Contract                    |  |  |
| НООН     | Home Office Overheads                             |  |  |
| ICT      | Information Communication Technology              |  |  |
| IDSS     | Integrated decision support system                |  |  |
| IFC      | Industry Foundation Classes                       |  |  |
| NEC      | New Engineering Contract                          |  |  |
| NEC-ECC  | NEC for Engineering & Construction Contract       |  |  |
| PSOM     | Particle Swarm Optimization Model                 |  |  |
| RII      | Relative Importance Index                         |  |  |
| ROI      | Return of Investment                              |  |  |
| SCE      | Small Construction Enterprises                    |  |  |
| SCL      | Society of Construction Law                       |  |  |
| TFM      | Total Float management                            |  |  |
|          |                                                   |  |  |

# LIST OF EQUATIONS

| Equation 1 for HOOH calculation using Hudson Formula                      | 13 |
|---------------------------------------------------------------------------|----|
| Equation 2 – Formula for cost/profit ratio                                | 13 |
| Equation 3 – Formula for Weekly recoverable rate                          | 13 |
| Equation 4- Formula for finding of Overhead allocable to delayed contract | 14 |
| Equation 5 – Formula for finding of Overhead per day                      | 14 |
| Equation 6 - Formula for Overhead Claimed for delayed contract            | 14 |
| Equation 7 - Formula for for Relative Importance Index                    | 37 |

## **LIST OF TABLES**

| Table 2-2-1 Literature Review Based Inefficiencies         | 17 |
|------------------------------------------------------------|----|
| Table 3-1 Finalized Inefficiencies                         | 30 |
| Table 4-1 Assessment Panel Buttons and their Functions     | 47 |
| Table 4-2 Cost Panel Buttons and their Functions           | 51 |
| Table 4-3 Semi Structured interview-based Evaluation       | 65 |
| Table 4-4 Future Improvements Recommended by Experts       | 71 |
| Table 0-1 Cost claim related FIDIC clauses and Liabilities | 96 |
| Table 0-2 NEC3 Cost Claim related Clauses and Liabilities  | 11 |

## **LIST OF FIGURES**

| Figure 2-1 Claim management Steps 1                  | 15 |
|------------------------------------------------------|----|
| Figure 2-2 BIM process vs Conventional CAD Process 2 | 23 |
| Figure 2-3 BIM Maturity Level 2                      | 23 |
| Figure 2-4 BIM dimensions 2                          | 24 |
| Figure 2-5 Conventianal Vs BIM collaboration 2       | 25 |
| Figure 3-1 Research Design                           | 29 |
| Figure 3-2 Respondent's Experience                   | 30 |
| Figure 3-3 Type of Organization                      | 30 |
| Figure 3-4 Data Work flow                            | 35 |
| Figure 3-5                                           | 37 |
| Figure 4-1 Conceptual Framework for BIM-CCMS 4       | 40 |
| Figure 4-2 Script for Importing Schedule 4           | 41 |
| Figure 4-3 Script for Delay Calculations 4           | 41 |
| Figure 4-4 Script for Setting Baseline Model 4       | 42 |
| Figure 4-5 Script for Actual Model Variations 4      | 42 |
| Figure 4-6 Script for Selection of Clauses 4         | 43 |
| Figure 4-7 Script for Checking Liability 4           | 43 |
| Figure 4-8 Script for Direct material cost 4         | 44 |
| Figure 4-9 Script for Man & machinery cost 4         | 44 |
| Figure 4-10 Script for HOOHs Cost 4                  | 45 |
| Figure 4-11 Script for Site Overheads 4              | 45 |
| Figure 4-12 Script for Claim Summary 4               | 46 |
| Figure 4-13 BIM-CCMS Protype interface 4             | 46 |
| Figure 4-14 Importaing Schedule 4                    | 47 |
| Figure 4-15 Delays in activities 4                   | 48 |
| Figure 4-16 Project Varations in Activities 4        | 48 |
| Figure 4-17 Cntract Types 4                          | 49 |
| Figure 4-18 Delayed Activities & Contract clauses    | 50 |
| Figure 4-19 Activities Liabilities 5                 | 50 |
| Figure 4-20 Deirct cost of material                  | 52 |

#### ABSTRACT

Construction Projects go through many changes during, but not limited to, their designing and execution phases. These changes may occur due to the involvement of multiple uncertainties. These uncertainties lead to different kinds of claims. Almost in every claim, one of both the additional time and the cost or both are pursued. Handling claims is a complex procedure requiring multiple scrutiny layers of documents and negotiations between contract parties. There are many inefficiencies in the conventional method of handling claims. These inefficiencies were found from literature review and verified by the construction industry through an initial survey. Building information modeling (BIM) and Information communication technologies (ICT) provide innovative solutions to reduce inefficiencies in claims management. This study aims to develop a BIM-based knowledge Management System for Cost Claims (BIM-CCMS) in a BIM environment to handle cost claims in the construction industry. Some of the key features of the BIM-CCMS prototype are i) breakdown of different kinds of direct and indirect costs; ii) involvement of internationally used standard contracts like FIDIC and NEC3, iii) Visualization of variations in design and its impacts on costs; and iv) summarizing and formatting cost results to provide bases for cost claims. The prototype was then presented to industry experts using a case study project. Industry experts later evaluated this Prototype through semi-structured interviews. Experts were selected based on their vast knowledge and experience of contracts, Planning and BIM. Some barriers in its implementation and future recommendations were also recorded and discussed.

## Chapter 1

## INTRODUCTION

#### **1.1 PREFACE**

Engineering and construction projects are subject to sizable risks and uncertainties (Ali D. Haidar, 2011). These uncertainties may include site conditions, weather, labor, and materials availability, local or government body intervention, and inflation (Pishdad-Bozorgi & de la Garza, 2012; Tang, Li et al., 2013; Wenzhe Tang et al., 2007); As the projects proceed, these uncertainties make a project prone to go through variations or change orders issued (El-adawayet al., 2016). Studies show that almost 40% of the construction projects tended to go through the change of more than 10%, as evaluated by their ratio of final project costs to their initial costs of projects (Ibbs, 2012). These change orders could further lead contractors to different claims (Abdul-Malak et al., 2002).

Changes to the schedule of works caused by owners often become contentious issues, especially when one or more changes result in delay and disruption (Ali D. Haidar, 2011; Enshassi et al., 2009; Levin, 2013; Revay, 1993). A claim can be stated as an assertion of a right to an extension of time or a payment that may arise under the agreed conditions of a contract (Chappell, 2011; Revay, 1993). 'Delay Claim' is usually defined as a budgetary claim that follows from a delay to the completion of the projects (Gibson, 2014b). The reason could be the delay in responsibilities by either party to a contract. For example, the client's submission drawings provided to a contractor are late (Ibbs, Nguyen, & Simonian, 2011; Revay, 1993). 'Disruption claim' is used to mention a monetary claim where part of the works has been disrupted (Gibson, 2014a). Usually, quantifying delays of activities on the critical path may help a claim for the 'prolongation costs' (Thomas, 2015).

Although most of these claims are justifiable and do not tend to create confrontation between different parties (Enshassi et al., 2009), all parties, including the client, designer, and contractor, need to understand the claim process (Enshassi et al., 2009). Construction claims seriously affect the duration and cost of a construction project (Chovichien & Tochaiwat, 2015). The parties in a contract need to understand the provisions, roles, and responsibilities in case of any change event (or events) to reduce cost, time, and disputes (El-adaway et al., 2016).

Many claims consume plenty of managerial time to scrutiny and compile (Vidogah & Ndekugri, 1998a). To deal with or control claims effectively, all parties to a contract should establish and maintain good construction claim management processes in their organizations (Chovichien & Tochaiwat, 2015). Researchers suggest that claims management is as important as understanding contractual terms (Vidogah & Ndekugri, 1998a). If not properly managed, time and cost claims lead to serious onsite and offsite overhead (Davis & Ibbs, 2016).

The conventional claim management system is onerous and prone to errors because it is time-consuming and uses a lot of paper (Vidogah & Ndekugri, 1998a). The claims management obstacles can be majorly found in claim justification, quantification, retrieval of supporting data, and sufficiency of retrieved data (Ali D. Haidar, 2011; Chovichien & Tochaiwat, 2015; Gibson, 2014a; Vidogah & Ndekugri, 1998a); because there are no standard methods for effective management of claims (Shahhosseini & Hajarolasvadi, 2018). Sticking to traditional management practices is poor performance, which can be reduced using technology like Building Information Modeling (BIM) tools' implementation (Ali, Zahoor et al., 2018). BIM technology is providing the construction industry with benefits like reduction in cost, improved quality and performance, increased collaboration and communication, improved demonstration and substantiation process, cost estimation, better design and planning, clash detection, sustainability, and facility management (Ismail et al.,, 2017). Analyzing and overlaying Computer Aided Drawing (CAD) files is sluggish work; also, it is short in clarity, prone to errors, and inadequate in providing information (Lanka & Kandy, 2015). However, BIM has overcome this deficiency over the years (Ali et al., 2018).

Due to its visualization and information tracking, BIM is being used actively in the present age (Chou & Yang, 2017; Wang et al., 2014). This information/document tracing characteristic may also help construction stakeholders manage claims in a much more organized manner. This study aims to help the parties to a contract to understand, quantify and manage the construction cost claims with the help of visualization and analysis at every stage of a claim to manage construction claim.

#### **1.2 PROBLEM STATEMENT**

Literature study for claims management shows that the availability of data for proving the claim is one of the main hurdles in handling claims (Shahhosseini & Hajarolasvadi, 2018). Every claim combines two main segments, which are 1) identification of change event and entitlement to recovery and 2) quantification (Mcmanus & Starr, 2016). Most of the construction claims involve additional costs which need critical attention. If not solved at the right time, these claims can lead to disputes (Kumaraswamy, 1997). Preparation and assessment of cost claims according to contract clauses is a time-consuming and complex process. This procedure includes direct and indirect costs under specific heads in preparation of the claims. Timely management of cost claims can save the project from conflicts and delays (Vidogah & Ndekugri, 1998a).

Although there are some suitable expert systems to handle claims, no comprehensive approach is designed for claims (Shahhosseini & Hajarolasvadi, 2018). Building Information modeling has brought a revolution to the technology used in Architecture, Engineering, and the Construction Industry. However, BIM has not been fully utilized in contracts, especially in claims management. (Ali et al., 2018). BIM can be used to take full advantage of its lucid abilities like coordination, visualization, a centralized repository for contract parties to act as a transparent system to resolve claims.

#### **1.3 RESEARCH OBJECTIVES**

Objectives of this study are listed as below:

• To identify the issues in the cost claims management process in the construction industry

- To develop a framework for a BIM-based knowledge management system for cost claims.
- To develop a digital platform for implementing the framework in the BIM authoring platform.

### **1.4 SIGNIFICANCE OF STUDY**

Retrieval of relevant information/document is the first step in making claims and their link to analysis of delay and disruption (Valavanoglou et al., 2017). The requirements to document the impact assessment of a changing event include accuracy through continuous updates, a high level of details, and a systematic structure. This research aims to provide a detailed approach to create, quantify, visualize and proactively manage the cost claims in a comprehensive management system for all parties to a construction contract.

## Chapter 2

## LITERATURE REVIEW

#### **2.1 BACKGROUND**

An attempt is made to study inefficiencies in construction claims, specifically, cost claims and their types, standard forms of contracts to extract the events which may lead to cost claims in construction. Recent developments in claims management systems are also observed for this study to deal with such claims.

As Building Information Modeling (BIM) is emerging as one of the reliable technologies adopted in the construction industry, this chapter will also involve an in-depth review of its adoption and benefits in construction Projects. BIM platforms, the role of BIM in the Information and Communication Industry (ICT), Application Programming Interface (API) functionality, and an overview of Revit API are also discussed.

#### **2.2 CONSTRUCTION CLAIMS**

In the construction industry, the term "claim" is defined as the request made by any party for an additional time and/or cost following a "change" approved by the other party (Shahhosseini & Hajarolasvadi, 2018). In the broader sense, a claim is a request by one contract party to another for extra time or payment under provisions of the contract adopted (Chappell, 2011). Construction claims are of many types, and they could arise due to many reasons and causes (Koc & SKAIK, 2014). Chen, (2015) made some claim classification based on their purpose, bases, nature, and processing. The classification based on "purpose of claims" will be discussed in this chapter, including time-based claims and cost claims. A contractor may claim extra time and or/cost if the reasons are beyond his control (D. Gibbs, Stephen, Ruikar, & Lord, 2014). EOT claims require owners to extend the project completion date to avoid liquidated damages and compensate for the loss incurred (Yu, 2009). SCL Protocol Mainly decides the criteria for granting EOT to the either party if there is any delay by any contract party (SCL, 2017). The effects of these delays are summarized by Babar (Ali, 2018) which showed how these delays lead to EOT/Cost claims.

#### 2.2.1 Cost Claims

Critical Delays affect the overall duration of a project (Trauner, 2009), and Excusable Delays are those which are beyond the control of the contractor (Vasilyeva-Lyulina et al., 2015). Both of these delays lead to cost claims in construction (Ali, 2018). Construction claims have a significant effect on the project's total duration and total cost (Chovichien & Tochaiwat, 2015). Initially, these claims need to be handled on a processing basis which means either these claims are to be managed on an event basis, thus calling them "Individual Claims," or to be managed at the end of the project by mixing all of the events and presenting as "Total Claims" (Chen, 2015). Total claims are also termed as "Ex-Gratia Claims" (Ali D. Haidar, 2011; Levin, 2013) or comprehensive claims (Chen, 2015). Since we aim to achieve a claim management system with the help of Building Information Modeling (BIM), we will mainly discuss individual cost claims.

#### 2.2.2 Disruption, Prolongation, and Acceleration Claims

Disruption in construction and engineering contracts means the difference between "intention" and "reality" to achieve a milestone in a given work (Burr, 2016). Usually, the client's changes result in slowing down work progress or, in cases of suspension of work, then the contractor must prove the interruption in his planned work and thus resulting in some loss of productivity. This type of impact is described as "disruption in construction" (Ibbs & Stynchcomb, 2016). Disruption can be caused by a delay, or it may cause a delay (Burr, 2016). Prolongation is the extension of time for which costs are incurred due to a delay (Gibson, 2014b).

Prolongation is caused by delay, and prolongation causes increased costs (SCL, 2017). Not every delay will be on the critical path and thus will result in no general prolongation cost. Therefore delays are divided into two terms known as "Qualifying delays" (i.e., claims which bring with them the right to extra cost) and "Non-qualifying delays" ( which do not bring any additional cost with them). The employer's team should keep a record of delays caused by the contractor and for which the employer is not liable to pay (Thomas, 2015). A prolongation claim simply

states that the Employer or the Engineer has failed to act in a timely manner, which resulted in the contractor's inability to complete the project as per contract duration (Chappell, 2011).

In the event of a delay, any party to a contract may be faced with deciding if the acceleration is needed (Thomas, 2015). Acceleration is taken into account by a contractor if there is a need to fast track the project's progress or make up for time lost (Levin, 2013). An employer might see an acceleration that may be beneficial to avoid further loss due to delays and go for substantial savings in early completion. A contractor might see the acceleration as an advantage if it is liable to delay and the acceleration cost is comparatively less than prolongation cost (Thomas, 2015). According to (Levin, 2013; Thomas, 2015), acceleration can be due to these three reasons:

- Voluntary
- Constructive
- Following the owner's instructions

The contractor makes a reasonable attempt to accelerate and incurs additional expenses (Thomas, 2015).

## 2.3 CONTRACT STRATEGY FOR COST CLAIMS

A contract is the foundation of the construction process (Harrington et al., 2016). Understanding the contractual procedures for claims will help contract parties efficiently complete their projects (El-adaway et al., 2016). General Conditions of Contract (GCC) of the agreed contract should be reviewed in detail to completely understand the matter and different conditions that could occur during cost claims (Ali et al., 2018). A brief claim procedure is given in various editions of the most used contract document in international construction, i.e., International Federation of Consulting Engineers (FIDIC), including FIDIC (1987), FIDIC (1999), and the most recent FIDIC (2017).

#### 2.3.1 FIDIC 1987

In sub-clause 53.1 of FIDIC 1987, it is stated that if there is an event or

multiple events which can give rise to a claim, a contractor should provide the notice of additional time or cost to the engineer within 4weeks of its occurrence. The contractor shall also send a copy to the employer of the notice. Sub-clause 53.2 states that the Contractor should keep and send within 28 days the contemporary records to support and for substantiation of the claim as mentioned in sub-clause 53.3. If the contractor fails to follow, then sub-clause 53.4 states that the Engineer/Arbitrator should entitle the contractor of only the costs for which the contemporary records are available. The contractor shall be entitled to include the amount in any interim payment certificate after the Engineer has verified them and notify the Employer.

### 2.3.2 FIDIC 1999

Clause 20.1 states that "If the contractor considers himself to be entitled to additional time or payment under any clause of conditions or in connection with the contract, the contractor shall give notice to the Engineer within 28 days after Contractor became aware or should have become aware of the event/circumstances. If the contractor fails to do as mentioned above, the party will not be granted additional money or time. The contractor shall write a detailed claim including full supporting particulars, within 6weeks after the contractor became aware of the situation giving rise to the claim; if the situation giving rise to the claim has a continuing effect, then this fully detailed claim to be considered as interim and contractor shall send further interim claims on monthly bases, giving accumulated delay and/or the amount claimed. The contractor, within four weeks, shall send the final claim after the end of the effects resulting from the event. The Engineer shall respond with either approval or rejection to contractor's claims within 6weeks after receiving a claim."

#### 2.3.3 FIDIC 2017

Clause 20.2 of FIDIC 2017 edition states that: "The claiming Party shall give a Notice to the Engineer, describing the event or circumstance giving rise to the cost, loss, delay, or extension of DNP (Defects Notification period) for which the Claim is made as soon as practicable, and no later than 28 days after the claiming Party became aware or should have become aware of the event/circumstance (the "Notice of Claim" in these Conditions)." It further goes on to elaborate time limits for the burden of proof by the claimant and further process as, "Detailed supporting particulars of the amount of additional payment claimed (or amount of reduction of the Contract Price in the case of the Employer as the claiming Party), and/or EOT claimed (in the case of the Contractor), or extension of the DNP claimed (in the case of the Employer) Within either:

- *A.* "84 days after the claiming Party became aware, or should have become aware, of the event or circumstance giving rise to the Claim, or"
- B. "Such other period (if any) as may be proposed by the claiming Party and The Engineer shall give the Notice of his/her agreement/determination within42 days or within such other time limit as may be proposed by the Engineer and agreed by both Parties."

#### **2.3.4 NEC3 Engineering and Construction Contracts (NEC3 ECC)**

In NEC3, "compensation event" is used as terminology for additional time or money, loss, and expense, variation. The term "compensation" does not always mean that the prices can go up; depending upon circumstances, they can go down as well (Evans, 2017). In New Engineering Contract for Engineering and Construction Contract (NEC-ECC), the method regarding compensation events is given; it states the definition of compensation events in its clause no. 60. In clause 61.1, it is said that if the Project Manager instructs Contractor due to which a compensation event arises, the Project Manager will require Contractor to submit quotation. Clause 61.3 states that if the contractor becomes aware of the change or a compensation event and fails to notify the Project Manager within Eight weeks when he became aware, then the Contractor will not be entitled to additional cost or time. Clause 61.4 describes that the Project manager decides whether the contractor's notification is legible or not and then acts accordingly. If the change assessed by the project manager is understandable, then the Project manager will ask the Contractor to submit a quotation for a notified compensation event. The contractor then needs to submit a quote within three weeks after being instructed. The Project needs to reply within two weeks of the submission (clause 62.3). If the Project manager does not reply within the time allowed and the contractor has submitted more than one

quotation for the compensation event, then the contractor should state in the notification that his quotation is to be accepted (clause 62.6). Clause 63 & 64 describes the compensation event assessment by the contractor and project manager during the time allowed in the contract. Clause 65 states the final step, which is the implementation of the compensation event. New Engineering Contracts (NEC3) handles claims mainly in clause number 60 (Laryea, 2016). Evans (2017) discussed in detail that there are 19 core clauses for handling the compensation events, which are listed as below:

- "The Project Manager deals with "the change" to the works information, except the change provided by the contractor
- Denial of Permission by the Employer to use the site as per contract dates.
- Employer's Refusal to provide something that is his responsibility as per accepted programme date
- The Project manager instructs to modify or stop or change any key date
- The Employers or Others do not conform with the accepted programme or work information
- Project Manager does not reply to Contractor's communication within required period
- Instructions by Project Manager to deal with Valuables found within the site
- Project Manager changes previously agreed dates
- Project manager can withhold an acceptance for a reason not stated in contract
- Supervisor orders the Contractor to search for a defect, and no defect is found
- An unnecessary Delay caused by the supervisor's inspection
- Physical Conditions encountered by Contractor
- Recording of weather measurement
- Event which is by the contract an Employer's Risk
- The Project Manager certifies takeover of a part of the works before both the completion and the completion date

- Employer's failure to comply with providing the agreed facilities mentioned in the Works Information
- The Project Manager notifies a correction to an assumption which he has stated about a compensation event.
- A breach of contract by the Employer which is not one of the other compensation events in this contract.
- Force Majeure Events"

## 2.4 GUIDELINES FOR COMPREHENSIVE COST CLAIMS PREPARATION

Assessment and evaluation of disruption claims will depend upon the pricing and accounting policy of the contractor (Thomas, 2015). Pricing of claims can be divided into two categories which are post pricing (pricing is done after the work is done) and forward pricing (pricing is negotiated before the work is done) (Harrington et al., 2016; Levin, 2013). (Harrington et al., 2016) mentioned some of the basic pricing elements for a claim proposal. Those elements are:

- Summary
- Narrative
- Schedule analysis (if applicable)
- Pricing

The summary should be inclusive of sub-elements like entitlement, requested amount, an extension of time (if any), parties involved in a claim, and finally, the reference to the contract clause.

Similarly, the narrative will include sub-elements like the resulting growth in cost amount and time with supporting facts. Delay analysis techniques shall be used if schedule analysis is applicable. (Vasilyeva-Lyulina et al., 2015) discussed in detail different techniques for delay analysis. The main element of the claim proposal is pricing, which further is divided into direct costs (labor, supervision, permanent materials, job materials, and equipment) and impacted costs (impact on other activities, delay costs, i.e., standby time and escalation, acceleration costs, e.g., overtime and premium hours, lost profits, lost productivity costs and lost overheads).

Last but not least among elements is mark-up which includes the Jobsite overheads, home office overhead, profit, bond, and insurance.

Heads of a claim arising out of prolongation of the contract period are site overheads and office overheads (Thomas, 2015). (Gibson, 2014a) discussed these heads and further divided into sub-heads like Site overheads contains the costs for staff and site establishment (plant and equipment, small tools, scaffolding, electricity and telephone charges, etc.), while head office overheads in a claim are for recovery of, or contribution to the contractor's overheads and profit (Gibson, 2014a). To calculate loss, the contractor needs to justify the head office overheads and profit (Thomas, 2015).

## 2.5 WHICH FORMULA IS TO BE USED FOR HOME OFFICE OVERHEADS CALCULATION?

Various formulae can be used in case of prolongation (Thomas, 2015). The selection of the formula for head office overheads will depend on the situation in each case (Gibson, 2014b). Home office overheads expense damage incurred due to project delays is called un-absorbed overheads (Taam & Singh, 2003). According to SCL, three famous and most common formulae for the calculation of head office overheads are:

- a. Hudson Formula
- b. Emden Formula
- c. Eichleay Formula

### 2.5.1 Hudson's Formula

The Hudson Formula (Equation 1) can be found in HUDSON'S BUILDING AND ENGINEERING CONTRACTS 1970 (Gibson, 2014a). This formula includes a percentage in the contractor's tender for overheads as a basis for the contractor's loss of contribution to overheads (Thomas, 2015).

$$\frac{\text{Head office Overeheads (profit)\%}}{100} x \frac{\text{Contract sum}}{\text{Contract Period}} x \text{ Period of delay}$$

Equation 1 for HOOH calculation using Hudson Formula

Hudson's formula relies on the accuracy and reliability of the contractor's tender (Gibson, 2014a). SCL protocol guidance part C mentions the use of the Hudson formula. It states that as it is dependent upon head office overhead and profit mentioned in tender, which is already counted in the contract

#### 2.5.2 Emden's Formula

This formula was put forward in EMDEN'S BUILDING CONTRACTS AND PRACTICE, 8<sup>th</sup> edition (Thomas, 2015). The advantage of this formula is that it uses a head office overhead percentage based on the contractor's total business rather than on the specific contract in dispute (Gibson, 2014a; Thomas, 2015). This formula may not necessarily reflect the real effect on overhead costs, but it may provide a reasonable approximation (Gibson, 2014a). It contains two stages (Equation 2 & Equation 3) as follows:

 $\frac{Company \text{ overhead cost/profit}}{Company \text{ revenue}} = z\%$ Equation 2 – Formula for cost/profit ratio

 $\frac{z\%}{100}x\frac{Contract\ price}{Contract\ period\ (weeks)}xPeriod\ of\ delay(weeks)$  $= weekly\ recoverable\ rate$ 

Equation 3 – Formula for Weekly recoverable rate

#### 2.5.3 Eichleay's Formula

The most commonly used formula for calculation Home Office Overheads claims is this formula (Taam & Singh, 2003). The original Eichleay Formula consists of three steps or equations (Davis & Ibbs, 2016; Ness & Carper, 2010; Taam & Singh, 2003). First of all, from Equation 4, overheads aloocable to delayed contracts are determined. After that daily contract overheads are found from Equation 5. In the last step, overheads for delayed contract period are found from Equation 6.

 $\frac{Actual Billings for delayed contract}{Total actual billings for period} x Total homeoffice overheads$ = Overeads allocable to delayed contract(\$)

Equation 4- Formula for finding of Overhead allocable to delayed contract

Overhead allocable to delayed contract Days of performance

= Daily contract overhead for delayed contract  $\left(\frac{\$}{dav}\right)$ 

Equation 5 – Formula for finding of Overhead per day

Daily contract overhead for delayed periodxnumber of delayed days = Overhead claim amount for delayed contract (\$)

Equation 6 - Formula for Overhead Claimed for delayed contract

Gibson (2014) discussed the same formula using "weeks" instead of "days" in its calculations. Davis & Ibbs, (2016) discussed criteria for selection of Eichleay formula, based on the exploration of historical court cases. All conditions must be met for Eichleay Formula to apply:

- 1. "This is used mainly for the Main Contractor vs. Owner Disputes.
- 2. Unabsorbed Home Office Overheads (HOOH) resulted from force majeure events cannot be recovered
- 3. The formula is applicable when the project's schedule is extended past the contract performance period
- 4. Unrealistic figures produced by this formula will simply be disallowed
- 5. Oral agreements may be enforceable regardless of a written contractual agreement stating otherwise
- 6. Contractual agreements are upheld regardless of actual damages
- 7. Inability to calculate actual damages warrants the use of this formula."

#### **2.6 CLAIMS MANAGEMENT**

Claims management is an important part of contract management (Chen, 2015). Major steps of claims management system include identification, notification, analysis, quantification, presentation, and documentation (Ali et al., 2018; Zaneldin, 2006), as shown in (Figure 2-1):



#### Figure 2-1 Claim management Steps

Proper claims management starts with identification followed by notification, also known as the second step (Mcmanus & Starr, 2016). Construction claim identification depends upon timely and accurate knowledge of 'the change(Ali, 2018). Notifying the other party of the problem makes the identification step more important (Levin, 2013). The contract specifies the responsibilities of each party during this stage (Ali, 2018; Ali D. Haidar, 2011). legal and factual grounds are established by the claimant in the examination stage (Ali, 2018). For the examination stage, the assessing party will need documentation that supports the claim made by the claimant (Levin, 2013; Thomas, 2015). Documentation plays a vital role in the management of every claim. The claimant will need all binding documents, including supporting detailed drawings, specifications, work schedule (Bakhary et al., 2015). Once the notification stage is over, a detailed claim analysis is followed (Gibson, 2014a). Once the engineer gets an official claim, the next stage is assessing claims (Bakhary et al., 2015; Thomas, 2015). the final stage of claims management is negotiation/ settlement (Ali, 2018; Ali D. Haidar, 2011; Thomas, 2015). If all the parties are not agreed to the negotiation and settlement, resulting in failing to reach an agreement, then there should be alternative methods to resolve claims or, in this case, ' disputes' (Bakhary et al., 2015). Since every claim can turn into a dispute for various reasons, it is necessary to resolve a claim as soon as possible effectively (Ali, 2018; D. Gibbs et al., 2014). Claims management in the current construction industry needs strategic steps for improvement (Ren, Anumba, & Ugwu, 2001).

#### 2.7 DEVELOPMENT IN CLAIMS MANAGEMENT

Several researchers have suggested various methodologies and systems to manage claims in the construction industry (Ali et al., 2018). Although BIM includes an abundance of information, there is a lack in using BIM in claims management (Shahhosseini & Hajarolasvadi, 2018). Different methods using computers and software are adopted during the past three decades to improve claims management (D.-J. Gibbs et al., 2017; Marzouk, et al., 2018; Vidogah & Ndekugri, 1998a). Computer-aided claim management systems are being considered instead of conventional claims handling practices (Shahhosseini & Hajarolasvadi, 2018). Some expert systems predict the outcome of claims to avoid unreasonable claims. For example, a particle swarm optimization model (SWOM) is practiced in Hong Kong (Chau, 2007). A prototype model developed by (Palaneeswaran & Kumaraswamy, 2008) is an integrated Decision support system (IDSS) that helps deal with EOT claims. (Al-Gahtani, Al-Sulaihi, & Iqupal, 2016) introduced a web-based software called Total Float Management (TFM) software, which can import all schedule data directly from other digital tools like Primavera P6 and Microsoft Project (MS project) in various formats. (Shahhosseini & Hajarolasvadi, 2018) proposed a rule based conceptual framework for dealing BIM based claims management inputs. (Ali, 2018) developed a prototype Application Program Interface (API) to deal with EOT claims using BIM Platforms.

## 2.8 INEFFICIENCIES IN MANAGEMENT OF CONSTRUCTION COST CLAIMS FROM LITERATURE

The inefficiencies in the management of cost claims were identified from the literature. These inefficiencies were considered for every contracting party in a construction project (Ali, 2018). For extraction of inefficiencies, 42 papers were studied to extract a total of 39 Inefficiencies in construction cost claim processes. Due to the overlapping nature of some of the inefficiencies, the total number of

inefficiencies was reduced to 30 inefficiencies in cost claims (Ali, 2018). Inefficiencies were then grouped into nine groups for further processing and discussion, as was done by (Chan, 2012). The groups were divided into Procedure, Contractual, Coordination, Cost, Documentation, Resources, Presentation, Technology, and Time. Table 2-2-1 shows literature review-based inefficiencies in their grouping. These inefficiencies were further used to find the literature score and its relationship with Field Score. The results were discussed in chapter 3.

| Sr. no. | Inefficiencies in cost<br>claims                     | Group        | Reference               |
|---------|------------------------------------------------------|--------------|-------------------------|
|         |                                                      |              | (Mcmanus & Starr,       |
| 1       | lack of contract awareness                           |              | 2016), (Song, 2015),    |
|         |                                                      | Contract     | (Hadikusumo & Tobgay,   |
|         |                                                      |              | 2015), (Parchami Jalal, |
|         |                                                      |              | Noorzai, & Yavari       |
|         |                                                      |              | Roushan, 2019), (CHO.   |
|         |                                                      |              | et al., 2019),          |
|         |                                                      |              | (Song 2015) (Enshassi   |
|         | legibility of claim in<br>verbal and technical terms |              | et al 2009) (Benjamin   |
|         |                                                      |              | T Davis 2017)           |
| 2       |                                                      | Contract     | ((Abdul-Malak et al     |
|         |                                                      |              | ((110) (Hashem M        |
|         |                                                      |              | Mehany & Grigg 2014)    |
|         |                                                      |              |                         |
|         | Not updating the schedules                           |              | (Hashem M. Mehany &     |
| 3       |                                                      | Coordination | Grigg, 2015), (CHO. et  |
|         |                                                      |              | al., 2019),             |
|         | Coordination gap between                             |              | (Ibbs et al., 2011),    |
| 4       | Site and office                                      | Coordination | (CHO. et al., 2019),    |
|         |                                                      |              |                         |

Table 2-2-1 Literature Review Based Inefficiencies

|   |                                                   |      | (Chovichien &             |
|---|---------------------------------------------------|------|---------------------------|
|   | Difference in<br>quantification of damages        |      | Tochaiwat, 2015),         |
|   |                                                   |      | (Mcmanus & Starr,         |
|   |                                                   |      | 2016), (Hadikusumo &      |
| 5 |                                                   | Cost | Tobgay, 2015), (Ibbs,     |
|   | narties                                           |      | 2016), (Harmon, 2017),    |
|   | purios                                            |      | (Abdul-Malak et al.,      |
|   |                                                   |      | 2002), (Hashem M.         |
|   |                                                   |      | Mehany & Grigg, 2014)     |
|   |                                                   |      | (Iyer & Manan Bindal,     |
|   |                                                   |      | 2019), (Levin, 2013),     |
|   |                                                   |      | (Davis & Ibbs, 2016),     |
| 6 | Difficulty in quantification<br>of indirect costs | Cost | (Davis & Ibbs, 2016),     |
| 0 |                                                   | Cost | (Harmon, 2017),           |
|   |                                                   |      | (Hashem M. Mehany &       |
|   |                                                   |      | Grigg, 2014), (Ibbs &     |
|   |                                                   |      | Stynchcomb, 2016),        |
|   |                                                   |      | (Moayeri, Moselhi, &      |
|   |                                                   |      | Zhu, 2016), (Ibbs et al., |
|   | Burden of Proof to                                |      | 2011), (Hadikusumo &      |
|   | support a claim                                   |      | Tobgay, 2015), (Levin,    |
| 7 | (complexity of                                    | Cost | 2013), (Williams,         |
|   | determining cause and                             |      | Ackermann, & Eden,        |
|   | effect)                                           |      | 2003), (Harmon, 2017),    |
|   |                                                   |      | (Fawzy, El-Adaway, &      |
|   |                                                   |      | Asce, 2013),              |
|   | Lack of Accuracy in                               |      | (Enshassi et al., 2009),  |
| 8 | estimation of Loss of<br>Productivity             | Cost | (Davis & Ibbs, 2016),     |
|   |                                                   |      | (Harmon, 2017), (Zhao     |
|   | 5                                                 |      | & Dungan, 2018),          |
|   |                                                   |      |                           |

|    |                                                                             |               | ( <b>D</b> 1 0                                                                                                                                                                                                     |
|----|-----------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9  | Exaggerated claims made by contractors                                      | Cost          | (Palaneeswaran &<br>Kumaraswamy, 2008),<br>(Ali D. Haidar, 2011),<br>(Ali et al., 2018)                                                                                                                            |
| 10 | Absence of standard<br>formula for evaluation and<br>calculation of damages | Cost          | (Bakhary et al., 2015),<br>(Ali, 2018)                                                                                                                                                                             |
| 11 | High cost associated with<br>retrieving required<br>information             | Cost          | (Bakhary et al., 2015),<br>(Ali, 2018)                                                                                                                                                                             |
| 12 | Adequacy of Information in documents                                        | Documentation | (Vidogah & Ndekugri,<br>1998b), (Enshassi et al.,<br>2009),                                                                                                                                                        |
| 13 | poor Maintenance of<br>Overhead Records (site<br>and head office)           | Documentation | <ul> <li>(Iyer &amp; Manan Bindal,</li> <li>2019), (Hashem M.</li> <li>Mehany &amp; Grigg, 2014),</li> <li>((Chester &amp;</li> <li>Hendrickson, 2005),</li> <li>(Ibbs &amp; Stynchcomb,</li> <li>2016)</li> </ul> |
| 14 | No Computerized<br>documentation system                                     | Documentation | (Bakhary, Adnan, &<br>Ibrahim, 2015),<br>(Enshassi et al., 2009)                                                                                                                                                   |
| 15 | Unstructured Documents                                                      | Presentation  | (Shahhosseini &<br>Hajarolasvadi, 2018),<br>(Vidogah & Ndekugri,<br>1998a), ((Harrington,<br>McSwain, Snyder, &<br>Giles, 2016),                                                                                   |

| 16 | complexity of information<br>in contract              | Presentation | (Chovichien &<br>Tochaiwat, 2015),<br>(Chester & Hendrickson,<br>2005),                                                                                |
|----|-------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17 | Poor Presentation of<br>Claim                         | Presentation | (Ali, 2018), (DJ. Gibbs,<br>Lord, Emmitt, & Ruikar,<br>2017), (DJ. Gibbs et<br>al., 2013), (Allen, 2016)                                               |
| 18 | No standard format                                    | Presentation | (Bakhary et al., 2015),<br>(Chovichien &<br>Tochaiwat, 2015),<br>((Enshassi et al., 2009),<br>(Hassanein & El Nemr,<br>2008)                           |
| 19 | No Comprehensive<br>method for Claim<br>Management    | Procedure    | (Shahhosseini &<br>Hajarolasvadi, 2018),<br>(Vidogah & Ndekugri,<br>1998a), (Hashem M.<br>Mehany & Grigg, 2015)                                        |
| 20 | time taking process due to<br>complex procedure       | Procedure    | (Bakhary et al., 2015),<br>(Chovichien &<br>Tochaiwat, 2015),<br>(Vidogah & Ndekugri,<br>1998b), (Yoke-Lian,<br>Hassim, Muniandy, &<br>Mee-Ling, 2012) |
| 21 | Use of unsuitable<br>Techniques for claim<br>analysis | Procedure    | (Palaneeswaran &<br>Kumaraswamy, 2008),<br>(Ali et al., 2018)                                                                                          |

| 22 | Time shortage of claim                            | Procedure | (Bakhary et al., 2015),  |
|----|---------------------------------------------------|-----------|--------------------------|
|    | preparation and analysis                          |           | (Ali, 2018)              |
|    | Too Many Doormonto for                            |           |                          |
| 23 | Claims proportion and                             | Procedure | (Bakhary et al., 2015),  |
|    | Claims preparation and                            |           | (DJ. Gibbs et al., 2013) |
|    | assessment                                        |           |                          |
|    | on-site inaccessibility of<br>Supporting Document | Resources | (DJ. Gibbs, Emmitt,      |
|    |                                                   |           | Ruikar, & Lord, 2013),   |
| 24 |                                                   |           | (Abdul-Malak et al.,     |
|    |                                                   |           | 2002), (Hashem M.        |
|    |                                                   |           | Mehany & Grigg, 2014),   |
|    | Delay in notice to claim<br>by contractor         | Resources | (Mcmanus & Starr,        |
|    |                                                   |           | 2016), (Song, 2015),     |
|    |                                                   |           | (Hadikusumo & Tobgay,    |
| 25 |                                                   |           | 2015), (Hashem M.        |
|    |                                                   |           | Mehany & Grigg, 2015),   |
|    |                                                   |           | (CHO., Leite, Behzadan,  |
|    |                                                   |           | & Wang, 2019)            |
|    | poor Maintenance of<br>Claim Records              | Resources | (Song, 2015),            |
|    |                                                   |           | (Valavanoglou et al.,    |
|    |                                                   |           | 2017), (Ness & Carper,   |
| 26 |                                                   |           | 2010), (Abdul-Malak et   |
| 20 |                                                   |           | al., 2002), (Hashem M.   |
|    |                                                   |           | Mehany & Grigg, 2015),   |
|    |                                                   |           | (CHO. et al., 2019),     |
|    |                                                   |           | (Davis & Ibbs, 2016),    |
| 27 | Ambiguities in                                    | Resources | (Bakhary et al. 2015)    |
|    | responsibilities of                               |           | (Enshassi et al. 2010),  |
|    | construction team                                 |           |                          |
|    |                                                   |           |                          |

| 28 | Insufficient skilled<br>personnel for claim<br>management | Resources  | (Bakhary et al., 2015),<br>(Chovichien &<br>Tochaiwat, 2015),<br>(Enshassi et al., 2009),<br>(Pujiwidodo, 2016), |
|----|-----------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------|
| 29 | Less dependency on new software-based systems             | Technology | (Ali, 2018)                                                                                                      |
| 30 | Overdue in Retrieving<br>Information                      | Time       | (Shahhosseini &<br>Hajarolasvadi, 2018),<br>(Vidogah & Ndekugri,<br>1998b), (DJ. Gibbs et<br>al., 2013)          |

### 2.9 BIM CONCEPTS & BENEFITS

Building Information Modeling (BIM) is a process of modeling, sharing, and managing digital information during the designing, construction, and postconstruction phases (Ali et al., 2018; Ghaffarianhoseini et al., 2017; Volk, et al., 2014).Figure 2-2 shows that the information can be of parametric geometrical, technical and contractual type (Ali et al., 2018; Ghaffarianhoseini et al., 2017). BIM is a process that starts from conceptual diagrams to the n-dimensional digital footprint (Azhar, 2013). This information separates themselves from individual processes in traditional construction to an integrated process and thus dividing BIM into separate levels (Cerovsek, 2011; Hooper & Widén, 2015) (see Figure 2-3).


Figure 2-2 BIM process vs Conventional CAD Process



Figure 2-3 BIM Maturity Level

In the Architectural, Engineering, and construction (AEC) industry, these dimensions provide significant benefits to users (Cerovsek, 2011; Ghaffarianhoseini et al., 2017; Volk et al., 2014). 1<sup>st</sup> and foremost, differences are realized using its parametric 3D information (Ali et al., 2018; Ghaffarianhoseini et al., 2017). Using this 3D information, BIM can be used for 4D, which is time and is mostly used in schedule simulation (Ali et al., 2018; Volk et al., 2014). This 3D model provides the basis for checking up on cost diagrams during and after construction

(Ghaffarianhoseini et al., 2017), lighting analysis, and facility management (Volk et al., 2014), see Figure 2-4.





BIM separates itself from current construction by allowing the main parties to a contract as early in the process and thus enhancing the collaboration between them (Cerovsek, 2011). Project team will be communicating to the related stakeholders in the form of groups. Every team will deal with its responsibilities in a collaborative environment (Figure 2-5) where there is the least confusion about information sharing. Contractors and suppliers are added to the stakeholders' group early in the process (Azhar, 2013; Construction Industry Council, 2018; Moayeri et al., 2016) to avoid and resolve problems efficiently (D.-J. Gibbs et al., 2017). NEC contracts offer guidance regarding integrating BIM into NEC contracts so that all the parties know their responsibilities (NEC, 2013).



Figure 2-5 Conventianal Vs BIM collaboration

### 2.10 BIM PLATFORMS

Conventional Computer Aided Drawings (CAD) consists of text and lines only. It cannot communicate with all the stakeholders simultaneously in a complex project (Chou & Yang, 2017; Moayeri et al., 2016). That's when BIM is realized as a necessity of the future (Ali et al., 2018; Azhar, 2013). Building information modeling is of two types, naming "open BIM" and "closed source BIM." Close BIM means all the project work must be done using one tool, whereas open BIM means the information sharing between teams is done through many tools(Hudson et al., 2017). BIM uses interoperable data sharing, allowing it the flexibility to not rely on a singular software (Ghaffarianhoseini et al., 2017). All the teams work simultaneously using more than one but interoperable software (Ali, 2018; Volk et al., 2014).

As a result of its take on complex projects, BIM is now used as an emerging mechanism for construction (Ali et al., 2018). Most of the platforms being used for BIM are Autodesk Revit, Tekla Structure, Graphisoft ArchiCAD, Bentley Architecture, Nemetschek Vectorworks, Nemetschek AllPlan, Trimble SketchUp, Gehry Technology Digital Projects, 4MSA IDEA Architectural, and Rhino BIM (Ali et al., 2018).

#### 2.11 API

Most BIM tools use application Programming Interface (API) for their extended utilities (Olugbenga O Akinade et al., 2016; Ali et al., 2018). These APIs provide the means of providing functions absent from BIM software (Ali et al., 2018). APIs are used to develop Add-ins or plugins that utilize the existing BIM software's modeling and visualization capabilities to accomplish specialized tasks(Olugbenga Olawale Akinade, 2017). Developers are provided with the ability to customize the application by leveraging on the functionality of existing BIM platforms through these APIs that serve as building blocks for different types of latest software applications(Olugbenga O Akinade et al., 2016).

#### 2.12 REVIT API

Many of the BIM projects are handled using Autodesk Revit. (Ali et al., 2018; Shahhosseini & Hajarolasvadi, 2018). It covers major areas like Architecture, structure, and MEP as "built-in features" (Volk et al., 2014). Its user-friendly user interface helps its adoption and widespread usability in the construction industry (Ali et al., 2018; Eoition, To, & Information, n.d.). Another reason for its adoption is that Revit is compatible with other BIM tools like Navisworks, Infraworks, 3Ds Max, AutoCAD, AutoCAD Civil, ArchiCAD, Google Sketchup for further analyses like lighting, structure, and sustainability(Ali et al., 2018). It can use formats like DWG, DXF, IFC, SKP, and gbXML, which are interoperable with most other BIM tools (Ali et al., 2018). Revit API provides a highly customizable .NET software development toolkit (SDK) for user interface, which is why it is being used as a thirdparty tool (Ali et al., 2018).

Some of the famous plugins currently being used are BIMobject, used to find the model library for a project. Enscape is being used as a Revit Render plugin for better quality renderings. CADtoEarth is being used for the integration of Google Maps with Revit. Ideate BIM Link is another plugin to import-export anything from Revit in the form of excel data.

Dynamo is another plugin being used for Revit to make complex 3D models. IFC 2015 is used to improve the export/import capabilities. Some researchers also developed Revit plugins to enhance the functionalities of Revit API (Ali, 2018). A plugin was developed by (Moayeri et al., 2016) to calculate the extra time required whenever there is a change in design. (Ali, 2018) developed a Revit plugin for EOT claims management in BIM Environment Researches, like mentioned above, indicate the abilities of API to develop BIM-based cost claims.

#### 2.13 ROLE OF BIM IN COST CLAIMS MANAGEMENT

Since claims management is a time-consuming process, it is costly yet prone to errors (Shahhosseini & Hajarolasvadi, 2018; Shen et al., 2017). Most of the data is missing, which leads to real-time loss or profit of the claims. Also, it is not easy to visualize what caused the claims in the first place (Ibbs et al., 2011; Moayeri et al., 2016). As BIM is making its progress in the construction industry due to its acceptability to many of the platforms and thus helping to find the solutions, it is more likely to adopt BIM in electronic construction tools in the future (D. Gibbs et al., 2014). If BIM is utilized from the conception phase of a project, all the data, either geometrical or numerical, will be helpful in visualization, identification, and quantification of claims (Ali, 2018; D. Gibbs et al., 2014). The visualization aspect of BIM in claims can be used for disputes and adjudication (Vidogah & Ndekugri, 1998b). key animations based on the construction progress can be used in courts (Ali et al., 2018; D. Gibbs et al., 2014). In the past, courts have made judgments based on Eichleay Formula, Hudson formula, and many more; we are in a position to say that BIM can also play a key role to resolve claims related issues in the future (Ali D. Haidar, 2011; Ghaffarianhoseini et al., 2017; D. Gibbs et al., 2014).

# Chapter 3

# **RESEARCH METHODOLOGY**

#### **3.1 INTRODUCTION**

This chapter discusses in detail the research strategy carried out to achieve research objectives. Different techniques need to be applied to achieve the research objectives. These techniques include reviewing inefficiencies in previous studies carried out by other researchers to achieve their goal in claims management.

After review, a prototype will be developed for construction cost claims using Autodesk Revit API, and then the evaluation of the prototype will be carried out by field experts.

#### **3.2 RESEARCH DESIGN**

Figure 3-1 shows the research design for this study. A systematic review of literature studies was carried out to identify the inefficiencies in the management of cost claims, which was our first objective of the study. Those inefficiencies were discussed in detail in the previous chapter. Those inefficiencies were then verified from construction industry. The results are discussed ahead in this chapter.

In the second stage, standard construction contracts were studied to make bases for a conceptual framework. BIM-related studies were also made to know the benefits of BIM to assist claims management (Babar, Thaheem, & Ayub, 2017). Making of the conceptual framework was our second objective. This conceptual framework elaborates the workflow of data in the prototype built. The workflow will be discussed later in the chapter. The prototype was built using coding BIM platforms like Dynamo, Revit and other tools like Primavera, SQL and Python etc to make integrated BIM-CCMS. Experts reviews were collected carefully in the last stage and evaluated the BIM-CCMS to check its effectiveness.



Figure 3-1 Research Design

# 3.3VERIFICATION OF ISSUES IN COST CLAIMS IN CONSTRUCTION INDUSTRY

Following a literature review, a questionnaire was developed, and responses were collected to identify the same issues in the industry. Data were collected from 35 respondents, out of which four responses were rejected because their experience was less than five years. Experts from the field included all nature of contract parties, including clients, contractors, design consultants, and sub-contractors. The field experts have a vast knowledge of construction and are specifically related to claims. Many of the experts are working in contracts departments in their representative organizations. Their experience and organizations' nature are shown in Figure 3-2 & Figure 3-3, respectively. The outcome of the questionnaire-based preliminary survey will be discussed in the next chapter. Field Experts were also asked if there were any additional inefficiencies, they were no additional inefficiencies founded due to their merging nature with existing inefficiencies. After finding out the field score, a 50-

50 ratio with the literature score was calculated to avoid any biasness. The final inefficiencies are then presented in Table 3-1.



Figure 3-2 Respondent's Experience



Figure 3-3 Type of Organization

| Sr.<br>No. | Inefficiencies                               | Group    | Field<br>Score | Literature<br>Score | 50-50<br>Analysis |
|------------|----------------------------------------------|----------|----------------|---------------------|-------------------|
| 1          | Lack of Contract<br>awareness                |          | 0.78065        | 0.26829             | 0.04251           |
| 2          | Lack of Clear<br>information in<br>Contracts | Contract | 0.68387        | 0.0439              | 0.0295            |

|   | Legibility of                                                                                       |              |         |         |         |
|---|-----------------------------------------------------------------------------------------------------|--------------|---------|---------|---------|
| 3 | claims in verbal<br>and technical<br>terms                                                          |              | 0.74194 | 0.05854 | 0.03244 |
| 4 | Not updating the schedules                                                                          |              | 0.72258 | 0.02927 | 0.03047 |
| 5 | Coordination<br>gap between Site<br>and office staff                                                | Coordination | 0.8     | 0.02927 | 0.03361 |
| 6 | Difference in<br>quantification of<br>damages<br>calculated by<br>different parties                 |              | 0.76774 | 0.04878 | 0.03309 |
| 7 | Difficulty in<br>Quantification of<br>indirect costs                                                |              | 0.75484 | 0.10244 | 0.03475 |
| 8 | Burden of Proof<br>to support a<br>claim, e.g.,<br>complexity of<br>determining<br>cause and effect | Cost         | 0.76129 | 0.16098 | 0.03738 |
| 9 | Lack of<br>Accuracy in<br>Estimation of<br>Loss of<br>Productivity                                  |              | 0.7871  | 0.05854 | 0.03427 |

|    | <b>F</b> (1                                                                                 |                   | [       |         |         |
|----|---------------------------------------------------------------------------------------------|-------------------|---------|---------|---------|
| 10 | Exaggerated<br>claims made by<br>contractors                                                |                   | 0.72258 | 0.01463 | 0.02988 |
| 11 | Absence of use<br>of standard<br>formula for<br>evaluation and<br>calculation of<br>damages |                   | 0.78065 | 0.02927 | 0.03283 |
| 12 | High cost<br>associated with<br>retrieving<br>required<br>information                       |                   | 0.65161 | 0.07317 | 0.02938 |
| 13 | Lack of adequate<br>Information in<br>drawings                                              |                   | 0.69677 | 0.19512 | 0.03615 |
| 14 | Poor<br>Maintenance of<br>Overhead<br>Records (site and<br>Head Office)                     | Documentati<br>on | 0.78065 | 0.14634 | 0.03757 |
| 15 | No computerized<br>documentation<br>system                                                  |                   | 0.76129 | 0.05854 | 0.03323 |
| 16 | Unstructured Documents                                                                      | Presentation      | 0.69677 | 0.07317 | 0.03121 |

| 17 | Poor<br>Presentation of<br>Claims                                    |           | 0.8     | 0.0439  | 0.0342  |
|----|----------------------------------------------------------------------|-----------|---------|---------|---------|
| 18 | No standard<br>Format                                                |           | 0.7871  | 0.07317 | 0.03487 |
| 19 | No<br>Comprehensive<br>method for<br>Claim<br>Management             |           | 0.76129 | 0.09756 | 0.03481 |
| 20 | Time taking<br>process due to<br>complex<br>procedures               |           | 0.78065 | 0.0439  | 0.03342 |
| 21 | Use of<br>unsuitable<br>techniques for<br>claim analysis             | Procedure | 0.69677 | 0.00488 | 0.02844 |
| 22 | Insufficient time<br>for claim<br>preparation and<br>analysis        |           | 0.69032 | 0.02927 | 0.02916 |
| 23 | Too Many<br>Documents for<br>Claims<br>preparation and<br>assessment |           | 0.71613 | 0.02927 | 0.03021 |

| 24 | On-site<br>Inaccessibility to<br>Relevant<br>Document when<br>needed |            | 0.73548 | 0.14634 | 0.03574 |
|----|----------------------------------------------------------------------|------------|---------|---------|---------|
| 25 | Delay in notice<br>to claim by<br>Contractor                         |            | 0.7871  | 0.12195 | 0.03684 |
| 26 | Poor<br>Maintenance of<br>Claim Records                              | Resources  | 0.76774 | 0.21951 | 0.0342  |
| 27 | Ambiguities in<br>responsibilities<br>of construction<br>team        |            | 0.73548 | 0.00976 | 0.0302  |
| 28 | insufficient<br>skilled personnel<br>for claim<br>management         |            | 0.76774 | 0.01463 | 0.03171 |
| 29 | Less dependency<br>on new software-<br>based systems                 | Technology | 0.75484 | 0.00488 | 0.03079 |
| 30 | Overdue in<br>retrieving<br>Information                              | Time       | 0.72903 | 0.0439  | 0.03133 |

#### **3.4 PROTOTYPE DEVELOPMENT**

In this phase, a prototype will be created to solve the issues identified in the first phase. Initially, applicable standard contracts worldwide were studied to draw out the events and clauses for cost claims. Contract Provisions for the cost under traditional standard contracts were reviewed. The contracts studied were those published by International Federation of Consulting Engineers (FIDIC) 1987 4<sup>th</sup>edition (FIDIC 1987), FIDIC 1999 1<sup>st</sup>edition (FIDIC 1999 Red Book, Silver Book), FIDIC 2017 2<sup>nd</sup> edition (Red Book, Silver Book, Yellow Book), New Engineering Contract (NEC) 2005 edition. It was done to have a sound knowledge of all permissible compensating events and develop a prototype that can manage all events for cost claim. Also, in this phase of research, Building Information Modeling software API functioning is studied, and a plugin will be developed for BIM Based Claims Management System (B-CMS) for effective management of Cost claims. Most BIM software provides API to extend their functionalities (Olugbenga O Akinade et al., 2016). The workflow used for the development is as follows: Autodesk Revit Architecture 2020 (BIM Software); Dynamo for visual coding, python software for back-end coding for scripts, Primavera P6 for tracking and comparing activities, and Microsoft Excel For Database management. Autodesk Revit Architecture 2020 is used because of its high quality and user-friendly interface and ease of connectivity with the external database. The reason for selecting Autodesk Revit as a BIM platform for plugin development is that it is widely used and provides a rich API platform (Olugbenga Olawale Akinade, 2017).



Figure 3-4 Data Work flow

#### **3.5PROTOTYPE EVALUATION**

The system was checked and evaluated through field experts. Filed experts were selected on their working experience and expertise related to Contract, Planning, and Building Information Modeling. Overall, 15 of the Field experts were carefully chosen for this purpose. Some of the experts were selected on their experience bases. Others were approached during the preliminary survey. Among selected experts, five were Planning Experts, 7 were Contract Experts, and 3 were BIM experts. Experts were given the background of the topic and issues identified in the literature. After that, experts were presented with the tool's working to let them decide how well the developed system can handle the identified issue.

A warehouse project in the under-construction stage was selected as a case study. It was targeted due to its ease in demonstrating to small construction enterprises (SCE) professionals (Sebastian, Haak, & Vos, 2009). The BIM model of the selected warehouse is shown in Figure 3-5. Planned vs. Actual schedule was developed in Primavera P6, which is used by planning and field experts. Delays in activities were introduced to calculate their effects on different types of costs within a project. These costs were related to both on-site and home office. Then these costs were presented as a test basis for cost claim generation.

Field experts were then presented with a questionnaire-based interview. The appendix of the Performa is attached as annexure. The questions were based on issues identified during the preliminary survey. The expert asked Questions during and after the presentation. Answers were given at the time and tried to explain through a developed system. Experts were asked beforehand for their permission to record the interview. They were also asked regarding the usefulness, barriers in system implementation, and need for improvement (Ali, 2018). Respondents provided their opinions in the form of a Likert scale (Likert scale represents: 1= Strongly Disagree; 2=Disagree; 3= Neutral; 4=Agree; 5= Strongly Disagree) (Ali et al., 2018). The relative importance index (RII) value was also calculated from Equation 7 to rank the inefficiencies and the usefulness of the system to handle those inefficiencies(Babar et al., 2017).

$$RII = \frac{\sum W}{A \times N} \quad (0 \le \text{RII} \le 1)$$

# Equation 7 for Relative Importance Index

Where W = weight given to each factor by the respondents; A =highest weight, i.e., 5 in this case; and N = the total number of respondents. N=30 for this specific case.



Figure 3-5

# Chapter 4

# **RESULTS AND DISCUSSIONS**

#### 4.1 **PREAMBLE**

This chapter describes the details of the conceptual framework to provide the basis for a digital platform-based plugin. Then it elaborates on the architecture of the BIM-based knowledge management system for construction cost claim (BIM-CCMS) and its evaluation from filed experts.

#### 4.2 **BIM-CCMS FRAMEWORK**

Figure 4-1 shows a cross-functional conceptual framework for the development of the prototype. It indicates that our BIM MODEL needs to be launched in BIM Platform, i-e, Revit in this case. After that, BIM-CCMS will need to import the schedule and check any delays in activities. The delayed activities will be further treated based on their delayed period and contractual liability. Resources assigned and their respective costs will be sorted and calculated. The prototype will also see any changes to designing, then visualize and quantify the variations. The prototype will also be enabled to calculate site overheads and Home office overheads with the help of additional supporting documents like photos and PDFs. The system will be able to enlist the details of all the costs and their summary also for printing purposes.

### 4.3 SIGNIFICANCE OF DYNAMO

The use of the Dynamo plugin for visual coding plays a pivotal role in frontend scripting for developing prototype architecture. Due to its wide variety of nodes and acceptance of script-making packages, it enhances its potential in both Open-BIM & Closed-BIM platforms. Dynamo has a very dynamic compatibility range with Revit, Python, and Excel regarding data inputs and outputs. Users need to input the data through Revit or Microsoft Excel. That data will be stored in a database. The data flow or script flow in dynamo starts from the left side; all the nodes and strings push the logic of scripts from the left side and end on the right side. Dyno browser has been used to read the script from Dynamo atmosphere to make buttons and respective panels in the Revit Interface. The script behind every button runs in the Dynamo atmosphere. Short descriptions of these scripts will be mentioned below.



Figure 4-1 Conceptual Framework for BIM-CCMS

#### 4.3.1 Import Schedule Script:

Figure 4-2 shows visual coding and required information flow to import a "Baseline vs. Actual" Schedule in Microsoft Excel or CSV format. The script shows that the user needs to locate the file to be open and stored in the database for further processing. This script needs a button to run and show the results discussed in the Architecture description of the prototype.



Figure 4-2 Script for Importing Schedule

#### 4.3.2 Delay Calulations

This script will extract the necessary information to calculate and show delays in activities. It will also show other details like activity names, ID and duration, etc., in a tabular format. That table is discussed later in this chapter. The script developed in Dynamo has been shown in Figure 4-3 below.



Figure 4-3 Script for Delay Calculations

#### 4.3.3 Baseline and Actual Model

These two scripts are interrelated. One of the scripts is used to set all the geometric information stored in the database as a baseline model. The BIM model

of a project can be set as a baseline model at any stage. The script developed in dynamo for this purpose is shown in Figure 4-4. Once the baseline information is stored and the contractor makes some changes to the BIM model, these changes will act as variations. Figure 4-5 shows the script developed for this purpose. Results of buttons developed based on these scripts are discussed later in this chapter.



Figure 4-4 Script for Setting Baseline Model



Figure 4-5 Script for Actual Model Variations

### 4.3.4 Check Liability

This script provides information for buttons in both the Contract Panel and the Cost Panel. This developed script contains a huge number of nodes and strings to flow the information and make logic. This script includes logic developed in Python for decision making and filtering information for further processing of cost calculations. All the necessary information about contracts and their cost claimsrelated clauses are scripted here to make logic. The development of this script is shown Figure 4-6 and Figure 4-7. Buttons based on this script are discussed later in this chapter.



Figure 4-6 Script for Selection of Clauses



Figure 4-7 Script for Checking Liability

### 4.3.5 Direct Cost of Varied Material

This script developed in Dynamo uses information extracted from actual model variations. The cost parameter of every type of element is being used to calculate the cost of varied materials. This script shows the results in tabular format, which will be discussed later in this chapter. Figure 4-8 shows the developed script in Dynamo for this purpose.



Figure 4-8 Script for Direct material cost

# 4.3.6 Man & Machinery Cost

Figure 4-9 shows the script developed in Dynamo to achieve resources cost for delayed activities. This script also uses the liability decision made by the previous script for checking liability, to assign entitlement of compensation for resources and their respective costs. The result of this script is a table which is discussed later.



Figure 4-9 Script for Man & machinery cost

### 4.3.7 Overhead Costs

There are two kinds of overhead costs: home office overheads and site overheads. Scripts have been developed in Dynamo for both types of calculations. For the calculation of HOOHs, the script has three kinds of formulae. Users will be able to select one of the formulae and then entering the required information manually. Site overheads further include site consumable costs and site staff costs. Results of these scripts are shown in tabular format later in this chapter. Figure 4-10

and Figure 4-11 show the Home office overheads (HOOH) and site costs respectively.



Figure 4-10 Script for HOOHs Cost



Figure 4-11 Script for Site Overheads

# 4.3.8 Claim Summary

Script developed in Dynamo for this purpose is shown in Figure 4-12. This script contains the logic to put the required descriptive information manually in their respective sections. Results of the button based on this script will be discussed later in this chapter.



Figure 4-12 Script for Claim Summary

# 4.4 **BIM-CCMS TEMPLATE ARCHITECTURE**

This prototype was developed based on recommendations by SCL (2017). Dataflow for this prototype requires visual coding in DYNAMO, a plugin in Autodesk Revit 2020. The data workflow is shown in the previous chapter in Figure 3-4. The developed prototype was introduced in Revit as the "BIM-CCM\$" tab as a part of the Revit Ribbon bar as shown in Figure 4-13. It has five main panels named Assessment, Contract, Cost, Visualization, and Summary, respectively.



Figure 4-13 BIM-CCMS Protype interface

Each of the panels further contains buttons for their respective tasks. The functions of each button are demonstrated in the following sections.

### 4.4.1 Assessment Panel

This panel contains Import Schedule, Set Model as Baseline, and Actual Model Variations buttons, respectively. It is shown in Figure 4-13. Their functions are described as followed in the Table 4-1.

| Button Name             | Icon            | Button Function           |
|-------------------------|-----------------|---------------------------|
|                         |                 | This button allows the    |
|                         |                 | user to import Baseline   |
| Import Schedule         |                 | vs. Actual Schedule in    |
|                         |                 | CSV and .xlsx format.     |
|                         |                 | See Figure 4-14.          |
|                         |                 | This button allows the    |
| Check Delays            |                 | user to view or check     |
| Check Delays            |                 | Delays in activities. See |
|                         |                 | Figure 4-15.              |
|                         |                 | Users, through this       |
| Set Model as Baseline   |                 | button, can set the 3D    |
|                         | W               | Model as a baseline       |
|                         |                 | model at any stage.       |
|                         | •               | This button allows users  |
| Actual Model Variations |                 | to view quantities        |
|                         | $\mathbf{\Psi}$ | changed in a tabular      |
|                         |                 | form. See Figure 4-16.    |

Table 4-1 Assessment Panel Buttons and their Functions

| Please Select   | File to Import |   |
|-----------------|----------------|---|
| Import Schedule | Import         | _ |
| NIN.            |                |   |
|                 |                |   |
| BIM-CCMS        |                |   |

Figure 4-14 Importaing Schedule

User will select the Baseline vs. Actual schedule from the desired folder in the CSV/xlsx format. After importing the Schedule, the user can view delays in

activities and their details in tabular form. The table shows activities' IDs, names, Planned and Actual Durations, and their respective delays. Users can export the table in excel format for further usage.

|   | Activity ID | Activity Name           | Baseline Duration | Actual Duration | Delay  | 1 |
|---|-------------|-------------------------|-------------------|-----------------|--------|---|
| • | A1000       | Planning                | 14 Days           | 14 Days         | 0 Days |   |
|   | A1010       | Site Hnadover           | 1 Days            | 1 Days          | 0 Days |   |
|   | A1020       | Excavation work         | 6 Days            | 6 Days          | 0 Days |   |
|   | A1030       | Foundation work         | 15 Days           | 16 Days         | 1 Days |   |
|   | A1040       | Left side Long wall     | 10 Days           | 16 Days         | 6 Days |   |
|   | A1050       | Right side Long wall    | 10 Days           | 10 Days         | 0 Days |   |
|   | A1060       | Top side short wall     | 5 Days            | 11 Days         | 6 Days |   |
|   | A1070       | Bottom side short wall  | 5 Days            | 5 Days          | 0 Days |   |
|   | A1080       | Office Partition Wall 1 | 2 Days            | 3 Days          | 1 Days |   |
|   | A1090       | Office Partition wall 2 | 2 Days            | 2 Days          | 0 Days |   |
|   | A1100       | Bath partition wall 1   | 2 Days            | 2 Days          | 0 Days |   |
|   | A1110       | Bath partition wall 2   | 2 Days            | 2 Days          | 0 Days | 1 |
|   | A1120       | Bath Partition wall 3   | 2 Days            | 2 Days          | 0 Days |   |
|   | A1130       | Store wall 1            | 2 Days            | 2 Days          | 0 Days |   |
|   | A1140       | Roofing                 | 1 Days            | 1 Days          | 0 Days |   |
|   | A1150       | Flooring                | 12 Days           | 12 Days         | 0 Days |   |
|   | A1160       | Boundary wall 1         | 4 Days            | 7 Days          | 3 Days | • |
| < |             |                         |                   |                 |        | > |

Figure 4-15 Delays in activities

|   | Material Name         | Material Id | Baseline Quantity | Actual Quantity  | Variation | 1 |
|---|-----------------------|-------------|-------------------|------------------|-----------|---|
|   | Generic - 200mm       | 204863      | 254.611648456584  | 254.611648456584 | 0         |   |
|   | Generic - 200mm       | 204922      | 269.133512596852  | 269.133512596852 | 0         |   |
|   | Generic - 200mm       | 205011      | 240.322720876345  | 240.322720876346 | 0         |   |
|   | Generic - 200mm       | 205050      | 100.728334639534  | 176.189702191116 | 75.461    |   |
|   | Generic - 200mm       | 207522      | 692,734309010422  | 692.734309010422 | 0         |   |
|   | Generic - 200mm       | 207578      | 471.558317430319  | 471.558317430319 | 0         |   |
|   | Generic - 200mm       | 207655      | 713.952779377935  | 713.952779377935 | 0         |   |
| • | Generic - 200mm       | 207720      | 348.970379667937  | 381.778778618068 | 32.808    |   |
|   | Generic - 200         | 214255      | 89.732343306426   | 89.732343306426  | 0         |   |
|   | Generic - 200mm       | 214305      | 40.786304164704   | 40.786304164704  | 0         |   |
|   | Generic Floor - 400mm | 232302      | 5368.17399021207  | 5368.17399021207 | 0         |   |
|   | Generic Floor - 400mm | 232340      | 5368.17399021207  | 5368.17399021207 | 0         |   |
|   | 600 x 600mm grid      | 232366      | 83.0727309821486  | 83.0727309821486 | 0         |   |
|   | 600 x 600mm grid      | 232374      | 18.8801587868559  | 33.0243676308292 | 14.144    |   |
|   | 600 x 600mm grid      | 232382      | 9.27557802549272  | 24.222989864761  | 14.947    |   |
|   | 600 x 600mm grid      | 232390      | 4.33071024351439  | 4.33071024351439 | 0         |   |
|   | 600 x 600mm grid      | 232398      | 4.4585989470901   | 4.4585989470901  | 0         |   |
|   | Pad 1                 | 245014      | 4264.57560915122  | 4264.57560915122 | 0         |   |
|   | Generic - 200mm       | 251842      | 953.577392037443  | 953.577392037443 | 0         |   |
|   | Generic - 200mm       | 251923      | 757.735661334009  | 757.735661334009 | 0         |   |
|   |                       | 051000      | C10 000444E00040  | CIA 2021++F00C13 | •         |   |
| 1 |                       | Cancel      |                   | ПK               |           |   |

Figure 4-16 Project Varations in Activities

#### 4.4.2 Contract Panel

This panel is shown in Figure 4-13. This Panel includes one button, which is the "check liability" button. This button allows users to select contract types for their projects (Figure 4-17). After selecting the contract type, the user can select contract clauses/sub-clauses from the database for respective delays (Figure 4-18). The database consists of FIDIC 1987, FIDIC RED BOOK 1999, FIDIC SILVER BOOK 1999, FIDIC PINK BOOK 2005 HARMONISED EDITION, FIDIC RED BOOK 2017, FIDI SILVER BOOK 2017 & NEW ENGINEERING CONTRACT NEC3 2005 EDITION. The Clauses/sub-clauses and their liability are attached as an appendix. These delays will get filtered further for liability check (Figure 4-19). The decision of entitlement is derived from the contracts database. The system allows entitlement to only delays which Employer causes. The delays caused by the contractor and concurrent delays are not treated, so they will not be liable to entitlement.



Figure 4-17 Cntract Types

| BIM-CCM\$               |                                                                | × |
|-------------------------|----------------------------------------------------------------|---|
| Please Select Cla       | Ises                                                           |   |
| Foundation work         | 13.6- Daywork                                                  | ~ |
| Left side Long wall     | 12.2- Delayed Test                                             | ~ |
| Top side short wall     | 12.3- Retesting after completion                               | ~ |
| Office Partition Wall 1 | 19.4- Force Majeure                                            | × |
| Boundary wall 1         | 19.6- Optional Termination                                     | ~ |
| Boundary wall 2         | 4.24-Fossils                                                   | ~ |
| Boundary wall 4         | 2.1- Delay in handing over the posession of site to contractor | ~ |
| Boundary wall 5         | 4.7- Errors in setting information                             | v |
| Project Administration  | 7.5- Rejection                                                 | ~ |
| Consumeable Expenses    | 14.8- Delayed Payments                                         | ~ |
|                         |                                                                |   |
| RIN COM                 | Cancel OK                                                      | ] |
|                         |                                                                |   |

Figure 4-18 Delayed Activities & Contract clauses

| ab  | le litte    |                         |         |              |    |        |
|-----|-------------|-------------------------|---------|--------------|----|--------|
|     | Activity ID | Activity Name           | Delay   | Liability    |    |        |
|     | A1030       | Foundation work         | T Days  | Employer     |    |        |
|     | A1040       | Left side Long wall     | 6 Days  | Employer     |    |        |
| -   | A1060       | Office Pathias Wall 1   | 1 Days  | Contractor   |    |        |
| _   | A1080       | Office Partition Wall 1 | 1 Days  | Employer     |    |        |
| _   | A1150       | Boundary wall 1         | 3 Days  | Employer     |    |        |
| -   | A11/0       | Boundary wall 2         | 2 Days  | Employer     |    |        |
| _   | A1130       | Boundary wall 4         | 2 Days  | Employer     |    |        |
| _   | A1200       | Boundary wai 5          | 3 Days  | Contractor   |    |        |
|     | AIZIN       | Project Administration  | 0 LIAVS | 1. Initación |    |        |
| xpo | tFileName   |                         |         |              |    | X Expe |
|     |             |                         |         |              |    |        |
|     |             |                         |         |              |    |        |
|     | 410         |                         |         |              |    |        |
| 2   |             |                         |         |              |    |        |
|     |             | Cancel                  |         |              | OK |        |

Figure 4-19 Activities Liabilities

# 4.4.3 Cost Panel

This panel details the costs types related to both activity level and project level. It is shown in Figure 4-13. It has five buttons: Direct Cost of Material, Man & Machinery Cost, Home Office Overheads, Site Staff Overheads, and Consumable Site Overheads. Their functions are described in the Table 4-2.

| Button Name             | Icon  | Button Function            |
|-------------------------|-------|----------------------------|
|                         |       | This button helps to see   |
| Direct Cost of Material |       | users the details of       |
|                         | V (!) | Material Varied and its    |
|                         |       | cost. See Figure 4-20.     |
|                         |       | This button allows the     |
| Man & Machinery Cost    |       | user to view resources     |
| Man & Machinery Cost    | \$    | cost in tabular format.    |
|                         |       | See Figure 4-21.           |
|                         |       | Users can select a         |
| Home Office Overheads   |       | formula of their choice to |
| Cost                    |       | calculate Home office      |
|                         |       | Overhead. See Figure       |
|                         |       | 4-23.                      |
|                         | _     | This button allows users   |
| Site Staff Overheads    | S     | to view cost details of    |
|                         |       | Site staff. See Figure     |
|                         |       | 4-28.                      |
|                         |       | This button allows users   |
| Site Consumable         |       | to view cost details of    |
| Overheads               |       | Site Establishment. See    |
|                         |       | Figure 4-29.               |

Table 4-2 Cost Panel Buttons and their Functions

|   | Material Name         | Material Id | Baseline Quantity | Actual Quantity          | Variation | Material Cost | ^ |
|---|-----------------------|-------------|-------------------|--------------------------|-----------|---------------|---|
| • | Generic - 200mm       | 204863      | 254.611648456584  | 254.611648456584         | 0         | 0             |   |
|   | Generic - 200mm       | 204922      | 269.133512596852  | 269.133512596852         | 0         | 0             |   |
|   | Generic - 200mm       | 205011      | 240.322720876345  | 240.322720876346         | 0         | 0             |   |
|   | Generic - 200mm       | 205050      | 100.728334639534  | 176.189702191116         | 75.461    | 905.532       |   |
|   | Generic - 200mm       | 207522      | 692.734309010422  | 692.734309010422         | 0         | 0             |   |
|   | Generic - 200mm       | 207578      | 47 3558317430319  | 471.558317430319         | 0         | 0             |   |
|   | Generic - 200mm       | 207655      | 713.952779377935  | 713.952779377935         | 0         | 0             |   |
|   | Generic - 200mm       | 207720      | 348.970379667937  | 381.778778618068         | 32.808    | 393.696       |   |
|   | Generic - 200mm       | 214255      | 89.732343306426   | 6426 89.732343306426 0 0 | 0         |               |   |
|   | Generic - 200mm       | 214305      | 40.786304164704   | 40.786304164704          | 0         | 0             |   |
|   | Generic Floor - 400mm | 232302      | 5368.17399021207  | 5368.17399021207         | 0         | 0             | - |
|   | Generic Floor - 400mm | 232340      | 5368.17399021207  | 5368.17399021207         | 0         | 0             |   |
|   | 600 x 600mm grid      | 232366      | 83.0727309821486  | 83.0727309821486         | 0         | 0             |   |
|   | 600 x 600mm grid      | 232374      | 18.8801587868559  | 33.0243676308292         | 14.144    | 480.896       |   |
|   | 600 x 600mm grid      | 232382      | 9.27557802549272  | 24.222989864761          | 14.947    | 508.198       |   |
|   | 600 x 600mm grid      | 232390      | 4.33071024351439  | 4.33071024351439         | 0         | 0             |   |
|   | 600 x 600mm grid      | 232398      | 4.4585989470901   | 4.4585989470901          | 0         | 0             |   |
|   | Pad 1                 | 245014      | 4264.57560915122  | 4264.57560915122         | 0         |               |   |
|   | Generic - 200mm       | 251842      | 953.577392037443  | 953.577392037443         | 0         | 0             |   |
|   | Generic - 200mm       | 251923      | 757.735661334009  | 757.735661334009         | 0         | 0             |   |
|   | C · 200               |             | C40 000444500040  | C40 000444500040         | •         | -             |   |

Figure 4-20 Direct cost of material

|      |                       | Liability  | Entitled Delay | Labour Cost | Equipment Cost | 1    |
|------|-----------------------|------------|----------------|-------------|----------------|------|
|      | s, Scaffolding        | Employer   | 3 Days         | 18005.33    | 18005.33       |      |
|      | ers, Masons           | Employer   | 7 Days         | 5408        | 5408           |      |
|      | work, Helpers, Masons | Employer   | 2 Days         | 0           | 0              |      |
|      | ns                    | Contractor | 0              | 0           | 0              |      |
| 2    |                       | Contractor | 0              | 0           | 0              |      |
|      |                       | Employer   | 31 Days        | 0           | 0              |      |
|      |                       |            |                |             |                |      |
| <    |                       | _          |                |             |                | >    |
| Euro | rt File Name          |            |                |             |                | xpor |
| Expo |                       |            |                |             |                |      |

Figure 4-21 Entitled Labour and Equioment cost

Figure 4-20 shows direct costs and variations. Because these costs depend upon activities directly, that's why these costs have activities in their details. SCL protocol recommends three of the mentioned formulae for calculations of Home Office Overheads. As we have discussed the guidelines for selecting Eicheleay's Formula in the Literature Review chapter, some of the guidelines were incorporated into the system. Those guidelines are shown in Figure 4-22. User has to check or uncheck the boxes as per their contract type and nature. If the costs incurring are the reason for a force majeure, then Eicheleay's Formula cannot be used. Since it is unchecked in the selection shown, users can see a list of all three formulae in Figure 4-23. The user has to manually put the details in each box of each formula. The selected formula, in this case, is the Hudson formula, as shown in Figure 4-24. And calculated HOOH by this formula is shown in Figure 4-25. Emden formula and Eichleay Formula are shown in figure Figure 4-26 & Figure 4-27, respectively.

| BIM-CCM\$                                                      |            |
|----------------------------------------------------------------|------------|
| Please Provide the Contract Con                                | nditions   |
| The claim is between Main Contractor and Owner                 |            |
| The claim is resulting from a force majeure event              |            |
| The project's schedule is extended past the contract performan | nce period |
| Contractual agreements are upheld regardless of actual damag   | jes 🗆      |
| -112                                                           |            |
| Canad                                                          | ΟΚ         |

Figure 4-22 Guidelines for Selecting Eichleay's Formula



Figure 4-23 Types of Overhead Cost Formula

| 🕮 BIM-CCM\$                 | ×             |
|-----------------------------|---------------|
| Please Fill the Follo       | wing Sections |
| Contract Sum                | 12345         |
| Contract Period             | 180           |
| HOOH (Profit) in Percentage | 12            |
| Period of Delay in Days     |               |
| RIM-CCMS<br>Cancel          | 0K.           |
|                             |               |

Figure 4-24 Hudson Formula

| 11 and a | 000                      | and a        |   |
|----------|--------------------------|--------------|---|
| Home     | Office Overr             | neads        |   |
| OHC      |                          |              |   |
| Home     | Office Overhead Cost = 3 | 255.130000\$ |   |
|          |                          |              |   |
|          |                          |              |   |
| -        | 10-                      |              |   |
|          |                          |              |   |
|          | 14                       |              |   |
|          | COMP                     |              |   |
| BIM      | CCMS                     |              |   |
| BIM      | CCMS                     |              |   |
| BIM      | ancel                    | OK           | _ |

Figure 4-25 Calculated HOOHs using Hudson formula

|   | BIM-CCM\$                    |                  | × |
|---|------------------------------|------------------|---|
| I | Please Fill the Fo           | llowing Sections |   |
| C | Company Overhead cost/profit |                  | ] |
| C | company revenue              |                  | ] |
| C | Contract Price               |                  | ] |
| C | Contract period in Weeks     |                  | ] |
| F | Period of Delay in Weeks     |                  | ] |
|   | RIM-CCMS                     |                  |   |
|   | Cancel                       | ОК               | 1 |

Figure 4-26 Emden formula

| BIM-CCM\$                           | ×             |
|-------------------------------------|---------------|
| Please Fill the Follo               | wing Sections |
| Actual billings for contract        |               |
| Total Actual billings of the Period |               |
| Total home Office overheads         |               |
| Days of Performance                 |               |
| Period of Delay in Days             |               |
| BIM-CCMS                            |               |
| Cancel                              | ОК            |
|                                     |               |

Figure 4-27 Eichleay's Formula

|      | Site Staff           | Delay in Project | Site Staff Overheads | 1      |
|------|----------------------|------------------|----------------------|--------|
| Þ    | Project Manager      | 31               | 50000                | 11     |
|      | Site Engineer        | 31               | 60000                | 11     |
|      | Quantity Surveyor    | 31               | 1000000              | 11     |
|      | Construction Manager | 31               | 100000               | 15     |
| Expo | tFileName            |                  | X                    | Export |

Figure 4-28 Site staff Overheads

Figure 4-28 shows details of salaried staff assigned to a project and their cost details if the project's actual Performance date extends the planned performance date. Similarly, Figure 4-29 will show the site preliminaries and their cost details.

|      | Site Staff      | Delay in Project | Site Consumables Overheads |      |
|------|-----------------|------------------|----------------------------|------|
| •    | Site Office     | 31               | 15000                      |      |
|      | Inventory Store | 31               | 15000                      |      |
| 1    | Generator       | 31               | 50000                      |      |
| <    |                 | a const          |                            | >    |
| Expo | rtFileName      |                  |                            | крог |

Figure 4-29 Site consumable Overheads

### 4.4.4 Visualization Panel

This panel contains one button to show variations in the baseline model and actual model. Users have to set the model as a baseline using the "Set model as baseline" button and then make changes to the model to view the changes. Figure 4-30 shows Baseline Model, and Figure 4-31 shows the Actual model after variations.



Figure 4-30 Baseline Model



Figure 4-31 Varied Model

# 4.4.5 Summary Panel

This panel contains a single button that allows users to enter the summary of each type of cost in their respective sections. It also has the option for the user to manually input the prerequisite for a cost claim. It is shown in Figure 4-32.

| Claim                   | 2021-MCADW-01                                                                                                                                                                                                                                                                                                           |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference:              |                                                                                                                                                                                                                                                                                                                         |
| Claim Date:             | 7-18-2021                                                                                                                                                                                                                                                                                                               |
|                         |                                                                                                                                                                                                                                                                                                                         |
| Claim Subject:          | Financial Claim for Construction of Pre-Engineered Steel Structured<br>Warehouse, Qusur on account of extension of time                                                                                                                                                                                                 |
| Background of<br>Claim: | This document refers to captioned subject regarding our last session betwee<br>Engineer and Abdul Ghaffar Engineering Works (Contractor) for the variation<br>design and time impacted on financial basis. The delays in activities resulting<br>ongoing COVID situations were discussed during minutes of the meeting. |
| Claim Notice            | Due to ongoing pandemic situation, delay in project progress was felt by                                                                                                                                                                                                                                                |
| Description:            | representative of Ghaffar Engineering Works (Contractor) and that lead to ex<br>cost regards to the equipment, scaffolding, supervision and manpower                                                                                                                                                                    |

Figure 4-32 Claims Summary

# 4.4.6 Printing the Output

The system uses default Revit settings for printing. All types of costs and summaries are added as drafting views in Revit Project Browser. Users can select a drafting view to be printed of their choice. It can be shown in Figure 4-33 & Figure 4-34. Revit 2020 and higher versions allow users to add supporting documents like images and PDFs, increasing confidence in substantiating claims.


Figure 4-33 Drafting views

| /iew/Sheet | Set                       |                         |          | ? ×            |
|------------|---------------------------|-------------------------|----------|----------------|
| Name:      | <in-session></in-session> |                         | ~        | Save           |
| 3D View    | : 3D View 1               |                         |          | Save As        |
| 3D View    | : {3D}                    |                         |          |                |
| Drafting   | View: AA- Project         | View                    |          | Revert         |
| Drafting   | View: Activities Li       | abilities               |          | 54-            |
| Drafting   | View: Claim Summ          | ary                     |          | Rename         |
| Drafting   | View: Direct Cost         | of Varied Material      |          | Delete         |
| Drafting   | View: Home Office         | e OH Cost               |          | D'UNIC.        |
| Drafting   | View: Man & Mach          | nnery Cost              |          |                |
| Drafting   | View: Site Consur         | nables Overheads        | 10       | Charle All     |
| Orafting   | View: Site Staff O        | verheads                |          | Check All      |
| Elevation  | n: East                   |                         | 100      | Check None     |
| Elevation  | n: North                  |                         |          | Circle interne |
| Elevation  | n: South                  |                         |          |                |
| Elevation  | n: West                   |                         |          |                |
| Floor Pla  | n: Level 1                |                         |          |                |
| Floor Pla  | n: Level 2                |                         |          |                |
| Floor Pla  | in: Level 3               |                         |          |                |
| Floor Pla  | in: Site                  |                         |          |                |
| Graphica   | al Column Schedule        | : Graphical Column Sche | dule 1 🗸 |                |
| <          |                           |                         | >        |                |
| Show       |                           |                         |          |                |
| Sheets     | i i                       | Views                   |          |                |
|            |                           | ~                       | Cancel   | Hala           |

Figure 4-34 Select Drafting views for printing

All the data which was shown in tabular form and entered manually can be printed. Some of the data in output form are shown in the selected drafting views in Figure 4-34 are shown in Figure 4-35to Figure 4-41.



Figure 4-35 Claim title cover output

| Activities Liabiliti | es                      |        |            |
|----------------------|-------------------------|--------|------------|
| Activity ID          | Activity Name           | Delay  | Liability  |
| A1030                | Foundation work         | 1 Days | Employer   |
| A1080                | Office Partition Wall 1 | 1 Days | Employer   |
| A1170                | Boundary wall 2         | 7 Days | Employer   |
| A1190                | Boundary wall 4         | 2 Davs | Employer   |
| A1200                | Boundary wall 5         | 3 Davs | Contractor |
| A1210                | Project Adminstration   | 8 Davs | Contractor |

Figure 4-36 Activities Liablities Output

| Claim Summary:                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Claim Reference:<br>2021-MCADW-01                                                                                                                                                                                                                                                                                                                                  |
| Claim Date:<br>7-18-2021                                                                                                                                                                                                                                                                                                                                           |
| Claim Subject:<br>Financial Claim for Construction of Pre-Engineered Steel Structured Warehouse,Qusur on account of extension of time                                                                                                                                                                                                                              |
| Background of Claim:<br>This document refers to captioned subject regarding our last session between the Engineer and Abdul Ghaffar Engineering Works (Contractor) for the variations in<br>design and time impacted on financial basis. The delays in activities resulting from ongoing COVID situations were discussed during minutes of the meeting.            |
| Claim Notice Description:<br>Due to ongoing pandemic situation, delay in project progress was felt by representative of Ghaffar Engineering Works (Contractor) and that lead to extra cost<br>regards to the equipment, scaffolding, supervision and manpower development along with other costs therein. The outcome of summarized costs is shared here<br>below: |
| Material Cost Description:<br>The Material Cost for variations in design as mentioned in minutes of the meeting is attached to the summary as annexure document.                                                                                                                                                                                                   |
| Labour & Equipment Cost Description:<br>The Labour and Equipment Cost for variations in design and extra time that brought along, as mentioned in minutes of the meeting is attached to the summary as<br>annexure document                                                                                                                                        |
| Salaried Staff and Site Establishment Cost:<br>Extra site establishment and salaried staff Cost for extra time that brought along, as mentioned in minutes of the meeting is provided as discussed document.                                                                                                                                                       |
| HOOH cost Desription:<br>: Head Office overhead cost is proportionately charged to project in progress, calculation of cost charged is discussed and provided.                                                                                                                                                                                                     |

Figure 4-37 Claim summary Output

| Direct Cost of Varied Ma | aterial     |                   |               |           |          |               |  |
|--------------------------|-------------|-------------------|---------------|-----------|----------|---------------|--|
| Material Name            | Material Id | Baseline Quantity | Actual Quanti | tv Va     | riation  | Material Cost |  |
| Generic - 200mm          | 204863      | 254 611648        | 254 611648    | .,        |          | 0.00000       |  |
| Generic - 200mm          | 204003      | 269 133513        | 269 133513    | 0.0       | 000000   | 0.000000      |  |
| Generic - 200mm          | 205011      | 203.133313        | 240 322721    | 0.0       | 000000   | 0.000000      |  |
| Generic 200mm            | 205050      | 100 728335        | 176 180702    | 75        | 461000   | 905 532000    |  |
| Generic - 200mm          | 203030      | 600 724200        | 600 704000    | 13        | 00000    | 0.000000      |  |
| Generic - 200mm          | 207522      | 092.7 34309       | 092.7 34309   | 0.0       | 000000   | 0.000000      |  |
| Generic - 200mm          | 20/5/0      | 4/1.00001/        | 4/1.00001/    | 0.0       | 000000   | 0.000000      |  |
| Generic - 200mm          | 20/000      | 713.952779        | /13.952//9    | 0.0       | 000000   | 0.000000      |  |
| Generic - 200mm          | 20/720      | 348.970380        | 381.778779    | 32        | .808000  | 393.696000    |  |
| Generic - 200mm          | 214255      | 89.732343         | 89.732343     | 0.0       | 00000    | 0.00000       |  |
| Generic - 200mm          | 214305      | 40.786304         | 40.786304     | 0.0       | 00000    | 0.00000       |  |
| Generic Floor - 400mm    | 232302      | 5368.173990       | 5368.1735     | 90        | 0.000000 | 0.000000      |  |
| Generic Floor - 400mm    | 232340      | 5368.173990       | 5368.1739     | 90        | 0.000000 | 0.000000      |  |
| 600 x 600mm grid         | 232366      | 83.072731         | 83.072731     | 0.0       | 000000   | 0.00000       |  |
| 600 x 600mm grid         | 232374      | 18.880159         | 33.024368     | 14        | .144000  | 480.896000    |  |
| 600 x 600mm grid         | 232382      | 9.275578          | 24.222990     | 14.94     | 7000     | 508.198000    |  |
| 600 x 600mm grid         | 232390      | 4.330710          | 4.330710      | 0.000000  |          | 0.000000      |  |
| 600 x 600mm grid         | 232398      | 4.458599          | 4.458599      | 0.000000  |          | 0.000000      |  |
| Pad 1                    | 245014      | 4264.575609       | 4264.575609   | 0.000     | 000      | null          |  |
| Generic - 200mm          | 251842      | 953.577392        | 953.577392    | 0.0       | 000000   | 0.000000      |  |
| Generic - 200mm          | 251923      | 757.735661        | 757.735661    | 0.0       | 000000   | 0.000000      |  |
| Generic - 200mm          | 251999      | 649.282412        | 649.282412    | 0.0       | 000000   | 0.000000      |  |
| Generic - 200mm          | 252062      | 692.719513        | 692.719513    | 0.0       | 000000   | 0.000000      |  |
| Generic - 200mm          | 252156      | 1286.778915       | 1286.778915   | 0.0       | 000000   | 0.000000      |  |
| 36" x 84"                | 253372      | 1.240826          | 1.240826      | 0.000000  |          | 0.000000      |  |
| 36" x 84"                | 253501      | 1.240826          | 1.240826      | 0.000000  |          | 0.000000      |  |
| 36" x 84"                | 253545      | 1.240826          | 1.240826      | 0.000000  |          | 0.000000      |  |
| 36" x 84"                | 253611      | 1.240826          | 1.240826      | 0.000000  |          | 0.000000      |  |
| 36" x 84"                | 253673      | 1.240826          | 1.240826      | 0.000000  |          | 0.000000      |  |
| 180" x 120"              | 253803      | 2.557140          | 2.189327      | -0.368000 |          | null          |  |
| 180" x 120"              | 253843      | 2.557140          | 2.557140      | 0.000000  |          | 0.000000      |  |
| 36" x 24"                | 254944      | null              |               | null      | null     |               |  |
| 36" x 24"                | 255037      | null              |               | null      | null     |               |  |
| 36" x 24"                | 255062      | null              |               | null      | null     |               |  |
| 36" x 72"                | 255155      | null              |               | null      | null     |               |  |
| 36" x 72"                | 255187      | null              |               | null      | null     |               |  |
| 36" x 72"                | 255313      | null              |               | null      | null     |               |  |
| 18 x 24                  | 276454      | 6                 | 6.000000      | 0.000000  |          | null          |  |
| 18 x 24                  | 276547      | 6                 | 6.000000      | 0.000000  |          | null          |  |
| 18 x 24                  | 276837      | 6                 | 6.000000      | 0.000000  |          | null          |  |
| 18 x 24                  | 276839      | 6                 | 6.000000      | 0.000000  |          | null          |  |
| 18 x 24                  | 276859      | 6                 | 6.000000      | 0.000000  |          | null          |  |
| 18 x 24                  | 276861      | 6                 | 6.000000      | 0.000000  |          | null          |  |
|                          |             |                   |               |           |          |               |  |
|                          |             |                   |               |           |          |               |  |

Figure 4-38 Direct Cost of varied material

Site Consumables OverheadsSite StaffDelay in ProjectSite Consumables OverheadsSite Office31.00000015000.000000Inventory Store31.00000015000.000000Generator31.00000050000.000000

Figure 4-39 Site consumable Overheads

| Site Staff Overheads |                  |                      |
|----------------------|------------------|----------------------|
| Site Staff [         | Delay in Project | Site Staff Overheads |
| Project Manager      | 31.000000        | 50000.000000         |
| Site Engineer        | 31.000000        | 60000.000000         |
| Quantity Surveyor    | 31.000000        | 1000000.000000       |
| Construction Manage  | er 31.000000     | 100000.000000        |

Figure 4-40 Site staff Overheads Output

| Home Office OH C | ost      |              |              |                   |
|------------------|----------|--------------|--------------|-------------------|
| Home Office Over | Heads    | Formula Name | Но           | me Office OH Cost |
| 1                | Hudson F | ormula       | 255.130000\$ |                   |
|                  |          |              |              |                   |

Figure 4-41 HOOH cost output

## 4.5 EVALUATION RESULTS

Experts were asked about the need for the system in construction. Figure 4-42 the results of respondents. 67% of experts strongly agreed, and 33% of experts agreed. None of the experts disagreed with needing BIM-CCMS.



Figure 4-42 Feedback on Need of BIM-CCMS

We also asked experts about the system's usability; the results are shown in Figure 4-43. 67% of the experts said that the system was easy to understand and use, so they strongly agreed to the ease of the system. In comparison, 33% disagreed with system usage and its easiness.



Figure 4-43 Feedback on Usability of BIM-CCMS

Experts were asked if the system is implementable in the construction industry. 46% of experts strongly agreed, and 47% agreed that the system is implementable. There were 7% of the respondents who neither agreed nor disagreed to question asked. Surprisingly there was no one to disagree (Figure 4-44).



Figure 4-44 Implemenettion of BIM-CCMS

Figure 4-45 shows the overall effectiveness of the system in the management of cost claims. 64% strongly agreed, and 36% agreed to the question asked. No expert disagreed with the effectiveness of the system.



Figure 4-45 Effectiveness of BIM-CCMS

Table 4-3 shows the effectiveness of the developed system to resolve the issues related to cost claims. These values were given rankings on their respective RII values.

| Inefficiencies | Group     | Mean          | Sum          | RII      | Ranking |
|----------------|-----------|---------------|--------------|----------|---------|
| No             |           |               |              |          |         |
| Comprehensive  |           |               |              |          |         |
| method for     |           | 4.066667      | 1            | 0.813333 | 11      |
| Claim          |           |               |              |          |         |
| Management     | Procedure |               |              |          |         |
| Time taking    |           |               |              |          |         |
| process due to |           | 4 1 2 2 2 2 2 | ( <b>2</b> ) | 0.020007 | 10      |
| complex        |           | 4.133333      | 62           | 0.826667 | 10      |
| procedures     |           |               |              |          |         |

Table 4-3 Semi Structured interview-based Evaluation

| Too Many        |              |          |    |          |    |
|-----------------|--------------|----------|----|----------|----|
| Documents for   |              |          |    |          |    |
| Claims          |              | 3.933333 | 59 | 0.786667 | 20 |
| preparation and |              |          |    |          |    |
| assessment      |              |          |    |          |    |
| Use of          |              |          |    |          |    |
| unsuitable      |              | 28       | 57 | 0.76     | 25 |
| techniques for  |              | 5.8      | 57 | 0.70     | 23 |
| claim analysis  |              |          |    |          |    |
| Insufficient    |              |          |    |          |    |
| time for claim- |              | 4        | 60 | 0.0      | 10 |
| preparation and |              | 4        | 60 | 0.8      | 19 |
| analysis        |              |          |    |          |    |
| Unstructured    |              | 4.2      | 62 | 0.94     | 7  |
| Documents       |              | 4.2      | 05 | 0.84     | /  |
| Poor            |              |          |    |          |    |
| Presentation of | Presentation | 4.333333 | 65 | 0.866667 | 4  |
| Claims          |              |          |    |          |    |
| No standard     |              | 1 066667 | 61 | 0.012222 | 16 |
| Format          |              | 4.000007 | 01 | 0.813333 | 10 |
| On-site         |              |          |    |          |    |
| Inaccessibility |              |          |    |          |    |
| to Relevant     |              | 4        | 60 | 0.8      | 18 |
| Document        |              |          |    |          |    |
| when needed     |              |          |    |          |    |
| Delay in notice | Resources    |          |    |          |    |
| to claim by     |              | 3.933333 | 59 | 0.786667 | 22 |
| Contractor      |              |          |    |          |    |
| Poor            |              |          |    |          |    |
| Maintenance of  |              | 4.2      | 63 | 0.84     | 8  |
| Claim Records   |              |          |    |          |    |

| insufficient      |          |          |    |          |    |
|-------------------|----------|----------|----|----------|----|
| skilled           |          |          |    |          |    |
| personnel for     |          | 3.066667 | 46 | 0.613333 | 30 |
| claim             |          |          |    |          |    |
| management        |          |          |    |          |    |
| Ambiguities in    |          |          |    |          |    |
| responsibilities  |          | 1 066667 | 55 | 0 733333 | 28 |
| of construction   |          | 4.000007 | 55 | 0.755555 | 20 |
| team              |          |          |    |          |    |
| Legibility of     |          |          |    |          |    |
| claims in verbal  |          | 2 022222 | 50 | 0 786667 | 21 |
| and technical     |          | 3.933333 | 39 | 0./8000/ | 21 |
| terms             |          |          |    |          |    |
| Lack of           | Contract |          |    |          |    |
| Contract          | Contract | 4.066667 | 61 | 0.813333 | 13 |
| awareness         |          |          |    |          |    |
| Lack of Clear     |          |          |    |          |    |
| information in    |          | 4.066667 | 61 | 0.813333 | 14 |
| Contracts         |          |          |    |          |    |
| Difference in     |          |          |    |          |    |
| quantification    |          |          |    |          |    |
| of damages        |          | 4.133333 | 62 | 0.826667 | 9  |
| calculated by     |          |          |    |          |    |
| different parties |          |          |    |          |    |
| Difficulty in     | Cost     |          |    |          |    |
| Quantification    | Cost     | 4.2      | 63 | 0.84     | 6  |
| of indirect costs |          |          |    |          |    |
| Burden of Proof   |          |          |    |          |    |
| to support a      |          | 4,333333 | 65 | 0.866667 | 5  |
| claim e.g.        |          |          |    | 0.000007 | 5  |
| complexity of     |          |          |    |          |    |

| determining      |                 |          |    |          |    |
|------------------|-----------------|----------|----|----------|----|
| cause and effect |                 |          |    |          |    |
|                  |                 |          |    |          |    |
| Exaggerated      |                 |          |    |          |    |
| claims made by   |                 | 4.533333 | 68 | 0.906667 | 2  |
| contractors      |                 |          |    |          |    |
| Absence of use   |                 |          |    |          |    |
| of standard      |                 |          |    |          |    |
| formula for      |                 | 1 066667 | 61 | 0.012222 | 10 |
| evaluation and   |                 | 4.000007 | 01 | 0.815555 | 12 |
| calculation of   |                 |          |    |          |    |
| damages          |                 |          |    |          |    |
| High cost        |                 |          |    |          |    |
| associated with  |                 |          |    |          |    |
| retrieving       |                 | 3.733333 | 56 | 0.746667 | 27 |
| required         |                 |          |    |          |    |
| information      |                 |          |    |          |    |
| Lack of          |                 |          |    |          |    |
| Accuracy in      |                 |          |    |          |    |
| Estimation of    |                 | 4.066667 | 61 | 0.813333 | 15 |
| Loss of          |                 |          |    |          |    |
| Productivity     |                 |          |    |          |    |
| Poor             |                 |          |    |          |    |
| Maintenance of   |                 |          |    |          |    |
| Overhead         |                 | 1 066667 | 61 | 0.912222 | 17 |
| Records (site    |                 | 4.000007 | 01 | 0.815555 | 17 |
| and Head         | Decompositation |          |    |          |    |
| Office)          | Documentation   |          |    |          |    |
| No               |                 |          |    |          |    |
| computerized     |                 | 1 666667 | 70 | 0 022222 | 1  |
| documentation    |                 | 4.00000/ | /0 | 0.733333 | I  |
| system           |                 |          |    |          |    |

| Lack of         |              |          |    |          |    |
|-----------------|--------------|----------|----|----------|----|
| adequate        |              | 4 522222 | (0 | 0.000007 | 2  |
| Information in  |              | 4.533333 | 68 | 0.906667 | 3  |
| drawings        |              |          |    |          |    |
| Coordination    |              |          |    |          |    |
| gap between     |              | 2 966667 | 50 | 0 772222 | 24 |
| Site and office |              | 3.80000/ | 38 | 0.//3333 | 24 |
| staff           | Coordination |          |    |          |    |
| Not updating    |              | 3 666667 | 55 | 0 733333 | 20 |
| the schedules   |              | 5.000007 | 55 | 0.755555 | 29 |
| Less            |              |          |    |          |    |
| dependency on   | Tashnalasy   | 2 722222 | 56 | 0 746667 | 26 |
| new software    | Technology   | 5./55555 | 30 | 0.740007 | 20 |
| based systems   |              |          |    |          |    |
| Overdue in      |              |          |    |          |    |
| retrieving      | Time         | 3.866667 | 58 | 0.773333 | 23 |
| Information     |              |          |    |          |    |

**a. Procedure Group:** Developed system was able to handle Time taking process due to complex procedures RII value of 82%. But the use of unsuitable techniques for claim analysis issues still needs more time. Filed experts believe that this issue needs to be explored within the system; its RII value is among the lowest ones.

**b. Presentation Group:** The system handled most of its issues with more than 80% RII value. The data is well represented. Experts said that data is divided into legible sections. All of its issues are resolved and ranked in the top 20 of the resolved issues.

**c. Resource Group:** This group mostly contains issues that are mostly dependent on human traits. Most of them have an RII value of lowest rankings. Only maintenance of claim records ranks in the top 10.

d. Contract Group: This group's lack of contract awareness issue is resolved pretty much due to the sorted database of related contracts clauses of mostly used

contracts provided in the system. Legibility of claims in verbal and technical terms and lack of clear information needs more attention to be resolved.

e. Cost Group: This group shows the highest resolved issues on average. Due to its Parametric 3D modeling and visualization, most of its issues are resolved and fall in the top 10 RII values list.

**f.** Documentation Group: Since this system is BIM-based, it resolves most documentation-related issues with more than 70% RII value. It also has the value of the top resolved issue, which is no computerized documentation system with more than 805 RII value.

**g.** Coordination Group: This group mostly contains issues related to communication and coordination. They have been resolved up to some extent. But it needs more work within the project coordination system.

**h. Technology Group:** Experts valued this group's issues in the last ten resolved issues. There is still hesitation towards new technology adoption. Experts suggested the system should be validated on a completed project to get the actual values and check the system's compatibility with project size.

i. Time Group: This group shows the resolution of issues related to time overdue to retrieve information. The system resolved it with a 77% RII value.

## 4.6 FEEDBACK FOR SYSTEM FROM EXPERTS:

Experts were asked if there were any barriers to implement this system in the construction industry. Table 4-4 shows some key barriers and their key comments.

| Barriers  | Key Comments                                                 |
|-----------|--------------------------------------------------------------|
|           | The construction industry needs to improve its experience    |
| Knowladge | in using new technology. Most of the experts provided the    |
| Knowledge | information that many construction firms are still in 2D. 3D |
|           | is being used for rendering purposes only.                   |
| Cost      | Proper Training and seminars should be done which will       |
| Cost      | bring extra costs with them.                                 |

Table 4-4 Barriers in implementing BIM-CCMS

| Data Innut | Data Coming from other software which is not BIM can       |
|------------|------------------------------------------------------------|
|            | make results less realistic.                               |
|            | Contractors and other parties should know contracts enough |
| Contract   | to work within a BIM environment and have contractual      |
|            | knowledge and experience to implement within BIM.          |

Experts were also asked if there is a need to improve the system; their feedback is recorded in Table 4-5.

| Future Improvements | Key Comments                                           |
|---------------------|--------------------------------------------------------|
| Education           | The system should have supporting tutorials, seminars, |
| Education           | etc. for the sake of awareness in construction         |
| Poplistic Approach  | The system should handle real-time cost analysis for   |
| Realistic Approach  | large and complex models                               |
| Faanamy             | The system should include Tax systems, inflations into |
| Leonomy             | considerations                                         |

Table 4-4 Future Improvements Recommended by Experts

# Chapter 5

# **CONCLUSIONS AND RECOMMENDATIONS**

### 5.1 **DISCUSSION**

This study was aimed to achieve the following objectives:

- To identify the issues in the cost claims management process in the construction industry
- To develop a framework for a BIM-based knowledge management system for cost claims.
- To develop a digital platform for implementing the framework in the BIM authoring platform.

The first objective has been achieved by identifying inefficiencies in management of cost claims through literature and verifying them from the construction industry. The second objective has been achieved after refining many conceptual frameworks. The traits of finalized conceptual framework developed have been discussed in previous chapters. The last objective was achieved by using a conceptual framework and putting that information into the development of the BIM-CCMS prototype architecture. The working of BIM-CCMS has been realized through a warehouse project as a case study. BIM-CCMS has then been presented to industry experts to assess the easiness and usability of cost claims management in construction projects.

## 5.2 CONCLUSION

Construction Projects are complex in nature. Size, location, and the number of parties involved in a project add complexity to a project. These complex projects need modern solutions to avoid financial and time losses actively or reactively. BIM is one of the widely used platforms to take projects from 2D to nD. Its API is rich and friendly to use. Although Revit has strong interoperability within and out of BIM, it does not provide solutions to all the problems. Modern Information and Communication Technology (ICT) systems have facilitated the construction industry. BIM was used to achieve our goals through this research.

Based on the systematic and action-based nature of the research, both were used partly in methodology. Issues in conventional cost claim management were identified from the literature and verified by field experts. BIM cannot solve all the issues on its own. For that purpose, we had to develop a BIM- CCMS tool. This tool was developed using scripts developed in the Dynamo environment. Dynamo has a huge involvement in decision-making for the calculation of costs. SQL Server database has been connected to Dynamo through nodes packages to store the data in the database. Excel data was imported from planning software, and a contract clauses database was developed and used in the system. A sample cost claim was also generated in the end based on different delays and design variations. Resolved issues found from the literature were aimed to be resolved. Their percentage of resolution is discussed in the last chapter.

### 5.3 LIMITATIONS

Limitations were faced during the development and working of BIM-CCMS. Industry experts also pointed out these limitations. These limitations are discussed as follows:

- The system relies on the schedule data imported from another software like primavera software, which is not a part of BIM.
- The system also uses frequently used contracts in the region. However, there should be an option to introduce other contracts so that users can manually put their specific type of contract clauses.
- The system can decide the liability solely on the Contractor or Client; in case of concurrent delays where both parties are liable, the system cannot decide liability at this stage.
- Experts suggested that data should be developed and imported from Navisworks, also it should have the ability to synchronize with Navisworks.
- The size of the sample project was small, and it should be tested on large and complex projects.

## 5.4 **RECOMMENDATIONS**

Following are the recommendations which should be incorporated into the system:

- The system should develop and show earned value analysis (EVA) within the environment.
- It should be tested from an earlier stage of the project to visualize the impact of delays in terms of costs.
- It should also cover inflation and taxes costs if the project's duration is in years.

## 5.5 FUTURE RESEARCH DIRECTIONS

During this study, the author learned about other such systems in the construction industry to calculate claims-related costs.

- A reliable study should be made to assess and manage the risk in using such developed systems.
- The system used only three known formulae in the research and case studies to calculate home office overheads.
- For costs of home office overheads, other formulae should be tested and added to the system as annexure.

## REFERENCES

- Abdul-Malak, M. A. U., El-Saadi, M. M. H., & Abou-Zeid, M. G. (2002). Process Model for Administrating Construction Claims. *Journal of Management in Engineering*, 18(2), 84–94. https://doi.org/10.1061/(asce)0742-597x(2002)18:2(84)
- Akinade, Olugbenga O, Oyedele, L. O., Munir, K., Bilal, M., Ajayi, S. O., Owolabi,
  H. A., ... Bello, S. A. (2016). Evaluation criteria for construction waste management tools: towards a holistic BIM framework. *International Journal of Sustainable Building Technology and Urban Development*, 7(1), 3–21.
- Akinade, Olugbenga Olawale. (2017). *BIM-based software for construction waste analytics using artificial intelligence hybrid models*. University of the West of England.
- Al-Gahtani, K. S., Al-Sulaihi, I. A., & Iqupal, A. (2016). Total float management: computerized technique for construction delay analysis. *Canadian Journal of Civil Engineering*, 43(5), 391–401.
- Ali, B. (2018). BIM Based Claims Management System : A Centralized Visual Information Repository for Extension of Time Claims Babar Ali BIM - Based Claims Management System : A Centralized Visual Submitted by Babar Ali. (00000105768).
- Ali, B., Zahoor, H., Mazher, K. M., & Maqsoom, A. (2018). BIM Implementation in Public Sector of Pakistan Construction Industry. (August), 42–51. https://doi.org/10.1061/9780784481721.005
- Ali D. Haidar. (2011). Global Claims in Construction. Springer.
- Allen, M. (2016). Global Construction Disputes. International In-House Counsel Journal, 9(36), 1–13. Retrieved from https://heinonline.org/hol-cgibin/get\_pdf.cgi?handle=hein.journals/iihcj9&section=64

Azhar, S. (2013). Research Impact Principles and Framework. General Information,

1. Retrieved from http://www.arc.gov.au/general/impact.htm

- Babar, S., Thaheem, M. J., & Ayub, B. (2017). Estimated Cost at Completion: Integrating Risk into Earned Value Management. *Journal of Construction Engineering and Management*, 143(3), 04016104. https://doi.org/10.1061/(asce)co.1943-7862.0001245
- Bakhary, N. A., Adnan, H., & Ibrahim, A. (2015). A study of construction claim management problems in Malaysia. *Procedia Economics and Finance*, 23, 63– 70.
- Burr, A. (2016). *Delay and disruption in construction contracts*. Informa Law from Routledge.
- Cerovsek, T. (2011). A review and outlook for a "Building Information Model" (BIM): A multi-standpoint framework for technological development. *Advanced Engineering Informatics*, 25(2), 224–244. https://doi.org/10.1016/j.aei.2010.06.003
- Chan, C. T. W. (2012). Construction Management and Economics The principal factors affecting construction project overhead expenses : an exploratory factor analysis approach The principal factors affecting construction project overhead expenses : an exploratory factor analysis . (July 2013), 37–41. https://doi.org/10.1080/01446193.2012.717706
- Chappell, D. (2011). Building Contract Claims. In *Building Contract Claims*. https://doi.org/10.1002/9781119951971
- Chau, K. W. (2007). Application of a PSO-based neural network in analysis of outcomes of construction claims. *Automation in Construction*, *16*(5), 642–646.
- Chen, X. (2015). Claim Management of Construction Engineering. 33-41.
- Chester, M., & Hendrickson, C. (2005). Cost Impacts, Scheduling Impacts, and the Claims Process during Construction. *Journal of Construction Engineering and Management*, 131(1), 102–107. https://doi.org/10.1061/(asce)0733-

9364(2005)131:1(102)

- CHO., Y. K., Leite, F., Behzadan, A., & Wang, C. (2019). Computing in Civil Engineering 2019. 105–113. Retrieved from http://toc.proceedings.com/49478webtoc.pdf
- Chou, H. Y., & Yang, J. Bin. (2017). Preliminary Evaluation of BIM-based Approaches for Schedule Delay Analysis. *IOP Conference Series: Materials Science and Engineering*, 245(6). https://doi.org/10.1088/1757-899X/245/6/062048
- Chovichien, V., & Tochaiwat, K. (2015). a Survey of Construction Claims and Claim Management Process in Thailand. *Researchgate.Net*, (MAY 2006). Retrieved from http://www.researchgate.net/publication/233400972\_A\_SURVEY\_OF\_CONS TRUCTION\_CLAIMS\_AND\_CLAIM\_MANAGEMENT\_PROCESS\_IN\_T HAILAND/file/9fcfd50a3b9a31f989.pdf
- Construction Industry Council. (2018). *Building Information Modeling (BIM) protocol second edition*. 1–15. Retrieved from http://cic.org.uk/admin/resources/bim-protocol-2nd-edition-2.pdf
- Davis, B. T., & Ibbs, W. (2016). Guidelines for Recovering Home Office Overhead Costs with Emphasis on the Eichleay Formula. *Journal of Legal Affairs and Dispute Resolution in Engineering and Construction*, 9(1), 04516009. https://doi.org/10.1061/(asce)la.1943-4170.0000201
- El-adaway, I., Fawzy, S., Allard, T., & Runnels, A. (2016). Change Order Provisions under National and International Standard Forms of Contract. *Journal of Legal Affairs and Dispute Resolution in Engineering and Construction*, 8(3), 03716001. https://doi.org/10.1061/(asce)la.1943-4170.0000187
- Enshassi, A., Choudhry, R. M., & El-ghandour, S. (2009). Contractors' perception towards causes of claims in construction projects. *International Journal of Construction Management*, 9(1), 79–92.

https://doi.org/10.1080/15623599.2009.10773123

Eoition, S., To, G., & Information, B. (n.d.). BIM Hand.

Evans, S. C. (2017). The Contractor 's NEC3 ECC Handbook.

- Fawzy, S. A., El-Adaway, I. H., & Asce, M. (2013). Scholarly Paper Time At Large within the Common Law Legal System: Application to Standard Forms of Contract. 9(1), 1–7. https://doi.org/10.1061/(ASCE)LA.1943-4170
- Ghaffarianhoseini, A., Tookey, J., Ghaffarianhoseini, A., Naismith, N., Azhar, S., Efimova, O., & Raahemifar, K. (2017). Building Information Modelling (BIM) uptake: Clear benefits, understanding its implementation, risks and challenges. *Renewable and Sustainable Energy Reviews*, 75(December 2016), 1046–1053. https://doi.org/10.1016/j.rser.2016.11.083
- Gibbs, D.-J., Emmitt, S., Ruikar, K., & Lord, W. (2013). An Investigation into whether Building Information Modelling (BIM) can Assist with Construction Delay Claims. *International Journal of 3-D Information Modeling*, 2(1), 45– 52. https://doi.org/10.4018/ij3dim.2013010105
- Gibbs, D.-J., Lord, W., Emmitt, S., & Ruikar, K. (2017). Interactive Exhibit to Assist with Understanding Project Delays. *Journal of Legal Affairs and Dispute Resolution in Engineering and Construction*, 9(1), 04516008. https://doi.org/10.1061/(asce)la.1943-4170.0000198
- Gibbs, D., Stephen, E., Ruikar, K., & Lord, W. (2014). Recommendations on the creation of computer generated exhibits for construction delay claims. *Construction Law Journal*, 30(4), 236–248.
- Gibson, R. (2014a). Construction Delays: Extension of time and prolongation claims (2nd ed.). https://doi.org/10.4324/9780203938096
- Gibson, R. (2014b). Construction Delays. In Construction Delays. https://doi.org/10.4324/9780203938096

- Hadikusumo, B. H. W., & Tobgay, S. (2015). Construction Claim Types and Causes for a Large-Scale Hydropower Project in Bhutan. *Journal of Construction in Developing Countries*, 20(1), 49–63. Retrieved from http://web.usm.my/jcdc/vol20\_1\_2015/JCDC 20(1) 2015-Art. 3 (49-63).pdf
- Harmon, K. M. J. (2017). Loss of Productivity: Using the Leonard Study in Support of a Modified Total Cost Calculation. *Journal of Legal Affairs and Dispute Resolution in Engineering and Construction*, 9(3), 05017003. https://doi.org/10.1061/(asce)la.1943-4170.0000234
- Harrington, D., McSwain, R. B., Snyder, R., & Giles, J. L. (2016). Pricing Construction Claims and Change Orders. Construction Contract Claims, Changes, and Dispute Resolution, 259–320. https://doi.org/10.1061/9780784414293.ch11
- Hashem M. Mehany, M. S., & Grigg, N. (2014). Causes of Road and Bridge Construction Claims: Analysis of Colorado Department of Transportation Projects. *Journal of Legal Affairs and Dispute Resolution in Engineering and Construction*, 7(2), 04514006. https://doi.org/10.1061/(asce)la.1943-4170.0000162
- Hashem M. Mehany, M. S., & Grigg, N. (2015). Causes of Road and Bridge Construction Claims: Analysis of Colorado Department of Transportation Projects. *Journal of Legal Affairs and Dispute Resolution in Engineering and Construction*, 7(2), 04514006. https://doi.org/10.1061/(asce)la.1943-4170.0000162
- Hassanein, A. A. G., & El Nemr, W. (2008). Claims management in the Egyptian industrial construction sector: A contractor's perspective. *Engineering, Construction and Architectural Management*, 15(3), 246–259. https://doi.org/10.1108/09699980810867406
- Hooper, M., & Widén, K. (2015). BIM Inertia: Contracts and Behaviours. Building Information Modeling, 46(0), 107–134. https://doi.org/10.1061/9780784413982.ch05

- Hudson, N., Biscomb, J., Jarosz, C., Stephens, D., Marsh, S., Beardsley, S., ... Phillips, J. (2017). Closed BIM Versus open BIM. *BIM Journal*, 1(1), 54.
- Ibbs, W. (2012). Construction change: Likelihood, severity, and impact on productivity. *Journal of Legal Affairs and Dispute Resolution in Engineering and Construction*, 4(3), 67–73.
- Ibbs, W., Nguyen, L. D., & Simonian, L. (2011). Concurrent delays and apportionment of damages. *Journal of Construction Engineering and Management*, 137(2), 119–126. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000259
- Ibbs, W., & Stynchcomb, P. L. (2016). Impact on Labor Productivity from Claims and Change Orders. Construction Contract Claims, Changes, and Dispute Resolution, 201–242. https://doi.org/10.1061/9780784414293.ch09
- Ismail, N. A. A., Chiozzi, M., & Drogemuller, R. (2017). An overview of BIM uptake in Asian developing countries. AIP Conference Proceedings, 1903(November). https://doi.org/10.1063/1.5011596
- Iyer, K. C., & Manan Bindal, Y. (2019). Case Study on Home Office Overhead Claims. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 11(3), 1–7. https://doi.org/10.1061/(ASCE)LA.1943-4170.0000288
- Koc, S., & SKAIK, S. (2014). Disputes Resolution: Can Bim Help Overcome Barriers? CIB 2014: Proceedings of the 2014 International Conference on Construction in a Changing World, 1–15.
- Kumaraswamy, M. M. (1997). Conflicts, claims and disputes in construction. Engineering, Construction and Architectural Management, 4(2), 95–111. https://doi.org/10.1108/eb021042
- Lanka, S., & Kandy. (2015). Proceedings of the Session on Construction Management and Tall Building and Urban Habitat 6. 6th International Conference on Structural Engineering and Construction Management,

(December), 220.

- Laryea, S. (2016). Compensation events in NEC3 contracts: Case studies from South Africa. Proceedings of Institution of Civil Engineers: Management, Procurement and Law, 169(2), 49–64. https://doi.org/10.1680/jmapl.15.00014
- Levin, P. (2013). Delays and Accelerations. *Construction Contract Claims, Changes* & *Dispute Resolution*, 51–65. https://doi.org/10.1061/9780784402764.ch05
- Marzouk, M., Othman, A., Enaba, M., & Zaher, M. (2018). Using BIM to Identify Claims Early in the Construction Industry: Case Study. *Journal of Legal Affairs* and Dispute Resolution in Engineering and Construction, 10(3). https://doi.org/10.1061/(ASCE)LA.1943-4170.0000254
- Mcmanus, J. A., & Starr, K. (2016). Claim Identi fi cation and Noti fi cation. American Society of Civil Engineers, 13–67.
- Moayeri, V., Moselhi, O., & Zhu, Z. (2016). Design Change Time Ripple Effect Analysis Using a BIM-Based Quantification Model. Construction Research Congress 2016: Old and New Construction Technologies Converge in Historic San Juan - Proceedings of the 2016 Construction Research Congress, CRC 2016, 28–36. https://doi.org/10.1061/9780784479827.004
- NEC. (2013). use BIM with NEC3 contracts An NEC document. (April).
- Ness, A. D., & Carper, K. (2010). Using the Eichleay formula to recover unabsorbed overhead. *Morgan, Lewis and Bockius LLP, Washington, DC*.
- Palaneeswaran, E., & Kumaraswamy, M. M. (2008). An integrated decision support system for dealing with time extension entitlements. *Automation in Construction*, 17(4), 425–438.
- Parchami Jalal, M., Noorzai, E., & Yavari Roushan, T. (2019). Root Cause Analysis of the Most Frequent Claims in the Building Industry through the SCoP 3 E Ishikawa Diagram . Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 11(2), 04519004.

https://doi.org/10.1061/(asce)la.1943-4170.0000289

- Pishdad-Bozorgi, P., & de la Garza, J. M. (2012). Comparative Analysis of Design-Bid-Build and Design-Build from the Standpoint of Claims. (i), 21–30. https://doi.org/10.1061/9780784412329.003
- Pujiwidodo, D. (2016). Constraints in Contract Claims in the Ghanaian Construction Industry: Study in the Western region by. III(2), 2016.
- Ren, Z., Anumba, G. J., & Ugwu, O. O. (2001). Construction claims management: towards an agent-based approach. *Engineering, Construction and Architectural Management*, 8(3), 185–197.
- Revay, S. G. (1993). Can construction claims be avoided?: Building owners and engineers frequently occurring claims identified. *Building Research & Information*, 21(1), 56–58. https://doi.org/10.1080/09613219308727256
- SCL. (2017). Society of Construction Law Delay and Disruption 2nd edition February 2017. Retrieved from www.scl.org.uk
- Sebastian, R., Haak, W., & Vos, E. (2009). BIM application for integrated design and engineering in small-scale housing development: a pilot project in The Netherlands. *Proceedings of International* ..., (November), 2–3. Retrieved from http://www.inpro-project.eu/media/R\_SEBASTIAN\_BIM\_Application\_for\_Integrated\_D\_and\_E in Small-Scale Housing Development Pilot Project.pdf
- Shahhosseini, V., & Hajarolasvadi, H. (2018). A conceptual framework for developing a BIM-enabled claim management system. *International Journal of Construction Management*, 0(0), 1–15. https://doi.org/10.1080/15623599.2018.1512182
- Shen, W., Tang, W., Yu, W., Duffield, C. F., Hui, F. K. P., Wei, Y., & Fang, J. (2017). Causes of contractors' claims in international engineeringprocurement-construction projects. *Journal of Civil Engineering and Management*, 23(6), 727–739.

https://doi.org/10.3846/13923730.2017.1281839

- Song, L. (2015). *Iccrem 2015 954*. 954–960. Retrieved from https://ascelibrary.org/doi/abs/10.1061/9780784479377.079
- Taam, T. M. C., & Singh, A. (2003). Unabsorbed Overhead and the Eichleay Formula. Journal of Professional Issues in Engineering Education and Practice, 129(4), 234–245. https://doi.org/10.1061/(asce)1052-3928(2003)129:4(234)
- Tang, W., Li, Z., Qiang, M., Wang, S., & Lu, Y. (2013). Risk management of hydropower development in China. *Energy*, 60, 316–324. https://doi.org/10.1016/j.energy.2013.08.034
- Thomas, R. (2015). Construction Contract Claims. *Construction Contract Claims*. https://doi.org/10.1007/978-1-349-22644-3
- Trauner, T. J. (2009). *Construction delays: Understanding them clearly, analyzing them correctly*. Butterworth-Heinemann.
- Valavanoglou, A., Rebolj, D., & Heck, D. (2017). Construction Delay and Disruption Claims Assisted Through BIM Technology. (August), 391–398. https://doi.org/10.24928/jc3-2017/0192
- Vasilyeva-Lyulina, A., Onishi, M., & Kobayashi, K. (2015). Delay Analysis
  Methods for Construction Projects: Mathematical Modelling. *International Journal of Transportation*, 3(1), 27–36. https://doi.org/10.14257/ijt.2015.3.1.03
- Vidogah, W., & Ndekugri, I. (1998a). Improving the management of claims on construction contracts: Consultant's perspective. *Construction Management* and Economics, 16(3), 363–372. https://doi.org/10.1080/014461998372385
- Vidogah, W., & Ndekugri, I. (1998b). Improving the management of claims on construction contracts: Consultant's perspective. *Construction Management* and Economics, 16(3), 363–372. https://doi.org/10.1080/014461998372385

- Volk, R., Stengel, J., & Schultmann, F. (2014). Building Information Modeling (BIM) for existing buildings - Literature review and future needs. *Automation in Construction*, 38, 109–127. https://doi.org/10.1016/j.autcon.2013.10.023
- Wang, W. C., Weng, S. W., Wang, S. H., & Chen, C. Y. (2014). Integrating building information models with construction process simulations for project scheduling support. *Automation in Construction*, 37, 68–80. https://doi.org/10.1016/j.autcon.2013.10.009
- Wenzhe Tang et al. (2007). *Risk Management in the Chinese Construction Industry*. *133*(December), 944–956. https://doi.org/10.1061/(ASCE)0733-9364(2007)133
- Williams, T., Ackermann, F., & Eden, C. (2003). Structuring a delay and disruption claim: An application of cause-mapping and system dynamics. *European Journal of Operational Research*, 148(1), 192–204. https://doi.org/10.1016/S0377-2217(02)00372-7
- Yoke-Lian, L., Hassim, S., Muniandy, R., & Mee-Ling, T. (2012). The assessment of applications for extension of time claims in Malaysian construction industry. WCSE 2012 - International Workshop on Computer Science and Engineering, 4(4), 446–450. https://doi.org/10.7763/ijet.2012.v4.407
- Yu, W. R. (2009). Discussion engineering claims. *Engineering Technology, Yancheng Institute of Architectural Engineering*, 36, 234–235.
- Zaneldin, E. K. (2006). Construction claims in United Arab Emirates: Types, causes, and frequency. *International Journal of Project Management*, *24*(5), 453–459.
- Zhao, T., & Dungan, J. M. (2018). Quantifying Lost Labor Productivity in Domestic and International Claims. Journal of Legal Affairs and Dispute Resolution in Engineering and Construction, 10(3), 04518013. https://doi.org/10.1061/(asce)la.1943-4170.0000269

# **APPENDIX-A**



# <u>Preliminary Survey to Verify inefficiencies and their</u> <u>severity of Cost Claims Management in Construction</u>

This survey is a part of a research study, under degree of MS Construction Engineering & Management at NUST, Islamabad. The main objective and goal of this survey study is to identify the relevancy of critical inefficiencies in claims management related to construction.

30 critical inefficiencies in cost claims management system in construction industry have been identified from a thorough literature review. You are kindly requested to give input by rating each attribute in accordance with your experience. We will be very careful not to disclose any unnecessary information. Your participation is greatly appreciated.

Meer Humza,

mhumza.cem17nit@student.nust.edu.pk

+92 315 9495669,

MS Construction Engineerng & Management,

NUST Islamabad



# **Expert's Response**

Information provided and discussed will be kept anonymous and used for academic purposes only

### Section 1:

Please mention the following:

| Name:                   |  |
|-------------------------|--|
| Organization Type:      |  |
| Designation in company: |  |
| Experience (in years):  |  |
| Email address:          |  |

#### Section 2:

The inefficiencies will be ranked on a five-point Likert scale to verify the most critical factors according to expert opinion. For example, "strongly agree" means that the mentioned factors greatly influence the inefficiencies in management of cost claims and vice versa. The critical factors will then be used in development of a framework for the Building Information Modeling (BIM) based knowledge management system for Construction cost claims.

NOTE: If you are attempting the questionnaire on your MOBILE PHONE, kindly use LANDSCAPE MODE for ease of comprehension.

### Please choose your answer on the given scale.

(1=strongly disagree, 2= disagree, 3= neutral, 4= agree, 5= strongly agree)

1) To what extent, do you think the issues listed below will be solved by the proposed

system? These issues can be ranked based on their importance on a 5-point Likert scale

(where 1=strongly disagree, 2= disagree, 3= neutral, 4= agree, 5= strongly agree)

| Inefficiencies                      | Group        |   |   |   |   |   |
|-------------------------------------|--------------|---|---|---|---|---|
| No Comprehensive method for         |              | 1 | 2 | 3 | Δ | 5 |
| Claim Management                    |              | 1 | 2 | 5 | т | 5 |
| Time taking process due to          |              | 1 | 2 | 3 | Δ | 5 |
| complex procedures                  |              | 1 | 2 | 5 |   | 5 |
| Too Many Documents for Claims       | Procedure    | 1 | r | 3 | Λ | 5 |
| preparation and assessment          | Procedure    |   | 2 | 5 | 4 | 5 |
| Use of unsuitable techniques for    |              | 1 | 2 | 3 | Δ | 5 |
| claim analysis                      |              | 1 | 2 | 5 | т | 5 |
| Insufficient time for claim         |              | 1 | 2 | 3 | Δ | 5 |
| preparation and analysis            |              | 1 | 2 | 5 | т | 5 |
| Unstructured Documents              |              | 1 | 2 | 3 | 4 | 5 |
| Poor Presentation of Claims         | Presentation | 1 | 2 | 3 | 4 | 5 |
| No standard Format                  |              | 1 | 2 | 3 | 4 | 5 |
| On-site Inaccessibility to Relevant |              | 1 | 2 | 3 | Λ | 5 |
| Document when needed                |              | 1 | 2 | 5 | т | 5 |
| Delay in notice to claim by         | Resources    | 1 | 2 | 3 | Δ | 5 |
| Contractor                          | Resources    | 1 | 2 | 5 | т | 5 |
| Poor Maintenance of Claim           |              | 1 | 2 | 3 | 4 | 5 |
| Records                             |              | Ŧ | 1 | 2 | • | 5 |

| insufficient skilled personnel for |               | 1 | n | 2 | Л | 5 |
|------------------------------------|---------------|---|---|---|---|---|
| claim management                   |               | 1 | 2 | 3 | 4 | 3 |
| Ambiguities in responsibilities of |               | 1 | n | 2 | 1 | 5 |
| construction team                  |               | 1 | Ζ | 3 | 4 | 5 |
| Legibility of claims in verbal and |               | 1 | r | 3 | Λ | 5 |
| technical terms                    |               | 1 | 2 | 5 | + | 5 |
| Lack of Contract awareness         | Contract      | 1 | 2 | 3 | 4 | 5 |
| Lack of Clear information in       |               | 1 | n | 2 | Λ | 5 |
| Contracts                          |               | 1 | Ζ | 3 | 4 | 5 |
| Difference in quantification of    |               |   |   |   |   |   |
| damages calculated by different    |               | 1 | 2 | 3 | 4 | 5 |
| parties                            |               |   |   |   |   |   |
| Difficulty in Quantification of    |               | 1 | n | 2 | Λ | 5 |
| indirect costs                     |               | 1 | 2 | 3 | 4 | 5 |
| Burden of Proof to support a claim |               |   |   |   |   |   |
| e.g. complexity of determining     |               | 1 | 2 | 3 | 4 | 5 |
| cause and effect                   |               |   |   |   |   |   |
| Exaggerated claims made by         | Cost          | 1 | 2 | 3 | 4 | 5 |
| contractors                        |               | 1 | 4 | 5 | • | 5 |
| Absence of use of standard         |               |   |   |   |   |   |
| formula for evaluation and         |               | 1 | 2 | 3 | 4 | 5 |
| calculation of damages             |               |   |   |   |   |   |
| High cost associated with          |               | 1 | r | 2 | Λ | 5 |
| retrieving required information    |               | 1 | 2 | 5 | 4 | 5 |
| Lack of Accuracy in Estimation of  |               | 1 | r | 3 | Λ | 5 |
| Loss of Productivity               |               | 1 | 2 | 5 | 4 | 5 |
| Poor Maintenance of Overhead       |               | 1 | ſ | 2 | 1 | 5 |
| Records (site and Head Office)     |               | 1 | Ζ | 3 | 4 | 3 |
| No computerized documentation      | Documentation | 1 | r | 3 | Λ | 5 |
| system                             | Documentation | 1 | 2 | 5 | - | 5 |
| Lack of adequate Information in    |               | 1 | n | 2 | Л | 5 |
| drawings                           |               | 1 | 2 | 5 | 4 | 5 |

| Coordination gap between Site<br>and office staff | Coordination | 1 | 2 | 3 | 4 | 5 |
|---------------------------------------------------|--------------|---|---|---|---|---|
| Not updating the schedules                        |              | 1 | 2 | 3 | 4 | 5 |
| Less dependency on new software-based systems     | Technology   | 1 | 2 | 3 | 4 | 5 |
| Overdue in retrieving Information                 | Time         | 1 | 2 | 3 | 4 | 5 |

2) Please describe your comments if you think there are additional inefficiencies and rate them as per Likert scale.

# **APPENDIX-B**



# **Evaluation of BIM-CCMS from Industry Experts**

This exercise is carried out to evaluate the BIM based knowledge management system for construction cost claims, developed by the department of Construction Engineering & Management (CE&M) in National University of Science and Technology (NUST) H-12 Campus to provide visual and digital information supporting Cost Claims.

Information provided and discussed will be kept anonymous and used for academic purposes only. This review consists of two main sections, i-e Experts' Profile (Section-01), Evaluation discussion comprised of questions). The debate will be recorded in both vocal and written formats. Experts may answer depending on their preferable mode.

Thank You for your Cooperation.

Meer Humza,

Graduate Student

Construction Engineering & Management Department

NUST H-12 Campus, Islamabad.



# **Expert's Response**

Information provided and discussed will be kept anonymous and used for academic purposes only

### Section 1:

Please mention the following:

Name:

Organization Type:

Designation in company:

Experience (in years):

Section 2:

### Please choose your answer on the given scale.

(1=strongly disagree, 2= disagree, 3= neutral, 4= agree, 5= strongly agree)

3) There is a need to introduce such a system in Construction industry.

| 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|
|---|---|---|---|---|

4) The proposed system would be easy to use.

| 1 2 5 4 5 | 1 2 3 4 5 |
|-----------|-----------|
|-----------|-----------|

5) The proposed system is implementable.

| 1 2 | 3 | 4 | 5 |
|-----|---|---|---|
|-----|---|---|---|

6) Please specify the possible barriers you feel in its implementation:

7) Please describe your comments for the barriers in its implementation.

8) To what extent, do you think the issues listed below will be solved by the proposed system? These issues can be ranked based on their importance on a 5-point Likert scale

| (        | where | 1=strongly | disagree. | 2= disagree. | 3 = neutral. | 4= agree. | 5 = strongly | agree) |
|----------|-------|------------|-----------|--------------|--------------|-----------|--------------|--------|
| <u>ر</u> |       |            |           |              | ,            |           |              |        |

| Inefficiencies                | Group      |   |   |   |   |   |
|-------------------------------|------------|---|---|---|---|---|
| No Comprehensive method for   |            | 1 | 2 | 3 | 4 | 5 |
| Claim Management              |            | 1 | _ | 5 |   |   |
| Time taking process due to    | Procedure  | 1 | 2 | 3 | 4 | 5 |
| complex procedures            | 1100000010 | 1 | _ | 5 |   |   |
| Too Many Documents for Claims |            | 1 | 2 | 3 | 4 | 5 |
| preparation and assessment    |            |   | - | 5 |   |   |

| Use of unsuitable techniques for    |              | 1 | 2 | 2 | 4 | 5 |
|-------------------------------------|--------------|---|---|---|---|---|
| claim analysis                      |              | 1 | 2 | 3 | 4 | Э |
| Insufficient time for claim         |              | 1 | • | 2 | 4 | ~ |
| preparation and analysis            |              | 1 | 2 | 3 | 4 | 2 |
| Unstructured Documents              |              | 1 | 2 | 3 | 4 | 5 |
| Poor Presentation of Claims         | Presentation | 1 | 2 | 3 | 4 | 5 |
| No standard Format                  |              | 1 | 2 | 3 | 4 | 5 |
| On-site Inaccessibility to Relevant |              | 1 | 2 | 2 | 4 | 5 |
| Document when needed                |              | 1 | Ζ | 3 | 4 | 2 |
| Delay in notice to claim by         |              | 1 | 2 | 3 | Δ | 5 |
| Contractor                          |              | 1 | 2 | 5 | т | 5 |
| Poor Maintenance of Claim           | December     | 1 | ſ | 2 | 1 | 5 |
| Records                             | Resources    | 1 | Ζ | 3 | 4 | 3 |
| insufficient skilled personnel for  |              | 1 | 2 | 3 | Λ | 5 |
| claim management                    |              | 1 | 2 | 5 | - | 5 |
| Ambiguities in responsibilities of  |              | 1 | 2 | 3 | Λ | 5 |
| construction team                   |              | 1 | 2 | 5 | - | 5 |
| Legibility of claims in verbal and  |              | 1 | 2 | 3 | Λ | 5 |
| technical terms                     |              | 1 | 2 | 5 | - | 5 |
| Lack of Contract awareness          | Contract     | 1 | 2 | 3 | 4 | 5 |
| Lack of Clear information in        |              | 1 | ſ | 2 | 1 | 5 |
| Contracts                           |              | 1 | Ζ | 3 | 4 | 5 |
| Difference in quantification of     |              |   |   |   |   |   |
| damages calculated by different     |              | 1 | 2 | 3 | 4 | 5 |
| parties                             |              |   |   |   |   |   |
| Difficulty in Quantification of     |              | 1 | r | 2 | Λ | 5 |
| indirect costs                      | Cost         | 1 | 2 | 5 | 4 | 5 |
| Burden of Proof to support a claim  | Cost         |   |   |   |   |   |
| e.g. complexity of determining      |              | 1 | 2 | 3 | 4 | 5 |
| cause and effect                    |              |   |   |   |   |   |
| Exaggerated claims made by          |              | 1 | n | 2 | Л | 5 |
| contractors                         |              | 1 | 2 | 3 | 4 | 5 |

| Absence of use of standard        |               |   |   |   |   |   |
|-----------------------------------|---------------|---|---|---|---|---|
| formula for evaluation and        |               | 1 | 2 | 3 | 4 | 5 |
| calculation of damages            |               |   |   |   |   |   |
| High cost associated with         |               | 1 | 2 | r | 4 | 5 |
| retrieving required information   |               | 1 | 2 | 5 |   | 5 |
| Lack of Accuracy in Estimation of |               | 1 | 2 | 3 | 1 | 5 |
| Loss of Productivity              |               | 1 | 2 | 5 | т | 5 |
| Poor Maintenance of Overhead      |               | 1 | 2 | 3 | Δ | 5 |
| Records (site and Head Office)    | Documentation | 1 | 2 | 5 | т | 5 |
| No computerized documentation     |               | 1 | 2 | 3 | Δ | 5 |
| system                            |               | 1 | 2 | 5 | т | 5 |
| Lack of adequate Information in   |               | 1 | 2 | 3 | Δ | 5 |
| drawings                          |               | 1 | 2 | 5 | т | 5 |
| Coordination gap between Site     | Coordination  | 1 | 2 | 3 | Λ | 5 |
| and office staff                  |               | 1 | 2 | 5 | 4 | 5 |
| Not updating the schedules        |               | 1 | 2 | 3 | 4 | 5 |
| Less dependency on new software   | Technology    | 1 | 2 | 3 | Δ | 5 |
| based systems                     |               | 1 | 2 | 5 | т | 5 |
| Overdue in retrieving Information | Time          | 1 | 2 | 3 | 4 | 5 |

9) Please describe your comments for above stated scores, and future improvement here.
Overall, the proposed system would be effective in improving the process of EOT claim management.

(Scale: 1=strongly disagree, 2= disagree, 3= neutral, 4= agree, 5= strongly agree)

| 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|
|---|---|---|---|---|

## **APPENDIX-C**

## • FIDIC Clauses and Liabilities:

The following Table shows FIDIC Contract Types, Their clauses/Subclauses which are used in cost claims. The liability of each clause is also derived from respective FIDIC Contracts.

| Sr.  | Contract      | Clause/    | Description              | Liability  |
|------|---------------|------------|--------------------------|------------|
| INO. | Туре          | Sud-Clause |                          |            |
|      |               |            | Notice to Disruption of  |            |
|      |               | 6.3        | Progress                 | Contractor |
|      |               |            | Delays and Cost of       |            |
|      |               | 6.4        | Delay of drawings        | Employer   |
|      |               |            | Failure by contractor to |            |
|      |               | 6.5        | submit drawings          | Contractor |
|      |               |            | Not foreseeable Physical |            |
|      | Conditions of |            | obstructions or          |            |
|      | contract for  | 12.2       | conditions               | Employer   |
|      | Works of      |            | Setting-out; Error found |            |
| 1.   | Civil         |            | in the original lines,   |            |
|      | Engineering   |            | levels and reference     |            |
|      | Construction- | 17.1       | provided by engineer     | Contractor |
|      | 1987          |            | Loss or Delays due to    |            |
|      |               | 20.3       | Employer's Risks         | Employer   |
|      |               |            | Damage to Property &     |            |
|      |               | 22.1       | Persons                  | Contractor |
|      |               | 22.3       | Indemnity by Employer    | Employer   |
|      |               |            | Fossils; Expenses        |            |
|      |               |            | incurred on the          |            |
|      |               | 27.1       | preservation of items of | Employer   |

Table 0-1 Cost claim related FIDIC clauses and Liabilities

• NEC3 Contract and Liability:

|  |      | value found on the site   |            |
|--|------|---------------------------|------------|
|  |      | which are the property of |            |
|  |      | Employer                  |            |
|  |      | Transport of materials    |            |
|  | 30.3 | and plant                 | Employer   |
|  |      | Facilities for other      |            |
|  | 31.2 | contractors               | Contractor |
|  |      | Engineer's                |            |
|  |      | Determination where       |            |
|  | 36.5 | Tests not provided for    | Employer   |
|  |      | Rejection; cost of        |            |
|  |      | rejections payable to     |            |
|  | 37.4 | Employer                  | Contractor |
|  |      | Uncoverings and           |            |
|  | 38.2 | Making openings           | Employer   |
|  |      | Default of contractor in  |            |
|  | 39.2 | compliance                | Contractor |
|  |      | Failure to give           |            |
|  | 42.2 | possession                | Employer   |
|  | 46.1 | Rate of progress          | Contractor |
|  |      | Cost of remedying         |            |
|  | 49.3 | defects                   | Contractor |
|  |      | Contractor to search      |            |
|  | 50.1 | defects                   | Contractor |
|  | 51.1 | Variations                | Employer   |
|  |      | Instructions for          |            |
|  | 51.2 | Variations                | Employer   |
|  | 52.1 | Valuation of variation    | Contractor |
|  |      | variations exceeding 15   |            |
|  | 52.3 | percent                   | Employer   |
|  | 52.4 | Daywork                   | Employer   |
|  | 53.1 | notice of claims          | Contractor |

|    |               | 53.4       | Failure to comply          | Contractor |
|----|---------------|------------|----------------------------|------------|
|    |               | 53.5       | Payment of claims          | Employer   |
|    |               |            | Definition of Provisional  |            |
|    |               | 58.1       | sum                        | Employer   |
|    |               | 58.2       | Use of Provisional sum     | Employer   |
|    |               | 60.10      | Time for Payment           | Employer   |
|    |               | 65         | special Risks;             | Employer   |
|    |               |            | Contractor's entitlement   |            |
|    |               | 69.4       | to suspense work           | Employer   |
|    |               | 1.9        | timely supply of           |            |
|    |               |            | drawings by the engineer   | Employer   |
|    |               | 2.1        | delay in handing over      |            |
|    |               |            | the possession of site to  |            |
|    |               |            | contractor                 | Employer   |
|    |               | 2.5        | Employer's Claims          | Contractor |
|    | Conditions of | 4.6        | Co-operation; any          |            |
|    | Contract for  |            | facilities provided to the |            |
|    | Construction  |            | other contractors on       |            |
|    | For Building  |            | Employer's request         | Employer   |
|    | and           |            | Errors in setting          |            |
| 2. | Engineering   | 4.7        | information                | Employer   |
|    | Works         |            | Adverse Physical           |            |
|    | Designed by   | 4.12       | Conditions                 | Employer   |
|    | the Employer- |            | damages to roads and       |            |
|    | RED BOOK      |            | bridges as determined by   |            |
|    | 1999          |            | engineer in favor of       |            |
|    |               | 4.15, 4.16 | employer                   | Contractor |
|    |               | 4.24       | fossils                    | Employer   |
|    |               |            | inspection; uncovering     |            |
|    |               |            | or making openings that    |            |
|    |               |            | were covered after the     |            |
|    |               | 7.3        | compliance of contract     | Contractor |

|  | 7.4  | testing                   | E+C        |
|--|------|---------------------------|------------|
|  | 7.5  | Rejection                 | Contractor |
|  |      | Remedial Work; default    |            |
|  |      | of contractor in          |            |
|  | 7.6  | compliance                | Contractor |
|  |      | Rate of Progress ;        |            |
|  |      | additional costs of       |            |
|  |      | supervision recoverable   |            |
|  |      | from contractor due to    |            |
|  | 8.6  | slow progress rate        | Contractor |
|  |      | Engineer's instruction to |            |
|  | 8.9  | suspend work              | Employer   |
|  |      | costs incurred by         |            |
|  |      | contractor for            |            |
|  |      | suspension not by         |            |
|  | 8.10 | default of contractor     | Employer   |
|  |      | Employer's interference   |            |
|  | 10.3 | with test on completion   | Employer   |
|  |      | costs of remedying        |            |
|  | 11.2 | defects                   | Contractor |
|  |      | Contractor's failure to   |            |
|  | 11.4 | remedy defects            | Contractor |
|  |      | Contractor to search      |            |
|  | 11.8 | defect                    | Employer   |
|  | 12.1 | Works to be measured      | Employer   |
|  | 12.2 | Method of measurement     | Employer   |
|  | 12.3 | Evaluation                | Employer   |
|  | 12.4 | Omissions                 | Employer   |
|  | 13.1 | Right to vary             | Employer   |
|  |      | Variations carried out by |            |
|  |      | written instructions by   |            |
|  | 13.3 | engineer                  | Contractor |

|    |               |      | Adjustments for changes   |            |
|----|---------------|------|---------------------------|------------|
|    |               | 13.7 | in legislation            | Employer   |
|    |               | 14.8 | Delayed Payments          | Employer   |
|    |               |      | Contractor's entitlement  |            |
|    |               | 16.1 | to suspension work        | E+C        |
|    |               |      | (indemnities) death or    |            |
|    |               |      | injury to any person/     |            |
|    |               |      | property except the       |            |
|    |               |      | exceptions mentioned in   |            |
|    |               | 17.1 | subclause22.2             | E+C        |
|    |               | 17.4 | Employer's Risk           | Employer   |
|    |               | 19.4 | Force Majeure             | Employer   |
|    |               | 19.6 | Optional Termination      | Employer   |
|    |               | 20.1 | Contractor's Claims       | Employer   |
|    |               | 2.1  | delay in handing over     |            |
|    |               |      | the possession of site to |            |
|    |               |      | contractor                | Employer   |
|    |               | 2.5  | Employer's Claims         | Contractor |
|    |               |      | Errors in setting         |            |
|    | Conditions of | 4.7  | information               | Contractor |
|    | Contract for  |      | Adverse Physical          |            |
|    | FPC/ Turnkey  | 4.12 | Conditions                | Contractor |
| 3. | Projects-     | 4.15 | access route              | Contractor |
|    | SILVER        | 4.16 | transport of goods        | Contractor |
|    | BOOK 1999     | 4.24 | fossils                   | Employer   |
|    | 200121777     |      | inspection; uncovering    |            |
|    |               |      | or making openings that   |            |
|    |               |      | were covered after the    |            |
|    |               | 7.3  | compliance of contract    | Contractor |
|    |               | 7.4  | testing                   | E+C        |
|    |               | 7.5  | Rejection                 | Contractor |

|  |           | Remedial Work; default    |            |
|--|-----------|---------------------------|------------|
|  |           | of contractor in          |            |
|  | 7.6, 11.4 | compliance                | E+C        |
|  |           | Rate of Progress ;        |            |
|  |           | additional costs of       |            |
|  |           | supervision recoverable   |            |
|  |           | from contractor due to    |            |
|  | 8.6       | slow progress rate        | Contractor |
|  |           | Engineer's instruction to |            |
|  | 8.9       | suspend work              | E+C        |
|  |           | Payment for plant and     |            |
|  |           | materials in event of     |            |
|  |           | suspension for more than  |            |
|  | 8.10      | 28 days                   | Employer   |
|  |           | Employer's interference   |            |
|  | 10.3      | with test on completion   | Employer   |
|  |           | costs of remedying        |            |
|  | 11.2      | defects                   | Contractor |
|  |           | Contractor's failure to   |            |
|  | 11.4      | remedy defects            | Contractor |
|  |           | Contractor to search      |            |
|  | 11.8      | defect                    | E+C        |
|  | 12.2      | Delayed Test              | Employer   |
|  |           | retesting after           |            |
|  | 12.3      | completion                | Contractor |
|  |           | Failure to pass test on   |            |
|  | 12.4      | completion                | E+C        |
|  | 13.6      | Daywork                   | Employer   |
|  |           | Adjustments for changes   |            |
|  | 13.7      | in legislation            | Employer   |
|  |           | Adjustments for changes   |            |
|  | 13.8      | in cost                   | Employer   |

|   |               |      | Works carried on the       |            |
|---|---------------|------|----------------------------|------------|
|   |               |      | instructions of engineer   |            |
|   |               |      | under provision of         |            |
|   |               | 13.5 | provisional sums           | Employer   |
|   |               | 14.8 | Delayed Payments           | Employer   |
|   |               |      | Contractor's entitlement   |            |
|   |               | 16.1 | to suspension work         | Employer   |
|   |               |      | Termination by             |            |
|   |               | 16.2 | Contractor                 | Employer   |
|   |               |      | (indemnities) death or     |            |
|   |               |      | injury to any person/      |            |
|   |               |      | property except the        |            |
|   |               |      | exceptions mentioned in    |            |
|   |               | 17.1 | subclause22.2              | E+C        |
|   |               |      | Consequences of            |            |
|   |               | 17.4 | Employer's Risk            | Employer   |
|   |               | 19.4 | Force Majeure              | Employer   |
|   |               | 19.6 | Optional Termination       | Employer   |
|   |               | 20.1 | Contractor's Claims        | Employer   |
|   | Conditions of | 1.9  | timely supply of           |            |
|   | Contract for  |      | drawings by the engineer   | Employer   |
|   | Construction  | 2.1  | delay in handing over      |            |
|   | For Building  |      | the possession of site to  |            |
|   | and           |      | contractor                 | Employer   |
| 4 | Engineering   | 2.5  | Employer's Claims          | Contractor |
|   | Works         | 4.6  | Co-operation; any          |            |
|   | Designed by   |      | facilities provided to the |            |
|   | the Employer  |      | other contractors on       |            |
|   |               |      | Employer's request         | Employer   |
|   | (MDB          |      | Errors in setting          |            |
|   | Multilateral  | 4.7  | information                | Employer   |

| Development  |      | unforeseeable Physical    |            |
|--------------|------|---------------------------|------------|
| Bank)        | 4.12 | Conditions                | Employer   |
| Harmonized   | 4.15 | Access Route              | Contractor |
| Edition-PINK | 4.16 | Transport of Goods        | Contractor |
| BOOK 2005    | 4.24 | fossils                   | Employer   |
|              |      | inspection; uncovering    |            |
|              |      | or making openings that   |            |
|              |      | were covered after the    |            |
|              | 7.3  | compliance of contract    | Contractor |
|              | 7.4  | testing                   | Employer   |
|              | 7.5  | Rejection                 | Contractor |
|              |      | Remedial Work; default    |            |
|              |      | of contractor in          |            |
|              | 7.6  | compliance                | Contractor |
|              |      | Rate of Progress ;        |            |
|              |      | additional costs of       |            |
|              |      | supervision recoverable   |            |
|              |      | from contractor due to    |            |
|              | 8.6  | slow progress rate        | Contractor |
|              | 8.7  | Delay Damages             | Contractor |
|              |      | Consequences of           |            |
|              | 8.9  | Employer's Suspension     | E+C        |
|              |      | Payment for plant and     |            |
|              |      | materials in event of     |            |
|              |      | suspension for more than  |            |
|              | 8.10 | 28 days                   | Employer   |
|              | 9.2  | Delayed Test              | E+C        |
|              | 9.3  | Re-testing                | Contractor |
|              |      | Failure to pass test on   |            |
|              | 9.4  | completion                | Contractor |
|              |      | Interference with test on |            |
|              | 10.3 | completion                | Employer   |

|  |                                                                                                              | costs of remedying                                                                                                                                                                                                                     |                                                                                         |
|--|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|  | 11.2                                                                                                         | defects                                                                                                                                                                                                                                | Contractor                                                                              |
|  |                                                                                                              | Extension of Defects                                                                                                                                                                                                                   |                                                                                         |
|  | 11.3                                                                                                         | Notification Period DNP                                                                                                                                                                                                                | E+C                                                                                     |
|  |                                                                                                              | Contractor's failure to                                                                                                                                                                                                                |                                                                                         |
|  | 11.4                                                                                                         | remedy defects                                                                                                                                                                                                                         | Contractor                                                                              |
|  |                                                                                                              | Contractor to search                                                                                                                                                                                                                   |                                                                                         |
|  | 11.8                                                                                                         | defect                                                                                                                                                                                                                                 | Employer                                                                                |
|  | 12.1                                                                                                         | Works to be measured                                                                                                                                                                                                                   | Employer                                                                                |
|  | 12.2                                                                                                         | Method of measurement                                                                                                                                                                                                                  | Employer                                                                                |
|  | 12.3                                                                                                         | Evaluation                                                                                                                                                                                                                             | E+C                                                                                     |
|  | 12.4                                                                                                         | Omissions                                                                                                                                                                                                                              | Employer                                                                                |
|  |                                                                                                              | Variation Procedure;                                                                                                                                                                                                                   |                                                                                         |
|  |                                                                                                              | Variations carried out by                                                                                                                                                                                                              |                                                                                         |
|  |                                                                                                              | written instructions by                                                                                                                                                                                                                |                                                                                         |
|  | 13.3                                                                                                         | engineer                                                                                                                                                                                                                               | Contractor                                                                              |
|  |                                                                                                              |                                                                                                                                                                                                                                        |                                                                                         |
|  | 13.1                                                                                                         | Right to vary                                                                                                                                                                                                                          | Employer                                                                                |
|  | 13.1<br>13.6                                                                                                 | Right to vary<br>Daywork                                                                                                                                                                                                               | Employer<br>Employer                                                                    |
|  | 13.1<br>13.6                                                                                                 | Right to vary<br>Daywork<br>Adjustments for changes                                                                                                                                                                                    | Employer<br>Employer                                                                    |
|  | 13.1<br>13.6<br>13.7                                                                                         | Right to vary<br>Daywork<br>Adjustments for changes<br>in Laws                                                                                                                                                                         | Employer<br>Employer<br>Employer                                                        |
|  | 13.1         13.6         13.7                                                                               | Right to vary<br>Daywork<br>Adjustments for changes<br>in Laws<br>Adjustments for changes                                                                                                                                              | Employer<br>Employer<br>Employer                                                        |
|  | 13.1<br>13.6<br>13.7<br>13.8                                                                                 | Right to vary<br>Daywork<br>Adjustments for changes<br>in Laws<br>Adjustments for changes<br>in Cost                                                                                                                                   | Employer<br>Employer<br>Employer                                                        |
|  | 13.1<br>13.6<br>13.7<br>13.8<br>14.8                                                                         | Right to vary<br>Daywork<br>Adjustments for changes<br>in Laws<br>Adjustments for changes<br>in Cost<br>Delayed Payments                                                                                                               | Employer<br>Employer<br>Employer<br>Employer                                            |
|  | 13.1<br>13.6<br>13.7<br>13.8<br>14.8                                                                         | Right to varyDayworkAdjustments for changesin LawsAdjustments for changesin CostDelayed PaymentsContractor's entitlement                                                                                                               | Employer<br>Employer<br>Employer<br>Employer                                            |
|  | 13.1<br>13.6<br>13.7<br>13.8<br>14.8<br>16.1                                                                 | Right to vary<br>Daywork<br>Adjustments for changes<br>in Laws<br>Adjustments for changes<br>in Cost<br>Delayed Payments<br>Contractor's entitlement<br>to suspension work                                                             | Employer<br>Employer<br>Employer<br>Employer<br>Employer                                |
|  | 13.1         13.6         13.7         13.8         14.8         16.1         16.4                           | Right to vary<br>Daywork<br>Adjustments for changes<br>in Laws<br>Adjustments for changes<br>in Cost<br>Delayed Payments<br>Contractor's entitlement<br>to suspension work<br>Payment on Termination                                   | Employer<br>Employer<br>Employer<br>Employer<br>Employer<br>Employer                    |
|  | 13.1         13.6         13.7         13.8         14.8         16.1         16.4         17.1              | Right to vary<br>Daywork<br>Adjustments for changes<br>in Laws<br>Adjustments for changes<br>in Cost<br>Delayed Payments<br>Contractor's entitlement<br>to suspension work<br>Payment on Termination<br>Indemnities                    | Employer<br>Employer<br>Employer<br>Employer<br>Employer<br>Employer<br>Employer<br>E+C |
|  | 13.1         13.6         13.7         13.8         14.8         16.1         16.4         17.1         17.3 | Right to vary<br>Daywork<br>Adjustments for changes<br>in Laws<br>Adjustments for changes<br>in Cost<br>Delayed Payments<br>Contractor's entitlement<br>to suspension work<br>Payment on Termination<br>Indemnities<br>Employer's Risk | Employer<br>Employer<br>Employer<br>Employer<br>Employer<br>Employer<br>E+C<br>Employer |
|  | 13.1         13.6         13.7         13.8         14.8         16.1         16.4         17.1         17.3 | Right to varyDayworkAdjustments for changesin LawsAdjustments for changesin CostDelayed PaymentsContractor's entitlementto suspension workPayment on TerminationIndemnitiesEmployer's RiskConsequences of                              | Employer<br>Employer<br>Employer<br>Employer<br>Employer<br>Employer<br>E+C<br>Employer |

The Following Table shows New engineering Contract Clauses details and liabilities. These clauses are used in construction cost claims.

|    |               |        | Consequences of Force      |            |
|----|---------------|--------|----------------------------|------------|
|    |               | 19.4   | Majeure                    | Employer   |
|    |               |        | Optional Termination,      |            |
|    |               | 19.6   | Payment and Release        | Employer   |
|    |               | 20.1   | Contractor's Claims        | Employer   |
|    |               | 1.9    | Timely supply of           |            |
|    |               |        | drawings by the engineer   | Employer   |
|    |               | 2.1    | Right to access to the     |            |
|    |               |        | site                       | Employer   |
|    |               |        | Co-operation; any          |            |
|    |               |        | facilities provided to the |            |
|    |               |        | other contractors on       |            |
|    | Conditions of | 4.6    | Employer's request         | Employer   |
|    | Conditions of |        | Errors in setting          |            |
|    | Contract for  | 4.7    | information                | Employer   |
|    | For Duilding  |        | unforeseeable Physical     |            |
|    | roi Duilullig | 4.12.4 | Conditions                 | Employer   |
| 5  | Engineering   |        | Rights of way and          |            |
| 5. | Works         | 4.13   | facilities                 | Contractor |
|    | Designed by   | 4.15   | Access route               | E+c        |
|    | the Employer- | 4.16   | Transport of goods         | Contractor |
|    | RED BOOK      | 4.23   | Fossils                    | Employer   |
|    | 2017          |        | Inspection; uncovering     |            |
|    | 2017          |        | or making openings that    |            |
|    |               |        | were covered after the     |            |
|    |               | 7.3    | compliance of contract     | Contractor |
|    |               | 7.4    | Testing by contractor      | E+C        |
|    |               | 7.5    | Defects and Rejection      | Contractor |
|    |               |        | Remedial Work; default     |            |
|    |               |        | of contractor in           |            |
|    |               | 7.6    | compliance                 | Contractor |

|  |                                                      | Rate of Progress ;                                                                                                                                                                                                          |                                                                                     |
|--|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|  |                                                      | additional costs of                                                                                                                                                                                                         |                                                                                     |
|  |                                                      | supervision recoverable                                                                                                                                                                                                     |                                                                                     |
|  |                                                      | from contractor due to                                                                                                                                                                                                      |                                                                                     |
|  | 8.7                                                  | slow progress rate                                                                                                                                                                                                          | Contractor                                                                          |
|  | 8.8                                                  | Delay Damages                                                                                                                                                                                                               | Contractor                                                                          |
|  | 8.9                                                  | Employer's suspension                                                                                                                                                                                                       | Employer                                                                            |
|  |                                                      | Consequences of                                                                                                                                                                                                             |                                                                                     |
|  | 8.10                                                 | Employer's Suspension                                                                                                                                                                                                       | Employer                                                                            |
|  |                                                      | Costs incurred by                                                                                                                                                                                                           |                                                                                     |
|  |                                                      | contractor for                                                                                                                                                                                                              |                                                                                     |
|  |                                                      | suspension not by                                                                                                                                                                                                           |                                                                                     |
|  | 8.11                                                 | default of contractor                                                                                                                                                                                                       | Employer                                                                            |
|  | 8.12                                                 | Prolonged Suspension                                                                                                                                                                                                        | Employer                                                                            |
|  | 9.2                                                  | Delayed tests                                                                                                                                                                                                               | Contractor                                                                          |
|  | 9.3                                                  | Re-testing                                                                                                                                                                                                                  | Contractor                                                                          |
|  |                                                      | Interference with test on                                                                                                                                                                                                   |                                                                                     |
|  | 10.3                                                 | completion                                                                                                                                                                                                                  | E+C                                                                                 |
|  |                                                      |                                                                                                                                                                                                                             |                                                                                     |
|  |                                                      | Costs of remedying                                                                                                                                                                                                          |                                                                                     |
|  | 11.2                                                 | Costs of remedying defects                                                                                                                                                                                                  | Contractor                                                                          |
|  | 11.2                                                 | Costs of remedying<br>defects<br>Contractor's failure to                                                                                                                                                                    | Contractor                                                                          |
|  | 11.2<br>11.4                                         | Costs of remedying<br>defects<br>Contractor's failure to<br>remedy defects                                                                                                                                                  | Contractor<br>Contractor                                                            |
|  | 11.2<br>11.4                                         | Costs of remedying<br>defects<br>Contractor's failure to<br>remedy defects<br>Right of access after                                                                                                                         | Contractor<br>Contractor                                                            |
|  | 11.2<br>11.4<br>11.7                                 | Costs of remedying<br>defects<br>Contractor's failure to<br>remedy defects<br>Right of access after<br>taking over                                                                                                          | Contractor<br>Contractor<br>Employer                                                |
|  | 11.2<br>11.4<br>11.7                                 | Costs of remedying<br>defects<br>Contractor's failure to<br>remedy defects<br>Right of access after<br>taking over<br>Contractor to search                                                                                  | Contractor<br>Contractor<br>Employer                                                |
|  | 11.2<br>11.4<br>11.7<br>11.8                         | Costs of remedying<br>defects<br>Contractor's failure to<br>remedy defects<br>Right of access after<br>taking over<br>Contractor to search<br>defect                                                                        | Contractor<br>Contractor<br>Employer<br>Contractor                                  |
|  | 11.2<br>11.4<br>11.7<br>11.8<br>12.1                 | Costs of remedying<br>defects<br>Contractor's failure to<br>remedy defects<br>Right of access after<br>taking over<br>Contractor to search<br>defect<br>Works to be measured                                                | Contractor<br>Contractor<br>Employer<br>Contractor<br>E+C                           |
|  | 11.2<br>11.4<br>11.7<br>11.8<br>12.1<br>12.2         | Costs of remedying<br>defects<br>Contractor's failure to<br>remedy defects<br>Right of access after<br>taking over<br>Contractor to search<br>defect<br>Works to be measured<br>Method of measurement                       | Contractor<br>Contractor<br>Employer<br>Contractor<br>E+C<br>Employer               |
|  | 11.2<br>11.4<br>11.7<br>11.8<br>12.1<br>12.2<br>12.3 | Costs of remedying<br>defects<br>Contractor's failure to<br>remedy defects<br>Right of access after<br>taking over<br>Contractor to search<br>defect<br>Works to be measured<br>Method of measurement<br>Valuation of works | Contractor<br>Contractor<br>Employer<br>Contractor<br>E+C<br>Employer<br>Contractor |

|   |               |       | Variations carried out by |            |
|---|---------------|-------|---------------------------|------------|
|   |               |       | written instructions by   |            |
|   |               | 13.3  | engineer                  | Employer   |
|   |               | 13.1  | Right to vary             | Employer   |
|   |               |       | Works carried on the      |            |
|   |               |       | instructions of engineer  |            |
|   |               |       | under provision of        |            |
|   |               | 13.4  | provisional sums          | Employer   |
|   |               |       | Adjustments for changes   |            |
|   |               | 13.6  | in Laws                   | E+C        |
|   |               | 14.8  | Delayed Payments          | Employer   |
|   |               |       | Termination by            |            |
|   |               | 16.2. | Contractor                | Employer   |
|   |               |       | Payment after             |            |
|   |               |       | termination by            |            |
|   |               | 16.4  | contractor                | Employer   |
|   |               |       | Liability for care of     |            |
|   |               | 17.2  | works                     | E+C        |
|   |               |       | Indemnities by            |            |
|   |               | 17.4  | Contractor                | Contractor |
|   |               |       | Indemnities by            |            |
|   |               | 17.5  | Employer                  | Employer   |
|   |               |       | Consequences of           |            |
|   |               | 18.4  | exceptional event         | Employer   |
|   |               | 20.1  | Claims                    | E+C        |
|   |               |       | Claims for Payment        |            |
|   |               | 20.2  | and/or EOT                | E+c        |
|   | Conditions of | 1.9   | timely supply of          |            |
| 6 | Contract for  |       | drawings by the engineer  | Employer   |
|   | EPC/ Turnkey  | 2.1   | Right to access to the    |            |
|   | Projects-     |       | site                      | Employer   |

| SILVER    |      | Co-operation; any          |            |
|-----------|------|----------------------------|------------|
| BOOK 2017 |      | facilities provided to the |            |
|           |      | other contractors on       |            |
|           | 4.6  | Employer's request         | Employer   |
|           |      | Errors in setting          |            |
|           | 4.7  | information                | Contractor |
|           |      | Unforeseeable              |            |
|           | 4.12 | Difficulties               | Contractor |
|           |      | Rights of way and          |            |
|           | 4.13 | facilities                 | Contractor |
|           | 4.15 | Access Route               | Contractor |
|           | 4.16 | Transport of Goods         | Contractor |
|           | 4.23 | Fossils                    | Employer   |
|           |      | Inspection; uncovering     |            |
|           |      | or making openings that    |            |
|           |      | were covered after the     |            |
|           | 7.3  | compliance of contract     | Contractor |
|           | 7.4  | Testing by contractor      | E+c        |
|           | 7.5  | Defects and rejection      | Contractor |
|           |      | Remedial Work; default     |            |
|           |      | of contractor in           |            |
|           | 7.6  | compliance                 | Contractor |
|           |      | Rate of Progress ;         |            |
|           |      | additional costs of        |            |
|           |      | supervision recoverable    |            |
|           |      | from contractor due to     |            |
|           | 8.7  | slow progress rate         | Contractor |
|           | 8.8  | Delay Damages              | Contractor |
|           | 8.9  | Employer's suspension      | Contractor |
|           |      | Consequences of            |            |
|           | 8.10 | Employer's Suspension      | E+c        |

|  |      | Costs incurred by         |            |
|--|------|---------------------------|------------|
|  |      | contractor for            |            |
|  |      | suspension not by         |            |
|  | 8.11 | default of contractor     | Employer   |
|  | 8.12 | Prolonged Suspension      | Employer   |
|  | 9.2  | Delayed tests             | Contractor |
|  | 9.3  | Re-testing                | Contractor |
|  |      | Interference with test on |            |
|  | 10.3 | completion                | Employer   |
|  |      | Costs of remedying        |            |
|  | 11.2 | defects                   | Contractor |
|  |      | Contractor's failure to   |            |
|  | 11.4 | remedy defects            | Contractor |
|  |      | Right of access after     |            |
|  | 11.7 | taking over               | Employer   |
|  |      | Contractor to search      |            |
|  | 11.8 | defect                    | Employer   |
|  | 12.2 | Delayed tests             | Employer   |
|  | 12.3 | Re-testing                | Contractor |
|  | 12.4 | Omissions                 | Contractor |
|  |      | Variations carried out by |            |
|  |      | written instructions by   |            |
|  | 13.3 | engineer                  | Employer   |
|  | 13.1 | Right to vary             | Employer   |
|  | 13.5 | Daywork                   | Employer   |
|  |      | Adjustments for changes   |            |
|  | 13.6 | in Laws                   | E+c        |
|  |      | Adjustments for changes   |            |
|  | 13.7 | in Cost                   | Employer   |
|  | 14.8 | Delayed Payments          | Employer   |

|  |      | Termination for          |            |
|--|------|--------------------------|------------|
|  | 15.2 | contractor's Default     | Contractor |
|  |      | Valuation at the date of |            |
|  |      | termination for          |            |
|  | 15.3 | contractor's default     | Employer   |
|  |      | Payment after            |            |
|  |      | termination for          |            |
|  | 15.4 | contractor's default     | Contractor |
|  |      | Valuation at the date of |            |
|  |      | termination for          |            |
|  | 15.6 | Employer's Convenience   | Employer   |
|  |      | Payment after            |            |
|  |      | termination for          |            |
|  | 15.7 | Employer's Convenience   | Employer   |
|  |      | Suspension by            |            |
|  | 16.1 | contractor               | Employer   |
|  |      | Termination by           |            |
|  | 16.2 | Contractor               | Employer   |
|  |      | Payment after            |            |
|  |      | termination by           |            |
|  | 16.4 | contractor               | Employer   |
|  |      | Liability for care of    |            |
|  | 17.2 | works                    | Employer   |
|  |      | Indemnities by           |            |
|  | 17.4 | Contractor               | Contractor |
|  |      | Indemnities by           |            |
|  | 17.5 | Employer                 | Employer   |
|  |      | consequences of          |            |
|  | 18.4 | exceptional event        | Employer   |
|  | 20.1 | Claims                   | E+c        |
|  |      | Claims for Payment       |            |
|  | 20.2 | and/or EOT               | E+c        |

| Clause Type  | CLAUSE/SUB- | DESCRIPTION                 | I LADII ITV |
|--------------|-------------|-----------------------------|-------------|
| Clause Type  | CLAUSES     | DESCRIPTION                 |             |
|              |             | PM may give instructions    |             |
|              |             | to contractor which         |             |
|              |             | changes the works           |             |
|              | 14.3        | information or key date     | Employer    |
|              |             | Early warning by any        |             |
|              |             | party to notify other party |             |
|              |             | of event which could cost   |             |
|              | 16.1        | time or money               | E+C         |
|              |             | Ambiguities and             |             |
|              | 17.1        | Inconsistencies             | E+C         |
|              |             | Prevention of event         |             |
|              |             | which is not under the      |             |
|              | 19.1        | control of any party        | Employer    |
|              |             | Providing the works         |             |
| CORE CLAUSES |             | according to works          |             |
|              | 20.1        | information                 | Contractor  |
|              |             | Cost incurred by            |             |
|              |             | Employer in case the        |             |
|              |             | Contractor does not work    |             |
|              |             | with "others" as stated in  |             |
|              | 25.2        | works information           | Contractor  |
|              |             | additional costs if the     |             |
|              |             | work does not meet the      |             |
|              |             | condition stated for a key  |             |
|              | 25.3        | date                        | Contractor  |
|              |             | site access is need to      |             |
|              |             | show the programme          |             |
|              | 31.2        | submitted by contractor     | contractor  |
|              | 32.1        | Revising the programme      | Contractor  |

Table 0-2 NEC3 Cost Claim related Clauses and Liabilities

| 33.1                                        | Access and the use of site                                                                                                                                                                                                                                                   | Employer                                                       |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
|                                             | Instructions to stop or not                                                                                                                                                                                                                                                  |                                                                |
| 34.1                                        | to start the work                                                                                                                                                                                                                                                            | employer                                                       |
|                                             | instruction to                                                                                                                                                                                                                                                               |                                                                |
| 36.1                                        | Acceleration notice                                                                                                                                                                                                                                                          | Employer                                                       |
| 36.2                                        | Reply to Acceleration                                                                                                                                                                                                                                                        | Contractor                                                     |
|                                             | parties need to provide                                                                                                                                                                                                                                                      |                                                                |
|                                             | sources for tests and                                                                                                                                                                                                                                                        |                                                                |
|                                             | inspections stated in                                                                                                                                                                                                                                                        |                                                                |
| 40.2                                        | works information                                                                                                                                                                                                                                                            |                                                                |
| 40.4                                        | Repetition of failed tests                                                                                                                                                                                                                                                   | Contractor                                                     |
|                                             | assessment by PM if the                                                                                                                                                                                                                                                      |                                                                |
|                                             | defect(s) found in the                                                                                                                                                                                                                                                       |                                                                |
| 40.6                                        | tests                                                                                                                                                                                                                                                                        | Contractor                                                     |
|                                             |                                                                                                                                                                                                                                                                              |                                                                |
|                                             |                                                                                                                                                                                                                                                                              |                                                                |
| 45.1 and 45.2                               | Uncorrected defects                                                                                                                                                                                                                                                          | Contractor                                                     |
| 45.1 and 45.2                               | Uncorrected defects<br>assessing amount(money)                                                                                                                                                                                                                               | Contractor                                                     |
| 45.1 and 45.2<br>50                         | Uncorrected defects<br>assessing amount(money)<br>due                                                                                                                                                                                                                        | Contractor<br>Employer                                         |
| 45.1 and 45.2<br>50                         | Uncorrected defects<br>assessing amount(money)<br>due                                                                                                                                                                                                                        | Contractor<br>Employer                                         |
| 45.1 and 45.2<br>50                         | Uncorrected defects<br>assessing amount(money)<br>due<br>definition of                                                                                                                                                                                                       | Contractor<br>Employer                                         |
| 45.1 and 45.2<br>50<br>60.1                 | Uncorrected defects<br>assessing amount(money)<br>due<br>definition of<br>Compensation events                                                                                                                                                                                | Contractor<br>Employer<br>Employer                             |
| 45.1 and 45.2<br>50<br>60.1                 | Uncorrected defects<br>assessing amount(money)<br>due<br>definition of<br>Compensation events<br>judging the physical                                                                                                                                                        | Contractor<br>Employer<br>Employer                             |
| 45.1 and 45.2<br>50<br>60.1                 | Uncorrected defects<br>assessing amount(money)<br>due<br>definition of<br>Compensation events<br>judging the physical<br>conditions for the                                                                                                                                  | Contractor<br>Employer<br>Employer                             |
| 45.1 and 45.2<br>50<br>60.1                 | Uncorrected defects<br>assessing amount(money)<br>due<br>definition of<br>Compensation events<br>judging the physical<br>conditions for the<br>purpose of assessing a                                                                                                        | Contractor<br>Employer<br>Employer                             |
| 45.1 and 45.2<br>50<br>60.1<br>60.2         | Uncorrected defects<br>assessing amount(money)<br>due<br>definition of<br>Compensation events<br>judging the physical<br>conditions for the<br>purpose of assessing a<br>compensation event                                                                                  | Contractor<br>Employer<br>Employer<br>Contractor               |
| 45.1 and 45.2<br>50<br>60.1<br>60.2         | Uncorrected defects<br>assessing amount(money)<br>due<br>definition of<br>Compensation events<br>judging the physical<br>conditions for the<br>purpose of assessing a<br>compensation event<br>inconsistency of site                                                         | Contractor<br>Employer<br>Employer<br>Contractor               |
| 45.1 and 45.2<br>50<br>60.1<br>60.2<br>60.3 | Uncorrected defects<br>assessing amount(money)<br>due<br>definition of<br>Compensation events<br>judging the physical<br>conditions for the<br>purpose of assessing a<br>compensation event<br>inconsistency of site<br>information                                          | Contractor<br>Employer<br>Employer<br>Contractor               |
| 45.1 and 45.2<br>50<br>60.1<br>60.2<br>60.3 | Uncorrected defects<br>assessing amount(money)<br>due<br>definition of<br>Compensation events<br>judging the physical<br>conditions for the<br>purpose of assessing a<br>compensation event<br>inconsistency of site<br>information<br>Compensation Event                    | Contractor<br>Employer<br>Employer<br>Contractor<br>Contractor |
| 45.1 and 45.2<br>50<br>60.1<br>60.2<br>60.3 | Uncorrected defects<br>assessing amount(money)<br>due<br>definition of<br>Compensation events<br>judging the physical<br>conditions for the<br>purpose of assessing a<br>compensation event<br>inconsistency of site<br>information<br>Compensation Event<br>Arising from PM | Contractor<br>Employer<br>Employer<br>Contractor<br>Contractor |

|               |       | Contractor notifying     |            |
|---------------|-------|--------------------------|------------|
|               |       | abour compensation       |            |
|               | 61.3  | event                    | Contractor |
|               |       | Uncertan effects about   |            |
|               | 61.6  | compensation event       | Employer   |
|               |       | Submission of quotations |            |
|               | 62.1  | for compensation event   | Contractor |
|               |       | Assessing Compensation   |            |
|               | 63    | events                   | Employer   |
|               |       | conditions for PM        |            |
|               |       | assessing a compensation |            |
|               | 64.1  | event                    | Employer   |
|               |       | Contractor's obligations |            |
|               |       | in case PM does not      |            |
|               |       | assess a compensation    |            |
|               | 64.4  | event                    | Employer   |
|               | 80.1  | Employer's Risks         | Employer   |
|               | 81.1  | Contractor's risks       | Contractor |
|               | 83    | Indemnities              | E+C        |
| MAIN OPTION A |       | Assessing Compensation   |            |
| CLAUSES-      | 63.14 | events                   | E+C        |
| PRICED        |       |                          |            |
| CONTRACT      |       |                          |            |
| WITH ACTIVITY |       | Implementing             |            |
| SCHEDULE      | 65.4  | compensation events      |            |
| MAIN OPTION   |       | PM corrects the mistakes |            |
| B-PRICED      | 60.6  | in BOQ                   | Employer   |
| CONTRACT      |       | -                        |            |
|               |       |                          |            |
|               |       | Contractor's assessment  |            |
| QUANTITIES    | 60.7  | of Compensation events   | Contractor |

|                                                                                                       |                                                            | Assessing Compensation                                                                                                                                                        |                                                              |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
|                                                                                                       | 63.10 and 63.13                                            | events                                                                                                                                                                        | E+C                                                          |
| MAIN OPTION                                                                                           | 40.7                                                       | Tests and Inspections                                                                                                                                                         | Employer                                                     |
| C- TARGET                                                                                             |                                                            |                                                                                                                                                                               |                                                              |
| CONTRACT                                                                                              |                                                            |                                                                                                                                                                               |                                                              |
| WITH ACTIVITY                                                                                         |                                                            | Assessing Compensation                                                                                                                                                        |                                                              |
| SCHEDULE                                                                                              | 63.15                                                      | events                                                                                                                                                                        | E+C                                                          |
|                                                                                                       | 40.7                                                       | Tests and Inspections                                                                                                                                                         | Employer                                                     |
| MAIN OPTION                                                                                           |                                                            | PM corrects the mistakes                                                                                                                                                      |                                                              |
| D- TARGET                                                                                             | 60.6                                                       | in BOQ                                                                                                                                                                        | Employer                                                     |
| CONTRACT                                                                                              |                                                            | Contractor's assessment                                                                                                                                                       |                                                              |
| WITH BILL OF                                                                                          | 60.7                                                       | of Compensation events                                                                                                                                                        | Contractor                                                   |
| QUANTITIES                                                                                            |                                                            | Assessing Compensation                                                                                                                                                        |                                                              |
|                                                                                                       |                                                            |                                                                                                                                                                               |                                                              |
|                                                                                                       | 63.1463.15                                                 | events                                                                                                                                                                        | E+C                                                          |
| MAIN OPTION                                                                                           | 63.1463.15<br>40.7                                         | events Tests and Inspections                                                                                                                                                  | E+C<br>Employer                                              |
| MAIN OPTION<br>E- COST                                                                                | 63.1463.15                                                 | events Tests and Inspections                                                                                                                                                  | E+C<br>Employer                                              |
| MAIN OPTION<br>E- COST<br>REIMBURSABLE                                                                | 63.1463.15                                                 | events Tests and Inspections Assessing Compensation                                                                                                                           | E+C<br>Employer                                              |
| MAIN OPTION<br>E- COST<br>REIMBURSABLE<br>CONTRAC                                                     | 63.1463.15<br>40.7<br>63.15                                | events Tests and Inspections Assessing Compensation events                                                                                                                    | E+C<br>Employer<br>E+C                                       |
| MAIN OPTION<br>E- COST<br>REIMBURSABLE<br>CONTRAC<br>SECONDARY                                        | 63.1463.15<br>40.7<br>63.15                                | events Tests and Inspections Assessing Compensation events                                                                                                                    | E+C<br>Employer<br>E+C                                       |
| MAIN OPTION<br>E- COST<br>REIMBURSABLE<br>CONTRAC<br>SECONDARY<br>OPTION X2                           | 63.1463.15<br>40.7<br>63.15<br>X2.1                        | events         Tests and Inspections         Assessing Compensation         events         Change in Law                                                                      | E+C<br>Employer<br>E+C<br>Employer                           |
| MAIN OPTION<br>E- COST<br>REIMBURSABLE<br>CONTRAC<br>SECONDARY<br>OPTION X2<br>SE ONDARY              | 63.1463.15<br>40.7<br>63.15<br>X2.1<br>X7.1                | eventsTests and InspectionsAssessing Compensation<br>eventsChange in LawDelay Damages                                                                                         | E+C<br>Employer<br>E+C<br>Employer<br>Contractor             |
| MAIN OPTION<br>E- COST<br>REIMBURSABLE<br>CONTRAC<br>SECONDARY<br>OPTION X2<br>SE ONDARY<br>OPTION X7 | 63.1463.15<br>40.7<br>63.15<br>X2.1<br>X7.1<br>X7.2 & X7.3 | eventsTests and InspectionsAssessing Compensation<br>eventsChange in LawDelay DamagesDelay Damages                                                                            | E+C<br>Employer<br>E+C<br>Employer<br>Contractor<br>Employer |
| MAIN OPTION<br>E- COST<br>REIMBURSABLE<br>CONTRAC<br>SECONDARY<br>OPTION X2<br>SE ONDARY<br>OPTION X7 | 63.1463.15<br>40.7<br>63.15<br>X2.1<br>X7.1<br>X7.2 & X7.3 | eventsTests and InspectionsAssessing Compensation<br>eventsChange in LawDelay DamagesDelay DamagesLimitation of the                                                           | E+C<br>Employer<br>E+C<br>Employer<br>Contractor<br>Employer |
| MAIN OPTION<br>E- COST<br>REIMBURSABLE<br>CONTRAC<br>SECONDARY<br>OPTION X2<br>SE ONDARY<br>OPTION X7 | 63.1463.15<br>40.7<br>63.15<br>X2.1<br>X7.1<br>X7.2 & X7.3 | eventsTests and InspectionsAssessing Compensation<br>eventsChange in LawDelay DamagesDelay DamagesLimitation of the<br>contractor's liability for                             | E+C<br>Employer<br>E+C<br>Employer<br>Contractor<br>Employer |
| MAIN OPTION<br>E- COST<br>REIMBURSABLE<br>CONTRAC<br>SECONDARY<br>OPTION X2<br>SE ONDARY<br>OPTION X7 | 63.1463.15<br>40.7<br>63.15<br>X2.1<br>X7.1<br>X7.2 & X7.3 | eventsTests and InspectionsAssessing Compensation<br>eventsChange in LawDelay DamagesDelay DamagesLimitation of the<br>contractor's liability for<br>his design to reasonable | E+C<br>Employer<br>E+C<br>Employer<br>Contractor<br>Employer |