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Abstract 

 

Trajectory prediction of road users is a very important task in autonomous vehi- 

cles for road safety. It becomes even more important when road users are pedes- 

trians being more vulnerable. Recently, machine learning based approaches have 

been used for trajectory prediction of pedestrians including deep learning using 

deep neural networks. It is a question that what are the best features to include 

in order to predict the future trajectory of pedestrians more accurately. More- 

over, the recurrent neural networks (RNNs) based decoder in enocoder-decoder 

architecture suffer from the accumulated error that degrades long term predic- 

tions. In this work, feature selection for the trajectory prediction of pedestrians 

has been done and a novel bi-directional RNN decoder has been proposed. JAAD 

and PIE datasets have been used which focus on pedestrians. Different groups 

of available features in the datasets were selected, and the exploration analysis 

was done. Furthermore, in order to address the issue of accumulated error in uni- 

directional RNN decoders, a bi-directional decoder which has a forward RNN and 

a backward RNN, was proposed and compared with the uni-directional decoder. 

Results show that attributes features when added with spatial features improve 

the accuracy of the trajectory prediction and the proposed bi-directional decoder 

improves the accuracy of long term trajectory prediction. 
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Chapter 1: Introduction 

 
1.1 Background and Motivation 

 
The concept of self-driving vehicles is not entirely new; it has been a subject of 

fascination and speculation for decades. Starting in the 1920s [5], it took place 

in the 1980s when researchers were able to develop some automated highway 

systems [6], [7]. However, recent advancements in artificial intelligence, machine 

learning, sensor technology, and data processing have catapulted autonomous 

vehicles from a theoretical possibility to a tangible reality. As a result, major 

automotive manufacturers, tech giants, and startups alike have invested consid- 

erable resources in the development of autonomous driving systems, leading to 

significant progress in the field. 

The need for autonomous vehicles is multi-faceted and encompasses various soci- 

etal, environmental, and economic factors. Foremost among these is the alarming 

toll of road traffic accidents, which claim millions of lives each year and cause 

substantial economic losses. Human error remains the primary cause of most ac- 

cidents, and autonomous vehicles, with their ability to operate with precision and 

without fatigue, hold the potential to drastically reduce the number of collisions 

and fatalities on our roadways. 

Furthermore, autonomous vehicles offer a compelling solution to alleviate traffic 

congestion, a perennial issue plaguing densely populated urban centers. By op- 

timizing routes, adhering to efficient driving patterns, and facilitating seamless 

coordination between vehicles, these self-driving systems can significantly en- 

hance traffic flow and overall transportation efficiency. Consequently, this would 

lead to reduced travel times, lower fuel consumption, and decreased emissions, 
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contributing to a more sustainable and environmentally friendly transportation 

network [5]. 

Beyond the individual benefits, the integration of autonomous vehicles has the 

potential to transform our cities and urban infrastructure. By fostering the de- 

velopment of smart cities that are interconnected and optimized for autonomous 

transportation, we can unlock new possibilities for urban planning, land use [5], 

and public space utilization. It can even lead to parking problems. Shoup [8] has 

done some estimations that on average about 31 

It can play a contribution to environmental challenges. The transportation sec- 

tor is a significant contributor to greenhouse gas emissions and air pollution. 

It is estimated that transport is the cause of about one quarter to two third 

emissions of greenhouse gasses [9]. By introducing autonomous vehicles into the 

transportation mix, we can potentially reduce the environmental impact of driv- 

ing. Self-driving cars can be programmed to drive more efficiently, minimizing 

fuel consumption and emissions. Moreover, the growing interest in electric and 

autonomous vehicles can create an opportunity for synergies, promoting the adop- 

tion of electric, autonomous fleets, which would further contribute to reducing 

carbon emissions. 

The journey from human drivers to fully autonomous vehicles is not possible. It  

must go through a phase where for quite a long time, the roads will be shared by 

both human drivers and autonomous vehicles. For this, we must integrate intel- 

ligence into the autonomous vehicle systems which can understand and predict 

human behaviors and predict their future trajectories. So that they can safely 

cooperate on the same roads with human drivers. 
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1.2 Levels of Automation 

 
The automotive industry is currently witnessing a paradigm shift with the advent 

of autonomous driving technologies. As vehicles become more intelligent and 

capable of self-driving, it is crucial to have a standardized framework to classify 

the varying degrees of automation. The Society of Automotive Engineers (SAE) 

has taken up this challenge by introducing the SAE Levels of Automated Driving, 

a comprehensive categorization system that offers a clear understanding of the 

capabilities and limitations of autonomous vehicles. In this section, we will delve 

into the five SAE levels, each representing a step towards full autonomy, and 

explore the implications of these advancements on our roadways. 

 
 
 

 

 

Figure 1.1: Levels of automation [1] 
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1.2.1 Level 0: No Automation (Traditional Human-Only 

Driving) 

At Level 0, there is no automation involved, and the human driver is solely 

responsible for all aspects of vehicle operation. In this traditional driving scenario, 

the car provides no assistance or automation features, requiring the driver to 

handle every task, from acceleration and steering to braking and monitoring the 

environment. As we progress from Level 0 to higher levels, the introduction of 

automation gradually eases the burden on the driver and enhances overall safety. 

 
1.2.2 Level 1: Driver Assistance (Basic Automation) 

 
Level 1 represents the introduction of basic automation in the form of driver 

assistance features. Here, the vehicle is able to provide assistance to the driver 

with either acceleration/deceleration or steering one at a time but is not able to 

do both simultaneously. Examples of Level 1 automation include adaptive cruise 

control, where the car can maintain a set speed and distance from the vehicle 

ahead, and lane-keeping assist, which helps the driver stay within their lane. 

Despite these automated features, the responsibility still lies with the human 

driver to monitor the driving environment and intervene when necessary. 

 
1.2.3 Level 2: Partial Automation (Combined Automa- 

tion) 

Advancing further, Level 2 introduces combined automation. In this level, the 

vehicle is able to control both acceleration/deceleration and steering simultane- 

ously under specific conditions. In this scenario, the driver must remain engaged 

and monitor the driving continuously. While automation alleviates some work- 

load, the driver is responsible for taking over if the system encounters situations 
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it cannot handle. Level 2 autonomy showcases advanced capabilities, but it still 

requires that the human driver should be vigilant and ready to intervene when 

needed. 

 
1.2.4 Level 3: Conditional Automation (Limited Self-Driving) 

 
Level 3 marks a significant leap towards more advanced autonomous capabilities. 

At this level, the vehicle can manage most aspects of driving under certain condi- 

tions without requiring human intervention. The driver, however, can disengage 

from driving tasks and focus on non-driving activities, assuming the role of a 

passenger. However, Level 3 automation is conditional and typically confined to 

specific operational design domains (ODDs), limiting its capabilities to predefined 

scenarios. The challenge lies in regaining control when the system encounters sit- 

uations outside its ODD or when requested by the driver or infrastructure. 

 
1.2.5 Level 4: High Automation (Full Self-Driving in Lim- 

ited Circumstances) 

Moving closer to full autonomy, Level 4 represents high automation, where the ve- 

hicle can handle most driving tasks without human input or intervention. Unlike 

Level 3, Level 4 automation is not bound by specific operational domains; instead, 

it operates within predefined geo-fenced areas or controlled environments. Level 

4 AVs offer a substantial increase in safety and convenience, making them ideal 

for specific use cases, such as autonomous shuttles in designated urban areas or 

self-driving trucks in controlled logistics yards. 

 
1.2.6 Level 5: Full Automation (True Self-Driving) 

 
At the pinnacle of the SAE Levels, Level 5 signifies full automation without any 

human involvement necessary for driving tasks. Level 5 AVs can operate under 
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any conditions and across all geographic areas, completely eliminating the need for 

a human driver. These vehicles are designed to provide passengers with a seamless 

and fully autonomous transportation experience. Level 5 autonomy represents the 

vision of fully realizing the potential of autonomous driving, revolutionizing urban 

mobility, enhancing road safety, and transforming the transportation landscape. 

The real automated driving (AD) starts from level 3. At level 1 and 2, it is called 

Advanced driver-assistance system (ADAS) [10]. 

 

1.3 Modules of Autonomous Vehicles 

 
There are five main modules in autonomous vehicles [11]. 

 

1.3.1 Sensing Module 

 
The sensing module is a very important component of autonomous vehicles, en- 

dowing them with the capability of perceiving and interpreting their surroundings. 

The most commonly used sensors used are: 

 
1.3.1.1 Camera 

 
The camera sensor is a crucial component of the sensing module in autonomous 

vehicles, mimicking the human eye’s visual perception [12]. Mounted at strategic  

locations on the vehicle’s exterior, these high-resolution cameras capture real-time 

images of the surrounding environment. The camera sensor plays a vital role in 

recognizing and understanding critical elements such as road signs, traffic signals, 

pedestrians, and other vehicles. Moreover, redundancy is often employed, with 

multiple cameras providing a comprehensive 360-degree view, ensuring robustness 

and reliability even in complex driving scenarios known as multi-camera setup 

[13]. For example, the Waymo Open Dataset car has 5 cameras, front, front-left, 
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front-right, side-left, side-right [14]. Stereo camera is also very commonly used 

so that distances can also be measured [15]. 

 
1.3.1.2 LiDAR 

 
The use of LiDAR sensors in autonomous vehicles represents a groundbreaking 

advancement in self-driving technology. LiDAR, short for Light Detection and 

Ranging, utilizes laser pulses to create precise and detailed 3D maps of the ve- 

hicle’s surroundings. Mounted on the vehicle’s roof or integrated into its body, 

LiDAR sensors emit laser beams that bounce off surrounding objects and return 

to the sensor, providing accurate distance measurements. By scanning the en- 

vironment at a rapid pace, LiDAR sensors generate real-time point clouds that 

offer a comprehensive view of nearby objects, road geometry, and potential ob- 

stacles. This rich data is then fused with information from other sensors, such as 

cameras and radars, to obtain an overall understanding of the AV’s environment.  

Leader’s ability to detect objects with high accuracy, even in low-light condi- 

tions, and its proficiency in distinguishing fine details make it a crucial sensor 

in ensuring the reliability and safety of autonomous vehicles. As the technol- 

ogy continues to evolve, LiDAR sensors are anticipated to play an increasingly 

vital role in shaping the future of self-driving transportation. For example, the 

Waymo Open Dataset car used five LiDARs, front, right, side-left, side-right, and 

top sensors [14]. 

 
1.3.1.3 RADAR 

 
Radar technology has a fundamental role in the domain of autonomous driving, 

providing essential data for perceiving and navigating the vehicle’s environment. 

Radar, which stands for Radio Detection and Ranging, uses radio waves to detect 

objects and measure their distance, speed, and direction. Mounted on various 

parts of the vehicle, such as the front, sides, and rear, radar sensors continu- 
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ously scan the surroundings, creating a real-time map of nearby objects and their 

movements. The ability to function effectively in various weather conditions, in- 

cluding rain, fog, and darkness, makes radar sensors reliable even in challenging 

environments [16]. In combination with other sensors like cameras and LiDAR, 

radar enhances the autonomous vehicle’s perception capabilities, offering a re- 

dundant and comprehensive view of the surroundings. By accurately detecting 

and tracking moving objects, including vehicles, pedestrians, and cyclists, radar 

ensures safe and efficient decision-making, making it an integral part of the suite 

of sensors in autonomous driving systems. 

 
1.3.1.4 Ultrasonic 

 
Ultrasonic sensors are integral components of the sensing module in autonomous 

vehicles, providing essential close-range detection capabilities. The working prin- 

ciple of ultrasonic sensors is that they emit sound waves of high frequency and 

then measure the time difference between the emitted and received sound waves 

which come back to the sensor when they bounce back after hitting the nearby 

objects. Mounted on the vehicle’s exterior, ultrasonic sensors are particularly use- 

ful for detecting obstacles in the immediate vicinity, such as parked cars, curbs, 

and pedestrians. They assist in parking maneuvers [17] and low-speed naviga- 

tion, helping the autonomous vehicle avoid collisions and ensure safe and precise 

movements in tight spaces. While their range is limited compared to other sensors 

like radar and LiDAR, ultrasonic sensors excel in providing reliable and real-time 

feedback for low-speed operations, enhancing the AV’s overall situational aware- 

ness and contributing to a seamless and secure autonomous driving experience. 

 
1.3.1.5 IMU 

 
Inertial Measurement Unit (IMU) sensors play a critical role in the accurate lo- 

calization and motion tracking of autonomous vehicles. Comprising gyroscopes 
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and accelerometers, the IMU measures the vehicle’s angular velocity and accelera- 

tion in three dimensions. By continuously monitoring these parameters, the IMU 

provides essential data about the vehicle’s orientation, tilt, and movement. This  

information is crucial for determining the AV’s position and trajectory, especially  

in situations where GPS signals may be unreliable, such as in tunnels or urban 

canyons. The integration of IMU sensors with other localization technologies, 

such as GPS and odometry, enhances the vehicle’s overall position estimation  

accuracy and ensures a robust and reliable autonomous driving system [16]. The 

IMU sensors enable precise motion tracking, aiding in smooth navigation, and 

contributing to the safe and efficient operation of autonomous vehicles in diverse 

environments. 

There are some other sensors that are also used in AVs but here are mentioned 

the most commonly used ones. 

Please see the Table 1.1 for the summary. 
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Table 1.1: Comparison of the Sensors Used in AVs 

 

Sensor Advantages Disadvantages 
 

 

 
 
 

 
Camera 

1. Excellent perceivability 

2. Availability of lateral ve- 

locity 

3. Availability for distribu- 

tion of color 

1. Heavy computational 

load 

2. Light interference 

3. Heavily affected by 

weather 

4. Unavailability of radial 

velocity 

 
 

 

 

 
 

LiDAR 

1. 3D data 

2. High precision 

3. 360o  horizontal field of 

view 

1. Affected greatly by 

weather and background 

noise 

2. Expensive 

 
 

 

 

 

 
RADAR 

1. Longer distance of work 

2. Availability of radial ve- 

locity 

3. Weather robustness 

1. Not applicable to static 

objects 

2. Higher ratio of false 

alarms 

 
 

 

 

 

Ultrasonic 

1. Low price 1. Very low resolution data 

2. Not applicable for high 

speeds 
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1.3.2 Perception Module 

 
The perception module’s primary objective is to analyze and interpret the vast 

amounts of data collected from the various sensors. Advanced computer vision 

algorithms and machine learning techniques process this data, identifying ob- 

jects, recognizing road signs, detecting lane markings, and categorizing obsta- 

cles. Through object detection and classification, the AV can distinguish between 

pedestrians, cyclists, vehicles, and static objects, enabling it to interact with its 

environment intelligently. Moreover, the perception module can accurately de- 

termine the distances and velocities of surrounding objects, critical for planning 

appropriate trajectories and avoiding collisions. 

The perception module of autonomous vehicles is responsible for several crucial 

tasks that enable the vehicle to understand and interpret its surroundings accu- 

rately. These tasks include 

 
1.3.2.1 Object Detection and Classification 

 
The perception module must identify and classify various objects present in the 

vehicle’s environment, such as pedestrians, cyclists, vehicles, and static obstacles.  

Accurate object detection is essential for the AV to interact safely with its sur- 

roundings and make informed decisions while navigating through traffic [18]. The 

objects to be detected first of all include road users which are mainly pedestrians 

and vehicles. But more than that, it should detect and interpret lane markings 

and road boundaries accurately. This information is crucial for the AV to main- 

tain its position within the correct lane and follow the appropriate path while 

driving. Recognizing and interpreting traffic signs, including speed limits, stop 

signs, and traffic signals, is vital for the AV to adhere to traffic regulations and 

adjust its behavior accordingly. 
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1.3.2.2 Semantic Segmentation 

 
Semantic segmentation is a computer vision task that involves dividing an image 

into multiple segments and assigning each pixel a semantic class label [18]. Unlike 

object detection, which recognizes objects as bounding boxes, semantic segmen- 

tation provides a fine-grained pixel-level understanding of the scene. This level 

of detail is invaluable in autonomous driving, as it allows AVs to differentiate be- 

tween various objects, road markings, lane boundaries, and other critical elements 

in the environment, enhancing their perception and decision-making capabilities. 

 
1.3.2.3 Environmental Mapping and Localization 

 
The perception module creates detailed and dynamic high-definition maps of the 

vehicle’s operational environment. These maps help the AV enhance its situa- 

tional awareness and navigate accurately, especially in complex urban settings. 

 
1.3.3 Prediction Module 

 
As autonomous vehicles (AVs) become a reality on our roadways, the focus shifts 

beyond the technical challenges of navigation and perception to encompass un- 

derstanding human behavior and intent. For AVs to safely and seamlessly coexist 

with human-driven vehicles, they must be capable of analyzing and predicting 

the behaviors of other road users, such as pedestrians, cyclists, and drivers. Be- 

havior analysis and prediction play a critical role in ensuring smooth interactions, 

proactive decision-making, and, ultimately, enhancing the safety and acceptance 

of autonomous vehicles [19]. 

Human behavior on the road is diverse, complex, and often influenced by vari- 

ous factors, such as cultural norms, emotions, and the surrounding environment. 

Humans interpret and respond to subtle cues, such as eye contact, gestures, and 

body language, to predict the intentions of others. These nuanced interactions 
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are deeply ingrained in the driving experience and are vital for safe and efficient 

navigation in traffic. 

The challenge for AVs lies in replicating this understanding of human behavior and 

predicting the intentions of other road users with a high degree of accuracy. This 

capability is essential for ensuring the AV can anticipate and react appropriately 

to dynamic traffic scenarios and avoid potential conflicts. 

Machine learning and deep learning algorithms are often employed to recognize 

patterns in behavior and predict likely future actions of other road users. S. 

Mozaffari et. al., [20] have studied deep learning-based methods and techniques 

being used for this end. These algorithms use historical data and real-time ob- 

servations to identify recurring behavior and make informed predictions. By 

constantly updating and refining their understanding of human behavior, AVs 

can navigate confidently and predictably in a variety of traffic situations. 

The common tasks of behavior analysis and prediction modules are road scene un- 

derstanding, driving activities classification, driving status classification, driver- 

road interaction classification, situational awareness classification, and trajectory 

prediction of road users other than the ego vehicle [21]. 

 
1.3.3.1 Trajectory prediction 

 
Trajectory prediction, also known as trajectory forecasting, is also of immense 

importance. The idea is to observe the target vehicle, whose trajectory is to be 

predicted for some time, and then predict its future trajectory for some future 

time period. This is again mainly classified into pedestrian and vehicle trajectory 

prediction and usually, the models are different for both for the same task for 

trajectory prediction [19]. 
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1.3.4 Planning Module 

 
The planning module is a crucial component of autonomous vehicles, responsi- 

ble for generating safe and efficient driving trajectories based on the information 

received from the perception module. Combining real-time data from various 

sensors and maps, the planning module processes this information to make in- 

telligent decisions about the vehicle’s actions and path. By considering factors 

like traffic conditions, road geometry, speed limits, and the behavior of other road 

users to plan smooth and collision-free routes. The planning module must balance 

the AV’s mission to reach its destination efficiently while prioritizing safety and  

adhering to traffic rules. By synthesizing all these elements, the planning mod- 

ule ensures that autonomous vehicles can navigate complex urban environments, 

make informed decisions, and safely reach their destinations. 

 
1.3.5 Control Module 

 
The control module is the backbone of autonomous vehicles, responsible for trans- 

lating the decisions made by the planning module into physical actions. It takes 

the planned trajectory and executes it by manipulating the vehicle’s throttle, 

brakes, and steering system. The control module continuously adjusts these ac- 

tions based on real-time feedback from various sensors to maintain stability, accu- 

racy, and safety during driving. It ensures that the AV follows its intended path 

with precision, adheres to speed limits, and smoothly navigates around obsta- 

cles. The control module’s efficiency is crucial in maintaining passenger comfort  

and confidence in the AV’s capabilities. By seamlessly coordinating with other 

components, the control module plays a central role in realizing the promise of 

autonomous vehicles, offering a reliable and enjoyable driving experience while 

keeping safety at the forefront. 
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1.4 Deep Neural Networks 

 
Deep Neural Networks (DNNs) have revolutionized the field of artificial intelli- 

gence, showcasing remarkable performance across diverse domains. These net- 

works have demonstrated their ability to learn complex patterns and representa- 

tions from data, making them the go-to choice for various tasks. 

 
1.4.1 The Working of Deep Neural Networks 

 
1.4.1.1 Architecture: 

 
At the core of DNNs lies a layered architecture, with interconnected neurons in 

each layer. These neurons process and transmit information, forming the basis 

of computation in DNNs. 

 
1.4.1.2 Feedforward Process: 

 
The feedforward mechanism in DNNs involves passing input data through the 

network, layer by layer, to produce an output prediction. Weighted connections 

and activation functions shape the output and aid in modeling complex relation- 

ships in data. 

 
1.4.1.3 Backpropagation: 

 
The backpropagation algorithm is the foundation of learning in DNNs. This is 

an iterative process of updating weights based on the network’s prediction error,  

enabling the network to improve its performance over time. 
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1.4.2 Types of Deep Neural Networks 

 
1.4.2.1 Convolutional Neural Networks (CNNs) 

 
CNNs have proven to be highly effective in computer vision tasks. These have 

a specialized architecture, featuring convolutional and pooling layers to capture 

spatial hierarchies in images. 

 
1.4.2.2 Recurrent Neural Networks (RNNs) 

 
RNNs are designed to handle sequential data, making them ideal for tasks with 

temporal dependencies. The concept of recurrent connections and the ability of 

RNNs is to maintain a memory of past inputs. 

 
1.4.2.3 Autoencoders 

 
Autoencoders are a class of DNNs used for unsupervised learning and data com- 

pression. These have encoder and decoder architectures, highlighting their appli- 

cations in dimensionality reduction and data generation. 

 
1.4.2.4 Generative Adversarial Networks (GANs) 

 
GANs consist of a generator and discriminator network, trained in a competitive 

manner to generate realistic data. These have a role in generating synthetic 

images, enhancing data augmentation, and even creating deep fakes. 

 

1.5 Recurrent Neural Networks 

 
The fundamental architecture of an RNN consists of recurrent connections be- 

tween neurons, forming a directed cycle within the network. These recurrent 
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connections enable the flow of information from one time step to the next, allow- 

ing RNNs to process sequential data. At each time step, the input is fed into the 

RNN, and the network computes an output and updates its hidden state based 

on the current input and the information retained from the previous time step. 

Since the input in this work is sequential and output is also sequential, this work 

is basically a sequential-to-sequential network and RNNs are used in both input 

and output side. At the input side it is called encoder as it encodes the sequen- 

tial data into an encoded hidden state and the output side is called decoder as it 

again transforms the encoded hidden state into sequential output. 

 
1.5.1 Forward Propagation 

 
The forward propagation process in an RNN involves passing input data through 

the network, one time step at a time. At each time step, the network computes 

the output based on the current input and the hidden state from the previous 

time step. The computed output can be used for prediction or further processing, 

and the hidden state is updated to retain relevant information for the subsequent 

time step. This process is repeated until the entire sequence is processed. 

 
1.5.2 Backpropagation Through Time (BPTT) 

 
Training RNNs involves an extension of the backpropagation algorithm called 

Backpropagation Through Time (BPTT). BPTT computes the gradients of the 

loss function with respect to the network’s parameters, enabling weight updates 

to improve the model’s performance over time. However, training RNNs with 

standard BPTT can suffer from the vanishing gradient problem, which makes it  

challenging for the network to learn long-range dependencies in sequential data. 
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1.6 The Specific Task Targeted by This Thesis 

Work 

This thesis work is in the domain of prediction module and specifically about the 

trajectory prediction of pedestrians. 

 
 

 
1.7 Problem Formulation 

Given a target (a road user), observe it for some time period, observation length, 

lo. During each time step of lo, generate a feature vector x, so that when t ≥ 

lo − 1 we have a sequence of these feature vectors in the form of a set Xt = 

 

(a) (b) 

 
Figure 1.2: Illustration of the task of trajectory prediction of pedestrians for au- 

tonomous vehicles. Yellow represents observed trajectory, Red represents future 

ground truth trajectory, Green represents predicted trajectory. (a) Graphical 

illustration. (b) Symbolic illustration. 
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{xt−lo+1, xt−lo+2, . . . , xt}.    Our goal is to design a model f , which at time 

t ≥ lo − 1 will take this sequence Xt of past lo feature vectors and generate 

future trajectory points in the form of vectors starting from time step t + 1 to 

t + lp where lp denotes the time period of prediction horizon, so that we have a 

predicted trajectory Yt = f (Xt) = {yt+1, yt+2, . . . , yt+lp }. 

 
1.8 Research Objectives 

 
1. Finding out the features which when added with spatial features improve 

the accuracy of the trajectory prediction of pedestrians for First Person 

View (FPV) ego-vehicle centric camera sensor Autonomous Vehicles. 

2. Improving long term prediction. 
 

 

 

Figure 1.3: Graphical abstract, which depicts this work in a concise pictorial 

form. 1st Column (left) illustrates the task of trajectory prediction of pedes- 

trians for autonomous vehicles. 2nd Column (middle) illustrates the research 

gaps found and targeted in this work and methodology. 3rd Column (right) 

illustrates the conclusion. 
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Chapter 2: Literature Review 

 
2.1 Classification of Methods of Trajectory Pre- 

diction 

Researchers have pursued two main strategies: physics-based models, based on 

traditional motion theories and human behaviors, and learning-based models, 

exploiting machine learning algorithms and abundant data resources [20]. 

Stockem Novo et al. [10] have used the term data-driven models for learning-based 

models. 

 
2.1.1 Physics-Based 

 
Physics-based models use established principles of physics to predict trajectories. 

These models often use data such as velocity, acceleration, and road layout, and 

may incorporate behavioral models based on traffic rules and driver psychology. 

Although physics-based models have many advantages like physics-based models 

are grounded in physical reality and human behavior, providing interpretable and 

explainable predictions [22]. Furthermore, they are computationally efficient as 

they do not require large training datasets or powerful hardware resources. 

But, despite their advantages, physics-based models often fall short in predict- 

ing complex or erratic behavior due to their dependence on predefined rules and 

assumptions about the environment. The deterministic nature of physics-based 

models limits their ability to represent the inherent uncertainty in human behav- 

ior and road conditions [19]. 
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2.1.2 Learning Based 

 
In contrast, learning-based models leverage machine learning algorithms to learn 

from historical data and make predictions. Deep learning techniques like Recur- 

rent Neural Networks (RNN) and Long Short-Term Memory (LSTM) networks 

are popular in this field [23]. 

Learning-based models have the ability to learn complex patterns and adapt to 

changing environments, resulting in superior performance in complex and dy- 

namic scenarios [24]. They are capable of estimating uncertainties in trajectory 

prediction through probabilistic frameworks, providing a measure of confidence 

in their predictions [25]. That’s why we have chosen a learning-based model for 

our work. 

 

2.2 Unimodal vs Multimodal Trajectory Pre- 

diction 

2.2.1 Unimodal Trajectory Prediction 

 
Unimodal trajectory prediction posits a single, most likely trajectory for each 

actor. This approach assumes deterministic future behavior and is typically em- 

ployed in model-based methods such as Kalman Filters and its variants and also 

in learning-based models like [26], [27]. While these methods are computationally 

efficient, they often lack the ability to predict multiple potential futures, which 

may reduce their robustness in complex and dynamic traffic scenarios. 

 
2.2.2 Multimodal Trajectory Prediction 

 
Contrary to unimodal prediction, multimodal trajectory prediction aims to model 

a range of potential future paths for each actor, accounting for the inherent uncer- 



22  

 

tainty in predicting human behavior [28]. This is usually accomplished through 

probabilistic methods, such as Gaussian Mixture Models (GMMs) [29], [30], [31] 

and Generative Adversarial Networks (GANs) Despite being more computation- 

ally intensive, these methods provide a more robust understanding of potential 

future scenarios. This work focuses on multimodal trajectory prediction which 

are stochastically generated. 

 

2.3 Multi-Agent vs. Single-Agent Trajectory Pre- 

diction 

2.3.1 Multi-Agent Trajectory Prediction 

 
This approach recognizes the interdependencies among various actors within a 

traffic environment and considers their mutual interactions to make more accurate 

predictions. Techniques such as Social LSTM [23] and [26] and Graph Neural 

Networks (GNNs) [32] have been developed to model these complex inter-agent 

relationships. For instance, Social LSTM applies recurrent neural networks to 

capture the dynamic social interplay between pedestrians, cyclists, and vehicles, 

thereby improving prediction accuracy. Similarly, GNNs model the interactions 

among traffic participants as a graph, allowing for a more intuitive representation 

of their mutual influences [33]. These multiagent methods offer a more holistic 

understanding of road users’ behaviors and have the potential to significantly  

enhance the safety and efficiency of AV operations. 

 
2.3.2 Single-Agent Trajectory Prediction 

 
Single-agent prediction focuses on forecasting the trajectory of individual road 

users independently. Although they may include interactions with other agents, 

environment, and context, the main differentiator is that the model creates a 
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trajectory of only one agent at a time. This work is about single-agent trajectory 

prediction. 

 

2.4 Context Awareness 

 
In the trajectory prediction for autonomous vehicles (AVs), context awareness 

plays a significant role in achieving reliable and safe navigational decisions. Con- 

text awareness refers to the process of considering the environmental and situ- 

ational factors surrounding an agent, such as road infrastructure, traffic rules, 

and other road users’ behavior, when predicting its future trajectory [34]. Ma- 

chine learning techniques, particularly deep learning, have been instrumental in 

integrating such contextual information into trajectory prediction models. Con- 

volutional Neural Networks (CNNs), for instance, can encode high-dimensional 

sensor data to capture spatial context [35]. Similarly, methods like Social LSTM 

incorporate social context, i.e., the interactions among multiple agents, to en- 

hance prediction accuracy [23]. Moreover, scene-specific methods that employ 

high-definition maps or semantic scene understanding can provide rich context 

information, leading to more informed predictions [36]. 

 

2.5 Goal Driven/Conditioned 

 
Goal-driven trajectory prediction is an emerging approach in autonomous vehicle 

(AV) technology that aims to predict future trajectories of road users by identify- 

ing their objectives or ’goals’. This approach acknowledges that an agent’s future  

path is largely dictated by their intended destination or objective [37]. There are 

several types of goal-driven trajectory prediction models. 
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2.5.1 End Goal 

 
Firstly, end-goal prediction techniques infer the final destination of an agent based 

on their current and past positions, and subsequently predict the path leading 

to this end-goal [36]. This type of prediction is particularly useful in scenarios 

where the agent’s goal can be reasonably inferred from the onset, such as highway  

driving. 

 
2.5.2 Grid Based 

 
Secondly, grid-based methods divide the environment into a grid and assign each 

cell a likelihood of being the agent’s goal [38]. The trajectory is then predicted 

based on the most likely goal cells. This method is particularly useful in complex 

environments where the end goal may not be immediately apparent, such as urban 

intersections or parking lots. 

 
2.5.3 Stepwise Goals 

 
Lastly, stepwise goal prediction models generate a series of sub-goals that guide 

the agent’s trajectory [39]. This approach is beneficial in dynamic environments  

where immediate future goals might be more discernible than distant end goals. 

The baseline method [2] for this work is also using this stepwise goals approach. 
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Table 2.1: Literature Review of Methods 

 

Classification Classes Published Works 
 

Physics-Based [22] 

Methods 

 

Unimodal vs. 

 
  

Learning-Based [25], [23], [24] 

Unimodal [26], [27] 
 

Multimodal Multimodal 
 

[28], [29], [30], [31] 
 

Single- vs. Single-Agent 
 

[2] 
 

Multi-Agent Multi-Agent 
 

[23], [26], [32], [33] 
 

Context Awareness - 
 

[34], [35], [23], [36] 
 

End Goal 
 

[36] 
 

Goal Conditioned Grid Based  
[38] 

 

Stepwise Goals 
 

[39], [2] 
 

 
2.6 Datasets 

 
2.6.1 Sensors-based Classification 

   

 

Some datasets have a full suite of autonomous vehicle sensors which include Li- 

DARs, multiple cameras, RADAR, GPS, Gyroscope/IMU, etc. Such datasets are 

nuScenes [40], Waymo Open Dataset [14], Agroverse [41], Lyft Level5 [42], Shifts 

Vehicle Motion Prediction by Yandex [43] etc. 

While other datasets include only some or one sensor instead of the full suite. 

Among those which include only the camera sensor like JAAD [] and PIE [] 

dataset. 
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2.6.2 Type of Target-based Classification 

 
The datasets which are specifically designed for the task of trajectory prediction 

can be classified into their targets. 

 
Pedestrians like [11], JAAD [4], PIE [3], Stanford Drone Dataset [44], [45], 

[46]. Ranga et al. [11] use the term vulnerable road users which is a broader term 

than pedestrians and includes cyclists, scooters etc also. 

 
Vehicles like nuScenes [40], Waymo Open Dataset [14], Agroverse [41], Lyft 

Level5 [42], Shifts Vehicle Motion Prediction by Yandex [43]. 

 
Both like nuScenes [40]. 

 

2.6.3 Point of View-based Classification 

 
2.6.3.1 First Person View (FPV) 

 
The datasets in which the camera is ego-vehicle-centric. For example in JAAD [4] 

and PIE [3] datasets. 

 
2.6.3.2 Bird’s Eye View (BEV) 

 
The datasets which are top view. These are either captured from aerial footage 

like Stanford Drone Dataset [44], [45], [46]. In the nuScenes dataset, [40], they 

have provided BEV of LiDAR as an additional option. Similarly, in the KITTI 

dataset [47], they have provided BEV detection. 
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2.6.4 Driving Environment-based Classification 

 
Driving environment means the outside external environment and conditions 

where the autonomous vehicle is intended to operate. These are classified as 

 
2.6.4.1 Highways 

 
There are some datasets that are just for highways like NGSIM [48]. The Highway 

scenario has its own challenges. Mostly, the traffic is very straight forward but 

because of high speeds, any miscalculation can lead to disastrous consequences. 

 
2.6.4.2 Rural or Urban Driving Environment 

 
In rural areas, factors such as limited road infrastructure, unpredictable wildlife, 

and adverse weather conditions necessitate robust sensing, perception, and decision- 

making capabilities. On the other hand, urban areas introduce complex scenarios 

involving dense traffic, diverse road users, and intricate road markings, demand- 

ing precise navigation and real-time interaction with pedestrians and cyclists. 

Most of the datasets for autonomous vehicles are for the urban environment. 

DATS dataset [49] is a dataset recorded for the Indian region for both rural and 

urban driving environments. 

 
2.6.4.3 Time of the Day 

 
Time of the day is also very important mainly classified as: 

 
• Morning time. 

 
• Day time. 

 
• Evening time. 

 
• Night time. 
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• Etc. 

 
Most of the datasets try to have scenarios for all above mentioned time of the 

day. 

 
2.6.4.4 Weather 

 
Weather is also a very important factor. It has been classified as: 

 
• Sunny. 

 
• Rainy. 

 
• Snowy. 

 
• Foggy. 

 
• Etc. 

 
Most of the datasets try to include all weather conditions. But, recently, a dataset 

Canadian Adverse Driving Conditions Dataset (CADC) [50] has been proposed 

which specifically targets wintry conditions which always include snowfall. 
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Table 2.2: Literature Review of Datasets 
 

Classification Classes Published Works 
 

nuScenes [40], Waymo Open Dataset [14], Agro- 

 

Sensors 

Full Suite 

 

Camera 

Only 

verse [41], Lyft Level5 [42], Shifts Vehicle Motion 

Prediction by Yandex [43] 

 
JAAD [4], PIE [3] 

 

 
Target 

Road User 

Pedestrians 
JAAD [4], PIE [3], Stanford Drone Dataset [44], 

ETH [45], UCY [46] 
 

  

nuScenes [40], Waymo Open Dataset [14], Agro- 

Vehicles verse [41], Lyft Level5 [42], Shifts Vehicle Motion 

Prediction by Yandex [43] 
 

  

 
 

Point of 

View 

 
 
 

Driving 

Both nuScenes [40] 

FPV JAAD [4], PIE [] 
 

BEV Stanford Drone Dataset [44], ETH [45], UCY [46], 

KITTI [47] 

Highways NGSIM [48] 
 

Rural DATS [49] 

Environment 
Wintry 

Weather 

 
 

Canadian Adverse Driving Conditions Dataset 

(CADC) [50] 
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Chapter 3: Methodology 

 
3.1 Datasets Seclection 

 
Two datasets JAAD [4] and PIE [3] have been selected for this work. Their 

classification as per the Section 2.6 classification is given in the following Table 

3.1 

 
Table 3.1: Selected Datasets 

 
 
↓Classes\Datasets→ 

Target 

 
JAAD 
 
Pedestrians 

 
PIE 
 
Pedestrians 

 

Sensors 
 

1 x Front Camera 
 

1 x Front Camera 
 

Point of View 
 

FPV 
 

FPV 
 

 
Driving Environment 

 
Urban 

 
Urban 

 

 
 
 

3.1.1 JAAD Dataset 

 
The properties of the camera used are shown in the Table 3.2. The camera was 

installed below the rear view mirror inside the car. 
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Table 3.2: JAAD Dataset Camera Sensor Details 
 

 
Camera Sensor 

 
Type 

 
Resolution 

 
FOV 

 
No. of Clips 

 

 
Garmin GDR-35 

 
Monocular 

 
1920 x 1080 

 
110o

 
 

276 
 

 
GoPro Hero+ 

 
Monocular 

 
1920 x 1080 

 
170o

 
 

60 
 

Highscreen 

Connect 

BB  
Monocular 

 
1920 x 1080 

 
100o

 

 
10 

 
 
 

Some more information is given in the following Table 3.3. 

 

Table 3.3: JAAD Dataset Details 
 

Size 4.3 GB 

No of Video Clips 346 

North America (60 video clips) 

Locations and 

Eastern Europe (86 video clips) 

Frames per second (FPS) 30 

No of frames Approximately 82k 
  

No of unique pedestrians 2.2k 

No of Bounding boxes 337k 
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3.1.2 PIE 

 
The camera sensor is installed inside the car below the rear view mirror. Its 

properties are given in the Table 3.4. 

 
Table 3.4: PIE Dataset Camera Sensor Details 

 
 

Camera Sensor 
 

Type 
 

Resolution 
 

FOV 
 

 
Waylens Horizon 

 
Monocular 

 
1920 x 1080 

 
157o

 
 

 
 

 
It has 6 sets of video clips as mentioned in the following Table 3.5 

 

 
 Table 3.5: PIE Dataset [3] Sets of Video Clips  

 
Sets 

 
No. of Clips 

 

 
Set1 

 
4 

 

 
Set2 

 
3 

 

 
Set3 

 
19 

 

 
Set4 

 
16 

 

 
Set5 

 
2 

 

 
Set6 

 
9 

 

 
Total 

 
53 

 

 
 
 
 

 
Some more information is given in the following Table 3.6 
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Table 3.6: PIE Dataset [3] Details 
 

Size 70.4 GB 

No of Video Clips 53 

Locations Toronto, Canada 

Hours of Driving Over 6 hours 

Frames per second (FPS) 30 

No of frames 911k 
  

No of unique pedestrians 1.2k 

No of Bounding boxes 740k 
 

 
 
 
 
 
 
 
 
 
 

3.2 Baseline Method 

 
This work refers to [2] for the baseline method. It has two types of methods: 

 
1. Deterministic, which is unimodal prediction. 

 
2. Stochastic, which is multimodal trajectory prediction. 

 
In this work, the stochastic method is used as the baseline method. The model 

SGNet-ED in [2] is the best in the state-of-the-art models for the stochastic 

methods for the selected datasets. Table 3.8 shows the comparison of the baseline 

method on the selected datasets. 
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Table 3.7: Classification of the Baseline Method SGNet-ED [2] 

 

Target Pedestrians 
  

Point of View FPV 

Unimodal vs. Multimodal Multimodal 
  

Single- vs. Multi-Agent Single-Agent 

Context Awareness No 
  

Goal Conditioned Stepwise goals 

 
 
 
 

Table 3.8: Comparison of the Baseline Method SGNet-ED [2] with other State- 

of-the-Art Methods on JAAD [4] and PIE [3] Datasets (↓ lower the better) 

 

 
Method 

(Best of 20) 

JAAD PIE 
 

  

 
MSE ↓ CMSE  ↓ CFMSE  ↓ MSE ↓ CMSE  ↓ CFMSE  ↓ 

 0.5 s 1.0 s 1.5 s 1.5 s 1.5 s  0.5 s 1.0 s 1.5 s 1.5 s 1.5 s 

Linear [3] 
 

233 857 2303 1565 6111 
 

123 477 1365 950 3983 

LSTM [3] 
 

289 569 1558 1473 5766 
 

172 330 911 837 3352 

PIEtraj [3] 110 399 1280 1183 4780 58 200 636 596 2477 

PIEfull [3] - - - - - - - 556 520 2162 

 
BiTraP-D 

 
93 378 1206 1105 4565 

 
41 161 511 481 1949 

 

 
BiTrap-GMM 

 
153 250 585 501 998 

 
38 90 209 171 368 

 

 
BiTrap-NP 

 
38 94 222 177 565 

 
23 48 102 81 261 

 

 
SGNet-ED [2] 

 
37 86 197 146 443 

 
16 39 88 66 206 

 

Note: The methods in 2nd row are deterministic and in 3rd row are stochastic 

methods. 
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3.3 Model Architecture 

 
We represent a fully connected layer (FCL) as follows: 

 

Y  = FCL(X)W ,b (1) 

 
read as "Y is equal to FCL of X with weights W and bias b" which is defined as: 

 

Y = XWT + b (2) 

where X ∈ RD×lin , W ∈ Rlout×lin , b ∈ Rlout , Y ∈ RD×lout and D is any di- 

mensionality including none, lin is the number of dimensions of input vectors 

contained in the input tensor X, lout is the number of dimensions of output vec- 

tors contained in the output tensor Y . Since the dimensions of the bias b, have 

no degree of freedom, thus its dimensions will not explicitly mentioned. 

The training is done in batches, but the methodology is explained for the batch 

size of 1, which means that the batch size can just be ignored. But, for the batch 

size greater than 1, the first dimension of every dimension will be the batch size 

itself and all equations still hold. Also, whenever a tensor is reshaped, its notation 

will not be changed. 

 
 

 
3.3.1 Data Generation 

 
Data is generated from the data set in the form of corresponding input samples 

and output labels. One input sample is a sequence of feature vectors which repre- 

sents the trajectory of a pedestrian during the observation time period generated 
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from the consecutive frames of the observation time period. The correspond- 

ing output label of that input sample is a set of sequences where a sequence 

is representing the trajectory of the future prediction horizon of the pedestrian 

generated from the consecutive frames of the prediction time period. So, for ev- 

ery time step of the input sequence, there is a corresponding output sequence 

spanning the complete prediction horizon time steps. 

 

 
Figure 3.1: Block diagram of the model architecture. All blocks are explained 

in detail in the later sections. All inputs and outputs are labeled and can be 

matched. (1) Encoder, detailed diagram in Figure 3.2 (2) Stepwise goal estimator 

(SGE), detailed diagram in Figure 3.3 (3) Conditional Variational Autoencoder 

(CVAE), detailed diagram in Figure 3.4 (4) Bi-directional Decoder, detailed dia- 

gram in Figure 3.5 
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∀xt ∈ Xt,  there exists Yt = {yt+1, yt+2, ..., yt+lp } (3) 

where x ∈ Rlx is a feature vector of time step, t, of an input sequence Xt ∈ Rlo×lx , 

Y is the set of future trajectory’s points starting from the next time step, t + 1, 

till the (t + lp)th time step, a future trajectory’s point is represented by a vector 

yt+i where i ∈ [1, lp], lo is the length of the observation time period and lp is the 

length of the prediction horizon. 

One sample of the input sequences Xt ∈ Rlo×lx where lo is observation length, lx 

is a number of input feature vector dimensions. 

 

3.3.2 Encoder 

 
Consider an input feature vector at time step t, xt ∈ Rlx . It will be first embedded 

into the embedding layer to represent it as a latent representation. 

 

x𝘚
t  = ReLU (FCLemb(xt)Wemb,bemb ) (4) 

 

where Wemb ∈ Rlhe ×lx , xt
𝘚  ∈ Rlhe , lh is hidden size of encoder’s GRU cell. 

This is then concatenated with the goal estimated by the stepwise goal estimator 

(SGE) from the previous time step t − 1, for this time step, t. 

 
xe = xe  ⊕ x𝘚 (5) 

t ˜t t 

e 



38  

˜t 

t 

t  1 

 
 

 

Figure 3.2: Detailed diagram of the encoder module. All inputs and outputs 

match with the block diagram shown in Figure 3.1 

 
 

 
where xe ∈ RlhSGE is the goal estimated by the stepwise goal estimator (SGE) 

from the previous time step t − 1, for this time step, t, lhSGE is the length of the 

hidden size of SGE. For the first time step, it is initialized with zeros. 

The concatenated result xe ∈ R(lhe +lhSGE 
) is then fed into the encoder’s GRU 

cell. 
 

 
he = GRU enc(xe,  he ) (6) 

t t t−1 

 

where he 
− ∈ Rlhe , GRU enc is a GRU cell with hidden size lh and input size 

lh +lh . The output hidden state of the GRU enc is he with the same dimension 
SGE e t 

e 
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t 

t 

t 

 

as he . 
− 

At this point, the he will follow three different paths. 

 

3.3.3 Stepwise Goal Estimator (SGE) 
 

 

 
 

Figure 3.3: Detailed diagram of the stepwise goal estimator (SGE) module. All 

inputs and outputs match with the block diagram shown in Figure 3.1 

 
 

First path, he is fed into SGE, through an FCL. 
 

 
hg = ReLU (FCLSGE(he)W ,b ) (7) 

t 
 

where WSGE ∈ RlhSGE 
×lhe , hg ∈ RlhSGE 

t SGE SGE 

The SGE module takes one input and gives three outputs. The SGE module 

as used in SGNet-ED in [2] has been modified with the modification that all the 

attention mechanism based goal aggregator part has been put inside the SGE 

module. So, the outputs of the SGE module are the same as SGNet-ED’s SGE 
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t 

t+1 

t 

t+i 

 

module except the attention mechanism based goal aggregator part is already 

done inside the SGE module instead of doing outside it. 

hg from equation 7 is the input of the SGE module. 
 

 
xe ,  Ŷ g ,  xd = f (hg) (8) 

 

The outputs are: 

˜t+1 t ˜t+1: SGE t 

 

1) goal for encoder in latent vectors form only for next time step, xe ∈ RlhSGE . 

This will be fed back into the Encoder module as it’s 2nd input to play its part 

in the input of next time step t + 1’s encoder’s GRU cell. But, this specific 

processing step will not occur now, it will be the final step after all the processing 

of the decoder is finished. 

2) set  of  stepwise  estimated  goals  for  future  trajectory  Ŷ g ,  for  each  time  step 

from t + 1 to t + lp in dimensions same as that of predicted future trajectory, 

In generalized form, the set of stepwise future estimated goals for each time step 

from t + 1 to t + lp is: 

 

Ŷ g  = {yg 
 

, yg 
 

, ..., yg } (9) 

 
where ŷg 

t 
 

∈ Rly , i ∈ [1, lp] 

t+1 t+2 t+lp 

This is saved for each time step and will be used to calculate Loss function in 

the end of one sequence of observation time period. 

3) set of estimated goal for decoder in latent vectors form from next time step 
t + 1 to t + l , xd 

p     ˜t+1: 

In generalized form, the set of future estimated goals for each time step from t + 1 

to t + lp for decoder is 

 

xd = d d d 
 (10) 

˜t+1: {x̃t+1,  x̃t+2, ... , x̃t+lp 
} 
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˜t+i 

˜t+1: 

 

where xd ∈ RlhSGE , i ∈ [1, lp] 

For further processing, xd is converted into a tensor ∈ Rlp×lhSGE  which will be 
 

 
 

 

3.3.4 Conditional Variational Autoencoder (CVAE) 
 

 

 

Figure 3.4: Detailed diagram of the conditional variational autoencoder (CVAE) 

module. All inputs and outputs match with the block diagram shown in Figure 

3.1 

 
 

 
We used exactly the same architecture as the baseline method [2] for CV AE 

module. The purpose of CV AE module is to learn distribution of the input 

data, conditioned on the distribution of corresponding ground truth trajectories 

and generate K new samples from that distribution, stochastically, which will 

be used to predict new trajectories. This is a way to stochastically add the 

multimodal trajectory prediction capability to the model. So, the model will 

predict K trajectories for each input trajectory instead of one and CV AE module 

is adding this stochastic multimodal trajectory prediction capability to the model. 

then fed into the decoder as its 2nd input. 
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t 

t 

t t CV AE 

 

Second path of he, as mentioned in Section 3.3.2, is fed into CV AE module 

through an FCL, which takes one input and returns three outputs. 

 
 

hcvae, KLD, p = fCV AE(ReLU (FCLCV AE(he)W ,b 
 

 
CV AE 

)) (11) 
 

where hcvae ∈ RK×(lhe +lLD ) is the output latent state vector of the CV AE, lLD is 

the dimension of the latent space of CV AE, KLD is the KL divergence between 

the prior and recognition networks of CV AE as explained in [2], p is probability 

vector containing the probability of each one of the K generated latent state 

vectors which are generated by CV AE module by taking he as input. 

 

3.3.5 Bi-directional Decoder 
 

 

 

Figure 3.5: Detailed diagram of the bi-directional decoder module. All inputs 

and outputs match with the block diagram shown in Figure 3.1 
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t 

t 

t 

t 

t 

t+1 

˜t+1: 

˜t+i 

˜t+1 

t 

t+1 

˜t+1 

˜t+1 t+1 

d 

t+1 

t t decoder 

of the SGE module as explained in Section 3.3.3. 

 
 
 
 
 

The feature selection part of this work is done with the same Decoder as used in 

the baseline method [2]. But, then a new architecture of the decoder has been 

proposed, a bi-directional decoder. Here, the proposed architecture has been 

explained. 

There are two inputs to decoder. THe first one is the hcvae which is the output 

of CV AE module. hcvae is then passed through an FCL before being fed into 

the decoder. 
 

 

h𝘚cvae  = ReLU (FCLdecoder (h
cvae)W ,b 

 

 
decoder 

)) (12) 
 

where Wdecoder  ∈ Rlhd 
×(lhe +lLD ), h𝘚cvae  ∈ RK×lhd 

h𝘚cvae  it is then fed into an FCL inside decoder. 
 

d 
t+1 = ReLU (FCLf orward(h𝘚cvae)W 

 

 
f orward 

 
,bf orward 

) (13) 
 

where Wf orward ∈ Rlhd 
×lhd , xd

 ∈ RK×lhd
 

The second input to the decoder is the goal vector xd which is the third output 
 

Now, xd is looped over i ∈ [1, lp]. So, consider the case when i = 1. Here we 

have xd ∈ RlhSGE .  Since the first input to the decoder h𝘚cvae  has K  stochastic 
 

  

generation, it is done by replication. So, xd is replicated K times and stacked 

vertically. So, now we have xd ∈ RK×lhSGE . It is then concatenated with xd 
 

 
 

 

x𝘚d−f orward  = xd ⊕ x (14) 
t+1 

 

where x𝘚d−f orward  ∈ RK×(lhSGE 
+lhd 

). 

˜t+1 t+1 

from equation 13. 

is also required to have K vectors. But here it is not done by generations, xd 

x 
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t+1 

t+1 

t 

t+lp 

˜ 

˜ 

t+lp 

x𝘚  − 
backward 

t 

 

Our proposed bi-directional decoder as the decoder module which have forward 

and backward RNNs.  So, x𝘚d−forward is fed to the forward RNN which is a GRU 

cell as initial input and h𝘚cvae  from 12 will be the initial hidden state. 

 
 

hd−f orward  = GRU enc (x𝘚d−f orward,  h𝘚cvae) (15) 
t+1 

 

where hd−f orward ∈ RK×lhd . 

f orward t+1 t 

hd−forward will be then fed into the next time step of GRU enc cell and so on 
t+1 f orward 

up to the last time step t + lp and output hidden state will be saved at every time 

step to generate final predicted trajectories as the output of the model. 

The backward RNN is also a GRU cell which starts from time step t + lp. At 

this time step, the first input to decoder h𝘚cvae from 12 is first passed through an 

FCL. 
 

 

xd−backward  = ReLU (FCLbackward(h𝘚cvae)W , b
 ) (16) 

t+lp t backward backward 

 

where Wbackward  ∈ Rlhd 
×lhd , xd−backward ∈ RK×lhd

 

xd−backward is then concatenated with the last time step’s xd which is basically 
t+lp t+lp 

the last time step of the second input to the decoder xd from 3.3.3 on which 
t+1: 

we have already completed the forward RNN sequence and now starting from its 

last time step t + lp for backward RNN. 

 
 
 
 
 

 

x𝘚d−backward  = xd ⊕ xd−backward (17) 
t+lp 

 

where x𝘚d−backward  ∈ RK×(lhSGE 
+lhd 

) 

˜t+lp t+lp 

 
d backward 

t+lp ∈ RK×(lhSGE 
+lhd 

) is then fed to the backward GRU dec cell as 

initial input and h𝘚cvae  from 12 will be the initial hidden state. 
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h − 

f orward 

= −h ⊕ −h 

 
 
 

 
 

 
Figure 3.6: Symbolic working of bi-directional RNN. The ellipses represent the 

accumulated error. Forward pass is shown in green, and are increasing from time 

step t + 1 to t + lp Backward pass is shown in blue, and it is greater for time step 

t + 1 to t + lp 

 

 

hd−backward  = GRU dec (h𝘚cvae,  x𝘚d−backward) (18) 
t+lp backward t t+lp 

 

d backward 
t+lp 

GRU enc 

is then concatenated with the output hidden state of the forward 

cell at time step t + lp which has been already calculated in the 
fclf orward 

forward pass of forward GRU enc cell. 
 

 

ŷt
𝘚
+lp 

where ŷt
𝘚
+lp  ∈ RK×(lhd 

+lhd 
)
 

d f orward 
t+lp 

d backward 
t+lp (19) 

ŷt
𝘚
+lp  is then passed through an FCL to generate the final time step vector of the 

predicted trajectory. 

 
 

ŷt+lp = ReLU (FCLout(ŷt
𝘚
+lp 

 

 
out 

 
,bout ) (20) )W 
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t+lp 

t t+1 t+2 t+lp 

 

where ŷt+lp ∈ RK×ly
 

The next time step of backward RNN is t + lp − 1 because it is going backwards. 

All the steps from equation 16 to equation 20 are repeated for this time step 

t + lp − 1 but this time the input hidden state is hd−backward and the output 

predicted trajectory vector is ŷt+lp−1.  It will go backward till the time step t + 1 

so that we have a set of output predicted trajectories for each time step of the 

prediction horizon. 

 

Ŷt  = {ŷt+1, ŷt+2, . . . , ŷt+lp} (21) 

where  Ŷt   is  a  set  of  lp  predicted  horizon  time  steps  where  each  time  step  is  K 

stochastic multimodal trajectory predictions of dimension ly for the observation 

time step t. For a single stochastic trajectory prediction: 

 

Ŷ k  = {ŷk 
 

, ŷk 
 

, . . . , ŷk } (22) 
 

where k ∈ [0, K − 1] which represents kth stochastic trajectory predictions for the 

observation time step t. 

Ŷt  will be converted into a tensor ∈ Rlp×K×ly . 

This was one complete cycle for the first observation time step t i.e., for xt whose 

first step was in equation 4. Now we will repeat the same steps for the next 

observation time step t + 1 i.e., for xt+1 whose first step will be in 4, and we will 

get Ŷt+1  ∈ Rlp×K×ly .  These all will be stacked in a tensor vertically so that when 

all the iterations on the observation sequence are completed from observation time 

step of t to t+lo−1, we will have a tensor of predicted trajectories Ŷt  ∈ Rlo×lp×K×ly 

and if the batch size is more than 1, then Ŷt  ∈ Rb×lo×lp×K×ly   where b is the batch 

size. This is the final output of the model for one input sequence of observation 

time step t. At this point, a batch is completed and the Loss is calculated for 

the batch according to the equation 23 as explained in the following section. 
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3.3.6 Loss Function 

 
We define Loss function as used in the baseline method [2] is defined as follows: 

 

 
LT otal =  min RMSE(Ŷ k, Yt) + RMSE(Ŷ g , Yt) + KLD(Qφ(z|Xt, Yt), Pv(z|Xt)) 

t t 
∀k∈K 

(23) 
 

where  Yt  ∈ Rlo×lp×ly    is  the  ground  truth  trajectory,  Ŷ k   ∈ Rlo×lp×K×ly    is  the  K 

predicted  trajectories,  Ŷ g   ∈ Rlo×lp×ly    is  the  stepwise  estimated  goals  trajectory 

by the SGE  module, Qφ(z|Xt, Yt) is the recognition network which learns prob- 

ability distribution of z conditioned on input sequence Xt and ground truth tra- 

jectory sequence Yt parametrized by φ, Pv(z|Xt) is the prior network which learns 

probability distribution of z conditioned on input sequence Xt parametrized by 

v. 

1) First term is the root mean square error RMSE, between the K predicted 

trajectories Ŷ k  ∈ Rlo×lp×K×ly    and ground truth Yt  ∈ Rlo×lp×ly    and then chooses 

that k ∈ K which gives the minimum RMSE. 

 
 

 

1 
  

min 
lΣo−1 lΣp−1 lΣy −1

(
 

 
 

)2

! 

(24) 

, 
lo

 × lp × ly ∀k∈K 
l=0 m=0 n=0 

Yt,l,m,n − Y t,l,m,n 

2) Second term is the root mean square error RMSE between the stepwise esti- 

mated goals trajectory Ŷ g  ∈ Rlo×lp×K×ly    and ground truth Yt ∈ Rlo×lp×ly . 

 
 

 

1 
  

lΣo−1 lΣp−1 lΣy −1

(
 

 
 

)2

! 

(25) 

, 
lo

 × lp × ly l=0 m=0 n=0 

Yt,l,m,n − Y t,l,m,n 

3) Third term is the Kullback − Leibler Divergence score which is a measure of 

the difference between two probability distributions. It is included in the Loss 

function to train the prior network in such a way that it learns the input sequence 

distribution conditioned on output sequence as accurately as possible. 
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3.4 Evaluation Metrics 

 
Generally, there are two most used metrics for the task of trajectory prediction: 

 
1. Average Displacement Error (ADE): This is a measure of the deviation 

of the whole predicted trajectory from the whole ground truth trajectory. 

2. Final Displacement Error (FDE): This measures the distance between 

the final point of the predicted and ground truth trajectory. 

 
In this work, the following three types of metrics are used. 

 

3.4.1 Mean Square Error (MSE) 

 
Mean square error between the predicted and ground truth trajectory as ADE. 

 

1 N −1 lp 

MSE = (d(ŷ y ))2 (26) 
N × lp n=0 i=1 

 

3.4.2 Center Mean Square Error (CMSE) 

 
Center means square error, CMSE is the same as MSE but the points in this case 

are the center of the bounding boxes instead of the bounding boxes themselves. 

 
3.4.3 Center Final Mean Square Error (CFMSE) 

 
Center final means square error is a kind of FDE, but the final point is the center 

of the final bounding box of the predicted and the ground truth trajectory. 

 

 
CFMSE = 

N 

N −1 

d(ŷlp ylp ) (27) 
n=0 

1 2 
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Chapter 4: Experimentation 

 
4.1 Implementation Details 

The observation length is of 0.5s i.e., 15 frames and the prediction horizon is of 

1.5s i.e., 45 frames. All bounding boxes used are normalized with respect to the 

image size. The datasets give the bounding boxes in the form of (x1, y1, x2, y2 

where (x1, y1) is the left-top corner of the bounding box and (x2, y2) is the 

bottom-right corner of the bounding box (ltbr). But these are converted into 

(cx, cy, w, h) format where (cx, cy) is the centroid of the bounding box, w is 

the width and h is the height of the bounding box (cxcywh) in order to have 

a more meaningful representation of spatial points. We use the same rule for 

both JAAD [4] and PIE [3] datasets. For the feature selection task, the same 

architecture as in the baseline method SGNet − ED [2] has been used. Due 

to constrained resources, the training was done at a smaller batch size than the 

baseline method. So, in order to have a fair comparison, the baseline method 

was also trained at the same batch size on which the proposed method has been 

trained i.e., now test bench is the same for both and the results of this work can 

be compared with the reproduced results of the baseline method for the conducted 

experiments. 

 
 

4.2 Machine Setup 

 
Machine Learning needs special hardware and software tools. Table 4.1 shows 

the machine setup used for the experiments. 
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Table 4.1: Machine Setup (hardware + software) 

 

Motherboard MSI x570 
 

AMD Ryzen 9 5900X 

 

Hardware 

CPU 

 
 

GPU 

12-Core Processor 
 

 

NVIDIA Quadro RTX 

5000 

 
 
 
 
 
 

Software 

RAM 64 GB 
 

  

SSD 500 GB 

OS Ubuntu 20.04 
 

Language Python 3.6.12 
 

  

IDE pytorch 1.7.1 
 

  

Library 64 GB 
 

  

GPU Computing Software 

Tool 
cudatoolkit 11.0.221 

 
 

 
 
 
 
 
 
 
 

 

4.3 Feature Selection Experiments 

 
4.3.1 Exploration Analysis 

 
We first explore three different groups of features 1) contextual, 2) appearance 

and 3) attributes to do the analysis of their impact on the evaluation metrics of 

the model. In all three experiments, bounding box is constantly present as first 
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Figure 4.1: Hardware and software stack used for the experiments. 

four dimensions of the input feature vector. 

4.3.2 Comparative Analysis 

 
Then best performing selected features are compared with the baseline method. 

These are compared with reproduced results of baseline method to have a fair 

comparison. 

 

4.4 Bi-Directional RNN Decoder Experiments 

 
RNNs suffer from accumulated error. So, a bi-directional decoder was proposed 

as explained in Section 3.3.5. So, the experiments were carried out to see the 

impact of bi-directional decoder in comparison with the baseline method. 
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Chapter 5: Results and Discussion 

 
5.1 Reproduced Results of Baseline Method 

 
Since the smaller batch size was used to reproduce the results of the baseline 

method, therefore the reproduced results are different from the published results 

of the baseline. The reproduced results are lower (lower the better) because 

decreasing the batch size makes the results better, lower in this case. The results 

are shown in the following table 5.1. 

 
Table 5.1: Reproduced Results of the Baseline Method on the Test Bench (↓ 

lower the better) 

 

 
JAAD 

     
PIE 

 

   
MSE ↓ 

  
CMSE ↓ 

 
CFMSE  ↓ 

   
MSE ↓ 

  
CMSE ↓ 

 
CFMSE  ↓ 

 

 0.5 s 1.0 s 1.5 s 1.5 s 1.5 s  0.5 s 1.0 s 1.5 s 1.5 s 1.5 s  

  
25 

 
61 

 
102 

 
95 

 
276 

  
9 

 
24 

 
46 

 
38 

 
121 

 

Note: These reproduced results are used as a new baseline for the proposed 

methods. 
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5.2 Feature Selection 

 
5.2.1 Exploration Analysis 

 
Table 5.2 shows the results of the exploration analysis. The best performing is 

attributes, appearance also improves but contextual is actually degrading the 

results. 

This is because: 

1) Attributes are capturing the realistic dependencies between the input features 

and the future trajectory. We, propose that age and gender are good predictors 

for predicting the future trajectory. It means that the trajectory behavior of 

different genders and different age groups are different, and the proposed model 

is successfully able to learn these different patterns. 

2) Appearance are basically redundant features. If we are taking bounding 

boxes in form of (cx, cy, w, h) where cx, cy represent the centroid of bounding 

boxes, w represents width and h represents height and then take into account 

the fact that we are using sequential data as input it becomes clear that the 

information of pose_front, pose_back, pose_right and pose_lef t are implicit 

already in the sequential data of the bounding boxes as: a) pose_front: h is 

increasing in the input temporal sequence, b) pose_back: h is decreasing in 

the input temporal sequence, c) pose_right: cx, cy is moving right in the input 

temporal sequence, and d) pose_lef t: cx, cy is moving left in the input temporal 

sequence. So, although these add some information, but not significant. 

3) Contextual is in fact acting as a random noise for most of the pedestrians 

and also because it is present in a very small number of frames. It is acting as 

a random noise because in the datasets, the contextual signs and traffic signal’s 

states are not associated with unique pedestrians. For example, a pedestrian can 

be present in a frame where the traffic signal is red, but he is going in a different 
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direction while the specific traffic signal is for some other path. Similarly, for 

signs that are for a target pedestrian, the sign is not relevant. But for a few 

pedestrians, these are relevant. So, this acts as random noise that sometimes is 

relevant, and sometimes it is not. 

 
Table 5.2: Comparison of Selected Features (↓ lower the better) 

 
 

 
Selected 

Features 

JAAD PIE 
 

  

 
MSE ↓ CMSE  ↓ CFMSE  ↓ MSE ↓ CMSE  ↓ CFMSE  ↓ 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

  
 

(a) JAAD (b) PIE 

 
Figure 5.1: Line graph comparing the results of different sets of selected features 

on JAAD and PIE datasets. Only the evaluation metric MSE for prediction 

horizon 0.5s, 1.0s and 1.5s is shown. Bounding box is present in all the sets of 

selected features. 

 0.5 s 1.0 s 1.5 s 1.5 s 1.5 s  0.5 s 1.0 s 1.5 s 1.5 s 1.5 s  

 
Contextual 

 
75 133 253 211 578 

 
23 63 145 132 283 

 

 
Appearance 

 
23 55 105 99 257 

 
7 20 41 36 109 

 

 
Attributes 

 
20 49 90 81 211 

 
7 19 37 29 93 
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(a) JAAD (b) PIE 

 
Figure 5.2: Bar graph comparing the results of different sets of selected features on 

JAAD and PIE datasets. Evaluation metric CMSE and CFMSE for prediction 

horizon of 1.5s is shown. Bounding box is present in all the sets of selected 

features. 

 

5.2.2 Comparative Analysis 

 
Table 5.3 shows the comparison of the best performing selected features with the 

baseline method. We compare it with reproduced results of the baseline method 

to have a fair comparison. 
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Table 5.3: Comparison of the Best Selected Features with the Reproduced Re- 

sults of the Baseline Method SGNet-ED [2] on JAAD and PIE Datasets (↓ lower 

the better) 

 

JAAD PIE 

Method 

(Best of 20) 

 
 

MSE ↓ 

 
 

CMSE ↓ 

 
 

CFMSE  ↓ 

 
 

MSE ↓ 

 
 

CMSE ↓ 

 
 

CFMSE  ↓ 

   0.5 s 1.0 s 1.5 s 1.5 s 1.5 s  0.5 s 1.0 s 1.5 s 1.5 s 1.5 s  

 
SGNet-ED [2] 

 
25 61 102 95 276 

 
9 24 46 38 121 

 

 
SGNet-AT 

 
20 49 90 81 211 

 
7 19 37 29 93 

 

Note: The implementation details of reproduced results and the results of this 

work are the same, as mentioned in Section 5.1 

 
 
 
 

 

(a) JAAD (b) PIE 

 
Figure 5.3: Graph comparing the results of the best selected features on JAAD 

and PIE datasets with reproduced results of the baseline method SGNet-ED [2]. 

 

 
5.3 Bi-Directional RNN Decoder 

 
Table 5.4 compares the results of the proposed bi-directional decoder with the 

results of the baseline method SGNet-ED [2] on JAAD and PIE datasets. It 
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Table 5.4: Comparison of the Proposed Bi-Directional Decoder Bi-SGNet, with 

the Reproduced Results of the Baseline Method SGNet-ED [2] on JAAD and 

PIE Datasets (↓ lower the better) 

JAAD PIE 

Method 

(Best of 20) 

 
 

MSE ↓ 

 
 

 
MSE ↓ 

   0.5 s 1.0 s 1.5 s  0.5 s 1.0 s 1.5 s  

 
SGNet-ED [2] 

 
25 61 102 

 
9 24 46 

 

 
Bi-SGNet 

 
29 51 76 

 
11 18 29 

 

Note: The Implementation details of reproduced results and the results of this 

work are same as mentioned in Section 5.1. 

 
clearly shows that there is an improvement, but the future horizon of 0.5s is 

basically degrading, while the future horizon of 1.0s and 1.5s are improving. 

This is because the backward RNN is also suffering from the accumulated error 

problem but now in the backward direction i.e., from time step t + lp to time step 

t + 1 and since the output of both forward and backward GRU hsa been fused 

through regressor layers, there is some sort of averaging going on. But, this is 

also weighted as the Loss function is punishing the backward RNN’s initial time 

steps more, simply because of the ground truth of these time steps. 
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(a) JAAD (b) PIE 

 
Figure 5.4: Graph comparing the results of the proposed method Bi-SGNet with 

the reproduced results of the baseline method SGNet-ED [2] on JAAD and PIE 

datasets. This shows that the proposed method outperforms the baseline method 

in long term trajectory prediction of pedestrians on both datasets. 

 
 

5.4 Qualitative Results 

 
The following Figure 5.5 shows the qualitative results of the proposed method 

of bi-directional decoder on JAAD and PIE datasets in comparison with the 

baseline method. The proposed method is represented by green color and the 

baseline method is represented by blue color. It can be seen clearly that the 

bi-directinal decoder based proposed method, Bi-SGNet is more accurate in lonf 

term predictions. 
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(a) (b) 

 
Figure 5.5: Qualitative results of the proposed method on JAAD and PIE 

datasets. (a) JAAD dataset, (b) PIE dataset. Yellow represents observed 

trajectory, Red represents future ground truth trajectory, Blue represents pre- 

dicted trajectory by the baseline method, Green represents predicted trajectory 

by the proposed method of bi-directinal RNN decoder (Bi − SGNet). 
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Chapter 6: Conclusion and Future 

Work 

 
6.1 Conclusion 

 
Through the experimentation and the results, following conclusions can be drawn 

for the research questions posed in the introduction: 

 
1. Attributes (age and gender) features when added with spatial features im- 

prove the accuracy of the trajectory prediction of pedestrians for First Per- 

son View (FPV) ego-vehicle-centric camera sensor autonomous vehicles. 

2. Bi-directional RNN decoder improves the accuracy of long term trajectory 

prediction. 

 
Moreover, a novel bi-directional RNN decoder has been proposed. Which is also 

a contribution of this thesis work. 
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6.2 Future Work 
 
 
 

(a) (b) 

 
Figure 6.1: Failure cases. Yellow represents observed trajectory, Red represents 

the ground truth trajectory, Green represents predicted trajectory. (a) Failure 

because of lack of interaction information. (b) Failure because of lack of roads 

and lanes information. 

 
 

 
There are many more features present in both JAAD [4] and PIE [3] datasets 

which can be explored. There are many features which are present only in PIE 

dataset like ego-vehicle odometry and GPS data, which can be explored. 

There are many failure cases which are because of the interaction between a target 

pedestrian and other road users, see Figure 6.1. So, interaction features can be 

explored, for which the interaction has to be represented by some appropriate 

representation. 

Similarly, the information of roads and lanes in the scene plays an important 

role and there are failure cases which basically are because that current method 

doesn’t take into account the information of roads and lanes. 

Optical flow is a very important feature which tells the direction of motion. It 

should be explored to see its effect on the accuracy of trajectory prediction. 
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Similarly, for motion, velocity and acceleration features can be extracted and ex- 

periments can be done to see their effect on the accuracy of trajectory prediction. 

This work is for trajectory prediction of pedestrians for First Person View (FPV) 

ego-vehicle-centric camera sensor autonomous vehicles. It is a research question 

whether this method also works for other datasets like, where targets are vehicles, 

or for a multimodal full suite of sensors system, or for bird’s eye view (BEV) 

datasets. 
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