
 

 

Privacy Preserving User Data and Load 

Management in a Smart Grid 

 

 

 

 

 

 

 

 

 

 

 

by 

Yasir Mehmood 

 

 

 

A thesis submitted to the faculty of Information Security Department, Military College of 

Signals, National University of Sciences and Technology, Rawalpindi in partial fulfilment 

of the requirements for the degree of MS in Information Security 

Aug 2023



i 

 

THESIS ACCEPTANCE CERTIFICATE 

 

 

 

 

 

 



ii 

 

Declaration 

I hereby declare that no portion of work presented in this thesis has been submitted in support 

of another award or qualification either at this institution or elsewhere 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

Dedication 

“In the name of Allah, the most Beneficent, the most Merciful" 

 

I dedicate this thesis to my mother, sister, and teachers who supported me each step of the 

way. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

Abstract 

The conventional Power grid also known as the traditional power grid is used for 

the distribution of electricity in a country. The traditional power grid is the interconnection 

of various electrical equipment like conventional meters, wires, conventional 

transformers, and other load distributer equipment. In conventional power grid uses a one-

way electricity flow from the power generation station to the consumers. Conventional 

grid systems exhibit a dual drawback. Initially, they compromise user privacy, thereby 

placing users at risk due to inadequate data confidentiality.   

To reduce the above-mentioned problems Smart grid is developed from a traditional 

grid, but it is an intelligent grid that monitors all the activities in a real-time. Smart grid is 

more efficient in reliability, efficiency, batter demand management and real time 

monitoring. In order to fulfill the various electrical needs of end users, a smart grid is an 

electricity network that employs digital and other cutting-edge technology to monitor and 

regulate the transmission of electricity from all generation sources. A smart metering 

system is supported by three main components: a smart meter (SM), Aggregator Node 

(AN), and Smart Grid (SG). 

A smart meter is an electronic device that is used to monitor consumers’ usage detail voltage 

level, consumption, usage of electricity, etc in a much more efficient way. Smarts meters 

help to increase efficiency and submit every report to next central device after every 15, 30 

or 60 minutes. For privacy preserving, we will use the Pailliar Homomorphic Encryption  

and forecasting demand of electricity we use LSTM. 
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Chapter 1 

Introduction 

1.1 Background 

Providing electricity for homes, businesses, and industries: The primary use of the 

conventional power grid is to provide electricity to homes, businesses, and industries. The 

conventional Power grid also known as the traditional power grid is used for the distribution 

of electricity in a country. The traditional power grid is the interconnection of various 

electrical equipment like conventional meters, wires, conventional transformers, and other 

load distributer equipment. In conventional power grid uses a one-way electricity flow from 

the power generation station to the consumers. Conventional grid systems exhibit a dual 

drawback. Initially, they compromise user privacy, thereby placing users at risk due to 

inadequate data confidentiality. The traditional electrical grid is an electricity distribution 

network that connects distributed electric energy customers to a few central generators. It 

employs a demand-driven strategy centered on forecasting consumption and reacting to any 

residual gaps between forecasted and actual consumption [23].An opportunity to narrow the 

supply-demand gap in electricity distribution is evident through improved utilization of 

electricity, as highlighted in [31]. The conventional grid does not perform effective and smart 

distribution as there is lack of new technologies and traditional power grid also fails in real-

time load monitoring and management of automated systems for billing and electricity 

distribution. According to the United States' National Energy Technology Laboratory, power 

outages are causing annual losses amounting to approximately $100 billion [32]. 

Although this model has been effective for the past century or more, there is a 

growing need to transform the electric power industry in order to fulfill the expectations 

of the digital age society as well as to address issues with aging infrastructure and new 

societal and environmental problems. 

 



 

 

Figure 1: Conventional Power Grid 
 

To reduce the above-mentioned problems Smart grid is developed from a traditional 

grid, but it is an intelligent grid that monitors all the activities in a real-time. Smart grid is 

more efficient in reliability, efficiency, batter demand management and real time 

monitoring. In order to fulfill the various electrical needs of end users, a smart grid is an 

electricity network that employs digital and other cutting-edge technology to monitor and 

regulate the transmission of electricity from all generation sources. Smart grids involve 

two-way communication from the power generation station to the consumers and vice 

versa. The main components used in smart grids are intelligent applications, smart meters, 

smart transformers, smart distribution centers, and different types of IOT sensors. 

 The deployment of a heterogeneous infrastructure, including metering devices, data 

collection, processing, and communication networks, as well as the installation and 

administrative tasks associated with it, are required for a smart metering system. A smart 

metering system is supported by three main components: a smart meter (SM), Aggregator 

Node (AN), and Smart Grid (SG). 

A smart meter is an electronic device that is used to monitor consumers’ usage detail 

voltage level, consumption, usage of electricity, etc in a much more efficient way. Smarts 

meters help to increase efficiency and submit every report to next central device after 

every 15, 30 or 60 minutes. The smart meter delivers a wealth of data on electricity usage 

to lower bills, improve customer service, and increase efficiency.  

Step-up 

Transformer 

Step-down 

Transformer 



 

 

Smart meters frequently monitor energy usage in close to real-time and report it at 

regular, brief intervals throughout the day [1]. These smart meters are used to send the 

information to the central device. The Aggregator node is responsible for the collection of 

data from different smart meters and based on these data some action is taken like bill 

generation and help in effective load distribution etc. Despite smart metering networks' 

control and administration capabilities, the collected usage data is exploited by various 

automated and intelligent systems including Distributed Generation and Distributed 

Storage, Billing, Load Monitoring and Control System [8]. 

 

Figure 2: Smart Grid 

Smart meters gather specific data about a household's energy usage, which might 

give rise to concerns about security and privacy issues. People can feel awkward 

disclosing this information to their utility company because it can reveal insights into the 

routines and conduct of the household members. From energy usage patterns anyone can 

easily judge the customer’s daily routine, usage of appliances, and occupancy. There are 

many difficulties to collect data from different smart meters because they may contain 

some sensitive data. Indeed, it's widely recognized that data transmitted over a network in 

plaintext form is inherently insecure [2].  



 

 

1.2 Motivation / Justification for the Selection of the Topic 

Smart grids are emerging technology used now a days and show improvement day 

by day. Smart grids greatly improve reliability by managing and routing power. This 

allows the grid to reduce the blackouts by reducing maximum power demands. Electrical 

Grid with Automation is known as Smart Grid, the automated smart grid uses different 

equipment that keep track of the electricity's journey from production to consumption and 

control the power flow on real time or near real-time. 

To ensure the privacy of a consumer we have to reduce the traces of the smart meter 

by securing the communication between the smart meter and smart grid. To overcome all 

these problem machine learning using federated learning is used where model is trained 

without sharing their personal data. 

1.3 Problem Statement 

The conventional grid does not perform effective and smart distribution as there is lack 

of new technologies and traditional power grid also fails in real-time load monitoring and 

management of automated systems for billing and electricity distribution. To overcome the 

problem of cascading failures and power losses smart grid is developed from a traditional 

grid, but it is an intelligent grid that monitors all the activities in a real-time. 

The smart grid working is efficiently as compared to conventional system, but the 

disadvantage is it reveals consumer privacy in terms of consumption of electricity. Sensitive 

information on electricity trends, and personal information of customers would be kept and 

delivered in an unencrypted way. As a result, there is a higher chance that third parties will 

gain access to, intercept, or steal customer data. The privacy of consumers may be 

compromised if such security breaches expose personal data and energy use trends.  

From the standpoint of consumers, ensuring privacy is of utmost importance, as the 

data transmitted by smart meters could potentially divulge intricate real-time consumption 

patterns, thereby possibly unveiling personal details of the owner. For instance, discerning 

low or high-power usage might suggest whether residents are away or present at home. 



 

 

1.4 Objectives 

The main objectives of this thesis are:  

• Ensuring the confidentiality of data communication between the smart meter and 

smart grid. 

• Privacy of consumers about the usage of electricity.  

• Improve the load distribution of the smart grid. 

1.5 Thesis Contribution 

It’s the 21st century and it is the era of machine learning; machine learning is applied in 

almost all fields of life in the world. Smart meters often record energy in close to real-

time, and report periodically, at regular intervals throughout the day, as was previously 

mentioned [1]. As there is much shortage of electricity in our country so the smart grid 

will distribute electricity more efficiently according to their need and reduce the blackouts 

in a different area. The hospitals and the industrial area need more power and continuous 

power which can be done by real-time monitoring. 

In order to predict electricity demand effectively, machine learning algorithms can 

examine past consumption trends, weather information, and other related elements. Power 

grid operators can optimize electricity generation and distribution by projecting demand, 

providing an adequate supply of electricity for hospitals and industrial sectors during peak 

hours. 

Smart meter data collected in real-time can potentially be analyzed by machine learning 

algorithms to determine how various areas and industries use power. By moving power 

resources from low-demand locations to high-demand ones, this information can assist in 

balancing the load on the grid and guarantee a constant and dependable supply of 

electricity where it is most required. 

1.6 Thesis Organization 

The arrangement of the thesis is organized in the following manner: 

 



 

 

• Chapter 1 contains an introduction, a problem statement is highlighted, followed by 

the motivation behind the research, and research objectives are enumerated. 

Furthermore, the contributions made through this research are highlighted. 

 

• Chapter 2 contains an overview of existing aggregation schemes, followed up by pros 

and cons of each technique. 

 

• Chapter 3 contains an overview of the preliminary cryptographic primitives 

employed to design the proposed scheme provided in this chapter, also system model, 

the assumed adversarial model under which the scheme will function is discussed. 

 

• Chapter 4 covers results of scheme and graph and working and communication is 

discussed. Mean Absolute Percentile Error (MAPE) is also discussed. 

 

• Chapter 5 covers recommendation, conclusion and future work areas are revealed in 

this chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 2 

Preliminary Background and Related Work 

2.1 Introduction 

This chapter is related to literature review. In this we explained the preliminary 

background and related work. In this chapter we explained important topics in detail. We 

explained Smart Meters, Aggregator, Grid Station, Machine Learning and its classification 

algorithms, machine learning and its algorithms, and secure encryption methodologies. 

2.2 Smart Meters 

Smart meters are innovative digital devices that take the place of conventional utility 

meters in a smart grid to measure and record electricity use in real-time. They are an essential 

part of the energy distribution system's upgrading and digital transformation. Smart meters 

allow utility companies and customers to communicate with each other in two directions, 

which has several advantages for both parties and the whole power system. 

 Smart meters are installed in word in past decade, the number of meters installed in 

US is 2.9 million while in China reached to 96 million.[16] Smart meters continually track 

and record energy use in order to periodically gather data. The utility company's preferences, 

the kind of smart meter technology being utilized, and the needs of the smart grid installation 

can all affect how frequently data is gathered. Here is how smart meters normally periodically 

gather data: 

• Regular Intervals: Smart meters are set to gather data on usage at regular intervals, 

such as every 15 or 30 minutes, every hour, or every day. Depending on the utility's 

requirements and the amount of granularity needed for invoicing and grid 

management, the interval can be modified. 



 

 

• Interval Data Recording: Throughout the day, the smart meter records the energy use 

at scheduled intervals. For instance, it may record the amount of energy used every 

15 minutes, yielding 96 data points each day. 

• Data Storage: The smart meter's memory or an integrated storage system maintains 

the gathered data. The time and date of each consumption reading may be included 

in this data, which may also be timestamped. 

• Communication with Utility Company: To transfer the recorded consumption data, 

the smart meter communicates with the utility company regularly or at the conclusion 

of each collecting interval. The communication can take place via a variety of 

techniques, including cellular networks, radio frequencies (RF), powerline 

communication, and other means of communication. 

• Statistics Processing: Several smart meters provide the electricity provider with usage 

statistics. The information is prepared, compiled, and examined to determine each 

consumer's energy use, produce bills, and assess the functioning of the grid as a 

whole. 

• Consumer Access: A few smart utility billing systems additionally give customers 

access to their usage information via web portals or mobile applications. This gives 

users the ability to keep an eye on their consumption habits and decide how best to 

conserve energy. 

Smart meters allow utility providers to obtain real-time insights into energy consumption 

trends and system performance by regularly collecting data. The use of demand response 

systems, improved grid management, and effective load balancing are all encouraged by the 

data in order to optimize energy distribution and consumption throughout the smart grid. 

2.3 Data Encryption 

Ensuring the privacy of consumers about the usage of electricity is the big hurdle in way of 

smart grid [17]. The user’s data must be secure from malicious attack [18]. Recent research 

has suggested privacy-preserving approaches to prevent the leakage of users' private 

information. The true identity of users being kept secret is one direct way to ensure privacy 

protection. 



 

 

Li at al. [18] proposed an effective privacy-preserving demand response (EPPDR) system 

that combines efficient response with privacy-preserving power demand aggregation. 

2.4 Aggregator Node 

The Aggregator Node plays a crucial role in a smart grid, ensuring reliable and efficient 

power distribution by coordinating and controlling its diverse elements. Referred to as the 

central controller or central control system, it serves as the intelligent core of the smart grid, 

facilitating seamless communication, billing and load monitoring among the grid's various 

components. 

 

Figure 3: Central Device in Smart Grid (Aggregator Node) 

2.5 Machine Learning 

Machine learning represents a segment within the realm of Artificial Intelligence (AI). 

In machine learning computer assign a task to complete it and machine learning code learn 

it from its experiences and try to complete the task. Machine learning refer to learn on its 

own without writing lengthy code to complete a task. Machine learning emphasizes on code 

that get large dataset and train itself on it using different machine learning algorithms. 

Machine learning learn itself from its experiences. More experience will give us more 

accurate result. After training algorithm, we used the same algorithm is used for making 

decision, predictions or forecasting based on data. There are different examples in our real 

life for which machine learning used like to predict cancer disease form different medical 



 

 

reports. Machine learning is used in wide verity of fields like robotic, business, computer 

games, google map, healthcare, online fraud detection, pattern recognition etc. [13] 

2.7.1 Auto-Regressive (AR) 

The Auto-Regressive (AR) model is a sort of time series model used in machine 

learning that forecasts future values based on its own historical values. The AR model makes 

the assumption that, up to a specific lag order, a time series' present value is linearly reliant 

on its prior values. 

An auto-regressive model of order "p" is represented mathematically as follows: 

Equation 1: Auto Regressive (AR) 

𝑋𝑡 = 𝐶 + ∑ 𝜙𝑖

𝑝

𝑖=1
 . 𝑋𝑡−𝑖 +  𝜀𝑡 

Where:  

𝑋𝑡 is the time series' value at time "t." 

𝐶 constant term or intercept is called c. 

𝜙𝑖 indicates the estimated coefficients or weights that were applied to the historical values 

during model training. 

 𝑋𝑡−𝑖 +  𝜀𝑡 is a random error term, reflecting the noise or unexplained variance in the time 

series, where "i" runs from 1 to "p." represents the previous values of the time series. 

The lagged values of the time series themselves serve as the predictors in the AR 

model, which is a linear regression model. The AR model's order "p" tells us how many 

previous time steps were considered while predicting the currently occurring result. 

When employing the AR model in machine learning, historical time series data is 

utilized to train the model, and a variety of methods, including the method of least squares, 

are employed to estimate the coefficients. After the model has been trained, it may be used 

to forecast future time steps based on historical data from the time series. 



 

 

2.7.2 Moving Average (MA) 

In statistics and econometrics, the Moving Average (MA) model is a time series model 

that is used to evaluate and forecast data that changes over time. The MA model models the 

value of a time series based on its previous forecast errors or residuals, as opposed to the 

Autoregressive (AR) model, which models the value of a time series based on its prior values. 

The MA model is denoted by "MA(q)", where "q" is the model order, or the quantity 

of lag prediction errors taken into account. An MA(q) model is represented mathematically 

as follows: 

Equation 2: Moving Average (MA) 

𝑋𝑡 = 𝐶 + 𝜀𝑡 + ∑ 𝜙𝑖

𝑞

𝑖=1
 .  𝜀𝑡−𝑖 

𝑋𝑡 reflects the time series value in this equation at time "t." 

𝐶 An intercept or constant term is c. 

ε_t signifies the stochastic noise or unpredictable variation at time "t." 

The coefficients or weights, denoted as ϕ_i, are associated with previous forecast errors, 

encompassing the range of "i" from 1 to "q." 

𝜀𝑡−𝑖 symbolize the forecast errors at time "t-i." 

In the MA model, the white noise errors from the preceding "q" time periods are 

combined linearly to represent the current value of the time series. The MA model is very 

effective for identifying transient patterns or oscillations in time series data. 

2.7.3 Autoregressive Moving Average (ARMA) 

In the realm of statistics and econometrics, the Autoregressive Moving Average 

(ARMA) model is employed to evaluate and forecast time-varying data. The Moving 

Average (MA) and Autoregressive (AR) models' traits are combined in the ARMA model. 

The following is a mathematical representation of the order (p, q) ARMA model: 



 

 

Equation 3: Autoregressive Moving Average (ARMA) 

𝑋𝑡 = 𝐶 + ∑ 𝜙𝑖

𝑝

𝑖=1
 . 𝑋𝑡−𝑖 +  + ∑ 𝜙𝑖

𝑞

𝑖=1
 .  𝜀𝑡−𝑖  +  𝜀𝑡 

𝑋𝑡 is the time series' value at time "t." 

𝐶 A constant term or intercept is called c. 

𝜙𝑖  indicates the previous values of the time series, where "i" runs from 1 to "p." 

𝑋𝑡−𝑖 represents the coefficients or weights applied to the time series' past values. 

𝜙𝑖  denotes the coefficients or weights applied to the time series' previous forecast mistakes, 

where "i" spans from 1 to "q." 

𝜀𝑡 represents the white noise or random error at time "t."  

𝜀𝑡−𝑖 represents the historical forecast errors at time "t-i," where "i" might be anything 

between 1 and "q." 

The ARMA model incorporates both the moving average links between previous 

forecast errors and the autoregressive correlations between past values of the time series. It 

can manage time series data that have temporal dependencies and brief fluctuations. 

In several disciplines, including finance, economics, engineering, and environmental 

sciences, the ARMA model is often used for time series analysis, forecasting, and 

deciphering underlying patterns. The Autoregressive Integrated Moving Average (ARIMA) 

model, which incorporates differencing to handle non-stationary time series, is one of the 

most complex models built on top of it. 

2.7.4 Autoregressive Integrated Moving Average (ARIMA) 

Within the domains of statistics and econometrics, the Auto-Regressive Integrated 

Moving Average (ARIMA) model holds a prominent position as a favored method for 

assessing, predicting, and enhancing understanding of temporally changing data. ARIMA 

amalgamates the attributes of three constituent components: Auto-Regressive (AR), 

Integrated (I), and Moving Average (MA). 



 

 

 

The following is a mathematical representation of the ARIMA model of order (p, d, q): 

Equation 4: Autoregressive Integrated Moving Average (ARIMA) 

(1 - 𝜙1L -  𝜙2L2 - . . . . - 𝜙𝑃LP)(1 – l)d Xt = C + (1 + 𝜃1𝐿 +  𝜃2𝐿2 + . . . . +  𝜃𝑞𝐿q) 𝜀𝑡 

Xt is what the time series is worth at time "t." 

C An intercept or constant term is c. 

L is difference between two successive time periods is represented by the lag operator. 

 𝜙1,  𝜙2,  … …  𝜙𝑝  corresponding to the autoregressive terms' coefficients or weights. 

 𝜃1,  𝜃2……  𝜃𝑞 are connected to the moving average terms via coefficients or weights. 

d stands for the degree of differencing, or the number of times the time series must be differed 

before reaching stationarity. 

The ARIMA model is very helpful for addressing non-stationary time series data, when the 

mean and variance of the series are statistical constants. By eliminating trends and 

seasonality, the "Integrated" component (differencing) aids in transforming the data into a 

stable form. 

Numerous fields, including finance, economics, environmental sciences, and business 

analytics, use ARIMA models extensively. When the data shows temporal relationships and 

fluctuations, they are useful tools for time series analysis, trend forecasting, and decision-

making. 

2.6 Related Work 

The vulnerability of data during its transmission from smart meters to grid stations is a 

notable concern. Recent studies have demonstrated that data leaks occur through local 

model parameters, and attackers might take advantage of the vulnerability to collect data 

about the participant. [5]. Aono et al. utilized a Homomorphic encryption (HE) scheme to 

protect local gradients trained with local data in [5]. A lightweight framework (federated 



 

 

multi-task learning) to robustness against a poisoning attack that reduces learning 

accuracy [6]. A Privacy-Preserving Multi-subset Aggregation (PPMA) scheme in smart 

grid is used in [12] according to their electricity usage during each period, the users in a 

residential area are divided into multiple subsets, and the control center can calculate the 

total electricity consumption, and the number of users for each subset. To lessen the loss 

of energy and learning efficiency caused by frequent up-linking and far-off central servers, 

a federated learning architecture leveraging device-to-device communication was 

developed. [7]. 

Yining et al. [26] present a privacy-preserving aggregation method that does not require the 

use of a Trusted third-party. To safeguard a single user's data, the technique encrypts 

consumption data using the EC-EIGamal cryptosystem and creates a virtual aggregation area 

instead of a physical one. In the work [27] by Zhitao Guan et al., EFFECT is proposed to 

achieve both the source authentication and aggregation using the Pailier cryptographic 

scheme and Secret Sharing Scheme. While ensuring individual privacy, the scheme also 

guarantees fault-tolerance. 

In [28], researchers introduced a P2DA approach employing Bonch Goh-Nissim encryption 

to safeguard against internal threats. However, while this method offers enhanced security 

potential, achieving substantial security necessitates a large 'n,' resulting in elevated 

communication costs. Conversely, Elliptic-Curve Cryptography (ECC) achieves comparable 

security levels with a smaller key size. An alternative approach [29] presents a lightweight 

framework for aggregating electricity consumption utilizing lightweight lattice-based 

homomorphic cryptosystems. Notably, this method involves Smart appliances, rather than 

smart meters, performing the aggregation of readings. Moreover, study [30] outlines a 

technique for geographically aggregating load monitoring data through simple cryptographic 

primitives like XOR operations and one-way hash functions. 

The algorithm proposed in [5], All participants utilise the same private key for HE, hence 

key management is critically necessary and trustworthy channels must be developed to 

transfer ciphertexts. Several open-source FL systems, e.g., TensorowFL, and Pysyft are 

now intensively used by both research communities. 



 

 

In recent years much research work used deep neural networks and Long Short-term memory 

(LSTM) to handle short-term forecasting. Authors proposed a solution using a variant of 

LSTM which shows significant improvement for one-minute resolution but not in one hour 

compared to the LSTM standard [4]. Some authors complimentary add the weather 

conditions, where weather conditions is playing an important role in the individual load and 

short-term load forecasting [10]. `Distinct methodologies are employed by various authors 

to achieve proficient load distribution. These approaches encompass K-nearest neighbor 

(KNN), neural networks (NNs), decision tree classifier (DTC), logistic regression (LR), and 

support vector machines (SVM) [11]. 

Table 1: Related Work 

Authors Methods Limitation 
Load 

Monitoring 

Privacy 

issues 

A. Ahmad, 

N. Javaid 

[13] 

Enhanced 

differential 

evolution 

(EDE) 

Only suitable 

for the bulk 

power 

generation 

✓  

Yining et al. 

[26] 

encrypts 

consumption 

data using the 

EC-EIGamal 

cryptosystem 

creates a virtual 

aggregation 

area instead of a 

physical one 

 ✓ 

Zhitao Guan 

et al [27] 

EFFECT, an 

efficient flexible 

privacy-

preserving 

aggregation 

scheme 

 

Increased 

Complexity 
 ✓ 



 

 

Peng Kou, 

Feng Gao 

[14] 

heteroscedastic 

Gaussian 

The model 

relies heavily 

on external 

variables, which 

may be difficult 

to obtain or 

may not be 

available in 

real-time 

✓  

D. L. 

Marino, K. 

Amarasinghe 

[4] 

LSTM-based 

Sequence to 

Sequence and 

Standard 

LSTM 

architecture 

The conventional 

LSTM architecture 

struggled to 

provide accurate 

load predictions at 

a one-minute 

resolution. 

✓  

Aono, Y.; 

Hayashi, T 

[5] 

All gradients 

are encrypted 

and stored on 

the cloud 

server. 

Cost in 

computation 

and 

communication 

 ✓ 

Zhang, C.; 

Li, S.; [8] 

BatchCrypt 

utilizes batch 

encryption to 

substantially 

lower encryption 

overhead and the 

aggregate amount 

of ciphertext. 

Increased 

Complexity 
 ✓ 



 

 

Mothukuri, 

Viraaji; 

Parizi, [9] 

FL was 

proposed to 

extend machine 

learning 

benefits to 

domains with 

sensitive data. 

Increased 

Complexity 
 ✓ 

M. Akgün, 

E.U. Soykan 

[15] 

Data is 

encrypted in 

the household 

smart 

appliances; 

Encrypted 

database’s keys 

are protected 

by Trusted 

Execution 

Environment 

Do not discuss how data is encrypted. Paper 

discussed the security of user data. 

 

Based on the historical records of earlier time spots recorded for the same 

observation, the AR, MA, ARMA, and ARIMA models are used to anticipate the observation 

at (t+1). However, it is crucial to confirm that the time series remains stationary during the 

course of the historical observational data. Applying the differencing factor to the records 

would determine if the time series' graph represents a stationary overtime period if it were 

not stationary. 

2.7 Homomorphic Encryption 

Homomorphic encryption is a cryptographic technique that enables computations to be 

performed on encrypted data without the need to decrypt it first. This advanced encryption 

approach is particularly valuable for maintaining data privacy and security while allowing 



 

 

computations to be carried out on sensitive information. Three primary categories of 

homomorphic encryption exist: partially homomorphic encryption, somewhat homomorphic 

encryption, and fully homomorphic encryption. 

2.7.1 Partially Homomorphic Encryption: 

Partially homomorphic encryption allows for computations of a specific type on 

encrypted data, but not arbitrary operations. There are two primary types of partially 

homomorphic encryption: 

a. Additive Homomorphism: This type of encryption enables encrypted numbers to be 

added or subtracted, producing a new encrypted result. The operation is: 

Encrypted(a) + Encrypted(b) = Encrypted(a + b) 

b. Multiplicative Homomorphism: This type permits encrypted values to be multiplied by 

a plaintext constant, yielding an encrypted product: 

Encrypted(a) × b = Encrypted(a × b) 

2.7.2 Somewhat Homomorphic Encryption: 

Somewhat homomorphic encryption builds upon partially homomorphic encryption 

by allowing both addition and multiplication operations on encrypted data. However, the 

number of operations that can be chained is limited, and complex computations may not be 

feasible due to accumulation of noise during the operations. The most well-known example 

of somewhat homomorphic encryption is the RSA cryptosystem. 

2.7.3 Fully Homomorphic Encryption: 

Fully homomorphic encryption (FHE) is the most powerful form of homomorphic 

encryption. It allows arbitrary computations to be performed on encrypted data, including 

addition, multiplication, and more complex operations. FHE enables iterative computations 

without requiring decryption at any point, maintaining data privacy throughout the process. 



 

 

However, FHE is computationally intensive and can be significantly slower compared to 

other encryption methods. 

The significance of homomorphic encryption lies in its applications in secure data 

processing, such as secure cloud computing, privacy-preserving data analysis, and 

confidential computation outsourcing. It provides a strong solution for scenarios where data 

privacy is of utmost importance and computations need to be performed on encrypted data 

without revealing the underlying information. While FHE is a cutting-edge advancement, 

research and development are ongoing to improve its efficiency and practical usability. 

2.8 Paillier Homomorphic Cryptosystem 

Homomorphic encryption empowers users to manipulate encrypted data directly, 

eliminating the need for prior decryption. The Paillier Cryptosystem constitutes a variant of 

partial Homomorphic Encryption (HE) [24], facilitating the execution of additive operations 

on data that has been encrypted using homomorphic techniques. 

The Paillier cryptosystem, a probabilistic cryptographic construction introduced by 

Paillier in 1999, is rooted in the composite residuosity problem. Widely employed in privacy-

preserving applications, including those cited in [25], the Paillier scheme is especially adept 

at achieving additive homomorphic encryption. Employing an asymmetric encryption 

approach, this system enhances homomorphic traits with greater efficiency compared to 

existing algorithms. Its security against chosen plaintext attacks is well-established, with its 

correctness and security demonstrated in [25].  

Below is a sequential elucidation of key generation, encryption, and decryption processes 

within the Paillier Homomorphic Cryptosystem: 

Key Generation: 

Choose two large prime numbers, p and q, randomly and independently. 

Calculate the modulus n=p×q. 

Compute Carmichael's lambda function: λ(n)=lcm(p−1,q−1). 



 

 

Choose an integer g such that g is in the multiplicative group modulo n2 and has order 

n×lcm(p,q). 

Compute the modular inverse mu of L(gλ(n) mod n2), where L(x) = (x - 1)/n, using the 

provided public key (n, g) and private key (λ(n), μ). 

Encryption: 

1. Select a plaintext message m satisfying 0 ≤ m < n. 

2. Generate a random integer r such that 0 ≤ r < n and gcd(r, n) = 1. 

3. Calculate the ciphertext c = g^m × r^n mod n^2. 

Decryption: 

Compute L(c λ(n) mod n2 ). 

Decrypt the ciphertext to obtain the plaintext m=L×μ mod n. 

The Paillier Homomorphic Cryptosystem provides additive homomorphism, allowing 

operations on encrypted data without decryption. Specifically, you can perform 

homomorphic addition and scalar multiplication on encrypted values. 

2.9 ECDSA (Elliptic Curve Digital Signature Algorithm): 

ECDSA is a widely used digital signature algorithm based on elliptic curve 

cryptography. It offers a method to generate digital signatures for messages, which can be 

authenticated by others through the signer's public key. 

ECDSA is commonly used for authentication, data integrity, and non-repudiation in 

various applications, including secure communication, blockchain technology, and digital 

certificates. It does not provide homomorphic encryption capabilities like the Paillier 

Cryptosystem. 

This encompasses the Elliptic Curve Digital Signature Algorithm (ECDSA), 

covering its procedures for key generation, signature generation, and verification using both 

public and private keys: 



 

 

• Key Generation: 

Select an Elliptic Curve: Choose an elliptic curve E defined over a finite field, often 

represented as Fp , where p is a prime number, and select a base point G on the curve. The 

curve's parameters are publicly known. 

Private Key Generation: Choose a private key d randomly from a secure random number 

generator such that 1 ≤ d < order of G. The order of G (n) is the number of distinct points on 

the curve. 

Public Key Derivation: Compute the corresponding public key Q = d × G, where d is the 

private key and Q is a point on the elliptic curve. The public key Q is used for verification 

and is made public. 

• Signature Generation: 

Hash the Message: Compute a cryptographic hash (e.g., SHA-256) of the message m to be 

signed: H(m). 

Generate a Random Number: Choose a random number k such that 1 ≤ k < n, where n is 

the order of the base point G. 

Compute k-times Point: Compute the point k × G on the elliptic curve. 

Calculation of r Component: Find the r component by obtaining the x-coordinate of k × G 

modulo n, symbolized as r: r = (k × G) x mod n. 

Computation of s Component: Determine the s component using the formula s = k^(-1) × 

(H(m) + d × r) mod n, with d representing the private key. 

Generation of Signature: Form the signature for the message m as the pair (r, s). 

• Signature Verification: 

Message Hashing: Commence signature verification by computing the hash of the received 

message, denoted as H(m). 

Calculate Inverse of s: Compute the inverse of s, denoted as s−1 , modulo n. 

Calculate u1 and u2: Calculate u1  =H (m) × s−1 mod n and u2 = r×s−1 mod n. 



 

 

Compute u1 × G + u2 ×Q: Compute the point u1 × G + u2  × Q on the elliptic curve. 

Verify r: If the x-coordinate of u1 × G + u2 × Q modulo n matches r, the signature is valid. 

Otherwise, it is invalid.  

2.10  ElGamal Encryption-Based Privacy: 

In smart grid systems, where sensitive data must be safely delivered and stored, 

privacy protection is a crucial problem. To deal with these privacy issues, ElGamal 

encryption has emerged as a potential cryptographic method. This note presents a summary 

of ElGamal encryption-based privacy preservation methods for the smart grid, covering such 

schemes' guiding concepts, processes, and essential elements. 

Working Principle:  

For safe transmission of data, the public-key cryptosystem ElGamal makes use of 

discrete logarithms' mathematical features. ElGamal encryption is employed in the context 

of smart grids to safeguard sensitive data, such as energy consumption statistics, user 

behavior, and grid operation details. 

Key Elements: 

Key Generation: 

The process of creating a key pair, which consists of a public key (PK) and a private 

key (SK), is known as key generation. 

While the private key is kept confidential and is used for decryption, the public key 

is used for encryption. 

Encryption:  

Using the recipient's public key (PK), the sender (for example, a smart meter) 

encrypts the plaintext data. 

Choosing a random number (k), calculating the components of the ciphertext, and 

sending the ciphertext are all steps in the encryption process. 



 

 

Decryption:  

To retrieve the original plaintext and decrypt the ciphertext, the recipient (for 

instance, a utility company) utilizes their private key (SK). 

Procedure: 

Generating a Key: 

A huge prime integer (p) and a simple root (g) modulo p are generated by the user. 

The user chooses a private key (SK) at random. 

The public key (PK) is calculated by the user as g^SK mod p. 

Encryption: 

Gets the recipient's public key (PK) from the sender. 

The sender chooses a number at random (k). 

The sender generates the ciphertext's various parts: 

• Text cipher C1 = g^k mod p 

• Ciphertext C2=Plaintext mod p * (PK^k) 

Decryption: 

The recipient calculates the shared secret using their private key (SK) as follows: 

shared_secret = (C1^SK) mod p. 

The recipient calculates the shared secret's inverse (shared_secret^(-1)) modulo p). 

Receiving party obtains plaintext using the formula plaintext = (C2 * shared_secret^(-1)) 

mod p. 

Challenges:  

To maintain secure communication, efficient key management and dissemination are 

essential. 



 

 

Complex mathematical calculations used in ElGamal encryption might result in processing 

overhead. 

ElGamal encryption is mathematically proven to be secure when subjected to chosen 

plaintext attacks (CPA), but it is vulnerable under chosen ciphertext attacks (CCA)[33]. 

2.11  Privacy and Security 

In the previous related work, there were shortcomings in adequately addressing privacy 

concerns and load management issues. The research or projects might have overlooked or 

inadequately considered the impact of these important aspects. Sensitive information on 

electricity trends, and personal information of customers would be kept and delivered in an 

unencrypted way. As a result, there is a higher chance that third parties will gain access to, 

intercept, or steal customer data. The privacy of consumers may be compromised if such 

security breaches expose personal data and energy use trends. 

In our thesis we will address privacy and load management at the same time. All the 

data of the user will be encrypted so no third party misuses the user’s data. We will also 

perform different operations using python for the purpose of load management without losing 

user’s privacy. 

  

 

 

 

 

 

 

 



 

 

Chapter 3 

Methodology 

3.1 Introduction 

This chapter present the description of research process. It provide detail information 

about the conduct of research, including the justification for choosing that method. This 

chapter include various stages of thesis, which include participants, dataset, machine leaning 

algorithms, models and data analysis. This study have the following research questions: 

• How data is collected from different clients? 

• How we can protect client data? 

• How clients can participate in training process? 

• How all the data of different clients are used for prediction? 

• Will the prediction accuracy up to the mark of machine learning? 

This research is based on prediction of electricity usage or load management and user 

privacy. In the modern era data privacy in the most serious concern for users. The record of 

user is very sensitive and cannot be shared with some, as other entity can get much more 

information from the user data which is very threaten to user. Two primary categories 

employed in load forecasting are mathematical models and artificial intelligence-based 

computational models[34]. 

Here we are using 3 basic components for smart grid, for the collection of consumption 

of units we are using smart meters (SM), the SM sends data to next device called aggregator 

node (AN) the data is receive by the AN is in encrypted form so that no one intercept users 

important data to make sure the privacy of the user. The Aggregator Node (AN) aggregates 

the data from all meters and shares it with Grid Station. The 3rd and last step is grid station 



 

 

(GS), it receives the summed encrypted data and only GS will be only part of the smart grid 

who can decrypt data without knowing about individual consumption. 

 

Figure 4: Privacy Preserving User Data and Load Management in a Smart Grid 

Machine learning is a technique that used different algorithm for predicting or 

forecasting based on given data. Traditional machine learning used the centralized training 

approach, where all data should reside on a centralized location or server in plan text. The 

data is available in plaintext form which is big security concern for user or clients. Without 

using machine learning algorithms or sharing data, smart grid cannot achieve the high 

accuracy prediction of usage of electricity. 

In this chapter we use the Homographic Encryption and Long Short-Term Memory Recurrent 

neural network (RNN) architecture. When long-term dependencies is a concern, LSTM, a 

modified recurrent neural network (RNN) with a chain-like topology, is appropriate for 

making predictions [19]. Homomorphic Encryption is a cryptographic technique that allow 

to perform computation on an encrypted data. In other word the data is encrypted while doing 

computation. With traditional encryption techniques, the data must first be decrypted before 

calculations can be performed on it. This might provide privacy and security problems, 

especially when working with sensitive data. Homomorphic encryption overcomes this 

limitation by allowing computations to be performed on encrypted data directly, thereby 

maintaining privacy and confidentiality throughout the process. Recurrent neural network 



 

 

(RNN) architecture that uses Long Short-Term Memory (LSTM) was created with the goal 

of overcoming the shortcomings of conventional RNNs in capturing long-term dependencies 

in sequential input. LSTMs find frequent utilization across various sequential data domains, 

encompassing applications such as time series analysis, speech recognition, and natural 

language processing. 

3.2 Data Sets 

A dataset is an organized group of data that depicts a specific collection of things, 

happenings, or entities. A dataset is an organized collection of data samples or observations 

that are used in data analysis and machine learning to train and test algorithms, create 

statistical models, conduct analysis, and come to data-driven recommendations. 

This research is related to prediction of electricity usage and user data security. So we 

use data set of a city having different clients like offices, houses, hospital. The data usage of 

single client is kept private in whole process so now one can misuse the user’s data. 

The dataset available at the provided Kaggle link offers valuable insights into hourly 

energy consumption trends. Analyzing this dataset could contribute to research focused on 

understanding and optimizing energy usage patterns. 

The following is the link of the data set used in reserch 

https://www.kaggle.com/datasets/robikscube/hourly-energy-

consumption?select=AEP_hourly.csv 

3.3 Description about Data Set 

This dataset contains 29 columns having different clients, clients include House hold 

data set, offices and Charging points. These all data in kept private in whole process, but the 

data in a data set is not in encrypted form. The electricity of the clients are calculated in 

MegaWatt (MW). The power unit watt (W) is used to quantify the rate of production or 



 

 

consumption of electrical energy. There is 121273 entries of different of years (2004-2018). 

The missing values are removed before submitting the data to the model to prevent any 

computation errors. Some of basic information of table is given below 

Table 2: Data Set useful information. 

Feature Value 

Total Entries 121273 

Mean 15499.513 

Std 2581.3959 

Min 9579 

Max 25696 

No of unique years 15 

Data set contains 29 columns having different clients, The basic table is shown 

 

 

Shopping  Mall Hospital Fire Station Sum House 1 House 2 House 3 House 4 House 5 House 6 House 7 House 8 House 9 House 10 House 11 House 12 House 13 House 14 House 15 sum Officce  Building Officce  Building Officce  Building Officce  Building Officce  Building Officce  Building Officce  Building sum Slow Slow Fast Fast sum

Datetime

12/31/2004 1:00 437 378 38 183 154 414 602 189 628 808 317 105 7 938 431 168 904 236 934 815 829 447 777 680 344 787 232 275 422

12/31/2004 2:00 417 361 37 175 147 395 575 180 600 771 303 101 6 895 412 160 863 225 892 778 791 427 742 649 328 751 221 263 402

12/31/2004 3:00 408 353 36 171 144 386 562 176 586 754 296 98 6 875 403 157 844 220 872 760 773 417 725 634 321 734 216 257 393

12/31/2004 4:00 406 351 36 170 143 384 559 175 584 750 295 98 6 871 401 156 840 219 868 757 769 415 722 631 319 731 215 256 392

12/31/2004 5:00 411 355 36 172 145 389 566 177 591 759 298 99 6 881 406 158 850 222 878 766 779 421 731 639 323 740 218 259 396

12/31/2004 6:00 423 366 37 177 149 400 583 183 608 781 307 102 7 907 417 163 875 228 904 788 801 433 752 658 332 761 224 266 408

12/31/2004 7:00 444 384 39 186 156 420 612 192 638 820 322 107 7 952 438 171 919 240 949 828 842 454 790 691 349 799 235 280 428

12/31/2004 8:00 463 401 41 195 163 439 639 200 667 857 336 112 7 995 458 178 959 250 991 864 879 475 824 721 364 835 246 292 447

12/31/2004 9:00 477 413 42 200 168 452 658 206 686 882 346 115 7 1024 471 184 988 258 1020 890 905 489 849 742 375 859 253 301 460

12/31/2004 10:00 484 419 42 203 170 459 668 209 697 895 352 117 7 1039 478 186 1003 261 1036 903 918 496 862 754 381 872 257 305 467

MW



 

 

 

 

3.4 System Model 

The LSTM-based demand forecast model utilized in this study has its parameters 

adjusted for greater accuracy. The model needs a large quantity of data on the smart grid's 

power use in order to make precise forecasts. The training data set and the validation dataset 

are then separated from this data. The training dataset is utilized by the model. Following 

that, the validation dataset was used to test each model to make sure it was functioning as 

planned. Following the validation phase, both machine learning and statistical models were 

used to make predictions.  

Data security is ensured through encryption at various stages. Smart Meters (SM) 

send encrypted data to the Aggregator Node (AN) to protect user privacy from interception. 

The data is encrypted with public key of Grid Station. The AN aggregate encrypted data from 

all meters before transmitting it to the Grid Station (GS). Only the Grid Station possesses the 

Shopping  Mall Hospital Fire Station Sum House 1 House 2 House 3 House 4 House 5 House 6 House 7 House 8 House 9 House 10 House 11 House 12 House 13 House 14 House 15 sum Officce  Building Officce  Building Officce  Building Officce  Building Officce  Building Officce  Building Officce  Building sum Slow Slow Fast Fast sum

Datetime

12/31/2004 1:00 437 378 38 183 154 414 602 189 628 808 317 105 7 938 431 168 904 236 934 815 829 447 777 680 344 787 232 275 422

12/31/2004 2:00 417 361 37 175 147 395 575 180 600 771 303 101 6 895 412 160 863 225 892 778 791 427 742 649 328 751 221 263 402

12/31/2004 3:00 408 353 36 171 144 386 562 176 586 754 296 98 6 875 403 157 844 220 872 760 773 417 725 634 321 734 216 257 393

12/31/2004 4:00 406 351 36 170 143 384 559 175 584 750 295 98 6 871 401 156 840 219 868 757 769 415 722 631 319 731 215 256 392

12/31/2004 5:00 411 355 36 172 145 389 566 177 591 759 298 99 6 881 406 158 850 222 878 766 779 421 731 639 323 740 218 259 396

12/31/2004 6:00 423 366 37 177 149 400 583 183 608 781 307 102 7 907 417 163 875 228 904 788 801 433 752 658 332 761 224 266 408

12/31/2004 7:00 444 384 39 186 156 420 612 192 638 820 322 107 7 952 438 171 919 240 949 828 842 454 790 691 349 799 235 280 428

12/31/2004 8:00 463 401 41 195 163 439 639 200 667 857 336 112 7 995 458 178 959 250 991 864 879 475 824 721 364 835 246 292 447

12/31/2004 9:00 477 413 42 200 168 452 658 206 686 882 346 115 7 1024 471 184 988 258 1020 890 905 489 849 742 375 859 253 301 460

12/31/2004 10:00 484 419 42 203 170 459 668 209 697 895 352 117 7 1039 478 186 1003 261 1036 903 918 496 862 754 381 872 257 305 467

MW



 

 

decryption capability using the private key of Grid Station, allowing it to receive and decrypt 

the summed data while maintaining individual consumption privacy within the smart grid 

framework. 

At last to make sure the valid comparisons Mean Absolute Percentage Error (MAPE) 

is also calculated. Mean Absolute Percentage Error (MAPE) is statistic used to assess the 

accuracy of a forecasting or prediction model. The detailed model flow chart is illustrating 

every step and required method for the complete paper.  

 

Figure 5: Detailed model Flow Chart 

3.5 Collection of data (using smart meter) 

Smart meters use a variety of communication methods to gather data from users in a 

smart grid. These communication channels enable the smart meters to report regular or actual 

time usage statistics to the utility provider. 



 

 

Smart meters are responsible for the collection of details of usage of electricity. Smart 

meter collects the usage details in megawatt at every 60 minutes. Smart meters collect the 

data and sent to aggregator for further processing. The smart grid shares the data in encrypted 

form so that no one can access the data or get any valuable information that leads to 

destruction to the clients. 

3.6 Paillier homomorphic encryption 

Paillier homomorphic encryption is a specific type of homomorphic encryption 

scheme known as an "additive homomorphic encryption" scheme. Within an additive 

homomorphic encryption scheme, operations like addition and subtraction can be directly 

executed on encrypted data, yielding decrypted outcomes identical to the results of those 

operations on the original plaintext data. 

Additive Homomorphism: Paillier encryption supports addition of encrypted values 

without the need for decryption. When two ciphertexts are added together, their 

corresponding plaintexts are added modulo the encryption modulus, preserving the 

homomorphic property. 

3.7 Aggregator Node 

A different method of protecting privacy is data aggregation, which involves 

combining power consumption statistics for an area without disclosing individual customer 

use information. The majority of the current data aggregation solutions combine the electrical 

readings while ensuring user privacy through different encryption methods. 

In the context of a smart grid, a "aggregator" is often a piece of software or hardware 

that collects and aggregates data from various smart meters. Multiple smart meters from 

different parts of the grid are gathered by aggregators. They compile this data into a 

centralized repository to produce a thorough and current picture of the energy usage trends 

throughout the whole locations. Rapid consolidation of data and resources plays a pivotal 

role within smart grid systems [22]. 



 

 

3.8 Encrypted Data 

The data that is send by smart meter to aggregator node is in encrypted form, to 

protect the privacy and security of consumers and ensure the integrity of the grid system. The 

user data is homomorphically encrypted. A smart grid uses homomorphic encryption to 

handle the difficulty of safely processing encrypted data without the need for decryption. It 

enables calculations to be made directly on encrypted data, protecting the secrecy and privacy 

of sensitive data. 

1. Homomorphic encryption ensures data privacy by enabling computations on encrypted 

data, keeping sensitive information confidential. 

2. Encrypted data can be securely shared and processed without revealing the original 

content, promoting secure data sharing. 

3. Data integrity is maintained through homomorphic encryption, as any unauthorized 

alterations to encrypted data are detectable during decryption. 

4. Computation outsourcing is facilitated, allowing third-party service providers to process 

data without accessing the raw information. 

5. Homomorphic encryption aids in complying with data privacy regulations and mitigates 

legal concerns for organizations handling sensitive data. 

3.9 Machine Learning Algorithm 

As our research is based on predicting the future based on previous data, so we are 

using Time Series Analysis LSTM (Long Short-Term Memory) Recurrent Neural Network 

(RNN).  

A recurrent neural network (RNN) called LSTM (Long Short-Term Memory) is made 

to handle the vanishing gradient problem and identify long-distance relationships in 

sequential input. Sepp Hochreiter and Jürgen Schmidhuber first launched it in 1997.  

Important characteristics of LSTM neural networks: 

 



 

 

Memory Cells: 

LSTMs feature memory cells that can continuously store and update data. The 

memory cells are equipped with three gates: the input gate, the forget gate, and the output 

gate. 

The input gate chooses how much of the incoming data should be stored in each 

memory cell. It chooses which brand-new data to add to the cell state. 

The forget gate selects which data to remove from memory cells, enabling the model 

to ignore irrelevant or out-of-date data. 

The output gate controls how much of the state of the memory cell should be 

revealed to the following layer or utilized to make predictions. 

Handling Long-Term Dependencies: LSTMs excel at capturing extensive temporal 

relationships within sequential data, rendering them valuable for tasks such as natural 

language processing, speech recognition, and time series analysis. 

Vanishing Gradient Issue: Traditional RNNs frequently experience the vanishing gradient 

issue, which makes it difficult to train deep networks over lengthy periods. LSTMs address 

this issue. 

 

Figure 6: LSTM Model 



 

 

3.10 Advantages of LSTM over ARMA and ARIMA: 

• Linearity: 

LSTM can handle non-linear relationships more successfully than ARMA and 

ARIMA, which are linear models and may have trouble capturing complicated non-linear 

patterns in time series data. 

• Memory: 

LSTM can capture long-term dependencies by exploiting its recurrent nature and 

memory cells in contrast to ARMA and ARIMA, which have limited memory and can only 

take into account a set number of prior observations. 

• Data preprocessing: 

While LSTM can handle non-stationary data directly, ARMA and ARIMA require 

data stationarity and differencing, which may result in information loss. 

• Handling Irregular Sampling: 

While LSTM can accept erratically sampled data without further preprocessing, 

ARMA and ARIMA assume normal time intervals between observations, making them less 

suited for such data. 

• Training Difficulty: 

LSTM training can be computationally costly and necessitates more data for good training, 

whilst ARMA and ARIMA may require additional effort in parameter estimation. 



 

 

Chapter 4 

Security and Performance Analysis 

4.1 Data aggregation in secure form 

Here in first step the data is firstly encrypted homomorphically to securely send data 

from smart meters to aggregator node. Aggregator can be software or hardware to collect all 

the data (readings) from different smart meters and then combine them. 

All the data received by the aggregator is in encrypted form to achieve data privacy, 

data integrity, prevent from unauthorized access and to achieve the consumer trust. 

Homomorphic encryption enables computation on encrypted material without the need to 

first decode it. As a result, data may be securely aggregated without the exact data values 

being made public. 

 

Figure 7: Encrypted Data recived by Aggrigator node 

Shopping  MallHospital Fire StationSum House 1 House 2 House 3 House 4 House 5 House 6 House 7 House 8 House 9

Datetime MW

2004-12-31 1:00:00 6.26E+37 6.59E+36 1.17E+37 6.92E+37 1.43E+36 7.41E+37 7.13E+37 2.05E+37 7.94E+37 1.6E+37 2.55E+37 3.1E+37 3.85E+35

2004-12-31 2:00:00 6.74E+37 3.85E+37 9.47E+36 1.06E+38 3.74E+37 9.3E+37 1.56E+37 4.37E+36 7.98E+36 8.97E+37 8.83E+37 4.62E+37 4.03E+37

2004-12-31 3:00:00 3.47E+37 1.06E+38 1.57E+37 1.41E+38 9.18E+37 1.17E+38 4.3E+36 6.37E+37 6.38E+36 9.64E+37 1.05E+38 6.06E+37 1.06E+38

2004-12-31 4:00:00 7.33E+37 2.9E+36 3.69E+37 7.62E+37 4.28E+37 5.89E+37 6.82E+37 6.57E+37 3.92E+37 4.51E+37 2.44E+37 8.43E+37 1.82E+37

2004-12-31 5:00:00 3.32E+36 4.02E+37 1.46E+37 4.35E+37 1.08E+38 4.71E+37 3.49E+37 4.89E+36 3.74E+37 4.47E+37 9.97E+37 4.92E+36 2.32E+37

2004-12-31 6:00:00 4.69E+37 5.45E+37 4.44E+37 1.01E+38 2.89E+37 1.15E+38 6.35E+37 7.29E+37 7.45E+37 4.14E+37 3.84E+37 1.34E+37 3.7E+37

2004-12-31 7:00:00 2.13E+36 7.6E+37 1.16E+38 7.82E+37 6.19E+37 1.09E+38 7.41E+36 2.97E+37 7.02E+36 2.97E+37 8.76E+37 2.32E+37 1.59E+37

2004-12-31 8:00:00 1.35E+37 1.04E+38 1.07E+38 1.18E+38 8.42E+37 6.1E+37 1.03E+38 1.1E+38 1.06E+38 3.4E+37 4.75E+37 8.58E+37 8.07E+37

2004-12-31 9:00:00 3.23E+37 1E+38 1.03E+38 1.32E+38 4.79E+36 4.85E+37 1.14E+38 6.27E+37 1.82E+37 7.19E+37 1.38E+37 8.72E+37 7.42E+37

2004-12-31 10:00:00 1.09E+38 6.3E+37 1.09E+38 1.72E+38 1.91E+37 5.11E+37 7.28E+37 2.25E+37 1.12E+38 5.47E+37 7.46E+37 8.35E+37 9.54E+37

2004-12-31 11:00:00 1.38E+37 1.89E+37 9.86E+37 3.27E+37 4.83E+37 6.17E+36 7.95E+36 1.14E+38 5.45E+37 8.41E+37 1.89E+36 1.89E+36 6.87E+37

2004-12-31 12:00:00 4.3E+36 5.35E+36 9.65E+37 9.65E+36 8.37E+37 8.74E+37 6.38E+37 8.55E+37 1.11E+38 5.23E+37 6.57E+37 1.09E+38 6.54E+37

2004-12-31 13:00:00 9.37E+37 1.38E+37 4.23E+37 1.07E+38 5.9E+37 1.07E+38 6.55E+37 2.79E+37 1.12E+38 7.93E+37 7.11E+37 2.64E+37 7.7E+37

2004-12-31 14:00:00 3.93E+37 9.63E+37 9.04E+37 1.36E+38 1.27E+37 8.87E+37 4.05E+37 1.13E+38 4.85E+37 7.38E+37 8.53E+37 7.17E+37 4.35E+37

2004-12-31 15:00:00 9.73E+36 6.55E+37 7.57E+37 7.53E+37 4.63E+37 9.87E+37 9.85E+37 2.44E+37 9.79E+37 1.11E+38 7.31E+37 1.06E+38 9.19E+37

2004-12-31 16:00:00 3.1E+37 6.8E+37 7.11E+37 9.9E+37 9.55E+37 8.31E+37 5.38E+35 1.73E+36 2.72E+36 1.08E+38 2.46E+37 1.16E+38 1.11E+38



 

 

4.2 Grid Station 

Grid stations are vital parts of a smart grid because they act as hubs for the 

transformation of power, distribution management, and integration of cutting-edge 

technology. Grid stations support a more trustworthy, efficient, and sustainable power supply 

for customers in a smart grid environment by regulating energy distribution and ensuring 

system stability. 

All the data received from aggregator is in encrypted form by homomorphic 

encryption using public key of grid station. Firstly, data is decrypted by the grid using grid’s 

public key. When the data is in plain text the grid is trained using the Long short-term 

memory (LSTM).  

 

Figure 8: Encrypted sum of data received Grid Station. 

4.3 Time to Encrypt Data 

The phrase "Time to Encrypt Data" describes how long it takes to use cryptographic 

techniques to transform plaintext data into an encrypted, safe version. It includes the 

Datetime WATT

2004-12-31 1:00:00 6.92E+37 6.71E+38 4.15E+38 1.01E+38 7.01E+37 13479

2004-12-31 2:00:00 1.06E+38 5.72E+38 3.83E+38 1.82E+38 9.15E+37 12867

2004-12-31 3:00:00 1.41E+38 9.48E+38 3.2E+38 1.22E+38 7.61E+37 12577

2004-12-31 4:00:00 7.62E+37 7.86E+38 2.58E+38 1.98E+38 2.54E+37 12519

2004-12-31 5:00:00 4.35E+37 6.33E+38 4.23E+38 2.22E+38 6.2E+37 12671

2004-12-31 6:00:00 1.01E+38 7.23E+38 2.85E+38 1.63E+38 4.51E+37 13040

2004-12-31 7:00:00 7.82E+37 6.14E+38 3.05E+38 1.83E+38 4.61E+37 13692

2004-12-31 8:00:00 1.18E+38 8.01E+38 2.77E+38 1.44E+38 2.01E+37 14298

2004-12-31 9:00:00 1.32E+38 7.51E+38 2.37E+38 1.47E+38 4.75E+37 14720

2004-12-31 10:00:00 1.72E+38 9.17E+38 2.43E+38 1.53E+38 7.59E+37 14940

2004-12-31 11:00:00 3.27E+37 6.31E+38 4.11E+38 2.09E+38 5.61E+37 15184

2004-12-31 12:00:00 9.65E+36 9.56E+38 3.84E+38 2.01E+38 4.42E+36 15007

2004-12-31 13:00:00 1.07E+38 1.05E+39 2.32E+38 1.42E+38 8.68E+37 14806

2004-12-31 14:00:00 1.36E+38 8.69E+38 3.71E+38 2.32E+38 2.16E+37 14522

2004-12-31 15:00:00 7.53E+37 1.01E+39 3.4E+38 2.81E+38 7.48E+36 14348

2004-12-31 16:00:00 9.9E+37 7.65E+38 4.08E+38 2.49E+38 3.3E+37 14108

2004-12-31 17:00:00 1.04E+38 8.32E+38 2.55E+38 1.54E+38 1.74E+36 14409

2004-12-31 18:00:00 1.35E+38 1.02E+39 2.27E+38 1.64E+38 8.05E+37 15176

2004-12-31 19:00:00 6.48E+37 7.65E+38 3.62E+38 2.61E+38 1.34E+37 15260



 

 

processing time needed for encryption operations and might change depending on the 

encryption technique, the amount of data, and the technology available. 

 

Figure 9: Time taken to Encrypt data. 

Total time taken to encrypt 121273 x 29 values is 141.221133seconds. 

Time taken to encrypt a single value is: 

Encryption time for single value= total time / values 

    =141.221133 / (121273*29) 

    =141.221133 / 3516917 

Encryption time for single value =0.00004015481 second  

4.4 Size of Encrypted and Non-Encrypted Data 

The phrase "Size of Encrypted and Non-Encrypted Data" refers to a comparison 

between the amount of storage space needed to store data in its unencrypted, original form 

and the amount of space needed when the data is encrypted using cryptographic methods. 

The storage capacity, communication bandwidth, and overall system performance may all 

be impacted by this size disparity. 

 

Figure 10: Size of Encrypted and Non-Encrypted Data 

From the above fig the size of encrypted data is more then the non-encrypted data. 

• Size of Encrypted data: 28 bytes 



 

 

• Size of Non- Encrypted data: 44 bytes 

Encrypted data typically occupies a larger storage footprint compared to its plaintext 

counterpart due to the inclusion of all necessary decryption information, excluding the 

encryption key itself. In many cases, encrypted data necessitates approximately 33 percent 

more storage capacity than unencrypted data. 

4.5 Graphs and Results  

The result of a thesis embodies the culmination of rigorous research, offering a 

profound contribution to knowledge within a specific academic domain. It showcases the 

author's analytical prowess and the transformative impact of their insights on the subject.  

Energy consumption is show of different years from 2004 to 2018, x-axis represents 

the Dates in year while y-axis represent the Energy in MegaWatt. 

 

Figure 11: Energy Consumption According to year 

 



 

 

 

Figure 12: Energy Consumption According to year 

 

In Fig 17 the graph show the magnitude of MegaWatt. X-axis represents the Dates in 

year while Y-axis represent the Energy in MegaWatt. 

 

 

Figure 13: Energy Distribution 

 



 

 

The "Machine Learning the Pattern Predicting Future Value" graph visually 

represents the application of machine learning techniques to predict future values based on 

historical data patterns. It typically consists of two main components: 

Historical Data Points:  

This part of the graph displays the historical data points or observations that have 

been collected over time. These data points represent the past values of a particular variable 

or phenomenon that we want to predict in the future. 

Predicted Future Values:  

The graph also includes a line or curve that represents the predictions made by the 

machine learning model. This line is generated by training the model on the historical data, 

learning the underlying patterns, and then extrapolating those patterns into the future. 

 

Figure 14: Machine Learning the Pattern Predicting Future Value 

4.6 Mean Absolute Percentile Error (MAPE) 

A statistic called Mean Absolute Percentage Error (MAPE) is used to assess how 

accurate a forecast or prediction model is. It calculates the percentage that separates a 

dataset's actual values from its anticipated values. When assessing a model's performance in 

scenarios where the data's size fluctuates much, MAPE is very helpful. 



 

 

The following formula may be used to determine MAPE: 

Equation 5: MAPE Equation 

MAPE= 
100

𝑛
∑ |

𝐴𝑖−𝐹𝑖

𝐴𝑖
|𝑛

𝑖=1  

• n is the total number of data points in the dataset. 

•  is the actual value of the ith data point. 

•  is the predicted or forecasted value of the ith data point. 

As a percentage, the MAPE value is the average percentage difference between the 

actual and anticipated values. 

Since the predicted values are closer to the actual values, a model with a lower MAPE 

value is considered more accurate. 

The range of MAPE is 0% to infinity. Greater MAPE values indicate bigger 

prediction errors, whereas a value of 0% indicates that the model's predictions exactly match 

the actual data. 

In the context of time series analysis and regression issues, the Mean Absolute 

Percentage Error (MAPE) is a statistic used to assess the accuracy of a forecasting or 

prediction model. 

Mean Absolute Percentile Error (MAPE): 4.60% 

 

Figure 15: MAPE Graph 



 

 

4.7 User Data Privacy 

By leveraging the mathematical properties of Paillier Homomorphic Encryption, the 

preservation of user data privacy within the smart grid becomes achievable. The utilization 

of Paillier encryption involves the following strategies to ensure privacy: 

Secure Data Transmission:  

Prior to transmission, user-specific data, such as energy consumption patterns, 

undergoes Paillier encryption using the Grid Station's Public Key (PK). This encrypted data 

is then forwarded to the Aggregator Node, guaranteeing the confidentiality of consumption 

details during communication. 

Aggregated Data Handling: 

The Aggregator Node performs data aggregation, consolidating encrypted energy 

consumption information from various users without decryption. By capitalizing on Paillier's 

homomorphic property, computations like data averaging or summation can be directly 

executed on the encrypted data, effectively safeguarding the individual consumption patterns' 

privacy. 

Preservation of Demand Response Privacy: 

The implementation of demand response initiatives is achievable without 

compromising individual user behaviors. Encrypted data empowers the smart grid to 

optimize energy usage while upholding user privacy. 

Through these Paillier Homomorphic Encryption mechanisms, sensitive user data 

privacy within the smart grid is upheld, allowing for efficient grid management, secure 

communications, and data analysis while maintaining the utmost privacy standards. 

 

 



 

 

Chapter 5 

Conclusion and Future Work 

According to this research, power demand forecasting using LSTM demonstrates 

superior accuracy and lower error rates compared to conventional statistics-based forecasting 

models like AR, ARMA, and ARIMA. Therefore, using LSTM to estimate power 

consumption with further hyper tuned parameters and optimizations can be successful and 

produce superior outcomes. The accessibility of the long-term historical data will have a 

significant impact on the model's effectiveness. 

5.1 Future Work 

The future advancements of smart meter technology are poised to significantly 

enhance load profiling and forecasting capabilities. Concurrently, research efforts will be 

directed towards the creation of intuitive user interfaces and visualization tools designed to 

offer customers lucid insights into their energy consumption patterns and associated costs. 

Moreover, paramount attention will be give n to addressing privacy apprehensions stemming 

from the usage of smart meter data. In this context, the development of robust and secure 

billing mechanisms, which uphold the sanctity of consumer data while ensuring 

confidentiality, will be of paramount importance. Through these multifaceted initiatives, the 

smart meter ecosystem is poised to achieve a harmonious convergence of technological 

innovation, customer engagement, and data security. 
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