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Abstract

Entanglement is a paramount attribute, used as a resource for several quantum applica-

tions. However, the desire to nip disentanglement in the bud is the topic to conversation

among researchers. In this work, the creation of entanglement and steady state concur-

rence is reviewed for the quantum system out of thermal equilibrium and further the

finite-time disentanglement is examined. To this aim, the Markovian master equation

approach is employed to find the rate equations and Wootter’s concurrence to analyze

out-of-thermal equilibrium entanglement dynamics for coupled basis. The effect of

super- and sub-radiant rates on entanglement sudden death is examined for different

classes of X-states. It is found that the shorter dark period is achieved at a higher

transition rate of a super-radiant state. Further the potentiality of superdense coding

is examined and the dependence of superdense coding capacity on initial states for

different ratios of sub- to super-radiant transition rates. The validity of dense coding

is also analyzed for different probability amplitudes and it is perceived that maximally

entangled states show the highest degree of coding capacity. This approach further

allows us to analyze the applications of quantum information technologies
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Chapter 1

Introduction

1.1 History

Late nineteenth century is marked with the essential composition of physics as classical

mechanics, the concepts of electromagnetism and thermodynamics. Classical mechan-

ics provides the formalism to study the effect of physical forces on the motion of bodies

[1]. Maxwell’s electromagnetism provides a complete framework to study the inter-

action between charged particles due to electromagnetic field [2]. In order to study

matter-energy interactions the concepts of thermodynamics are used [3]. It was be-

lieved that all known physical phenomena could be explained with the help of these

general concepts. Until, in 1900, series of queries start arising which could not be ad-

dressed using the existing framework of general theories. These queries pledge towards

the birth of new era of physics, called modern physics [4]. The two main leads of mod-

ern physics was Maxwell’s idea of quantum theory in 1900 and Einstein’s formalism of

special theory of relativity in 1905 [5]. These works was watershed in the history of

physics. Einstein himself marked that period as “It was a marvelous time to be alive”

[6].

Before 1900, the concept of light as electromagnetic rays was well established by

Maxwell. At that time, classical mechanics seemed enough with little trouble in making

sense with the nature of blackbody radiations [7] and photoelectric effect [6]. As far as

Max Planck described light as a particle called “quanta”. This definition of light assists

to understand the concepts of blackbody radiation and photoelectric effect. The notion
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of energy quantization leads towards compton effect and pair-production [6]. By 1913,

Bohr explained the line spectrum of hydrogen by using the idea of quantization [8].

Later, Gilbert Lewis deduced the word “photon” to explain the particle-nature of wave

[9].

After the experimental realization of wave-particle duality of light, de Broglie related

this duality as the property of matter itself [10]. The triumphant contributions of

Heisenberg, Schrödinger and Dirac hatch the basis of quantum mechanics. Heisenberg

and Schrödinger introduced the two independent formalism to deal with quantum me-

chanics called matrix mechanics [11] and wave mechanics [12], respectively . On the

other hand Dirac suggested the bra-ket notation. The bra-ket formalism is analogue to

Heisenberg’s matrix mechanics in discrete basis, while in continuous basis this formal-

ism reimburse to Schrödinger’s wave mechanics [13]. Later in 1927, Fermi and Dirac

worked to analyze the concepts of quantum mechanics on fields instead of single parti-

cles, leading to quantum field theories (QFT) [14]. The year 1935 is marked with the

new mystery in quantum mechanics, when Einstein along with Podolsky and Rosen

(EPR) gives the concept of quantum correlations using Bell inequalities [15]. They

proposed that there must be some hidden variables that fill the gap between intuitive

condition of local action and quantum non-locality.

The quantum mechanics also provide theoretical explanation to the study of laser sci-

ence, that rose interest in the field of quantum optics [16]. The contribution of Fermi

and Dirac in QFT provides new insight to John R. Klauder et al., who worked to under-

stand the concept of statistics of light, inaugurating the notion of coherent states [17]

and squeezed states [7]. This knowledge pledges towards the discoveries of ultra-shot

lasers pulses [18] using the technique of mode-locking [19] and Q-switching [20]. Other

astonishing discoveries involve the concept of quantum correlations called quantum en-

tanglement [21] and the applications of quantum optics in quantum information.

The benchmark of present day research involves the discoveries of quantum information

theory (QIT). It combines the concepts of quantum mechanics [12], computer science

[22] and information technology [23]. It uses the idea of quantum entanglement, which

acts as a resource for many applications of QIT. These applications involve quantum
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computing [24], quantum sensing, quantum cryptography [25], quantum key distri-

bution [26], quantum teleportation [27], entanglement swapping [28] and superdense

coding [29].

The discovery of the concepts of modern physics in twentieth century leads toward

mysterious achievements in the technologies of modern world. Similarly, quantum

mechanics provides a new insight of quantum world based on entanglement between

quantum states. On the other hand, entanglement is a brittle phenomena that can

easily dissipate on interacting with environment. A new development in the dissipa-

tion of entanglement was given by Yu and Eberly called finite-time disentanglement

[30, 31, 32]. This astonishing phenomena gives the complete decay of entanglement

within a finite period of time. At later time, the interaction between particles gives

the revival of entanglement called entanglement sudden birth (ESB) [33].

1.2 Motivation

The desire to prevent entanglement in the open quantum systems has been a topic

of engrossment among scientists. Such achievements include the reservoir engineer-

ing method [34, 35], experimental filtration of maximally entangled states from non-

maximally entangled states [36], preserving entanglement through quantum Zeno effect

[37] and entanglement mediated via plasmonic waveguides [38, 39]. However, the quan-

tum system achieves thermal equilibrium at a later time, as a result, entanglement halts

asymptotically. Therefore, all the approaches involved in preventing entanglement re-

quire an externally driven action to create steady entanglement [40]. Afterwards, efforts

have been made to accomplish steady entanglement without any external assistance.

Our motivation behind studying quantum system out of thermal equilibrium is to

accomplish entanglement without any external aid. In such a system the thermal dif-

ference between a body placed closed to an emitter and its environment plays a role

in achieving entanglement. Furthermore, nobody had studied how finite-time disen-

tanglement can be manipulated for the quantum system out of thermal equilibrium.

For that reason, in this thesis we studied the phenomena of finite-time disentangle-
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ment and application of entanglement in super dense coding for different initial states.

This approach further allows us to analyze the applications of quantum information

technologies.

1.3 Objective and achievements

The main objective of this study is to boost the study of finite-time entanglement and

super dense coding in quantum system out of thermal equilibrium. The scope of the

present research can be outline in the following points:

• The dependence of finite-time disentanglement on probability amplitudes of ini-

tial states and other parameters including the effective number of photons in

super- and sub-radiant states and also the transition rates of super- and sub-

radiant states.

• The effect of super- and sub-radiant transition rates and their respective effective

number of photons on super dense coding was examined for different classes of

X-states.

To this aim, we employ the Markovian master equation approach to find the rate equa-

tions and Wootter’s concurrence to analyze out-of-thermal equilibrium entanglement

dynamics for coupled basis.

1.4 Structure of thesis

The thesis is structured into four chapters. The Chap. 2 of the thesis, "Fundamental

Concepts" gives a fundamental overview of quantum tools and terminologies. The

paramount goal is to equip the introduction and reference for the concepts involved

in the thesis. Further in Chap. 3 we reviewed the creation of steady entanglement

for the quantum system out of thermal equilibrium. While in Chap. 4 new insight

for such quantum system is given by studying finite-time disentanglement and super

dense coding for different X-states. Finally, in Chap. 5 the essence of the thesis is

summarized and the obtained results and achievements of the thesis are highlighted.
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Chapter 2

Fundamental Concepts

This chapter is equip with the basic concepts that will assist in understanding the phe-

nomenons explained in further chapters. These basic concepts involve the definition

of the building block of quantum information called qubit, the Bloch sphere represen-

tation of quantum states, the density operator approach and entangled state. Other

concepts include the causes of decoherence counting brief introduction of finite-time

disentanglement. In the second last section the main emphasis is on von Neumann

entropy and Wootter’s criteria to quantify entanglement. Lastly, super dense coding is

briefly studied as an application of entanglement.

2.1 Qubit

A qubit is a two-level system epitomizing the simplest quantum system. For example,

the spin of electron either up or down, polarization of light maybe vertically or hor-

izontally polarized. It is a fundamental unit of quantum information. Alike classical

bit, a qubit also has only two possible states but these states exist in superposition.

Superposition is the linear combination of states until measurement is done, with no

analogue in classical computation. On measurement, the superposition collapses into

one of the state. In general, the state of a qubit in two-dimensional Hilbert space H is

given as:

|ψ⟩ =
∑
i

ci |i⟩ . (2.1)
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Usually a normalized superposition state of a qubit in {0, 1} basis is given as:

|ψ⟩ = α |0⟩+ β |1⟩ , (2.2)

with

|0⟩ =
[
1
0

]
, |1⟩ =

[
0
1

]
. (2.3)

The coefficients α and β are the normalized probability amplitudes such that |α|2 +
|β|2 = 1. The measurement is performed on Eq. 2.2 such that, it will project the qubit

on {|0⟩ , |1⟩} basis. As a result state |0⟩ is obtained with probability |α|2 and state |1⟩
is obtained with probability |β|2. Here the basis set {|0⟩ , |1⟩} is called computational

basis.

The superposition states for bipartite (two-qubit) system is given as the tensor product

of both qubit’s states. The Hilbert space for such state is H1 ⊗ H2. Generally, the

state of bipartite system can be written as:

|ψ⟩12 =
∑
ij

cij |i⟩1 ⊗ |j⟩2 . (2.4)

It means that if |i⟩1 and |j⟩2 are the orthonormal basis for H1 and H2 respectively,

then |i⟩⊗ |j⟩ is the orthonormal basis for H1⊗H2. For example, if states of two qubits

are:

|ψ⟩1 = α1 |0⟩+ β1 |1⟩ =
[
α1

β1

]
, |ψ⟩2 = α2 |0⟩+ β2 |1⟩ =

[
α2

β2

]
, (2.5)

then,

|ψ⟩12 = |ψ⟩1 ⊗ |ψ⟩2 = α1α2 |00⟩+ α1β2 |01⟩+ β1α2 |10⟩+ β1β2 |11⟩ =


α1α2

α1β2
β1α2

β1β2

 . (2.6)
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Here,

|00⟩ = |0⟩ ⊗ |0⟩ =


1
0
0
0

 , |01⟩ = |0⟩ ⊗ |1⟩ =


0
1
0
0

 ,

|10⟩ = |1⟩ ⊗ |0⟩ =


0
0
1
0

 , |11⟩ = |1⟩ ⊗ |1⟩ =


0
0
0
1

 . (2.7)

The same is true for n-number of qubits, a general superposition state of n-qubits is

the tensor product of 2n states. Similarly the Hilbert space of n-number of qubits is

the tensor product of each qubit’s Hilbert space.

2.2 Bloch sphere

Another representation of qubit state is given as:

|ψ⟩ = cosθ/2 |0⟩+ eiϕsinθ/2 |1⟩ =
[
cosθ/2
eiϕsinθ/2

]
. (2.8)

The depection of qubit state in Eq. 2.8 gives a prespective of bloch sphere representa-

tion. Bloch sphere renders geometric representation of all possible states of qubit. The

north and south poles of the sphere usually represent the standard basis |0⟩ and |1⟩.
However, the points on the sphere’s surface represents the pure states, while the inner

points give mixed state and the central point is marked with totally mixed state. It is a

three-dimensional unit sphere embedded in the Cartesian coordinates (nx = cosϕsinθ,

ny = sinϕsinθ, nz = cosθ). Thus any quantum state on Bloch sphere is defined by θ

and ϕ representing a unique Bloch vector n̂ = (nx, ny, nz). The generic state given in

Eq. 2.8 can be written as

|ψ⟩ = 1√
2

√1 + nz

nx + iny√
1 + nz

 . (2.9)
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A

E

B

F

C
n

D

Figure 2.1: Bloch sphere representation of different Bloch vectors. Here n̂ is a general
Block sphere vector.

As an example consider the points A, B, C, D, E and F on a Bloch sphere. These

points are given as:

Â =(0, 0, 1), |A⟩ =
[
1
0

]
,

B̂ =(0, 0,−1), |B⟩ =
[
0
1

]
,

Ĉ =(−1, 0, 0), |C⟩ = 1√
2

[
1
−1

]
,

D̂ =(1, 0, 0), |D⟩ = 1√
2

[
1
1

]
,

Ê =(0, 1, 0), |E⟩ = 1√
2

[
1
i

]
,

F̂ =(0,−1, 0), |F ⟩ = 1√
2

[
1
−i

]
. (2.10)

Thus, any vector on Bloch sphere can be represented using a Bloch vector.
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2.3 Density operator

The density operator is used as a substitute for the physical representation of quantum

state. A wavefunction representation is only valid for pure states. In order to represent

the statistical ensemble of pure states called mixed state, the density operator is used.

It is defined as the outer product of wavefunction. For the general state given in Eq.

2.1, it is written as:

ρ = |ψ⟩⟨ψ| =
∑
i

pi |i⟩⟨i| . (2.11)

Here pi = |ci|2 gives the probability amplitude corresponding to state i. It must satisfy

the general properties of probability i.e.,

0 ≤ pi ≤ 1,
∑
i

pi = 1,
∑
i

p2i ≤ 1. (2.12)

For the special case of pure state, the probability of all other states vanish except for

one state, suppose it is state k. Thus, the density operator for pure state becomes a

projector operator:

ρ = |k⟩⟨k| . (2.13)

2.3.1 Properties of density operator

The density operator satisfies the following properties:

• The density operator ρ is hermitian. It means:

ρ = ρ†,∑
i

pi |i⟩⟨i| =
∑
i

pi |i⟩⟨i| . (2.14)

• ρ is positive semi-definite:

⟨ψ| (
∑
i

pi |i⟩⟨i|) |ψ⟩ ≥ 0,∑
i

pi ⟨ψ|i⟩ ⟨i|ψ⟩ ≥ 0,∑
i

pi| ⟨ψ|i⟩ |2 ≥ 0. (2.15)
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It is true because the sum of probabilities and the modulus square of inner-

product will always be positive.

• Sum of diagonal elements of ρ is always equal to unity.

Tr(ρ) = Tr

(∑
i

pi |i⟩⟨i|
)
,

Tr(ρ) =
∑
i

pi ⟨i|i⟩ ,

Tr(ρ) = 1. (2.16)

It is also stated as the condition for valid density matrix operator.

• It is used as a tool to differentiate between pure and mixed states.

ρ2 =

(∑
i

pi |i⟩⟨i|
)(∑

j

pj |j⟩⟨j|
)
,

ρ2 =
∑
i

∑
j

pipj |i⟩ ⟨i|j⟩ ⟨j| ,

ρ2 =
∑
i

p2i |i⟩⟨i| . (2.17)

For the case of pure state the only possible state has probability equals to unity,

thus ρ2 = ρ and Tr(ρ2) = Tr(ρ). But for mixed state the individual probability of

each state is less than unity, thus its square will become a much smaller quantity

resulting in ρ2 < ρ and Tr(ρ2) < Tr(ρ).
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2.3.2 Bloch sphere representation

In order to write density operator in Bloch sphere representation, the state given in

Eq. 2.9 is used:

ρ = |ψ⟩⟨ψ|

ρ =
1√
2

√1 + nz

nx + iny√
1 + nz

 1√
2

[√
1 + nz

nx + iny√
1 + nz

]

ρ =
1

2

[
1 + nz nx − iny

nx + iny 1− nz

]
ρ =

1

2

[(
1 0
0 1

)
+

(
0 1
1 0

)
nx +

(
0 −i
i 0

)
ny +

(
1 0
0 −1

)
nz

]
ρ =

1

2

(
I + σxnx + σyny + σznz

)
ρ =

1

2

(
I + n̂.−→σ

)
(2.18)

For the density operator given in Eq. 2.18 to be correct the condition for validity

(Eq. 2.16) must be fulfilled. Before calculating the trace of density operator the useful

identities to be known are Tr(I) = 2, Tr(n̂.−→σ ) = 0, and Tr(σiσj) = 2δij. Thus,

Tr(ρ) = Tr
[1
2

(
I + n̂.−→σ

)]
Tr(ρ) =

1

2

[
Tr
(
I
)
+ Tr(n̂.−→σ )

]
Tr(ρ) = 1. (2.19)

To further analyze the properties of density operator in Eq.2.18, it is needed to calculate

the trace of its square:

Tr(ρ2) = Tr
[1
2

(
I + n̂.−→σ

)1
2

(
I + n̂.−→σ

)]
Tr(ρ2) =

1

4

[
Tr(I2) + 2Tr(n̂.−→σ ) + Tr

(
(n̂.−→σ )(n̂.−→σ )

)]
Tr(ρ2) =

1

4

[
2 + Tr

(
(nxσx + nyσy + nzσz)(nxσx + nyσy + nzσz)

)]
Tr(ρ2) =

1

4

[
2 + 2(n2

x + n2
y + n2

z)
]

Tr(ρ2) =
1

2

[
I + |n|2

]
. (2.20)
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For pure state Tr(ρ2) = Tr(ρ), which means |n| = 1 thus pure state lies on the boundary

of Bloch sphere. In case of mixed state Tr(ρ2) < Tr(ρ), meaning |n| < 1 it sketches the

mixed state somewhere inside the Bloch sphere. Thus, if |n| = 0, the state lies at the

origin, such states are called the totally mixed state it gives Tr(ρ2) = 1/2.

While in case of a bipartite system, the quantum state given in Eq. 2.6 the density

operator follows

ρ12 = |ψ12⟩⟨ψ12| . (2.21)

In order to perform measurements on such operators, the concept of partial trace is

used. It is a trace performed over subsystem such as

ρ1 = Tr2
(
ρ12
)

and ρ2 = Tr1
(
ρ12
)
. (2.22)

The partial trace has wide range of applications in quantum information and entangle-

ment measurement.

2.4 Entangled state

For a bipartite system, a state is called an entangled state if it can not be written in

the form of tensor products (unlike Eq. 2.7):

|ψ12⟩ ≠ |ψ1⟩ ⊗ |ψ2⟩ . (2.23)

Entanglement is the result of basis-independent superposition [41]. The mysterious be-

havior of entanglement collapses the measured state of one qubit into the corresponding

state of other qubit.

2.4.1 Schmidt decomposition

Schmidt decomposition yields the general representation of any bipartite pure state. It

states a pure state can be written as:

|ψ⟩12 =
∑
i

√
pi |i⟩1 |i

′⟩2 . (2.24)
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Here |i⟩1 and |i′⟩2 represents the orthonormal basis of Hilbert spaces H1 and H2 re-

spectively.

Another important term related to Schmidt decomposition is Schmidt number. It is

a positive integer given by the number of coefficients of state vector associated with

state |ψ⟩12 written in Schmidt decomposition. The Schmidt number allows us to give

another mathematical definition of entanglement. It asserts that the state is entangled

if Schmidt number is greater that one and the state is separable is Schmidt number is

equals to unity. The simplest example of entangled state is described by Bell states.

2.4.2 Bell states

The Bell states are maximally entangled states of bipartite system. These states max-

imally violated the Bell inequalities. The four specific Bell states are given as:∣∣ψ+
〉
12

=
1√
2

[
|0⟩1 ⊗ |0⟩2 + |1⟩1 ⊗ |1⟩2

]
,∣∣ψ−〉

12
=

1√
2

[
|0⟩1 ⊗ |0⟩2 − |1⟩1 ⊗ |1⟩2

]
,∣∣ϕ+

〉
12

=
1√
2

[
|0⟩1 ⊗ |1⟩2 + |1⟩1 ⊗ |0⟩2

]
,∣∣ϕ−〉

12
=

1√
2

[
|0⟩1 ⊗ |1⟩2 − |1⟩1 ⊗ |0⟩2

]
. (2.25)

The subscript 1(2) gives the state of qubit 1(2) usually called sender’s (receiver’s)

qubit state. It can be clearly seen that the Bell states given in Eq. 2.25 are written in

Schmidt decomposition. These Bell states are the linearly independent combination of

two states and are also orthonormal, obeying the general conditions required for every

basis set. Thus, these states made another basis set called Bell basis set, given as:

{
∣∣ψ+

〉
,
∣∣ψ−〉 , ∣∣ϕ+

〉
,
∣∣ϕ−〉}.

2.4.3 Joint operation

It is a combined operation performed on both qubits of a quantum state. Such opera-

tions generate an entanglement between two qubits. They can also change the degree

of entanglement between the two already entangled qubits. For example, Hadamard
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gate and CNOT gate combined together to form a joint operation (H+CNOT). The

Hadamard gate is used to convert a qubit to superposition state. The Hadamard gate

is a 2× 2 matrix in a bipartite system, represented as:

H =
1√
2

[
1 1
1 −1

]
. (2.26)

The operation of Hadamard gate on states |0⟩ and |1⟩ respectively is given as:

H |0⟩ = 1√
2

(
|0⟩+ |1⟩

)
, H |1⟩ = 1√

2

(
|0⟩ − |1⟩

)
. (2.27)

While CNOT gate flips the state of one qubit with respect to controlled qubit. For

example, if the state of controlled qubit is 1 it will flip the state of other qubit, irre-

spective of its prior state. Otherwise if the state of controlled qubit is 0 the state of

the other qubit remains unchanged. This joint operation (H+CNOT) is widely used

for the generation and measurement of Bell states.

• Bell state generation: For this purpose consider the circuit given in Fig. 2.2.

Suppose both the qubits are in state |0⟩1 and |0⟩2. In the first step Hadamard is

applied on qubit 1. Then CNOT operation is applied on qubit 2 while controlling

qubit 1. The mathematics of such circuit is given as:

|00⟩12
H1−→ 1√

2

(
|0⟩1 + |1⟩1

)
|0⟩2

CNOT−−−−→ 1√
2

(
|00⟩12 + |11⟩12

)
=
∣∣ϕ+
〉
. (2.28)

H
Bell State

q₁

q2

Figure 2.2: A circuit for bell state generation with initial states of first qubit (|q1⟩) and
second qubit (|q2⟩).

Thus, a joint operation on un-entangled states can generate a Bell state.
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• Bell state measurement (BSM): In order to measure a Bell state, the circuit

given in Fig. 2.3 is used. It is a reverse of the circuit used in Bell state generation.

These operation gives the result:

1√
2

(
|00⟩12 + |11⟩12

) CNOT−−−−→ 1√
2

(
|00⟩12 + |10⟩12

) H1−→ |00⟩12 (2.29)

H q₁

q2

Bell State

Figure 2.3: A circuit for bell state measurement resulting in state |q1⟩ of qubit 1 and
|q2⟩ of qubit 2.

It gives the same prior state which was used to create a Bell state (
∣∣ϕ+
〉
). Thus,it

can also be proved that Hadamard and CNOT operations are unitary.

2.4.4 Local operations

The local operations are performed on a single part of two entangled qubits. Such

operations does not cause entanglement nor changes the degree of entanglement. These

operations include identity (I) and Pauli matrixes (σx, σy, σz). In a bipartite system,

these are 2× 2 matrix given as:

I =

[
1 0
0 1

]
, σx =

[
0 −1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (2.30)

These operators are used to change an entangled state to another entangled state

without disturbing its degree of entanglement.

2.5 Decoherence

Until now we studied entanglement in an isolated system, resulting in a perfect phase

relation between states, called coherence. While in practical applications quantum
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systems are open. It means the quantum emitters can interact with environment.

The cost of this interaction is demise of coherence. For example, in order to measure

entanglement quantum system has to made a contact with environment. It causes the

lost of coherence that is irreversible, called decoherence. Another sight of decoherence

is the lost of information related to quantum system into the environment.

2.5.1 Finite-time disentanglement

A new sight of entanglement decoherence of two qubits placed in a cavity within a finite-

time was given by Yu and Eberly [31]. It is also known as early stage disentanglement

or entanglement sudden death (ESD). It unfolds a wide range of investigation on finite

time disentanglement under various circumstances. The main purpose of these inves-

tigation is to elude or delay ESD for advancement in quantum information technology.

Though there is no way to permanently elude ESD in quantum systems but progressive

work have been done to delay it such as weak and reversal measurement [42], quantum

zeno effect, quantum feedback schemes [43] and many more [44, 45, 46]. While at later

time another interesting phenomenon arises when the interaction between particles

causes the rebirth of entanglement, called entanglement sudden birth (ESB) [47]. The

time between ESD and ESB is marked with dark period of entanglement.

2.6 Entanglement measurement

It gives the numerical quantification or degree of entanglement of an entangled state.

There are a number of ways to quantify entanglement such as von Neumann entropy,

negativity, entanglement of formation and Wootters concurrence. In this section, a brief

introduction and mathematics of von Neumann entropy and entanglement of formation

is given which is followed by Wootter’s concurrence.

2.6.1 von Neumann entropy

von Neumann entropy is an example of quantum entropy. In quantum communication,

von Neumann entropy is used to quantify entanglement and the amount of information
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retained in the system. In classical information theory, the uncertainty and randomness

in the system is related to entropy. Because the information lost while sending message

is a one way process, it can not be restored. While in quantum information, von

Neumann entropy is used in the concept of source coding, related to the notion of

information compression. It exactly gives the rate at which a quantum information

source can be compressed.

Suppose a quantum system prepared in an ensemble (A) of pure states such as: A =

{|ψ⟩1 , |ψ⟩2 , · · · , |ψ⟩k}. If it is represented by density operator ρ, then von Neumann

entropy is given as:

S(ρ) = −Tr(ρlog2ρ). (2.31)

In order to simplify this equation consider a general density operator that is diagonal

in its eigen basis:

ρ =


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . · · ·
0 0 · · · λk

 ,

log2 ρ =


log2 λ1 0 · · · 0

0 log2 λ2 · · · 0
...

... . . . · · ·
0 0 · · · log2 λk

 ,

ρ log2 ρ =


λ1 log2 λ1 0 · · · 0

0 λ2 log2 λ2 · · · 0
...

... . . . · · ·
0 0 · · · λk log2 λk

 . (2.32)

Thus, taking trace of Eq. 2.32 gives the von Neumann entropy in terms of eigen values

of the density operator:

−Trρ log2 ρ = −Tr


λ1 log2 λ1 0 · · · 0

0 λ2 log2 λ2 · · · 0
...

... . . . · · ·
0 0 · · · λk log2 λk

 ,
S(ρ) = −

k∑
i=1

λi log2 λi. (2.33)
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So, S(ρ) gives an average information gain per quantum state, and it only depends on

the eigenvalues.

2.6.2 Entanglement of formation and Wootters concurrence

One of the most important method of measuring entanglement in bipartite system is

the entanglement of formation brought forward by Bennett et. al. [48]. It is given as

E(ρ) = min
∑
i

piS(ρ), (2.34)

here E(ρ) is the entanglement of formation giving the average entanglement of all

possible values of pure state. Whereas, S(ρ) is the von Neumann entropy of either of

the two system, given as

S(ρ) = −Tr(ρ1log2ρ1) = −Tr(ρ2log2ρ2). (2.35)

This formalism is widely expected for the pure state of bipartite system. While in order

to measure the entanglement of a mixed state, which is a linear combination of pure

states Eq. 2.34 doesn’t remain valid. In order to tackle this issue, Wootters and Hill

[49] extented the idea of Bennett et. al. and gives an explicit formula of concurrence

depending on density operator elements. The numerical value of concurrence varies

between zero and one. Concurrence is zero if the state is separable and is equal to

one for maximally entangled state. Thus the entanglement of formation in the form of

binary entropy is given as [50]

E(ρ) = −λ+ log2 λ+ − λ− log2 λ−, (2.36)

where

λ± =
1±

√
1− C(ρ)2

2
(2.37)

Here C(ρ) is called concurrence which is given as [49]:

C(ρ) = 2max{0,
√
ζ1 −

√
ζ2 −

√
ζ3 −

√
ζ4}, (2.38)

where the ζ ′s are the eigenvalues of hermitian matrix M(ρ) =
√
ρρ̃

√
ρ in descending

order. Here ρ̃ = (σy⊗σy)ρ∗(σy⊗σy), with σy a Pauli operator and ρ∗ being conjugate of
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operator ρ. While the discussion involved in this dissertation is marked with X-states

[51]. These are the states having only diagonal and anti-diagonal elements of density

operator, forming an X-structure such as [52]:

ρ =


ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ∗23 ρ33 0
ρ∗14 0 0 ρ44

 . (2.39)

This group of states include Bell states, Werner state, maximally non-local mixed state

(MNMS) and maximally entangled mixed state (MEMS). The main motivation behind

studying X-states is their property of invariance with time evolution. For the density

operator given in Eq. 2.39, the concurrence simply takes the form

C(t) = 2max[0, C1(t), C2(t)], (2.40)

where

C1(t) = |ρ23(t)| −
√
ρ11(t)ρ44(t) , C2(t) = |ρ14(t)| −

√
ρ22(t)ρ33(t). (2.41)

It is the definition of concurrence given in decoupled basis (see Eq. 2.7), which depends

on the elements of density operator.

2.7 Entanglement applications

Entanglement is used as a resource in many practical applications such as quantum

communication, quantum computing and quantum sensing. The astonishing applica-

tions of quantum communication are cryptography, superdense coding, entanglement

swapping and quantum teleportation. The field of cryptography applies the basis con-

cept of quantum superposition which gives more secure way to communicate between

two parties (Alice and Bob). Entanglement swapping enables us to induce entanglement

between two independent qubits that never interacted before. Quantum teleportation

is a technique used to communicate information between sender (Alice) and receiver

(Bob) without physically sending qubits or particles. Another remarkable application

19



of quantum communication is superdense coding (SDC), which enhances the classical

communication by physically sending a qubit that encapsulated the information two

classical bits. The detailed protocol and basics of SDC are explained in the following.

2.7.1 Superdense coding

SDC was first discovered by Bennette and Wisner using an EPR pair. Suppose Alice

and Bob shared an entangled pair prepared initially in Bell state “
∣∣ϕ+
〉
12

”. The protocol

for superdense coding works as follows:

• Step 1: In the very first step, Alice will decide a coding of each possible state

for a given number of bits.

• Step 2: Alice will perform local unitary operations (I, σx, σy, σz) on her qubit.

This is done to convert the initial state of EPR pair to the state she wants to

communicate to Bob.

• Step 3: Now, its time for Alice to send her qubit physically through quantum

channel to Bob.

• Step 4: Bob will performs a joint operation (BSM) on both qubits to extract

the conveyed information.

Alice’s laboratory Bob’s laboratory

Entangled qubits

Quantum ChannelLocal operations Joint operation

Figure 2.4: A schematic protocol for superdense coding of two entangled particles
initially in state

∣∣ϕ+
〉
12

shared between Alice and Bob.
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Step 1 Step 2 Step 3 Step 4
Alice wants
to communi-
cate the state

Coding Local operations on
Alice’s qubit

Bob received
the state

Result of
BSM per-
formed by
Bob

|00⟩
∣∣ϕ+
〉
12

∣∣ϕ+
〉
12

I1⊗I2−−−→
∣∣ϕ+
〉
12

∣∣ϕ+
〉
12

|00⟩

|01⟩
∣∣ψ+

〉
12

∣∣ϕ+
〉
12

σ1
x⊗I2−−−→

∣∣ψ+
〉
12

∣∣ψ+
〉
12

|01⟩

|10⟩
∣∣ϕ−〉

12

∣∣ϕ+
〉
12

σ1
z⊗I2−−−→

∣∣ϕ−〉
12

∣∣ϕ−〉
12

|10⟩

|11⟩
∣∣ψ−〉

12

∣∣ϕ+
〉
12

σ1
y⊗I2

−−−→
∣∣ψ−〉

12

∣∣ψ−〉
12

|11⟩

Table 2.1: Protocol for superdense coding

Holevo information (χ(ϵ)): Holevo information sets an upper bound on the dense

coding capacity. It gives the numerical value of maximum compression of information

a qubit can contain. The von Neumann entropy (Sec. 2.62) also quantifies the amount

of information compressed, but Eq. 2.33 is applicable to an ensemble of pure states.

Suppose the quantum system is prepared in an ensemble (B) of mixed states such that:

B = {ρ1, ρ2, · · · , ρk}. For this case Eq. 2.31, can be written as:

S(ρ) = −Trρ log2 ρ,

S(ρ) = −Tr

[∑
i

piρi log2
[∑

i

piρi
]]
,

S(ρ) = −
∑
i

Tr

[
piρi
[
log2 pi + log2 ρi

]]
,

S(ρ) = −
∑
i

pi log2 pi −
∑
i

piTrρi log2 ρi,

S(ρ) = H(p1, · · · , pk) +
∑
i

piS(ρi). (2.42)

Where H(p1, · · · , pk) is classical entropy also known as Shannon entropy, it gives date

compression in classical channel. Here we introduced a new quantity χ(ϵ) where ϵ =
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{p1, · · · , pk, ρ1, · · · , ρk}, such that:

• χ(ϵ) = H(p) for mutually orthonogal mixed states.

• χ(ϵ) = S(ρ) for an ensemble of pure states.

• χ(ϵ) = 0 for only one mixed state.

To fulfill this description the quantity χ(ϵ) known as Holevo information is given as:

χ(ϵ) = S(ρ)−
∑
i

piS(ρi). (2.43)

The quantity χ(ϵ) gives us an average capacity of a qubit, that how much classical

information can be conveyed through one qubit.
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Chapter 3

Entanglement Creation - A Review

This chapter is marked with the discussion of the concept of creating steady entangle-

ment out of thermal equilibrium. For this purpose, in Sec. 3.1 the brief introduction

of interaction between atom and field is given which is supported by the discussion of

interaction with thermal fields. Then in Sec. 3.2 we described the theoretical model of

two quantum emitters placed close to a thermal body, held at different temperatures

from its surroundings. Lastly, in Sec. 3.3 the implementation of the model dynamics

for achieving steady state entanglement is explained.

3.1 Atom-field interaction

It is the interaction between a two-level atom treated as a quantum system and a

single-mode electric field. While an atom-field interaction could be of two types, such

as interaction with a classical electric field called atom-field interaction semi-classical

theory or with a quantized electric field called atom-field interaction quantum theory.

The prior one is valid for many assumptions such as in describing the method of

measurement using time delay spectroscopy and the phenomena of stimulated emission

and absorption in laser and maser. However, there are many phenomenons where

semi-classical theory fails, one of the most important of these is the occurrence of

spontaneous emission. Thus, for explaining such phenomenons we need the quantum

explanation of atom-field interaction. To this aim, the fully quantum model also called
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Jaynes–Cummings model is discussed further which has no analog in semi-classical

theory.

3.1.1 Jaynes-Cummings model

This model was fist established by Edwin Jaynes and Fred Cummings in their 1963

article. It was intended to illuminate the concept of fully quantum model to treat the

interaction of atom with single-mode electromagnetic (EM) field. Consider a two-level

quantum system with a ground state |g⟩ and an excited state |e⟩ which is interacting

with the single-mode quantized EM field. Thus, in an open quantum system the

total Hamiltonian (H) is the sum of atomic Hamiltonian (HA), the Hamiltonian of

the environment (HE) and the interaction Hamiltonian (HI) between atom and its

environment given as

H = HA +HE +HI ,

H =

[
p2

2m
+ V (r)

]
+

[
1

2
(p2 + ω2q2)

]
+

[
−D.E

]
, (3.1)

where (HA) is simply given as the total energy (kinetic energy + potential energy).

While (HE) is as classical field Hamiltonian also called environmental Hamiltonian,

where p and q are the canonical variables called position (q) and momentum (p). The

(HI) is given by the concept of perturbation theory, where D is the dipole moment

and E is the EM field. In order to write Eq. 3.1 in fully quantum model we need

to write them in the form of quantized operators. Let these operators are atomic

operators called raising (σeg) and lowering (σge) operator, and field operators called

a(a†) annihilation and creation operator given as

σeg = |e⟩⟨g| , σge = |g⟩⟨e| , (3.2)

and

a =
ωq + ip√

2ℏω
, a† =

ωq − ip√
2ℏω

. (3.3)
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Now we will use these operators to rewrite Eq. 3.1 in fully quantum model. Atomic

Hamiltonian (HA) in the form of operators can also be written as

HA =
[∑

i

|i⟩⟨i|
]
HA

[∑
j

|j⟩⟨j|
]
,

HA =
∑
ij

ℏωj |i⟩ ⟨i|j⟩ ⟨j| ,

HA =
∑
i

ℏωi |i⟩⟨i| ,

HA = ℏωg |g⟩⟨g|+ ℏωe |e⟩⟨e| . (3.4)

Using operators given in Eq. 3.2, we can write

HA = Egσgeσeg + Eeσegσge,

HA =
1

2
Egσgeσeg +

1

2
Egσgeσeg +

1

2
Eeσegσge +

1

2
Eeσegσge. (3.5)

After adding and subtracting
1

2
Egσgeσeg and

1

2
Eeσegσge, we get

HA =
1

2

(
Ee + Eg

)[
σegσge + σgeσeg

]
+

1

2

(
Ee − Eg

)[
σegσge − σgeσeg

]
. (3.6)

Here the first term can be ignored under the rotating wave approximation.

HA =
1

2
ℏω0σz, (3.7)

where ℏω0 is the difference between two-energy levels and σz is the Pauli operator. In

order to quantize environmental Hamiltonian Eq. 3.3 can be rewritten as

p = −i
√

ℏω
2

(
a− a†

)
, q =

√
ℏ
2ω

(
a+ a†

)
. (3.8)

Thus,

HE =
1

2

((
− ℏω

2
(a− a†)2

)
+ ω2

( ℏ
2ω

(a+ a†)2
))
,

HE =
ℏω
4

(
− a2 − a†2 + aa† + a†a+ a2 + a†2 + aa† + a†a

)
,

HE =
ℏω
2

(
aa† + a†a

)
. (3.9)
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By using the property [a, a†] = 1, we can write

HE = ℏω
(
aa† + 1/2

)
. (3.10)

It is the quantized environmental Hamiltonian. Now in order to write interaction

Hamiltonian in quantum operators we need quantized electric field given as

Ê = −jζ(a+ a†), (3.11)

where j is the electric field polarization vector and ζ is given as

ζ = −
( ℏω
ϵoU

)1/2
sin(kx). (3.12)

So, the interaction Hamiltonian becomes

HI = d̂ζ(a+ a†), (3.13)

where d̂ = D.j and due to parity conditions only the diagonal elements of this dipole

operator will be non-zero. Thus,

d̂ = dgg |g⟩⟨g|+ dge |g⟩⟨e|+ deg |e⟩⟨g|+ dee |e⟩⟨e| ,

d̂ = dge |g⟩⟨e|+ deg |e⟩⟨g| . (3.14)

For simplicity we assume that the coefficient d is real such as deg = d∗eg = d and

rewriting above equation in field operators (Eq. 3.3) form

d̂ = d(σge + σeg). (3.15)

So,

HI = d(σge + σeg)ζ(a+ a†),

HI = dζ(σgea+ σgea
† + σega+ σega

†). (3.16)

Here the operators a, a†, σge and σeg evolves with time, thus we use the Heisenberg

picture to write these operators as

a(t) = a(0)e−iωt, a†(t) = a(0)†eiωt. (3.17)
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and

σge(t) = σge(0)e
−iω0t, σeg(t) = σeg(0)e

iω0t. (3.18)

Thus,

HI = dζ(σgeae
−i(ω+ω0)t + σgea

†ei(ω−ω0)t + σegae
−i(ω−ω0)t + σega

†ei(ω+ω0)t). (3.19)

Here the first and last term will be neglected under to rotating wave approximation

and for simplicity we assume ω ≈ ω0 so,

HI = dζ(σgea
† + σega). (3.20)

Now putting Eqs. 3.7, 3.10 and 3.20 in Eq. 3.1, we get

H =
1

2
ℏωσz + ℏω

(
aa† + 1/2

)
+ dζ

(
σgea

† + σega
)
. (3.21)

This is called the Jaynes Cummings Hamiltonian given in fully quantum model for a

single two-level system.

3.1.2 Thermal fields

Consider the environment of a quantum system is a thermal reservoir for example a

perfect absorber and emitter called a black-body. This black-body can be designed

as a cavity whose walls are present at thermal equilibrium with the radiations. These

radiations then coupled to a heat bath. Here, assume the coupling between them is

weak, so that we can describe the system as micro-canonical ensemble which gives the

probability of particle in nth excited state as

pn =
exp(−βEn)∑∞
n=0 exp(−βEn)

=
exp(−βEn)

Z
, (3.22)

where β = kB/T with kB as boltzmann constant and T is the temperature of the

cavity, En is the energy of nth state and Z is the partition function of micro-canonical

ensemble. With En = ℏω(n+ 1/2), we can rewrite Z as follows

Z = exp(−βℏω/2)
∞∑
n=0

exp(−βℏωnEn) =
exp(−βℏω/2)
1− exp(−βℏω)

. (3.23)
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Similarly,

pn =
exp
(
− βℏω(n+ 1/2)

)
Z

. (3.24)

Now in order to write Eqs. 3.23, 3.24 in terms of average photon number n̄(ω, T ) of

thermal field, we will define n̄(ω, T ) as

n̄(ω, T ) =
∞∑
n=0

npn,

n̄(ω, T ) =
exp(−βℏω/2)

Z

∞∑
n=0

nexp(−βℏωn),

n̄(ω, T ) =
1

exp(βℏω)− 1
. (3.25)

It gives us exp(−βℏω) = n̄(ω, T )/
(
1 + n̄(ω, T )

)
so that we can write

Z =
exp(−βℏω)1/2
1− exp(−βℏω)

,

Z =

[
n̄(ω, T )/

(
1 + n̄(ω, T )

)]1/2
1−

[
n̄(ω, T )/

(
1 + n̄(ω, T )

)] ,
Z =

[
n̄(ω, T )

(
1 + n̄(ω, T )

)]1/2
. (3.26)

Similarly,

pn =

[
exp(−βℏω)1/2

][
exp(−βℏω)n

]
Z

,

pn =

[
n̄(ω, T )/

(
1 + n̄(ω, T )

)]1/2[
n̄(ω, T )/

(
1 + n̄(ω, T )

)]n[
n̄(ω, T )

(
1 + n̄(ω, T )

)]1/2 ,

pn =

(
n̄(ω, T )

)n(
1 + n̄(ω, T )

)1/2 . (3.27)

Thus, the thermal density operator can be obtained by using the definition of density

operator (see Eq. 2.11)

ρth =
∞∑
n=0

pn |n⟩⟨n| ,

ρth =
1

1 +
(
n̄(ω, T )

) ∞∑
n=0

( (
n̄(ω, T )

)
1 +

(
n̄(ω, T )

))n

|n⟩⟨n| . (3.28)

It is a relation for thermal density operator at thermal equilibrium between qubit and

walls of the cavity.
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3.2 The model

Consider two quantum emitters (qubits), whose excited and ground levels are separated

by frequency ω. These quantum emitters are placed close to an arbitrary body (A)

having particular dielectric constant and kept at temperature TA, surrounded by a

far away boundary (B) having temperature TB. The arbitrary body and boundary

are kept at different but constant temperatures that produces stationary and out-of-

thermal equilibrium Electromagnetic (EM) fields. The total Hamiltonian (H) of the

system is the sum of the qubit’s Hamiltonian, the Hamiltonian of the thermal bath,

and the interaction Hamiltonian:

H = Hq +Hb +Hint,

=
∑
q

∑
i=g,e

ℏωq
i σ

q
ii +

∑
j

ϵj â
†
j âj −

∑
q

Dq · E(rq), (3.29)

being σq
ii = |i⟩qq ⟨i| where g and e are the ground and excited levels of qubits respec-

tively. The ϵj in environmental Hamiltonian is Bogoliubov spectrum, whereas â† and â

are the raising and lowering operators respectively. The term Dq in interaction Hamil-

tonian is the electric-dipole multipolar coupling operator and E(rq) is the electric field

of qubit at position rq from the body.

y

z
x

TB

TA
q2

q1Arbitrary body

Figure 3.1: A schematic diagram of two qubits (q1 and q2) placed closed to an arbitrary
body kept at temperature TA and the surrounding boundary has a constant tempera-
ture TB such that TA ̸= TB.
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3.2.1 Master equation

It is the equation that gives the time evolution of open quantum systems. The equations

deduced from Master equation are called rate equations. The dynamics of a two-level

system is studied by employing the master equation approach explained in Ref. [53],

dρ(t)

dt
= − i

ℏ
[Hq, ρ]− i

∑
q ̸=q′

Λqq′(ω)[σq
egσ

q′

ge, ρ]

+
∑
qq′

Γqq′(ω)

(
σq′

geρσ
q
eg −

1

2
{σq

egσ
q′

ge, ρ}
)

+
∑
qq′

Γqq′(−ω)
(
σq′

egρσ
q
ge −

1

2
{σq

geσ
q′

eg, ρ}
)
. (3.30)

The term Λqq′(ω) represents dipole-dipole interaction independent of temperature.

Contrarily, term Γqq′(±ω) gives transition rates depending on both thermal and quan-

tum fluctuations of EM fields, being q = q′ depicts individual and q ̸= q′ illustrates

collective transition rates. For the quantum state out of thermal equilibrium, these

transition rates take the form [54],

Γqq′(ω) =

√
Γq
0(ω)Γ

q′

0 (ω){[1 + n(ω, TA)]η
qq′

A (ω)

+[1 + n(ω, TB)]η
qq′

B (ω)},

Γqq′(−ω) =

√
Γq
0(ω)Γ

q′

0 (ω){n(ω, TA)η
qq′

A (ω)∗

+n(ω, TB)η
qq′

B (ω)∗}. (3.31)

Where ηqq
′

A (ω) and ηqq
′

B (ω) are functions dependent on transmission and reflection scat-

tering rates and other parameters of the system briefly explained in Ref. [54].

3.2.2 Density matrix elements

In order to inspect our approach to a quantum system out of thermal equilibrium we

considered Dicke bases [55],

|G⟩ = |0⟩ , |S⟩ = (|1⟩+ |2⟩)√
2

, |A⟩ = (|1⟩ − |2⟩)√
2

, |E⟩ = |3⟩ . (3.32)
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Here |G⟩ and |E⟩ are excited and ground states, whereas |S⟩ and |A⟩ are symmetric

and anti-symmetric states. Whereas, |0⟩ = |00⟩, |1⟩ = |01⟩, |2⟩ = |10⟩ and |3⟩ = |11⟩
(Eq. 2.7). The schematic diagram for Dicke basis is given in Fig. 3.2.

𝒏𝒔

𝒏𝒂𝜞𝒑 + 𝜸𝒑

𝜞𝒑 + 𝜸𝒑

| ۧ𝑨

| ۧ𝑺

| ۧ𝑮

| ۧ𝑬

𝜞𝒎 + 𝜸𝒎

𝜞𝒎 + 𝜸𝒎

𝜞𝒑 − 𝜸𝒑

𝜞𝒑 − 𝜸𝒑

𝜞𝒎 − 𝜸𝒎

𝜞𝒎 − 𝜸𝒎

Figure 3.2: Schematic representation of coupled basis, here Γp = Γ(ω), Γm = Γ(−ω),
γp = γ(ω) and γm = γ(−ω).

The master equation (Eq. 3.30) when analyzed in the coupled bases (Dicke basis), gives

only the diagonal and anti-diagonal density matrix elements forming an X-structure.

In our case, these diagonal and anti-diagonal terms are invariant under time evolution

[54]. Therefore, the density matrix elements for a quantum system out of thermal

equilibrium (TA ̸= TB) will be given as

ρ̇GG = Γa(1 + na)ρAA + Γs(1 + ns)ρSS

−(Γana + Γsns)ρGG,

ρ̇AA = ΓanaρGG + Γa(1 + na)ρEE − Γa(1 + 2na)ρAA,

ρ̇SS = ΓsnsρGG + Γs(1 + ns)ρEE − Γs(1 + 2ns)ρSS,

ρ̇EE = ΓanaρAA + ΓsnsρSS

−[Γa(1 + 2na) + Γs(1 + 2ns)]ρEE,

ρ̇AS =
1

2
[4iΛ12(ω)− Γa(1 + 2na)− Γs(1 + 2ns)]ρAS,

ρ̇GE =
1

2
[4iΛ12(ω)− Γa(1 + 2na)− Γs(1 + 2ns)]ρGE,

(3.33)
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with ρ̇SA = ρ̇∗AS, and ρ̇EG = ρ̇∗GE. The expressions Γa and Γs in Eq. (3.33) are obtained

by following the strategy employed in Ref. [53],

Γ(ω) + γ(ω) = Γ0(ω)Γa(1 + na),

Γ(ω) + γ(ω) = Γ0(ω)Γs(1 + ns),

Γ(−ω)− γ(−ω) = Γ0(ω)Γsna,

Γ(−ω)− γ(−ω) = Γ0(ω)Γsns. (3.34)

Here Γ11(±ω) = Γ22(±ω) = Γ(±ω) and Γ21(±ω) = Γ12(±ω) = γ(±ω). In order

to normalize Eq. (3.34) with time, the coefficient Γ0(ω) is consumed within the time

derivative. The terms Γs and Γa are the transition rates of super- and sub-radiant states

respectively, whereas ns and na give the effective number of photons in individual super

and sub-radiant levels at temperatures Ts and Ta in between TA and TB.

Γa = ηB(ω)− η12B (ω) + ηA(ω)− η12A (ω) (3.35)

Γs = ηB(ω) + η12B (ω) + ηA(ω) + η12A (ω)

na =
1

Γa

{[ηB(ω)− η12B (ω)]n(ω, TB)

+[ηA(ω)− η12A (ω)]n(ω, TA)}

ns =
1

Γs

{[ηB(ω) + η12B (ω)]n(ω, TB)

+[ηA(ω) + η12A (ω)]n(ω, TA)}

In the next section, the investigation of steady entanglement is done for both at equi-

librium and out of thermal equilibrium cases.

3.3 Steady entanglement

Generally, a steady state is a state or a condition that is invariant in time. While in

quantum systems this regime can play an important role in giving rise to particular

phenomena known as steady state entanglement. In this section we study this phenom-

ena first for the quantum system at thermal equilibrium and then at out of thermal

equilibrium.
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3.3.1 At thermal equilibrium

At thermal equilibrium (TA = TB), the density operator stated in equation Eq. 3.28

gives only diagonal elements. Thus, the master equation describes the steady diagonal

elements as 
ρ11(∞)
ρ22(∞)
ρ33(∞)
ρ44(∞)

 =
1

Z


(
1 + n(ω, T )

)2
1 + n(ω, T )

(
1 + n(ω, T )

)
1 + n(ω, T )

(
1 + n(ω, T )

)
n(ω, T )

 (3.36)

Now using the definition of concurrence expressed in Eq. 2.41 it can be seen that

C1 < 0 also C2 < 0 resulting in non-entangled steady states at thermal equilibrium.

3.3.2 Out of thermal equilibrium

With a view to study steady state entanglement out of thermal equilibrium we used

Dicke basis (see Eq. 3.32). To this aim we also have to rewrite concurrence (Eq. 2.41)

in such basis.

C(t) = 2max{0, C1(t), C2(t)},

C1(t) = |ρEG(t)|

− 1

2

√
(ρSS(t) + ρAA(t))2 − (ρSA(t) + ρAS(t))2,

C2(t) =
1

2

√
(ρSS(t)− ρAA(t))2 − (ρSA(t)− ρAS(t))2

−
√
ρEE(t)ρGG(t). (3.37)

The result of Eq. 3.33 at steady state gives only diagonal elements:
ρGG(∞)
ρAA(∞)
ρSS(∞)
ρEE(∞)

 =
1

Zeq


(1 + na)

2(1 + 2ns)Γa + (1 + 2na)(1 + ns)
2Γs

na(1 + na)(1 + 2ns)Γa +
[
na(1 + 2ns) + n2

s(1 + 2na)
]
Γs

ns(1 + ns)(1 + 2na)Γs +
[
ns(1 + 2na) + n2

a(1 + 2ns)
]
Γa

n2
a(1 + 2ns)Γa + (1 + 2na)n

2
sΓs

 ,

(3.38)

where Zeq is the sum of all the elements on the right side of the above equation. It

can be discern from Eq. 3.37 that C1 < 0 so it will not play any role in steady state

entanglement. While C2 at steady state becomes

C2(∞) =
1

2Zeq

√
[ρSS(∞)− ρAA(∞)]2 −

√
ρGG (∞)ρEE(∞). (3.39)
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where

ρSS(∞)− ρAA(∞) =
(
ns(1 + ns)(1 + 2na)Γs +

[
nS(1 + 2na) + n2

a(1 + 2ns)
]
Γa

)
−
(
na(1 + na)(1 + 2ns)Γa −

[
na(1 + 2ns) + n2

s(1 + 2na)
]
Γs

)
,

ρSS(∞)− ρAA(∞) =
(
(ns(1 + ns)(1 + 2na)− na(1 + 2ns)− n2

s(1 + 2na)
)
Γs

+
(
ns(1 + 2na) + n2

a(1 + 2ns)− (na(1 + na)(1 + ns)
)
Γa,

ρSS(∞)− ρAA(∞) =
(
ns + n2

s(1 + 2na)− na − 2nsna − n2
s − 2nan

2
s

)
Γs

+
(
ns + 2nsna + n2

a + 2n2
ans −

(
(na + n2

a)(1 + 2ns)
))

Γa,

ρSS(∞)− ρAA(∞) =
(
ns + n2

s + 2nan
2
s − na − 2nsna − n2

s − 2nan
2
s

)
Γs

+
(
ns + 2nsna + n2

a + 2n2
ans − na − n2

a − 2nans − 2n2
ans

)
Γa,

ρSS(∞)− ρAA(∞) = (ns − na)(Γs + Γa). (3.40)

Hence,

C2(∞) =
1

2Zeq

[√
(|ns − na|(Γs + Γa))2

−
√
(1 + na)2(1 + 2ns)Γa + (1 + 2na)(1 + ns)2Γs

×
√
(1 + 2ns)n2

aΓa + (1 + 2na)n2
sΓs

]
.

Thus concurrence will be given as

C(∞) =
2

Zeq

[
|ns − na|(Γs + Γa)/2

−
√
(1 + na)2(1 + 2ns)Γa + (1 + 2na)(1 + ns)2Γs

×
√
(1 + 2ns)n2

aΓa + (1 + 2na)n2
sΓs

]
. (3.41)

According to Eq. (3.41), significant parameters involved in investigation regarding

steady state concurrence are the transition rates (Γa and Γs) and effective number of

photons for super- and sub-radiant states (na and ns) respectively. Simplifying Γs,

C(∞) becomes the dimensionless function of Γa/Γs, na and ns. In order to check the

possibility of C(∞) > 0, it is plotted in Fig. 3.3 for different values of na and ns at

Γa/Γs ≈ 2.8× 10−4.
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Figure 3.3: Steady-state concurrence as a function of ns and na at Γa/Γs ≈ 2.8× 10−4.

Fig. 3.3 depicts that Cmax(∞) ≈ 0.33. Another interesting depictions is that at thermal

equilibrium (ns = na) the concurrence is zero. Thus, entanglement is only possible at

out of thermal equilibrium (ns ̸= na). To further explore the dependence of steady-

state concurrence on different parameters, it is plotted (see Fig. 3.4) at ns = 10−3 for

different values of Γa/Γs. It discerns that higher value of concurrence is possible for

higher na values at smaller Γa/Γs ratio.
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Figure 3.4: Steady-state concurrence as a function of na for different values of Γa/Γs

at ns = 10−3.
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Chapter 4

Entanglement Dynamics and
Superdense Coding Out of Thermal
Equilibrium

In this chapter the numerical investigation of entanglement dynamics is done to quan-

tify entanglement for quantum systems out of thermal equilibrium. Because when the

density matrix elements out of thermal equilibrium given in Eq. 3.33 are solved at finite

time, it give the results that can not be solved analytically. Therefore, we investigate

the phenomenon of ESD and SDC, numerically for different initial states. Additionally,

the dark period of entanglement and the optimal time for SDC is estimated for each

initial state.

In order to examine concurrence at finite time, it can be predicted from Eq. 3.33 that

the concurrence is the function of variables such as Γa, Γs, na and ns. Consequently,

for ns = 10−3 the values of na and the ratio Γa/Γs varies from 10−1 to 104 and 10−1 to

10−8, respectively.

4.1 Entangled state

The initially entangled qubits prepared in the state |ψ⟩ =
√
1− α |G⟩+

√
α |E⟩, where

α is the probability amplitude, gives the following initial density matrix

ρ(0) =


α 0 0

√
α(1− α)

0 0 0 0
0 0 0 0√

α(1− α) 0 0 1− α

 . (4.1)
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Using these initial density matrix elements, the time evolution of concurrence (C(t)) is

plotted in Fig. 4.1 against a probability amplitude ranging from 0 to 1. Two different

preferences of C(t) describe the phenomena of ESD (C2(t)) and ESB (C1(t)) after some

time. It shows that initially concurrence is not maximum for lower values of α but its

dark period is narrow. Lately, concurrence becomes maximum (α = 0.5) and then

again starts decreasing with increasing α. Also the darker period becomes greater for

greater values of α.

C1(t)

C2(t)

Figure 4.1: (color online) Time variation of concurrence for initially entangled state at
na = 10 and Γa/Γs = 10−3.

In Fig. 4.2, time evolution of concurrence is plotted for entangled state at α = 0.5.

We observed that though revival occurs early at higher Γa/Γs ratio (Γa/Γs = 10−1)

i.e., td = 2.59/Γ0, but dark period is narrow for lower Γa/Γs ratio (Γa/Γs = 10−3) i.e.,

td = 1.2/Γ0. Thus, the shorter dark period can be achieved at lower values of Γa/Γs.
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Figure 4.2: (color online) Time variation of concurrence for entangled state at α = 0.3.

Furthermore in Fig. 4.3 and Fig. 4.4 time evolution of dense coding capacity is plotted

for several value of probability amplitude α and various Γa/Γs ratios respectively. It is

obvious that SDC is not possible for α = 0 because it will lead to a pure state. While

for α = 0.5, state becomes maximally entangled for which dense coding capacity have

a maximum possible value χ = 2 (see Fig. 4.3). However, inset of Fig. 4.3 shows that

as the degree of entanglement decreases, optimal value of SDC increases making the

state more desirable for quantum communication. So, more optimal time is deduced for

α = 0.3. Thus, in Fig. 4.4 time variation of dense coding capacity for α = 0.3 is plotted

and evaluated for different values of Γa/Γs Higher values of super dense capacity are

observed with decrease in value of Γa/Γs. It can be perceived that states with lower

transition rate of anti-symmetric than symmetric terms are well considered for optimal

superdense coding capacity.
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Figure 4.3: Time variation of dense coding capacity χ for entangled state at na = 50,
Γa/Γs = 10−4, ns = 10−3.
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Figure 4.4: Time variation of dense coding capacity χ for entangled state at na = 50,
α = 0.3 and ns = 10−3.
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4.2 Werner state

Consider the system initially prepared in Werner state ψ = (1−w)I/4+w |S⟩ ⟨S|, where

w is the probability amplitude, I is a 4 × 4 identity matrix and |S⟩ is the symmetric

state.

The time variation of concurrence plotted in Fig. 4.5 depicted that the maximum value

of concurrence and the shorter dark period is achieved at higher values of probability

amplitude w. It also gives the evidence that for the higher value of w first concurrence

becomes zero (ESD) and then revives at a later time.

C1(t)

Figure 4.5: (color online) Time variation of concurrence for initially Werner state at
na = 0.5 and Γa/Γs = 10−1.

Additionally it is obvious from Fig. 4.6 that smaller ratio of Γa/Γs gives shorter dark

period. The inset also shows that the dark period is td ≈ 4/Γ0 for Γa/Γs = 10−1 and

it is td = 3.12/Γ0 for Γa/Γs = 10−4.
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Figure 4.6: (color online) Time variation of concurrence for initially Werner state at
w = 0.9.

Moreover, it is shown that superdense coding is possible for w > 0.75 (see Fig. 4.7). It

is observed that the optimal time of superdense coding capacity is greater for w = 0.9

making the state more feasible for dense coding.
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Figure 4.7: Time variation of dense coding capacity χ for Werner state at Γa/Γs = 10−4,
na = 50 and ns = 10−3.
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It is noticed from Fig. 4.8 that the super dense capacity is higher for states that have a

higher transition rate of symmetric as compared to antisymmetric state and vice versa.
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Figure 4.8: Time variation of dense coding capacity χ for Werner state at w = 0.9,
na = 50 and ns = 10−3.

4.3 Maximally non-local mixed state (MNMS)

Another important class of X-states is a maximally non-local mixed state (MNMS)

which maximally violates CHSH inequalities [56]. Considering the qubits initially pre-

pared as MNMS, the density matrix for this case becomes

ρ(0) =
1

2


1 0 0 y
0 1 y 0
0 y 1 0
y 0 0 1

 (4.2)

The time evolution of concurrence in Fig. 4.9 predicts the phenomena of ESD (C2(t))

and its rebirth (C1(t)). It also shows that the dark period is shorter for higher proba-

bility amplitude y.
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Figure 4.9: (color online) Time variation of concurrence for initially MNMS at na = 101

and Γa = 10−3.

The dependence of concurrence on parameters na and Γa/Γs is depicted in Fig. 4.10.

The inset gives the evident that the dark period is broader for a higher Γa/Γs ratio

which is td = 3.25/Γ0. While for smaller Γa/Γs ratio the dark period is td = 2.34/Γ0

which is smaller than prior.
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Figure 4.10: (color online) Time variation of concurrence for initially MNMS at y = 0.9.
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The time evolution of dense coding capacity regarding probability amplitude and Γa

to Γs is plotted in Fig. 4.11 and 4.12, respectively. It can be deduced from results of

Fig. 4.11 that dense coding capacity has a greater optimal time for y = 0.9. As we

move to decrease the probability amplitude, optimal value of SDC decreases making

the state less reliable for dense coding as compare to prior one. It is also grasped from

Fig. 4.12 that the trend followed in prior states is also valid for MNMS. The smaller

the ratio of Γa to Γs, more significant is the superdense coding capacity.
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Figure 4.11: Time variation of dense coding capacity χ for MNMS at Γa/Γs = 10−4,
na = 50 and ns = 10−3.
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Figure 4.12: Time variation of dense coding capacity χ for MNMS at y = 0.9, na = 50
and ns = 10−3.

4.4 Maximally entangled mixed state (MEMS)

It is a class of X-states that has the maximum degree of entanglement for a given

combination of pure states [57]. The density matrix of MEMS for two photon coherence

is given as

ρ(0) =


x/2 0 0 x/2
0 1− x 0 0
0 0 0 0
x/2 0 0 x/2

 ; 2/3 ≤ x ≤ 1. (4.3)

The time variation of concurrence in Fig. 4.13 predicts ESD because of C2(t) and its

rebirth due to C1(t). It can be concluded that the entanglement is maximum and the

dark period is shorter for greater values of probability amplitude x.

Fig. 4.14 predicts the time evolution of concurrence at different Γa/Γs values. The

inset shows that the dark period for Γa/Γs = 10−1 is td = 3.2/Γ0 which is greater than

td = 1.75/Γ0 at Γa/Γs = 10−4 as predicted.
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Figure 4.13: (color online) Time variation of concurrence for initially MEMS at na =
100 and Γa/Γs = 10−2.
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Figure 4.14: (color online) Time variation of concurrence for initially MEMS at x = 0.9.

It is evident from Fig. 4.15 that maximum superdense coding is possible for x = 0.9

and decreases as we lower the probability amplitude at Γ0t = 0. A state with a higher

optimal value and optimal time of SDC is more realistic for quantum communication as

compared to others. Inset indicates that the lowest optimal time of SDC is for x = 0.7
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while the highest is for x = 0.9. The time evolution of dense coding capacity plotted

in Fig. 4.16 illustrates that optimal value of SDC is greater for lower ratios of Γa to

Γs, supporting the trend of prior states.
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Figure 4.15: Time variation of dense coding capacity χ for MEMS at Γa/Γs = 10−4,
na = 50 and ns = 10−3.
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Figure 4.16: Time variation of dense coding capacity χ for MEMS at x = 0.9, na = 50
and ns = 10−3.
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Chapter 5

Result and discussion

The objective of this study was the investigation of the phenomena of finite time disen-

tanglement and superdense coding for the quantum system comprised of two quantum

emitters placed close to an arbitrary body at a different temperature from its sur-

rounding. To this aim, he Markovian master equation formalism is applied to find rate

equations and Wootter’s concurrence to interpret the association of transition rates

to entanglement sudden death. Then we have simulated the concurrence for different

initial X-states. It employs that concurrence varies with the degree of entanglement of

the initial state. The presented results also disclosed that dark period becomes nar-

row for smaller ratio of sub- and super-radiant transition rates implicitly depending on

temperature. It also seems that all the states support same trend of results. Further

numerical investigation is done to discern the consequence of probability amplitude,

super- and sub-radiant transition rates on superdense coding capacity. It is concluded

that for lower values of Γa/Γs superdense coding capacity is greater. This modeled the

out-of-thermal equilibrium quantum systems as a good applicant for the early revival

of entanglement without any external assistance. Furthermore, our findings make these

quantum systems an attractive candidate for quantum information technologies.
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