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Abstract

In this thesis, entanglement dynamics of two distant qubits placed at a height

h from plasmonic waveguide are investigated. For this purpose, two waveg-

uide geometries are considered (i) cylindrical nanowire and (ii) V-shaped

channel. To see the evolution of the system, Markovian master equation

approach is used and density matrix elements are extracted. Entanglement

generation is evaluated for ideal plasmonic waveguide and realistic channel

waveguide. The influence of decay rates and coupling parameters on en-

tanglement dynamics is analyzed. Moreover, entanglement sudden death is

examined at specific qubit-qubit separation for different initial states. At

later time, entanglement rebirth is observed and dark period is estimated for

both geometries. It is noticed that the cylindrical geometry shows lesser dark

period as compared to the V-shaped channel and the revival of entanglement

is much more significant in perior waveguide geometery as compared to the

lateral. Further, superdense coding as an application of quantum entangle-

ment is also examined for certain initial states and it is observed that the

optimal time of dense coding capacity is greater for the case of cylindrical

geometry as compared to V-shaped channel.
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Chapter 1

Introduction

1.1 History

A brief historical review of quantum mechanics, quantum optics and quan-

tum information is done here. In scientific theories, quantum mechanics is

the most successful and mysterious field. It is the basis of quantum com-

putation and information. It was developed over a marvellous period from

1900 to 1920s. At the start of the twentieth century, physics was mainly

comprised of classical mechanics, the concepts of thermodynamics and elec-

tromagnetism. Following the twentieth century, classical physics was des-

perately challenged as Einstein’s relativistic theory showed the inconsistency

of classical mechanics for the objects approaching speed of light. Moreover,

classical physics failed in providing the proper explanation of phenomena like

blackbody radiation, the photoelectric effect etc. to the level of atomic and

subatomic structures. At nano-scale classical physics is not valid. After that

there is a need to invoke new ideas outside this bound.

The first development proposed by Max Planck in 1900 gives the concept of

energy quantization [1]. In 1905 following the Planck’s idea of quantization,

Einstein described that light itself is made up of discrete energy, called pho-

tons, each of energy hf where f is the light’s frequency. Einstein’s concept

of photon gave the accurate explanation of the photoelectric effect. Another

breakthrough occurs in 1919 when a model of hydrogen atom was proposed by
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Bohr [2]. It was introduced after the Rutherford’s discovery of atomic nucleus

in 1911 Bohr proclaimed that the atoms can only be found in discrete energy

states and interaction of atom with radiations took place in form of quanta of

energy. In 1923 Compton confirms that X-rays photons behave like particles

by scattering them with electrons [3]. This chain of progress by Einstein,

Planck and Compton gave the theoretical and experimental confirmation of

the particle nature of wave at microscopic scale. de-Broglie presented that

not only radiations display wave-particle duality but it is the characteristic of

metal itself. Davisson and Germer in 1927 [4] gives the experimental confir-

mation of this behaviour using electrons. They unveiled that the interference

pattern (a property of waves) can also be obtained with material particles

like electrons. The hydrogen’s model was criticized for lacking theoretical

information although it coincides well with experimental spectroscopy. The

quantization of energy and the postulates endorsed by Bohr were quite un-

expected and do not follow the principles of physics.

The dissatisfaction of Planck’s and Bohr’s models had provoked Heisenberg

and Schrödinger to search for new ideas. By the end of 1925 their efforts

paid off. Heisenberg, Schrödinger and Dirac laid the foundations of quantum

mechanics in an surprisingly short period from 1925 to 1926 [5]. Representa-

tion, unitary transformation, quantum-state evolution, perturbation theory

etc. all are given by them. There were two formalism of quantum mechanics,

one is the matrix mechanics developed by Heisenberg and other is the wave

mechanics by Schrödinger [6]. The matrix mechanics describes the structure

of atoms inspired from Planck’s idea of quantization and Bohr’s concept of

hydrogen atom. The Heisenberg stated the idea that systems are bound

to follow the quantization of energy. To describe the dynamics of micro-

scopic systems, he introduced the notion of matrices for analysis of eigen

value problem. The second formalism (wave mechanics) is the abstraction

of the de Broglie postulate. It states that the dynamics of microscopic sys-

tems is solved by using wave mechanics given by Schrödinger. Instead of
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using matrix formalism, Schrödinger used the differential equation to anal-

yse the system dynamics. The idea of intrinsic probabilistic nature of wave

mechanics given by Max Born in 1927 allowed the fully quantum treatment

of interference. Heisenberg’s and Schrödinger’s formalisms were shown to

be equivalent. Later on Dirac proposed the ket-bra formalism of quantum

states [7]. In continuous basis ket-bra formalism gives back Schrödinger’s

wave mechanics while in discrete basis it returns to Heisenberg’s matrix me-

chanics. Dirac developed an equation in 1928 by combining special relativity

with quantum mechanics called the Dirac’s equation, which describes the mo-

tion of electrons. Fermi and Dirac being the pioneers of quantum mechanics

addressed the quantization of light interacting with an atom. Reviews of

Modern Physics article in the 1930s by Fermi’s summarizes what was known

at that time within the context of non relativistic quantum electrodynamics

in the Coulomb gauge.

Einstein continued the study of nature of quantum mechanics and in 1935

with Boris Podolsky and Nathan Rosen published a remarkable work in which

quantum correlations are stated. They found that when two particles have

been strongly related, they share a single state. Measurement on one particle

will influence the other even though they are far apart. This work is later

known as EPR paradox [8] because of the three names on the paper. Bell

demonstrated the upper limit for the strength of quantum correlations seen

in Bell’s inequality and showed that for certain entangled systems this limit

is violated. The experimental breakthrough came in with the presentation

of an apparatus in 1967 whose generated photons were seen to be entangled.

This was the first case of entangled light [9]. Afterwards, quantum optics

emerges as a separate subject. Researchers start investigating the coherence

in light matter interaction with the development in theory of photon statis-

tics. Quasi-probabilities developed much earlier by Wigner and others are

used to describe the behaviour of light in free space. Resonant interactions

and coherent transients led to the beginning of quantum optics after which
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we were able to study the dynamics of single atom interacting with light.

The study of single atom interacting with single mode electromagnetic field

is achieved with the efforts of researchers by the end of 1980 [10]. An atom

can coherently exchange excitation with field which result in loss of coher-

ence known as decoherence through dissipative part of system. This is the

elementary unit of quantum optics.

The information processing in quantum leads to the quantum cryptography

and quantum computation which developed vigorously in recent years by

Feymann, Deutsch, Bennett and others. In 1984, the discovery of quantum

key protocols opens the path for quantum communication. These includes

BB84 protocol by Charles H. Bennett and Gilles Brassard [11] and E91 by

Artur Ekert [12]. Bell’s work has a strong impact in these communication

resources. For the proof of security, violation of Bell’s inequality is used in

E91 protocol. In 2022, Nobal Prize was also awarded “for experiments with

entangled photons, establishing the violation of Bell inequalities and pioneer-

ing quantum information science" to Aspect, Clauser, and Anton Zeilinger

[13].

1.2 Motivation

Quantum entanglement is turning up as an important aspect in field on

quantum computing and information. In recent year, Nobel Prize was also

awarded “ for experiments with entangled photons, establishing the violation

of Bell inequalities and pioneering quantum information science". The mo-

tivation behind this thesis is the necessity of entanglement for the complete

deployment of quantum computing. It is a sort of computational multiplier

for qubits. As we go on increasing the number of entangled qubits, the abil-

ity of the system to make calculations grows exponentially. Therefore, it is

crucial to understand the phenomenon of early stage disentanglement often

called entanglement sudden death (ESD) to analyze the dynamics of a sys-
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tem. Entanglement is considered not to suffer from decoherence over a long

period of time. But it is seen that due to some unavoidable noises, entangle-

ment decay to zero in a finite time. Moreover, dense coding capacity being

the application of entanglement is the important feature in quantum infor-

mation. Therefore, it will be beneficial to see the evolution of dense coding

capacity with time to analyze the quantum system.

1.3 Objectives and achievements

The objective of this thesis is to review the generation of entanglement and

analyze the phenomenon of early stage disentanglement (ESD) of two qubits

system mediated by plasmonic waveguide for different initial states. In ad-

dition to this, time variation of dense coding capacity is also examined as

an application of entanglement. For this objective, two different waveguide

geometries are studied i.e. cylindrical nanowire and V-shaped channel. Mas-

ter equation approach is used to see the time evolution of density matrix

elements. Moreover, entanglement rebirth or revival is noticed at later time

for different initial states. Dark period is estimated for both geometries.

It is observed that the characteristics of the entanglement sudden birth are

different for both geometries. It is worth to see the entanglement rebirth

for all initial coherence values for the case of maximally entangled mixed

state. The dark period of cylindrical geometry is found to be less than the

V-shaped channel in wake of collective damping term. Moreover, dense cod-

ing capacity is analyzed for both geometries by considering different initial

states. The optimal time of cylindrical geometry is found to be greater than

the V-shaped channel. It is seen that dense coding capacity have maximum

possible value for maximally entangled state.
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1.4 Structure of the Thesis

The rest of the thesis is structured into four chapters. In 2nd chapter the

fundamental concepts necessary to understand the quantum system are ex-

plained. Starting from a qubit (a basic building block of quantum infor-

mation), Bloch sphere and quantum states are elaborated. In this chapter,

representation of quantum state is shown, moreover a difference of pure and

mixed state is also discussed. The phenomenon of entanglement is analyzed

by studying the entangled state and Bell states. The basic structure of plas-

monic waveguide is explained. The phenomenon of measurement of entan-

glement and the process of decoherence is studied. How entanglement decay

to zero in a finite time which is the main subject of thesis is also discussed

in this chapter.

In chapter 3 the physical model under consideration is explained. The dy-

namics of two qubits entanglement are analyzed and master equation is de-

rived. Density matrix elements are examined and coupling parameters are

reviewed. The generation of entanglement for ideal PW and realistic PW is

compared.

In the fourth chapter, entanglement sudden death for the two qubits sys-

tem mediated by plasmonic waveguide is investigated. Two geometries are

considered for this purpose i.e. cylindrical nanowire and V-shaped channel.

Death and revival time is examined and dark period is estimated for different

initial states. On the basis of which both geometries are compared. Further-

more, dense coding capacity is also for examined for different initial states as

an application of an entanglement. Lastly, all the results are concluded and

discussed.
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Chapter 2

Fundamental Concepts

2.1 Qubit

Qubit in quantum system is used as a basic source of information. A digital

computer stores and transports information in form of bits. A bit is anything

that have two distinct positioning one represented by 0 and other by 1. For

example, a bulb can be on or off or the coin with head and tail, there is no

intermediate situation. In communication, bits are represented by either the

absence or presence of electrical signal carrying the value 0 or 1 respectively.

Quantum bit is made up of quantum system such as photon or electron.

Quantum bit can also exist in superposition state and even be entangled to

other quantum bits whereas classical bit can have only two distinct config-

urations. When a particle is used as a qubit, it is kept under controlled

environment. The superposition property of a quantum bit make it possible

for quantum computers to be in more than one states at once. The number

of states increases as 2n, where n is the number of qubits.

Qubit is basically a two level quantum system whose basis states are generally

represented as |0⟩ and |1⟩ or as a linear combination of both [14]. Generally,

if we talk about the basis states of qubit, we are considering z-basis as com-

putational basis which are represented in state vectors as:
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|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
.

A single qubit state is generally given as ψ = a |0⟩+ b |1⟩, with amplitude a

and b which can be normalized as |a|2 + |b|2 = 1

2.2 Bloch sphere

The field of quantum have unique applications in physics. Most of the prob-

lem solving techniques are addressed in quantum computing. The classical

bit can hold a value of either 0 or 1. However, in today’s world all mag-

nificence of quantum computing lies in quantum bit or qubit which just not

represent the 0 or 1 but an infinite array of their combinations known as

superposition. We are now capable of sending a large amount of data as

the superposition of 0 and 1. But the question is how does a quantum state

look like? Realising the nature at such microscopic level is always remained a

challenge for scientists. Mathematical and computing power is used to tackle

this mystery. In quantum mechanics and quantum computing, Bloch sphere

is the physical representation of quantum states of a two level system named

after the physicist Felix Bloch. Each qubit(a two level system) is represented

by a vector on a Bloch sphere [15]. Fig. 2.1 represents qubit state on a

surface of a Bloch sphere, here |+⟩ =
1√
2
(|0⟩ + |1⟩), |−⟩ =

1√
2
(|0⟩ − |1⟩),

|+ι⟩ =
1√
2
(|0⟩ + ι |1⟩) and |−ι⟩ =

1√
2
(|0⟩ − ι |1⟩). Researchers can utilize

various states within the sphere to their advantage. Each vector is charac-

terized by two basis: θ and ϕ. Here θ is the angle between vector and z-axis

while ϕ is the angle between vector and positive x-axis. All possible vectors

can be achieved by realizing θ and ϕ. The qubit state can be given as

n̂(nx, ny, nz) = (cosϕsinθ, cosθsinϕ, cosθ), (2.1)

8



|0⟩

|+⟩

|-⟩
|-i⟩

|+i⟩
Φ

|Ψ⟩

θ

|1⟩

Figure 2.1: The Bloch sphere representation of a qubit state.

where n̂ is the Bloch vector. Consider a generic state, |ψ⟩ = cos(
θ

2
)+eiϕsin(

θ

2
)

also written as

|ψ⟩ =

 cos(
θ

2
)

eiϕsin(
θ

2
)

 , (2.2)

different values of θ and ϕ leads to different states represented by different

points on Bloch sphere. To determine the state of a qubit we should know

either θ and ϕ or Bloch vector n̂.

A θ = 0, ϕ = 0 |A⟩ =
(
1
0

)
B θ = π, ϕ = 0 |B⟩ =

(
0
1

)
C θ = π/2, ϕ = π |C⟩ = 1√

2

(
1
−1

)
D θ = π/2, ϕ = π/2 |D⟩ = 1√

2

(
1
ι

)
E θ = π/2, ϕ = −π/2 |E⟩ = 1√

2

(
1
−ι

)

9



From n̂, we can write nx = cosϕsinθ, ny = cosθsinϕ, nz = cosθ

cos2(θ/2) =
1 + cosθ

2
,

cos(θ/2) =

√
1 + nz

2
, (2.3)

eiϕsin(
θ

2
) =

eiϕsin θ
2
cos θ

2

cos θ
2

=
eiϕsinθ

2cos θ
2

,

=
1

2cos θ
2

(sinθcosϕ+ ιsinθcosϕ), (2.4)

using Eq. (2.3), nx and ny we get

eiϕsin(
θ

2
) =

nx + ιny√
2(1 + nz)

. (2.5)

Substituting Eq.(2.3) and Eq. (2.5) in Eq.(2.2) we get the state of a qubit

in Bloch vectors representation

|ψ⟩ =


√

(1 + nz)

2
(nx + ιny√
2(1 + nz

 . (2.6)

2.3 Quantum states

Quantum state is used to define the quantum system mathematically. States

in classical mechanics are the one from which quantum states turn up. Any

dynamical state in classical mechanics is defined by the real values at each

point. For example, to represent a state of a ball there is need to define its

position and velocity. The time evolution of values occur under the equa-

tion of motion but remained determined. While values from quantum states

are complex number,quantized and provide a probability distribution as an

outcome for a system. In quantum, position and momentum is defined but

can not be measured simultaneously. This is recapitulated in uncertainty

principle defined by Heisenberg [16] which states that if the position and
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momentum are measured simultaneously then

∆x.∆p ≥ ℏ
2
. (2.7)

There are different ways to define a quantum state based on the kinds of

problems or systems. These are classified into two general categories: wave

functions which describes the quantum system with position or momentum

variables and vector quantum states. These two categories further divide the

system into pure and mixed state or into coherent and in coherent states.

Measurement is a macroscopic operation which filters the state when per-

formed on a quantum state. In quantum, measurement is the manipulation

of a physical system to yield the numerical value. Therefore, measurement

prepares quantum states for experiments. When performed on states, it may

alter the state and redefine it hence known as incompatible measurement.

2.3.1 Entangled state

Quantum entanglement is the most fascinating phenomenon in nature. This

feature was first recognized by Einstein, Podolsky and Rosen (EPR) in 1935.

This phenomenon occurs when a group of particles share spatial proximity

in such a way that the quantum state of each particle can not be described

independently of the other even when they are far apart. Entanglement has

many useful applications including quantum cryptography, quantum telepor-

tation and quantum dense coding.

In an entangled system, quantum states can not be defined as a product of its

local constituents [17]. The state of such system is defined as a superposition

of local constituents. Consider two systems X and Y with Hilbert space HX

and HY , the Hilbert space of composite system will be the tensor product of

both Hilbert spaces:

HXY = HX ⊗HY . (2.8)
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If the the individual systems are in state ψX and ψY respectively, then the

state of composite system is given as:

ψXY = ψX ⊗ ψY . (2.9)

The states of the system that can be expressed as Eq. (2.9) or simply can

be written as tensor product are known as separable states. The states that

are not separable are called entangled states. Now let |iX⟩ are the basis for

system X and |iY ⟩ for system Y, the simplest state can be written as:

ψXY =
∑
i,j

Cij |iX⟩ ⊗ |jY ⟩ . (2.10)

In this equation if CX
i and CY

j are given such that Cij = CX
i C

Y
j , the state is

separable while if Cij ̸= CX
i C

Y
j the state is inseparable called an entangled

state. Consider the basis vectors {|0⟩X , |1⟩X} and {|0⟩Y , |1⟩Y } for HX and

HY respectively, the entangled state is given as:
1√
2
(|00⟩XY + |11⟩XY ), hence

it is not possible to write the either system explicitly in form of pure state.

In this way, the given systems are entangled.

2.3.2 Bell states

Bell states are the class of maximally entangled states. These are the linear

combination of two states |0⟩ and |1⟩. These are

|ϕ+⟩ = 1√
2
(|00⟩+ |11⟩),

|ϕ−⟩ = 1√
2
(|00⟩ − |11⟩),

|ψ+⟩ = 1√
2
(|01⟩+ |10⟩),

|ψ−⟩ = 1√
2
(|01⟩ − |10⟩). (2.11)

These states obey the general conditions required for every basisi set that is

these are orthogonal and linearly independent. Thus basis set is written as

12



0.3

𝒂′

b𝒃′

a

Figure 2.2: A vector representation of two system(qubits) variables

B = {|ϕ+⟩ , |ϕ−⟩ , |ψ+⟩ , |ψ−⟩}. Bell defines mathematical prove of Einstein

ambiguity by introducing Bell inequalities. Consider a two qubit system, a

and a
′
are variable of one system whereas b and b

′
are of other (see Fig. 2.2).

a = ±1 and a
′
= ±1 are two possible measurement outcome of one qubit

whereas b = ±1 and b
′
= ±1 are possible results of measurement on second

qubit. The combination of joint result can be written as,

C = ab− ab
′
+ a

′
b+ a

′
b
′
,

= (a+ a
′
)b+ (−a+ a

′
)b

′
,

= ±2.

This correlation holds because either a = a
′
or a = −a′

, in first case second

term vanishes while in second case first term vanishes.

⟨C⟩ = |⟨ab⟩ − ⟨ab′⟩+ ⟨a′
b⟩+ ⟨a′

b
′⟩| ≤ 2. (2.12)

Bell inequality [18] involves the Bell operators a, a
′
, b, b

′
with sigma σ because

these operators have ±1 eigen values.

â = σ⃗.a, b̂ = σ⃗.b, â′ = σ⃗.a
′
, b̂′ = σ⃗.b

′
. (2.13)
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Bell states violate Bell inequality to its maximum. Let consider a Bell state

|ψ−⟩,

⟨ab⟩ = ⟨ψ−| âb̂ |ψ−⟩ ,

= ⟨ψ−|σA. a⊗ σB. b |ψ−⟩ ,

= ⟨ψ−|
∑
i

σA
i . ai

∑
j

σB
j . bj |ψ−⟩ ,

=
∑
i

∑
j

aibj ⟨ψ−|σA
i ⊗ σB

j |ψ−⟩ , (2.14)

here operator with superscript A will operate on state of first qubit and the

operator with superscript B will act on state of second qubit. After the

operation of sigma operators on qubit states and simplifying Eq .(2.14) we

will get

⟨ab⟩ =
∑
i

∑
j

aibjδij(−1),

= −
∑
i

aibi,

= −cos(θ), (2.15)

hence after solving other terms of Eq. (2.12), we can write

⟨ab⟩ = −cos(θ)ab = −cos(π/4) = −1/
√
2,

⟨ab′⟩ = −cos(θ)ab′ = −cos(−3π/4) = 1/
√
2,

⟨a′
b⟩ = −cos(θ)a′b = −cos(π/4) = −1/

√
2,

⟨a′
b
′⟩ = −cos(θ)a′b′ = −cos(π/4) = −1/

√
2. (2.16)

Substituting Eq. (2.16) in Eq. (2.12) will result in

⟨C⟩ = | − 1/
√
2− 1/

√
2− 1/

√
2− 1/

√
2|,

⟨C⟩ = 2
√
2 > 2. (2.17)

Therefore the Bell inequality is violated, as the Bell states violates the Bell

inequality by maximum hence maximum inequality that can be violated by

a quantum state is a factor of
√
2. Product state should not violate this

correlation.
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2.4 Density matrix

Density matrix was introduced by von Neumann to express the statistical

concepts in quantum. In quantum mechanics, density matrix or density op-

erator represents an alternate form of the quantum state of a physical system

[19]. It is more powerful tool than the wave function for real experimentally

generated quantum state. Moreover,decoherence and environmental effects

can be accounted by the time evolution of the density matrix. Let suppose

that the quantum system incorporates of |ψm⟩ states then its density matrix

is represented as a outer product of given states:

ρ(t) =
∑
m

pm |ψm⟩ ⟨ψm| , (2.18)

where
∑
m

pm = 1 Now if we specify the state as |x⟩ then by taking ⟨x| ρ |x⟩,

we can evaluate the probability of state x in the system. ρ plays a role of

probability distribution in quantum system.

⟨x| ρ |x⟩ = Tr[xρ], (2.19)

where Tr refers to tracing over diagonal elements of the matrix. Wave func-

tions and state vectors can only represent pure states but the density matrices

can also describe the mixed states. Therefore, density operator is an impor-

tant tool in dealing with mixed states. Some important properties of density

operator are:

• Density operator ρ is Hermitian that is ρ = ρ†.

• ρ is positive semi-definite:

⟨ψ| ρ |ψ⟩ = 0,

⟨ψ|
∑
m

pm |ψm⟩ ⟨ψm| |ψ⟩ =
∑
m

pm ⟨ψ| |ψm⟩ ⟨ψm| |ψ⟩ ≥ 0.

15



• Trace of ρ = 1 :

Tr(ρ) = Tr(
∑
m

pm |ψm⟩ ⟨ψm|),

=
∑
m

pmTr(|ψm⟩ ⟨ψm|),

=
∑
m

pm ⟨ψm| |ψm⟩ ,

= 1.

• The joint density matrix of separable individual systems is the tensor

product of the individual density matrices, ρ1 ⊗ ρ2 ⊗ ρ3 ⊗ ......⊗ ρn.

A general density matrix of two qubit system is presented as
ρ00 ρ0+ ρ0− ρ03
ρ+0 ρ++ ρ+− ρ+3

ρ−0 ρ−+ ρ−− ρ−3

ρ30 ρ3+ ρ3− ρ33

 . (2.20)

2.4.1 Pure state

Pure state is a state that can not be written as a combination of other

quantum states. It can be presented by quantum ket as well as density

matrix. The density operator of pure state is given as:

ρ = |ψ⟩ ⟨ψ| , (2.21)

where ψ is a quantum state. consider a pure state of form |ψ⟩ = 1√
2
(|0⟩+|1⟩),

now the density operator is presented as

ρ =
(|0⟩+ |1⟩)(⟨0|+ ⟨1|)

2
,

=
|0⟩ ⟨0|+ |0⟩ ⟨1|+ |1⟩ ⟨0|+ |1⟩ ⟨1|

2
,

=
1

2

(
1 1
1 1

)
.
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For a pure state : Tr(ρ) = Tr(ρ2)

ρ2 = ρ.ρ,

= |ψ⟩ ⟨ψ| |ψ⟩ ⟨ψ| ,

= |ψ⟩ ⟨ψ| , (2.22)

as ρ2 = ρ hence Tr(ρ) = Tr(ρ2).

2.4.2 Mixed state

Mixed states are the probabilistic ensembles of the pure states and it can

not be presented by a quantum ket. Therefore, density operator is utilized

to describe the mixed states.

ρ =
∑
i

pi |ψi⟩ ⟨ψi|, (2.23)

where pi is the probability amplitude of the corresponding wave function with∑
i

pi = 1. Consider a wave function with 50% probability of |0⟩ and other

with 50% probability of |1⟩ state

|ψ1⟩ =
1

2
|0⟩ , |ψ2⟩ =

1

2
|1⟩ .

Now the density matrix of above states

ρ = p1 |ψ1⟩ ⟨ψ1|+ p2 |ψ2⟩ ⟨ψ2|,

=
1

2
|0⟩ ⟨0|+ 1

2
|1⟩ ⟨1| ,

=
1

2

(
1 0
0 1

)
.
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For mixed state : Tr(ρ2) < Tr(ρ)

ρ2 = ρ.ρ,

=
∑
i

pi |ψi⟩ ⟨ψi|
∑
j

pj |ψj⟩ ⟨ψj| ,

=
∑
i

∑
j

pjpi |ψi⟩ ⟨ψi| |ψj⟩ ⟨ψj| ,

=
∑
i

∑
j

pjpiδij |ψi⟩ ⟨ψj| ,

=
∑
i

|pi|2 |ψi⟩ ⟨ψi| . (2.24)

Individual probability of each state is less than one, so its square will become

much smaller hence ρ2 < ρ and Tr(ρ2) < Tr(ρ). It is inferred from density

matrix of pure and mixed states that the off diagonal terms are the one

making the difference between two states [20].

2.5 Plasmonic waveguide

Plasmon are the nanomaterials that can capture, confine and propagate the

optical energy. The optical property of plasmon structures make them an

interesting topic of research. A hybrid plasmonic waveguide is formed by

separating a high refractive index material from metal surface by a gap.

Plasmonic field is emerging due to the optical properties at a nanoscale.

There are numerous waveguide structures that can confine energy at inter-

face of metal and dielectric. The plasmonic structures that have muscular

optical confinement includes metallic nanowires, V-shaped groove, metallic

nanoparticles and wedges. These geometries have strong confinement only

when operating near the frequency of surface plasmon ωpl. Most of the plas-

monic waveguides exhibit different behaviour in terms of propagation length

and energy confinement. Propagation length l is the distance a mode travels

before energy density decay into e−1 of its original value.

l =
1

2ki
, (2.25)
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where wave vector imaginary part is represented by ki as k = kr + iki [21].

Due to the unique properties of plasmonic structures, they have a range of

applications in science and energy transfer. The field of quantum plasmonics

is making its way towards optical devices for communication, computing

applications and quantum sensor.

2.6 Concurrence

Entanglement being the weird phenomenon of quantum world is getting sig-

nificance in recent years. It is necessary to quantify the entanglement. For

both pure and mixed state of bipartite system there are ways of quantify-

ing the entanglement. There is one way for pure states while three ways

(including entanglement of formation, negativity and relative entropy of en-

tanglement) for mixed states of such systems. In entanglement of formation

[22], there is a simpler way of measuring the degree of entanglement of a

system called concurrence. The concurrence of a quantum state is zero if the

state is separable and one if the state is maximally entangled.

Consider a state of qubits as |Ψ⟩ which is example of pure state.. The con-

currence of the state will be defined as

C(Ψ) = | ⟨Ψ| |Ψ̃⟩ |, (2.26)

where Ψ̃ is spin flip operation on Ψ and |Ψ̃⟩ = (σy ⊗ σy) |Ψ∗⟩. Here σy is the

Pauli matrix
(
0 −ι
ι 0

)
and |Ψ∗⟩ is the complex conjugate of |Ψ⟩ in the basis

{|00⟩ , |01⟩ , |10⟩ , |11⟩}. The spin flip operation when applied takes the state

of each qubit to the orthogonal state while the state is contrarily the other

way around on the Bloch sphere in case of pure state. Hence the concurrence

is zero for the pure state. Conversely, the maximally entangled state remains

invariant under the spin flip operation resulting in maximum possible value

of concurrence. If the qubit system is described by density operator rather

than a state vector, then Pauli operator σy is applied on both sides of density
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operator, hence the spin flip operator will be

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy). (2.27)

The entanglement in case of pure state can be written as

E(Ψ) = E(C(Ψ)),

where C(Ψ) is the concurrence defined by Eq. (2.26) and E is given as

E(C) = −1 +
√
1− C2

2
log2

1 +
√
1− C2

2
− 1−

√
1− C2

2
log2

1−
√
1− C2

2
.

(2.28)

The function E(C) ranges from 0 to 1 as the C goes from 0 to 1. Now for a

mixed state of two qubits the entanglement is defined as

E(ρ) = E(C(ρ)), (2.29)

where C(ρ) is defines as C(ρ) = max{0, ζ1 − ζ2 − ζ3 − ζ4}, ζi being the

non-negative real numbers are the eigen values in decreasing order of R ≡√√
ρρ̃

√
ρ, where R is the Hermitian matrix. If we consider an X-state, the

general density matrix is given as:

ρ =


ρ00 0 0 ρ03
0 ρ++ ρ+− 0
0 ρ−+ ρ−− 0
ρ30 0 0 ρ33

 , (2.30)

with ρ33 + ρ++ + ρ−− + ρ00 = 1. The eigenvalues of matrix R are given by

√
ζ1,2(t) = |ρ03(t)| ± (ρ++(t) + ρ−−(t)),√
ζ3,4(t) = (ρ++(t)− ρ−−(t))±

√
ρ00(t)ρ33(t). (2.31)

It is evident that for a particular value of matrix elements, there are two

possibilities for the largest eigenvalue. Consequently, concurrence can be

defined in two alternative ways

C(t) = max{0, C1(t), C2(t)}, (2.32)
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where

C1(t) = 2|ρ30(t)|

−
√

(ρ++(t) + ρ−−(t))2 − (ρ+−(t) + ρ−+(t))2,

C2(t) =
√

(ρ++(t)− ρ−−(t))2 − (ρ+−(t)− ρ−+(t))2

− 2
√
ρ33(t)ρ00(t). (2.33)

C1(t) is sustainable for condition ρ30(0) ̸= 0 while for large symmetric and

anti-symmetric initial populations, C2(t) is influential. C2(t) will arise only

when imbalance of symmetric and anti-symmetric states population ocurred.

2.7 Decoherence

Quantum coherence is brittle in a sense that when system come in contact

with the noises, its coherence start decaying [23]. This is analyzed by the

decay of off-diagonal terms in density matrix of the given state. When a

quantum system comes in interaction with the environment, information is

altered which is known as environmental decoherence. The environmental

interaction suppresses the interference between states. The loss of a coher-

ence is the hurdle in quantum communication tasks. Entangled states are the

special forms of the coherent superposition of multipartite quantum states.

These are considered important in quantum communication, quantum tele-

portation and superdense coding. Decoherence disentangles the states that

is why it is crucial towards experimental realisation of quantum information

processors.

Decoherence is mainly characterized into local and non-local decoherence

which are important in understanding of quibts jointly controlled by common

external sources such as electromagnetic field. The process of decoherence is

gradual.

The one difference between decoherence and disentanglement [24] is that co-
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herence of the composite system does not lost completely while entanglement

decays completely after a characteristic time. Hence, in general entanglement

is more brittle phenomenon as compared to the quantum coherence.

2.8 Entanglement sudden death

The dynamical behaviour of quantum system shows that the correlations such

as entanglement between qubits can be degraded by environmental noises. If

the correlations dies in finite time, it is known as early stage disentanglement

also called entanglement sudden death (ESD) which has been deliberated by

Yu and Elberly [25]. This decay of entanglement with time shared by two

or more parties is unavoidable [26, 27, 28, 17]. Theoretical observations of

two qubits entanglement shows that the degradation of entanglement does

not always follow a half-life decay rule. It is possible for even a very weakly

dissipative environment to degrade the entanglement of a system to zero in

a finite time rather than by successive halves, which refers to entanglement

sudden death.

A two part joint state is presented by a matrix called the density matrix ρ in

quantum mechanics. In the presence of environmental noises, density matrix

start changing with time. The degradation of entanglement is then tracked

by the quantum mechanical phenomenon called concurrence which is written

as Eq. (2.32). When concurrence is zero it means there is no entanglement

and when it is one means entanglement is maximum. In case of a spontaneous

emission, there is no environment involved except for the vacuum. There are

still noisy effects due to the quantum fluctuations in vacuum which can not

avoided. These noisy effect will decay the entanglement of atoms resulting

in zero entanglement as their final fate.

Now the question arises that in how much time entanglement decays to zero?

For this purpose we have considered different initial states in chapter.4 and

time of ESD is observed for two different geometries.
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2.9 Superdense coding

Quantum superdense coding (QSDC) or superdense coding (SDC) being an

application of entanglement is widely used in quantum information science

[29]. It can be beneficial in improving the capacity of quantum communi-

cation. It has been extensively studied both in theory and experiment. It

allows us to transfer two classical bits of information only by sending one

qubit with the assumption of presharing a maximally entangled state (an

Einstein-Podolsky-Rosen (EPR) state). Concisely two parties (sender and

receiver) share the qubit in a Bell state. The sender performs Unitary oper-

ations and sends particles to the receiver. The receiver then can distinguish

among states to obtain two classical bits of information. These protocols

enhance channel capacity through entanglement between two users. SDC is

a secure way of transferring information between two users through secret

quantum coding. Suppose Alice and Bob are two parties, Alice wants to send

a information (two bits) to Bob using qubit. For this purpose, an entangled

state is prepared by third party called Charlie using a Bell circuit. In this

way one qubit is sent to Alice and the other to Bob. After receiving the

qubit, Alice now performs the desired operation on her qubit depending on

the bits she wants to send to Bob. After Bob has received the entangled

qubit, he performs suitable quantum gate and recover the information of two

bit message after measurement. In all this protocol, Alice does not find a

need to communicate to Bob which gate operation he should apply on qubit

to get the correct bit information [30].

For example, let consider a Bell state (an entangled state) as |η+⟩AB =
1√
2
(|0⟩A ⊗ |0⟩B + |1⟩A ⊗ |1⟩B) also written as |η+⟩AB =

1√
2
(|0⟩A |0⟩B +

|1⟩A |1⟩B) is sent to the Alice and Bob, subscript A corresponds to Alice

and B to Bob. Now Alice will decide the coding depending on the message

she wants to send. Alice can transform the entangled state into any of the

four Bell states by performing the quantum gate. Let say, if Alice has to
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send 00, then she will apply the identity quantum gate I =

(
1 0
0 1

)
on

her qubit, hence the resulting state will remain unchanged. If Alice wants

to send 01, 10, 11 bit then the gate operation will change to I =

(
0 1
1 0

)
,

I =

(
1 0
0 −1

)
and I =

(
0 1
−1 0

)
respectively. After performing one of

these operations, Alice send entangled qubit to Bob through some channel.

Bob then decodes the encoding sent by Alice. For this, Bob will perform

CNOT unitary operation with A controlled and B as target qubit, then he

will perform H ⊗ I operation on qubit A and by the resulting basis Bob will

come to know the bit string Alice has sent. For example, if the entangled

state of Alice was
1√
2
(|10⟩AB+ |01⟩AB), which means Alice wants to send bit

01 then in the Bob’s lab CNOT operation will change the previous state to
1√
2
(|11⟩AB+ |01⟩AB). Now Hadamard H gate is applied only to A which will

result in state
1

2
((|0⟩ − |1⟩)⊗ |1⟩+ (|0⟩+ |1⟩)⊗ |1⟩), for simplicity subscripts

are removed. After simplification Bob will get |01⟩ as an end result hence he

knows that Alice wants to send 01 as two bit message.
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Chapter 3

Entanglement Generation

In this chapter, generation of two qubit entanglement is reviewed for two

different waveguide geometries. For this objective, first model of system is

explained, then master equation is derived and evolution of density matrix

elements is observed.

3.1 Model

The system under analysis is consists of two qubits placed at a horizontal

distance d from each other and at height h from metallic waveguide. The

qubit system is placed nearby metallic waveguide to enhance the electromag-

netic (EM) interaction by 1-D plasmonic structures. Qubits will be treated

as two level system with transition frequency ω0 compatible to the emission

wavelength λ = 600nm see Fig. 3.1. Two different waveguide geometries are

reviewed to check their influence, (i) cylindrical nanowire and (ii) V-shaped

channel waveguide. To analyze the both geometries, their parameters are

defined in such a way that propagation length (see section 2.5) is same for

both. Plasmonic modes are responsible for qubit-qubit interaction in the

model, identical propagation length will be meaningful in comparison of both

geometries. The propagation length l is kept 1.7µm. The metal considered

is silver in this case.
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q1

d

h

q2

Figure 3.1: Two distant qubits q1 and q2 placed at height h from a waveguide.

3.2 Two-qubit entanglement dynamics

The entanglement dynamics of two level system are analyzed in this section.

The interaction of the system with EM field mediated by plasmons can be

illustrated by Green’s tensor approach [31]. Thus all the parameters can be

extracted from the classical Green’s tensor that will describe the interaction

between system and the environment. The Hamiltonian of the system is

Ĥ = Ĥ0 + ĤI, (3.1)

Ĥ =

∫
d3R

∫ ∞

0

dωℏωb̂†(R, ω)b̂(R, ω) +
∑
i=1,2

ℏω0σ̂
+
i σ̂

−
i

+HI. (3.2)

Where R is the position, σ̂−
i and σ̂+

i are the lowering and raising operators

of i-qubit respectively, b̂† and b̂ are the bosonic fields playing the role of

electromagnetic field and dielectric medium variables, ω0 is the transition

frequency and HI is the Hamiltonian which is responsible for interaction

between atoms and the electromagnetic field.

HI = −ιℏ
∑
k

N∑
i=1

[µ̃i.g̃k(σ
+
i + σ−

i )b̂k − H.c.], (3.3)
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and EM operator is given as

Ê(R, ω) = ι

√
ℏ
πϵ0

ω2

c2

∫
d3R

′√EI(R′ , ω)G(R,R
′
, ω)b̂(R

′
, ω). (3.4)

Here G(R,R
′
, ω) represents the Green’s tensor [32, 33] which carries the EM

interaction from spatial point R
′
to R and E(R′

, ω) = Er(R
′
, ω) + iEI(R

′
, ω)

which is Kramers-Kronig consistent permittivity.

The transformation of Hamiltonian is given as

ĤI(t) = eιĤ0tĤIe
−ιĤ0t, (3.5)

= −ιℏ
∑
k

N∑
i=1

{µ⃗i.g⃗kσ
+
i b̂ke

−ι(ωk−ωi)t + µ⃗i.g⃗kσ
−
i b̂ke

−ι(ωk+ωi)t − H.c.}.

(3.6)

Entanglement dynamics of the two qubits governed by their EM interaction

can be described by reduced density matrix ρ̂ of the corresponding system.

3.2.1 Master equation

Consider ρqf is the density matrix representing the statistical states of com-

bined system. The system Hamiltonian variation with time in terms of a

density operator is given as

∂ρ̂qf
∂t

=
1

ιℏ
[Ĥ, ρ̂qf ]. (3.7)

In interaction picture, Eq. (3.7) can be written as

˜̂ρqf (t) = eιĤt/ℏρ̂qf e
−ιĤt/ℏ. (3.8)

The transformed density matrix should satisfy the Heisenberg’s picture,

∂ ˜̂ρqf (t)

∂t
=

1

ιℏ
[ĤI , ˜̂ρqf ], (3.9)

˜̂ρqf (t) = ˜̂ρqf (0) +
1

ιℏ

∫ t

0

dt
′
[ĤI(t

′
), ˜̂ρqf (t

′
)], (3.10)
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where ĤI is the interaction Hamiltonian. Substituting Eq. (3.10) in right

side of Eq. (3.9):

∂ ˜̂ρqf (t)

∂t
=

1

ιℏ
[ĤI , ˜̂ρqf (0) +

1

ιℏ

∫ t

0

dt
′
[ĤI(t

′
), ˜̂ρqf (t

′
)]],

=
1

ιℏ
[ĤI , ˜̂ρqf (0)]−

1

ℏ2

∫ t

0

dt
′
[ĤI , [ĤI(t

′
), ˜̂ρqf (t

′
)]], (3.11)

now taking trace over vacuum field variables and writing reduced density

matrix of the qubit system ρ̂q(t) = Trf ˜̂ρqf (t),

∂ρ̂q(t)

∂t
=

1

ιℏ
Trf [ĤI, ˜̂ρqf(0)]−

1

ℏ2

∫ t

0

dt
′
Trf{[ĤI, [ĤI(t

′
), ˜̂ρqf(t

′
)]]}. (3.12)

Initial state is chosec so that the qubit system and the vacuum field have

no correlation between them. This will allow us to factorize initial density

operator of combined system as

˜̂ρqf (0) = ρ̂q(0)ρ̂f (0), (3.13)

here ρ̂f represents the density matrix of vacuum field. Now Born approxima-

tion [34] will be applied which means interaction between qubits and the EM

field is weak and in field there is no back reaction on the system. Hence, in

this approximation, state of vacuum do not move in time, so density operator
˜̂ρqf (t

′
) of Eq. (3.12) results in

˜̂ρqf (t
′
) = ρ̂q(t

′
)ρ̂f (0). (3.14)

After this approximation, changing the variable of time parameter t
′
= t− τ

and simplifying

∂ρ̂(t)

∂t
=

1

ιℏ
Trf [ĤI, ρ̂q(0)ρ̂f(0)],

− 1

ℏ2

∫ t

0

dτ Trf{[ĤI(t), [ĤI(t− τ), ρ̂q(t− τ)ρ̂f(0)]]}. (3.15)

After substituting ĤI(t), we will see the dependence of density operator on

correlation function of vacuum field operators. These correlations are given

28



as

Trf [ρ̂f(0)b̂k] = Trf [ρ̂f(0)b̂
†
k] = 0,

Trf [ρ̂f(0)b̂kb̂
†
k′
] = [|D(ωk)|2N(ωk) + 1]δ3(k − k

′
)δss′ ,

Trf [ρ̂f(0)b̂
†
k′
b̂k] = |D(ωk)|2N(ωk)δ

3(k − k
′
)δss′ ,

Trf [ρ̂f(0)b̂k′ b̂k] = D(ωk)
2M(ωk)δ

3(2ks − k − k
′
)δss′ ,

Trf [ρ̂f(0)b̂
†
k′
b̂†
k] = D(ωk)

∗2M∗(ωk)δ
3(2ks − k − k

′
)δss′ . (3.16)

Now changing the sum into integral∑
k

−→ V

(2πc)3

2∑
s=1

∫ ∞

0

dωkω
2
k

∫
dΩk, (3.17)

using the correlation functions from Eq. (3.16) and after applying rotating-

wave approximation, the master equation will take the form as
∂ρ̂

∂t
=
∑
i,n

{[σ−
n X̂in(t, τ), σ

+
i ] + [σ−

n , X̂
†
ni(t, τ)σ

+
n ] + [σ+

n Ŷin(t, τ), σ
−
i ]

+ [σ+
n , Ŷ

†
ni(t, τ)σ

−
n ] + [σ+

i Ẑin(t, τ), σ
+
n ] + [σ+

i , Ẑin(t, τ)σ
+
n ]

+ [σ−
i Ẑ

†
in(t, τ), σ

−
n ] + [σ−

i , Ẑ
†
in(t, τ)σ

−
n ]}, (3.18)

here the time operators are given as

X̂in =
V

(2πc)3

∫
dωkω

2
ke

−ι(ωi−ωn)t

∫
dΩk

2∑
s=1

ζ−in(t, τ),

Ŷin =
V

(2πc)3

∫
dωkω

2
ke

ι(ωi−ωn)t

∫
dΩk

2∑
s=1

ζ+in(t, τ),

Ẑin =
V

(2πc)3

∫
dωkωk(2ωs − ωk)e

−ι(2ωs−ωi−ωn)t

∫
Ωs

dΩk

2∑
s=1

ζMin (t, τ), (3.19)

with

ζ±in(t, τ) = [|D(wk)|2N(wk) + 1][µi.gk][µ
∗
n.g

∗
k]

∫ t

0

dτ ρ̂(t− τ)e−ι(ωk±ωn)τ

+ [|D(wk)|2N(wk)][µ
∗
i .g

∗
k][µn.gk]

∫ t

0

dτ ρ̂(t− τ)e+ι(ωk∓ωn)τ ,

ζMin (t, τ) =M(wk)D
2(wk)[µi.gk][µn.gk]

∫ t

0

dτ ρ̂(t− τ)e+ι(2ωs−ωk∓ωn)τ . (3.20)
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The master Eq. (3.18) with parameters given in Eq. (3.19) and Eq. (3.20)

is a general form of an integro-differential equation and can be simplified

by using Markovian approximation. According to this approximation, the

density operator hardly changes from ρ̂(t) over a time period τ . Therefore,

by replacing ρ̂(t − τ) by ρ̂(t) in Eq. (3.20). By extending the integral to

infinity and performing integration over τ we get

limt→∞

∫ t

0

dτ ρ̂(t− τ)eιxt ≈ ρ̂(t)

[
πδ(x) + ι

P

x

]
, (3.21)

where P is the principle integral value. To carry out the integral over dΩk

in Eq. (3.19) spherical representation is used for wave vector k and dipole

moments are kept parallel of two level system, hence

k = |⃗k| [sinθcosϕ, sinθsinϕ, cosθ] , (3.22)

and orientation of atomic dipole can be taken as

µi = |µi| [1, 0, 0] ,

µn = |µn| [1, 0, 0] , (3.23)

so with this choice of vectors and dipole moments, we obtain

X̂in(t, τ) = {[1 + N̂(ωs)]

(
1

2
γin − ιΩ−

in

)
+ ιN̂(ωs)Ω

+
in}ρ̂(t)e−ι(ωi−ωn)t,

Ŷin(t, τ) = {[Ñ(ωs)]

(
1

2
γin + ιΩ−

in

)
− ι[1 + Ñ(ωs]Ω

+
in}ρ̂(t)eι(ωi−ωn)t,

Ẑin(t, τ) = M̃(ωs)

(
1

2
γin + ιΩM

in

)
ρ̂(t)e−ι(2ωs−ωi−ωn)t, (3.24)

where

Ñ(ωs) = N(ωs)|D(ωs)|2
1

2

[
1− 1

4
(3 + cos2θ)cosθ

]
,

M̃(ωs) =M(ωs)|D(ωs)|2
1

2

[
1− 1

4
(3 + cos2θ)cosθ

]
. (3.25)
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The parameter γin apperaing in Eq. (3.24) is emission rate when i = n such

that

γii =
ω3
i µ

2
i

3πE0c3
, (3.26)

and when i ̸= n is the collective spontaneous emission rate arises due to

interaction between qubits through the EM field.

γin =
√
γiγnJ(kr), (3.27)

here

J(kr) =
3

2

(
[1− (µ.r)2]

sin(kr)

kr
+ [1− 3(µ.r)2]

[
cos(kr)

kr

2

− sin(kr)

kr

3
])

.

(3.28)

The remaining parameters of Eq. (3.24) are given as

Ω±
in = P

√
γiγn

2πω3
0

∫ ∞

0

ω3
kJ(ωkr/c)

ωk ± ωn

dωk,

ΩM
in = P

√
γiγn

2πω3
0

∫ ∞

0

ω2
k(2ωs − ωk)J(ωkr/c)

2ωs − ωk − ωn

dωk, (3.29)

Hence, the master equation with parameters of Eq. (3.24) is written as

∂ρ̂

∂t
= −1

2

N∑
i,n=1

γin

[
1 + Ñ(ωs)

]
(ρ̂σ+

i σ
−
n + σ+

i σ
−
n ρ̂− 2σ−

n ρ̂σ
+
i )

− 1

2

N∑
i,n=1

γinÑ(ωs)(ρ̂σ
−
i σ

+
n + σ−

i σ
+
n ρ̂− 2σ+

n ρ̂σ
−
i )

+
1

2

N∑
i,n=1

(γin + ιΩM
in )M̃(ωs)(ρ̂σ

+
i σ

+
n + σ+

i σ
+
n ρ̂− 2σ+

n ρ̂σ
+
i )

+
1

2

N∑
i,n=1

(γin − ιΩM
in )M̃

∗(ωs)(ρ̂σ
−
i σ

−
n + σ−

i σ
−
n ρ̂− 2σ−

n ρ̂σ
−
i )

− ι

N∑
i=1

(ωi + δi)[σ
z
i , ρ̂]− ι

N∑
i ̸=n

Ωin[σ
+
i σ

−
n , ρ̂], (3.30)
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where δi is the lamb shift of atomic levels which depends on intensity given

as

δi = [2Ñ(ωs) + 1](Ω+
ii − Ω−

ii), (3.31)

and vacuum induced coherent interaction between qubits is given as

Ωin = −(Ω+
in + Ω−

in). (3.32)

The final form of master equation is given by Eq. (3.30) which shows the

dynamics of two interacting qubits. The interacting parameters γin and Ωin

modify the system. γin is the coupling between qubits due to the vacuum

field and Ωin is the coherent dipole-dipole interacting term. Here dipole-

dipole interacting term plays the same role as Rabi frequency in atom-field

interaction. In case of interaction of atom with ordinary vacuum, Ñ(ωs) =

M̃(ωs) = 0 the resulting equation will take the form

∂ρ̂

∂t
=− i

ℏ
[Ĥs, ρ̂]−

1

2

∑
i,n

γin(ρ̂ σ̂
+
i σ̂

−
n + σ̂+

i σ̂
−
n ρ̂− 2σ̂−

n ρ̂σ̂
+
i ), (3.33)

where

Ĥs =
∑
i

ℏ(ω0 + δi)σ̂
+
i σ̂

−
i +

∑
i̸=n

ℏΩinσ̂
+
i σ̂

−
n . (3.34)

Here δi is the Lamb shift due to the self electromagnetic association of

qubits in existence of plasmonic waveguide, γ11 = γ22 = γ is the sponta-

neous emission. The master equation is solved by employing the Dicke bases

|0⟩ = |g1g2⟩, |±⟩ =
1√
2
(|g1e2⟩ ± |e1g2⟩) and |3⟩ = |e1e2⟩ [35] to obtain the
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density matrix elements given by

ρ33(t) = e−2γtρ33(0),

ρ++(t) = e−(γ+γ12)tρ++(0)

+
γ + γ12
γ − γ12

(e−(γ+γ12)t − e−2γt)ρ33(0),

ρ−−(t) = e−(γ−γ12)tρ−−(0)

+
γ − γ12
γ + γ12

(e−(γ−γ12)t − e−2γt)ρ33(0),

ρ+−(t) = e−(γ−2ιΩ)tρ+−(0),

ρ−+(t) = e−(γ+2ιΩ)tρ−+(0), (3.35)

along ρ00(t) = 1− ρ33(t)− ρ++(t)− ρ−−(t) .

3.2.2 Decay rates

Qubit-qubit interaction is mainly caused by plasmon and dipole couples

mainly to plasmon mode. By using plasmonic contribution of Green’s tensor,

the dipole-dipole shift and decay rates are given as follows

Ωin =
γ

2
βe−d/2lsin(kd),

γin = γβe−d/2lcos(kd), (3.36)

where l is the propagation length of plasmon, d is the qubit-qubit separation,

k is the wave vector expressed as k = 2π/λpl. Beta factor β is the ratio of

plasmon decay rate γpl and all the emissions coupled to plasmon β = γpl/γ. In

both geometries, the orientation of qubits are set such that the β is maximum.

For this purpose, h height of qubit from waveguide is kept 20nm and 150nm

for cylinder and V-shaped channel respectively. The orientation of cylinder

is set as vertical and for channel horizontal orientation is kept to maximize

β. 417nm is chosen as operating wavelength for cylinder and 474nm for

V-shaped channel. The corresponding β factor in accordance with these

parameters is 0.6 and 0.9 for cylinder and channel respectively.
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3.3 Entanglement generation

Consider two identical distant qubits. In this case, d is set equal to λpl. The

position and orientation of PW is chosen in such a way to maximize the β

factor. The system initial state is taken as |10⟩ = |e1g2⟩ =
1√
2
(|+⟩ + |−⟩),

which is an unentangled state.

|e1g2⟩ ⟨e1g2| =
1

2
(|+⟩+ |−⟩)(⟨+|+ ⟨−|). (3.37)

In this case the evolution is confined to {|0⟩ , |+⟩ , |−⟩} and hence the density

matrix elements reduced to

ρ++(t) = e−(γ+γ12)tρ++(0),

ρ−−(t) = e−(γ−γ12)tρ−−(0),

ρ+−(t) = e−(γ−2ιΩ)tρ+−(0),

ρ−+(t) = e−(γ+2ιΩ)tρ−+(0), (3.38)

along ρ00(t) = 1− ρ++(t)− ρ−−(t).
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Figure 3.2: (Color Online)Variation of concurrence and state populations (a)
Ideal PW with β = 1 and l = ∞ (b) V-shaped channel.

The concurrence (Eq.(2.33)) and populations (ρ++(t), ρ++(t)) are plotted in

Fig. 3.2. For an ideal PW case, it is seen that entanglement grows with time

upto C(t) = 0.5 while in realistic channel waveguide case, the entanglement

reaches a maximum value of 0.33. This entanglement generation is the out

turn of populations imbalance. In case of channel waveguide, after reaching

a maximum value entanglement start decaying due to the decay rate of state

populations.
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Chapter 4

Entanglement sudden death

Entanglement sudden death (ESD) or early stage disentanglement [36, 25] is

the phenomenon of degradation of a quantum correlation to zero in a finite

time due to the presence of even a very weak dissipative environment. This

dissipation attacks the entanglement, the fundamental source of quantum

information. In this chapter ESD is investigated for different initial states

and later on entanglement rebirth/revival is also observed to estimate the

dark period for both geometries.

4.1 Entanglement sudden death and revival

In this section, different initial states are considered and their entanglement

dynamics are evaluated.

4.1.1 Entangled State

Consider a non-maximally entangled initial state |Ψ⟩,

|Ψ⟩ =
√
1− a |0⟩+

√
a |3⟩ , (4.1)

where |0⟩ and |3⟩ correspond to the ground and excited state respectively.

The parameter a decides the degree of entanglement between ground and

excited states. The variation of concurrence for the initial entangled state
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|Ψ⟩ is shown in Fig. 4.1 for both geometries. For t = 0, Eq. (2.33) reduces to

C1(0) = 2
√
a(1− a). There is no entanglement for independently radiating

a two-level system (Γ = 0). Hence, by using the condition C1(t) = 0, death

time of entanglement can be found as

Td ≃
1

γ
ln

(
a

a−
√
a(1− a)

)
. (4.2)

It is evident from Eq. (4.2) that the disentanglement of qubits occurs for

a > 1/2. Entanglement decays earlier and regenerates at later times due to

a substantial population of symmetric and antisymmetric terms.

Tr ≃
k

γ12
ln

(
4γ√

a(γ − γ12)

)
. (4.3)

(a)

C1(t)

C2(t)

(b)

C1(t)

C2(t)

Figure 4.1: (Color online) Variation of C(t) for initial entangled state |Ψ⟩ at
d ≃ h for (a) cylinder and (b) channel.
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Figure 4.2: (Color online) Variation of C(t) for initial entangled state |Ψ⟩ at
a = 3/5 and d ≃ 5h/2 for (a) cylinder and (b) channel

38



(a)
3 6 9

0

0.01

0.02

γ t

C
(t
)

(b)
6 9

0

0.01

0.02

γ t

C
(t
)

Figure 4.3: (Color online) Variation of C(t) for limiting case with d ≃ h for
(a) cylinder and (b) channel

Recovery of entanglement is due to the collective damping term at k ≃ 0.93

and k ≃ −1.29 for cylinder and channel respectively when a ≃ 3/5 and

d ≃ h. The dark period for cylindrical and channel geometry is estimated to

be 2.41/γ and 3.46/γ respectively.

At large distance d ≃ 5h/2 between qubits, disentanglement occurs at 1.69/γ

for both cylinder and channel while the regeneration of entanglement occurs

at 4.6/γ and 7.25/γ, respectively (see Fig. 4.2). At this separation both

geometries experience a larger dark period (2.91/γ for cylinder and 5.56/γ

for channel) due to the instability of collective damping term with qubits

separation. For a limiting case a = 1, Eq. (4.1) reduces to unentangled state
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|Ψ⟩ = |3⟩. Therefore density matrix elements reduces to

ρ33(t) = e−2γt,

ρ±±(t) =
γ ± γ12
γ ∓ γ12

e−(γ±γ12)t − e−2γt. (4.4)

It can be grasped that entanglement will not appear for a limiting case but

entanglement generates at a later time (caused by C2(t)) due to an imbalance

of symmetric and antisymmetric populations (see Fig. 4.3).

4.1.2 Mixed state

Consider a two-qubit system to be initially prepared in states of two spin

1/2 particles that are diagonal in the so-called Bell basis [37]. Initial density

matrix is given as

ρ(0) = c


s 0 0 0
0 2 0 0
0 0 0 0
0 0 0 v

 , (4.5)

where c = 1/3 and v = 1−s. Fig. 4.4 represents the variation of concurrence

of initially mixed state at d ≃ 5h/2.
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(a)

(b)

Figure 4.4: (Color online)Variation of C(t) for mixed state |Ψ⟩ at d ≃ 5h/2
for (a) cylinder and (b) channel.

In cylindrical geometry, qubits disentangled prior to the channel at s ≃
3/5. At later times revival of entanglement occurs at 5.82/γ and 9.95/γ for

cylinder and channel respectively. This leads to a less dark period of earlier

as compared to the former geometry considering the variation of collective

damping term with geometries.

4.1.3 Werner State

We suppose the initial Werner state [38] as

|Ψi⟩ = (1− w)
I

4
+ w |+⟩ ⟨+| , (4.6)
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where I denotes the identity matrix and parameter w determines the degree

of entanglement. When the separation of qubits is kept approximately 5h/2,

then it can be seen that concurrence goes to zero at first and then revives at

later times (see Fig. 4.5).

It is evaluated that ESD for cylinder occurs a little earlier as compared to

channel for w = 0.6. Whereas entanglement revives approximately at 4/γ

and 7.7/γ for cylinder and channel respectively. This eventually results in

lesser dark period of cylindrical geometry as compared to the channel which

is analogous to the trend of previously examined states.

(a)

(b)

Figure 4.5: (Color online) Variation of C(t) for initial state |Ψi⟩ at d ≃ 5h/2
for (a) cylinder and (b) channel.
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4.1.4 Maximally non local mixed state

The depiction of maximally nonlocal mixed states (MNMS) [39] for two pho-

ton coherence is given by initial density matrix as

ρ(0)MNMS =
1

2


1 0 0 p
0 0 0 0
0 0 0 0
p 0 0 1

 , (4.7)

where 0 < p ≤ 1. Fig. 4.6 demonstrates the entanglement fluctuation

of two-photon coherence MNMS for different values of initial coherence p.

Sensitivity of entanglement dynamics with repect to initial amount of coher-

ence is examined. Inset shows the revival of entanglement at later times for

d ≃ 5h/2. Entanglement death time can be found by condition C1(t) = 0 as

Td ≃
1

γ
ln

(
1

1− p

)
. (4.8)

Disentanglement occurs at approximately 4.6/γ for both geometries but en-

tanglement regenerates at 5.05/γ and 7.75/γ for cylinder and channel re-

spectively for p = 1. For this value of initial coherence, cylinder and channel

sustain a dark period of approximately 0.45/γ and 3.15/γ respectively. It can

be perceived from Fig. 4.6 that concurrence with greater value of p decays

to zero at later times as compared to the one with smaller value of p. Thus

it can be concluded that the death time of entanglement is influenced by the

initial coherence.
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Figure 4.6: (Color online) Variation of a concurrence as function of dimen-
sionless time parameter (γt) for two photon coherence MNMSs at d ≃ 5h/2
for (a) cylinder and (b) channel.

Entanglement rebirth comes earlier and is more consequential in cylindrical

geometry as compared to the channel due to the collective damping term.

4.1.5 Maximally entangled mixed state

Maximally entangled mixed states (MEMSs) [40, 41] are the class of X-states

that have the highest degree of entanglement. MEMSs for two-photon co-

herence are illustrated as

ρ(0)MEMS =


k(p) 0 0 p/2
0 1− 2k(p) 0 0
0 0 0 0
p/2 0 0 k(p)

 , (4.9)
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where k(p) = 1/3 if p < 2/3 and k(p) = p/2 if 2/3 ≤ p ≤ 1. Fig. 4.7 indicates

the entanglement fluctuation of two-photon coherence MEMS for different

initial coherence p. Inset in Fig. 4.7 shows the regeneration of entanglement

at later times for d = 5h/2 (same as done in the case of MNMSs). By utilizing

condition C1(t) = 0 entanglement death time is appeared as

Td ≃
1

γ
ln

(
2k

1− p

)
. (4.10)
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Figure 4.7: (Color online) Variation of a concurrence as function of dimen-
sionless time parameter (γt) for two photon coherence MEMSs at d ≃ 5h/2
for (a) cylinder (b) channel.

Entanglement death and regeneration are observed for all values of p. Disen-

tanglement occurs at 0.85/γ for both geometries while regenerates at 2.6/γ
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and 4.6/γ for cylinder and channel respectively at p = 0.7. For this value

of initial coherence, the cylinder and channel go through a dark period of

approximately 1.75/γ and 3.8/γ respectively. It can be observed that the

behavior of entanglement is influenced by the amount of initial coherence

(also observed in MNMS). The rebirth of entanglement is noticed as more

remarkable in cylindrical geometry for all values of p.

4.2 Superdense coding

Superdense coding is an application of entanglement. Consider that the

sender (Alice) and receiver (Bob) share qubits in the arbitrary entangled

state ρab. Alice encodes a message by performing Unitary operations Uk on a

d-dimensional quantum system with a prior probability pk on her qubit. After

receiving, Bob will do a joint measurement operation to get the message (Fig.

4.8). The set of mutually orthogonal unitary transformations is necessary for

Figure 4.8: (Color online) Schematic representation of information transfer
between sender and receiver.

this purpose. These unitary transformations for two qubits are represented

as [42], U00 |q⟩ = |q⟩, U01 |q⟩ = |q + 1(mod2)⟩, U10 |q⟩ = eiπq |q⟩ and U11 |q⟩ =
eiπq |q + 1(mod2)⟩. Thus Holevo bound gives the maximum possible amount

of information that can be transferred as [43]

χ = S(ρ
′

ab)−
∑
k

pkS(ρ), (4.11)

where ρ
′

ab =
∑

pk(Uk ⊗ Id)ρab(Uk ⊗ Id)
† and S(ρ) = −Tr(ρ logd ρ) is the

von Neumann entropy. The von Neumann entropy remains invariant un-
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der any Unitary transformations hence superdense coding capacity χ can be

redescribed as [44, 45]

χ = S(ρ
′

ab)− S(ρab). (4.12)

For validation of dense coding capacity, χ must be greater than one, or

else dense coding is not valid. The states for which dense coding capacity

approaches its optimal value (χ tends to be 2 ) are useful in quantum com-

munication. Different initial states are considered to analyze the variation of

super-dense coding capacity.

4.2.1 Entangled state

Consider an entangled state as Eq. (4.1) to check the validity of dense coding

capacity χ. It is noticed that the for maximally entangled state a = 0.5, dense

coding capacity attains its maximum value χ = 2. Maximum possible value

varies for each probability amplitude a.

The χ decreases with decrease in degree of entanglement. From all the values

of probability amplitudes, minimum capacity is observed for a = 0.9, which

is the least entangled state of all. Moreover, it is observed that the dense

coding is valid for more time in case of cylindrical waveguide as compared to

the V-shaped channel (see insets of Fig. 4.9).
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Figure 4.9: (Color online) Time variation of a χ for entangled state at d ≃
5h/2 for (a) cylinder (b) channel.
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4.2.2 Werner state

Consider an initial state as given in Eq. (4.6) to examine the validity of dense

coding capacity.
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Figure 4.10: (Color online) Time variation of a χ for werner state at d ≃ 5h/2
for (a) cylinder (b) channel.

It is seen that the value of dense coding capacity decreases as the probability

amplitude decreases due to the change in degree of entanglement. Moreover,

the trend of previous state is also valid here that the optimal time of coding

capacity is greater for cylindrical geometry as compared to V-shaped channel

(see Fig. 4.10). The state with greater value of dense coding capacity has
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a greater optimal time as compared to the one with smaller value of coding

capacity. It proves the significance of more entangled state for quantum

computation.

4.2.3 Maximally non-local mixed state

Consider MNMS as Eq. (4.7), the evolution of dense coding capacity is

plotted for this state in Fig. 4.11. It is seen that the χ is maximum for

initial coherence p = 1 and as the p decrease so does the coding capacity. The

optimal time of dense coding capacity is seemed to be greater for cylindrical

waveguide as compared to the V-shaped channel, the same as observed in

earlier case. It is also worth noting that the curve with highest possible χ

has a greater optimal time as compared to others. The coupling parameters

oscillate with the plasmonic wavelength λpl as they are the functions of d. The

influence of coherent and non-coherent terms in master equation changes with

the qubit-qubit separation making the cylindrical geometry a significant one

at the given specific d. The greater optimal time makes the state beneficial

for quantum information technology.
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Figure 4.11: (Color online) Time variation of a χ for MNMS at d ≃ 5h/2 for
(a) cylinder (b) channel.

4.2.4 Maximally entangled mixed state

To investigate the variation of superdense coding capacity in maximally en-

tangled mixed state, consider a initial density matrix as Eq. (4.9). From

Fig. 4.12 it is clear that MEMS has maximum possible value of χ. It is

also noticed that the previous trend is also valid for MEMS. The cylindrical

waveguide has the greater optimal time for dense coding as compared to the

V-shaped channel.
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Figure 4.12: (Color online)Time variation of a χ for MEMS at d ≃ 5h/2 for
(a) cylinder (b) channel.

52



Chapter 5

Result and discussion

The entanglement dynamics of two two-level system mediated by plasmonic

waveguides and separated by a horizontal distance d are investigated. A

master equation approach for two qubits is implemented to determine co-

herent and dissipative terms. In chapter 3, the entanglement generation of

two qubits is studied. It is observed that the initially unentangled systems

start getting entangled with time. This is due to the imbalance of state

populations. The ideal PW and realistic PW are analyzed and it is seen

that for ideal case, concurrence reaches upto the value of C = 0.5 while in

case of realistic channel PW, entanglement reaches to the maximum value

of C = 0.33, then decay to zero exponentially. For the realistic channel,

state populations have finite decay rates therefore entanglement decay to

zero. Furthermore, in chapter 4,sudden decay of entanglement of two qubit

quantum system is investigated for channel and cylindrical geometries. The

relationship of entanglement dynamics with the dissipative character of the

two-qubit system is observed. The time of ESD and entanglement rebirth is

evaluated for different initial states to estimate the dark period for both ge-

ometries. It is magnificent to see that in MEMSs entanglement regeneration

is observed for all values of initial coherence. It is concluded that entangle-

ment revival is more considerable for the cylindrical geometry as compared

to the channel in the wake of the collective damping term. Lastly, SDC
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is examined for different initial states, it is seen that maximally entangled

state reaches maximum possible value of χ. Furthermore, it is observed that

the optimal time of dense coding capacity is greater for cylindrical geome-

try as compared to V-shaped channel at a specific qubit-qubit separation.

This makes the easier experimental realization of waveguide geometries for

quantum communication and quantum information technology.
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