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Abstract

Climate change’s effect have sparked several problems that go beyond Pakistan’s bor-

der. Extreme occurrences could be more severe because of raising temperature, raising

concerns, about their potential impacts. The purpose of this study was to investigate

the impact of climate change on distinct climatic zones in the province Baluchistan,

Pakistan. The study analyzed precipitation and temperature data from 12 meteoro-

logical sites using the Reconnaissance Drought Index (RDI). A fusion of two statistical

approaches was used to generate homogeneous climatic regions (HCR’s). In the be-

ginning, cluster analysis was used to classify climatic regions (CRs) by considering the

distinctive characteristics of the station’s sites. Through this process, three distinct

climatic areas were identified. The second phase comprised the use of heterogeneity

and discordancy metrices, as well as the L-moment techniques to assure the consistency

of the established HCRs. These HCRs were then evaluated using GCM’s specifically

for the reference period of 1985 to 2014. We established these HCR’s to make predic-

tions about the climate using two alternative scenarios Shared Socioeconomic Pathways

(SSPs 4.5 and 8.5) for the twenty-first century. Despite changes in temperature and

precipitation patterns, the results from the HCR’s show that all the stations preserve

their distinct regions in both future scenarios. The maximum and minimum temper-

atures are expected to rise significantly in the future, with a significant rise predicted

in 2075-2100 for SSP 4.5 and 8.5. This research will provide vital support for both im-

mediate and long-term climate change policies, as well as projects linked to irrigation,

water management, hydropower, and other relevant areas around the country.

Keywords: Bias Correction; Cluster analysis; Ensemble Projection; L-moments;

CMIP-6; Shared Socioeconomic Pathways; Taylor Diagram; K-folds cross validation
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Chapter 1

Introduction

Long-term changes in the Earth’s climate, such as those in global temperature, pre-

cipitation, and sea level, are referred to as "climate change." Human activities, which

have escalated since the Industrial Revolution, are the main source of these changes.

Significant volumes of greenhouse gases are released into the atmosphere through the

burning of fossil fuels used for energy production, transportation, and industrial ac-

tivities. These emissions, which include carbon dioxide (CO2), methane (CH4), and

nitrous oxide (N2O), have been identified as the main causes of global warming and

climate change by the Intergovernmental Panel on Climate Change. Naomi Oreskes in

2004, [1] asserts that the buildup of greenhouse gases creates a thermal blanket that

traps emitted infrared light and prevents it from escaping into space. The greenhouse

effect, a phenomenon, causes an increase in the average surface temperature of the

Earth. The effects of this global warming trend are extensive and have an effect on

several facets of the climate system on Earth. The increase in global temperature

is one of the most notable consequences of climate change. The warmest years on

record have occurred in recent decades, and the average surface temperature of the

Earth has dramatically increased during the last century. Sea levels have risen as a

result of glaciers and polar ice caps melting as a result of rising temperatures. Due

to increasing floods, erosion, and loss of habitat for many species, this poses serious

dangers to coastal towns, low-lying islands, and sensitive ecosystems. Climate change

has significant impacts on the environment and human societies. It is causing melting
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of polar ice caps and glaciers, leading to rising sea levels that threaten coastal commu-

nities and island nations. It is also leading to more frequent and severe weathers events

such as hurricanes, floods, droughts, and wildfires, which can cause loss of life, damage

to infrastructure, and economics losses [2]. There are significant global consequences

for agriculture and food security due to climate change. A considerable challenge to

agricultural productivity is posed by the changing climate patterns and the frequency

and severity of extreme weather events, which might disrupt food supply systems and

jeopardise global food security.

Crop yields and production may be negatively impacted by changing weather pat-

terns, including changed rainfall patterns and rising temperatures. The growth, devel-

opment, and yields of crops can all be severely impacted by extreme heat, droughts,

and water scarcity. On the other hand, excessive rain and flooding can cause agri-

cultural damage, waterlogging, and soil erosion. Farmers may experience decreased

crop yields and financial losses as a result of their inability to foresee and manage

their agricultural activities properly due to these weather changes [3]. The unexpected

nature of climate change only adds to its complexity. Climate change’s effects can be

clearly linked to specific occurrences or phenomena, but they can also differ signifi-

cantly throughout time and space. A dynamic process, climate change is impacted

by a variety of elements, such as greenhouse gas emissions, land use patterns, natural

temperature variability, and feedback processes within the Earth’s system. It is diffi-

cult to anticipate and completely comprehend the scope and timing of its repercussions

due to its intricacy. Understanding how our global system is interrelated is essential.

Climate changes can have ripple effects that cut over geographic borders and have an

impact on many different facets of Earthly existence. For instance, melting ice caps

and rising sea levels have an effect on coastal communities as well as marine ecosystems

and ocean currents, which in turn influence fisheries and biodiversity. Temperature and

rainfall variations can affect agricultural output, causing food shortages and affecting

the world’s food security. Ecosystems can be harmed by the loss of natural habitats

brought on by climate change, which can result in the extinction of some species and

a reduction in biodiversity as a whole [4]. The examination of temperature and rain-
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fall patterns has captured the attention of scientists all across the world in the 20th

century. For the purpose of creating efficient adaptation and mitigation measures, it

is essential to comprehend the patterns and changes in these climatic parameters. For

the purpose of identifying changes in precipitation patterns and assessing the effects on

agricultural systems, scientists have looked at historical rainfall data. Similar to how

temperature data are analysed, global warming is quantified and its consequences on

ecosystems, human activities, and natural resources are identified. Karl’s study looks

at the global temperature data to determine whether there is a discernible rising trend.

The results of this study show that the average global temperature has risen over the

past century by 0.6 degrees Celsius. The observed warming trend offers important

proof of the long-term modifications to the Earth’s climate system. The study empha-

sises the need of looking at temperature data to understand the scope and effects of

global warming [5],warming occurring in past few decades [6]. In the United States of

America, there has been an increase in precipitation from September to December dur-

ing the years 1941-1988 [7]. In order to determine the climatic variances and changes

in patterns of various locations of Baluchistan, we constructed a model to analyse the

climatic change of Pakistan in just the province of Baluchistan using CMIP-6 baseline

data of 30 years (1987-2014). The province of Baluchistan makes up around 44% of

the nation’s total land area. With a population of 12.3 million, Baluchistan is the least

populated province in Pakistan. Its population is diversified, with a number of ethnic

groups including Baloch, Pashtuns, Brahuis, and Hazaras residing in distinct places.

The province features a diverse geography, including plateaus, mountains, deserts,

and coastal regions. The province’s topography includes the Sulaiman range, Kirthar

Mountains, and Makran Coastal Range. Baluchistan has an extremely hot and dry

climate, with summertime highs of 50◦C (122◦F). The mountainous regions, however,

are colder, and some of them get snowfall in the winter. Baluchistan’s economy is

mostly focused on agriculture, mining, and fishing. Gas, coal, copper, gold, and other

natural resources are abundant in the province. It is still one of Pakistan’s poorest

and least developed regions, nonetheless. Due to climate change, the already existing

problems of water shortages, food insecurity, and desertification are projected to get
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worse. Though one of the most significant economic sectors in Baluchistan, agriculture

is heavily dependent on rainfall. Water variability for agriculture is predicted to de-

crease due to climate change, which might result in crop failure and a scarcity of food.

The length and timing of the growing season may also alter in the province, which

might have an even greater effect on the agricultural industry. Another significant sec-

tor in Baluchistan is the fishing industry, although it too is expected to be damaged by

climate change. Changes in ocean currents, sea level rise, and rising sea temperatures

might all have an impact on fish populations and their habitats. This could result in

dwindling fish populations and a drop in the number of people who depend on fishing

for their livelihood. Baluchistan also has a significant livestock industry, although it

is susceptible to the effects of climate change. The availability and quality of grazing

grounds may change due to changes in temperature and rainfall patterns, which may

have an effect on the welfare and productivity of cattle. Baluchistan’s tourism industry

is expanding, but it is also vulnerable to climate change,while sea level rise might en-

danger coastal infrastructure and tourism amenities, rising temperatures and changes

in the weather could affect how appealing some locations are to travellers. The research

study’s methodology and approach are described in the methodology section. In this

work, we estimate the climate using an ensemble technique. By using a range of model

outputs, Buontempo, C., et al.(2015) [8] gives more reliable and trustworthy estima-

tions of significant climatic variables like temperature and precipitation pattern. To

comprehend and foresee the impacts of climate change, global climate models (GCMs)

are crucial. These integrated numerical models comprise the sea surface, land surface,

atmosphere, and sea ice. They provide considerable promise for researching climate

change and its variations, according to Fowler, H. J., et al.(2015) [9] when making an

ensemble projection, a number of different GCMs are merged to simulate a variety of

plausible future climate scenarios. When making an ensemble projection, a number of

different GCMs are merged to simulate a variety of plausible future climate scenarios.

Researchers may examine the uncertainty brought on by model differences and the

inherent natural variability of the climate system utilizing methodologies like ensem-

ble projections that enhance our understanding of future climate dynamics [10]. Our
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goal is to create uniformly climate zones throughout Baluchistan in order to examine

temperature and precipitation variance and to forecast the future. The second goal

is to ensemble all GCMs rather than utilising a single model to reduce model uncer-

tainty. Baluchistan’s economy is extremely susceptible to the effects of climate change.

We applied some machine learning techniques as well as statistical methods for the

investigation. The province will need to take action to adapt these changes, such as

improving water management, diversifying the economy, and investigating in climate

resilient infrastructure.

1.1 Objectives

The major objectives of this study are given below:

• To construct homogeneous climatic regions over the province of Baluchistan,

Pakistan

• To develop ensemble climate projections over the developed homogeneous cli-

matic regions
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Chapter 2

Study Area and Data set

The Baluchistan region is famous for its varied topography, rich agricultural history,

and numerous social issues. It is spread across several South Asian countries, including

Pakistan, Iran, and Afghanistan. Baluchistan’s climate is predominantly distinguished

by dry and semi-arid conditions. It is a region with minimal precipitation because the

majority of locations receive yearly rainfall that is typically less than 250mm. The

problem of water scarcity is made worse by the low yearly rainfall, especially during

the dry months when freshwater sources are limited. Baluchistan endures scorching

summers with certain locations seeing temperatures rise beyond 45◦C, which adds to

the region’s dry and hot environment. For Baluchistan’s population, agriculture, and

overall socioeconomic growth, the lack of water supplies poses serious problems. The

region’s socioeconomic challenges are further exacerbated by the absence of adequate

water for agricultural activities, which has an impact on crop production and liveli-

hoods. The issue of water scarcity and its effects on the prosperity of the region is

complicated and necessitates extensive solutions. Table (2.1) gives brief informations

of all Baluchistan stations. The Pakistan Meteorological Department provided baseline

data for 28 years, from 1987 to 2014. The study used eight Global Climate Models

(GCMs) encompassing the years 2017 to 2100 to comprehend the various climate situa-

tions in the future. These models provide information about possible temperature and

precipitation changes in the area under several scenarios for the future. To evaluate how

climate conditions might change depending on various socio-economic trajectories, two
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specific scenarios, namely SSP 4.5 and SSP 8.5, were taken into consideration. Twelve

meteorological stations in Baluchistan were the subject of the investigation. These

stations offered useful weather related data, such as details on temperature and precip-

itation. The presence of missing values in the temperature and precipitation time series

was one of the difficulties faced during the investigation. Statistical techniques were

used to estimate the missing values in order to address this problem and guarantee the

validity of the results. These statistical techniques assisted in bridging the dataset’s

gaps, allowing for a more thorough examination and evaluation of the Baluchistan cli-

matic patterns. Figure (2.1) indicate our study area which include all meterological

stations of Baluchistan, Pakistan.

Figure 2.1: Study area of province Baluchistan, Pakistan
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Stations Longitude Latitude Elevation Min. Temp Max. Temp MAP

Nokkundi 62.75 28.75 68.2 17.543 32.932 2799.179

Dalbandin 64.5 28 848 14.299 32.4721 2686.68

Panjgur 64 27 980 15.259 30.4482 4232.55

Sibbi 68 29.5 133 19.565 35.1040 5434.3

Passni 63.5 25.5 4 20.225 31.4893 2712

Ormara 68.25 26.25 37 18.158 35.8902 7663.97

Quetta 67 30.25 1600 8.8521 25.2631 7649.24

Zhob 69.5 31.25 1405 12.051 26.905 8003.16

Kalat 66.5 29 2015 5.5507 22.2405 6640.7

Khuzdar 66.75 27.75 1231 14.949 29.1668 8152.2

Jiwani 61.75 25.25 56 21.089 30.3304 5511.01

Barkhan 69.75 30 1097 14.783 28.4022 8813.343

Table 2.1: A brief information including latitude, longitude, elevation, maximum and
minimum temperature, and mean annual precipitation at each meterological station of
Baluchistan, Pakistan
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Chapter 3

Methodology

12 meteorological stations in Baluchistan, Pakistan, were regionalized as part of our

study using the Cluster Analysis technique. We were able to group the stations us-

ing this method depending on how comparable their meteorological characteristics

were based on the meteorological information gathered from the 12 stations and using

cluster analysis, we were able to pinpoint certain regions inside Baluchistan. Under-

standing the geographic patterns and climatic differences in the region was made easier

by regionalization. We used L-moments, a statistical technique frequently employed

for analysing hydrological and climatological data, to evaluate the homogeneity and

discordancy among the indicated locations. L-moments can identify abnormalities or

inconsistencies and offer insights into the distributional properties of the data. We

were able to evaluate the consistency of the meteorological data within each region by

using L-moments. This phase was essential to ensuring that the information utilised

to make future estimates and analyses was accurate and devoid of biases or other no-

table anomalies. In order to incorporate the results of various Global Climate Models

(GCMs) for future climate projections, we also used ensemble projection techniques.

This method produces more reliable estimates and aids in capturing the uncertainty

linked to specific models. To build an ensemble for our projections, we chose eight

GCMs with a range of features. We were able to produce a more thorough and trust-

worthy depiction of potential Baluchistan climatic scenarios thanks to the ensemble

approach. We took into account the inherent unpredictability and uncertainty in cli-
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mate model simulations by integrating the outputs of many GCMs. This method offers

a more accurate spectrum of anticipated future climate conditions while decreasing the

biases and limits of individual models. We were also able to produce probabilistic pro-

jections of future climate variables for each region of Baluchistan using the ensemble

projection technique. The robustness of our projections was increased by these esti-

mations, which took into account the uncertainties related to both the GCMs and the

clustering method. Figure (3.1) shows our methodology section.

Figure 3.1: Methodology Flowchart
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3.1 Droughts and RDI

Tsakiris (2004) [11] explains the concept of Reconnaissance Drought Index (RDI), in

his work to analyse and track meteorological drought conditions in the Mediterranean

region. A severe water deficit for crops, plants, animals, and human groups results

from protracted periods of extremely dry weather or climatic conditions known as

droughts. A prolonged absence of precipitation is what defines a drought, and this

absence can cause major water deficits in rivers, lakes, reservoirs, and groundwater

aquifers. Numerous types of droughts can be distinguished, including metrological,

hydrological, agricultural, and socioeconomic droughts.

• Metrological droughts happen when there is a protracted period of precipitation

that is below average.

• Agricultural droughts happen when the soil’s moisture content is insufficient to

sustain the establishment and growth of healthy crops.

• When the water supply in streams, lakes, and reservoirs falls below a crucial

threshold, hydrological droughts take place.

When the demand for water outpaces the supply, a socioeconomic drought results,

having a detrimental effect on the economy, society, and the environment [12]. Crop

failure, water shortages, and wildfires are just a few of the serious effects that droughts

can have on agriculture, water resources, human health and safety.

3.1.1 Calculation of RDI

The Reconnaissance Drought Index (RDI), introduced by Hayes et al., (1996) [13], is

a commonly employed metric to evaluate drought severity relative to normal weather

patterns. It measures the disparity between precipitation and potential evapotranspi-

ration during a specified timeframe, often presented as a percentage of the long-term

average precipitation for that period. The RDI presents a mathematical framework for
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assessing the intensity of droughts and can be mathematically represented as follows:

RDI = [
P − PET
Pmean

]× 100 (3.1)

In the RDI equation, the Reconnaissance Drought Index (RDI) serves as the indicator

for assessing drought severity. P represents the precipitation observed over the desig-

nated period. PET corresponds to the potential evapotranspiration occurring during

the same timeframe. Pmean denotes the long-term average precipitation specifically for

that period. To calculate the RDI, the precipitation (P) is subtracted by the poten-

tial evapotranspiration (PET), which yields the moisture deficit. This deficit is then

divided by the long-term average precipitation Pmean and multiplied by 100 to express

it as a percentage. The resulting RDI value serves as an indicator of the departure

from normal conditions. Positive RDI values indicate wetter conditions compared to

the average, while negative values signify drier conditions. Higher positive RDI values

suggest relatively wetter conditions, whereas lower negative values indicate more severe

drought conditions. The threshold levels for RDI vary depending on the climate and

vegetation of the area, although multiple studies have suggested several threshold levels

for RDI to signify various degrees of drought severity. According to John A. Kaeyan-

tash (2004) [14], the RDI criterion for California should be between -1.0 and -1.5 for

severe droughts, -1.5 to -2.0 for moderate droughts, -2.0 to -2.5 for severe droughts,

and below -2.5 for extreme droughts.Similarly, J.D.van Rooyen (2020) [15] suggest the

following RDI threshold for South Africa: -0.5 to 1.0 for mild drought, -1.0 to -1.5 for

moderate drought, -1.5 to 2.0 for severe drought and below -2.0 for extreme droughts.

Overall, threshold value of -0.85 for RDI is one of several possible threshold values

used to indicate drought conditions, and Table (3.1) shows it is important to consider

multiple factors and indicators when assessing drought severity and impacts.

3.2 L-moment

The L-moments approach involves calculating the L-moments of distribution from or-

dered data for a drought index, such as the Reconnaissance Drought Indices (RDI).
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Categories RDI

Extremely wet ≥ 2.0

Very wet 1.59 to 1.99

Moderately wet 1.00 to 1.49

Near normal 0 to -0.99

Moderately dry -1.00 to -1.49

Severly dry -1.50 to -1.49

Extremely dry ≤ 2.0

Table 3.1: Droughts classification thresholds

The parameters of several probability distributions that are frequently used to describe

droughts can be estimated using these L-moments. Droughts have been modelled and

examined using the L-moments approach in a number of studies, including those con-

ducted in the Western United States, Australia, and China. This method has the ben-

efit of being able to produce more accurate estimates of the distribution parameters,

which is especially useful for data sets that may contain outliers or are not normally

distributed. The analysis and estimate of distributions using a linear combination of

order statistics were first introduced by [16]. We may determine the PWM using four

mathematical equations.

β0 =
1

N

N∑
i=1

z(i) (3.2)

β1 =
n−1∑
i=1

[
n− i

n(n− 1)
]z(i) (3.3)

β2 =
n−2∑
i=1

[
(n− i)(n− i− 1)

n(n− 1)(n− 2)
]z(i) (3.4)
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β3 =
n−3∑
i=1

[
(n− i)(n− i− 1)(n− i− 2)

n(n− 1)(n− 2)(n− 3)
]z(i) (3.5)

Droughts Event are ranked according to their severity in ascending order for analysis

of drought episodes. A rank is given to each event on a scale of 1 to n, where n is

the total number of events in a series. The ith event in the ranking series, which has

a range from i to n, is represented by the variable z(i). Given below are the 1st four

L-moments for population.

λ1 = β0 (3.6)

λ2 = 2β1 − β0 (3.7)

λ3 = 6β2 − 6β1 + β0 (3.8)

λ4 = 20β3 − 30β2 + 12β1 − β0 (3.9)

suggested equations for L-moments by Hosking (1990) [16] L-coefficient of variation

(L-CV)

L− coefficientofvariation(L− CV ) : τ =
λ2
λ1

(3.10)

L− skewness(L− Skew) : τ3 =
λ3
λ2

(3.11)

L− kurtosis(L− kurt) : τ4 =
λ4
λ2

(3.12)

3.3 Cluster Analysis

A statistical technique called cluster analysis seeks to arrange objects or observations

into relevant groups or clusters according to their traits and features. Cluster analysis

is defined as "assignments or a set of observations into subset (called a cluster) so that

the observations in the same cluster are similar in some sense", according to Anil K.

Jain (1988) [17]. To maximize similarity inside a cluster and reduce similarity across

clusters is the goal of cluster analysis. The division of data into discrete groups that

are maximally internally homogeneous and maximally outwardly heterogeneous. There

are several clustering techniques, each with their own benefits [18]. A dendrogram

hierarchy of clusters is produced, for instance, using the hierarchical cluster approach,
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which begins with each observation as a distinct cluster and subsequently merges them

depending on their similarity [19]. However, the k-means technique by Macqueen

(1967) [20] divides the data into a predetermined number of non-overlapping clusters

and assigns each observation to the cluster’s nearest neighbour. Cluster analysis was

used to identify an area of Pakistan with uniform temperatures [12].

3.4 Data screening and homogeneity test

In order to guarantee that climatic data are accurate, dependable, and acceptable for

analysis and interpretation, it is crucial to filter data and test for homogeneity. We em-

ploy data screening to create climatically homogenous zones, and then we discordant

the locations using statistical analysis [12]. The generalised extreme value distribu-

tion (GEV), the generalised Pareto distribution (GPD), and the generalised logistic

distribution (GLD) are just a few of the probability distributions that is suggested

by Hosking (1997) [21] utilising L-moments, L-CV, and L-Kurtosis to estimate their

parameters. In addition, they suggested employing a goodness of fit test based on

L-moments to assess how well data distributions fit together. In this investigation, N

metrological stations are looked at, and a measure of discordancy is computed for each

site.

Dm =
1

3
N(vj − v̄)TS−1(vj − v̄) (3.13)

S =
N∑
j=1

(vj − v̄)T (vj − v̄) (3.14)

Hosking and Wallis [22] developed the heterogeneity measure (H) as a test statistic

to evaluate the homogeneity of a group of sites that are intended to be integrated into

a region. The H statistics employs the L-moments to calculate the standard deviation

(V) of the at site sample L-CVs, which in turn determines how homogeneous the sites

are. The weighting for V is determined by the historical drought levels at the site, and
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the calculation is written as an equation.

V = {

N∑
i=1

Ni(t
i − tR)

2

N∑
i=1

Ni

}0.5 (3.15)

N stands for the overall number of stations, Ni stands for the record duration at

the ith station, t(i) stands for the L-CV of stations i-th, and tR is for the regional

average of all station L-CVs within a certain region. Now, to assess the heterogeneity

of a specific region, Monte Carlo simulations based on Kappa distributions with four

parameters were performed. This created 1000 fictional regions using L-moments ratios

if all areas had the same record length as the original data. The variance in L-statistics

between the simulated and actual regions was determined when the simulated areas

were constructed using the following formulae.

H1 =
(V − uv)

σv
(3.16)

Where uv stands for the median and σv for the standard deviation of the simulated and

observed V parts, respectively. The evaluation of heterogeneity was given the following

criteria by Hosking and Wallis [21].

If H1 < 1, acceptable homogeneous

If 1≤ H1 < 2, possibly heterogenous

If H1 ≤ 2, heterogeneous Compared to H2 and H3, H1 has the greatest ability to

discriminate between heterogeneous and homogeneous areas [22]. The test uses L-CV,

L-Skew, and L-Kurtosis-based H1, H2, and H3 statistics. In this study, we just use H1

to interpret the regions homogeneity.

3.5 Weighted Average

To describe a model’s relative dependability or relevance in the context of model perfor-

mance, wights might be utilized. These weights are applied to the outputs of multiple
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models to produce an ensemble forecast or weighted average. When allocating weights,

typically performance or accuracy of each model is taken into account. Models are

given larger weights, indicating that their forecasts should have a greater impact on

the ensemble forecast as a whole. On the designated assessment criteria, these models

have demonstrated more accuracy or superior performance. The values supplied to the

weights vary from zero to one.

X̄ =

8∑
i=1

wiNi

8∑
i=1

wi

(3.17)

The weighted average is indicated here by X̄. Some weights may be 0 if models perform

poorly.

3.6 Bias Correction

Quantile Delta Mappingsz (QDM) is a statistical technique for projecting changes

in the frequency distribution of climatic variables as a result of changes in climate

variability and/or averages. The approach, as created by Cannon and associates in

2015 [23], ensures that proportional change ratios are maintained within the quantiles

of modeled variables.

Assume that x0, xm,h, xm,p represent, observed data, historically modeled data, and

future modeled data. The cumulative distribution functions (CDFs) of the observed

historical data, the modeled historical data, and the modeled future data are each

denoted by x0, xm,h, xm,p, respectively. The investigation starts by looking at the

changing CDF of the projected series that has been modeled, xm,f . Additionally, using

the given equation, the variables x and ρ represent the data and their corresponding

CDFs.

ρm,f (t) = Fm,f (t)(xm,f (t))ρm,f (t) ∈ [0, 1] (3.18)

By comparing the ratios of two sets of inverse cumulative distribution functions (CDFs),

you can determine the relative change. The model-predicted data from one set is
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applied to its own CDFs to calculate it, while the observed data from the second set is

applied to the model-predicted data CDFs. You can perform this computation using

the given formulae.

∆m(t) =
F

(t)
m,f

−1
(ρm,f (t))

F−1
m,h(ρm,f (t))

=
xm,f (t)

F−1
m,h(ρm,f (t))

(3.19)

∆m(t) denotes the relative change.

To adjust for bias correction, use inverse cumulative distribution functions (CDFs)

obtained from observed historical data to modify the quantile of the model’s future

data ρm,f (t).

x̃0,m(t) = F−1
0,h (ρm,f (t)) (3.20)

You can calculate the updated estimates for future situations using the relative change

derived from equation (3.19). The change is applied to the historically bias-corrected

data from equation (3.20), as indicated in the following equation:

x̃m,f (t) = x̂0,m(t) +4m(t) (3.21)

The bias-corrected data from the future model, denoted as x̂m,f (t), is useful for further

study. To ensure the preservation of relative changes within the data, equations (3.19)

and (3.20) are manipulated rather than simple addition, as indicated by Cannon et al.

in 2015 [23].

3.7 K-folds cross validation

K-fold cross-validation is a method that is frequently used in statistics and machine

learning to evaluate a prediction model’s effectiveness and generalizability. By sepa-

rating the existing data into several subsets, or "folds," and utilizing them for training

and testing the model repeatedly, it is possible to anticipate how well a model will

perform on unknown data. How k-fold cross-validation operates is as follows:

Data preparation involves first dividing the given dataset into k folds or subsets of

equal size.
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3.7.1 Model Training and Testing

The remaining fold is utilised for testing once the model has been tested on k-1 folds

(along with k-1 subsets). This procedure is done k times, with the testing fold changing

each time.

y = xβ + ε (3.22)

3.7.2 Performance Evaluation

For each iteration, the performance measure (such as accuracy, precision, or recall) is

computed, yielding k performance scores.

3.7.3 Performance Aggregation

The individual performance scores are then added together to provide a single perfor-

mance estimate, often by figuring out the mean or median of the values.

RMSE =

√√√√√ n∑
i=1

(yi − ŷi)2

n
(3.23)

3.7.4 Model Choice

The final model is the one with the best performance estimate.The problem of overfit-

ting, when a model performs well on the training data but fails to generalise to unseen

data, is helped by K-fold cross-validation. Multiple fold testing offers a more accurate

assessment of a model’s performance and aids in the detection of possible issues like

overfitting or underfitting. The values of k are frequently between 5 and 10, however

they might differ depending on the size of the dataset and the available processing

power. In reality, higher values of k yield more accurate performance predictions but

also raise the cost of calculation.
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It’s important to note that the model creation and assessment step uses the k-fold

cross-validation approach. After a final model has been chosen, it is usually trained on

the whole dataset before being used to make predictions on fresh, unexplored data.
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Chapter 4

Results

4.1 Construction of HCRs

The creation of HCRs is dependent on a number of multi-step processes. The first phase

is creating HCRs for 12 metrological stations in Baluchistan, Pakistan, between 1987

and 2014 using data on precipitation and average temperature. To do this, latitude,

longitude, sum of precipitation, mean average precipitation (MAP), and elevation are

used to create subjective climatic regions based on the characteristics of the sites.

Euclidean distance and Ward’s linkage are then used to determine differences between

the sites. The three constructed subjective zones are depicted in Figure (4.1). On

their homogeneity metrics, all stations in the connected region remain the same to

build adjusted regions.

In the second stage, each station’s at-site attributes are used to calculate the RDI-

12 series. This series is employed to evaluate L-moments, which aids in the explanation

of the probability distribution’s form. The Thornthwaite technique and the monthly

average temperature are used to get the PET for each station. The RDI-12 series is

computed using PET and monthly precipitation data by DRINC software.

In the third step, L-moments from each station are used to calculate L-moments

ratios such L-skewness, L-kurtosis, and L-CV. The fourth stage is calculating the dis-

cordancy values using L-moment ratios, which aids in spotting the abnormalities in

each metrological station. A table containing the analysis’s findings demonstrates that
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none of the stations are discordant. In addition, the homogeneity of built areas is

evaluated using a homogeneous measure (H1). The H1 value for each region is shown

in Table (4.1), demonstrating the homogeneity of every created region.

Stations Discordancy Measures Di Heterogeneity Measures H1

Observed Data Baseline Data Observed Data Baseline Data
Region 1

Quetta 0.80 1.24
Kalat 1.03 1.32
Khuzdar 0.74 0.89 -0.16 -0.93
Zhob 1.10 0.95
Barkhan 1.25 0.59

Region 2
Ormara 1.00 1.00 -1.10 -0.69
Sibbi 1.00 1.00

Region 3
Nokkundi 0.89 1.30
Panjgur 0.58 0.92
Dalbandin 1.22 1.08 1.39 -0.07
Jiwani 1.25 0.91
Passni 0.98 0.75

Table 4.1: Discordancy values (Di) and Heterogeneity measures (H1)

The regions that can be discovered in both the observed data and the model base-

line data are depicted in the cluster dendrogram below. It’s important to note that no

stations show appreciable differences between the observed data and the model baseline

data, showing that the two are generally in accord. We were able to correctly identify

three separate regions within the dataset by utilizing the variety of their attributes.

The spatial distribution of areas within both the observed data and the model base-

line data is revealed by the Cluster Dendrogram, a visual representation that aids in

understanding the relationships between various data points. We can be sure that our

model’s baseline is reliable and that it can faithfully represent the real-world obser-

vations because there are no discordant stations. We obtain a deeper grasp of the

underlying factors driving the data as we go with this thorough study of the regions

and their variability. This information offers up new research directions, enabling us to
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investigate potential correlations, causes, and implications that could have gone missed

in the past. In conclusion, this Cluster Dendrogram has aided in the identification of

significant patterns within the data, strengthened the validity of the baseline of our

model, and offered insightful information for additional research. We can make more

informed decisions and develop our field as we strengthen and broaden our analysis.

Figure 4.1: A generated dendrogram displaying the HCRs produced using observed
data from the Baluchistan region of Pakistan from 1987-2014

4.1.1 Region 1

The region in question comprises five meteorological stations: Quetta, Kalat, Khuzdar,

Zhob, and Barkhan, all of which are located in the Baluchistan province. Each station

has its own distinct climate characteristics, offering a diverse range of weather patterns

and conditions.

Quetta, Kalat, and Khuzdar are situated in the western and central parts of Baluchis-

tan and experience a predominantly dry and arid climate. Summers in these areas can

be scorching hot, with temperatures often reaching 40◦C-45◦C (104◦F-113◦F). The

aridity of the region means that there is limited moisture in the air, resulting in low

humidity levels. The lack of cloud cover and sparse vegetation contribute to the intense

heat during summer months.
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Winters in Quetta, Kalat, and Khuzdar are characterized by cold temperatures

that frequently drop below freezing points. The clear skies and absence of cloud cover

allow for rapid cooling during the night, leading to chilly conditions. Temperatures can

dip to sub-zero levels, and snowfall is not uncommon in these areas during the winter

season. The arid nature of the climate means that even during winter, precipitation is

limited.

Moving northwards, we find Zhob, which is located in the northern part of Baluchis-

tan. Zhob experiences a more moderate climate compared to Quetta, Kalat, and

Khuzdar. Summers in Zhob are still warm, with temperatures ranging from 30◦-35◦C

(86◦F-95◦F). The region benefits from its proximity to the mountains, which provides

some relief from the scorching heat experienced in other parts of Baluchistan. Winters

in Zhob are colder, with temperatures dropping below freezing point. However, the

severity of the winter season is generally milder compared to the more southern regions.

Finally, Barkhan, located in the southern part of Punjab province, has a subtropical

climate. The region experiences hot and humid summers, with temperatures reaching

up to 40◦C (104◦F). The high humidity levels in Barkhan contribute to the discomfort

felt during the summer season. Winters in this area are relatively mild, with tem-

peratures ranging from 10-20◦C (50-68◦F). The proximity to Punjab and the southern

region of the country brings a more moderate climate to Barkhan compared to the

other Baluchistan stations.

In conclusion, the five meteorological stations in this region showcase a range of

climate conditions. Quetta, Kalat, and Khuzdar exhibit a dry and arid climate with

scorching hot summers and cold winters. Zhob experiences a more moderate climate

with warm summers and colder winters. Barkhan, located in the southern part of

Punjab province, has a subtropical climate with hot and humid summers and milder

winters. These variations highlight the diverse climatic characteristics found within

the Baluchistan province and its surrounding regions.
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4.1.2 Region 2

Ormara and Sibbi, two cities in the Baluchistan province, are the subject of the third

area. Both cities have a hot, arid desert climate that is characterised by high temper-

atures. This region’s climate presents unique difficulties and has an impact on many

facets of daily living. Summertime highs of up to 45◦C are not uncommon in Ormara

and Sibbi. The sweltering heat becomes a defining characteristic of the season, af-

fecting the neighborhood’s environment and the activities of locals. Due to the high

temperatures, people must take steps to avoid heat-related illnesses and dehydration.

It’s important to drink plenty of water, look for cover, and minimise your time in the

sun when it’s at its hottest. In comparison to Sibbi, Ormara gets higher summertime

humidity levels due to its seaside location. The unpleasant nature of the climate can

be exacerbated by the combination of high temperatures and humidity. Increased air

moisture can make it uncomfortable and necessitate taking extra precautions to be

cool and comfortable.

In contrast, the region has cooler temperatures during the winter. Ormara’s win-

ter temperatures, which are often around 20◦C, offer some respite from the oppressive

summer heat. Sibbi enjoys similar weather conditions during the winter, with average

temperatures in a similar range. Temperatures in Ormara’s winter months can drop as

low as 25◦C during the day and 15◦C at night due to its coastal location. under com-

parison to inland places, the neighbouring sea’s cooling impact keeps the temperatures

under check. Residents might still require a light jacket or a jumper to stay warm in the

chilly mornings and evenings. Seasonal temperature changes have an impact on many

elements of living in both cities. These temperature swings may have an impact on

agriculture and animal management, affecting crop selection and timing of activities.

The intense heat and probable cooling needs during the summer months are also taken

into account in the design and building of housing.
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4.1.3 Region 3

There are five weather stations in the area covered by the paragraph: Dalbandin,

Jiwani, Passni, Panjgur, and Nokkundi. These stations provide crucial information

on temperature, wind patterns, and other meteorological phenomena, serving as key

weather monitoring stations in the region.In the summer, the temperature in this area,

especially in Nokkundi, can soar to blistering heights. The summer heat becomes

fairly harsh when the temperature soars as high as 47◦C. Residents must take care to

safeguard themselves from high heat and illnesses associated to heat exposure because

the hot weather can have a substantial influence on the neighborhood’s environment

and human activities.

On the other hand, the area gets significantly colder temperatures in the winter.

Particularly in Dalbandin, temperatures may fall as low as 0◦C. The cold weather

presents its own unique set of difficulties, including the requirement for sufficient insu-

lation, heating systems, and protective apparel to fend off the chill. Additionally, it may

have an effect on the region’s livestock management and agricultural practises. The

predominant wind direction has a significant impact on the local climate and weather

patterns in these cities. The majority of the region’s cities have prevailing southwest-

erly winds during the summer. This indicates that the wind typically blows from the

southwest towards the northeast and that this affects the temperature, humidity, and

general weather conditions. The southwest breeze has the potential to bring dry, warm

air, which raises the temperature in Nokkundi and other places.

For most cities, the predominant wind direction changes to the northwest through-

out the winter, resulting in a changing weather pattern. Jiwani, where the wind comes

from the northeast, stands out as an anomaly. Jiwani’s differing wind direction from

the other cities can result in various climate traits and perhaps even separate weather

events. The five meteorological stations in this area collectively offer vital data on

seasonal temperature extremes, wind patterns, and climate dynamics. This informa-

tion aids in comprehending the local weather patterns, evaluating potential risks, and

formulating plans to deal with the difficulties presented by the area’s particular climate.
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4.2 Evaluation of HCRs using observed data and model
baseline data

To organize observed climate data into homogeneous zones, we used a systematic pro-

cess. This methodology entailed categorizing data points based on a variety of environ-

mental characteristics such as temperature, precipitation, humidity, and others. This

approach was designed to capture diverse climatic trends within regions, allowing for

a more granular knowledge of local climate changes.We used the same methodology

that we used on observed data to apply to model baseline data. This consistency in

methodology was necessary in order to allow for a meaningful and fair comparison of

observed and modeled climate patterns. We sought to assure the robustness of our

evaluation method by using identical criteria and algorithms for region delineation in

both datasets. Physical representation of observed data and basline data is given in

Figure (4.2).

Figure 4.2: Construction of HCRs using observed data and model baseline data
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4.3 Assessment of combine model’s output and out-
put of GCMs

Taylor diagrams are useful for visually showing and quantifying model or data set

performance in comparison to a reference data set. It is frequently used in climate

science and gives a comprehensive technique to measure several areas of the model’s

skill. It uses correlation coefficient, root mean square error (RMSE) and Standard

deviation to compare results of ensemble models with other individual models.

4.3.1 Region1

Here is the graphical representation of the maximum temperature, minimum temper-

ature and precipitation of Region 1 from 1987-2014 daily frequency data, where green

dot shows the ensemble data and light purple dot represent the observed data. Our

first judgment is how this graph is better, so we look our ensemble data which is much

more closer to observed data than any other single model. In the maximum temper-

ature Ensemble model follows the trend of observed data. The RMSE of each model

(or ensemble) is represented by the distance from the Taylor diagram’s origin. Greater

agreement with the observed data is indicated by smaller distances. Thus, if your en-

semble model has a lower RMSE and is more accurate than the individual models, it is

closer to the origin with the correlation rang from 0.95-1 for maximum temperature in

Figure (4.3), 0.90-1 for minimum temperature in Figure (4.4) and 0.85-1 for precipita-

tion in Figure (4.5). Using RMSE, correlation coefficient,and Standard deviation (SD)

ensemble model give high accuracy and batter performance.
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Figure 4.3: Taylor diagram shows the comparison between observed data, eight GCMs
data and Ensemble model data from 1987-2014 of maximum temperature of Region 1

Figure 4.4: Taylor diagram shows the comparison between observed data, eight GCMs
data and Ensemble model data from 1987-2014 of minimum temperature of Region 1
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Figure 4.5: Taylor diagram shows the comparison between observed data, eight GCMs
data and Ensemble model data from 1987-2014 of precipitation of Region 1

4.3.2 Region 2

Region 2 shows the maximum temperature, minimum temperature and precipitation

from 1987-2014 daily frequency data, where green dot shows the ensemble data and

light purple dot represent the observed data. Our first judgement is how this graph

is better, so we look our ensemble data which is much more closer to observed data

than any other single model. In the maximum temperature Ensemble model follows

the trend of observed data. The RMSE of each model (or ensemble) is represented by

the distance from the Taylor diagram’s origin. Greater agreement with the observed

data is indicated by smaller distances. Thus, if your ensemble model has a lower

RMSE and is more accurate than the individual models, it is closer to the origin with

the correlation rang from 0.95-1 for maximum temperature in Figure (4.6), 0.97-1 for

mimimum temperature in Figure (4.7) and 0.95-1 for precipitation in Figure (4.8) (SD)

ensemble model give high accuracy and batter performance.
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Figure 4.6: Taylor diagram shows the comparison between observed data, eight GCMs
data and Ensemble model data from 1987-2014 of maximum temperature of Region 2

Figure 4.7: Taylor diagram shows the comparison between observed data, eight GCMs
data and Ensemble model data from 1987-2014 of minimum temperature of Region 2
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Figure 4.8: Taylor diagram shows the comparison between observed data, eight GCMs
data and Ensemble model data from 1987-2014 of precipitation of Region 2

4.3.3 Region 3

Two sets of data points may be seen in these graphs, which shows daily maximum

temperature, minimum temperature, and precipitation data for Region 3 from 1987 to

2014. The green dots indicate the ensemble data, while the light purple dots reflect

the observed data. According to our preliminary analysis, the ensemble data is far

more similar to the observed data than any particular model. In the case of maximum

temperature, the ensemble model successfully reproduces the trend of the observed

data.We utilize three metrics Root Mean Square Error (RMSE), correlation coeffi-

cient, and Standard Deviation (SD) to assess the correctness of the ensemble model

and contrast it with the individual models. These measures enable us to evaluate how

well the model predicts the observed data. The RMSE of each model or ensemble is

represented by the distance from the origin in the Taylor diagram. Greater agreement

with the observed data is indicated by a smaller distance, which suggests greater ac-

curacy. The range of the correlation coefficient is 0.95 to 1 in Figure (4.10) , 0.96
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to 1 in Figure (4.9), and 0.48 to 1 in Figure (4.11) for maximum temperature, mini-

mum temperature, and precipitation, respectively. By taking into account the RMSE,

correlation coefficient, and standard deviation, we discover that the ensemble model

outperforms in precipitation pattern is not performning well beacuse it is not giving us

a good prediction but overall we shows 9 diagrams and in each diagram ensemble model

is on top as compared the individual models in terms of accuracy and performance.

This is clear from the ensemble data points’ proximity to the Taylor diagram’s origin,

which shows a good correlation with the actual data.

Figure 4.9: Taylor diagram shows the comparison between observed data, eight GCMs
data and Ensemble model data from 1987-2014 of maximum temperature of Region 3
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Figure 4.10: Taylor diagram shows the comparison between observed data, eight GCMs
data and Ensemble model data from 1987-2014 of minimum temperature of Region 3

Figure 4.11: Taylor diagram shows the comparison between observed data, eight GCMs
data and Ensemble model data from 1987-2014 of precipitation of Region 3
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4.4 Evaluation of HCRs using Ensemble Models out-
put

In the aforementioned picture, a comparison between the created HCRs (Homogeneous

Climate Regions) and baseline model data is made. HCRs, which are geographical

areas with comparable climatic conditions, are frequently utilised in climate studies

and impact analysis. This comparison aims to assess if the HCRs created using these

two different sources of data are similar or dissimilar. The comparison shows that the

areas are built the same way in both scenarios, demonstrating agreement in terms of

the broad-scale climate patterns reflected by the observed data and the baseline model

data. This shows that the baseline model data can be utilised as a tool for future

climate projections and impact analyses because it reasonably captures the observed

climatic conditions.

However, the comparison also highlights differences in the heterogeneity and dis-

cordancy values between the observed and model data. Heterogeneity refers to the

degree of variation or diversity within a region, while discordancy refers to the extent

to which a particular weather station deviates from the overall pattern of the region.

These values provide insights into the consistency and reliability of the data and their

representation of the climatic conditions. The numbers for each station’s heterogene-

ity, which represents the degree of variation within the region corresponding to that

station, are presented in the table that goes with the figure. The discordancy values

are also given, indicating how much each station deviates from the overall pattern of

the area. These numbers can be used to locate stations that may have unusual or dis-

tinctive climatic traits when compared to the surrounding area. The heterogeneity and

discordancy values for the areas and individual stations differ between the observed and

model data. This implies that there can be differences between the observed climatic

circumstances and how those conditions are portrayed by the baseline model. These

discrepancies could be caused by a number of things, such as resolution constraints in

the model, biases in the observed data, or parameterization uncertainties. Despite these

variations, the homogeneity of the HCRs created from the baseline model data shows
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that the model reasonably represents the large-scale climate patterns. Additionally,

the lack of inconsistent stations in the baseline model data suggests that the climatic

properties of all stations within the created regions are uniform. Based on these re-

sults, the model data is regarded as valuable for upcoming measurements of the effects

of climate change on these HCRs. It offers a trustworthy foundation for comparison

and can be applied to evaluate how climate change can affect the climatic conditions

in these areas. When evaluating the results and developing projections based on the

model data, it is crucial to take into consideration the restrictions and uncertainties of

the observed data.

4.5 Impact assessment of climate change on HCRs
using SSP 4.5 and SSP 8.5 Scenarios

Homogeneous Climate Regions (HCRs) were created using projected data from global

climate models (GCMs) in order to analyse the potential effects of climate change.

Three unique time periods were assigned to the data: 2017 to 2044, 2045 to 2072,

and 2073 to 2100. An evaluation of the 21st century’s climate trends is possible using

these time frames. The climatic scenarios for the first time period, which ran from

2017 to 2044, were based on Shared Socioeconomic Pathways (SSPs). According to

the analysis, every region had a consistent weather pattern, and no station displayed

any major variations from the regional pattern. This suggests that during this time,

the climate remained largely constant, and the HCRs created using the GCMs’ future

data were internally consistent.

The similar tendency persisted as the investigation expanded into the second time

span, 2045 to 2072. No stations were moved to new locations, demonstrating that

the weather patterns remained constant within the defined HCRs. This shows that, at

least within the context of the HCRs, the climate projections made during this time did

not cause any appreciable changes or shifts in the regional climatic patterns. Through

the third time period, which runs from 2073-2100, the pattern of consistent weather

patterns and absence of discordant stations maintained. No discordant stations were
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found, suggesting that every station continued to display climate traits typical of its

region. This implies that the climate projections for the latter half of the 21st century

did not indicate any substantial disruptions or departures from the established climate

patterns within the HCRs based on the future data from the GCMs.

These discoveries have consequences for understanding and anticipating the effects

of climate change. The same weather patterns seen throughout the three time periods

suggest some stability and dependability in the GCMs’ estimates. Within the desig-

nated HCRs, these data can be used to evaluate the prospective impacts of climate

change on a variety of industries, including agriculture, water resources, and infras-

tructure planning. Overall, the results indicate that the established HCRs maintained

similar weather patterns and did not undergo notable shifts or discordances during the

three time periods examined, according to the GCM’s future projections. Understand-

ing the possible effects of climate change and guiding adaptation plans in these places

can both benefit from these findings shows in Figure (??)

Figure 4.12: Construction of HCRs using SSP 4.5 and SSP 8.5 from 2017-2044
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Figure 4.13: Construction of HCRs using SSP 4.5 and SSP 8.5 from 2045-2072

Figure 4.14: Construction of HCRs using SSP 4.5 and SSP 8.5 from 2073-2100
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4.6 Evaluation of ensemble model output

Bias correction is a popular tactic used in climatic simulation to reduce the risks

related to climate models. Bias correction aims to rectify any potential biases in the

climatic data produced by global climate models (GCMs). By closer aligning the GCM

data and observed data, this approach seeks to increase the simulation’s accuracy and

dependability. The bias correction approach is used in this analysis to adjust three

variables: rainfall, maximum temperature, and minimum temperature. To guarantee

that the generated data appropriately represents the climatic conditions unique to that

region, the GCM climate data for each zone is individually treated to bias correction.

The main goal of bias correction is to match the observed data with the GCM data.

One can see that the median of the model baseline is very different from the actual

data by comparing the observed data, model data, and bias-corrected data of maximum

temperature using a boxplot. Additionally, compared to the observed data, the model

baseline median is much lower. The bias correction method has successfully changed

the data to lessen the discrepancy and bring it in line with the observed values, though,

as the median of the bias-corrected data is now more closely aligned with the observed

data.

The boxplot analysis shows that the median of the bias-corrected data and the

observed data for the minimum temperature are relatively similar to one another,

demonstrating that the bias correction technique was successful in aligning the data.

The model’s baseline data for minimum temperature, however, show a median that

is somewhat lower than the actual data. The observed data is shown to be superior

to the historical model data in terms of precipitation. This suggests that there are

biases or differences between the model’s baseline precipitation data and the measured

values. The bias-corrected data is used to evaluate the effects of climate change in light

of these findings. When compared to the model data, the bias-corrected data, which

has undergone the appropriate corrections to lessen biases, is thought to deliver more

accurate results. The fact that the bias correction method successfully increased the

accuracy and reliability of the climate simulation is demonstrated by the resemblance
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between the bias-corrected data and the observed data. GCMs used in our study is

listed in Table (4.2).

BCC-CSM2-MR Beijing Climate center, China metrological administration China

CMCC-ESM2 Centro Europe-Mediterraneosui Cambiamentia cliamtic Itlay

GFDL-CM4 Geophysical Fluid Dynamics Laboratory,USA

GFDL-ESM4 Geophysical Fluid Dynamics Laboratory,USA

INM-CM4-8 Institute for numerical mathematics

INM-CM5-0 Institute for numerical mathematics

MRI-ESM2-0 Metrological Research Institute, Japan

NESM3 Neinjing University of Information-Science and Technology, China

Table 4.2: Global Climate Models

Box plots shows the Model data, observed data and bias corrected data of each

region and show how biased corrected data is nearly related to Observed data as com-

pared to model data. The Figures (4.15, 4.16 and 4.17) show Region 1 maximum

temperature, minimum temperature and precipitation, respectively.
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Figure 4.15: This graphs shows maximum temperature of zone 1 using model data,
baseline data and observed data.

Figure 4.16: This graphs shows minimum temperature of zone 1 using model data,
baseline data and observed data.
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Figure 4.17: This graphs shows rainfall pattern of zone 1 using model data, baseline
data and observed data.

Figure 4.18: This graphs shows maximum temperature of zone 2 using model data,
baseline data and observed data.
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Figure 4.19: This graphs shows minimum temperature of zone 2 using model data,
baseline data and observed data.

Figure 4.20: This graphs shows rainfall pattern of zone 2 using model data, baseline
data and observed data.
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Figure 4.21: This graphs shows maximum temperature of zone 3 using model data,
baseline data and observed data.

Figure 4.22: This graphs shows minimum temperature of zone 3 using model data,
baseline data and observed data.
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Figure 4.23: This graphs shows rainfall pattern of zone 3 using model data, baseline
data and observed data.

4.7 Ensemble Climate Projections

The future climatic data for various regions have been projected by the eight GCMs

(Global climate models) spanning three unique time periods: 2017-2044, 2045-2072,

and 2073-2100. These forecasts take into account the SSP 4.5 and SSP 8.5 scenarios.

The years 1987 through 2014 serve as the comparison’s baseline. The monthly pre-

cipitation, minimum temperature, and maximum temperature of the climate have all

been projected. Understanding and analysing the effects of climate change on various

regions requires these variables.

The eight GCMs, which are intricate computer models that replicate the Earth’s

climate system, were used to produce the projections. These models take into con-

sideration a number of variables, including land surface interactions, ocean circulation

patterns, atmospheric conditions, and greenhouse gas emissions. In this case, the period

from 1987 to 2014 serves as the baseline for comparison. For assessing how precipi-

tation and temperature patterns have changed throughout time, this baseline period
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is used as a point of comparison. Researchers and decision-makers can evaluate the

potential effects of climate change on precipitation and temperature in various regions

under various scenarios by comparing the forecasts from the GCMs to the baseline

period.

4.7.1 Region 1

In region 1, analysis for the SSP 4.5 and SSP 8.5 scenarios compared baseline data

with forecasts for rainfall, minimum temperature, and maximum temperature. The

distribution of data over 28-year periods was represented using the boxplot approach.

Let’s look at the specific results for each variable shows in Figures (4.24, 4.25 and

4.26) Maximum Temperature: The box plot analysis showed a considerable change

in the median values, or the centre points, of the predicted peak temperatures. The

median line for the years 2017 to 2100 under the SSP 4.5 scenario closely resembles the

median line seen in the baseline data. This shows that, under the moderate emissions

scenario, the central tendency of maximum temperatures is still largely consistent with

historical trends. The median value for the majority of the upcoming time periods,

however, greatly exceeds the baseline data’s median value under the SSP 8.5 scenario.

In the years 2045 to 2072, with the exception of December, the median value of SSP 8.5

continuously exceeds the baseline median. This suggests that maximum temperatures

in region 1 will significantly rise, especially in the scenario with large emissions.

Minimum Temperature: Both SSP scenarios have a similar pattern for the minimum

temperature. When compared to the baseline data, the temperature decreased by a

very small amount in September. This suggests that, aside from a slight cooling trend

seen in September, the minimum temperature in region 1 will stay largely steady

over the coming seasons. Rainfall: Depending on the scenario, the research shows

considerable changes in region 1’s rainfall patterns. In comparison to the baseline

data, precipitation for the period from 2017 to 2044 is noticeably lower under the

SSP 8.5 scenario. According to the high emissions scenario, this points to a tendency

towards drier conditions earlier in the century. Contrarily, compared to the baseline

data, precipitation increases during the period from 2073 to 2100 under the SSP 4.5
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scenario. This suggests that, under the moderate emissions scenario, the century’s

later years will get wetter.

Figure 4.24: Future Maximum Temperture trend since (2017-2100) of region 1 using
SSP 4.5 and SSP 8.5

Figure 4.25: Future Minimum Temperture trend since (2017-2100) of region 1 using
SSP 4.5 and SSP 8.5
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Figure 4.26: Future Rainfall trend since (2017-2100) of region 1 using SSP 4.5 and SSP
8.5

4.7.2 Region 2

When compared to the baseline data, the research shows that maximum temperatures

are rising in region 2 for all scenarios, including SSP 4.5 and SSP 8.5. Let’s examine the

specifics of the findings for rainfall, lowest temperature, and maximum temperature.

Maximum Temperature: In comparison to the region 2 baseline data, all scenarios for

maximum temperature exhibit an increased trend. The baseline information, SSP 4.5

F1 forecasts, and SSP 4.5 F2 projections are fairly close to the baseline information,

indicating a mild rise in temperature. However, there is a noticeable and obvious

upward trend in temperature as we approach the later time of SSP 4.5 F3 and SSP 8.5.

Figure (4.27) that maximum temperatures in region 2 will significantly rise as time

goes on, especially under the high emissions scenario.

Minimum Temperature: Up until the year 2100, there is a markedly rising trend

in minimum temperatures for both the SSP 4.5 and SSP 8.5 scenarios, similar to the

maximum temperature trend. Figure (4.28) suggests that under both moderate and

high emissions scenarios, the region is expected to suffer rising minimum temperatures

over the course of future time periods.Rainfall: In terms of rainfall, Figure (4.29)
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shows a substantial increase compared to the baseline data. This means that the

projected future precipitation rates are higher than what is observed in the baseline

data. However, specific values or magnitudes of the increase in rainfall are not provided

in the given information.

Overall, in region 2, the analysis suggests an increasing trend in maximum temper-

atures across all scenarios. The baseline data, SSP 4.5 F1, and SSP 4.5 F2 projections

show a moderate increase, while SSP 4.5 F3 and SSP 8.5 indicate a significant and

clear rise in maximum temperatures. Additionally, both SSP 4.5 and SSP 8.5 scenar-

ios exhibit a notable increase in minimum temperatures throughout the future periods.

Furthermore, the rainfall pattern indicates a substantial increase compared to the base-

line data, projecting a higher precipitation rate in region 2 in the future.

Figure 4.27: Future Maximum Temperture trend since (2017-2100) of region 2 using
SSP 4.5 and SSP 8.5
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Figure 4.28: Future Minimum Temperture trend since (2017-2100) of region 2 using
SSP 4.5 and SSP 8.5

Figure 4.29: Future Rainfall trend since (2017-2100) of region 2 using SSP 4.5 and SSP
8.5

4.7.3 Region 3

According to the analysis, maximum temperatures in region 3 are rising in all time

periods and scenarios. Under the SSP 4.5 scenario, there is a noticeable temperature
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rise, particularly in the years 2073-2100. Figures (4.30, 4.31 and 4.32) that under the

moderate emissions scenario, maximum temperatures in area 3 will rise significantly

in the latter part of the century. Across all scenarios and time periods, a considerably

rising trend in minimum temperatures has been seen. Comparing the baseline data to

all the forecasted scenarios, the baseline data’s median is lower. This shows that, in-

dependent of the emissions scenario, area 3 is anticipated to have a continuous upward

trend in minimum temperatures over the upcoming timeframes. The SSP 8.5 scenario

from 2017 to 2100 shows a noticeable variation in precipitation patterns. According to

the analysis, there is a noticeable shift in precipitation amounts in the high emissions

scenario, with an increase compared to the baseline data. According to SSP 8.5, it

appears that area 3 will likely see increased precipitation rates in the coming years. In

contrast, the research shows that the precipitation amounts closely match the baseline

data when taking into account the SSP 4.5 scenarios. This shows that the precipita-

tion pattern in region 3 would stay consistent with historical observations under the

moderate emissions scenarios.

It’s crucial to note that the precise magnitudes of changes in precipitation and

temperature are not mentioned in the material because they are normally covered in

the research or study from which this analysis is produced. Additionally, neither the

information nor the comparative data are specific about the difference in precipitation

levels under SSP 8.5. Across all scenarios and time periods, the analysis generally

shows rising maximum temperatures in region 3. The median values of minimum

temperatures show a clear rising trend that is regularly higher than what was seen in

the baseline data. The SSP 4.5 scenarios nearly match the baseline data in terms of

precipitation amounts, however only the SSP 8.5 scenario reveals a noticeable difference

with an increase in rain fall pattern.
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Figure 4.30: Future Maximum Temperture trend since (2017-2100) of region 3 using
SSP 4.5 and SSP 8.5

Figure 4.31: Future Minimum Temperture trend since (2017-2100) of region 3 using
SSP 4.5 and SSP 8.5
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Figure 4.32: Future Rainfall trend since (2017-2100) of region 3 using SSP 4.5 and SSP
8.5
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Chapter 5

Conclusions and Recommendations

5.1 Conclusion

A major global problem that has serious effects on both our planet and societies is

climate change. A study was carried out in Pakistan to look at how the homogenous

climatic regions (HCRs) there were affected by climate change. Based on observed data,

the study used a mix of cluster analysis and the L-moments technique to discover and

characterise three unique HCRs. Two statistical methods based on L-moments were

used to evaluate the consistency within the observed regions and the variation among

weather stations. Understanding the patterns and peculiarities of the climatic data

within each HCR is aided by these measurements. Data from global climate models

(GCMs) was used to forecast the climate of these locations in the future. To ensure

consistency between the model output and the observed data, changes were done using

bias correction before using the data from the GCMs. The data from the model and the

observed data are brought into alignment through this correction process, improving

the projections’ accuracy.

When the data from the GCMs were compared to the observed and bias-corrected

data, it was found that they were tightly aligned, meaning that the data from the mod-

els closely matched the observed data for both scenarios and all future time intervals.

As a result, there is more reason to believe that the model projections are accurate.

According to the study, there have been more fluctuations within some regions as a

result of climate change, and differences have been seen at various weather stations. All
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future time intervals for both scenarios show the same fluctuations and inconsistencies,

indicating that climate change impacts are anticipated to be extensive and long-lasting.

In terms of temperature projections, it is anticipated that maximum and minimum

temperatures will rise during the coming time periods in all HCRs. Particularly under

the SSP 8.5 and SSP 4.5 scenarios, the rise in temperatures is anticipated to be more

pronounced in the period between 2073-2100. This highlights the need for adaptation

techniques to deal with the possible effects of increasing temperatures and shows a

continuing warming trend. Zone 2 is predicted to have higher precipitation levels

than the baseline data in terms of precipitation. The remaining zones, on the other

hand, are anticipated to keep their baseline levels of precipitation. This brings to

light the regional variation in precipitation patterns and emphasizes the significance of

region-specific adaptation strategies. Overall, this study offers insightful information

about the various levels of climate change in Baluchistan, Pakistan. Policymakers and

stakeholders can create plans and policies to lessen the negative effects of climate change

and improve resilience in the impacted regions by analyzing the expected changes in

temperature and precipitation.

5.2 Recommendation

To combat the negative impacts of global warming and its influence on the environment

and human communities, mitigation measures for climate change are crucial. The

suggested strategy for Punjab, Pakistan, combines increasing environmental awareness,

improving environmental knowledge, and enforcing laws and regulations. It also places

a focus on cooperation and collaboration between different parties.

Raising Awareness and Developing Environmental Knowledge: It’s critical

to educate and teach the general public about the truth and effects of climate change at

the grass-roots level. It is possible to organize awareness programs to spread knowledge

about Punjab’s rising temperatures’ causes and impacts. People will be inspired to take

personal action to lower their carbon footprint by seeing how urgent the situation is.

Collaboration: To effectively implement climate change adaptation and miti-
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gation strategies, legislators, governmental agencies, authorities, local residents, and

environmental nonprofits must work together. An inclusive strategy guarantees that

decisions are well-informed, reflect various viewpoints, and receive wider support.

Temperature Monitoring and Research: To comprehend the scope and trends

of climate change, it is crucial to continuously record temperature variations at nu-

merous sites across Punjab. The study of the precise effects of rising temperatures on

numerous industries, including agriculture, water resources, and public health, should

be encouraged.

Strict Regulations on Greenhouse Gas Emissions: The government needs

to act right away to rein in the excessive demand and supply of energy sources that

contribute to climate change by producing greenhouse gases. The region’s carbon

footprint may be greatly reduced by enacting tough laws on businesses and cars to cut

emissions.

Promotion of Renewable Energy: Promoting the usage of renewable energy

sources, such solar, hydroelectric, and wind turbines, can significantly reduce green-

house gas emissions. In addition to reducing climate change, investing in renewable

energy infrastructure also diversifies the energy mix and lessens reliance on fossil fuels.

Economic Benefits: Changing to renewable energy sources may open up new

business opportunities and lead to the creation of jobs in the renewable energy industry.

Reduced reliance on imported fossil fuels can also increase the nation’s energy security

and have long-term positive economic effects.

Agriculture Efficiency: The agriculture industry faces substantial difficulties as

temperatures rise. To boost agricultural productivity and lessen water stress, however,

use climate-resilient agricultural methods and use renewable energy for irrigation.

Stabilizing Earth’s Average Temperature: Punjab may support international

efforts to stabilize the Earth’s average temperature, which is essential for preventing

the most serious effects of climate change. This can be done by collectively reducing

greenhouse gas emissions.

In conclusion, combating Punjab, Pakistan’s rising temperatures, calls for a com-

prehensive strategy that incorporates numerous stakeholders and makes use of a com-
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bination of mitigation and adaptation techniques. The government can guide the area

toward a more sustainable and climate-resilient future, which will be advantageous to

both the environment and the economy, by prioritizing renewable energy sources and

implementing tough controls on greenhouse gas emissions.
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