

RANSOMSHIELD: MITIGATING ANDROID

RANSOMWARE ATTACKS THROUGH PERMISSION-

BASED ANALYSIS USING MACHINE LEARNING

By

Tatheer Ayesha

Fall 2020 – MS (IS) – 00000328873

Supervisor

Dr. Mehdi Hussain

Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree of Masters of

Science in Information Security (MS IS)

In

School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(August 2023)

ii

Approval

iii

Thesis Acceptance Certificate

07-Aug-2023

iv

Dedication

I dedicate this thesis to my Teachers, Parents and Siblings for their endless prayers, guidance,

and encouragement.

.

v

Certificate of Originality

vi

Acknowledgment

First of all, I would like to thank Allah, the Almighty for giving me the ability and strength to

carry out this research.

My deepest gratitude to my supervisor Dr. Mehdi Hussain for his continuous support and

guidance during my thesis. I could not have imagined having a better supervisor and mentor

for my master’s degree. I am also thankful to my teachers for providing me with an academic

base, which enabled me to complete this thesis.

I am thankful to all my fellows and friends for their support and motivation. Last but not the

least, I would like to thank my parents for their endless prayers and support throughout.

vii

Table of Contents

Dedication ... iv

Acknowledgment.. vi

Table of Contents .. vii

List of Figures ... x

List of Tables .. xi

Abstract ... xii

1. Introduction ... 1

1.1 Overview ... 1

1.2 Motivation ... 2

1.3 Objectives.. 3

1.4 Research Questions .. 3

1.5 Problem Statement ... 5

1.6 Solution Description .. 5

1.7 Thesis Contribution ... 5

1.8 Thesis Structure .. 6

1.9 Summary ... 6

2. Literature Review ... 7

2.1 Overview ... 7

2.1.1 Malware Injection Process .. 8

2.1.2 Malware Detection Mechanisms .. 9

2.1.3 Comparison of Analysis Techniques ... 11

2.1.4 Ransomware ... 11

2.1.5 Android OS Architecture ... 13

2.1.6 Information extracted by using Static Analysis ... 16

2.1.7 Machine Learning .. 18

2.2 Related work under Static Analysis ... 21

2.3 Summary ... 26

3. Research Methodology ... 27

3.1 Introduction .. 27

viii

3.1.1 Research Methodology Overview ... 27

3.2 Thesis Research Methodology .. 28

3.2.1 Constructing the Features Set... 29

3.2.2 Parameter Feature Set Construction .. 30

3.2.3 Extraction of Core Features .. 31

3.2.4 Dataset Creation ... 36

3.2.5 Ransomware Detection by Employing Machine Learning Models 37

3.3 Summary ... 38

4. Experimental Setup .. 39

4.1 Overview ... 39

4.2 Setting up Environment .. 39

4.3 Constructing Android Ransomware Dataset ... 40

4.4 Environmental Setup .. 40

4.5 Evaluation of APKs through VirusTotal ... 41

4.6 Downloading the Python Codebase .. 41

4.7 Installing Pre-requisite Software... 42

4.8 Summary ... 42

5. Experimental Results .. 43

5.1 Overview ... 43

5.2 Evaluation Measures ... 43

5.3 Evaluating Research Effectiveness .. 44

5.4 Summary ... 48

6. Discussion and Analysis .. 49

6.1 Overview ... 49

6.2 Comparison with Reference Approach ... 49

6.3 Heat Map of Applied Machine Learning algorithms ... 51

6.4 Applicability of the Approach ... 54

6.5 Summary ... 55

7. Conclusion & Future Work ... 56

7.1 Conclusion ... 56

7.2 Limitation & Future Work ... 57

ix

7.3 Summary .. Error! Bookmark not defined.

8. Bibliography .. 58

9. Appendices ... 66

x

List of Figures

Figure 2.1 Malware Analysis Techniques ... 8

Figure 2.2-Malware Injection Process [36] ... 8

Figure 2.3-Malware Detection Strategies .. 9

Figure 2.4-Taxonomy of Ransomware [1]... 12

Figure 2.5-Android OS Architecture ... 14

Figure 2.6-Android App Activity Flowchart ... 15

Figure 3.1-Proposed Model Flow Diagram: RansomShield .. 28

Figure 3.2-Android Ransomware APKs .. 29

Figure 3.3-Proposed Research Methodology ... 31

Figure 3.4-Permission Importance Graph .. 35

Figure 5.1-ROC and AUC Graphs ... 47

Figure 6.1-Decision Tree and Random Forest Heat Maps……………………………………51

Figure 6.2-Logistic Regression and SVM Heat Maps………………………………………..52

xi

List of Tables

Table 2.1-APK File Structure - important locations for the analysis [42] 16

Table 2.2-Directories inside lib folder ... 17

Table 2.3-A Comparison of Ransomware Detection Techniques ... 24

Table 3.1-Comparison of Permissions Identified by different models 32

Table 3.2-Description of proposed Permissions .. 34

Table 3.3-Comparison of the proposed features with Sharma et al. [5] and Chen et. al. [9]

methods’ features. .. 36

Table 4.1-System specifications .. 39

Table 4.2- Tools Description ... 41

Table 5.1-The performance calculation of the proposed RansomShield 44

Table 6.1-Comparison of Accuracies of Chen and Proposed Approach 50

xii

Abstract

Ransomware is one of the threatening malwares for security systems, targeting both Windows

and mobile platforms. It has the ability of encrypting sensitive user data and command a

deliverance of data in return. The extensive growth of ransomware attacks is due to the spread

of mobile malware with irrelevant permissions and malware codes in mobile applications. In

the literature, there are several proposed models for detecting ransomware. These models

typically utilize various attributes, such as API calls, system calls, intents, permissions, and

other dynamic features of an application. However, the extensive utilization of the

aforementioned attributes can lead to the increased complexity of the detection system.

Therefore, a deep investigation of Android Permissions to identify the significant set of

permissions that can be used to detect ransomware applications prior to their initiation is

focused in this study. The proposed RansomShield technique first identifies the significant

permissions to be used and then employed machine learning algorithms to classify. Through

our implementation, the proposed model successfully identified 16 significant permissions to

predict ransomware applications with 97% detection accuracy. The classifiers we used for this

model are supervised for ransomware detection for accomplishing high accuracies i.e., 97%

with Random Forest, 95% with Decision Tree, 97% with SVM, 95% with Logistic Regression,

73% with Naïve Bayes, 94 % with Bagging, 100% with Gradient boosting and 97% with KNN

models. The proposed model outperformed the existing model regarding a limited no. of

permissions while achieving high accuracy. Further, a new permission-based dataset is created

that is online and available for future researchers.

Keywords: Android, Ransomware, Machine learning, Accuracy, Permissions

1

1. Introduction

The overview of fundamental concepts, their importance, and the background studies are

elaborated in this chapter. It outlines the thesis's overall anatomy and briefly focuses its

additional composition. The purpose of conducting the research is explained as well. This

chapter discusses the important contributions, notable advantages, the scope of the work, and

the main goals.

1.1 Overview

Android mobile is common among the mobile platforms. This made Android users a well-

known target for many security attacks. The Mobile Operating system market shared 71.94%

of Android1. However, from the official app stores, approximately 2.56 million applications2

can be downloaded. Many users choose to use Android mobile phones due to their

affordability, portability, and the ability to access useful applications without spending any

money. Meanwhile, Google play store has created open-source policy of App availability

which enable the accessibility for the users and developers.

The issued policy offered great lenience for App authentication to maintain the recognition of

the platform at the time of issuance. Nevertheless, app availability, usage, and the deployment

of malware is also linked with the interest of malicious on android devices.

Mobile malware statistics show that variants of malware are developing every few second𝑠3.

These malicious apps have a hidden capability of performing offensive activities to target

individuals or organizations, malicious applications are released in different variants which

1: "gs.statcounter", https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide. [Accessed 2 January

2023].
2: "Businessofapps", https://www.businessofapps.com/data/app-statistics/, available. [Accessed 2 January 2023].

3: "securelist", https://securelist.com/it-threat-evolution-in-q2-2022-mobile-statistics/107123/. [Accessed 2 January 2023].

4:"welivesecurity",https://www.welivesecurity.com/wpcontent/uploads/2016/02/Rise_of_Android_Ransomware.pdf. [Accessed

12 December 2022]

https://gs.statcounter.com/android-version-market-
https://www.businessofapps.com/data/app-statistics/

2

makes them undetectable4. The installation of malicious applications becomes common as

users download the applications without verifying the play stores, app name, and app

permissions during installation. This unawareness of users gives chance the malicious actors

to easily intrude into mobile phones through apps. To overcome the spread of malicious

applications, researchers developed various detection models for mobile malware. They are

also discussed with its pros and cons in literature. One of the malware types known as

ransomware, has been found common among almost all platforms. Different tactics are used

by ransomware to encrypt or lock the device. It serves the purpose of demanding money to

releases the data.

1.2 Motivation

This research is focused on the permissions for ransomware detection. In literature, existing

machine learning models are used for various malicious and specifically ransomware APKs

detection approaches with consideration of the permissions and API calls [20-34]. Although,

identifying effective and significant permissions can always be difficult. In this research, we

have aimed at detection of ransomware residing in the Android platform using permissions-

based approach. The research is inspired by Fahad Akbar et al. [2], Chen et al. [9], Alzahrani

et al. [10] and Alsoghyer et al. [15] which detects the malwares in APKs based on permissions.

The precision detection of ransomware by minimizing the number of permissions required for

classification is objective of this study. The research conducted by Chen et al. [9] considered

21 permissions for ransomware detection. The proposed approach has two primary aims. First,

to develop an efficient dataset that is originally used for evaluation purposes. Second, to

3

demonstrate that reducing the number of permissions that can minimize the processing load

and improve the overall system accuracy.

1.3 Objectives

Research involves scientific methods to thoroughly examine specific issue or problem. In this

investigation, we conducted a comprehensive analysis of hazardous behaviors in Android

applications through static analysis to gain new insights. The main points of this study are

described as:

• Exploring the potential of static analysis and discovering new possibilities by utilizing

permissions as the primary static feature.

• Applying machine learning models to find out the effectiveness of different permissions

in the analysis.

• Identifying the minimum set of permissions required for conducting the study.

• Obtained results should be better or comparable to the existing approaches.

• Incorporating other existing classifiers such as Naïve Bayes, Random Forest, Gradient

boosting, bagging and KNN to improve the performance of the current method.

• Lastly, developing a lightweight Android Ransomware detection mechanism.

1.4 Research Questions

This section emphasizes the research questions that are framed to guide this study, as follows:

• What is the motivation behind conducting this research?

The Android ecosystem is continuously under threat from malwares, particularly ransomwares,

which can compromise the user's sensitive data. Since such data is important to users, they

require protection shield against such threats.

4

While there exist many Android ransomware detection methods, each with their own benefits,

there is a need to explore if these methods can be made more efficient to offer lightweight

detection approaches in terms of computational costs.

• What are the research steps involved and its significance accordingly?

This investigation aims to analyze the importance of static analysis for Android ransomware,

with the goal of classifying ransomware mobile applications using the fewest possible static

features. This will enable malware analysts and the research community to quickly identify

ransomware applications. The study will employ both qualitative and quantitative static

analysis of Android Ransomwares. To conduct the study, we have divided our approach into

the following four steps:

- Samples collection and environmental setup

- Dataset Creation

- Feature Extraction

- Classification of generated results

- Report Writing

• What are the aims of this study?

The primary focus of this study is on the following aspects:

a) Determining the significant set of static features required to accurately classify a

ransomware Android application.

b) Identifying the most effective classification model among those considered in this

investigation, namely SVM, Decision Tree, Gradient Boosting, KNN, Bagging,

Random Forest, and Naïve Bayes.

5

1.5 Problem Statement

To protect the users' data and block unauthorized access, the Android platform has

implemented a security model based on permissions for the apps. Permissions are commonly

used security evaluation metric in the Android platform. Apps require permission to be enabled

for providing their functionality to users. Hybrid permissions used together may result in

opposing behaviors, such as the app accessing and spreading users' sensitive information.

Therefore, permission probing is a necessary step in Android malware detection. By closely

examining the process of permission analysis, we can improve malware detection.

Thus, the problem statement for our study is to determine the minimum set of features, using

permission-based static analysis of Android ransomware apps, to develop a lightweight

ransomware detection system.

1.6 Solution Description

This study proposes an effective method for detecting android ransomware by utilizing

permission-based static analysis of Android applications. The researchers first decompiled the

apps using APK tool and obtained the APKs from CICAndMal2017 Dataset [17], AndroZoo

[18] and the Official Play Store for the purpose of extracting permissions. Further a filtration

process applied to extracted permissions using the Random Forest’s feature importance

technique. In next steps, feature set is generated and different machine learning models are

used for detecting ransomware Android apps utilization.

1.7 Thesis Contribution

Our research strategy “RANSOMSHIELD: Mitigating Android Ransomware Attacks Through

Machine Learning-Powered Permissions-Based Analysis" By incorporating frequently used

classifiers such as Bagging, Decision Tree, Logistic Regression, Gradient Boosting, Random

6

Forest, Naïve bayes, Support Vector Machine and KNN algorithms, our research methodology

significantly enhanced the precision of ransomware detection. The proposed approach offers

the following contributions:

The contributions of proposed plan are as follows:

• It achieved a detection accuracy of about 97% while reducing the number of required

permission features.

• It introduced a lightweight framework for detecting ransomware APKs.

• It is compatible with other existing machine learning classifiers.

• The source code for the RansomShield is fully functional and available on GitHub.

1.8 Thesis Structure

The research continues as follows: Chapter 2 layout an overview of previous work on static

analysis and detecting android ransomware applications. Chapter 3 provides the research

approach employed in the study. Chapter 4 outlines the experimental setup, while Chapter 5

presents the experiment's results and the activities involved in data collection. Chapter 6

analyzes and discusses the experimental findings. Finally, the thesis is summed up and future

research recommendation are made in Chapter 7.

1.9 Summary

The chapter aims to introduce crucial concepts related to malware analysis, with a focus on

static and dynamic analysis techniques used to detect ransomware applications. It offers an

outline of the scope and aims of the thesis, as well as a run-through of the research work's

general structure. The subsequent chapter will delve into the literature review that was

conducted for this thesis in more detail.

7

2. Literature Review

This chapter demonstrates the related work and techniques carried out by different researchers

over the years. The work done is contributed towards the android ransomware detection.

2.1 Overview

The widespread use of Android as a smartphone operating system has prompted numerous

studies to be conducted on Android apps from various perspectives. When investigating any

types of malware, the technical aspect can be categorized into multiple branches, But main are

static analysis, dynamic analysis, and a combination of both known as hybrid analysis (as

Figure 2.1 represents). Hybrid malware analysis combines various techniques, including static

and dynamic analysis, behavioral observation, network monitoring, memory inspection,

reverse engineering, automated tools, and threat intelligence, to fully comprehend the behavior

and characteristics of the malware. This means hybrid malware analysis includes all the

artifacts (opcodes, intents, permissions, strings ip addresses, URLs etc) extracted by the various

analysis techniques. The similar types of techniques are also performed for Android

ransomware detection. This section aims to explore the current literature on the detection of

ransomware Android apps using these analytical approaches.

8

Figure 2.1 Malware Analysis Techniques

2.1.1 Malware Injection Process

Malware injection is a process of creating malicious applications by carrying out three phases:

(i) Collecting either benign or malicious applications

(ii) Injecting malicious codes

(iii) Releasing these malicious applications to the third-party stores [36].

This process of malware injection is shown in the Error! Reference source not found..2 as:

Figure 2.2-Malware Injection Process [36]

9

2.1.2 Malware Detection Mechanisms

To detect the malicious APKs on the Android phone, three strategies can be used. These

Strategies are Static, Dynamic and Hybrid Analysis. The malware detection mechanisms for

Android is shown in the figure 2.3.

Figure 2.3-Malware Detection Strategies

a) Static Analysis

Static analysis is a security testing technique that evaluates the source code, byte code or

application binaries in a non-runtime environment. It gives indications of security

vulnerabilities to analyzes Meta and supporting details [37]. A broad range of strategies and

techniques are used in static analysis to predict the runtime behavior of software before it is

executed. This approach is particularly useful in identifying malicious or repackaged apps

before they are installed or executed.

In the case of Android apps, which are distributed as application packages (APKs), the first

step in static analysis is typically to decompile the app using tools such as AndroGuard [38] or

apktool [39]. This process extracts Smali files containing essential information about the app,

which are then examined for indications of malicious behavior. Based on an estimate of its

potential properties, static analysis identifies whether an app can be considered as malicious or

not. These approximations are usually based on factors such as permissions, code analysis or

10

API calls, Intents, App components, file properties, native code, and more [40]. Static analysis

is often the preferred approach for detecting malware. It is considered an efficient method for

protecting the market, as it consumes fewer resources and time. This faster detection method

is particularly beneficial for resource-constrained Android devices [41].

b) Dynamic Analysis

Dynamic analysis focuses on the behavior of applications during runtime. It serves the purpose

to recognize malicious behavior on real or emulated devices which is carried by deploying and

running the application. Dynamic analysis can uncover hidden objectives of malware

applications that may not be evident through static analysis. This type of analysis typically

involves some level of interaction with the application, manually or automated. It gathers

information on network activity, processor execution, system calls, SMS messages sent and

received, phone calls, and other relevant data. By analyzing this information, dynamic analysis

can help to separate between legitimate and malicious applications. Unlike static analysis,

dynamic analysis provides a more accurate reflection of an app's true intentions. However, it

can be resource-intensive and time-consuming to execute, making it less practical in certain

situations [41].

c) Hybrid Analysis

Both static and dynamic analysis techniques are used in Hybrid Analysis to enhance detection

accuracy. By combining the strengths and weaknesses of both approaches, it provides a more

thorough examination of both application behaviors and installation files, making it a highly

comprehensive analysis approach. Nevertheless, like dynamic analysis, hybrid analysis can be

resource intensive.

11

2.1.3 Comparison of Analysis Techniques

Static analysis examines application characteristics in a safe environment where the likelihood

of malicious behavior execution is minimal. This approach is particularly useful in

environments with limited time and resources. In contrast, dynamic analysis provides a more

detailed examination of applications and is considered a highly accurate detection method,

albeit at a higher computational cost. Following the execution of different APKs from static

analysis, dynamic analysis is performed.

For this reason, static analysis is generally faster and useful for developing an initial

understanding of the expected behavior of APKs.

2.1.4 Ransomware

Ransomware is categorized intovarious types that were known, such as WannaCry,

Petya/NotPetya, Locky, Cerber, CryptoLocker, Maze, Sodinokibi/REvil, GrandCab and Ryuk.

These malicious programs lock or encrypt files and demand payment to restore accessibility.

However, it's crucial to understand that new variants may have emerged since then. Wannna

cry ransomware targets the systems having eternal blue vulnerability in Microsoft Windows

systems. Petya and its variant NotPetya proved to be highly destructive ransomware. They

focused on Windows systems and employed diverse propagation techniques. Locky propagated

through malicious email attachments, encrypting files on infected systems, and demanding a

ransom for decryption. Cerber ransomware distinguished itself by using voice synthesis to

deliver ransom messages. Crypto ransomware targets files as a hijacked resource. Maze

ransomware gained attention for its practice of exfiltrating sensitive data before encrypting

files, posing a threat to publish the data unless the ransom was paid. Revil ransomware used

advanced encryption techniques to encrypt victims' data, making it inaccessible until a ransom

is paid. Grand Crab ransomware was distributed through various vectors, including exploit kits,

12

spam emails, and compromised websites. Its RaaS model allowed a wider range of

cybercriminals to deploy the ransomware. That’s why the pre-detection of Android

ransomware is necessary to protect users from it. The most common infection vectors for

Android ransomware involve hiding it under legitimate applications by adding malicious code

to them while retaining the original functionality of the legitimate application. Recently,

malware authors developed ransomware apps by the name of popular applications and icons to

keep them undetectable for malicious activities4. However, a general taxonomy of ransomware

is shown in Figure 2.4:

Figure 2.4-Taxonomy of Ransomware [1]

Some of the common commands used by ransomware on the Android platform are4:

• The phone’s browser is redirected to an arbitrary URL

• You can send an SMS to either one or all of the contacts saved on the phone.

• Locking or unlocking of the device

13

• Snip received SMS and contacts [1]

• Update to a new version

• Displays a different ransom note [3]

• Enables or disables the internet connectivity.

• Tracks the target’s location.

The variants of Android ransomware which are used in our dataset include simplelocker, jisut,

lockerpin, charger, koler, pletor, RansomBO, porndroid, svpeng, and wannalocker [3].

2.1.5 Android OS Architecture

In this study, we are targeting Android APKs ransomware. It is important to understand the

Android OS architecture. In the Android OS architecture (as shown in Figure 2.5), when a user

downloads an app for installation, the app requires permissions from the user before it can be

installed on the device. Android permissions are well-known and creates interesting

vulnerability possibility that can be exploited by malicious actors. Generally, the Android

platform implements a permission-based protective model against malicious APKs to protect

users. However, unnecessary, and irrelevant permissions can be grants and user are exploited

for malicious activities. In order to distinguish between harmful and benign permissions, these

permissions must be handled properly.

14

Figure 2.5-Android OS Architecture

In Android, to perform the different activities multiple methods in the code of APK needs to

be called. Below is the flowchart that how the activity performed by an android APK is

launched as shown in Figure 2.6. The figure 2.6 describes that when the activity is launched on

android app, different methods accessed by the app to perform the functions, the user wants to

be carried out. First method is onCreate () called, then onStart () method is accessed to begin

the activity. But if any other activity comes in action the other activity gets resumed using

15

onResume () method. When the user wants to end the activity onDestroy () method is called.

Figure 2.6-Android App Activity Flowchart

16

2.1.6 Information extracted by using Static Analysis

APK (Android Package format) is the standard format for Android applications, which can be

coded in various languages such as Java, Kotlin, C++, among others, although Java remains

the official language. The Android SDK is used to compile all the application data and resource

files, which are then combined into the APK file. This file contain all the components of an

Android application and it is a zip-compressed file with an extension of .apk [42]. For

installation of an Android App, it is used by the Android platform. By examining the APK

files, one can observe that they have a directory structure similar to the one demonstrated in

Table 2.1.

Table 2.1-APK File Structure - important locations for the analysis [42]

File Description

assets/ Static files in APK

lib/ Native Library files which are program dependent

res/ Resources of the application

META-INF/ App’s signing certificates

AndroidManifest.xml App’s global configuration file

classes.dex DEX executable code files

resources.arsc Resource configuration file in Binary Format

a) Assets

Static files are stored in the assets folder. Resource files can be organized into

subdirectories of any depth, and users are free to arrange the file structure in any way they

prefer. Generally, the Asset Manager class is used to access these assets.

17

b) lib

The folder designated for storing an application's dependent native libraries contains

libraries that are specific to the Android platform and typically developed using C/C++.

These libraries are sorted according to various CPU models like ARM, x86, MIPS, and so

on [42].

c) res

This directory is designated for storing the resources related to the applications. Unlike the

assets folder, the resources stored here are assigned a unique ID that is linked to the Android

project's.R file, allowing them to be accessed directly using R.id.filename. The res directory

includes various subdirectories, which are detailed in Table 2.2 along with their purposes.

Table 2.2-Directories inside lib folder

Sub Directory Purpose

Anim Keeping animation files

Drawable Keeping Image resources

Layout For layout files

Values Keeping application values in separate files; i.e., colors.xml,

dimens.xml, string.xml, styles.xml etc.

Xml Used for keeping related xml files

d) META-INF

The META-INF folder stores the application's signature information, which can be used

to verify its integrity at any time [42]. Android SDK generates this signing information

during the packaging process and saves it in the META-INF folder.

18

e) AndroidManifest.xml

The AndroidManifest.xml file is a crucial configuration file for applications which

provides comprehensive information, enabling the Android platform to comprehend the

applications. It is a mandatory file for each application, and its name is fixed and cannot

be changed. The AndroidManifest.xml file details an application's activities, services,

providers, and receivers, as well as its name, package name, SDK version, and permissions

[43].

f) classes.dex

The Android platform is modeled after Java's virtual machine and employs a similar

strategy utilizing the Dalvik virtual machine, which is a streamlined version of the Java

virtual machine. Typically, program code is transformed into bytecode, which is saved in

a class file. The Dalvik virtual machine executes this Dalvik bytecode. The Android SDK

relies on the dx tool to translate Java bytecodes into Dalvik bytecodes [42]. This tool has

the ability to optimize code by consolidating, restructuring, and enhancing class files,

resulting in smaller file sizes and faster runtimes when packaging Android applications.

g) resources.arsc

To locate resources based on their resource IDs, the Android platform uses the information

stored in the resources.arsc file. This file maintains the association between the resource

files and their corresponding resource IDs. As a result, when a resource file is required in

the source code, it can be effortlessly retrieved using the findViewById() function.

2.1.7 Machine Learning

Machine learning is a type of technology programmed rather it makes computer systems

capable to enhance their performance on a specific task by learning form data approach is used.

It basically develops algorithms and models that are able to analyze and interpret large sets of

19

data for patterns and relationships identification and further use this information to make

predictions or take actions. Machine learning is useful in a variety of applications for example

different images could be given as input data and then a random image could be recognized,

speech could be recognized, recommendation systems, and predictive analytics [44].

2.1.7.1 Machine Learning Algorithms

This part describes the different ML algorithms such as Gradient Boosting, Decision Tree,

Logistic Regression, Naïve Bayes, Support Vector Machines (SVM), Bagging Classifier,

Random Forest and K-Nearest Neighbors in detail:

a) Decision Tree

A decision tree is a machine learning algorithm which serves for classification and

regression. It is a tree-like model where each end denotes a feature or attribute, and each branch

denotes a decision rule or condition based on that feature. The tree structure is built using a

training dataset, where the algorithm selects the most informative feature at each node and

splits the data into smaller subsets. Decision trees are popular due to their interpretability, ease

of use, and ability to handle both categorical and continuous variables [45].

b) Random Forest

Random Forests utilize an amalgamation of classification/regression trees to generate

models that can effectively represent nonlinear and multi-modal functions, resulting in a

comparatively efficient learning process [44]. This collection of Random Forests comprises

randomized decision trees, with decision trees serving as the root classifier. By using a

bootstrap sample of data, each tree is created and overall features has random subset with

respect to the features set for each division. This approach is renowned for creating a collective

with low bias and variance [46].

20

c) Support Vector Machine (SVM)

SVM is a known as one of supervised learning algorithm used for classification and regression.

The optimal hyperplane is used in a high-dimensional space by SVM to separate two data

classes of data and the margin between the classes is maximized to achieve the results [44].

d) Logistic Regression

It is a supervised learning algorithm utilized to analyze the relatedness among an independent

and dependent variable. This method is typically used for classification problems, with the aim

of predicting the probability of a binary outcome, for example whether a consumer will

purchase a product, based on the input variable values. The primary purpose of LR is to

approximate the dependent variable probability using a statistical function known as a logistic

function [47].

e) Naïve Bayes

This algorithm is designed for classification purposes. It is a type of Bayesian network which

makes the assumptions that the class variable is available and feature variables are not

dependent. This assumption enables it to effectively classify data in high-dimensional spaces

while calculating the joint probability of a full variable set is complex. It is not preferable for

directly estimating the class posterior because the unrealistic independence hypothesis can

result in inaccurate probability [44].

f) Gradient Boosting

Gradient boosting is a technique that uses an iterative approach to construct an ensemble of

weak predictive models, typically decision trees, so the errors generated by the previous model

is assessed by each trained model. The algorithm determines the gradient of the loss function

with respect to the current model's predictions at each iteration and then further uses it to train

the next model. The final prediction is made by adjoining the results of all the models in the

21

ensemble. Gradient boosting is well-suited for classification and regression tasks, particularly

those with complex, non-linear connection between the features and the target variable. It is

known for its high accuracy and flexibility in handling different types of data [47].

g) Bagging Classifier

The bagging classifier is a machine learning technique used for classification tasks that

involves the grouping of multiple models qualified on multiple subsets of the training data.

Bagging stands for Bootstrap Aggregating, and it works by randomly testing the training data

with replacement to develop multiple subsets of the data. The bagging classifier is known for

its ability to reduce overfitting and enhances the stability of the model by reducing the variance

in the predictions. It is also able to handle high-dimensional data and noisy input [48].

h) KNN

K-nearest neighbors (KNN) is a type of non-parametric algorithm and in these algorithms the

underlying distribution of the data is not used for making any expectations. In KNN, the

algorithm classifies new data points by comparing them to the K closest training examples (i.e.,

the "neighbors") in the feature space. A majority vote of the classes of the K nearest neighbors

is then actually responsible for class of new data point. KNN is familiar and used for its and

ease of implementation and simplicity [49].

2.2 Related work under Static Analysis

This section will elaborate the existing malware and ransomware detection techniques.

Generally, Android app files are compiled using the SDK, and Java language is used to compile

these APKs. These APKs contain different files including Android manifest file, Java folder,

and a resource folder. Malicious actors modify these files to add ransomware functionality. The

malicious actors decompile the apps and ask for several permissions to perform the malicious

actions [19]. Felt et al. [20] considered only two permissions for their detection model i.e.,

22

SMS and READ_PHONE_STATE, but these permissions are also accessed by benign

applications. The Android operating system solely verifies whether developers have declared

permissions in the Android manifest file and applies no security checks to the permissions

requested by the apps. To address this, a framework (kirin) is developed that defined rules and

requirements. The rules stated by Kirin framework are that the application must not contain

these permissions related labels like SMS, ACCESS FINE LOCATION, INTERNET,

PHONE_STATE, SHORTCUT, and AUDIO. An app will be identified as a malicious app if

it tries to access to the mentioned six techniques [21].

Similarly, the DroidMat framework, proposed by Wu et. al. [22], extracts the permissions to

prove that the malicious APKs requested more permissions than the benign ones. A DREBIN

method, proposed by Arp et al. [23], detects Android malicious applications and identified that

SEND_SMS permission is mostly used by major malicious applications for posting SMS to

high-rate numbers. On the other hand, Sanz et al. [24] and Qiao et al. [25] worked on the

occurrence of permissions asked by mobile applications. They concluded that INTERNET

permission is the most commonly requested permission among both by the benign and

malicious APKs. The majority of malicious APKs used SMS-related permissions to carry out

malicious activities. Li et al. [26] also identified the set of frequently and rarely used

permissions for the categorization of benign and malicious applications. Diamantaris et. al.

[27] created a set of permissions that are necessary to be used by the main functions of Android

applications and further discussed how these permissions are integrated with third-party

libraries. Additionally, they identified a set of 30 permissions utilized by third-party and core

libraries in Android applications. For Android malware detection a model is proposed by

McDonald et al. [6], it uses machine learning and manifest permissions. In their study, 27

permissions were identified for generic Android malware identification. Although several

detection models (Han et al.; Hasanabadi et al.; Zhang et al.; Alzaylaee et al.; McDonald et al.)

23

have been designed to detect generic Android malware, limited detection schemes are available

for detecting Android ransomware.

Researchers have shifted their focus toward Android ransomware since 2015. An Android

ransomware dataset was created by Andronio et al. [28] and analyzed the Android ransomware

threatening text displayed on a mobile screen in English and Russian language. It is possible

to exhibit the cautionary message in several languages, each with its own unique structural

arrangement. Saracino et al. [13] inspected permissions and system calls for detection, while

Mercaldo et al. [29] analyzed Java Bytecode to observe the behavior of ransomware on Android

phones. Mairco et al. [30] detected Android ransomware based on Dalvik bytecode to observe

invoke-type instructions. Gharib and Ghorbani et al. [7] considered analyzed text, permissions,

logos, system, and API call sequences. While Ferrante et al. [8] emphasized the n-grams

opcodes (n ¼ 2), memory, system calls, network traffic logs, and CPU usage by the Android

ransomware for the detection. Chen et al. [9] developed a dataset that recorded the user’s layout

click based on widgets and movements, which was then used to detect Android ransomware.

Similarly, Alzahrani et al. [10] developed a hybrid model by comparing the app structure with

known ransomware, identifying warning text, and analyzing images used for the research. Su

et al. [11] detected locker ransomware by considering the text, permissions, window properties,

and system commands. However, ransomware can evade detection by displaying text via

images. Scalas et al. [12] used system API packages, classes, and methods as features. Lachtar

et al. [31] extracted opcodes from instructions to use as a feature to detect Android ransomware.

Alzahrani et al. [14] analyzed permissions, intents, and API calls for mobile ransomware

detection. Bibi et al. [32] suggested a dynamic mechanism which is comprised of 19 important

features related to network headers and packets to identify Android ransomware. Alsoghyer et

al. [15] suggested a permission-based detection model and identified 115 malicious

permissions for Android ransomware detection. Sharma et al. [5] proposed a detection model

24

by using analyzed text, permissions, images, and Java files. Abdullah et al. [33] described a

dynamic detection system that detects Android ransomware by using system calls. From the

aforementioned techniques of ransomware detection using different feature sets and detection

accuracies are shown in Table 2.3-A.

Table 2.3-A Comparison of Ransomware Detection Techniques

Related

 Work

Framework Analysis

Technique

Feature Set Machine

Learning

Technique

Permissions

used

Accuracy

Andronio

et al. [28],

2015

HelDroid Static Text, Locking,

Encryption

Natural

Language

Processing

No 94%

Saracino et

al. [13],

2016

Madam Static,

Dynamic

Permissions,

System calls

KNN Yes 96.9%

Mercaldo

et al. [29],

2016

R-inside out Static Java Bytecode CWNC

model

No Not stated

Mairco et

al. [30],

2017

R-PackDroid Static Invoke-type

instructions

RF No Not stated

Gharib

and

Ghorbani

et al. [7],

2017

DNA-Droid Static,

Dynamic

Text, Images,

API,

Instructions

NB, RF,

SVM,

Adaboost,

DNN

No Not stated

Ferrante et

al. [8],

2017

Extinguish

Ransom

Static,

Dynamic

Memory,

System calls,

Logs

DT, NB,

LR

No 100%

Chen et al.

[9], 2017

RansomProber Static,

Dynamic

Widgets,

Activities

User

interface,

User Clicks

No 99%

Alzahrani

et al. [10],

2018

RAndroid Static,

Dynamic

Text, Images Not stated No 91%

25

[11], 2019 Locker Static Text,

Commands,

Background

operations

(permissions,

Priority,

admin,

window,

system)

LR, RF,

DT, SVM

Yes 99.98%

Scalas et

al. [12],

2019

static API packages,

Classes,

Methods

RF No 97%

Lachtar et

al. [31],

2019

Native

instructions

based

Static A dictionary

contains

unique

opcodes

present

RF, SVM,

KNN, ANN

No 99.8%

Alzahrani

et al. [14],

2019

API-Based Static 34 API, 48

Permissions, 4

Intents

KNN, LR,

SVM, RF

Yes 97.62%

Bibi et al.

[32], 2019

Mutifactor

feature filtration

and recurrent

neural network

Dynamic Network

packets,

Headers

LSTM No 97.08%

Alsoghyer

et al. [15],

2020

Permissions

based

Static 115

Permissions

are used

RF, J48,

SMO, NB

Yes 96.9%

Abdullah

et al. [33],

2021

System calls

based

Dynamic 52 System

calls are used

RF,J48,NB No 98.31%

Sharma et

al. [5],

2021

GPU-Based Static Permissions,

Text, Images,

JAVA files

LR, ANN,

SVM

Yes 98.04%

Sifat et al.

[34], 2023

Traffic analysis

based

Dynamic Traffic

Analysis

Ensemble

Learning

No 74.09%

*KNN: K-Nearest Neighbors, CWNC: Concurrency Workbench of new century RF: Random Forest, NB:

Naïve Bayes; SVM: Support Vector Machine, DNN: Deep Neural Network, DT: Decision Tree, LR: Logistic

26

Regression, ANN: Artificial Neural Network, LSTM: Long Short-Term Memory, J48: Decision tree, SMO:

Sequential minimal Optimization

As shown in Table 2.3-A, most of the existing malware detection models utilized permissions

along with other features. While permission-based detection is efficient for the pre-detection

of malware, there is a need for Android-based models that employ an effective set of

permissions and achieve high detection accuracy through machine learning algorithms. To best

of our knowledge, there is lack to detect the android based ransomware APKs using permission.

To address this gap, this study proposes a ransomware Android detection model that utilizes a

significant set of permissions to enhance detection accuracy.

2.3 Summary

The chapter discussed an outline of the background and related work of the thesis, including

related literature and a critical analysis of the existing studies. By examining previous research

and methods used in the literature, it aids in the formulation of a solution to the identified

problem. The succeeding chapter will delve into the research methodology utilized throughout

the thesis.

27

3. Research Methodology

In this chapter, we will explain the methodology which is followed to carry out this thesis

research. A brief description of the methods that are used in our research methodology along

with the phases followed in the research process, i.e., samples collection, feature set

construction, and malware detection using machine learning classifiers are given in this

chapter.

3.1 Introduction

Research refers to the systematic gathering and analysis of data related to a particular field of

study. Its primary objective is to uncover new knowledge and facts through a scientific

investigation [50].. In the words of Clifford Woody, the research process involves identifying

and redefining the problem, developing a hypothesis and potential solutions, collecting, and

evaluating data, making assumptions, drawing conclusions, and testing the hypothesis to

confirm its validity [52].

3.1.1 Overview of Research Methodology

In this part, we will elaborate the proposed work that aims to create a minimal permissions-

based Android Ransomware detection model. To create a minimal permissions-based Android

ransomware detection model, we collected ransomware APKs from the Canadian Institute of

Cyber Security [17] and benign APKs from Androzoo [18]. We decompiled these files using

the APK tool and Android Studio to extract permissions, which were filtered using the feature

importance technique to create a dataset for machine learning models. Multiple machine

learning models were utilized to determine the most important permissions that can

differentiate ransomware from benign applications. These permissions were compared with

those used to detect ransomware and generic Android malware. For training and testing, we

28

employed Decision Tree, Random Forest, SVM, Logistic Regression, Naïve Bayes, Gradient

Boosting, Bagging and KNN classifiers.

The proposed RansomShield model consists of the following components:

• Collect malicious and benign samples and evaluate their effectiveness using

VirusTotal.

• Creating a dataset by considering the permissions as features and identifying the most

relevant features.

• Employed machine-learning algorithms to construct predictive models.

• Analyzing the effect of permission on the detection of ransomware and benign apps.

• Applying supervised ML algorithms for classification and selecting the best model.

3.2 Thesis Research Methodology

The proposed RansomShield model is shown in Figure 3.1. The model shows the stages of

collecting, decompilation, data cleansing, dataset creation, selecting significant permissions,

and then classifying carried out for the identification of Android ransomware. The key

components are discussed in the below topics.

Figure 3.1-Proposed Model Flow Diagram: RansomShield

29

Firstly, for the collection of Android samples, we collected benign and ransomware sample

applications. The legitimate applications gathered from Google Play Store and Androzoo

dataset [18]. For AndroZoo dataset, a script written in Python is used along with the API key

provided by AndroZoo. However, for Android ransomware samples CICAndMal2017 dataset

[17] is employed. To appraise the usefulness of the proposed methodology, and for orderly data

training; cross-validation experimentations are performed for these samples. The ransomware

samples used for the research belonged to 11 different variants of ransomware as shown below

in Figure 3.2:

Figure 3.2-Android Ransomware APKs

3.2.1 Constructing the Features Set

To construct and classify ML models, the initial stage involves gathering essential

characteristics from a dataset. These features are typically listed in the AndroidManifest.xml

file of an Android application package (APK) including requested permissions from an

application. Proposed approach extracts features by utilizing the APK tool to decompile

ransomware applications from the CICAndMal2017 dataset [17]. Our primarily emphasis is on

permissions to compile a list of feature sets for conducting static analysis and to gain a thorough

understanding of each app's behavior.

30

3.2.2 Parameter Feature Set Construction

To create the dataset, we have used various tools for the static analysis of applications. Firstly,

we employed Android Studio to obtain the permissions from the Android Manifest.xml file.

Additionally, we employed the APK tool for the decompilation of Android applications, as it

is a command line tool also known for reverse engineering applications. We created the dataset

based on the permissions requested by applications. We also installed MobSF (static analysis)

and analyzed the applications in it. To study the other features, grasp the behavior of each app

and request permissions description as well to select the appropriate applications for the

dataset. We extracted and considered each permission requested by the applications. Further

reduced the permissions systematically considering the influence of permissions among them.

Figure 3.2 described the strategy that we implemented for our proposed research. The figure

3.3 below summarized the proposed research methodology into five steps that are data

collection, dataset construction, deep analysis, constructing the model and evaluate that model

by applying different machine learning algorithms.

31

Figure 3.3-Proposed Research Methodology

3.2.3 Extraction of Core Features

After constructing the dataset, the next step was to extract the core features required to

differentiate the ransomware apps from the benign apps. For choosing the effective

permissions, we have explored and evaluated the risky permissions by Google, Zhu et al. [35],

RansomProber [9], and RansomAnalysis [7] for Android generic malware and ransomware

detection as shown in Table 3.1. It shows the dangerous permissions identified by the above-

mentioned models:

32

Table 3.1-Comparison of Permissions Identified by different models

Permissions Google Sun et

al. [26]

2016

Chen

et al.

[9]

2017

Zhu et

al. [16]

2018

Chen

et al.

[9]

2017

Sharma et

al. [5] 2021

General Malware Permissions Ransomware

Permissions

READ_PHONE_ST

ATE
✓ ✓ ✓ ✓ ✓

WRITE

_EXTERNAL_STOR

AGE

✓ ✓ ✓ ✓ ✓

ACCESS_COARSE_

LOCATION
✓ ✓

ACCESS_FINE_LO

CATION
✓ ✓

RECORD_AUDIO ✓

READ_EXTERNAL

_STORAGE
✓ ✓ ✓

SEND_SMS ✓ ✓ ✓ ✓ ✓

CAMERA ✓ ✓ ✓

RECEIVE_SMS ✓ ✓ ✓ ✓

GET_ACCOUNTS ✓ ✓

READ_SMS ✓ ✓ ✓ ✓

READ_CONTACTS ✓ ✓ ✓ ✓

ACCESS_NOTIFIC

ATION_POLICY
✓

WRITE_CONTACT

S
✓ ✓

READ_CALENDAR ✓

READ_CALL_LOG ✓ ✓

WRITE_CALENDA

R
✓

INSTALL_PACKAG

ES
✓ ✓ ✓

SET_ALARM ✓ ✓

BODY_SENSORS ✓

WRITE_SECURE_S

ETTINGS
✓ ✓

WRITE_CALL_LOG ✓

UPDATE_DEVICE_

STATS
✓ ✓

READ_HISTORY_B

OOKMARKS
✓ ✓ ✓ ✓

WRITE_HISTORY_

BOOKMARKS
✓ ✓ ✓

33

RECEIVE_BOOT_C

OMPLETED

 ✓ ✓ ✓ ✓

INTERNET ✓ ✓ ✓

ACCESS_NETWOR

K_STATE

 ✓ ✓ ✓

ACCESS_WIFI_STA

TE

 ✓ ✓ ✓

VIBRATE ✓ ✓

WAKE_LOCK ✓ ✓ ✓

INSTALL_SHORTC

UT

 ✓

WIRTE_SMS ✓

CALL_PHONE ✓

READ_SETTINGS ✓

GET_TASKS ✓ ✓ ✓ ✓

KILL_BACKGROU

ND_PROCESSES

 ✓ ✓

SYSTEM_ALERT_

WINDOW

 ✓ ✓ ✓

DISABLE_KEYGU

ARD

 ✓ ✓ ✓

CHANGE_WIFI_ST

ATE

 ✓ ✓

WRITE_SETTINGS ✓ ✓

CHANGE_NETWO

RK_STATE

 ✓

READ_LOGS ✓

RESTART_PACKA

GES

 ✓

SET_WALLPAPER ✓

WRITE_APN_SETT

INGS

 ✓

TOTAL

PERMISSIONS

26 22 21 9 21 10

Table 3.1 presents the permissions that have been filtered out by current reverse engineering

and machine learning techniques for detecting generic Android malware and ransomware.

Some of these permissions are commonly in detecting Malwares. We have chosen a significant

set of features by disregarding the permissions that are less effective for detection. To create

the dataset, we initially considered 158 permissions that have been requested by both benign

and Android ransomware applications. Alzahrani et al. [14] employed 48 permissions for

34

identifying Android ransomware. However, it did not specify which permissions are used. On

the other hand, in the proposed strategy, we have reduced permissions up to 16 and improved

accuracy. Further, we employed the Random Forest feature importance characteristic to

evaluate the importance of permissions. The permissions we have selected for our proposed

model are listed in Table 3.2 along with their importance. The proposed permissions set is as

follows:

Table 3.2-Description of proposed Permissions

 S.no: Proposed Permissions Feature

Importance

Description

1. SEND_SMS 0.07024 To send messages and

cost the money of

those messages

without confirmation

2. READ_PHONE_STATE 0.03367 To access the phone

features of the device.

3. READ_SMS 0.03100 To read the SMS from

the phone and SIM

card.

4. READ_CONTACTS 0.02655 To read all the contact

data saved on the

device.

5. RECEIVE_BOOT_COMPLETED 0.16460 To check when the

device boots up

6. INTERNET 0.06132 To open the network

sockets

7. ACCESS_WIFI_STATE 0.02021 To view the

information about

status of Wi-Fi

networks.

8. WAKE_LOCK 0.05255 To keep the device

screen on and stop it

from sleeping.

9. GET_TASKS 0.08072 The currently and

recently running tasks

information can be

accessed through this

permission.

10. SYSTEM_ALERT_WINDOW 0.27866 To take over the entire

screen window

11. ACCESS_NETWORKS_STATE 0.01802 To get information

about status of

networks.

35

12. READ_EXTERNAL_STORAGE 0.04895 It allows to read from

external storage

13. READ_SETTINGS 0.03116 To view the settings

14. MODIFY_AUDIO_SETTINGS 0.02286 To change global

audio settings like

routing and volume.

15. RECEIVE 0.02771 View the receiving

settings

16. BILLING 0.03178 View the billing

related information

The feature importance graph generated for our proposed 16 permissions by Random Forest is

shown in Figure 3.4. The graph below shows the importance percentage of each identified

permission for ransomware detection.

Figure 3.4-Permission Importance Graph

36

3.2.4 Dataset Creation

The permission information is interpreted into the 0’s and 1’s format. The 0’s shows the app

denying permission and 1’s indicate the requesting permission. The permission set selected

from benign and ransomware APKs represented in 0’s and 1’s are merged to create a single

dataset for analysis. Many detection models use extensive number of permissions i.e., 115

permissions are proposed in [15]. Our proposed model dataset filtered the minimum number

of features for ransomware APKs detection. The comparison of selected features of our

proposed research are shown in Table 3.3:

Table 3.3-Comparison of the proposed features with Sharma et al. [5] and Chen et. al. [9] methods’ features.

Permissions/Features Che

n et

al.

[9],

2017

Alzahran

i et al.

[14],

2019

Alsoghye

r et al.

[15],

2020

Sharm

a et al.

[5],

2021

Propose

d

Method

READ_PHONE_STATE ✓ ✓ ✓ ✓

WRITE _EXTERNAL_STORAGE ✓ ✓ ✓

READ_EXTERNAL_STORAGE ✓ ✓

SEND_SMS ✓ ✓ ✓

CAMERA ✓

RECEIVE_SMS ✓

GET_ACCOUNTS ✓

READ_SMS ✓ ✓

READ_CONTACTS ✓ ✓

RECEIVE_BOOT_COMPLETED ✓ ✓ ✓ ✓

INTERNET ✓ ✓ ✓ ✓

ACCESS_NETWORK_STATE ✓ ✓ ✓ ✓

ACCESS_WIFI_STATE ✓ ✓

VIBRATE ✓

WAKE_LOCK ✓ ✓ ✓ ✓

GET_TASKS ✓ ✓ ✓

KILL_BACKGROUND_PROCESS

ES
✓ ✓ ✓

SYSTEM_ALERT_WINDOW ✓ ✓ ✓ ✓

DISABLE_KEYGUARD ✓ ✓

CHANGE_WIFI_STATE ✓

WRITE_SETTINGS ✓

37

READ_SETTINGS ✓

MODIFY_AUDIO_SETTINGS ✓

RECEIVE ✓

BILLING ✓

BIND_DEVICE_ADMIN ✓

Other (…) ✓ ✓

Total Permissions 21 48 115 10 16

Other properties

Intents ✓ ✓

Images ✓

Text ✓

Lock ✓

Encrypt ✓

Encode ✓

API Calls ✓

Accuracy 99% 96.9% 97.62% 98% 97%

Table 3.3 shows the comparison of the permissions identified by different models. Our model

identified 16 permissions with high detection accuracy. However, Sharma et al. [5] identified

10 permissions but also relied on other features such as intents, images, text, lock, encrypt, and

encode. Similarly, Alzahrani et al. [14] identified 48 permissions, 4 intents and 34 API calls

for ransomware detection. However, permissions are not mentioned in their study. While

Alsoghyer et al. [15], 2020 identified 115 permissions for detection. Chen et al. [9] identified

21 permissions while achieving the highest detection accuracies. However, the proposed model

employed 28% fewer permissions as compared to Chen et al. [9] while compromising the

detection accuracy of 2%. Our proposed model main aim is to reduce the permissions for

ransomware detection.

3.2.5 Ransomware Detection by Employing Machine Learning

Models

Within this section, we utilize classifiers to accurately detect ransomware applications while

minimizing false positive results. Our dataset comprises ransomware samples extracted from

38

the CICAndMal2017 dataset. For training purposes, we allocate 80% of the samples,

employing eight distinct classifiers: Decision Tree, Random Forest, SVM, Logistic Regression,

Naive Bayes, Gradient Boosting, Bagging, and KNN classifiers. Subsequently, we employ the

remaining 20% of the samples to evaluate the models' performance and compare the obtained

outcomes.

This section is comprised of applying supervised machine learning classifiers. The proposed

model is consisting of two parts: the first part is the creation of the dataset and selection of the

appropriate features (permissions) and the second part comprises the preparation and

authentication of the supervised learners with various ML algorithms. The proposed dataset

contains an equal ratio of benign and ransomware. Android APKs. Google Collab platform in

which Python scripts and split methods are used for training and dataset testing.

3.3 Summary

Within this chapter, various methodologies have been explored which have been utilized in

prior research and can be replicated to obtain comparable outcomes. The overarching approach

entails acquiring datasets from reliable sources, culling and pinpointing the relevant features,

and ultimately employing various Machine Learning techniques for classification purposes.

Moving forward, the subsequent chapter will delve into the experimental configurations, and

which is formulated for conducting this specific analysis.

39

4. Experimental Setup

The present chapter outlines the experimental arrangement which has been devised for

establishing an appropriate research environment. It also rationalizes the choice of certain

employed methodologies. Furthermore, this chapter furnishes the specifications of the system

configurations.

4.1 Overview

To undertake the experimental analysis, a setup akin to the one employed by H. J. Zhu et. al.

[16] has been adopted. The experimental setup encompasses an android dataset that comprises

both ransomware and benign applications. Additionally, a PC is utilized to execute a Python-

based codebase, responsible for generating the feature set and conducting the evaluation

process.

4.2 Setting up Environment

To facilitate the experimentation process, a machine operating on the Windows platform is

used. The system specifications are presented in the table provided below, denoted as Table

4.1.

Table 4.1-System specifications

Property Description

Manufacturer DELL

Model Dell

Architecture x64 based

Operating System Windows 10 Pro

Processor Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz 2.11 GHz

40

RAM 16 GB

Storage 500 GB

4.3 Constructing Android Ransomware Dataset

To construct the dataset, we gathered various samples of Android applications from two

distinct sets: ransomware and benign. The benign samples are selected from the Androzoo

dataset [18], encompassing applications from diverse categories such as business,

entertainment, finance, and games. This approach aimed to ensure a wide range of diversity

within the samples.

Regarding the ransomware samples, multiple options were available. However, we opted to

utilize the CICAndMal2017 [17] dataset due to the Canadian Institute of Cybersecurity's

reputation for providing up-to-date collections of malware samples. Accessing these datasets

required signing up on the CIC website [https://www.unb.ca/cic/datasets/index.html] and

providing consent to acknowledge the associated risks of downloading and utilizing the dataset.

4.4 Environmental Setup

Once the samples are collected, we set up an environment to analyze the Android ransomware

samples. For setup, experiments are executed on Windows 10 host machine running VBOX

having a Windows 10 machine installed. Inside the VBOX Windows 10, we installed Android

Studio, APK tool, and MobSF for static analysis of applications. The collected ransomware

samples are taken from CICAndMal2017 dataset. The description of tools used are described

in Table 4.2 as:

41

Table 4.2- Tools Description

S.No: Tool Name Description

1. Android Studio It provides the integrated environment for development

of applications. It also analyzes the app statically. For

dynamic analyzation, genny motion must be integrated

with it.

2. APK Tool It is the best tool for reverse engineering of applications.

it decodes the app almost near to original form.

Different static features can be extracted out through it.

3. MobSF It is an automated tool for pen testing, malware analysis

and security assessment of mobile applications.

4.5 Evaluation of APKs through VirusTotal

After the collection of malware samples, we employed the VirusTotal [35] to distinguish the

regular and ransomware malware by adding its signature. The VirusTotal API key can also be

used for uploading the APK files to it. All the applications are submitted to the VirusTotal to

verify the calculated score by different anti-virus engines.

4.6 Downloading the Python Codebase

The code base has been developed entirely from scratch utilizing the Python programming

language. The code for this research can be seamlessly incorporated into the experimentation

environment.

42

4.7 Installing Pre-requisite Software

Before proceeding with the experimentation process, it is necessary to install certain

prerequisite software. The following software are required:

1. An archiving tool like WinRAR; it is used for extracting application samples. You can

download it from the following link: WinRAR Download

2. Python interpreter, preferably version 3.8 or higher. This software is required for tasks

such as extracting applications, generating feature sets, and performing classifications.

You can download the Python interpreter from the following link: Python 3.8+

Download

3. If there is a need to modify the codebase or customize the feature set, any Python

Integrated Development Environment (IDE) can be utilized, such as IntelliJ IDEA. You

can download IntelliJ IDEA from the following link: IntelliJ IDEA Download

4.8 Summary

Within this chapter, we have presented the proposed experimental setup designed for

conducting the analysis. The chapter encompasses discussions on the collection of the

necessary dataset, establishment of the essential environment, and the accompanying codebase.

Additionally, comprehensive information regarding the installation of prerequisite software for

the analysis process, including their respective sources, have been provided in this section.

https://www.win-rar.com/download.html?&L=0
https://www.python.org/downloads/release/python-380/
https://www.python.org/downloads/release/python-380/
https://www.jetbrains.com/idea/download

43

5. Experimental Results

In this chapter, the obtained results and their analysis is presented in the form of classification

outcomes. Additionally, the accomplishments of the research are extensively discussed within

this chapter.

5.1 Overview

Permissions are utilized by Android applications to offer various functionalities to users, but

unfortunately, malware developers exploit these permissions for malicious purposes. This

study conducts a comprehensive analysis on an Android dataset containing both benign and

ransomware applications. The subsequent discussion focuses on the utilization of different

evaluation metrics during the analysis to gauge the efficacy of the approach.

5.2 Evaluation Measures

To assess the performance, the evaluation utilizes the metrics of Sensitivity, Precision,

Accuracy, Area under Curve (AUC), and the Receiver Operating Characteristic (ROC).

Accordingly, the following formulas depict their respective information.

1) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇 𝑃 + 𝑇 𝑁

𝑇 𝑃 + 𝐹 𝑃 + 𝑇 𝑁 + 𝐹 𝑁

2) 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇 𝑃

𝑇 𝑃 + 𝐹 𝑁

3) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇 𝑃

𝑇 𝑃 + 𝐹 𝑃

4) 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃+
1

2
(𝐹𝑃+𝐹𝑁)

44

In the context of these metrics, the true positive (TP) signifies the samples that are correctly

anticipated as positive based on count of positive testing. Conversely, false positive (FP) refers

to samples that are incorrectly anticipated as positive based on the count of negative testing.

Similarly, true negative (TN) denotes the count of negative testing samples that are accurately

anticipated as negative, while false negative (FN) represents the count of positive testing

samples that are falsely anticipated as negative.

5.3 Evaluating Research Effectiveness

To evaluate the efficacy of RansomShield, we conducted over 20 iterations on the feature

dataset. After reducing the requested permissions by the samples, we identified the 16 most

significant permissions out of the initial 158. Additionally, we calculated the performance

metrics values for each classifier of the machine-learning algorithm to compare their results.

To calculate the performance of Chen et. al. method on our proposed dataset with its 21

features, we have observed a similar detection accuracy as compared to our proposed model

with 16 permissions. Chen et. al. detection accuracies were around 98% for decision tree, 97

% for random forest, 93% for logistic regression, 97% for SVM, 74% with Naïve Bayes, 97%

with KNN, 94% with Bagging, and 100% with gradient boosting classifiers. Table 5.1 shows

the performance metrics values of each classifier for the proposed Ransom Shield.

Table 5.1-The performance comparison of the proposed RansomShield and existing methods

S.

No:

ML

Classifiers

Accuracy

(proposed

model)

Permissions=16

Precision Recall F1

Score

K-

Fold

Validation

Accuracy

(Reference

Approach)

Permissions=21

1. Decision

Tree

95% 95% 96% 95% 93.5% 98%

2. Random

Forest

97% 98% 98% 98% 97% 97%

3. Logistic

Regression

95% 95% 96% 95% 88.5% 93%

45

4. Bagging

Classifier

94% 98% 98% 985 92.9% 94%

5. Support

Vector

Machine

97% 98% 98% 98% 93% 97%

6. K-Nearest

Neighbor

97% (knn=1)

97% (knn=5)

98%

98%

98%

98%

98%

98%

95%

(knn=1)

92%

(knn=5)

97%

7. Gradient

Boosting

100% 100% 100% 100% 94.6% 100%

8. Naïve

Bayes

73.8% 74% 77% 73% 75% 74%

Our experimental results showed the highest detection accuracy is 100% with gradient

boosting. As Gradient boosting is known for its effectiveness and flexibility due to the

requirement of weak subtrees in the ensemble. This allows gradient descent to efficiently steer

towards a favorable solution. Consequently, gradient boosting often delivers impressive results

without the need for extensive tuning. That’s why the gradient boosting showed highest

accuracy for ransomware detection. After gradient boosting, Random Forest, SVM and KNN

showed 97% detection accuracy. The accomplishment of these algorithms is influenced by

components such as the dataset's quality and characteristics, feature engineering techniques,

hyperparameter tuning, and various other factors. The choice of the most appropriate algorithm

is based on its own advantages and limitations, and it may vary for a specific problem. While

Naïve bayes showed 73.8% detection because in reality, the assumption of feature

independence, which is inherent in the naive Bayes algorithm, is often invalid. In return, the

accuracy of naive Bayes tends to be lower compared to more sophisticated algorithms.

In order to understand how well a classification model, accomplish across all classification

thresholds, ROC (Receiver Operating Characteristics) curve is used. ROC curve illustrates how

well a classification model performs across all classification thresholds. One can create a graph

by varying classification thresholds and plotting the false positive rate (FPR) against the true

46

positive rate (TPR), the ROC curve provides a visual representation of the model's

performance. If the threshold of classification is decreased, items will be increased in category

of positive, leading to rise in both false positives and true positives. In contrast, AUC curve is

the area under the curve. It is an estimate of performance across all the classification thresholds.

The ROC and AUC graphs for machine learning classifiers can be seen in Figure 11 for the

proposed model.

47

Figure 5.1-ROC and AUC Graphs

48

The above figure 5.1 shows the graphs of RoC and AuC of all the applied machine learning

classifiers. Random forest proved to be best for ROC and AUC as at 0

5.4 Summary

This chapter delves into the analysis and outcomes obtained during the research. Subsequently,

the subsequent chapter focuses on the validation and verification of the achieved results.

49

6. Discussion and Analysis

This chapter describes validation and verification of the results obtained from the

experimentation. They are examined in relation to the proposed feature set. Throughout the

study, the results gathered from various classifiers together with Decision Tree, Random

Forest, Logistic Regression, Naïve Bayes, Bagging, Gradient Boosting, and KNN classifiers

(discussed in chapter 5) are compared with the method suggested by Chen et al. [9].

Additionally, the observed results are further validated against the Chen et al. [9] approach

within this chapter.

6.1 Overview

In this part, we assess the efficacy of the investigation conducted on Android ransomware

detection. We have chosen several traditional machine-learning algorithms, inclusive of

Decision Tree, Random Forest, SVM, Logistic Regression, Naive Bayes, Gradient Boosting,

Bagging, and KNN classifier models. These models were evaluated using permissions as a

metric to gauge the effectiveness of the suggested approach. Instead of using the 21 different

permissions set employed in the Chen approach [9], our research utilized a reduced feature set

consisting of only 16 permissions deemed most significant. Table 13 displays the detection

accuracies achieved by the Chen approach [9], which ranged around 99%. However, our

suggested method surpassed the Chen approach [9] in the course of performance, utilizing a

minimal feature set while achieving similar detection accuracies.

6.2 Comparison with Reference Approach

Table 6.1 illustrates the comprehensive performance contrast between the proposed and Chen

et al. [9] approaches. It is evident from the results that the Decision Tree classifier demonstrates

the highest detection performance in the Chen approach. Importantly, our proposed scheme

50

achieves comparable accuracies with Chen et al. [9] for the KNN and Random Forest models,

despite employing a reduced number of features. Thus, we can conclude that the Random

Forest and SVM-based ensemble classifier, utilizing the proposed feature set, achieve the

highest accuracy ratings of 97%. Additionally, Table 6.1 highlights the successful reduction of

five features in our proposed scheme by preserving homogeneous detection accuracies. Based

on the aforementioned contrast, it is evident that our proposed method surpassed the Chen

approach [9] in the course of accuracy, with the Random Forest and SVM classifier emerging

as the best-performing models.

To calculate the performance of Chen et. al. method on a proposed dataset with its 21 features,

we have observed a similar detection accuracy as compared to our proposed model with 16

permissions.

Table 6.1(a) -Comparison of Accuracies of Chen and Proposed Approaches

S.

No:

ML Classifiers Accuracy

(Reference Approach)

Features: 21

Accuracy

(Proposed

Approach)

Features: 16

1. Decision Tree 98% 95%

2. Random Forest 97% 97%

3. Logistic Regression 93% 95%

4. Bagging Classifier 94% 94%

5. Support Vector Machine 93% 97%

6. K-Nearest Neighbor 97% 97% (knn=1)

97% (knn=5)

7. Gradient Boosting 100% 100%

51

8. Naïve Bayes 74% 73.8%

6.3 Heat Map of Applied Machine Learning

algorithms

Figure 6.1-Decision tree and Random Forest heat maps

52

The above figure 6.1(a) represents the heat maps of Decision Tree and Random Forest

algorithms. Heat map is a graphical representation that uses color coding to visualize the

strength of correlations between variables. It aids in identifying the most effective features for

building Machine Learning models by displaying the coefficients. The heat map converts the

correlation matrix into a visual display of colors. Heat map of decision tree showed 95%

accuracy. It represents all the results in visual form. Also, it can be clearly seen from the

heatmap of random forest that the accuracy is 98% as mentioned in above chapters.

Figure 6.2-Decision tree and Random Forest heat maps

Figure 6.2-Logistic Regression and SVM heat maps

53

Figure 6.2 illustrates the heatmaps for logistic regression and SVM algorithms. The results

shown in heatmap are the same as described. The accuracies for logistic regression and SVM

are 95% and 98% respectively.

The Table 6.1 (b) below shows the comparison of proposed framework with the existing

reference approaches.

Table 6.2(b) -Comparison of Proposed Approaches with existing Reference Approaches

Related

Work

Framework Analysis

Technique

Feature Set Machine

Learning

Techniques

Permissions Accuracy

Chen et al. [9],

2018

RansomProber Static,

Dynamic

Widgets,

Activities, 21

Permissions

User interface,

User Clicks

No 99%

Alzahrani et

al. [10], 2018

RAndroid Static,

Dynamic

Text, Images Not stated s 91%

Scalas et al.

[12], 2019

 Static API packages,

Classes,

Methods

RF No 97%

Lachtar et al.

[31], 2019

Native

instructions

based

Static A dictionary

contains

unique

opcodes

present

RF, SVM,

KNN, ANN

No 99.8%

Alzahrani et

al. [14], 2019

API-Based Static 34 API, 48

Permissions, 4

Intents

KNN, LR,

SVM, RF

Yes 97.62%

Alsoghyer et

al. [15], 2020

Permissions

based

Static 115

Permissions

are used

RF, J48, SMO,

NB

Yes 96.9%

54

Proposed

Approach,

2023

RansomShield Static 16

Permissions

SVM, DT, RF,

LR, NB,

KNN, GB,

Bagging

Classifier

Yes 97%

6.4 Applicability of the Proposed Approach

The following use cases are provided to enhance our understanding of the application of the

proposed RansomShield. Early detection patterns can greatly assist in minimizing and ideally

preventing damages in ransomware detection analysis. Therefore, drawing from the

aforementioned analysis, we can apply the research's effectiveness to various scenarios,

including the following examples:

A. The ability to distinguish between Android ransomware applications and benign ones

can be facilitated by analyzing the permissions requested during the installation

process.

B. The module can be integrated into end devices as a lightweight anti-ransomware

application. For each new installation, it extracts permission features from the APK file

and transfers the data to the trained classifier. The classifier then utilizes this data for

classification purposes. Depending on the results, the installation is either permitted or

the detection is reported to the end-users.

C. It is possible to implement it on application stores, where it can be utilized for

categorizing applications that are being uploaded, prior to their availability to the

general public.

D. By implementing both host-based and market-based approaches, it is possible to

leverage its capabilities for additional security enhancements. This implementation can

55

offer extended verification measures, even for applications available outside the official

app store.

6.5 Summary

In this chapter, we have consolidated significant findings and conducted validations to verify

our results. A comparative analysis has been performed, contrasting the outcomes derived from

the Chen et al. [9] approach with our own findings. Additionally, we have explored potential

applications of our proposed approach. The subsequent chapter focuses on the conclusion and

future prospects of our work.

56

7. Conclusion & Future Work

In this chapter, we will summarized the thesis and gives future research directions for

researchers. It outlines various avenues for research and highlights unresolved research issues

that require attention from the academic community.

7.1 Conclusion

Android ransomware is a significant danger to the mobile market, and machine learning

algorithms can be utilized to detect security risks and achieve high accuracy through feature

selection and algorithm performance. This study focuses on static analysis of applications to

create an effective model for android ransomware detection. We examine various approaches

used for detecting android ransomware and compare our dataset's permissions with other

models' permissions to demonstrate the efficacy of our model, which produced high-accuracy

results with all four applied machine classifiers. Our evaluation indicates that by selecting a

significant set of permissions and creating our own dataset, RansomShield achieves high-

accuracy results.

Using the feature dataset at hand, we conducted classification experiments employing different

classifiers, including Gradient Boosting, Decision Tree, SVM, Logistic regression, Naïve

Bayes, Bagging, Random Forest and KNN. When comparing our results with the existing

method, we observed that our proposed strategy achieved comparable levels of accuracy on the

classifiers utilized by Chen et al. [9], and it also demonstrated the potential for improved results

when employing other classifiers. The comparison outcomes clearly indicate that Random

Forest, SVM, and KNN outperform the remaining five selected classifiers.

The results of our experiments demonstrate that when we employed the proposed feature

dataset, we can attain a baseline accuracy of 74% using the Naïve Bayes classifier.

57

Furthermore, by employing other classifiers, we can achieve accuracy rates above 90%. Based

on these findings, we draw the conclusion that Random Forest, SVM, and KNN classifiers

exhibit superior performance, detecting ransomware APKs with suggested features set at

approximately 97%.

7.2 Limitation & Future Work

The proposed work has a significant drawback in that it relies solely on Android permissions

for detecting ransomware and has a limited dataset. While using permissions can help identify

apps that excessively request permissions, there may be instances where an app declares

dangerous permissions but doesn't actually use them. To ensure comprehensive detection, it is

important to address such edge cases through malware analysis. Therefore, future efforts will

aim to examine both the declaration and usage of permissions for improved detection.

To extend our proposed research, the dataset can be enhanced, and larger datasets may explore

to minimize the permissions. Additionally, dynamic features can be incorporated into the

detection features by considering the permissions identified in our study as a starting point.

The best sandbox for analyzing the dynamic behavior of Android applications is MobSF with

Genny motion, which can be utilized in future research to improve the detection accuracies.

58

8. Bibliography

[1] Oz, H., Aris, A., Levi, A., & Uluagac, A. S. (2022). A survey on ransomware:

Evolution, taxonomy, and defense solutions. ACM Computing Surveys (CSUR),

54(11s), 1-37.

[2] Akbar, F., Hussain, M., Mumtaz, R., Riaz, Q., Wahab, A. W. A., & Jung, K. H. (2022).

Permissions-based detection of android malware using machine learning. Symmetry,

14(4), 718.

[3] Sharma, S., Kumar, R., & Krishna, C. R. (2020). RansomAnalysis: The evolution and

investigation of Android ransomware. In Proceedings of International Conference on

IoT Inclusive Life (ICIIL 2019), NITTTR Chandigarh, India (pp. 33-41). Springer

Singapore.

[4] Wu, D. J., Mao, C. H., Wei, T. E., Lee, H. M., & Wu, K. P. (2012, August). DroidMat:

Android malware detection through manifest and API calls tracing. In 2012 Seventh

Asia joint conference on information security (pp. 62-69). IEEE.

[5] Sharma, S., Krishna, C. R., & Kumar, R. (2021). RansomDroid: Forensic analysis and

detection of Android Ransomware using unsupervised machine learning technique.

Forensic Science International: Digital Investigation, 37, 301168.

[6] Herron, N., Glisson, W. B., McDonald, J. T., & Benton, R. K. (2021, January). Machine

learning-based android malware detection using manifest permissions. Proceedings of

the 54th Hawaii International Conference on System Sciences.

59

[7] Gharib, A., & Ghorbani, A. (2017). Dna-droid: A real-time android ransomware

detection framework. In Network and System Security: 11th International Conference,

NSS 2017, Helsinki, Finland, August 21–23, 2017, Proceedings 11 (pp. 184-198).

Springer International Publishing.

[8] Ferrante, A., Malek, M., Martinelli, F., Mercaldo, F., & Milosevic, J. (2018).

Extinguishing ransomware-a hybrid approach to android ransomware detection. In

Foundations and Practice of Security: 10th International Symposium, FPS 2017,

Nancy, France, October 23-25, 2017, Revised Selected Papers 10 (pp. 242-258).

Springer International Publishing.

[9] Chen, J., Wang, C., Zhao, Z., Chen, K., Du, R., & Ahn, G. J. (2017). Uncovering the

face of android ransomware: Characterization and real-time detection. IEEE

Transactions on Information Forensics and Security, 13(5), 1286-1300.

[10] Alzahrani, A., Alshehri, A., Alshahrani, H., Alharthi, R., Fu, H., Liu, A., & Zhu, Y.

(2018, May). Randroid: Structural similarity approach for detecting ransomware

applications in android platform. In 2018 IEEE International Conference on

Electro/Information Technology (EIT) (pp. 0892-0897). IEEE.

[11] Su, D., Liu, J., Wang, X., & Wang, W. (2018). Detecting Android locker-ransomware

on chinese social networks. IEEE Access, 7, 20381-20393.

[12] Scalas, M., Maiorca, D., Mercaldo, F., Visaggio, C. A., Martinelli, F., & Giacinto, G.

(2019). On the effectiveness of system API-related information for Android

ransomware detection. Computers & Security, 86, 168-182.

[13] Saracino, A., Sgandurra, D., Dini, G., & Martinelli, F. (2016). Madam: Effective and

efficient behavior-based android malware detection and prevention. IEEE Transactions

on Dependable and Secure Computing, 15(1), 83-97.

60

[14] Alzahrani, A., Alshahrani, H., Alshehri, A., & Fu, H. (2019, December). An intelligent

behavior-based ransomware detection system for android platform. In 2019 First IEEE

International Conference on Trust, Privacy and Security in Intelligent Systems and

Applications (TPS-ISA) (pp. 28-35). IEEE.

[15] Alsoghyer, S., & Almomani, I. (2020, March). On the effectiveness of application

permissions for Android ransomware detection. In 2020 6th conference on data science

and machine learning applications (CDMA) (pp. 94-99). IEEE.

[16] Zhu, H. J., You, Z. H., Zhu, Z. X., Shi, W. L., Chen, X., & Cheng, L. (2018). DroidDet:

effective and robust detection of android malware using static analysis along with

rotation forest model. Neurocomputing, 272, 638-646.

[17] CIC. To download the dataset for android ransomware. Accessed: Sep, 2022.

[Online].Available: https://www.unb.ca/cic/datasets/index.html

[18] Androzoo. Download Benign apk files for analyzing. Accessed: Aug, 2022. [Online].

Available: https://androzoo.uni.lu/

[19] Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M. S., Conti, M., & Rajarajan,

M. (2014). Android security: a survey of issues, malware penetration, and defenses.

IEEE communications surveys & tutorials, 17(2), 998-1022.

[20] Felt, A. P., Finifter, M., Chin, E., Hanna, S., & Wagner, D. (2011, October). A survey

of mobile malware in the wild. In Proceedings of the 1st ACM workshop on Security

and privacy in smartphones and mobile devices (pp. 3-14).

[21] Enck, W., Ongtang, M., & McDaniel, P. (2009, November). On lightweight mobile

phone application certification. In Proceedings of the 16th ACM conference on

Computer and communications security (pp. 235-245).

https://www.unb.ca/cic/datasets/index.html
https://androzoo.uni.lu/

61

[22] Wu, D. J., Mao, C. H., Wei, T. E., Lee, H. M., & Wu, K. P. (2012, August). Droidmat:

Android malware detection through manifest and api calls tracing. In 2012 Seventh

Asia joint conference on information security (pp. 62-69). IEEE.

[23] Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., & Siemens, C. E. R.

T. (2014, February). Drebin: Effective and explainable detection of android malware in

your pocket. In Ndss (Vol. 14, pp. 23-26).

[24] Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Nieves, J., Bringas, P. G., &

Álvarez Marañón, G. (2013). MAMA: manifest analysis for malware detection in

android. Cybernetics and Systems, 44(6-7), 469-488.

[25] Qiao, M., Sung, A. H., & Liu, Q. (2016, July). Merging permission and api features for

android malware detection. In 2016 5th IIAI international congress on advanced applied

informatics (IIAI-AAI) (pp. 566-571). IEEE.

[26] Li, J., Sun, L., Yan, Q., Li, Z., Srisa-An, W., & Ye, H. (2018). Significant permission

identification for machine-learning-based android malware detection. IEEE

Transactions on Industrial Informatics, 14(7), 3216-3225.

[27] Diamantaris, M., Papadopoulos, E. P., Markatos, E. P., Ioannidis, S., & Polakis, J.

(2019, March). Reaper: real-time app analysis for augmenting the android permission

system. In Proceedings of the Ninth ACM Conference on Data and Application Security

and Privacy (pp. 37-48).

[28] Andronio, N., Zanero, S., & Maggi, F. (2015). Heldroid: Dissecting and detecting

mobile ransomware. In Research in Attacks, Intrusions, and Defenses: 18th

International Symposium, RAID 2015, Kyoto, Japan, November 2-4, 2015.

Proceedings 18 (pp. 382-404). Springer International Publishing.

62

[29] Mercaldo, F., Nardone, V., & Santone, A. (2016, August). Ransomware inside out. In

2016 11th International Conference on Availability, Reliability and Security (ARES)

(pp. 628-637). IEEE.

[30] Maiorca, D., Mercaldo, F., Giacinto, G., Visaggio, C. A., & Martinelli, F. (2017, April).

R-PackDroid: API package-based characterization and detection of mobile

ransomware. In Proceedings of the symposium on applied computing (pp. 1718-1723).

[31] Lachtar, N., Ibdah, D., & Bacha, A. (2019). The case for native instructions in the

detection of mobile ransomware. IEEE Letters of the Computer Society, 2(2), 16-19.

[32] Bibi, I., Akhunzada, A., Malik, J., Ahmed, G., & Raza, M. (2019, August). An effective

Android ransomware detection through multi-factor feature filtration and recurrent

neural network. In 2019 UK/China Emerging Technologies (UCET) (pp. 1-4). IEEE.

[33] Abdullah, Z., Muhadi, F. W., Saudi, M. M., Hamid, I. R. A., & Foozy, C. F. M. (2020).

Android ransomware detection based on dynamic obtained features. In Recent

Advances on Soft Computing and Data Mining: Proceedings of the Fourth International

Conference on Soft Computing and Data Mining (SCDM 2020), Melaka, Malaysia,

January 22–⁠ 23, 2020 (pp. 121-129). Springer International Publishing.

[34] Sifat, S., Hossain, M. S., Tonny, S. A., Majumder, B., Mahajabin, R., & Shakhawat, H.

M. (2023). Android Ransomware Attacks Detection with Optimized Ensemble

Learning. In Advances in Cybersecurity, Cybercrimes, and Smart Emerging

Technologies (pp. 41-53). Cham: Springer International Publishing.

[35] VirusTotal. Analyze Suspicious Files and URLs to Detect Types of Malware,

automatically. Accessed: Oct, 2022. [Online]. Available: https://www.virustotal.com.

https://www.virustotal.com/

63

[36] Alazab, M., Alazab, M., Shalaginov, A., Mesleh, A., & Awajan, A. (2020).

Intelligent mobile malware detection using permission requests and API calls.

Future Generation Computer Systems. doi:10.1016/j.future.2020.02.002

[37] Asma Razgallah, Raphaël Khoury, Sylvain Hallé, Kobra Khanmohammadi, “A

survey of malware detection in Android apps: Recommendations and

perspectives for future research”, Computer Science Review 39 (2021) 100358

[38] Androguard: Reverse engineering, Malware analysis of Android applications.

[online] (Accessed September 20, 2023) https://github.com/

androguard/androguard

[39] Apktool; A tool for reverse engineering Android apk files [online] (Accessed

September 20, 2023), https://ibotpeaches.github.io/Apktool/

[40] Wang, Wei, Meichen Zhao, Zhenzhen Gao, Guangquan Xu, Hequn Xian,

Yuanyuan Li, and Xiangliang Zhang. "Constructing features for detecting

android malicious applications: issues, taxonomy and directions." IEEE access

7 (2019): 67602-67631.

[41] Wang, W., Zhao, M., Gao, Z., Xu, G., Xian, H., Li, Y., & Zhang, X. (2019).

Constructing Features for Detecting Android Malicious Applications: Issues,

Taxonomy and Directions. IEEE Access, 7, 67602–67631.

https://doi.org/10.1109/ACCESS.2019.2918139

[42] Wang, Z., Liu, Q., & Chi, Y. (2020). Review of android malware detection based

on deep learning. In IEEE Access (Vol. 8, pp. 181102–181126). Institute of

https://github.com/%20androguard/androguard
https://github.com/%20androguard/androguard
https://ibotpeaches.github.io/Apktool/
https://doi.org/10.1109/ACCESS.2019.2918139

64

Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/ACCESS.2020.3028370

[43] App Manifest Overview [online] (Accessed September 20, 2023),

https://developer.android.com/guide/topics/ manifest/manifest-intro

[44] El, I., Li, N. R., & Murphy, M. J. (n.d.). Theory and Applications Machine

Learning in Radiation Oncology.

[45] "What is decision tree?," IBM, [Online]. Available:

https://www.ibm.com/topics/decision-trees. [Accessed 5 2023].

[46] Ellis, K., Kerr, J., Godbole, S., Lanckriet, G., Wing, D., & Marshall, S. (2014). A

random forest classifier for the prediction of energy expenditure and type of

physical activity from wrist and hip accelerometers. Physiological Measurement,

35(11). https://doi.org/10.1088/0967-3334/35/11/2191

[47] "Logistic Regression — Detailed Overview," Towardsdatascience, [Online].

Available: https://towardsdatascience.com/logistic-regression-detailed-overview-

46c4da4303bc. [Accessed 23 May 2023].

[48] "ML|Bagging Classifier," geeksforgeeks, [Online]. Available:

https://www.geeksforgeeks.org/ml-bagging-classifier/. [Accessed 16 May 2023].

[49] "k-nearest-neighbor-algorithm-for-machine-learning," JavaTpoint, [Online].

Available: https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-

machine-learning. [Accessed 16 May 2023].

[50] S. Rajasekar, P. Philominathan, and V. Chinnathambi, “Research Methodology”,

2013. Available: http://arxiv.org/pdf/physics/ 0601009.pdf .

https://doi.org/10.1109/ACCESS.2020.3028370
https://developer.android.com/guide/topics/%20manifest/manifest-intro
https://doi.org/10.1088/0967-3334/35/11/2191
http://arxiv.org/pdf/physics/%200601009.pdf

65

[51] W. C. Booth, G. G. Colomb, and J. M. Williams, “The Craft of

Research.”[Online].Available:http://sir.spbu.ru/en/programs/master/master_program_in

_international_relations/digital_library/Book Research seminar by Booth.pdf

[52] C. Woody, “Chapter 3: Research Methodology,” 2001. Available:

https://shodhganga.inflibnet.ac.in/bitstream/10603/2026/16/16_chapter 3.pdf

https://shodhganga.inflibnet.ac.in/bitstream/10603/2026/16/16_chapter%203.pdf

66

9. Appendices

Appendix-A

Permission letter

Appendix-B

Code

67

68

69

70

71

72

73

