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Abstract 

Ransomware is one of the threatening malwares for security systems, targeting both Windows 

and mobile platforms. It has the ability of encrypting sensitive user data and command a 

deliverance of data in return. The extensive growth of ransomware attacks is due to the spread 

of mobile malware with irrelevant permissions and malware codes in mobile applications. In 

the literature, there are several proposed models for detecting ransomware. These models 

typically utilize various attributes, such as API calls, system calls, intents, permissions, and 

other dynamic features of an application. However, the extensive utilization of the 

aforementioned attributes can lead to the increased complexity of the detection system. 

Therefore, a deep investigation of Android Permissions to identify the significant set of 

permissions that can be used to detect ransomware applications prior to their initiation is 

focused in this study. The proposed RansomShield technique first identifies the significant 

permissions to be used and then employed machine learning algorithms to classify. Through 

our implementation, the proposed model successfully identified 16 significant permissions to 

predict ransomware applications with 97% detection accuracy. The classifiers we used for this 

model are supervised for ransomware detection for accomplishing high accuracies i.e., 97% 

with Random Forest, 95% with Decision Tree, 97% with SVM, 95% with Logistic Regression, 

73% with Naïve Bayes, 94 % with Bagging, 100% with Gradient boosting and 97% with KNN 

models. The proposed model outperformed the existing model regarding a limited no. of 

permissions while achieving high accuracy. Further, a new permission-based dataset is created 

that is online and available for future researchers. 

Keywords: Android, Ransomware, Machine learning, Accuracy, Permissions
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1. Introduction 

The overview of fundamental concepts, their importance, and the background studies are 

elaborated in this chapter. It outlines the thesis's overall anatomy and briefly focuses its 

additional composition. The purpose of conducting the research is explained as well. This 

chapter discusses the important contributions, notable advantages, the scope of the work, and 

the main goals.  

1.1 Overview  

Android mobile is common among the mobile platforms. This made Android users a well-

known target for many security attacks. The Mobile Operating system market shared 71.94% 

of Android1. However, from the official app stores, approximately 2.56 million applications2 

can be downloaded. Many users choose to use Android mobile phones due to their 

affordability, portability, and the ability to access useful applications without spending any 

money. Meanwhile, Google play store has created open-source policy of App availability 

which enable the accessibility for the users and developers. 

The issued policy offered great lenience for App authentication to maintain the recognition of 

the platform at the time of issuance. Nevertheless, app availability, usage, and the deployment 

of malware is also linked with the interest of malicious on android devices. 

Mobile malware statistics show that variants of malware are developing every few second𝑠3. 

These malicious apps have a hidden capability of performing offensive activities to target 

individuals or organizations, malicious applications are released in different variants which  

1: "gs.statcounter", https://gs.statcounter.com/android-version-market-share/mobile-tablet/worldwide. [Accessed 2 January 

2023]. 
2: "Businessofapps", https://www.businessofapps.com/data/app-statistics/, available. [Accessed 2 January 2023]. 

3: "securelist", https://securelist.com/it-threat-evolution-in-q2-2022-mobile-statistics/107123/. [Accessed 2 January 2023]. 

4:"welivesecurity",https://www.welivesecurity.com/wpcontent/uploads/2016/02/Rise_of_Android_Ransomware.pdf. [Accessed 

12 December 2022] 

https://gs.statcounter.com/android-version-market-
https://www.businessofapps.com/data/app-statistics/
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makes them undetectable4. The installation of malicious applications becomes common as 

users download the applications without verifying the play stores, app name, and app 

permissions during installation. This unawareness of users gives chance the malicious actors 

to easily intrude into mobile phones through apps. To overcome the spread of malicious 

applications, researchers developed various detection models for mobile malware. They are 

also discussed with its pros and cons in literature. One of the malware types known as 

ransomware, has been found common among almost all platforms. Different tactics are used 

by ransomware to encrypt or lock the device. It serves the purpose of demanding money to 

releases the data. 

1.2 Motivation 

This research is focused on the permissions for ransomware detection. In literature, existing 

machine learning models are used for various malicious and specifically ransomware APKs 

detection approaches with consideration of the permissions and API calls [20-34]. Although, 

identifying effective and significant permissions can always be difficult. In this research, we 

have aimed at detection of ransomware residing in the Android platform using permissions-

based approach. The research is inspired by Fahad Akbar et al. [2], Chen et al. [9], Alzahrani 

et al. [10] and Alsoghyer et al. [15] which detects the malwares in APKs based on permissions.  

The precision detection of ransomware by minimizing the number of permissions required for 

classification is objective of this study. The research conducted by Chen et al. [9] considered 

21 permissions for ransomware detection. The proposed approach has two primary aims. First, 

to develop an efficient dataset that is originally used for evaluation purposes. Second, to 
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demonstrate that reducing the number of permissions that can minimize the processing load 

and improve the overall system accuracy. 

1.3 Objectives 

Research involves scientific methods to thoroughly examine specific issue or problem. In this 

investigation, we conducted a comprehensive analysis of hazardous behaviors in Android 

applications through static analysis to gain new insights. The main points of this study are 

described as: 

• Exploring the potential of static analysis and discovering new possibilities by utilizing 

permissions as the primary static feature. 

• Applying machine learning models to find out the effectiveness of different permissions 

in the analysis. 

• Identifying the minimum set of permissions required for conducting the study. 

• Obtained results should be better or comparable to the existing approaches. 

• Incorporating other existing classifiers such as Naïve Bayes, Random Forest, Gradient 

boosting, bagging and KNN to improve the performance of the current method. 

• Lastly, developing a lightweight Android Ransomware detection mechanism. 

1.4 Research Questions 

This section emphasizes the research questions that are framed to guide this study, as follows: 

• What is the motivation behind conducting this research? 

The Android ecosystem is continuously under threat from malwares, particularly ransomwares, 

which can compromise the user's sensitive data. Since such data is important to users, they 

require protection shield against such threats.  



 

4 

 

While there exist many Android ransomware detection methods, each with their own benefits, 

there is a need to explore if these methods can be made more efficient to offer lightweight 

detection approaches in terms of computational costs. 

 

• What are the research steps involved and its significance accordingly? 

This investigation aims to analyze the importance of static analysis for Android ransomware, 

with the goal of classifying ransomware mobile applications using the fewest possible static 

features. This will enable malware analysts and the research community to quickly identify 

ransomware applications. The study will employ both qualitative and quantitative static 

analysis of Android Ransomwares. To conduct the study, we have divided our approach into 

the following four steps: 

- Samples collection and environmental setup 

- Dataset Creation 

- Feature Extraction 

- Classification of generated results 

- Report Writing 

 

• What are the aims of this study? 

The primary focus of this study is on the following aspects: 

a) Determining the significant set of static features required to accurately classify a 

ransomware Android application. 

b) Identifying the most effective classification model among those considered in this 

investigation, namely SVM, Decision Tree, Gradient Boosting, KNN, Bagging, 

Random Forest, and Naïve Bayes. 
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1.5 Problem Statement 

To protect the users' data and block unauthorized access, the Android platform has 

implemented a security model based on permissions for the apps. Permissions are commonly 

used security evaluation metric in the Android platform. Apps require permission to be enabled 

for providing their functionality to users. Hybrid permissions used together may result in 

opposing behaviors, such as the app accessing and spreading users' sensitive information. 

Therefore, permission probing is a necessary step in Android malware detection. By closely 

examining the process of permission analysis, we can improve malware detection. 

Thus, the problem statement for our study is to determine the minimum set of features, using 

permission-based static analysis of Android ransomware apps, to develop a lightweight 

ransomware detection system. 

1.6 Solution Description 

This study proposes an effective method for detecting android ransomware by utilizing 

permission-based static analysis of Android applications. The researchers first decompiled the 

apps using APK tool and obtained the APKs from CICAndMal2017 Dataset [17], AndroZoo 

[18] and the Official Play Store for the purpose of extracting permissions. Further a filtration 

process applied to extracted permissions using the Random Forest’s feature importance 

technique. In next steps, feature set is generated and different machine learning models are 

used for detecting ransomware Android apps utilization. 

1.7 Thesis Contribution 

Our research strategy “RANSOMSHIELD: Mitigating Android Ransomware Attacks Through 

Machine Learning-Powered Permissions-Based Analysis" By incorporating frequently used 

classifiers such as Bagging, Decision Tree, Logistic Regression, Gradient Boosting, Random 
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Forest, Naïve bayes, Support Vector Machine and KNN algorithms, our research methodology 

significantly enhanced the precision of ransomware detection. The proposed approach offers 

the following contributions: 

The contributions of proposed plan are as follows: 

• It achieved a detection accuracy of about 97% while reducing the number of required 

permission features. 

• It introduced a lightweight framework for detecting ransomware APKs. 

• It is compatible with other existing machine learning classifiers. 

• The source code for the RansomShield is fully functional and available on GitHub. 

1.8 Thesis Structure 

The research continues as follows: Chapter 2 layout an overview of previous work on static 

analysis and detecting android ransomware applications. Chapter 3 provides the research 

approach employed in the study. Chapter 4 outlines the experimental setup, while Chapter 5 

presents the experiment's results and the activities involved in data collection. Chapter 6 

analyzes and discusses the experimental findings. Finally, the thesis is summed up and future 

research recommendation are made in Chapter 7. 

1.9 Summary 

The chapter aims to introduce crucial concepts related to malware analysis, with a focus on 

static and dynamic analysis techniques used to detect ransomware applications. It offers an 

outline of the scope and aims of the thesis, as well as a run-through of the research work's 

general structure. The subsequent chapter will delve into the literature review that was 

conducted for this thesis in more detail. 
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2. Literature Review 

This chapter demonstrates the related work and techniques carried out by different researchers 

over the years. The work done is contributed towards the android ransomware detection. 

2.1 Overview 

The widespread use of Android as a smartphone operating system has prompted numerous 

studies to be conducted on Android apps from various perspectives. When investigating any 

types of malware, the technical aspect can be categorized into multiple branches, But main are  

static analysis, dynamic analysis, and a combination of both known as hybrid analysis (as 

Figure 2.1 represents).  Hybrid malware analysis combines various techniques, including static 

and dynamic analysis, behavioral observation, network monitoring, memory inspection, 

reverse engineering, automated tools, and threat intelligence, to fully comprehend the behavior 

and characteristics of the malware. This means hybrid malware analysis includes all the 

artifacts (opcodes, intents, permissions, strings ip addresses, URLs etc) extracted by the various 

analysis techniques.  The similar types of techniques are also performed for Android 

ransomware detection.  This section aims to explore the current literature on the detection of 

ransomware Android apps using these analytical approaches. 
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Figure 2.1 Malware Analysis Techniques 

2.1.1 Malware Injection Process 

Malware injection is a process of creating malicious applications by carrying out three phases: 

(i) Collecting either benign or malicious applications 

(ii) Injecting malicious codes  

(iii) Releasing these malicious applications to the third-party stores [36].  

This process of malware injection is shown in the Error! Reference source not found..2 as: 

 

Figure 2.2-Malware Injection Process [36] 
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2.1.2 Malware Detection Mechanisms 

To detect the malicious APKs on the Android phone, three strategies can be used. These 

Strategies are Static, Dynamic and Hybrid Analysis. The malware detection mechanisms for 

Android is shown in the figure 2.3. 

 

Figure 2.3-Malware Detection Strategies 

a) Static Analysis 

Static analysis is a security testing technique that evaluates the source code, byte code or 

application binaries in a non-runtime environment. It gives indications of security 

vulnerabilities to analyzes Meta and supporting details [37]. A broad range of strategies and 

techniques are used in static analysis to predict the runtime behavior of software before it is 

executed. This approach is particularly useful in identifying malicious or repackaged apps 

before they are installed or executed. 

In the case of Android apps, which are distributed as application packages (APKs), the first 

step in static analysis is typically to decompile the app using tools such as AndroGuard [38] or 

apktool [39]. This process extracts Smali files containing essential information about the app, 

which are then examined for indications of malicious behavior. Based on an estimate of its 

potential properties, static analysis identifies whether an app can be considered as malicious or 

not. These approximations are usually based on factors such as permissions, code analysis or 
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API calls, Intents, App components, file properties, native code, and more [40]. Static analysis 

is often the preferred approach for detecting malware. It is considered an efficient method for 

protecting the market, as it consumes fewer resources and time. This faster detection method 

is particularly beneficial for resource-constrained Android devices [41]. 

b) Dynamic Analysis  

Dynamic analysis focuses on the behavior of applications during runtime. It serves the purpose 

to recognize malicious behavior on real or emulated devices which is carried by deploying and 

running the application. Dynamic analysis can uncover hidden objectives of malware 

applications that may not be evident through static analysis. This type of analysis typically 

involves some level of interaction with the application, manually or automated. It gathers 

information on network activity, processor execution, system calls, SMS messages sent and 

received, phone calls, and other relevant data. By analyzing this information, dynamic analysis 

can help to separate between legitimate and malicious applications. Unlike static analysis, 

dynamic analysis provides a more accurate reflection of an app's true intentions. However, it 

can be resource-intensive and time-consuming to execute, making it less practical in certain 

situations [41]. 

c) Hybrid Analysis 

Both static and dynamic analysis techniques are used in Hybrid Analysis to enhance detection 

accuracy. By combining the strengths and weaknesses of both approaches, it provides a more 

thorough examination of both application behaviors and installation files, making it a highly 

comprehensive analysis approach. Nevertheless, like dynamic analysis, hybrid analysis can be 

resource intensive. 
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2.1.3 Comparison of Analysis Techniques 

Static analysis examines application characteristics in a safe environment where the likelihood 

of malicious behavior execution is minimal. This approach is particularly useful in 

environments with limited time and resources. In contrast, dynamic analysis provides a more 

detailed examination of applications and is considered a highly accurate detection method, 

albeit at a higher computational cost. Following the execution of different APKs from static 

analysis, dynamic analysis is performed. 

For this reason, static analysis is generally faster and useful for developing an initial 

understanding of the expected behavior of APKs. 

2.1.4 Ransomware  

Ransomware is categorized intovarious types that were known, such as WannaCry, 

Petya/NotPetya, Locky, Cerber, CryptoLocker, Maze, Sodinokibi/REvil, GrandCab and Ryuk. 

These malicious programs lock or encrypt files and demand payment to restore accessibility. 

However, it's crucial to understand that new variants may have emerged since then. Wannna 

cry ransomware targets the systems having eternal blue vulnerability in Microsoft Windows 

systems. Petya and its variant NotPetya proved to be highly destructive ransomware. They 

focused on Windows systems and employed diverse propagation techniques. Locky propagated 

through malicious email attachments, encrypting files on infected systems, and demanding a 

ransom for decryption. Cerber ransomware distinguished itself by using voice synthesis to 

deliver ransom messages. Crypto ransomware targets files as a hijacked resource. Maze 

ransomware gained attention for its practice of exfiltrating sensitive data before encrypting 

files, posing a threat to publish the data unless the ransom was paid. Revil ransomware used 

advanced encryption techniques to encrypt victims' data, making it inaccessible until a ransom 

is paid. Grand Crab ransomware was distributed through various vectors, including exploit kits, 
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spam emails, and compromised websites. Its RaaS model allowed a wider range of 

cybercriminals to deploy the ransomware. That’s why the pre-detection of Android 

ransomware is necessary to protect users from it. The most common infection vectors for 

Android ransomware involve hiding it under legitimate applications by adding malicious code 

to them while retaining the original functionality of the legitimate application. Recently, 

malware authors developed ransomware apps by the name of popular applications and icons to 

keep them undetectable for malicious activities4. However, a general taxonomy of ransomware 

is shown in Figure 2.4: 

 

Figure 2.4-Taxonomy of Ransomware [1] 

Some of the common commands used by ransomware on the Android platform are4: 

• The phone’s browser is redirected to an arbitrary URL 

• You can send an SMS to either one or all of the contacts saved on the phone. 

• Locking or unlocking of the device 
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• Snip received SMS and contacts [1] 

• Update to a new version 

• Displays a different ransom note [3] 

• Enables or disables the internet connectivity. 

• Tracks the target’s location.  

The variants of Android ransomware which are used in our dataset include simplelocker, jisut, 

lockerpin, charger, koler, pletor, RansomBO, porndroid, svpeng, and wannalocker [3]. 

2.1.5 Android OS Architecture 

In this study, we are targeting Android APKs ransomware. It is important to understand the 

Android OS architecture. In the Android OS architecture (as shown in Figure 2.5), when a user 

downloads an app for installation, the app requires permissions from the user before it can be 

installed on the device. Android permissions are well-known and creates interesting 

vulnerability possibility that can be exploited by malicious actors. Generally, the Android 

platform implements a permission-based protective model against malicious APKs to protect 

users. However, unnecessary, and irrelevant permissions can be grants and user are exploited 

for malicious activities. In order to distinguish between harmful and benign permissions, these 

permissions must be handled properly. 
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Figure 2.5-Android OS Architecture 

In Android, to perform the different activities multiple methods in the code of APK needs to 

be called. Below is the flowchart that how the activity performed by an android APK is 

launched as shown in Figure 2.6. The figure 2.6 describes that when the activity is launched on 

android app, different methods accessed by the app to perform the functions, the user wants to 

be carried out. First method is onCreate () called, then onStart () method is accessed to begin 

the activity. But if any other activity comes in action the other activity gets resumed using 
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onResume () method. When the user wants to end the activity onDestroy () method is called. 

 

Figure 2.6-Android App Activity Flowchart 
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2.1.6 Information extracted by using Static Analysis 

APK (Android Package format) is the standard format for Android applications, which can be 

coded in various languages such as Java, Kotlin, C++, among others, although Java remains 

the official language. The Android SDK is used to compile all the application data and resource 

files, which are then combined into the APK file. This file contain all the components of an 

Android application and it is a zip-compressed file with an extension of .apk [42]. For 

installation of an Android App, it is used by the Android platform. By examining the APK 

files, one can observe that they have a directory structure similar to the one demonstrated in 

Table 2.1. 

Table 2.1-APK File Structure - important locations for the analysis [42] 

File Description 

assets/ Static files in APK 

lib/ Native Library files which are program dependent 

res/ Resources of the application 

META-INF/ App’s signing certificates 

AndroidManifest.xml App’s global configuration file 

classes.dex DEX executable code files 

resources.arsc Resource configuration file in Binary Format 

 

a) Assets 

Static files are stored in the assets folder. Resource files can be organized into 

subdirectories of any depth, and users are free to arrange the file structure in any way they 

prefer. Generally, the Asset Manager class is used to access these assets. 
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b) lib 

The folder designated for storing an application's dependent native libraries contains 

libraries that are specific to the Android platform and typically developed using C/C++. 

These libraries are sorted according to various CPU models like ARM, x86, MIPS, and so 

on [42]. 

c) res 

This directory is designated for storing the resources related to the applications. Unlike the 

assets folder, the resources stored here are assigned a unique ID that is linked to the Android 

project's.R file, allowing them to be accessed directly using R.id.filename. The res directory 

includes various subdirectories, which are detailed in Table 2.2 along with their purposes. 

Table 2.2-Directories inside lib folder 

Sub Directory Purpose 

Anim Keeping animation files 

Drawable Keeping Image resources 

Layout For layout files 

Values Keeping application values in separate files; i.e., colors.xml, 

dimens.xml, string.xml,  styles.xml etc. 

Xml Used for keeping related xml files 

 

d) META-INF 

The META-INF folder stores the application's signature information, which can be used 

to verify its integrity at any time [42]. Android SDK generates this signing information 

during the packaging process and saves it in the META-INF folder. 
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e) AndroidManifest.xml 

The AndroidManifest.xml file is a crucial configuration file for applications which 

provides comprehensive information, enabling the Android platform to comprehend the 

applications. It is a mandatory file for each application, and its name is fixed and cannot 

be changed. The AndroidManifest.xml file details an application's activities, services, 

providers, and receivers, as well as its name, package name, SDK version, and permissions 

[43].   

f) classes.dex 

The Android platform is modeled after Java's virtual machine and employs a similar 

strategy utilizing the Dalvik virtual machine, which is a streamlined version of the Java 

virtual machine. Typically, program code is transformed into bytecode, which is saved in 

a class file. The Dalvik virtual machine executes this Dalvik bytecode. The Android SDK 

relies on the dx tool to translate Java bytecodes into Dalvik bytecodes [42]. This tool has 

the ability to optimize code by consolidating, restructuring, and enhancing class files, 

resulting in smaller file sizes and faster runtimes when packaging Android applications. 

g) resources.arsc 

To locate resources based on their resource IDs, the Android platform uses the information 

stored in the resources.arsc file. This file maintains the association between the resource 

files and their corresponding resource IDs. As a result, when a resource file is required in 

the source code, it can be effortlessly retrieved using the findViewById() function. 

2.1.7 Machine Learning 

Machine learning is a type of technology programmed rather it makes computer systems 

capable to enhance their performance on a specific task by learning form data approach is used. 

It basically develops algorithms and models that are able to analyze and interpret large sets of 
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data for patterns and relationships identification and further use this information to make 

predictions or take actions. Machine learning is useful in a variety of applications for example 

different images could be given as input data and then a random image could be recognized, 

speech could be recognized, recommendation systems, and predictive analytics [44].   

2.1.7.1 Machine Learning Algorithms 

This part describes the different ML algorithms such as Gradient Boosting, Decision Tree, 

Logistic Regression, Naïve Bayes, Support Vector Machines (SVM), Bagging Classifier, 

Random Forest and K-Nearest Neighbors in detail: 

a) Decision Tree 

A decision tree is a machine learning algorithm which serves for classification and 

regression. It is a tree-like model where each end denotes a feature or attribute, and each branch 

denotes a decision rule or condition based on that feature. The tree structure is built using a 

training dataset, where the algorithm selects the most informative feature at each node and 

splits the data into smaller subsets. Decision trees are popular due to their interpretability, ease 

of use, and ability to handle both categorical and continuous variables [45]. 

b) Random Forest  

Random Forests utilize an amalgamation of classification/regression trees to generate 

models that can effectively represent nonlinear and multi-modal functions, resulting in a 

comparatively efficient learning process [44]. This collection of Random Forests comprises 

randomized decision trees, with decision trees serving as the root classifier. By using a 

bootstrap sample of data, each tree is created and overall features has random subset with 

respect to the features set for each division. This approach is renowned for creating a collective 

with low bias and variance [46]. 
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c) Support Vector Machine (SVM) 

SVM is a known as one of supervised learning algorithm used for classification and regression. 

The optimal hyperplane is used in a high-dimensional space by SVM to separate two data 

classes of data and the margin between the classes is maximized to achieve the results [44]. 

d) Logistic Regression 

It is a supervised learning algorithm utilized to analyze the relatedness among an independent 

and dependent variable. This method is typically used for classification problems, with the aim 

of predicting the probability of a binary outcome, for example whether a consumer will 

purchase a product, based on the input variable values. The primary purpose of LR is to 

approximate the dependent variable probability using a statistical function known as a logistic 

function [47]. 

e) Naïve Bayes 

This algorithm is designed for classification purposes. It is a type of Bayesian network which 

makes the assumptions that the class variable is available and feature variables are not 

dependent. This assumption enables it to effectively classify data in high-dimensional spaces 

while calculating the joint probability of a full variable set is complex. It is not preferable for 

directly estimating the class posterior because the unrealistic independence hypothesis can 

result in inaccurate probability [44].  

f) Gradient Boosting  

Gradient boosting is a technique that uses an iterative approach to construct an ensemble of 

weak predictive models, typically decision trees, so the errors generated by the previous model 

is assessed by each trained model. The algorithm determines the gradient of the loss function 

with respect to the current model's predictions at each iteration and then further uses it to train 

the next model. The final prediction is made by adjoining the results of all the models in the 
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ensemble. Gradient boosting is well-suited for classification and regression tasks, particularly 

those with complex, non-linear connection between the features and the target variable. It is 

known for its high accuracy and flexibility in handling different types of data [47]. 

g) Bagging Classifier 

The bagging classifier is a machine learning technique used for classification tasks that 

involves the grouping of multiple models qualified on multiple subsets of the training data. 

Bagging stands for Bootstrap Aggregating, and it works by randomly testing the training data 

with replacement to develop multiple subsets of the data. The bagging classifier is known for 

its ability to reduce overfitting and enhances the stability of the model by reducing the variance 

in the predictions. It is also able to handle high-dimensional data and noisy input [48]. 

h) KNN 

K-nearest neighbors (KNN) is a type of non-parametric algorithm and in these algorithms the 

underlying distribution of the data is not used for making any expectations. In KNN, the 

algorithm classifies new data points by comparing them to the K closest training examples (i.e., 

the "neighbors") in the feature space. A majority vote of the classes of the K nearest neighbors 

is then actually responsible for class of new data point. KNN is familiar and used for its and 

ease of implementation and simplicity [49].  

2.2 Related work under Static Analysis  

This section will elaborate the existing malware and ransomware detection techniques. 

Generally, Android app files are compiled using the SDK, and Java language is used to compile 

these APKs. These APKs contain different files including Android manifest file, Java folder, 

and a resource folder. Malicious actors modify these files to add ransomware functionality. The 

malicious actors decompile the apps and ask for several permissions to perform the malicious 

actions [19]. Felt et al. [20] considered only two permissions for their detection model i.e., 
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SMS and READ_PHONE_STATE, but these permissions are also accessed by benign 

applications. The Android operating system solely verifies whether developers have declared 

permissions in the Android manifest file and applies no security checks to the permissions 

requested by the apps. To address this, a framework (kirin) is developed that defined rules and 

requirements. The rules stated by Kirin framework are that the application must not contain 

these permissions related labels like SMS, ACCESS FINE LOCATION, INTERNET, 

PHONE_STATE, SHORTCUT, and AUDIO. An app will be identified as a malicious app if 

it tries to access to the mentioned six techniques [21]. 

Similarly, the DroidMat framework, proposed by Wu et. al. [22], extracts the permissions to 

prove that the malicious APKs requested more permissions than the benign ones. A DREBIN 

method, proposed by Arp et al. [23], detects Android malicious applications and identified that 

SEND_SMS permission is mostly used by major malicious applications for posting SMS to 

high-rate numbers. On the other hand, Sanz et al. [24] and Qiao et al. [25] worked on the 

occurrence of permissions asked by mobile applications. They concluded that INTERNET 

permission is the most commonly requested permission among both by the benign and 

malicious APKs. The majority of malicious APKs used SMS-related permissions to carry out 

malicious activities. Li et al. [26] also identified the set of frequently and rarely used 

permissions for the categorization of benign and malicious applications. Diamantaris et. al. 

[27] created a set of permissions that are necessary to be used by the main functions of Android 

applications and further discussed how these permissions are integrated with third-party 

libraries. Additionally, they identified a set of 30 permissions utilized by third-party and core 

libraries in Android applications. For Android malware detection a model is proposed by 

McDonald et al. [6], it uses machine learning and manifest permissions. In their study, 27 

permissions were identified for generic Android malware identification. Although several 

detection models (Han et al.; Hasanabadi et al.; Zhang et al.; Alzaylaee et al.; McDonald et al.) 
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have been designed to detect generic Android malware, limited detection schemes are available 

for detecting Android ransomware.  

Researchers have shifted their focus toward Android ransomware since 2015. An Android 

ransomware dataset was created by Andronio et al. [28] and analyzed the Android ransomware 

threatening text displayed on a mobile screen in English and Russian language. It is possible 

to exhibit the cautionary message in several languages, each with its own unique structural 

arrangement. Saracino et al. [13] inspected permissions and system calls for detection, while 

Mercaldo et al. [29] analyzed Java Bytecode to observe the behavior of ransomware on Android 

phones. Mairco et al. [30] detected Android ransomware based on Dalvik bytecode to observe 

invoke-type instructions. Gharib and Ghorbani et al. [7] considered analyzed text, permissions, 

logos, system, and API call sequences. While Ferrante et al. [8] emphasized the n-grams 

opcodes (n ¼ 2), memory, system calls, network traffic logs, and CPU usage by the Android 

ransomware for the detection. Chen et al. [9] developed a dataset that recorded the user’s layout 

click based on widgets and movements, which was then used to detect Android ransomware.  

Similarly, Alzahrani et al. [10] developed a hybrid model by comparing the app structure with 

known ransomware, identifying warning text, and analyzing images used for the research. Su 

et al. [11] detected locker ransomware by considering the text, permissions, window properties, 

and system commands. However, ransomware can evade detection by displaying text via 

images. Scalas et al. [12] used system API packages, classes, and methods as features. Lachtar 

et al. [31] extracted opcodes from instructions to use as a feature to detect Android ransomware. 

Alzahrani et al. [14] analyzed permissions, intents, and API calls for mobile ransomware 

detection. Bibi et al. [32] suggested a dynamic mechanism which is comprised of 19 important 

features related to network headers and packets to identify Android ransomware. Alsoghyer et 

al. [15] suggested a permission-based detection model and identified 115 malicious 

permissions for Android ransomware detection. Sharma et al. [5] proposed a detection model 
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by using analyzed text, permissions, images, and Java files. Abdullah et al. [33] described a 

dynamic detection system that detects Android ransomware by using system calls. From the 

aforementioned techniques of ransomware detection using different feature sets and detection 

accuracies are shown in Table 2.3-A. 

Table 2.3-A Comparison of Ransomware Detection Techniques 

Related 

 Work 

Framework Analysis 

Technique 

Feature Set Machine 

Learning 

Technique 

Permissions 

used 

Accuracy 

Andronio 

et al. [28], 

2015 

HelDroid Static Text, Locking, 

Encryption 

Natural 

Language 

Processing 

No 94% 

Saracino et 

al. [13], 

2016 

Madam Static, 

Dynamic 

Permissions, 

System calls 

KNN Yes 96.9% 

Mercaldo 

et al. [29], 

2016 

R-inside out Static Java Bytecode CWNC 

model 

No Not stated 

Mairco et 

al. [30], 

2017 

R-PackDroid Static Invoke-type 

instructions 

RF No Not stated 

Gharib 

and 

Ghorbani 

et al. [7], 

2017 

DNA-Droid Static, 

Dynamic 

Text, Images, 

API, 

Instructions 

NB, RF, 

SVM, 

Adaboost, 

DNN 

No Not stated 

Ferrante et 

al. [8], 

2017 

Extinguish 

Ransom 

Static, 

Dynamic 

Memory, 

System calls, 

Logs 

DT, NB, 

LR 

No 100% 

Chen et al. 

[9], 2017 

RansomProber Static, 

Dynamic 

Widgets, 

Activities 

User 

interface, 

User Clicks 

No 99% 

Alzahrani 

et al. [10], 

2018 

RAndroid Static, 

Dynamic 

Text, Images Not stated No 91% 
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[11], 2019 Locker Static Text, 

Commands, 

Background 

operations 

(permissions, 

Priority, 

admin, 

window, 

system) 

LR, RF, 

DT, SVM 

Yes 99.98% 

Scalas et 

al. [12], 

2019 

 
static API packages, 

Classes, 

Methods 

RF No 97% 

Lachtar et 

al. [31], 

2019 

Native 

instructions 

based 

Static A dictionary 

contains 

unique 

opcodes 

present 

RF, SVM, 

KNN, ANN 

No 99.8% 

Alzahrani 

et al. [14], 

2019 

API-Based Static 34 API, 48 

Permissions, 4 

Intents 

KNN, LR, 

SVM, RF 

Yes 97.62% 

Bibi et al. 

[32], 2019 

Mutifactor 

feature filtration 

and recurrent 

neural network 

Dynamic Network 

packets, 

Headers 

LSTM No 97.08% 

Alsoghyer 

et al. [15], 

2020 

Permissions 

based 

Static 115 

Permissions 

are used 

RF, J48, 

SMO, NB 

Yes 96.9% 

Abdullah 

et al. [33], 

2021 

System calls 

based  

Dynamic 52 System 

calls are used 

RF,J48,NB No 98.31% 

Sharma et 

al. [5], 

2021 

GPU-Based Static Permissions, 

Text, Images, 

JAVA files 

LR, ANN, 

SVM 

Yes 98.04% 

Sifat et al. 

[34], 2023 

Traffic analysis 

based 

Dynamic Traffic 

Analysis 

Ensemble 

Learning 

No 74.09% 

*KNN: K-Nearest Neighbors, CWNC: Concurrency Workbench of new century     RF: Random Forest, NB: 

Naïve Bayes; SVM: Support Vector Machine, DNN: Deep Neural Network, DT: Decision Tree, LR: Logistic 
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Regression, ANN: Artificial Neural Network, LSTM: Long Short-Term Memory, J48: Decision tree, SMO: 

Sequential minimal Optimization  

As shown in Table 2.3-A, most of the existing malware detection models utilized permissions 

along with other features. While permission-based detection is efficient for the pre-detection 

of malware, there is a need for Android-based models that employ an effective set of 

permissions and achieve high detection accuracy through machine learning algorithms. To best 

of our knowledge, there is lack to detect the android based ransomware APKs using permission. 

To address this gap, this study proposes a ransomware Android detection model that utilizes a 

significant set of permissions to enhance detection accuracy. 

2.3 Summary 

The chapter discussed an outline of the background and related work of the thesis, including 

related literature and a critical analysis of the existing studies. By examining previous research 

and methods used in the literature, it aids in the formulation of a solution to the identified 

problem. The succeeding chapter will delve into the research methodology utilized throughout 

the thesis. 
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3. Research Methodology 

In this chapter, we will explain the methodology which is followed to carry out this thesis 

research. A brief description of the methods that are used in our research methodology along 

with the phases followed in the research process, i.e., samples collection, feature set 

construction, and malware detection using machine learning classifiers are given in this 

chapter. 

3.1 Introduction 

Research refers to the systematic gathering and analysis of data related to a particular field of 

study. Its primary objective is to uncover new knowledge and facts through a scientific 

investigation [50].. In the words of Clifford Woody, the research process involves identifying 

and redefining the problem, developing a hypothesis and potential solutions, collecting, and 

evaluating data, making assumptions, drawing conclusions, and testing the hypothesis to 

confirm its validity [52]. 

3.1.1 Overview of Research Methodology  

In this part, we will elaborate the proposed work that aims to create a minimal permissions-

based Android Ransomware detection model. To create a minimal permissions-based Android 

ransomware detection model, we collected ransomware APKs from the Canadian Institute of 

Cyber Security [17] and benign APKs from Androzoo [18]. We decompiled these files using 

the APK tool and Android Studio to extract permissions, which were filtered using the feature 

importance technique to create a dataset for machine learning models. Multiple machine 

learning models were utilized to determine the most important permissions that can 

differentiate ransomware from benign applications. These permissions were compared with 

those used to detect ransomware and generic Android malware. For training and testing, we 
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employed Decision Tree, Random Forest, SVM, Logistic Regression, Naïve Bayes, Gradient 

Boosting, Bagging and KNN classifiers.  

The proposed RansomShield model consists of the following components:  

• Collect malicious and benign samples and evaluate their effectiveness using   

VirusTotal.  

• Creating a dataset by considering the permissions as features and identifying the most 

relevant features.  

• Employed machine-learning algorithms to construct predictive models. 

• Analyzing the effect of permission on the detection of ransomware and benign apps. 

• Applying supervised ML algorithms for classification and selecting the best model. 

3.2 Thesis Research Methodology 

The proposed RansomShield model is shown in Figure 3.1. The model shows the stages of 

collecting, decompilation, data cleansing, dataset creation, selecting significant permissions, 

and then classifying carried out for the identification of Android ransomware. The key 

components are discussed in the below topics. 

 

Figure 3.1-Proposed Model Flow Diagram: RansomShield 
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Firstly, for the collection of Android samples, we collected benign and ransomware sample 

applications. The legitimate applications gathered from Google Play Store and Androzoo 

dataset [18]. For AndroZoo dataset, a script written in Python is used along with the API key 

provided by AndroZoo. However, for Android ransomware samples CICAndMal2017 dataset 

[17] is employed. To appraise the usefulness of the proposed methodology, and for orderly data 

training; cross-validation experimentations are performed for these samples. The ransomware 

samples used for the research belonged to 11 different variants of ransomware as shown below 

in Figure 3.2: 

 

Figure 3.2-Android Ransomware APKs 

3.2.1 Constructing the Features Set 

To construct and classify ML models, the initial stage involves gathering essential 

characteristics from a dataset. These features are typically listed in the AndroidManifest.xml 

file of an Android application package (APK) including requested permissions from an 

application. Proposed approach extracts features by utilizing the APK tool to decompile 

ransomware applications from the CICAndMal2017 dataset [17]. Our primarily emphasis is on 

permissions to compile a list of feature sets for conducting static analysis and to gain a thorough 

understanding of each app's behavior. 
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3.2.2 Parameter Feature Set Construction  

To create the dataset, we have used various tools for the static analysis of applications. Firstly, 

we employed Android Studio to obtain the permissions from the Android Manifest.xml file. 

Additionally, we employed the APK tool for the decompilation of Android applications, as it 

is a command line tool also known for reverse engineering applications. We created the dataset 

based on the permissions requested by applications. We also installed MobSF (static analysis) 

and analyzed the applications in it. To study the other features, grasp the behavior of each app 

and request permissions description as well to select the appropriate applications for the 

dataset. We extracted and considered each permission requested by the applications. Further 

reduced the permissions systematically considering the influence of permissions among them. 

Figure 3.2 described the strategy that we implemented for our proposed research. The figure 

3.3 below summarized the proposed research methodology into five steps that are data 

collection, dataset construction, deep analysis, constructing the model and evaluate that model 

by applying different machine learning algorithms. 
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Figure 3.3-Proposed Research Methodology 

3.2.3 Extraction of Core Features 

After constructing the dataset, the next step was to extract the core features required to 

differentiate the ransomware apps from the benign apps. For choosing the effective 

permissions, we have explored and evaluated the risky permissions by Google, Zhu et al. [35], 

RansomProber [9], and RansomAnalysis [7] for Android generic malware and ransomware 

detection as shown in Table 3.1. It shows the dangerous permissions identified by the above-

mentioned models: 
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Table 3.1-Comparison of Permissions Identified by different models 

Permissions Google Sun et 

al. [26] 

2016 

Chen 

et al. 

[9] 

2017 

Zhu et 

al. [16] 

2018 

Chen 

et al. 

[9] 

2017 

Sharma et 

al. [5] 2021 

General Malware Permissions Ransomware 

Permissions 

READ_PHONE_ST

ATE  
✓ ✓ ✓  ✓ ✓ 

WRITE 

_EXTERNAL_STOR

AGE 

✓  ✓ ✓ ✓ ✓ 

ACCESS_COARSE_

LOCATION 
✓  ✓    

ACCESS_FINE_LO

CATION 
✓  ✓    

RECORD_AUDIO ✓      

READ_EXTERNAL

_STORAGE 
✓ ✓   ✓  

SEND_SMS ✓ ✓ ✓ ✓ ✓  

CAMERA ✓ ✓   ✓  

RECEIVE_SMS ✓  ✓ ✓ ✓  

GET_ACCOUNTS ✓    ✓  

READ_SMS ✓ ✓ ✓  ✓  

READ_CONTACTS ✓ ✓ ✓  ✓  

ACCESS_NOTIFIC

ATION_POLICY 
✓      

WRITE_CONTACT

S 
✓ ✓     

READ_CALENDAR ✓      

READ_CALL_LOG ✓ ✓     

WRITE_CALENDA

R 
✓      

INSTALL_PACKAG

ES 
✓ ✓  ✓   

SET_ALARM ✓   ✓   

BODY_SENSORS ✓      

WRITE_SECURE_S

ETTINGS 
✓   ✓   

WRITE_CALL_LOG ✓      

UPDATE_DEVICE_

STATS 
✓   ✓   

READ_HISTORY_B

OOKMARKS 
✓ ✓ ✓ ✓   

WRITE_HISTORY_

BOOKMARKS 
✓  ✓ ✓   
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RECEIVE_BOOT_C

OMPLETED 

 ✓ ✓  ✓ ✓ 

INTERNET   ✓  ✓ ✓ 

ACCESS_NETWOR

K_STATE 

  ✓  ✓ ✓ 

ACCESS_WIFI_STA

TE 

 ✓ ✓  ✓  

VIBRATE   ✓  ✓  

WAKE_LOCK   ✓  ✓ ✓ 

INSTALL_SHORTC

UT 

  ✓    

WIRTE_SMS   ✓    

CALL_PHONE   ✓    

READ_SETTINGS   ✓    

GET_TASKS  ✓ ✓  ✓ ✓ 

KILL_BACKGROU

ND_PROCESSES 

    ✓ ✓ 

SYSTEM_ALERT_

WINDOW 

 ✓   ✓ ✓ 

DISABLE_KEYGU

ARD 

 ✓   ✓ ✓ 

CHANGE_WIFI_ST

ATE 

 ✓   ✓  

WRITE_SETTINGS  ✓   ✓  

CHANGE_NETWO

RK_STATE 

 ✓     

READ_LOGS  ✓     

RESTART_PACKA

GES 

 ✓     

SET_WALLPAPER  ✓     

WRITE_APN_SETT

INGS 

 ✓     

TOTAL 

PERMISSIONS 

26 22 21 9 21 10 

 

Table 3.1 presents the permissions that have been filtered out by current reverse engineering 

and machine learning techniques for detecting generic Android malware and ransomware. 

Some of these permissions are commonly in detecting Malwares. We have chosen a significant 

set of features by disregarding the permissions that are less effective for detection. To create 

the dataset, we initially considered 158 permissions that have been requested by both benign 

and Android ransomware applications. Alzahrani et al. [14] employed 48 permissions for 
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identifying Android ransomware. However, it did not specify which permissions are used. On 

the other hand, in the proposed strategy, we have reduced permissions up to 16 and improved 

accuracy. Further, we employed the Random Forest feature importance characteristic to 

evaluate the importance of permissions. The permissions we have selected for our proposed 

model are listed in Table 3.2 along with their importance. The proposed permissions set is as 

follows: 

Table 3.2-Description of proposed Permissions 

        S.no: Proposed Permissions Feature 

Importance 

Description 

1. SEND_SMS 0.07024 To send messages and 

cost the money of 

those messages 

without confirmation 

2. READ_PHONE_STATE 0.03367 To access the phone 

features of the device. 

3. READ_SMS 0.03100 To read the SMS from 

the phone and SIM 

card. 

4. READ_CONTACTS 0.02655 To read all the contact 

data saved on the 

device. 

5. RECEIVE_BOOT_COMPLETED 0.16460 To check when the 

device boots up 

6. INTERNET 0.06132 To open the network 

sockets 

7. ACCESS_WIFI_STATE 0.02021 To view the 

information about 

status of Wi-Fi 

networks. 

8. WAKE_LOCK 0.05255 To keep the device 

screen on and stop it 

from sleeping. 

9. GET_TASKS 0.08072 The currently and 

recently running tasks 

information can be 

accessed through this 

permission. 

10. SYSTEM_ALERT_WINDOW 0.27866 To take over the entire 

screen window 

11. ACCESS_NETWORKS_STATE 0.01802 To get information 

about status of 

networks. 
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12. READ_EXTERNAL_STORAGE 0.04895 It allows to read from 

external storage 

13. READ_SETTINGS 0.03116 To view the settings 

14. MODIFY_AUDIO_SETTINGS 0.02286 To change global 

audio settings like 

routing and volume. 

15. RECEIVE 0.02771 View the receiving 

settings 

16. BILLING 0.03178 View the billing 

related information 

 

The feature importance graph generated for our proposed 16 permissions by Random Forest is 

shown in Figure 3.4. The graph below shows the importance percentage of each identified 

permission for ransomware detection. 

                       

 

Figure 3.4-Permission Importance Graph 
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3.2.4 Dataset Creation 

The permission information is interpreted into the 0’s and 1’s format. The 0’s shows the app 

denying permission and 1’s indicate the requesting permission. The permission set selected 

from benign and ransomware APKs represented in 0’s and 1’s are merged to create a single 

dataset for analysis. Many detection models use extensive number of permissions i.e., 115 

permissions are proposed in [15]. Our proposed model dataset filtered the minimum number 

of features for ransomware APKs detection. The comparison of selected features of our 

proposed research are shown in Table 3.3: 

Table 3.3-Comparison of the proposed features with Sharma et al. [5] and Chen et. al. [9] methods’ features. 

Permissions/Features Che

n et 

al. 

[9],  

2017 

Alzahran

i et al. 

[14], 

2019 

Alsoghye

r et al. 

[15], 

2020 

Sharm

a et al. 

[5], 

2021 

 

Propose

d 

Method 

READ_PHONE_STATE ✓  ✓ ✓ ✓ 

WRITE _EXTERNAL_STORAGE ✓  ✓ ✓  

READ_EXTERNAL_STORAGE ✓    ✓ 

SEND_SMS ✓  ✓  ✓ 

CAMERA ✓     

RECEIVE_SMS ✓     

GET_ACCOUNTS ✓     

READ_SMS ✓    ✓ 

READ_CONTACTS ✓    ✓ 

RECEIVE_BOOT_COMPLETED ✓  ✓ ✓ ✓ 

INTERNET ✓  ✓ ✓ ✓ 

ACCESS_NETWORK_STATE ✓  ✓ ✓ ✓ 

ACCESS_WIFI_STATE ✓    ✓ 

VIBRATE ✓     

WAKE_LOCK ✓  ✓ ✓ ✓ 

GET_TASKS ✓   ✓ ✓ 

KILL_BACKGROUND_PROCESS

ES 
✓  ✓ ✓  

SYSTEM_ALERT_WINDOW ✓  ✓ ✓ ✓ 

DISABLE_KEYGUARD ✓   ✓  

CHANGE_WIFI_STATE ✓     

WRITE_SETTINGS ✓     
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READ_SETTINGS     ✓ 

MODIFY_AUDIO_SETTINGS     ✓ 

RECEIVE     ✓ 

BILLING     ✓ 

BIND_DEVICE_ADMIN   ✓   

Other (…)  ✓ ✓   

Total Permissions 21 48 115 10  16 

Other properties      

Intents  ✓  ✓  

Images    ✓  

Text    ✓  

Lock    ✓  

Encrypt    ✓  

Encode    ✓  

API Calls  ✓    

Accuracy 99% 96.9% 97.62% 98% 97% 

 
Table 3.3 shows the comparison of the permissions identified by different models. Our model 

identified 16 permissions with high detection accuracy. However, Sharma et al. [5] identified 

10 permissions but also relied on other features such as intents, images, text, lock, encrypt, and 

encode. Similarly, Alzahrani et al. [14] identified 48 permissions, 4 intents and 34 API calls 

for ransomware detection. However, permissions are not mentioned in their study. While 

Alsoghyer et al. [15], 2020 identified 115 permissions for detection.  Chen et al. [9] identified 

21 permissions while achieving the highest detection accuracies. However, the proposed model 

employed 28% fewer permissions as compared to Chen et al. [9] while compromising the 

detection accuracy of 2%. Our proposed model main aim is to reduce the permissions for 

ransomware detection. 

3.2.5 Ransomware Detection by Employing Machine Learning 

Models 

Within this section, we utilize classifiers to accurately detect ransomware applications while 

minimizing false positive results. Our dataset comprises ransomware samples extracted from 
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the CICAndMal2017 dataset. For training purposes, we allocate 80% of the samples, 

employing eight distinct classifiers: Decision Tree, Random Forest, SVM, Logistic Regression, 

Naive Bayes, Gradient Boosting, Bagging, and KNN classifiers. Subsequently, we employ the 

remaining 20% of the samples to evaluate the models' performance and compare the obtained 

outcomes.  

This section is comprised of applying supervised machine learning classifiers. The proposed 

model is consisting of two parts: the first part is the creation of the dataset and selection of the 

appropriate features (permissions) and the second part comprises the preparation and 

authentication of the supervised learners with various ML algorithms. The proposed dataset 

contains an equal ratio of benign and ransomware.  Android APKs. Google Collab platform in 

which Python scripts and split methods are used for training and dataset testing. 

3.3 Summary 

Within this chapter, various methodologies have been explored which have been utilized in 

prior research and can be replicated to obtain comparable outcomes. The overarching approach 

entails acquiring datasets from reliable sources, culling and pinpointing the relevant features, 

and ultimately employing various Machine Learning techniques for classification purposes. 

Moving forward, the subsequent chapter will delve into the experimental configurations, and 

which is formulated for conducting this specific analysis. 

  



 

39 

 

4. Experimental Setup 

The present chapter outlines the experimental arrangement which has been devised for 

establishing an appropriate research environment. It also rationalizes the choice of certain 

employed methodologies. Furthermore, this chapter furnishes the specifications of the system 

configurations. 

4.1 Overview 

To undertake the experimental analysis, a setup akin to the one employed by H. J. Zhu et. al. 

[16] has been adopted. The experimental setup encompasses an android dataset that comprises 

both ransomware and benign applications. Additionally, a PC is utilized to execute a Python-

based codebase, responsible for generating the feature set and conducting the evaluation 

process. 

4.2 Setting up Environment 

To facilitate the experimentation process, a machine operating on the Windows platform is 

used. The system specifications are presented in the table provided below, denoted as Table 

4.1. 

Table 4.1-System specifications 

Property Description 

Manufacturer DELL 

Model Dell 

Architecture x64 based 

Operating System Windows 10 Pro 

Processor Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz   2.11 GHz 
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RAM 16 GB 

Storage 500 GB 

 

4.3 Constructing Android Ransomware Dataset 

To construct the dataset, we gathered various samples of Android applications from two 

distinct sets: ransomware and benign. The benign samples are selected from the Androzoo 

dataset [18], encompassing applications from diverse categories such as business, 

entertainment, finance, and games. This approach aimed to ensure a wide range of diversity 

within the samples. 

Regarding the ransomware samples, multiple options were available. However, we opted to 

utilize the CICAndMal2017 [17] dataset due to the Canadian Institute of Cybersecurity's 

reputation for providing up-to-date collections of malware samples. Accessing these datasets 

required signing up on the CIC website [https://www.unb.ca/cic/datasets/index.html] and 

providing consent to acknowledge the associated risks of downloading and utilizing the dataset. 

4.4 Environmental Setup 

Once the samples are collected, we set up an environment to analyze the  Android ransomware 

samples. For setup, experiments are executed on Windows 10 host machine running VBOX 

having a Windows 10 machine installed. Inside the VBOX Windows 10, we installed Android 

Studio, APK tool, and MobSF for static analysis of applications. The collected ransomware 

samples are taken from CICAndMal2017 dataset. The description of tools used are described 

in Table 4.2 as: 
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Table 4.2- Tools Description 

S.No: Tool Name Description 

1. Android Studio It provides the integrated environment for development 

of applications. It also analyzes the app statically. For 

dynamic analyzation, genny motion must be integrated 

with it.   

2. APK Tool It is the best tool for reverse engineering of applications. 

it decodes the app almost near to original form. 

Different static features can be extracted out through it. 

3. MobSF It is an automated tool for pen testing, malware analysis 

and security assessment of mobile applications.  

 

4.5 Evaluation of APKs through VirusTotal 

After the collection of malware samples, we employed the VirusTotal [35] to distinguish the 

regular and ransomware malware by adding its signature. The VirusTotal API key can also be 

used for uploading the APK files to it. All the applications are submitted to the VirusTotal to 

verify the calculated score by different anti-virus engines.  

4.6 Downloading the Python Codebase 

The code base has been developed entirely from scratch utilizing the Python programming 

language. The code for this research can be seamlessly incorporated into the experimentation 

environment.  
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4.7 Installing Pre-requisite Software 

Before proceeding with the experimentation process, it is necessary to install certain 

prerequisite software. The following software are required: 

1. An archiving tool like WinRAR; it is used for extracting application samples. You can 

download it from the following link: WinRAR Download 

2. Python interpreter, preferably version 3.8 or higher. This software is required for tasks 

such as extracting applications, generating feature sets, and performing classifications. 

You can download the Python interpreter from the following link: Python 3.8+ 

Download 

3. If there is a need to modify the codebase or customize the feature set, any Python 

Integrated Development Environment (IDE) can be utilized, such as IntelliJ IDEA. You 

can download IntelliJ IDEA from the following link: IntelliJ IDEA Download 

4.8 Summary 

Within this chapter, we have presented the proposed experimental setup designed for 

conducting the analysis. The chapter encompasses discussions on the collection of the 

necessary dataset, establishment of the essential environment, and the accompanying codebase. 

Additionally, comprehensive information regarding the installation of prerequisite software for 

the analysis process, including their respective sources, have been provided in this section. 

  

https://www.win-rar.com/download.html?&L=0
https://www.python.org/downloads/release/python-380/
https://www.python.org/downloads/release/python-380/
https://www.jetbrains.com/idea/download


 

43 

 

5. Experimental Results  

 

In this chapter, the obtained results and their analysis is presented in the form of classification 

outcomes. Additionally, the accomplishments of the research are extensively discussed within 

this chapter. 

5.1 Overview 

Permissions are utilized by Android applications to offer various functionalities to users, but 

unfortunately, malware developers exploit these permissions for malicious purposes. This 

study conducts a comprehensive analysis on an Android dataset containing both benign and 

ransomware applications. The subsequent discussion focuses on the utilization of different 

evaluation metrics during the analysis to gauge the efficacy of the approach. 

5.2 Evaluation Measures 

To assess the performance, the evaluation utilizes the metrics of Sensitivity, Precision, 

Accuracy, Area under Curve (AUC), and the Receiver Operating Characteristic (ROC). 

Accordingly, the following formulas depict their respective information. 

1) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇 𝑃 + 𝑇 𝑁

𝑇 𝑃 + 𝐹 𝑃 + 𝑇 𝑁 + 𝐹 𝑁
   

2) 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇 𝑃

𝑇 𝑃 + 𝐹 𝑁
  

3) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇 𝑃

𝑇 𝑃 + 𝐹 𝑃
 

4) 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃+
1

2
(𝐹𝑃+𝐹𝑁)
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In the context of these metrics, the true positive (TP) signifies the samples that are correctly 

anticipated as positive based on count of positive testing. Conversely, false positive (FP) refers 

to samples that are incorrectly anticipated as positive based on the count of negative testing. 

Similarly, true negative (TN) denotes the count of negative testing samples that are accurately 

anticipated as negative, while false negative (FN) represents the count of positive testing 

samples that are falsely anticipated as negative. 

5.3 Evaluating Research Effectiveness 

 

To evaluate the efficacy of RansomShield, we conducted over 20 iterations on the feature 

dataset. After reducing the requested permissions by the samples, we identified the 16 most 

significant permissions out of the initial 158. Additionally, we calculated the performance 

metrics values for each classifier of the machine-learning algorithm to compare their results. 

To calculate the performance of Chen et. al. method on our proposed dataset with its 21 

features, we have observed a similar detection accuracy as compared to our proposed model 

with 16 permissions. Chen et. al. detection accuracies were around 98% for decision tree, 97 

% for random forest, 93% for logistic regression, 97% for SVM, 74% with Naïve Bayes, 97% 

with KNN, 94% with Bagging, and 100% with gradient boosting classifiers. Table 5.1 shows 

the performance metrics values of each classifier for the proposed Ransom Shield.  

Table 5.1-The performance comparison of the proposed RansomShield and existing methods 

S. 

No: 

ML 

Classifiers 

Accuracy 

(proposed 

model) 

Permissions=16 

Precision Recall F1 

Score 

K- 

Fold  

Validation 

Accuracy 

(Reference 

Approach) 

Permissions=21 

1. Decision 

Tree 

95% 95% 96% 95% 93.5% 98% 

2. Random 

Forest 

97% 98% 98% 98% 97% 97% 

3. Logistic 

Regression 

95% 95% 96% 95% 88.5% 93% 
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4. Bagging 

Classifier 

94% 98% 98% 985 92.9% 94% 

5. Support 

Vector 

Machine 

97% 98% 98% 98% 93% 97% 

6. K-Nearest 

Neighbor 

97% (knn=1) 

97% (knn=5) 

98% 

98% 

98% 

98% 

98% 

98% 

95% 

(knn=1) 

92% 

(knn=5) 

97% 

7. Gradient 

Boosting 

100% 100% 100% 100% 94.6% 100% 

8. Naïve 

Bayes 

73.8% 74% 77% 73% 75% 74% 

  

Our experimental results showed the highest detection accuracy is 100% with gradient 

boosting. As Gradient boosting is known for its effectiveness and flexibility due to the 

requirement of weak subtrees in the ensemble. This allows gradient descent to efficiently steer 

towards a favorable solution. Consequently, gradient boosting often delivers impressive results 

without the need for extensive tuning. That’s why the gradient boosting showed highest 

accuracy for ransomware detection. After gradient boosting, Random Forest, SVM and KNN 

showed 97% detection accuracy. The accomplishment of these algorithms is influenced by 

components such as the dataset's quality and characteristics, feature engineering techniques, 

hyperparameter tuning, and various other factors. The choice of the most appropriate algorithm 

is based on its own advantages and limitations, and it may vary for a specific problem. While 

Naïve bayes showed 73.8% detection because in reality, the assumption of feature 

independence, which is inherent in the naive Bayes algorithm, is often invalid. In return, the 

accuracy of naive Bayes tends to be lower compared to more sophisticated algorithms.  

In order to understand how well a classification model, accomplish across all classification 

thresholds, ROC (Receiver Operating Characteristics) curve is used. ROC curve illustrates how 

well a classification model performs across all classification thresholds. One can create a graph 

by varying classification thresholds and plotting the false positive rate (FPR) against the true 
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positive rate (TPR), the ROC curve provides a visual representation of the model's 

performance. If the threshold of classification is decreased, items will be increased in category 

of positive, leading to rise in both false positives and true positives. In contrast, AUC curve is 

the area under the curve. It is an estimate of performance across all the classification thresholds. 

The ROC and AUC graphs for machine learning classifiers can be seen in Figure 11 for the 

proposed model. 
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Figure 5.1-ROC and AUC Graphs 
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The above figure 5.1 shows the graphs of RoC and AuC of all the applied machine learning 

classifiers. Random forest proved to be best for ROC and AUC as at 0 

5.4 Summary 

This chapter delves into the analysis and outcomes obtained during the research. Subsequently, 

the subsequent chapter focuses on the validation and verification of the achieved results.  
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6. Discussion and Analysis 

This chapter describes validation and verification of the results obtained from the 

experimentation. They are examined in relation to the proposed feature set. Throughout the 

study, the results gathered from various classifiers together with Decision Tree, Random 

Forest, Logistic Regression, Naïve Bayes, Bagging, Gradient Boosting, and KNN classifiers 

(discussed in chapter 5) are compared with the method suggested by Chen et al. [9]. 

Additionally, the observed results are further validated against the Chen et al. [9] approach 

within this chapter. 

6.1 Overview 

In this part, we assess the efficacy of the investigation conducted on Android ransomware 

detection. We have chosen several traditional machine-learning algorithms, inclusive of 

Decision Tree, Random Forest, SVM, Logistic Regression, Naive Bayes, Gradient Boosting, 

Bagging, and KNN classifier models. These models were evaluated using permissions as a 

metric to gauge the effectiveness of the suggested approach. Instead of using the 21 different 

permissions set employed in the Chen approach [9], our research utilized a reduced feature set 

consisting of only 16 permissions deemed most significant. Table 13 displays the detection 

accuracies achieved by the Chen approach [9], which ranged around 99%. However, our 

suggested method surpassed the Chen approach [9] in the course of performance, utilizing a 

minimal feature set while achieving similar detection accuracies. 

6.2 Comparison with Reference Approach 

Table 6.1 illustrates the comprehensive performance contrast between the proposed and Chen 

et al. [9] approaches. It is evident from the results that the Decision Tree classifier demonstrates 

the highest detection performance in the Chen approach. Importantly, our proposed scheme 
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achieves comparable accuracies with Chen et al. [9] for the KNN and Random Forest models, 

despite employing a reduced number of features. Thus, we can conclude that the Random 

Forest and SVM-based ensemble classifier, utilizing the proposed feature set, achieve the 

highest accuracy ratings of 97%. Additionally, Table 6.1 highlights the successful reduction of 

five features in our proposed scheme by preserving homogeneous detection accuracies. Based 

on the aforementioned contrast, it is evident that our proposed method surpassed the Chen 

approach [9] in the course of accuracy, with the Random Forest and SVM classifier emerging 

as the best-performing models. 

To calculate the performance of Chen et. al. method on a proposed dataset with its 21 features, 

we have observed a similar detection accuracy as compared to our proposed model with 16 

permissions.  

Table 6.1(a) -Comparison of Accuracies of Chen and Proposed Approaches 

S. 

No: 

ML Classifiers Accuracy  

(Reference  Approach) 

Features: 21 

Accuracy 

(Proposed 

Approach) 

Features: 16 

1. Decision Tree 98% 95% 

2. Random Forest 97% 97% 

3. Logistic Regression 93% 95% 

4. Bagging Classifier 94% 94% 

5. Support Vector Machine 93% 97% 

6. K-Nearest Neighbor 97% 97% (knn=1) 

97% (knn=5) 

7. Gradient Boosting 100% 100% 
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8. Naïve Bayes 74% 73.8% 

 

6.3 Heat Map of Applied Machine Learning 

algorithms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1-Decision tree and Random Forest heat maps 

 

 



 

52 

 

The above figure 6.1(a) represents the heat maps of Decision Tree and Random Forest 

algorithms. Heat map is a graphical representation that uses color coding to visualize the 

strength of correlations between variables. It aids in identifying the most effective features for 

building Machine Learning models by displaying the coefficients. The heat map converts the 

correlation matrix into a visual display of colors. Heat map of decision tree showed 95% 

accuracy. It represents all the results in visual form. Also, it can be clearly seen from the 

heatmap of random forest that the accuracy is 98% as mentioned in above chapters. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2-Decision tree and Random Forest heat maps 

Figure 6.2-Logistic Regression and SVM heat maps 
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Figure 6.2 illustrates the heatmaps for logistic regression and SVM algorithms. The results 

shown in heatmap are the same as described. The accuracies for logistic regression and SVM 

are 95% and 98% respectively. 

The Table 6.1 (b) below shows the comparison of proposed framework with the existing 

reference approaches.  

Table 6.2(b) -Comparison of Proposed Approaches with existing Reference Approaches 

Related 

Work 

Framework Analysis 

Technique 

Feature Set Machine 

Learning 

Techniques 

Permissions Accuracy 

Chen et al. [9], 

2018 

RansomProber Static,  

Dynamic 

Widgets, 

Activities, 21 

Permissions 

User interface, 

User Clicks 

No 99% 

Alzahrani et 

al. [10], 2018 

RAndroid Static,  

Dynamic 

Text, Images Not stated s 91% 

Scalas et al. 

[12], 2019 

 Static API packages, 

Classes, 

Methods 

RF No 97% 

Lachtar et al. 

[31], 2019 

Native 

instructions 

based 

Static A dictionary 

contains 

unique 

opcodes 

present 

RF, SVM, 

KNN, ANN 

No 99.8% 

Alzahrani et 

al. [14], 2019 

API-Based Static 34 API, 48 

Permissions, 4 

Intents 

KNN, LR, 

SVM, RF 

Yes 97.62% 

Alsoghyer et 

al. [15], 2020 

Permissions 

based 

Static 115 

Permissions 

are used 

RF, J48, SMO, 

NB 

Yes 96.9% 
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Proposed 

Approach, 

2023 

RansomShield Static 16 

Permissions 

SVM, DT, RF, 

LR, NB, 

KNN, GB, 

Bagging 

Classifier 

Yes 97% 

 

6.4 Applicability of the Proposed Approach 

The following use cases are provided to enhance our understanding of the application of the 

proposed RansomShield. Early detection patterns can greatly assist in minimizing and ideally 

preventing damages in ransomware detection analysis. Therefore, drawing from the 

aforementioned analysis, we can apply the research's effectiveness to various scenarios, 

including the following examples: 

A. The ability to distinguish between Android ransomware applications and benign ones 

can be facilitated by analyzing the permissions requested during the installation 

process. 

B. The module can be integrated into end devices as a lightweight anti-ransomware 

application. For each new installation, it extracts permission features from the APK file 

and transfers the data to the trained classifier. The classifier then utilizes this data for 

classification purposes. Depending on the results, the installation is either permitted or 

the detection is reported to the end-users. 

C. It is possible to implement it on application stores, where it can be utilized for 

categorizing applications that are being uploaded, prior to their availability to the 

general public. 

D. By implementing both host-based and market-based approaches, it is possible to 

leverage its capabilities for additional security enhancements. This implementation can 
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offer extended verification measures, even for applications available outside the official 

app store. 

6.5 Summary 

In this chapter, we have consolidated significant findings and conducted validations to verify 

our results. A comparative analysis has been performed, contrasting the outcomes derived from 

the Chen et al. [9] approach with our own findings. Additionally, we have explored potential 

applications of our proposed approach. The subsequent chapter focuses on the conclusion and 

future prospects of our work. 
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7. Conclusion & Future Work 

In this chapter, we will summarized the thesis and gives future research directions for 

researchers. It outlines various avenues for research and highlights unresolved research issues 

that require attention from the academic community. 

7.1 Conclusion 

Android ransomware is a significant danger to the mobile market, and machine learning 

algorithms can be utilized to detect security risks and achieve high accuracy through feature 

selection and algorithm performance. This study focuses on static analysis of applications to 

create an effective model for android ransomware detection. We examine various approaches 

used for detecting android ransomware and compare our dataset's permissions with other 

models' permissions to demonstrate the efficacy of our model, which produced high-accuracy 

results with all four applied machine classifiers. Our evaluation indicates that by selecting a 

significant set of permissions and creating our own dataset, RansomShield achieves high-

accuracy results. 

Using the feature dataset at hand, we conducted classification experiments employing different 

classifiers, including Gradient Boosting, Decision Tree, SVM, Logistic regression, Naïve 

Bayes, Bagging, Random Forest and KNN. When comparing our results with the existing 

method, we observed that our proposed strategy achieved comparable levels of accuracy on the 

classifiers utilized by Chen et al. [9], and it also demonstrated the potential for improved results 

when employing other classifiers. The comparison outcomes clearly indicate that Random 

Forest, SVM, and KNN outperform the remaining five selected classifiers. 

The results of our experiments demonstrate that when we employed the proposed feature 

dataset, we can attain a baseline accuracy of 74% using the Naïve Bayes classifier. 
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Furthermore, by employing other classifiers, we can achieve accuracy rates above 90%. Based 

on these findings, we draw the conclusion that Random Forest, SVM, and KNN classifiers 

exhibit superior performance, detecting ransomware APKs with suggested features set at 

approximately 97%. 

7.2 Limitation & Future Work 

The proposed work has a significant drawback in that it relies solely on Android permissions 

for detecting ransomware and has a limited dataset. While using permissions can help identify 

apps that excessively request permissions, there may be instances where an app declares 

dangerous permissions but doesn't actually use them. To ensure comprehensive detection, it is 

important to address such edge cases through malware analysis. Therefore, future efforts will 

aim to examine both the declaration and usage of permissions for improved detection. 

To extend our proposed research, the dataset can be enhanced, and larger datasets may explore 

to minimize the permissions. Additionally, dynamic features can be incorporated into the 

detection features by considering the permissions identified in our study as a starting point. 

The best sandbox for analyzing the dynamic behavior of Android applications is MobSF with 

Genny motion, which can be utilized in future research to improve the detection accuracies. 
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