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Abstract 

    Accurate therapeutic intervention against many Neurological disorders is still not known. Only 

symptomatic treatments are being used for the cure of such devasting disorders. Therefore, it is 

crucial to probe the target associations with the drug followed by the subsequent disease 

associations which could aid in more accurate and effective treatment against neurological 

disorders. Additionally, there is a major overlap of targets in neurological and neurodegenerative 

disorders. In this study, a database for known protein-targets and FDA-approved drugs for 10 

neurodegenerative disorders and 9 neurological disorders is developed from publicly available 

resources. The database contains 236 unique protein-targets with Protein-Protein Interactions 

(PPIs) ranging from 3 to 71, and 964 FDA-approved drugs against selected target-proteins for the 

19 neuronal disorders. Network pharmacology approach was used to investigate the targets 

association and overlap in neurological and neurodegenerative disorders. Three networks i.e., 

Target-Disease, Disease-Drug and Target-Disease-Drug Networks, were built between protein-

targets, FDA-approved drugs, and neuronal disorders, with datasets categorized into neurological 

and neurodegenerative disorders. Furthermore, five machine learning models were trained on the 

networks, with Decision Tree, Random Forest, and Gradient Boosting Classifiers emerging as 

optimal models for predicting disease association of protein-targets and drugs. The results provide 

a comprehensive view of drugs and protein-targets’ association with specific neurological and 

neurodegenerative disorders, as well as target overlap among multiple neuronal disorders. Finally, 

a multi-variate Artificial Neural Network (ANN) to predict drug-target interactions linked to 

specific diseases has been developed. The model was trained using a multi-variate output 

configuration, enabling predictions for both target protein descriptors with 53% accuracy and 

disease class with 82% accuracy, for a given drug. This study contributes to database development 

and Network classification for FDA-approved drugs and protein targets associated with 

neurological and neurodegenerative disorders including the multi-variate model development, 

offering potential avenues for developing new therapeutics and personalized treatment strategies. 
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1 Introduction 
 

1.1 Background: 

 

    Neurological disorders, a diverse group of conditions that includes both neurodevelopmental 

and neuropsychiatric disorders, present significant challenges to global healthcare systems [1]. 

These disorders inflict debilitating effects on patients, impairing their cognitive, motor, and 

emotional functions, leading to a diminished quality of life. Neurodegenerative diseases [2], such 

as Alzheimer’s, Parkinson’s [3, 4], Huntington’s diseases [5], etc. are characterized by progressive 

degeneration of nerve cells and neural networks, resulting in the deterioration of cognitive and 

motor functions over time [6]. Neurodegenerative disorders are caused due to the inability of nerve 

cells to perform their function well [7]. The loss of nerve cells is caused due to Increased ROS, 

Imbalance of ions in nerve impulse transmission, Chronic neuroinflammation and intracellular and 

extracellular accumulation of misfolded proteins, causing abnormalities in normal cellular 

functions, and ultimately causing apoptosis of nerve cells as shown in Figure 1.1. As functional 

neuronal death is almost certainly the key factor that mediates functional impairment, preventing 

neuronal death and dysfunction will have a huge clinical benefit. Neurodegenerative diseases are 

incurable and debilitating, resulting in the progressive degeneration and/or death of neurons [8]. 

On the other hand, psychiatric disorders encompass a wide range of mental health conditions [9], 

including depression [10], anxiety [11], bipolar disorder [12], and schizophrenia [13], which 

significantly impact a person’s thoughts, emotions, and behavior. In neuropsychiatric disorders, 

Figure 1.1 Normal Vs Diseased Neuron 
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there is an imbalance of ions and neurotransmitters between nerve cells, which occurs either due 

to abnormal secretions of excitatory, inhibitory, or modulatory neurotransmitters, affecting 

neurotransmission and ultimately causing many psychological problems. Neurons are the building 

blocks of the nervous system [14] and are different from other cells of the body as they do not 

reproduce or replace themselves, therefore, the body cannot replace them with other neurons when 

they are damaged. 

 

1.2  Prevalence and Mortality Rate: 

 

    According to National Health Survey conducted in 2000 [15], the prevalence of hypertension in 

Pakistan is 33%, 91.1% for stroke, 22.9% for Migraine, 34% for depression and anxiety 1.5% for 

Epilepsy, 39% for depression, 51% for Parkinson’s disease, and 60% for dementia due to 

Alzheimer’s disease (AD). 

    According to Global Burden of Diseases, Injuries, and Risk Factors (GBD), Neurological 

disorders are an important cause of disability and the second-leading cause group of deaths 

worldwide [16]. Globally, the burden of neurological disorders has increased substantially over 

the past 25 years because of expanding population numbers and aging. The most prevalent 

neurological disorders are tension-type headache, migraine, Alzheimer’s disease and other 

dementias. Between 1990 and 2015, the number of deaths from neurological disorders increased 

by 36.7%, and the number of DALYs by 7.4%. The number of patients who will need care by 

clinicians with expertise in neurological conditions will continue to grow in the coming decades. 

    World Health Organization (WHO) data suggests that neurological and psychiatric disorders are 

an important and growing cause of morbidity, mortality, and disability worldwide [17]. 

Neurological disorders are the third most common cause of disability and premature death in the 

Europe and their prevalence and burden will likely increase with the progressive ageing of the 

European population. 

    A recent study of GBD in 2019 showed that the prevalence of mental disorders (depression, 

anxiety, post-traumatic stress disorder, bipolar disorder, autism spectrum disorders and 

schizophrenia) is 22.1% and remained among the top ten leading causes of burden worldwide, 
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with no evidence of global reduction in the burden since 1990 [18]. The burden of mental disorders 

is high in conflict-affected populations. Given the large numbers of people in need and the 

humanitarian imperative to reduce suffering, there is an urgent need to implement scalable mental 

health interventions to address this burden. 

    Neurological disorders stand as the second leading cause of death in the elderly population 

worldwide. The demographic factors, particularly aging, might be related to an increase in the 

mortality of neurological disorders. As the prevalence of these conditions continues to rise with an 

aging population and changing lifestyles, the burden on healthcare systems and the economic 

impact on societies are mounting [19]. 

 

1.3  Common Neurodegeneration Mechanisms: 

 

    Chronic neuroinflammation, increased ROS, imbalance of ions in nerve impulse transmission, 

accumulation of misfolded proteins in nerve cells, has emerged as some common 

neurodegenerative mechanisms across many neurological disorders, contributing to disease 

progression and pathophysiology [20, 21]. The details of all the mechanisms are given below: 

 

1.3.1 Chronic neuroinflammation: 
 

    Chronic neuroinflammation, characterized by persistent and prolonged activation of immune 

responses within the central nervous system, has garnered significant attention as a common 

underlying feature across a wide spectrum of neurological disorders. This chronic inflammatory 

state has been implicated in the pathogenesis of diverse conditions, ranging from 

neurodegenerative diseases like Alzheimer’s and Parkinson’s to psychiatric disorders such as 

depression and schizophrenia. The recognition of chronic neuroinflammation as a shared 

phenomenon in these seemingly disparate disorders has shed light on the intricate relationship 

between molecular targets, drugs, and disease manifestations, presenting a promising avenue for 

the development of more accurate and effective treatments [22]. Understanding the complex 

interplay between molecular targets and disease outcomes is essential in the quest to decipher the 
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underlying mechanisms driving neurological disorders. By elucidating the specific interactions 

between biological targets and therapeutic agents, we can unlock novel strategies for intervention 

and potentially halt disease progression. 

 

1.3.2 Dysregulation of Reactive Oxygen Species (ROS): 
 

    Reactive Oxygen Species (ROS) are highly reactive molecules that contain oxygen and are 

produced as natural byproducts of cellular metabolism. In normal physiological conditions, cells 

maintain a delicate balance between ROS production and their elimination through antioxidant 

defense systems. However, several factors, including environmental stress, exposure to toxins, 

chronic inflammation, and dysfunction of mitochondria, can disrupt this balance and lead to an 

excessive generation of ROS, resulting in a state of oxidative stress. The dysregulation of ROS 

production stands out as a critical factor contributing to neuronal damage and inflammation. 

Within the context of neurological disorders, the impact of increased ROS levels on disease 

progression is profound [23]. Oxidative stress becomes a critical player in the pathophysiology of 

these disorders. The deleterious effects of oxidative stress are primarily attributed to the damaging 

effects on cellular components, including lipids, proteins, and DNA, within nerve cells. Such 

damage can lead to cellular dysfunction and, in severe cases, cell death. The detrimental 

consequences of oxidative stress extend to neuronal function and communication. Oxidative 

damage can impair neuronal function, disturb synaptic communication, and facilitate the process 

of neuroinflammation, which further exacerbates the disease’s severity. A particularly significant 

consequence of ROS-induced damage is the accumulation of misfolded or abnormal proteins. This 

accumulation is particularly relevant to neurodegenerative diseases like Alzheimer’s [24], 

Parkinson’s [25], and Amyotrophic Lateral Sclerosis (ALS) [26], where protein misfolding plays 

a central role in disease pathogenesis. To address the adverse effects of increased ROS and 

oxidative stress in neurological disorders, researchers are actively exploring antioxidant therapies 

and interventions to restore redox homeostasis and protect neurons from oxidative damage. By 

mitigating oxidative stress, these treatments have the potential to slow down disease progression 

and offer neuroprotection. The intricate relationship between ROS, oxidative stress, and 
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neurological disorders underscores the significance of redox homeostasis in maintaining neuronal 

health. 

 

1.3.3 Imbalance of Ions & Neurotransmitters: 
 

    The proper functioning of the nervous system relies on the precise transmission of nerve 

impulses, a process governed by the delicate balance of ions across neuronal membranes. Among 

these ions, sodium (Na+), potassium (K+), calcium (Ca2+), and chloride (Cl-) play pivotal roles in 

neuronal signaling. Neurons employ specialized protein structures called ion channels and pumps 

to regulate the movement of these ions in and out of cells, leading to the generation of crucial 

electrical signals that facilitate communication between neurons. Maintaining ion homeostasis is 

of paramount importance for the overall health and function of neurons. Disruptions in this delicate 

balance can have profound consequences, leading to abnormal nerve impulse transmission and 

impairing neuronal communication and function [27]. An imbalance in ion concentrations in nerve 

impulse transmission has been implicated in the hyperexcitability of neurons and the manifestation 

of neurological symptoms as shown in Figure 1.2. In the context of neurological disorders, such 

imbalances can become particularly significant. Neurological disorders, including epilepsy and 

multiple sclerosis, are often characterized by disturbances in ion concentrations. In epilepsy, 

excessive neuronal excitability arises due to imbalances in ion concentrations, leading to the 

Figure 1.2 Neurotransmitters Imbalance in Neurological disorders 
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uncontrolled firing of neurons and the occurrence of seizures. On the other hand, multiple sclerosis 

is marked by altered ion homeostasis, which can hinder the smooth transmission of signals between 

neurons, resulting in motor dysfunction and cognitive impairments. These disruptions in ion 

homeostasis contribute to the diverse array of symptoms observed in neurological disorders, 

ranging from seizures to motor and cognitive impairments. As our knowledge of ion channel 

dysfunctions continues to expand, we can anticipate the emergence of novel and innovative 

treatment options for neurological disorders, providing hope and improved quality of life for those 

affected by these conditions [28]. 

 

1.3.4 Accumulation of misfolded proteins: 
 

    Proteins, being the workhorses of cellular functions, assume critical roles in maintaining the 

normal activities of living organisms. For proteins to function properly, their three-dimensional 

structure must be correctly folded. However, under certain circumstances, proteins may misfold 

due to genetic mutations, environmental influences, or cellular stress. Such misfolded proteins 

have a tendency to aggregate and form toxic clumps within nerve cells, thereby disrupting vital 

cellular processes and leading to impaired neuronal function [29]. The accumulation of misfolded 

proteins represents a hallmark feature observed in numerous neurodegenerative diseases, including 

Alzheimer’s [3, 4], Parkinson’s, and Huntington’s diseases. In Alzheimer’s disease, the formation 

of amyloid-beta protein [30] aggregates gives rise to plaques, while in Parkinson’s disease, alpha-

synuclein [31] aggregates manifest as Lewy bodies. These protein aggregates exert toxic effects 

on neurons, instigating dysfunction and eventual degeneration of these essential cells. A 

comprehensive understanding of these mechanisms opens the door to potential therapies that can 

protect neurons from the toxic effects of misfolded proteins, offering hope for improved treatment 

strategies and ultimately enhancing the quality of life for individuals impacted by 

neurodegenerative diseases. 

    In conclusion, neurological disorders represent a multifaceted and intricate web of 

interconnected mechanisms, comprising chronic neuroinflammation, increased levels of Reactive 

Oxygen Species (ROS), imbalances in ion homeostasis, and the accumulation of misfolded 

proteins as shown in the Figure 1.3. The intricate understanding of these underlying mechanisms 
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and their role in disease pathogenesis offers valuable insights that can pave the way for the 

development of targeted and effective therapies and interventions, ultimately enhancing the 

management and treatment of neurological disorders. Addressing these diverse facets of 

neurological disorders is of paramount importance in unlocking novel treatment approaches and 

mitigating the significant burden these disorders impose on affected individuals and global 

healthcare systems alike. By delving into the complexities of chronic neuroinflammation, 

oxidative stress, ion imbalances, and protein misfolding, researchers can identify potential targets 

for intervention, thus providing new avenues for therapeutic development. The quest for 

innovative treatments is a crucial endeavor, as it holds the promise of offering hope to patients and 

healthcare systems worldwide. Through persistent dedication and interdisciplinary collaboration 

among scientists, clinicians, and researchers, advancements in our understanding of neurological 

disorders will continue to unfold, ushering in a new era of improved management and care. 

 

 

Figure 1.3 Mechanisms of Neurodegeneration 
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1.4 Disease Pathogenesis & Symptoms: 

 

    Neurological disorders encompass a broad spectrum of conditions that pose significant public 

health challenges and impact millions of individuals worldwide. Despite dedicated research 

efforts, developing precise and effective therapeutic interventions for many of these complex 

disorders remains a formidable task. Among the diverse array of neurological disorders, several 

stand out, each presenting its unique set of challenges. The selected disorders specifying their 

disorder category in the context of common neurodegenerative mechanisms, including increased 

Reactive Oxygen Species (ROS), imbalance of ions in nerve impulse transmission, accumulation 

of misfolded proteins in nerve cells, and chronic neuroinflammation: 

 

1.4.1 Neurodegenerative Disorders: 
 

• Alzheimer’s Disease is characterized by the accumulation of misfolded proteins such 

amyloid-beta (Aβ) protein plaques, presenilin (PSEN), amyloid precursor protein (APP) 

and tau protein tangles in the brain [32]. These protein aggregates trigger chronic 

neuroinflammation, oxidative stress, and disruption of ion homeostasis, contributing to the 

degeneration of nerve cells and cognitive decline [33]. Symptoms include memory loss, 

confusion, and difficulty performing everyday tasks [32]. 

• Huntington’s Disease is caused by a genetic mutation leading to the aggregation of mutant 

huntingtin protein. The accumulation of misfolded proteins, along with increased ROS and 

chronic neuroinflammation, contribute to the progressive degeneration of neurons. 

Symptoms include motor problems, cognitive decline, and psychiatric symptoms [5]. 

• Amyotrophic Lateral Sclerosis (ALS) is a progressive motor neuron disease involving 

the degeneration of motor neurons in the brain and spinal cord [34]. Imbalance of ions and 

increased ROS production contribute to the neurodegenerative process. ALS leads to 

muscle weakness and paralysis. 

• Frontotemporal Lobar Degeneration (FTLD) encompasses a group of disorders 

characterized by the degeneration of the frontal and temporal lobes of the brain. Several 

genes have been associated with FTLD, and mutations in these genes play a significant role 
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in the pathogenesis of the disease, such as C9ORF72, MAPT (Microtubule-Associated 

Protein Tau) [35], Progranulin (GRN), TDP-43 (Transactive Response DNA-binding 

Protein with Molecular Weight 43 kDa), FUS (Fused in Sarcoma), CHMP2B (Charged 

Multivesicular Body Protein 2B), and VCP (Valosin-containing Protein) [36]. Mutations in 

these genes disrupt various cellular processes, including protein homeostasis, RNA 

processing, inflammation, and cellular transport, leading to the characteristic neuronal 

degeneration. FTLD results in changes in personality, behavior, and language difficulties.  

• Multiple Sclerosis is an autoimmune disorder in which chronic inflammation damages the 

myelin sheath around nerves. This chronic neuroinflammation and demyelination 

contribute to nerve dysfunction and causing symptoms like fatigue, vision problems, and 

difficulty walking [37]. 

• Parkinson’s Disease is characterized by the degeneration of dopamine-producing neurons 

in the brain. Mutations in the several genes have been implicated in the development and 

progression of Parkinson’s disease such as FMR1, α-synuclein, Parkin, PINK1, DJ-1, 

PARK8 and GBA [38]. Increased ROS production, misfolded protein accumulation (alpha-

synuclein), and chronic neuroinflammation contribute to the neurodegenerative process. 

Symptoms include tremors, rigidity, and difficulty with balance and coordination. 

• Dementia is a syndrome associated with a decline in memory, cognitive function, and 

behavior. Several types of dementia, including Alzheimer’s disease, involve common 

neurodegenerative mechanisms, such as misfolded protein accumulation, chronic 

neuroinflammation, and oxidative stress [39]. Dementia results in memory loss, impaired 

reasoning, and personality changes. 

• Prion Disease, like Creutzfeldt-Jakob disease, involves the misfolding of prion proteins, 

leading to the formation of infectious protein aggregates [40]. This accumulation of 

misfolded proteins triggers neuroinflammation and neurodegeneration. Symptoms include 

Rapidly Progressive Dementia, Movement Abnormalities, Behavioral Changes, Visual 

Disturbances, Muscle Weakness, Difficulty Swallowing and Speaking. 

• Progressive Supranuclear Palsy is a rare neurodegenerative disorder characterized by 

movement and balance problems. Misfolded tau proteins and chronic neuroinflammation 

contribute to the degeneration of brain cells [41]. Symptoms include Balance and Gait 
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Problems, Stiffness and Rigidity, Slow Movements, Cognitive Changes, Speech 

Difficulties, and Swallowing difficulties [42]. 

 

1.4.2 Neurological Disorders: 
 

• Epilepsy is characterized by recurrent seizures resulting from abnormal electrical activity 

in the brain [43]. Imbalance of ions, particularly sodium and potassium, disrupts nerve 

impulse transmission and leads to epileptic seizures which can vary in intensity and 

manifestation [44]. 

• Obsessive-Compulsive Disorder (OCD) is characterized by repetitive, intrusive thoughts 

and behaviors. Abnormalities in brain neurotransmitters and neuroinflammatory processes 

have been implicated in the disorder [45]. OCD involves intrusive thoughts and repetitive 

behaviors, causing distress and impairment. 

• Migraine is a complex neurological disorder with genetic and environmental factors 

contributing to its pathogenesis. The exact mechanisms behind migraine are still under 

investigation, but studies suggest that oxidative stress and neuroinflammation may play a 

role in migraine attacks [46]. Migraine causes severe headaches, often accompanied by 

nausea, sensitivity to light, and sound. 

• Psychotic Disorder such as schizophrenia [47], involve altered brain connectivity and 

neurotransmitter imbalances. Dysregulated ROS production, oxidative stress, and chronic 

neuroinflammation may contribute to the pathophysiology of psychotic disorders. Such 

disorders lead to delusions, hallucinations, and disorganized thinking [48]. 

• Autism Spectrum Disorder is a complex neurodevelopmental disorder with diverse 

genetic and environmental influences. Imbalances in neurotransmitters and 

neuroinflammatory processes may contribute to the neurological manifestations of autism. 

ASD results in difficulties in social communication and repetitive behaviors [49]. 

• Anxiety Disorder involves dysregulation of brain circuits and neurotransmitters. 

Neuroinflammation and oxidative stress have been implicated in the pathophysiology of 

anxiety disorders [50]. Anxiety Disorders cause excessive worry, fear, and avoidance of 

certain situations. 
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• Major Depressive Disorder involves alterations in brain regions responsible for mood 

regulation and neurotransmitter imbalances [11]. Chronic inflammation and oxidative 

stress may contribute to the development and persistence of depressive symptoms [10]. 

Symptoms include persistent feelings of sadness and loss of interest in activities. 

• Prader-Willi Syndrome results from genetic abnormalities and affects brain development 

and function. While the exact mechanisms linking neurodegeneration to this disorder are 

not fully understood, chronic neuroinflammation and oxidative stress could play a role 

[51]. Prader-Willi Syndrome affects brain development, leading to intellectual disability 

and behavioral problems. 

• Down Syndrome is caused by the presence of an extra chromosome 21 [52]. Individuals 

with Down syndrome have an increased risk of developing Alzheimer’s disease later in 

life, likely due to shared neurodegenerative mechanisms involving misfolded proteins and 

oxidative stress. Symptoms involve cognitive impairment, distinctive facial features, and 

an increased risk of Alzheimer’s disease. 

• Williams-Beuren Syndrome is a genetic disorder affecting multiple systems, including 

the nervous system. The mechanisms underlying neurodegeneration in this disorder are not 

fully understood but could involve oxidative stress and neuroinflammation [53]. It affects 

multiple systems, including the nervous system, leading to developmental delays and 

cardiovascular problems. 

 

1.5  Ongoing therapies and their Limitations: 

 

    Below are some typical and well-known current treatment approaches for neurological, 

neurodegenerative, neurodevelopmental, and neuropsychiatric along with their general success 

rates and limitations: 
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1.5.1 Neurological Disorders: 
 

• Epilepsy: Antiepileptic medications are the mainstay of treatment and can control seizures 

in about 60-70% of patients [54]. However, some individuals may not respond to 

medications and may require other treatments, such as surgery or a ketogenic diet. 

• Multiple Sclerosis: Disease-modifying therapies can slow disease progression and reduce 

relapses in many patients, but they may not be effective for all individuals, and side effects 

can occur [55]. 

• Migraine: Triptans and other migraine-specific medications can provide relief for many 

patients [56], but they may not work for everyone and can have side effects. 

• Parkinson’s Disease: Levodopa is the primary medication for managing motor symptoms, 

and it is effective in improving mobility [57]. However, long-term use can lead to motor 

complications. 

• Depression: Antidepressant medications and psychotherapy can be effective for many 

patients [58], but the success rate varies, and some individuals may require multiple trials 

of different medications before finding one that works for them. 

• Anxiety Disorders: Medications such as SSRIs and benzodiazepines can provide relief for 

some patients [58], but they may not work for everyone and can have side effects. 

• Bipolar Disorder: Mood stabilizers and antipsychotic medications are used to manage 

bipolar disorder [59] but finding the right combination of medications can be challenging, 

and some individuals may experience treatment-resistant symptoms. 

• Psychotic Disorder or Schizophrenia: Antipsychotic medications can help manage 

symptoms, but they may not be effective for all patients [48], and some individuals may 

experience side effects. 

• Obsessive-Compulsive Disorder (OCD): Treatment may involve cognitive-behavioral 

therapy and/or medications such as SSRIs [60]. Success rates vary among patients. 

• Autism Spectrum Disorder (ASD): Treatment may involve behavioral therapies, speech 

therapy, and medications to manage associated symptoms [61]. 

• Prader-Willi Syndrome: There is no cure for Prader-Willi Syndrome, and treatment 

focuses on managing symptoms and providing supportive care [62]. 
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• Down Syndrome: Treatment focuses on addressing associated medical conditions and 

providing support for developmental and cognitive challenges [63]. 

• Williams-Beuren Syndrome: Treatment focuses on addressing associated medical and 

developmental challenges and providing supportive care [64]. 

 

1.5.2 Neurodegenerative Disorders: 
 

• Alzheimer’s Disease: Current medications, such as cholinesterase inhibitors and 

memantine, can help manage symptoms, but they do not stop disease progression [65]. The 

success of these medications varies among patients, and they may not work for all 

individuals. 

• Huntington’s Disease: There is no cure for Huntington’s disease, and current treatments 

focus on managing symptoms [66] and providing supportive care to improve the patient’s 

quality of life. 

• Amyotrophic Lateral Sclerosis (ALS): Riluzole is the only FDA-approved drug for ALS 

and may extend survival by several months [67]. However, its effects are modest, and there 

is a need for more effective treatments. 

• Prion Disease: There is no cure for prion diseases, and treatment focuses on managing 

symptoms and providing supportive care [68]. 

• Progressive Supranuclear Palsy (PSP): Treatment is mainly supportive, focusing on 

managing symptoms and providing physical therapy [69]. 

• Frontotemporal Lobar Degeneration (FTLD): Treatment is mainly supportive, focusing 

on managing symptoms and providing cognitive and behavioral support [70]. 

• Dementia: Treatment aims to manage symptoms and improve quality of life, but there is 

no cure for most forms of dementia [71]. 
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1.6  Network-based Drug Repurposing: 

 

    Network-based drug repurposing is a powerful approach in drug discovery and development 

that leverages the principles of network pharmacology and computational methods to identify new 

therapeutic uses for existing drugs [72]. This strategy involves constructing and analyzing complex 

biological networks that integrate information about molecular targets, diseases, and drugs. The 

process of network-based drug repurposing begins with the construction of Target-Disease-Drug 

Association Networks. These networks elucidate the relationships between specific molecular 

targets, neurological diseases, and available drugs or compounds as shown in Figure 1.4. Data for 

these networks is curated from reputable databases and sources, ensuring the reliability and 

accuracy of the information [73]. 

     

    In neurodegenerative and neurological disorders, such as Alzheimer’s disease, Parkinson’s 

disease, schizophrenia, and autism, the underlying molecular mechanisms are often multifactorial 

Figure 1.4 Network-based Drug Repurposing 
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and involve intricate networks of molecular pathways [21]. Traditional drug discovery approaches 

may be time-consuming and costly, with a high failure rate. Network pharmacology offers a 

holistic perspective on the complex interactions between drugs, targets, and diseases at a molecular 

level, making it a valuable tool in tackling these challenging disorders. Once the Target-Disease-

Drug Association Networks are in place, different Machine learning and deep learning methods 

can be applied to guide classification and drug repurposing efforts. These algorithms can 

effectively capture complex relationships within the dataset and make robust predictions, 

ultimately leading to the identification of potential therapeutic interventions for neurological 

disorders. 

    The integration of network pharmacology [74] and machine learning enables the identification 

of existing drugs that show potential efficacy against specific molecular targets associated with 

neurological disorders [75]. Drug repurposing offers an advantageous strategy as it capitalizes on 

the safety profiles and known mechanisms of approved drugs, leading to faster and more cost-

effective drug development processes. By combining network-based drug repurposing with 

traditional drug development approaches, researchers can accelerate the discovery of effective 

treatments for neurological disorders. This approach holds great promise for revolutionizing 

neurological disorder management and significantly improving patient outcomes, paving the way 

for precision medicine in neurology. Overall, network-based drug repurposing is a data-driven, 

systematic, and innovative approach that has the potential to transform the landscape of drug 

discovery and significantly impact the field of neuroscience and neurological disorder 

therapeutics. 

 

1.6.1 Network pharmacology: 
 

    Network pharmacology leverages network-based analysis to identify potential drug candidates 

for repurposing. It integrates various data sources, including protein-protein interactions, drug-

target interactions, and disease-associated pathways, to construct comprehensive interaction 

networks [76]. These networks help reveal the underlying mechanisms of neurological disorders 

and identify key drug targets. In the context of drug repurposing, network pharmacology enables 

the identification of existing drugs that may have activity against multiple targets involved in 
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different neurological disorders. This approach allows researchers to explore new therapeutic 

options for known drugs, potentially accelerating the drug development process. Furthermore, 

network pharmacology can facilitate the prediction of drug-disease associations and identify drugs 

with potential off-target effects, leading to the discovery of new therapeutic uses for existing drugs. 

By leveraging the wealth of available molecular data and employing advanced computational 

techniques, network pharmacology provides a data-driven and efficient approach to drug 

repurposing for neurological disorders. The integration of network pharmacology with machine 

learning algorithms further enhances predictive power, allowing for the identification of drug-

target-disease associations with higher accuracy. By considering the complex interplay of 

molecular interactions, network pharmacology contributes to a more targeted and personalized 

approach to drug repurposing in neurological disorders. Network pharmacology is implemented 

by the construction of Target-Disease-Drug Association Networks. Overall, network 

pharmacology [77] holds the promise of uncovering novel therapeutic opportunities and improving 

the treatment landscape for neurological disorders by repurposing existing drugs and expediting 

the translation of potential treatments from bench to bedside. 

 

1.6.2 Target-Disease-Drug Association Networks: 
 

    The critical role of understanding the intricate relationship between molecular targets, drugs, 

and subsequent disease manifestations in the pursuit of more accurate and effective treatments for 

neurological disorders involves following aspects: 

    Neurological disorders arise from complex interactions between various molecular targets in the 

body. These targets can include proteins, enzymes, receptors, and other biomolecules that play key 

roles in cellular signaling and regulation. Dysregulation or dysfunction of these targets can lead to 

abnormal cellular processes, ultimately culminating in the manifestation of neurological diseases. 

Understanding these molecular targets is essential as they serve as potential points of intervention 

for therapeutic treatments. By identifying and targeting specific molecules involved in the disease 

pathogenesis, researchers can develop drugs that aim to correct or modulate the malfunctioning 

processes, leading to improved disease management and symptom relief. The development of 

effective drugs is a critical aspect of treating neurological disorders. Drugs interact with specific 
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molecular targets in the body, either promoting their activity or inhibiting their function, to bring 

about the desired therapeutic effect. However, the process of drug development is highly intricate 

and challenging, as researchers need to consider factors such as drug specificity, bioavailability, 

and potential side effects. 

    The successful identification and optimization of drugs for neurological disorders rely heavily 

on a deep understanding of the molecular targets and disease pathways involved [78]. Rigorous 

research and preclinical studies are essential to evaluate the efficacy and safety of potential drug 

candidates before they advance to clinical trials. Neurological disorders encompass a diverse range 

of conditions, each with unique clinical presentations and underlying causes. However, there is 

growing evidence to suggest that many neurological and neurodegenerative disorders share 

common pathophysiological mechanisms. These shared mechanisms can include oxidative stress, 

inflammation, protein misfolding, mitochondrial dysfunction, and synaptic abnormalities. The 

recognition of overlapping targets and mechanisms across different neurological disorders presents 

an opportunity for the development of novel therapeutic strategies. By understanding the common 

pathways that contribute to the progression of various neurological conditions, researchers can 

explore treatments that may have broader applications across multiple disorders. The intricate 

relationship between molecular targets, drugs, and disease manifestations in neurological disorders 

forms the foundation for developing more accurate and effective treatments. By comprehending 

the molecular underpinnings of neurological diseases and identifying drug targets, researchers can 

create therapies tailored to the specific mechanisms driving each disorder. Additionally, the 

discovery of shared pathophysiological mechanisms among neurological disorders opens avenues 

for innovative therapeutic approaches that could potentially have widespread benefits for patients 

with diverse conditions. This multidimensional approach to understanding and treating 

neurological disorders has the potential to revolutionize patient care and improve the quality of 

life for millions of individuals worldwide. 

 

1.6.3 Machine Learning Algorithms: 
 

    Machine learning algorithms are computational methods that enable machines to learn patterns 

and make predictions from data without explicit programming. These algorithms are a core 
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component of artificial intelligence and data science applications. There are various types of 

machine learning algorithms, including: 

➢ Supervised Learning: In this type of algorithm, the model is trained on labeled data, 

where each input is associated with a corresponding output. The goal is to learn a mapping 

between inputs and outputs so that the model can make accurate predictions on new, unseen 

data [79]. Examples of supervised learning algorithms [80] include Linear Regression, 

Support Vector Machines, Decision Trees, Random Forests, and Neural Networks. 

➢ Unsupervised Learning: In contrast to supervised learning, unsupervised learning 

algorithms work with unlabeled data, and the model tries to find patterns and structure 

within the data [81]. Clustering and dimensionality reduction are common tasks in 

unsupervised learning. K-Means, Hierarchical Clustering, Principal Component Analysis 

(PCA), and Autoencoders are examples of unsupervised learning algorithms [82]. 

➢ Semi-Supervised Learning: This is a hybrid approach that combines elements of 

supervised and unsupervised learning [83]. The model is trained on a small amount of 

labeled data and a larger amount of unlabeled data. It uses the labeled data to learn patterns 

and then generalizes this knowledge to the unlabeled data. 

➢ Reinforcement Learning: This type of learning involves an agent that interacts with an 

environment and receives feedback in the form of rewards or penalties based on its actions 

[84]. The agent’s goal is to learn a policy that maximizes the cumulative rewards over time. 

Reinforcement learning is commonly used in applications like gaming, robotics, and 

autonomous vehicles. 

➢ Transfer Learning: Transfer learning involves using knowledge gained from solving one 

problem to help solve a related but different problem [85]. This approach allows models to 

leverage pre-trained representations and fine-tune them for specific tasks, saving time and 

computational resources. 

➢ Ensemble Methods: Ensemble methods combine multiple base models to make more 

accurate predictions [86]. Examples include Bagging (e.g., Random Forests) and Boosting 

(e.g., Gradient Boosting Machines). 

➢ Deep Learning: Deep learning is a subfield of machine learning that uses artificial neural 

networks with multiple layers (deep architectures) to learn complex patterns from data [87]. 
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Deep learning has shown remarkable success in tasks like image and speech recognition, 

natural language processing, and autonomous systems. 

    These algorithms are used in a wide range of applications, including image and speech 

recognition, natural language processing, recommendation systems, fraud detection, drug 

discovery, healthcare, finance, and more. As computational power and data availability continue 

to grow, machine learning algorithms are becoming increasingly powerful and capable of 

addressing complex real-world problems. 

    Machine learning algorithms play a crucial role in drug repurposing by identifying potential 

therapeutic candidates among existing drugs. These algorithms leverage the vast amount of data 

available on molecular targets, diseases, and drugs to make accurate predictions about drug 

efficacy and potential interactions [75]. The process of drug repurposing is more cost-effective and 

time-efficient compared to traditional drug discovery, as it capitalizes on the known safety profiles 

and mechanisms of approved drugs. Machine learning algorithms can be used in various 

mechanisms of drug repurposing such as Data Integration and Analysis, Network Pharmacology, 

Predictive Modeling, Drug-Target Prediction, Side Effect Prediction, Drug Combination 

Prediction, Drug-Drug Interaction Prediction, and Virtual Screening. Machine learning models can 

accelerate the process of drug discovery and facilitate precision medicine approaches for various 

diseases [88]. However, it is important to note that the success of drug repurposing using machine 

learning relies heavily on the quality and diversity of the data used for training and validation. 

Additionally, experimental validation is essential to confirm the predictions made by these 

algorithms before advancing to clinical trials. 

 

1.7  Our Strategy: 

 

    The primary objective of the present thesis is to tackle the critical requirement for precise and 

personalized therapeutic solutions for neurological disorders. We aim to achieve this goal by 

concentrating on the creation and examination of Target-Disease-Drug association networks. 

These networks are informed by network pharmacology principles and bolstered by advanced 

machine learning algorithms. Through this approach, we seek to unravel the intricate relationships 
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between molecular targets, neurological diseases, and potential therapeutic agents for precise 

predictions of unknown drug efficacy against specific neurological disorder-associated targets. 

    In this thesis, we embark on a journey to address the crucial need for accurate and tailored 

therapeutic interventions for neurological disorders. To accomplish this goal, we begin with 

meticulous construction of Target-Disease-Drug Association Networks. These networks are 

designed to unravel the intricate relationships between biological targets, neurological diseases, 

and potential drugs. Through a rigorous curation process, we have compiled a comprehensive 

dataset comprising 374 known targets and 2,452 drugs associated with the nineteen neuronal 

disorders mentioned earlier. To ensure the reliability and accuracy of the data, we source 

information from reputable and established databases such as STRING, UniProt, DrugBank, 

Therapeutic Target Database, ChEMBL, and GeneCards. Drawing inspiration from network 

pharmacology, our research efforts are dedicated to building two fundamental networks: the 

Targets-Diseases Network and the Diseases-Drugs Network. The former seeks to shed light on the 

specific molecular targets’ associations with the diverse range of neurological disorders under 

investigation. By identifying and understanding key targets crucial in the pathogenesis and 

progression of different neurological disorders, this network serves as a valuable resource for 

guiding future research and therapeutic development. In parallel, the Diseases-Drugs Network 

offers an extensive map of connections between neurological diseases and available drugs or 

compounds. This network is instrumental in exploring potential therapeutic options and 

opportunities for drug repurposing. By analyzing the associations between diseases and drugs, we 

can identify existing drugs that hold the potential to be repurposed for the treatment of specific 

neurological disorders. Drug repurposing presents a promising avenue for accelerating the 

development of effective treatments, capitalizing on the safety profiles and known mechanisms of 

established drugs. The construction of these association networks is a pivotal step towards gaining 

deeper insights into the complex interactions between targets, diseases, and drugs concerning 

neurological disorders. These networks lay the foundation for further analysis and exploration in 

subsequent objectives of the thesis. Leveraging the wealth of information encapsulated within 

these networks, we aim to identify promising therapeutic candidates and novel treatment strategies, 

ultimately advancing the field of precision medicine in neurology. Then we performed Machine 

Learning-Guided Classification and Drug Repurposing, by harnessing the constructed Target-

Disease-Drug association network. With this network in place, we harness the power of state-of-
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the-art machine learning algorithms to rank and link the role of different molecular targets in the 

context of subsequent diseases. The objective is to identify potential therapeutic interventions for 

neurological disorders that can significantly improve treatment outcomes. To achieve this 

objective, we employ a diverse set of non-linear Machine Learning algorithms, including Support 

Vector Machines (SVM), Decision Trees, Random Forests, Multi-layer Perceptron (MLP) Neural 

Networks, and Gradient Boosting Machines (GBM). These algorithms effectively capture complex 

relationships within the dataset and enable robust predictions. By training the machine learning 

models on the combined network dataset, which integrates information from the Targets-Diseases 

Network and the Diseases-Drugs Network, we gain a holistic perspective on the therapeutic 

landscape for neurological disorders. To ensure the accuracy and reliability of predictions, we 

undertake comprehensive hyperparameter tuning and rigorous validation procedures. Fine-tuning 

the algorithm parameters to achieve optimal performance and validating the models on 

independent datasets to assess their generalization capabilities are essential steps in this process. 

The ultimate goal is to obtain precise predictions of drug efficacy against specific neurological 

disorder-associated targets. Identifying drugs that exhibit potential efficacy against specific targets 

opens novel drug repurposing opportunities, expediting drug development processes in a cost-

effective manner. The integration of network pharmacology and advanced machine learning offers 

a systematic and data-driven approach to identify promising drug candidates, revolutionizing 

neurological disorder management, and significantly impacting patient outcomes. 

 

1.8  Thesis Objectives: 

 

1. To build a comprehensive database of all the target-proteins and FDA-approved drugs for 

all the neurological and neurodegenerative disorders. 

2. To develop Target-Disease, Disease-Drug and Target-Disease-Drug association networks 

to probe the target specificity for neuronal disorders. 

3. To predict the target/drug attributes of neuronal disorders using linear and non–linear 

classification models. 

4. To develop a model to repurpose an unknown drug against specific target and disorder type. 
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1.9 Thesis Outline: 

 

    The outline of this thesis is as follows: Chapter 1 introduces the research background, objectives, 

and significance, as presented in this introduction. Chapter 2 provides a comprehensive review of 

the literature, complexity and role of targets in neurological disorders, current state-of-the-art 

advancements in neurological disorders research, focusing on the molecular and cellular 

mechanisms of neurodegeneration progression, and the applications of network pharmacology, 

drug repurposing, and machine learning for target-disease-drug association prediction and 

treatment of neurological disorders. Chapter 3 describes the methodology, including data 

collection procedures, network construction, and machine learning model implementation. 

Chapter 4 presents the results and evaluation of the machine learning models using Target-Disease-

Drug association networks, showcasing their performance in predicting drug efficacy against 

specific disorder types and their associated targets. The Discussion in Chapter 5 interprets the 

findings and discusses their implications for drug repurposing and precision medicine in 

neurological disorders. Moreover, we address the strengths and limitations of our approach and 

highlight potential avenues for future research. Finally, Chapter 6 concludes the thesis, 

summarizing the main contributions and emphasizing the potential impact of this research on 

advancing treatments for neurological disorders. 

    In summary, this thesis seeks to contribute to the growing field of drug repurposing and precision 

medicine for neurological disorders. By exploring the intricate associations between targets, 

diseases, and drugs, we aspire to pave the way for more accurate, effective, and personalized 

therapeutic interventions, ultimately improving the lives of patients and providing hope for a 

brighter future in the fight against neurological disorders. 
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Literature Review 
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2 Literature Review 
 

2.1 Neuronal disorders: 

 

    The progressive and continual death of brain’s neurons, or nerve cells, is referred to as 

neurodegeneration. Numerous neurodegenerative illnesses are at the root of this phenomenon 

because nerve cells are unable to perform their tasks properly [89]. Nerve cell death is caused by 

the intracellular or extracellular accumulation of misfolded proteins. As a result of these 

disruptions, Apoptosis, or programmed cell death, is finally triggered in the regular functioning of 

these cells [90]. One of the main factors causing the reduction in overall brain function is the 

functional death of neurons. Because of this, the clinical importance of preventing neuronal death 

and dysfunction is enormous [91]. Neurological disorders are caused by the imbalance of ions and 

neurotransmitters between nerve cells. This imbalance results from aberrant neurotransmitter 

releases that can either stimulate, inhibit, or alter the activity of nearby neurons. Such imbalances 

influence neurotransmission, the mechanism through which nerve cells converse with one another, 

and they can cause a variety of psychological issues [92]. Neurons, which are the fundamental 

building blocks of the nervous system, differ from other cells in the body as they lack the ability 

to reproduce or replace themselves. The complexity of treating neurological illnesses is increased 

due to the limited ability for regeneration of the neurons. Additionally, ageing is a prominent 

example of a demographic characteristic that is associated with an increasing prevalence of 

neurological illnesses and may be a factor in the higher death rate for these disorders [93]. 

Neurodegenerative disorders are characterized by their persistent and disabling nature. They 

include the gradual deterioration and frequently the demise of neurons. The blood-brain barrier is 

a biological barrier that makes treating certain illnesses particularly difficult [94]. The purpose of 

this barrier is to keep dangerous chemicals out of the brain. Treatment strategies are further 

complicated in this situation by the complex regulatory networks in action in the body. 

    Every gene is linked with many other genes working in the cascade, forming a complex network 

in the nerve cell, and are involved in many cell regulation processes. Many proteins or enzymes 

play a supporting role in this regard. For the normal functioning of a cell, upregulation and 

downregulation of different genes play a vital role. Sometimes, specific genes show under and 
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overexpression in the nerve cell due to some genetic factors like mutations, and internal, or external 

factors, causing accumulation of unwanted proteins and abnormalities in the neuron. If we focus 

on one target with respect to one disease for drug binding, it may be possible that the target is 

involved in other normal functions, thus, affecting the normal functioning of other organs as well, 

which leads to abnormal cellular functions in the body. Therefore, predicting the target gene and 

understanding the complex network is crucial for the cure of neurodegenerative disorders [95]. 

There are trillions of neural pathways involved in carrying the information between the CNS and 

other organs of the body. These involvements of many neural pathways make the network more 

complex [91]. A huge number of genes/proteins perform different functions in the various organs 

of the body. More than one neurological disorder occurs by a mutation in a common gene but 

follows the different neural pathways and show different negative outcomes. That is why this 

network has become very complex and very challenging to handle. 

 

2.2 Healthy versus degenerative neuron: 

 

   Each neurodegenerative disorder exhibit mutation in specific genes of genetic network. But some 

genes are common in more than one neurodegenerative disorder, that’s why understanding the 

complete pathway regarding abnormalities in those genes would be beneficial. Tau proteins [96], 

TDP-43 [97], C9ORF72 [98], PSEN1 & PSEN2, APP [99], LRRK2, APOE [100], etc. are the genes 

involved in more than one neurodegenerative disorder. Let us talk about how tau protein is 

responsible for neurodegeneration. In normal neurons, tau phosphorylation is done by the activities 

of kinases such as GSK, CDK, or ERK and phosphatase 2A (PP2A), which is a heterotrimeric 

enzyme having 2 subunits i.e., structural subunit A and catalytic subunit C. Each subunit has two 

isoforms A and β. PP2A takes on regulatory subunits that compete in binding. Their binding is 

regulated by methylation of a catalytic subunit at C-terminal Leucine (L309) recruiting the 

cytoplasmic enzyme LCMT1. PME-1 is a demethylating enzyme present in the nucleus. The C 

subunit is phosphorylated by GSK3 at TYR(Y)307. There are two endogenous inhibitors, I1PP2A 

and I2PP2A (also known as SET or TAF1). Generally, PP2A activity is decreased by 

phosphorylation or via endogenous inhibitors and increased by methylation. Therefore, PP2A is 

active in the nucleus and inactive in the cytoplasm, preventing phosphorylation of tau in the 
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cytoplasm. Sometimes, the nuclear pores start to leak and I2PP2A again localizes to the cytoplasm. 

I2PP2A cleaved into two smaller fragments that can freely diffuse between the cytoplasm and 

nucleus. Phosphorylation of I2PP2A at Ser(S)9 by CKII (casein kinase II) causes its retention in 

the cytoplasm. Together with increased activity of GSK3 in the cytoplasm, the net effect is 

increased tau phosphorylation. 

    Hyperphosphorylated tau disassembles microtubules that were assembled from normal tau and 

tubulin causing degeneration of neuron as sown in Figure 2.1. Fibrillar tau is toxic and underscored 

the importance of phosphorylation of tau in exerting this toxic effect [101]. Hyperphosphorylated 

Figure 2.1 Hyper phosphorylation of tau protein in Apoptotic Neuron 
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tau is glycosylated, and abnormal phosphorylation might promote aggregation of tau, formed 

Neurofibrillary tangles (NFTs), and inhibition of the assembly of microtubules, glycosylation 

appeared to be responsible for the maintenance of the paired helical filaments (PHF) or tau 

structure. Of the tau sites required for microtubule binding, Ser262 and the AT180 epitope Thr231 

are critical. Combined phosphorylation of tau at Thr212, Thr231 and Ser262 has been shown to 

cause neurodegeneration and has also been observed in the apoptosis of neurons. 

 

2.3 Role of biological targets in neurological disorders: 

 

    Targets refer to specific molecular entities, such as proteins or genes, that are implicated in the 

pathogenesis or progression of these disorders. Knowing the function of targets can shed light on 

the disorder’s underlying mechanisms. These targets play a crucial role in various cellular 

processes that contribute to the development and manifestation of neurological conditions. 

Different neurological disorders may share certain molecular targets, but the ways in which these 

targets are dysregulated can vary. The basis for logical medication design and precision medicine 

is the identification and understanding of targets in neurological illnesses. Finding targets enables 

the development of personalized medicine tactics, in which treatment plans are adapted to a 

person’s genetic profile and the molecular reasons causing their condition [102]. Because they 

affect various pathways, not only the ones relevant to the condition, but many current therapies for 

neurological disorders also include side effects. Targeted medicines may be able to reduce side 

effects and increase patient quality of life by reducing off-target effects. Identifying and 

understanding targets in neurological disorders is essential for the development of effective 

therapeutic interventions for several important reasons [103].  

    A huge number of genes have been identified for different neurological disorders. The 

importance of certain protein targets such as Amyloid-β (Aβ) [104], tau, presenilin (PSEN), 

amyloid precursor protein (APP), in Alzheimer’s disease (AD) are highlighted in literature. The 

creation of distinctive brain lesions, including plaques and tangles, which are hallmarks of AD, is 

primarily mediated by a buildup and alterations in tau protein. Cognitive decline and memory loss 

are brought on by these protein clumps, which interfere with neuronal activity.  
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    Substantial research has been done on the function of many genes and proteins as targets in 

Parkinson’s disease (PD). The importance of genes like Parkin, PINK1, and LRRK2 FMR1, 

α(alpha)-synuclein, DJ – 1, PARK8, and GBA in PD development is highlighted in literature [105]. 

Important physiological functions like protein breakdown, mitochondrial function, and 

neurotransmitter control are disrupted by mutations in these genes, which contributes to the 

selective death of dopaminergic neurons and the recognizable motor symptoms of Parkinson’s 

disease (PD).  

    A few genes have also been identified as major targets in Frontotemporal Lobar Degeneration 

(FTLD) such as C9ORF72, MAPT (Microtubule-Associated Protein Tau), progranulin (GRN), 

TDP-43 (transactive response DNA-binding protein with molecular weight 43 kDa) [12] [13], FUS 

(fused in sarcoma), TARDBP (transactive response DNA-binding protein), CHMP2B (Charged 

multivesicular body protein 2B), and VCP (Valosin-containing protein) mutations [106] are 

significant in FTLD and associated diseases. Changes in these genes impair cellular processes such 

as protein synthesis and breakdown, which causes an accumulation of aberrant proteins and 

neurodegeneration in particular brain regions. These examples from the literature show that it is 

crucial for understanding the underlying mechanisms and creating new therapeutic approaches to 

focus on specific genes or proteins linked to neurological illnesses. By concentrating on specific 

targets, scientists can try to bring back healthy cellular functions, stop the buildup of abnormal 

proteins, and eventually lessen the symptoms or stop the advancement of neurological illnesses. 

Finding new targets can also result in the repurposing of already approved medications i.e., 

existing drugs. It may be possible to assess the effectiveness of medications authorized for other 

ailments that also happen to interact with the identified target in the treatment of neurological 

disorders [107]. When compared to creating completely novel medications, this method is more 

cost- and time-effective. 

    In one of the studies, researchers found that higher expression levels of A2A and P2X7 receptors 

in neurological disorders such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral 

sclerosis, multiple sclerosis, and epilepsy, further complicate the disease condition [108]. 

    In another study, it was investigated that S100B protein plays a crucial role in Alzheimer’s 

disease, Parkinson’s disease, multiple sclerosis, Schizophrenia and epilepsy because the high 

expression of this protein directly targets astrocytes and promotes neuroinflammation. Under 
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stressful conditions, S100B produces toxic effects mediated through receptor for advanced 

glycation end products (AGE) binding. S100B also mediates neuroprotection, minimizes 

microgliosis and reduces the expression of tumor necrosis factor (TNF-alpha) but that are 

concentration-dependent mechanisms [109]. It was also proposed that S100B can be used as a 

potential therapeutic target to reduce the prevalence of neurological disorders. 

    In many cases, important roles of a particular gene in embryonic development have precluded 

the in vivo study of its function in the adult brain, which is usually the most relevant experimental 

context for the study of neurological disorders. Conditional knockout technology has been used 

successfully to generate viable mouse models with gene inactivation patterns in certain regions or 

cell types of the postnatal brain [110]. 

    In amyotrophic lateral sclerosis, AMPA receptors allow cytotoxic levels of calcium into neurons, 

leading to motor neuron death. Likewise, in some epilepsies, overactivation of AMPA receptors 

leads to neuron damage. The same is true for ischemia, where oxygen deprivation leads to 

excitotoxicity. Conversely, Alzheimer’s disease is characterized by decreased AMPA activation and 

synapse loss. Unfortunately, many clinical studies have had limited success by directly targeting 

AMPA receptors in these diseases. Indirectly affecting AMPA receptors or by regulating 

glutamatergic transmission, may provide new therapeutic potential for neurological disorders 

[111].  

    Gene expression changes in neuropsychiatric and neurodegenerative disorders, as well as gene 

responses to therapeutic drugs, offer new ways to identify central nervous system (CNS) targets 

for drug discovery. Targets for Alzheimer’s disease and cognitive decline associated with normal 

aging and mild cognitive impairment include τ, amyloid-β precursor protein, Aβ, all three high-

affinity neurotrophins receptors, fibroblast growth factor (FGF) system, synapse markers, 

glutamate receptors (GluRs and transporters), and dopamine (DA) receptors, particularly the D2 

subtype. Gene-based candidates for Parkinson’s disease include the ubiquitin–proteosome system, 

scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor, 

TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase 

C and RAS pathways. Studies in schizophrenia reveal robust decreases in genes for GABA function, 

including glutamic acid decarboxylase, HINT1, glutamate transport and GluRs, BDNF and TrkB, 
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numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic 

functions, particularly glycolysis and ATP generation [112]. 

    In a study, it was proposed that the carboxy-terminus of Hsc70-interacting protein (CHIP) is a 

crucial molecular co-chaperone and ubiquitin E3 ligase that regulates various biological functions, 

including misfolded-protein refolding, autophagy, immunity, and necroptosis. Its ubiquitous 

expression in the central nervous system suggests its involvement in various neurological diseases. 

Recent studies have highlighted CHIP’s beneficial role in the pathogenesis of stroke, intracerebral 

hemorrhage, Alzheimer’s disease, Parkinson’s disease, and polyglutamine diseases. CHIP 

mutations could also cause neurodegenerative diseases. Overexpression of CHIP could be a 

promising therapeutic target for several neurological diseases, based on available literature [113].  

    In a finding, it was discovered that Acid-sensing ion channels (ASICs) are voltage-independent, 

proton-gated cation channels found in the central and peripheral nervous system. They detect pH 

changes during various activities, including pain perception, synaptic plasticity, learning, memory, 

fear, and neuronal degeneration. ASICs are potential therapeutic targets for manipulating pain and 

neurological diseases [114]. 

    Authors, in another finding, investigated that Excitatory amino acid transporter 2 (EAAT2) is a 

crucial neurotransmitter in the central nervous system, responsible for clearing extracellular 

glutamate to prevent neuronal excitotoxicity and hyperexcitability. It regulates synaptic activity 

and plasticity and has been linked to various central nervous system disorders. EAAT2’s structure, 

pharmacology, physiology, and functions are essential in understanding its role in various diseases 

like stroke, Parkinson’s disease, epilepsy, Alzheimer’s disease, major depressive disorder, and 

addiction. Up-regulation of EAAT2 protein has shown significant benefits in various disease 

models, suggesting its activation as a promising therapeutic approach [115]. 

    Cholesterol is a crucial component of the cell membrane, affecting membrane-bound protein 

permeability and function. It plays a role in synaptogenesis, axonal growth, dendrite outgrowth, 

and microtubule stability. Cholesterol metabolism in the brain is primarily mediated by CYP46A1, 

or cholesterol 24-hydroxylase, which eliminates about 80% of cholesterol excess. Studies show 

that cholesterol and 24HC levels change during neurological diseases, suggesting that inhibition 

or activation of CYP46A1 could be an effective therapeutic strategy. Preclinical studies have 

assessed its role in neurodegenerative disorders like Parkinson’s, Huntington’s, Alzheimer’s, 
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multiple sclerosis, spinocerebellar ataxias, and amyotrophic lateral sclerosis. Recent development 

of soticlestat, a selective and potent CYP46A1 inhibitor, has significant anti-seizure effects, 

indicating its importance for future drug developments. Both activation and inhibition of CYP46A1 

are of therapeutic value [116]. 

    In one of the studies, Protein tyrosine phosphatase 1B (PTP1B) has been discovered as a key 

enzyme in the PTP family, responsible for regulating receptors and kinases. It has been linked to 

various diseases, including schizophrenia, anxiety, neurodegeneration, neuroinflammation, and 

depression. Inhibition of PTP1B can prevent microglial activation, promoting anti-inflammatory 

effects and potentially increasing cognitive function through stimulation of hippocampal insulin, 

leptin, and BDNF/TrkB receptors. However, most research on PTP1B’s clinical efficacy has 

focused on obesity and type 2 diabetes mellitus. Despite the link between metabolic alterations 

and neurodegeneration, no clinical trials have assessed the neurological benefits of PTP1B 

inhibition. Preclinical studies suggest that targeting PTP1B could reach various pathophysiological 

mechanisms simultaneously [117]. 

    The NLRP3 (NLRP3: NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome is 

the best-described inflammasome that plays a crucial role in the immune system and various 

diseases, including neurological disorders. Its association with neurodegenerative diseases and 

strokes highlights its importance as a clinical target for pharmacological intervention. However, 

the mechanism of NLRP3 activation remains indefinite. Emerging pharmacological approaches 

targeting NLRP3 inflammasome in neurological diseases have clinical translational potential. 

Chinese herbal medicine and botanical ingredients have been specifically focused on as potential 

therapeutics for central nervous system disorders, potentially contributing new perspectives to 

neurological disease treatment [118]. 

    It is proposed in the literature that mutations(repeats) in the C90RF72 gene are involved in many 

neurological disorders such as Amyotrophic Lateral Sclerosis (ALS)/ Motor Neuron Disease 

(MND) and Frontotemporal Dementia (FTD). Recent studies show the disease-target association 

of Psychotic patients with the C90RF72 gene. The study demonstrates that the genetic counseling 

of patients having psychotic disorders reveals the mutations(repeats) in the C90RF72 gene [119].  

    Neurotransmitters are the chemicals released between presynaptic and postsynaptic neurons for 

the transmission of nerve impulses either by their excitatory or inhibitory role [120]. They play an 
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important role in the brain by influencing mood, which is why they are sometimes described as 

“feel-good” chemicals. Five important neurotransmitters include dopamine, serotonin, oxytocin, 

norepinephrine, and endorphins. Malfunctions of these neurotransmission processes can result in 

clinical disease. The Loss of memory in Alzheimer’s disease is postulated to involve insufficiency 

of the neurotransmitter acetylcholine in synapses, which mediates the laying down of new 

memories. Certain drugs block the enzyme acetylcholinesterase (which breaks down 

acetylcholine) and thus increase the amount of acetylcholine in the synapse. As a result, memory 

function may improve [121].  

    Serotonin is a neurotransmitter affecting multiple physiological processes and cognitive brain 

functions, among them mood and emotions, which is why it has been linked to mood disorders 

such as depression [122]. Serotonin (5-hydroxytryptamine, or 5-HT) is generated by the raphe 

nucleus and midline neurons of the pons and upper brain stem. Serotonin levels are controlled by 

the uptake of tryptophan and intraneuronal monoamine oxidase (MAO), which breaks down 

serotonin. Ultimately, serotonin is excreted in the urine as 5-hydroxyindoacetic acid or 5-HIAA. 

Serotoninergic (5-HT) receptors are classified as 5-HT1, 5-HT2, and 5-HT3. Selective serotonin 

receptor agonists (e.g., sumatriptan) can abort migraines. Selective serotonin reuptake inhibitors 

(SSRIs) can also be used to treat several mental health disorders (e.g., depression, anxiety, 

obsessive-compulsive disorder, and post-traumatic stress disorder) [50]. SSRIs perform 

symptomatic treatment. 

 

2.4 Network Pharmacology in Neurological disorders: 

 

    Network pharmacology is a bioinformatics-based research strategy used to explore the anti-

epileptic mechanism of Rhizoma Coptidis. One of the studies predicted protein targets and 

validated the interaction between active components and predicted targets using molecular docking 

technology. Nine active compounds were selected, with 68 targets associated with Rhizoma 

Coptidis treating epilepsy. KEGG pathway enrichment analysis identified 89 signaling pathways 

related to epilepsy. Quercetin and NAÏVE-canadine exhibited good docking with key targets, 

suggesting Rhizoma Coptidis can regulate various signaling pathways and have therapeutic effects 

on epilepsy [123]. 
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    Epilepsy is the fourth most common neurological disease, with one-third of cases refractory to 

existing anticonvulsants. The study aims to discover new pharmacological targets for the treatment 

of Refractory Epilepsy (RE) using network pharmacology methods. The researchers selected 83 

potential targets linked to 83 genes associated with RE development, and then selected 10 most 

promising targets based on published data. All selected target proteins play a key role in biological 

processes involved in RE development. Nine of the 10 targets have potential associations with 

different types of epilepsy, highlighting the potential of network pharmacology in finding new 

molecular targets for RE treatment [124]. 

    Ayurvedic medications, such as Saraswatarishta (SWRT), are prescribed to control neurological 

disorders like slurred speech, anxiety, Parkinson’s disease, and Alzheimer’s disease. However, 

there is limited scientific research on SWRT’s mode of action. This study uses network 

pharmacology to understand its neuroprotective role in neurological disorders. Out of the 18 

ingredients in SWRT, five were considered in this study due to their elevated therapeutic action in 

neurological disorders. Further, nine active phytoconstituents were chosen from the five selected 

ingredients. Gene targets were screened and selected using STITCH, SwissTargetPrediction, and 

ChEMBL. Protein-Protein interaction and Gene Ontology enrichment analysis were performed 

using STRING and g:Profiler. Cytoscape 3.7.2 was used to create three networks, and bioactivity 

scores and blood-brain barrier probability scores were obtained. The phytoconstituents were found 

to be linked to gene targets involved in 10 major neurological disorders, with bioactivity scores in 

the active range and high BBB probability scores [125]. 

    One of the studies explores a mechanism-based disease definition for network pharmacology, 

focusing on ischemic stroke and reactive oxygen species (ROS) forming NADPH oxidase type 4 

(Nox4) as primary causal targets. The study used classical protein-protein interactions and 

metabolite-dependent interactions to identify suitable synergistic cotargets for network 

pharmacology. The nitric oxide synthase gene family is identified as the closest target to Nox4. 

Combining a NOS and a NOX inhibitor at subthreshold concentrations results in pharmacological 

synergy, reducing cell death, infarct size, stabilized blood-brain barrier, reduced reoxygenation-

induced leakage, and preserved neuromotor function. This approach potentially reduces the risk of 

failure in single-target and symptom-based drug discovery and therapy [126]. 
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C. pluricaulis Choisy, a perennial herb used in traditional folk medicine, has been extensively 

researched and analyzed for its phytochemistry, neuropharmacological, and toxicological 

properties. The herb and its metabolites have been found to have various in vitro and in vivo 

neuropharmacological effects, including memory enhancement, anxiolytic, tranquilizing, anti-

depressant, anti-stress, neurodegenerative, anti-inflammatory, antioxidant, analgesic, sedative, 

anti-convulsant, and Alzheimer’s disease-reversing effects. Network pharmacology results suggest 

that C. pluricaulis compounds interact with proteins, neuro synapses, signaling pathways, and 

serotonergic synapse, which are crucial in neurotransmission, Alzheimer’s disease, long-term 

depression, alcohol addiction, cognitive disorders, psychological conditions, and increasing 

serotonin concentration in synapses [127]. 

    Icariin is a biologically active substance in Epimedii herba that is used for the treatment of 

neurologic disorders. A comprehensive analysis of the molecular mechanisms of icariin is lacking. 

In a study, a brief overview of the history of icariin’s used as a medication, the active chemical 

elements of Epimedii herba are discussed, and looked at the data from experimental investigations 

that have shown the molecular targets of icariin in various disorders. To predict the therapeutic 

effects of icariin in nervous system diseases like Alzheimer’s disease, Parkinson’s disease, 

ischemic stroke, depressive disorder, multiple sclerosis, glioblastoma, and hereditary spastic 

paraplegias, the researchers built a protein-protein interaction network and performed Gene 

Ontology and Kyoto Encyclopaedia of Genes and Genomes functional enrichment analyses using 

Network Pharmacology approach. The conclusions from analyses can guide future studies on the 

application of icariin to the treatment of neurologic disorders [128]. 

    Major Depressive disorder is a common mental disorder characterized by depressed mood and 

loss of interest or pleasure. As the Herbal medicines are mainly used as complementary and 

alternative therapy for depression. A study investigates the antidepressant activity of Huang-lian 

Jie-du Decoction (HLJDD) and its potential depression-associated targets. HLJDD was 

administered to chronic unpredictable mild stress-induced (CUMS) depressive mice, and its effects 

were evaluated through force swimming test, novelty-suppressed feeding test, and open field test. 

Active components of HLJDD, potential targets, and metabolic pathways involved in depression 

were explored through systemic biology-based network pharmacology assay, molecular docking 

and metabolomics. The study identified 28 active compounds and ten biochemical pathways 
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involved in HLJDD. The findings of the study show that HLJDD exhibited antidepressant effects. 

SLC6A4 and MAOA may be the main antidepressant targets for HLJDD [129]. 

    Inflammatory responses play an extraordinary role in the pathogenesis of cerebrovascular and 

neurological disorders. One significant flavonoid, baicalin, is obtained from Scutellaria baicalensis 

Georgi. Baicalin has recently been proven in multiple in vivo and in vitro investigations to have 

positive effects on anti-inflammatory and immunomodulatory processes, as well as to exert 

positive therapeutic benefits in cerebrovascular and neurological illnesses. In this review, anti-

inflammatory effects of baicalin are studied via multiple pathways and targets, that affect the 

production of a variety of inflammatory cytokines and the neuroprotective process of neurological 

diseases. The related targets of the baicalin’s anti-inflammatory effects were analysed using the 

tools of network pharmacology, providing theoretical support and novel ideas for the potential 

clinical use of baicalin in the future [130]. 

 

2.5 Drug Repurposing in Neurological disorders: 

 

    Drug repurposing or repositioning refers to the study of clinically approved drugs in one disease 

to see if they have therapeutic value and do not trigger side effects in other diseases. Today, it is 

crucial to examine potential therapeutic benefits of already available medications or drug 

candidates in a range of human diseases, including neurological disorders. The lack of funding and 

time constraints seen during conventional drug development are overcome by this method. It offers 

hope for some refractory illnesses, such as neurological conditions. Drug repurposing is especially 

crucial since neuropathological problems generally make it more difficult to produce new 

medications than diseases in other organs due to the nervous system’s complicated structural 

makeup and the blood-brain barrier’s influence. Drug repurposing can be used to treat neurological 

diseases, summarize the repurposing candidates that are presently being tested in clinical trials for 

neurological diseases, and present some early findings [131]. 

    Traumatic brain injury (TBI) is a major global cause of death and disability, with no FDA-

approved drugs to substantially attenuate its effects. This has led to the emergence of drug 

repurposing, which involves repurposing existing drugs with well-characterized mechanisms of 
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action and human safety profiles. Compared to the conventional discovery pathways, drug 

repurposing is less costly, relatively rapid, and poses minimal risk of adverse outcomes. Drug 

repurposing has been applied to various neurodegenerative diseases and neurological disorders, 

including brain injury. Edaravone, glyburide, ceftriaxone, levetiracetam, and progesterone are 

selected as potential TBI neurotherapeutic agents. Although FDA-approved for other purposes, 

they have shown efficacy in ameliorating the detrimental outcomes of TBI in preclinical and 

clinical studies [132]. 

    Computational drug repurposing has the potential to significantly reduce drug development time 

and cost, particularly in neurodegenerative diseases like Alzheimer’s disease. This approach 

involves in silico screening of FDA-approved compounds for new indications and has the potential 

to expedite the development of effective therapies for these diseases. Traditional drug 

development, which can take 15 years and over one billion dollars, involves discovery, pre-clinical 

research, safety review, clinical studies, FDA review, and post-market safety monitoring. However, 

many repurposed drugs have already been FDA approved, making them a cheaper and quicker 

route to the clinic. High throughput screening technologies and the growing repository of ‘omics-

based data across disease indications have catapulted computational drug repurposing methods to 

the forefront of attractive drug discovery techniques for neurodegenerative diseases. The 

integration of artificial intelligence and machine learning algorithms will enable the creation of 

large-scale transcriptomic and electronic medical record databases. However, this process presents 

unique challenges due to the lack of effective validation methods and the heterogeneous nature of 

the disease. Successful repurposed drugs exist in fields like oncology, diabetes, leprosy, and 

inflammatory bowel disease. This study examines existing approaches to computational drug 

repurposing, including molecular, clinical, and biophysical methods, and proposes data sources 

and methods to advance computational drug repurposing in neurodegenerative diseases [133]. 

    Previously, fortunate discoveries in the laboratory and clinic resulted in the success of 

repurposed medications. One pertinent illustration of this is the way zonisamide is used to treat 

Parkinson’s disease. Murata found that when zonisamide was used to treat a Japanese epileptic 

patient who also had Parkinson’s disease (PD), the patient’s PD symptoms also improved. In 2009, 

Japan approved zonisamide as an anti-PD medication based on this coincidental discovery. High 

throughput molecular, clinical, and structural biology technologies, along with the development of 
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large-scale computational capacity that is economically feasible, have recently given rise to a novel 

opportunity: the use of computational frameworks rather than random discoveries to rationally 

repurpose existing drugs [133]. 

    The development of new treatments for acute stroke has been fraught with costly and 

spectacularly disappointing failures. Repurposing of drugs that are previously proven to be secure 

offers a less dangerous option. Drug repurposing involves taking use of commercial medications’ 

secondary activities, and pursuing compounds with several modes of action, including vascular 

protection. Protecting the ischemic vasculature is expected to offer long-term advantages and 

support neural rehabilitation for stroke patients. Currently, acute aspirin therapy and drug-assisted 

reperfusion are employed clinically to lessen ischemic stroke-related impairment. The use of 

growth factors like erythropoietin and medications like statins, angiotensin II receptor blockers, 

and minocycline is possible in the future. A clinical experiment on acute ischemic stroke has 

already shown that the angiotensin II receptor blocker candesartan can protect blood vessels [134]. 

    Drug repurposing refers to a reinvestigation of existing drugs for new therapeutic interventions. 

It is a promising, fast, and cost-effective method that can overcome traditional de novo drug 

discovery and development challenges in targeting neuropsychiatric and other disorders. 

Traditional methods are complicated due to limitations in understanding pathophysiological 

phenomena and are risky, expensive, and time-consuming. Various drug classes such as selective 

serotonin reuptake inhibitors (SSRIs), antipsychotic, cholinesterase inhibitors, and thrombolytic 

agents show polypharmacological features. In addition, amantadine was initially developed for 

influenza; however, after redirection, it is useful for Parkinson’s disease. Zidovudine was intended 

for cancer treatment, and now it is redirected to targeting HIV/AIDS. An additional, but well-

known example is Viagra (Sildenafil) that was intended to antianginal medication but redirected 

to penile erections. Drug repurposing takes advantage of off-target effects of existing drugs, 

identifying new opportunities by understanding their biological and pharmacological mechanisms. 

This approach is more effective in developing drugs against neuropsychiatric and other disorders 

[135]. 
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2.6 Existing research on ML Algorithms for target-disease-drug association 

prediction: 

 

    Artificial intelligence (AI) and machine learning (ML) methods are increasingly being used to 

combine various types of data, including transcriptomic, structural, and clinical data. Companies 

like IBM have developed AI- and ML-based frameworks for drug discovery, using AI-based text-

mining strategies to create a semantic model of ALS-associated RNA-binding proteins. ML is 

particularly attractive in computational drug repurposing, where molecular and biophysical data 

are integrated. A recent method used drug-induced gene expression signatures, molecular target 

information, and structural information as features to train a multiclass support vector machine to 

predict the therapeutic class of a given drug. This approach has shown a classification accuracy of 

78%, demonstrating its potential usefulness in neurodegenerative disease. While AI and ML 

models have shown promise in disease prediction for Parkinson’s disease, MS, and Alzheimer’s 

disease, their full utility in computational drug repurposing for neurodegenerative diseases would 

be realized as molecular, structural, and clinical data resources for neurodegenerative diseases 

increase [133]. 

    A study showed that supervised machine learning models have been proven feasible for Drug 

Target Interaction (DTI) prediction, but they often generate inaccurate predictive results due to 

their disregard for unlabeled drug-target pairs [136]. Similarity-based methods have limitations 

when extending to large data sets due to high complexity of similarity matrices computation. 

Nearest neighbor methods, bipartite local models, matrix factorization methods, semi-supervised 

learning, ensemble methods, and ensemble methods all have their strengths and weaknesses. 

However, machine learning has achieved favorable performance in DTI prediction. Factors such 

as problem formulation, evaluation data set, evaluation procedure, and experimental setting 

significantly impact prediction results. The imbalanced dataset problem is another challenge, as 

current models like decision trees and SVMs have a bias for recognizing the majority class, 

resulting in poor performance. Most machine learning models have poor interpretability properties, 

making it difficult to understand the underlying drug mechanism of action from a biological 

perspective. There are no uniform evaluation metrics special for DTI prediction, but AUPR and 

AUC are generally adequate metrics for evaluating the performance of machine learning-based 
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methods. In the currently accessible datasets, the number of unknown samples is much greater 

than the known ones, so false positives should be weighed more. Overall, machine learning 

methods have the potential to improve DTI prediction accuracy. 

    A study presents a network-based method called NEDNBI, which predicts disease-drug 

associations using a gene-disease-drug tripartite network. The architecture of this network is 

shown in Figure 2.2. This method is useful for drug repurposing, especially in finding old drugs 

for new diseases like COVID-19. The method requires no negative data and allows new diseases 

to be added to the network. The evaluation results show good performance, with 8 out of 20 

predicted old drugs clinically tested for COVID-19 treatment, demonstrating the method's 

usefulness in drug repurposing [137].  

 

    A study presents a prediction method called multi-scale topology learning for drug-disease 

(MTRD) that integrates and learns multi-scale neighboring topologies and attributes of a pair of 

drug and disease nodes. It constructs multiple drug-disease heterogenous networks to integrate 

drug similarities and associations. The method uses a Bi-directional long short-term memory-

based module to encode these embeddings and their relationships. Attention mechanisms at feature 

and scale levels are designed to obtain more informative pairwise features and topology 

Figure 2.2 Drug Repurposing by Gene-Disease-Drug Network 
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embeddings. MTRD achieves superior performance than other methods and retrieves more actual 

drug-disease associations in top-ranked candidates [138]. 

    Predicting binding affinity between compounds and proteins is crucial in drug discovery, as it 

reduces the need for wet-lab experiments. Machine learning and deep-learning techniques, 

including ligand-based and target-based approaches, are used to improve drug-target interaction 

prediction. Popular machine-learning models include SVM, Random Forest, Naïve Bayes, KNN, 

GBT, GP, and XGBoost. Deep learning, using artificial neural networks, is used in medicinal 

chemistry for compound classification, QSAR studies, and drug identification. PCM models 

identify probable targets, predict binding affinity, and discover interactions between compounds 

and targets. Convolutional neural networks predict binding affinity using 1D representations of 

proteins and compounds [139]. 

    Drug-Target interaction (DTI) is crucial for drug discovery, repositioning, and understanding 

drug side effects. However, the exponential growth of genomic and drug data makes it difficult to 

identify new associations between drugs and targets. A study addresses these challenges by 

developing a predictive model for DTI prediction using computational methods. The study is 

conducted on four protein classes: Enzyme, Ion Channel, G Protein-Coupled Receptor (GPCR), 

and Nuclear Receptor. The target protein sequence is encoded using the dipeptide composition and 

drug with a molecular descriptor. A machine learning approach is employed to predict DTI using 

wrapper feature selection and synthetic minority oversampling technique (SMOTE). To deal with 

the problem of DTI, various classifiers are used in this study. This method could identify one target 

protein interacting with many drugs and many drugs interacting with one protein, which are 

experimentally verified. It can be used for understanding and identifying new drug-target 

interactions. This method relies only on the dipeptide composition of the target descriptors [140]. 

    A study utilizing machine learning methods to predict druggability of proteins used 443 

sequence-derived features revealed the Neural Network as the most accurate classifier with 

89.98% accuracy. The Support Vector Machine-Feature Selection (SVM-FS) algorithm had the 

most relevant features at 130. This led to the discovery of new drug targets for cell signaling 

pathways, gene expression, and signal transduction. Sequence properties determine a protein’s 

targetability, and increasing the number of features is crucial for better prediction performance. 

Among the algorithms used, NN showed superior performance compared to Naïve Bayes, SVM, 
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kNN, RF, and DT models. Protein-drug interactions, including amino acid hydrophobicity, acidity, 

alpha helix, and sulfur atoms, are pivotal features in protein-drug interactions. This study 

demonstrates that combining different protein attributes and efficient machine-learning algorithms 

can significantly improve the predictability of target proteins [141]. 

    Network medicine is a promising tool for understanding disease molecular complexities and 

identifying new drug targets. Computational approaches for drug repositioning integrate 

information from multiple sources and levels, providing valuable insights into complex 

relationships among drugs, targets, disease genes, and diseases at a system level. This article 

proposes a computational framework based on a heterogeneous network model for drug 

repositioning using existing omics data about diseases, drugs, and drug targets. The framework 

significantly outperforms several recent approaches, with case studies demonstrating its practical 

usefulness. The three-layer heterogeneous graph model captures inter- and intra-relationships 

among diseases, drugs, and targets for novel drug usage prediction. An iterative algorithm is 

developed to obtain final proximity scores between diseases and drugs, which can be used to rank 

candidate drugs for each disease [142]. 

    Based on the essential findings discussed in this literature review, network pharmacology 

approach is beneficial for a better understanding of interactions between multiple targets associated 

in neurological as well as neurodegenerative disorders. It has been inferred that drug repurposing 

has provided a powerful technique for personalized treatment of neurological disorders. Through 

network pharmacology, researchers have been able to identify complex interaction patterns 

between multiple targets in a neurological disease and gain insight into the molecular mechanisms 

driving neurodegeneration and retarded nerve impulse transmission. Additionally, machine 

learning approaches used in drug repurposing has identified interaction between therapeutic targets 

and already approved drugs which helped to pave the way for personalized medicine approaches. 

However, there are still knowledge gaps in this field that need to be addressed, such as the better 

understanding of the target overlap exist between multiple neurological and neurodegenerative 

disorders and identification of accurate machine learning model and deep neural network that can 

be predictive for better treatment response to neuronal disorders. Another potential knowledge gap 

could be the development of database for all the protein druggable targets and all the FDA-

approved drugs for all the important and lethal neurological and neurodegenerative disorders by 



58 | P a g e  
 

utilizing various online available databases for targets and drugs data. Machine learning models 

require huge amounts of data to be trained. A lot of work has been done on the Target-Drug 

predictions but with limited data and on specific individual disorders. Addressing these gaps can 

help to further advance our understanding of neurological and neurodegenerative disorders and 

improve outcomes for patients. Overall, the findings discussed in this literature review highlight 

the power of network pharmacology, machine learning, and drug repurposing for neuronal 

disorders research and the potential for this technique to revolutionize neuronal disorders 

treatment. The uniqueness of our work is the development of Target-Disease-Drugs Association 

network for all the lethal neurological and neurodegenerative disorders and using machine learning 

and deep neural network approaches for performing targets and drugs classification with respect 

to specific disorder class and ultimately performing drug repurposing for Neurological disorders. 
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3 Methodology 
 

    The aim of the current study is to probe the association of the numerous targets with the drugs 

and with the diseases i.e., neurological disorders (NLDs) and neurodegenerative disorders (NDDs). 

In this chapter, the materials and methods used to collect all the data of disease-associated targets 

and already approved drugs for the 19 neuronal disorders and to build the target-disease, drug-

disease and target-disease-drug association networks, classification using state-of-the-art machine 

learning and deep-learning methods and ultimately drug repurposing for neurological disorders 

using multi-variate artificial neural network architecture are described in detail. A lot of publicly 

available databases were used to collect the datasets for targets and drugs for all the nine 

neurological and 10 neurodegenerative disorders, which were further analyzed in this study. The 

dataset was pre-processed by various data preprocessing techniques including handling missing 

values, deduction of less important feature variables, normalization of data etc. and to construct 

and classify networks using the Network pharmacology and Machine learning based approaches. 

A standardized pipeline for data processing was applied in this study, which included filtering out 

empty cells and normalizing feature variable values. 

    The methods described in this chapter were used to generate the results and insights presented 

in the following chapter. Details of the methodology employed in this study for Target-Disease-

Drug Association Network-guided Classification are described in Figure 3.1 and multi-variate 

ANN model architecture for prediction of Targets descriptors and disease class is shown in Figure 

3.1. 
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Figure 3.1 Overall Methodology of Target-Disease-Drug Association Network-guided Classification 
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3.1 Data Collection: 

 

3.1.1 Target Data Retrieval: 

 

    The data of all the protein-targets was retrieved from STRING database [145] and Therapeutic 

Target Database (TTD) [146] by giving the query of each Neurological and Neurodegenerative 

disorder individually. Subsequently, we merged the dataset of both databases to remove target 

duplicates. After removing duplicates, the data contained 821 unique targets protein between the 

protein-protein interaction edges zero to seventy-one. We shortlisted the targets datasets having 

edges of at least three to seventy-one. So, the total unique data of target proteins remained 236. 

Figure 3.2 multi-variate ANN Architecture for Target & Disease Prediction 
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But the total dataset is composed of 4884 protein targets because of the target-overlap exists 

between multiple neurological as well as neurodegenerative disorders. The dataset contains the 

protein name, gene name, family, no. of edges and the UniProt IDs of all the target proteins. The 

sequences of all the selected target proteins were obtained from UniProt [147] using the given 

UniProt IDs and downloaded the data in an Excel file. 

 

3.1.2 Drugs Data Retrieval: 

 

    The data of all the FDA-approved, experimental phase, investigational phase, nutraceutical, 

Illicit and withdrawn drugs was retrieved from multiple databases, such as, DrugCentral [148], e-

Drug3D [149], ChEMBL [150] and DrugBank [151] by giving the query of all the selected protein-

targets one by one and all for all the Neurological and Neurodegenerative disorder individually. 

Then we merged the dataset of all the databases to remove duplicates of all drugs. Then we keep 

only the data of all FDA-approved drugs. After shortlisting, the data contained 964 unique drugs. 

But the total dataset is composed of 4884 drugs because of the complementarity of same drug for 

more than one protein-target associated with multiple neurological as well as neurodegenerative 

disorders. The dataset contains the drug name, synonym, type, phase, physicochemical properties 

along with the ChEMBL IDs and DrugBank IDs of all the drugs. The SMILES of all the selected 

drugs were obtained from PubChem database using the given drug name and downloaded the data 

in an Excel file. 

 

3.1.3 Selection of Diseases:  
 

    Neurological and Neurodegenerative disorders are selected due to their prevalence and mortality 

rate worldwide, with the help of literature and different organizations such as World Health 

organization (WHO) [152], Global Burden of Diseases (GBD) [153], etc. The data of all the 

protein-targets associated with the selected disorders, and all the FDA-approved drugs for those 

specific targets was collected. To identify and validate the protein targets that have a role in the 

progression of neurological and neurodegenerative disorders, STRING app plugin of Cytoscape 

tool version 3.7.1 [154] was used. 
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3.2 Descriptors Formation: 

 

    Once the data of the protein-targets, drugs and diseases was collected the descriptors were 

computed for proteins and drugs to train the various machine learning and deep learning models. 

 

3.2.1 Protein Descriptors Computation: 

 

    The sequence-based descriptors of all the selected protein-targets were computed using web 

interphase of protr, a package of R. The ProtrWeb [155] is a freely available and used for the 

computation of the structural and physiochemical descriptors of the proteins. 9921 descriptors 

were calculated for each of the 4884 proteins including amino acid composition, dipeptide and 

tripeptide composition, C/T/D (Composition/Transition/Distribution), conjoint triad, sequence-

order coupling number, Quasi-sequence-order descriptors, pseudo-amino acid, and amphiphilic 

pseudo-amino acid composition. After computation of all these descriptors, it was saved in an excel 

file having binary class label of neurodegenerative and neurological disorders. The order of the 

data matrix of the Morgan fingerprints of inhibitors was 4884×9921. 

 

3.2.2 Drugs Descriptors Computation:  

 

    For the drugs dataset, Morgan fingerprints were generated which is the best molecular 

fingerprint used for drug discovery purposes [156]. For the calculation of the Morgan fingerprints, 

SMILES of the inhibitors were used as input. The SMILES of all the drugs were extracted from 

PubChem [157]. The ALLChem package of RDKit library [158] was imported in Python for the 

generation of Morgan fingerprints. Morgan fingerprints were in the form of bits string (0,1) with 

a length of 2048. The order of the data matrix of the Morgan fingerprints of inhibitors was 

4884×2048. After computation of Morgan fingerprints for all the drug’s SMILES, it was saved in 

an excel file having binary class label of neurodegenerative and neurological disorders. 
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3.3 Tools: 

 

    To generate Morgan fingerprints of all the drugs’ SMILES in python language and all the 

machine learning/deep learning models development, training and validation for classification of 

networks datasets and for drug repurposing purposes, Jupyter notebook of Anaconda distribution 

was used. To Compute the descriptors of targets proteins in R, R-studio tool was used. Following 

is a brief description of Python language, Anaconda distribution, Jupyter notebook, R language, 

and R-Studio (an R language IDE). 

 

3.3.1 Python-Language: 

 

    Python is a high-level, dynamically typed programming language renowned for its simplicity 

and readability. Created by Guido van Rossum in the late 1980s, Python emphasizes code clarity 

and uses indentation to define code blocks, which enhances human readability. Its versatile nature 

enables it to serve as a general-purpose language, suitable for web development, scientific 

computing, data analysis, artificial intelligence, machine learning, automation, and more. Python's 

extensive standard library provides a wealth of modules and functions for common tasks, 

contributing to faster development [159]. The language's object-oriented, imperative, and 

functional programming paradigms accommodate a range of coding styles. Python's popularity is 

fueled by an active community, frequent updates, and a plethora of third-party packages accessible 

via the Python Package Index (PyPI). Its cross-platform compatibility and ease of integration with 

other languages make it a preferred choice for both beginners and experienced developers. 

 

3.3.2 Anaconda distribution: 

 

    Anaconda is an open-source Python distribution for data science and machine learning, offering 

a variety of pre-installed libraries and tools for data analysis, visualization, and scientific 

computing workflows. Developed by Anaconda, Inc., it encompasses a curated collection of tools, 

libraries, and packages that facilitate the development and deployment of data-intensive 
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applications [160]. Anaconda Distribution includes the Python programming language along with 

a multitude of libraries and tools for tasks like data manipulation, analysis, visualization, and 

machine learning. One of its key features is the Anaconda Navigator, a graphical user interface 

that aids in package management, environment creation, and launching applications. Anaconda 

also offers the conda package manager, which allows users to create isolated environments to avoid 

version conflicts among different packages. This distribution is widely used by data scientists, 

researchers, and developers to streamline the process of setting up development environments and 

to ensure consistent and reproducible results across various projects. 

 

3.3.3 Jupyter notebook: 

 

    Jupyter Notebook is an interactive web-based environment that allows users to create and share 

documents containing live code, equations, visualizations, and narrative text. Jupyter Notebook is 

a powerful tool for creating interactive documents that combine code execution, visualizations, 

and explanations [161]. It supports various programming languages but is primarily used with 

Python. Key features of Jupyter Notebook include interactive execution, rich text support, data 

visualization, and easy sharing. When working with Anaconda, users can launch Jupyter Notebook 

from the Anaconda Navigator or directly from the command line using the jupyter notebook 

command. This allows users to create, open, and edit notebooks in a user-friendly environment. 

Overall, Jupyter Notebook offer a powerful platform for data scientists and analysts to work with 

Python, manage environments, and create interactive documents that showcase their analysis and 

findings. 

 

3.3.4 R-Language: 

 

    R is a programming language and software environment that is widely used for statistical 

computing and graphics. It provides a wide variety of statistical and graphical techniques, 

including linear and nonlinear modeling, time-series analysis, classification, clustering, and more. 

R is open-source, free software and is available for Windows, Mac OS X, and Linux operating 
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systems. It has a large and active community of users and developers, and there are many resources 

available online for learning and using the language. R is used by statisticians, data scientists, and 

researchers in many different fields, including social sciences, finance, healthcare, and more. It is 

also popular in the field of data analysis and visualization, as it offers many tools for working with 

data sets and creating visualizations [162]. In summary, R is a powerful and versatile language 

with many applications in statistical computing, data analysis, and visualization, and it is widely 

used by professionals and researchers in many different fields. 

 

3.3.5 R-Studio: 

 

    R Studio is a powerful and user-friendly integrated development environment (IDE) for the R 

programming language. It provides a comprehensive set of tools and features that make it easy for 

users to manage and analyze data, write code, and create visualizations. One of the key benefits of 

R Studio is its ability to streamline the development process for R code. It includes an intuitive 

code editor with features like syntax highlighting, code completion, and error highlighting to help 

users write code more efficiently and with fewer errors. It also includes tools for managing data, 

including importing and exporting data from a variety of file formats, and cleaning and 

transforming data using R's built-in functions. In addition to its data management and code 

development features, R Studio also offers a range of visualization tools, including plots, charts, 

and graphs. These tools allow users to create high-quality visualizations of their data and 

communicate their findings effectively. Another advantage of R Studio is its support for the 

development of R packages. R packages are collections of R code and functions that can be easily 

shared and reused by other users. R Studio provides tools for building, testing, and publishing R 

packages, which makes it easier for users to contribute to the R community and collaborate with 

others [163]. Overall, R Studio is a powerful and versatile IDE that is widely used by data 

scientists, statisticians, and researchers in many different fields. Its intuitive interface and 

comprehensive set of tools make it an essential tool for managing and analyzing data, writing code, 

and creating visualizations in R. 
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3.4 Data-preprocessing: 

 

    Data preprocessing is a crucial step in preparing data for training and developing machine 

learning models. It involves cleaning, transforming, and organizing raw data into a suitable format 

that can be effectively used by machine learning algorithms. The goal of data preprocessing is to 

enhance the quality and reliability of the data, thereby improving the performance of the trained 

models. One of the steps involved in data preprocessing is Data Cleaning. Identify and handle 

missing data, either by inputting with statistical measures or removing the instances with missing 

values. Data Transformation is another step of preprocessing. It includes feature scaling to ensure 

that all the features are on a similar scale, preventing one feature from dominating others. Common 

scaling methods include Min-Max Scaling and Standardization [164]. Converting categorical 

variables into numerical format, such as one-hot encoding for nominal variables and label 

encoding for ordinal variables, is important for model training. Splitting the preprocessed data into 

training, validation, and test sets is also important. The training set is used for model training, the 

validation set for hyperparameter tuning, and the test set for evaluating the final model's 

performance. Normalization of data is necessary if needed, such as when working with neural 

networks. Normalization ensures that the data falls within a specific range, often [0, 1]. 

 

3.5 Targets-Diseases Network Construction: 

 

    In the “STRING disease query” tab different keywords of each neuronal disorder were searched 

to find out the disease associated proteins. The names of 10 most frequent Neurodegenerative 

disorders were used as keywords to find out the disease associated proteins. The most common 

and lethal neurodegenerative disorders include Alzheimer’s disease, Parkinson’s disease, 

Huntington’s disease, Amyotrophic lateral sclerosis, Dementia, Prion disease, Frontotemporal 

Lobar Degeneration, Multiple Sclerosis, Progressive Supranuclear Palsy, and Down Syndrome. 

The most prevailing neurological disorders include Migraine, Psychotic disorder, Obsessive-

compulsive disorder, Epilepsy, Autism Spectrum Disorder, Williams-Beuren syndrome, Anxiety 

disorder, Amyotrophic lateral sclerosis, and Major Depressive Disorder. Each keyword resulted in 
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a list of related diseases, the network of all these diseases were selected and merged to form huge 

networks against each keyword. The networks for all the neurological disorders were merged to 

form a final network of proteins-associated with neurological disorders containing 171 nodes while 

the merged network of neurodegenerative disorders has 65 proteins that have role in progression 

of the disorders. After construction of the Targets-Diseases Network, the data is saved in a csv file. 

 

3.6 Diseases-Drugs Network Construction: 

 

    By using the collected data of all the FDA-approved drugs associated with specific protein-

targets and for all the selected disorders using different online available databases, we constructed 

the Diseases-Drugs network. For the ten most common and lethal neurodegenerative disorders and 

nine neurological disorders, the data of drugs collected for each disorder separately to form 

nineteen Diseases-Drugs Networks. The networks for all the neurological disorders were merged 

to form a final network of drugs associated with neurological disorders containing 3440 entries 

while the merged network of neurodegenerative disorders has total 1443 entries that have role for 

the specific target-proteins in these disorders. The data of the final Diseases-Drugs Network saved 

in an csv file. 

 

3.7 Targets-Diseases-Drugs Network Construction: 

 

    We constructed Targets-Diseases-Drugs Network, which is a comprehensive network that 

combines diverse data types to understand the intricate relationships between neurological and 

neurodegenerative disorders and their potential therapeutic interventions, by combining the two 

networks: the Targets-Diseases Network and the Diseases-Drugs Network. The Targets-Diseases 

Network identifies protein targets and specific neuronal disorders, represented by 9921 descriptors 

that quantitatively represent their attributes and properties. The Diseases-Drugs Network 

highlights the interconnections between neurological disorders and potential drugs that hold 

promise for their treatment, represented by 2048 Morgan fingerprints encoded in binary format. 

The network provides an encompassing perspective, offering insights into the triadic relationship 
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among protein targets, disorders, and the drugs. Each facet of the network is represented using 

distinct techniques, with protein targets characterized by descriptors and drugs represented by 

binary-encoded Morgan fingerprints. Neurological disorders comprise nineteen distinct entities, 

each encoded using one-hot encoding. The class label of the dataset of Targets-Diseases-Drugs 

Network divided the instances into neurodegenerative disorders (0) and neurological disorders (1) 

for binary classification. 

 

3.8 Compiling Data for Training Targets-Diseases Network Model: 

 

    Different classification models were trained to predict the disease association of the protein with 

respect to neurological and neurodegenerative disorders. Out of 4884 target proteins, 3440 came 

out to be associated with neurological disorders. While 1443 came out to be associated with 

neurodegenerative disorders. The models were built on the protein descriptors dataset used as the 

X-matrix while the class label was assigned based on the specific disorder type. All the protein 

targets associated with neurodegenerative diseases were labeled as 0 and all the protein targets 

associated with neurological diseases were labeled as 1.  There is a difference of 1997 instances 

between both classes which clearly demonstrates the class-imbalance between two target classes. 

To prevent the model performance from deterioration, we perform hyperparameters tunning and 

its special feature i.e., GridSearchCV [165], short for Grid Search Cross-Validation, which is a 

hyperparameter tuning technique widely used in machine learning. It helps automate the process 

of finding the best combination of hyperparameters for a given machine learning model by 

exhaustively searching through a predefined set of hyperparameter values. The data matrix was of 

the order 4884×9921. The class labels, total no. of descriptors for each target protein, and total 

number of instances belonging to each class in the dataset of Targets-Diseases Network model are 

presented in Table 1. 

Table 1  Summary of Targets-Diseases network classification dataset 

Class Labels Total no. of Instances Total no. of descriptors 

1  

3440 

 

9921 



71 | P a g e  
 

(Protein targets associated 

with neurological disorders) 

0 

(Protein targets associated 

with neurodegenerative 

disorders) 

 

1443 

 

9921 

 

 

3.9 Compiling Data for Training Diseases-Drugs Network Model: 

 

    There are different classification models which were built for the prediction of the drugs against 

targets- protein associated with neurodegenerative disorders and with neurological disorders. The 

labels were given to the drugs based on the activation/inhibition data collected from different 

databases. In the Diseases-drugs network dataset, 3440 of the 4884 drugs were active against 

targets associated with neurological disorders while the other 1443 were active against targets 

associated with neurodegenerative disorders. Classification of the drugs for activity against 

neurodegenerative disorders and with neurological disorders was done by taking morgan 

fingerprints of the inhibitors as X-matrix. The class labels were given as 1 for neurological 

disorders and zero for neurodegenerative disorders. To assign the class labels to the drugs, we took 

help from different databases. To compile a complete network dataset, total 4884 drugs as instances 

were taken in each class active against neurological and neurodegenerative disorders having 2048 

features in X-matrix (4884×2048). Table 2 shows the class labels, no. of Morgan’s Fingerprints for 

each drug, and total number of instances belonging to each class in the dataset of Diseases-Drugs 

Network model. 

Table 2 Summary of Diseases-Drugs network classification dataset 

Class Labels Total no. of Instances No. of Morgan’s 

Fingerprints 

1  

3440 

 

2048 
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(Drugs associated with 

neurological disorders) 

0 

(Drugs associated with 

neurodegenerative disorders) 

 

1443 

 

2048 

 

3.10 Compiling Data for Training Targets-Diseases-Drugs Network Model: 

 

    Different classification models were trained on the combined Targets-Diseases-Drugs Network 

to predict the disease association of the protein targets as well as their drugs with respect to 

neurological and neurodegenerative disorders. Out of total 4884 number of instances in the 

network, 3440 target proteins and drugs came out to be associated with neurological disorders. 

While 1443 target proteins and drugs came out to be associated with neurodegenerative disorders. 

The models were built on the complete network dataset having 9921 protein descriptors, 2048 

morgan’s fingerprints of all the drugs, one hot encoding of the nineteen neuronal disorders, drugs 

activity and no. of protein edges were used as the X-matrix of the dataset while the class label was 

assigned based on the specific disorder type. All the protein targets, drugs and disorders associated 

with neurodegenerative diseases were labeled as 0 and all the protein targets, drugs and disorders 

associated with neurological diseases were labeled as 1. There is a difference of 1997 instances 

between both classes which clearly demonstrates the class-imbalance between two output classes. 

To prevent the model performance from deterioration, we perform hyperparameters tunning and 

its special feature i.e., GridSearchCV, short for Grid Search Cross-Validation, which is a 

hyperparameter tuning technique widely used in machine learning. It helps automate the process 

of finding the best combination of hyperparameters for a given machine learning model by 

exhaustively searching through a predefined set of hyperparameter values. The data matrix was of 

the order 4884×11990. To compile a complete network dataset, total 4884 drugs as instances were 

taken in each class active against neurological and neurodegenerative disorders having 2048 

features in X-matrix (4884×11990). Table 3 shows the class labels, total no. of feature variables, 

and total number of instances belonging to each class in the complete dataset of Targets-Diseases-

Drugs Network model. 
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Table 3 Total no. of instances & Features for Target-Disease-Drug Network 

Class Labels Total no. of Instances Total no. of Features 

1 

(Neurological disorders) 

3440 11990 

0 

(Neurodegenerative disorders) 

 

1443 

 

11990 

 

3.11 Multi-variate Artificial Neural network Construction for Drug 

Repurposing: 

 

    We have constructed three networks i.e., targets-disease network, diseases-drugs network and 

targets-disease-drugs association network and then train these networks by using different machine 

learning and deep learning models. Now we designed a multi-variate Artificial Neural network to 

predict the interactions between drugs and target proteins linked to specific diseases. We have 

utilized two datasets: one encapsulating the Morgan's fingerprints of 4884 drugs as input dataset, 

and the other containing descriptors of 4884 target proteins along with disease class labels (0 or 1) 

as output dataset. The distinctiveness of our approach lies in the meticulous correspondence 

between the rows of these datasets, where each entry in the input dataset (housing drug 

fingerprints) aligns with the corresponding entry in the output dataset (comprising target protein 

descriptors and disease class labels). We devised a model capable of comprehending the intricate 

connections between drug fingerprints, target protein descriptors, and disease classes, ultimately 

enabling predictions for both target protein descriptors and disease class for a given drug. 

    In addressing this challenge, we adopted an Artificial Neural Network (ANN) [166] strategy, 

employing a multi-variate output configuration. We designed our methodology to entail training 

the ANN to decipher the intricate relationships between drug fingerprints and target protein 

descriptors, also incorporating information about disease classes. Our model's architecture is 

meticulously crafted to accept Morgan’s fingerprints of an unidentified drug, which undergo 

transformation using the RDkit library to form input features for the ANN. Upon processing, our 

model yielded two outcomes: firstly, the descriptors of the target protein corresponding to the 

drug's fingerprints, and secondly, the anticipated disease class associated with the drug. The heart 
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of our approach lies in the concept of a Multi-Output Neural Network. In this framework, our ANN 

is structured to simultaneously predict multiple outputs, specifically the target protein descriptors 

and the disease class. Each of these outputs corresponds to a distinct facet of the problem. The 

neural network is trained on the input drug fingerprints, effectively generating predictions for both 

descriptors and disease class in a synchronized manner. This leverages the inherent relationships 

embedded within the aligned datasets. 

    The alignment of datasets at a granular level ensures that the model comprehends the intricate 

interplay between drug attributes, target protein properties, and disease classifications. The ANN's 

structure is systematically optimized via hyperparameter tuning, encompassing the configuration 

of hidden layers, activation functions, learning rates, and regularization techniques. The model's 

outputs cater to predicting both target protein descriptors and disease class, presenting a holistic 

solution for drug-target interaction prediction. After training of our datasets through the utilization 

of multi-variate ANN i.e., Multi-Output Neural Network. We validate our model by giving the 

SMILES of an unknown drug. Our innovative architecture predicted the target protein descriptors 

and disease class simultaneously for the given drug. 

 

3.12 Machine Learning Models Construction & Hyperparameter 

Optimization: 

 

    The quality and acceptability of the machine learning model depends on the data set on which 

they were trained. The data collected previously was prepared for the purpose of training the 

models i.e., assigning class labels, treating class imbalance etc. The classification algorithms 

chosen for the study were Linear and Non-Linear Support Vector Machine (SVM) classifier, 

Decision Tree classifier, Random Forest classifier, Gradient Boosting Machines (GBM), Multi-

Layer Perceptron Neural Network (MLP-NN) and multi-variate Artificial Neural Network (ANN). 

These models are trained on the three types of networks that we constructed for the dataset’s 

protein-targets, drugs and neuronal disorders. 
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3.12.1 Support Vector Machine (SVM) classifier: 

 

    Support Vector Machine (SVM) is a widely used supervised machine learning algorithm for 

classification and regression tasks, particularly effective for complex decision boundaries and 

high-dimensional data [167]. It is often used for binary classification, where it finds a hyperplane 

that maximizes the margin between data points of different classes. For linearly separable data, 

SVM aims to find the hyperplane that can perfectly separate the two classes. The optimal 

hyperplane is the one that maximizes the distance (margin) between the support vectors of each 

class. In real-world scenarios, SVM introduces a "soft margin" that allows some misclassification 

of data points. This is achieved by introducing a regularization parameter (C) that balances the 

trade-off between maximizing the margin and minimizing misclassification. SVM can handle not 

only linearly separable data but also nonlinearly separable data in the original feature space. The 

kernel trick is used to transform the original data into a higher-dimensional space where it might 

become linearly separable. In the transformed higher-dimensional space, SVM finds a hyperplane 

that separates the data classes, corresponding to a nonlinear decision boundary when projecting 

back to the original space. In classification, the SVM algorithm assigns new data points to classes 

based on their position relative to the learned hyperplane. The choice of hyperparameters like C 

and the choice of kernel function significantly impacts the model's performance and generalization. 

SVM is effective in high-dimensional spaces, handles complex decision boundaries, and is less 

prone to overfitting when properly tuned. Hyperparameter tuning is crucial for optimizing SVM 

performance, and GridSearchCV is a valuable technique for finding the best combination of 

hyperparameters. Key hyperparameters include kernel type, regularization parameter, and kernel-

specific parameters. GridSearchCV automates the process by searching through a predefined grid 

of hyperparameter values and systematically trains and evaluates SVM models on various 

combinations using cross-validation. The training data is split into subsets for training and 

validation, and the model's performance is evaluated based on a chosen metric. After all iterations, 

GridSearchCV provides the best cross-validated hyperparameter combination, which is then used 

to train a final SVM model on the entire training dataset. The model's performance is then assessed 

on a separate test dataset to evaluate its generalization ability. This automated approach ensures 

systematic exploration of parameter configurations and optimizes predictive accuracy, enhancing 

the overall effectiveness of SVM for classification tasks. 
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3.12.2 Decision Tree classifier: 

 

    A Decision Tree classifier is a machine learning algorithm used for classification and regression 

tasks. It works by partitioning input data into subsets based on different input features, each of 

which corresponds to a decision node in the tree. The top node, called the root node, represents the 

entire dataset and is divided into subsets based on one of the input features' values. Each decision 

node corresponds to a particular feature and a specific threshold value, representing a decision 

point where data is split into different branches based on whether the feature value is above or 

below the threshold [168]. The final decision or classification is represented by leaf nodes, which 

correspond to predicted class labels or regression values. The algorithm selects the best feature 

and threshold to split the data at each decision node, determined by criteria such as Gini impurity 

or Mean Squared Error. The process of partitioning data and creating decision nodes is repeated 

recursively for each subset, and the tree grows deeper as it splits the data into more subsets. 

Decision Trees are easy to understand and interpret due to their visual representation resembling 

human decision-making. They can handle both categorical and numerical features and are not 

sensitive to feature scaling. However, they can be prone to overfitting, especially when the tree is 

deep and complex, and may not generalize well to unseen data if not pruned properly. Ensemble 

methods like Random Forest and Gradient Boosting use multiple Decision Trees to make 

predictions and combine their outputs. Hyperparameter tuning is a crucial aspect of optimizing the 

performance of a Decision Tree Classifier. The GridSearchCV technique can be used to find the 

best combination of hyperparameters, such as the maximum depth of the tree, minimum number 

of samples required to split an internal node, minimum number of samples at a leaf node, the 

quality of a split, and the maximum number of features considered at each split. By defining a set 

of possible values for each hyperparameter, the GridSearchCV process involves training and 

evaluating Decision Tree models using all possible combinations of hyperparameters through 

cross-validation. The model's performance is assessed using a chosen evaluation metric, and the 

optimal set of hyperparameters is used to train a final Decision Tree Classifier on the entire training 

dataset. This automated approach simplifies the process of finding the most suitable 

hyperparameters and enhances the overall effectiveness of the Decision Tree algorithm for 

classification tasks. 
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3.12.3 Random Forest classifier: 

 

    The Random Forest classifier is an ensemble machine learning algorithm that combines multiple 

Decision Trees to improve predictive accuracy and control overfitting. It works by constructing a 

"forest" of decision trees and aggregating their predictions to make a final classification decision. 

The algorithm uses bootstrap sampling to randomly select subsets of the original training data, 

creating slightly different datasets for each tree. Each tree is grown through recursive binary 

splitting, and the algorithm chooses the best feature and threshold based on the random subset of 

features considered. After all trees are constructed, new data is fed into the forest, and each tree 

makes an individual prediction based on its structure [169]. For classification tasks, the class 

predicted by each tree is considered a "vote," and the final prediction is determined by the majority 

vote from all the trees. In a classification problem, the class with the most votes becomes the final 

prediction, while in a regression problem, the final prediction can be the mean or median of the 

predicted values from all the trees. Random Forests are robust and can handle both categorical and 

numerical features, making them suitable for a wide range of tasks, including classification and 

regression. They reduce the variance of the model by averaging out individual errors and random 

variations in each tree's predictions. They can estimate the generalization error using out-of-bag 

samples, providing an internal validation measure during training. However, Random Forests may 

not be as interpretable as individual Decision Trees and could become computationally expensive 

for large datasets or trees. Parameters such as the number of trees, maximum depth of trees, and 

the number of features considered at each node can be tuned to optimize the model's performance. 

Hyperparameter tuning is crucial for optimizing the performance of a Random Forest Classifier. 

The GridSearchCV technique can be used to explore different parameter combinations, including 

the number of trees, maximum depth, minimum samples required to split an internal node, 

minimum samples required to be at a leaf node, and the number of features considered at each 

split. The approach defines a range of values for each hyperparameter and performs an exhaustive 

search by training and evaluating Random Forest models with all possible combinations of 

hyperparameters using cross-validation. The optimal combination of hyperparameters is then used 

to train a final Random Forest Classifier on the entire training dataset. The model's performance is 

evaluated on a separate test dataset to gauge its ability to generalize to new data. This automated 
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approach streamlines the process of finding the most suitable hyperparameters and enhances the 

overall effectiveness of the Random Forest algorithm for classification tasks. 

 

3.12.4 Gradient Boosting Machines (GBM): 

 

    Gradient Boosting Machine (GBM) is an ensemble machine learning algorithm that combines 

multiple weak learners, typically Decision Trees, to create a strong predictive model. The process 

starts with creating an initial prediction based on a simple model, such as a single Decision Tree 

with shallow depth or a constant value. The goal is to iteratively reduce residuals or errors by 

adding new models. In each iteration, a new weak learner is added to the ensemble, trained to 

predict the negative gradient of the loss function with respect to the current predictions. The new 

model's predictions are weighted based on their contribution to reducing errors. The learning rate 

parameter controls the step size of updates, preventing overfitting by regularizing the process. The 

ensemble's predictions are updated accordingly, updating the ensemble toward the correct values 

and reducing residuals. The boosting process continues for a predefined number of iterations or 

until a stopping criterion is met [170]. The final prediction of the GBM ensemble is the sum of 

predictions from all individual models in the ensemble, which is often more accurate than that of 

any single model. GBM is known for its strong predictive power and robustness, handling different 

types of data and automatically performing feature selection. However, it can be computationally 

expensive and requires careful tuning of hyperparameters to avoid overfitting. Variants of Gradient 

Boosting, such as XGBoost and LightGBM, have been developed to optimize performance and 

speed up training. Hyperparameter tuning is crucial for optimizing GBM performance, and the 

GridSearchCV technique can automate this process. Key hyperparameters include the number of 

boosting stages, learning rate, maximum depth of individual trees, and number of features 

considered at each split. Parameters related to subsampling and regularization can also be tuned to 

prevent overfitting. To perform hyperparameter tuning using GridSearchCV, a range of values for 

each hyperparameter is defined, and the algorithm explores all possible combinations through 

cross-validation. The best combination of hyperparameters is returned, which is then used to train 

a final GBM model on the entire training dataset. The model's performance is then evaluated on a 

separate test dataset to assess its generalization ability. This approach automates the search for 
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suitable parameter values, saving time and reducing the risk of selecting suboptimal 

configurations. 

 

3.12.5 Multi-Layer Perceptron Neural Network (MLP-NN): 

 

    A Multi-Layer Perceptron (MLP) is a feedforward artificial neural network consisting of 

multiple layers of interconnected neurons designed to process and learn complex patterns in data. 

It is a foundational architecture in deep learning and is used for tasks such as classification, 

regression, and feature extraction. MLPs consist of three main types: an input layer, one or more 

hidden layers, and an output layer. Each layer contains neurons that transform input data using 

weights and biases [171]. The data flows through the network in a feedforward manner, starting 

from the input layer and passing through the hidden layers to produce an output in the output layer. 

Neurons in each layer are connected to neurons in adjacent layers through weighted connections. 

Common activation functions include ReLU, sigmoid, and tanh, which introduce non-linearity into 

the network, allowing it to learn complex relationships in data. Each neuron takes the weighted 

sum of its inputs, multiplied by a weight associated with the connection, and adds a bias term 

before passing it through the activation function. MLPs are trained using a process called 

backpropagation, where the network compares its predictions (output) to the actual target values 

and calculates the error. Optimization algorithms like Gradient Descent are used to update the 

weights in the direction that minimizes the error. The difference between the predicted output and 

the true target is quantified using a loss function, with the goal of training to minimize this loss 

function. MLPs have several hyperparameters that need to be tuned for optimal performance, 

including the number of hidden layers, the number of neurons in each layer, the choice of activation 

functions, learning rate, batch size, and regularization strength. They can capture complex non-

linear relationships in data and are versatile for various tasks. Hyperparameter tuning is crucial for 

optimizing MLP performance. Identify the hyperparameters that influence the behavior of your 

MLP. These might include the number of hidden layers, the number of neurons in each hidden 

layer, activation functions, learning rate, batch size, optimizer, dropout rate, weight decay, and 

more. Create a parameter grid that includes different values for the hyperparameters you want to 

tune. GridSearchCV can automate this process by identifying hyperparameters influencing MLP 
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behavior, creating a parameter grid with different values, and deciding on the MLP architecture. A 

function is built to create a MLP model based on these parameters, and GridSearchCV is imported 

from scikit-learn. The function is fitted on training data, and the best hyperparameters are identified 

using the best_params_ attribute. A new MLP model is created using these parameters, trained on 

the full training dataset, and evaluated on a separate test dataset. This process avoids manual trial 

and error, ensuring the best set of hyperparameters for a specific task. By using GridSearchCV for 

hyperparameter tuning, the process is automated, avoiding manual trial and error and ensuring the 

best hyperparameters for specific tasks. 

 

3.12.6 Multi-variate Artificial Neural Network (ANN): 

 

    An Artificial Neural Network (ANN) with multi-variate output features, often referred to as a 

Multi-Output Neural Network, is a type of neural network architecture that can make predictions 

or classifications involving multiple output variables or features simultaneously. It works by 

combining input, hidden, and output layers, with neurons in the output layer corresponding to each 

output feature. The network can include one or more hidden layers between the input and output 

layers, which enables the network to learn complex relationships within the input data. Activation 

functions are applied to neurons in the hidden layers and the output layer, introducing non-linearity 

and helping capture intricate patterns in the data [172]. The output layer contains neurons that 

correspond to each desired output feature, and the loss function should consider the differences 

between predicted and actual values for each output feature. Common loss functions for multi-

output tasks include Mean Squared Error (MSE) for regression and categorical cross-entropy for 

classification. During training, the network computes the error between predicted and actual output 

values using the chosen loss function. Backpropagation is used to propagate the error backward 

through the network, updating weights and biases to minimize loss. Hyperparameters such as the 

number of hidden layers, neurons in each layer, activation functions, learning rate, and 

regularization should be tuned to optimize the network's performance. Multi-Output Neural 

Networks are advantageous when dealing with tasks involving multiple output variables, as they 

can capture dependencies and correlations among these variables. They find applications in various 

domains such as multi-label classification, multi-variate time series prediction, and image 
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segmentation with multiple classes. Designing a proper architecture for a Multi-Output Neural 

Network can be complex, especially when dealing with varying ranges and scales of output 

features. Hyperparameter tuning is a crucial step in optimizing the performance of a Multi-Output 

Neural Network. It involves determining the number of hidden layers and neurons each layer 

should contain, choosing appropriate activation functions, adjusting the learning rate, batch size, 

and choosing an optimizer algorithm. Regularization techniques like L1 or L2 regularization can 

help prevent overfitting by adding penalty terms to the loss function based on the magnitudes of 

weights. Adjusting the learning rate during training helps fine-tune weights as the training 

progresses. Determining the number of epochs to perform and implementing early stopping by 

monitoring a validation metric can prevent overfitting. Experimenting with different architectures, 

such as grid search, random search, or Bayesian optimization, can also be helpful. Using automated 

hyperparameter tuning libraries like scikit-learn's GridSearchCV or RandomizedSearchCV, as well 

as specialized libraries like Keras Tuner or Optuna, can help systematically explore the 

hyperparameter space and find the optimal configuration for our model. By optimizing 

hyperparameters, we can enhance the performance and generalization of our model for our desired 

task involving multiple output variables. 

 

3.13 Evaluation Methods 

 

3.13.1 Confusion Matrices: 

 

    A confusion matrix is commonly used to evaluate the performance of machine learning or any 

classification model. With the use of the confusion matrix, results may get a geed sense of whether 

findings are high performing or not, as it provides a tabular representation of the predicted and 

actual class labels. Typically, a confusion matrix consists of four cells true positives, true negatives, 

false positives, and false negatives. In this proposed study, targets which are correctly classified as 

for neurological disorders (in our case, true positives; TP), targets which are correctly classified as 

for neurodegenerative disorders (in our case, true negatives; TN), targets which are incorrectly 

classified as for neurological disorders, when the actual class label is for neurodegenerative 

disorders (in our case, false positives; FP), and targets which are incorrectly classified as for 
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neurodegenerative disorders, when the actual class label is for neurological disorders (in our case, 

false negatives; FN), are the elements of the confusion matrix. Predictions that turn out to be false 

negatives and false positives are the wrong predictions by the model. Because the proposed study 

presented the classification of neurodegenerative disorders Vs neurological disorders which is a 

binary classification with two outcomes, we obtained a 2 X 2 matrix. To ensure the generalizability 

of the models 10-fold Cross validation was performed.  Subsequentially, the models were also used 

for the classification of unknown datasets. By analysing the values of the confusion matrix, various 

performance parameters such as precision, recall and F1 score etc. were calculated to determine 

the effectiveness of the model in classifying neurodegenerative disorders and neurological 

disorders. 

 

3.13.2 Accuracy: 
 

    One indicator for assessing model performance is accuracy. The accuracy of the classifier is its 

ability to correctly predict the class labels of instances of different classes (positive and negative 

class). True positive (TP) are the instances of positive class that were correctly predicted by the 

classifier. Likewise, the correctly predicted instances of negative class were termed as true 

negative (TN). False positives (FP) and false negatives (FN) represent the fallacy of the classifier 

to make correct prediction. FP is an outcome given by the classifier when it inaccurately predicts 

the positive class while FN occurred due to misclassification of instances of positive class. These 

four measures were used by all the performance metrices given below. Mathematically, accuracy 

is defined as. 

 

                Accuracy   =               
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3.13.3 Precision: 
 

      Precision is determined as the ratio of the total number of true positives to the total number of 

instances predicted as positive. 

  

                           Precision   =                                        

3.13.4 Recall: 

 

         It is also known as sensitivity. Recall determines the proportion of correctly predicted 

positive instances out of all actual positive instances. It is calculated by dividing the total number 

of true positives by the sum of true positives and false negatives. 

 

                          Recall   = 

 

3.13.5 F1 Score: 

 

    The F1 score is the harmonic mean of precision and recall scores. A higher F1 score indicates a 

better-quality classifier. 

 

                         F1 Score =     

 

    The model having all these measures satisfied would be considered as the best model as the 

results predicted by the model would be reliable enough and then it be used as a generalized model 

for the prediction on unknown dataset. 
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                                                                  Chapter 4 

Results and Discussion 
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4 Results and Discussion 
 

    The goal of this study was to collect the data of all the FDA-approved drugs and target proteins 

associated with the nine neurological and ten neurodegenerative disorders from different online 

available databases for the development of a comprehensive database. Using the developed 

database, the construction and integration of three networks i.e., target-disease, disease-drug and 

target-disease-drug association networks was performed. After networks construction, various 

machine learning and deep learning models was developed and trained for the classification of the 

networks with respect to neurological vs neurodegenerative disorders. The ultimate goal of our 

proposed study was drug repurposing of neurological disorders by making a connection of drug 

fingerprints with the target descriptors and associated disease. To achieve these goals, a couple of 

online available target proteins and drugs databases are explored for the data collection and 

different tools are used for descriptors computation, network construction, Machine 

Learning/Deep Learning model building and development by undergoing series of different steps. 

In this chapter, the results of each step of our methodology are presented and discussed to infer 

from the analysis. In general, our models classify the target proteins and drugs for neurological 

and neurodegenerative disorders separately. And the main achievement of our proposed work was 

the prediction of an unknown drug based on their fingerprints for the disease type and specific 

target descriptors, which is a significant success in the field of drug discovery and precision 

medicine. Furthermore, several targets and drugs overlap are uncovered between various neuronal 

disorders. Overall, the results provide a comprehensive view of the drugs and protein targets 

associated with a specific neuronal disorder type. The results of each step are described in detail 

in the following paragraphs: 

 

4.1 Data Collection: 

 

4.1.1 Selection of Diseases:  
 

    Neurological and Neurodegenerative disorders are selected due to their prevalence and mortality 

rate worldwide, with the help of literature and different organizations such as World Health 
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organization (WHO), Global Burden of Diseases (GBD), etc. Nine neurological disorders and ten 

neurodegenerative disorders were selected, which are shown in Table 4. 

Table 4 List of all selected Neurological & Neurodegenerative disorders 

Serial no.                                   

1. A zhe me ’  D  ea e Neu   ege e a ve       e  

2. Hu   gt  ’     ea e Neu   ege e a ve       e  

3. P        ea e Neu   ege e a ve       e  

4. D w  Sy    me  Neu   ege e a ve       e  

5. P  g e   ve Sup a uc ea  Pa  y  Neu   ege e a ve       e  

6. Maj   Dep e   ve D     e   Neu   ege e a ve       e  

7. Mu  p e Sc e       Neu   ege e a ve       e  

8. Pa k     '     ea e Neu   ege e a ve       e  

9. Deme  a Neu   ege e a ve       e  

10.     t temp  a  L ba  Dege e a    Neu   ege e a ve       e  

11. M g a  e Neu    g ca        e  

12. P ych  c       e  Neu    g ca        e  

13. P a e  W     Sy    me  Neu    g ca        e  

14. Ob e   ve c mpu   ve       e  Neu    g ca        e  

15. Ep  ep y  Neu    g ca        e  

16. Au  m Spect um D     e   Neu    g ca        e  

17. A x ety       e  Neu    g ca        e  

18. W    am  Beu e   y    me Neu    g ca        e  

19. Amy t  ph c  ate a   c e      Neu    g ca        e  

 

4.1.2 Target Data Retrieval: 
 

    In the first step of the methodology, a publicly available protein-targets dataset from the two 

databases are collected for the nine neurological and ten neurodegenerative disorders one by one 

and then merged all the datasets of all the selected neuronal disorders. The total data of the protein-

targets retrieved from STRING database, after merging the targets datasets for each disorder and 
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the total data of the protein-targets retrieved from Therapeutic Target Database (TTD), after 

merging the targets datasets of each disorder, by giving the query of each Neurological and 

Neurodegenerative disorder individually and then merged the dataset of both databases to remove 

target duplicates. After removing duplicates, the data contained 821 unique targets protein between 

the protein-protein interaction edges zero to seventy-one. We shortlisted the targets datasets having 

edges of at least three to seventy-one. The total unique data of target proteins for all the nineteen 

neuronal disorders remained 236, which is shown in table 5. 

Table 5 List of all the selected Protein-Targets for Neuronal disorders 

Sr. no. Targets Name No. of Edges Serial. no. No. of Edges Targets Name 

1 MT-ND2 3 120 10 CST3 

2 HSPG2 3 121 10 IL7R 

3 ASTN2 3 122 10 HLA-DRB1 

4 PRRT2 3 123 10 PVALB 

5 NPAS3 3 124 10 GABRB3 

6 NDN 3 125 10 GABRA5 

7 SLC6A4 3 126 10 HTR1A 

8 SNCA 4 127 10 MAOA 

9 HTT 4 128 10 HTR2A 

10 BDNF 4 129 11 NALCN 

11 APOA1 4 130 11 GABRE 

12 C1QB 4 131 11 VARS 

13 CAD 4 132 11 KCNS3 

14 MARS2 4 133 11 SYNJ1 

15 KCNMB3 4 134 11 SLC2A1 

16 PROSC 4 135 11 STAT3 

17 EPM2A 4 136 11 MOG 

18 ITPA 4 137 11 RELN 

19 POMC 4 138 11 COMT 

20 SLC35A2 4 139 11 OXT 

21 CASR 4 140 12 KCNQ5 

22 APOE 4 141 12 ADAM10 

23 APP 4 142 12 IL17A 
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24 GRN 4 143 12 CD40 

25 TARDBP 4 144 12 IL2RA 

26 MAPT 4 145 12 IFNB1 

27 CTNND2 4 146 12 MLXIPL 

28 CACNA1H 4 147 12 GRM3 

29 NCF1 4 148 13 ATXN2 

30 CACNA1A 4 149 13 ARX 

31 OCA2 4 150 13 PICALM 

32 SLC1A1 4 151 13 CD80 

33 APCS 5 152 13 CD86 

34 C1QC 5 153 13 DYRK1A 

35 EEF1A2 5 154 14 TH 

36 YWHAG 5 155 14 ATP6V1A 

37 MEF2C 5 156 14 KCNT2 

38 MT-ND1 5 157 14 A2M 

39 PARS2 5 158 14 CD4 

40 TNRC6A 5 159 14 NRXN1 

41 GSK3A 5 160 15 PFN1 

42 CACNA1C 5 161 15 PNKP 

43 HLA-DRB5 5 162 15 CACNA2D2 

44 SCN1A 5 163 15 IDE 

45 TRPM8 5 164 15 CTSB 

46 ATP1A2 5 165 15 STX1A 

47 OLIG2 5 166 15 GRIN2A 

48 GABRR1 5 167 16 KCNH1 

49 AKT1 5 168 16 MTOR 

50 GABRR3 5 169 16 MECP2 

51 UBE3A 5 170 16 LIMK1 

52 DRD4 5 171 16 DISC1 

53 MAP1B 6 172 17 TBK1 

54 ATP1A3 6 173 17 IL6 

55 C1QA 6 174 17 SYNGAP1 

56 CUX2 6 175 17 NSUN5 
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57 AARS 6 176 18 DNAJC6 

58 POLG 6 177 18 CACNA1E 

59 TPP1 6 178 18 CNTNAP2 

60 GLS 6 179 18 FMR1 

61 STK39 6 180 18 BAZ1B 

62 MAPK10 6 181 19 TUBA4A 

63 DAB1 6 182 19 SIGMAR1 

64 KCNU1 6 183 19 CHRNA2 

65 ALDH7A1 6 184 20 NEK1 

66 MDH1 6 185 20 GABRA2 

67 SLC6A3 6 186 20 CLU 

68 TOMM40 6 187 20 CHD8 

69 OXTR 6 188 21 SPG11 

70 WBSCR22 6 189 21 GRIK1 

71 KCNK18 6 190 21 SCN2A 

72 YWHAZ 7 191 21 GRIN2B 

73 C3 7 192 22 NEFH 

74 ATIC 7 193 22 SCN3A 

75 CSTB 7 194 22 KCNB1 

76 FUS 7 195 23 PLA2G6 

77 VCP 7 196 23 CACNA1D 

78 GRM5 7 197 23 SLC25A22 

79 DRD2 7 198 23 PLCB1 

80 CRHR1 7 199 23 DNM1 

81 KATNAL2 7 200 25 MATR3 

82 ADNP 7 201 25 KCNJ10 

83 ELN 7 202 25 CRH 

84 GABRA4 7 203 26 PINK1 

85 TAAR6 7 204 26 SOD1 

86 PIGB 8 205 26 PNPO 

87 SCARB2 8 206 26 NTRK2 

88 TSC1 8 207 26 SCN9A 

89 HCN1 8 208 27 DCTN1 
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90 MDH2 8 209 27 OPTN 

91 ATP2A2 8 210 27 GABRB2 

92 ATP1A1 8 211 28 GABBR2 

93 GIG25 8 212 28 SLC1A2 

94 GBA 8 213 28 CNTN2 

95 MBP 8 214 29 CLCN2 

96 DSCAM 8 215 29 CHRNA4 

97 NOS1AP 8 216 30 STX1B 

98 GAD2 8 217 30 LGI1 

99 FKBP5 8 218 31 ATP13A2 

100 SLC18A2 9 219 31 PARK7 

101 PRNP 9 220 32 KCNMA1 

102 TSC2 9 221 32 CACNA1B 

103 GRIN2D 9 222 37 PCDH19 

104 QARS 9 223 37 CDKL5 

105 GRM7 9 224 38 KCND2 

106 PPP3CA 9 225 38 SCN1B 

107 KCNK4 9 226 39 SLC12A5 

108 TNFRSF1A 9 227 39 GTF2I 

109 PTEN 9 228 40 KCNC1 

110 GABRB1 9 229 42 SLC6A1 

111 NR3C1 9 230 42 GABRD 

112 CCK 9 231 47 KCNT1 

113 SNCAIP 10 232 48 KCNA2 

114 PANK2 10 233 49 GRIA2 

115 ANG 10 234 52 KCNQ3 

116 SMN1 10 235 52 GABRA1 

117 CASK 10 236 56 SCN8A 

118 CTSD 10 237 63 GABRG2 

119 GSK3B 10 238 71 KCNQ2 

 

    The Network of protein targets obtained from STRING database is shown in this figure: 
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    The sequences of all the selected target proteins were obtained from UniProt using the given 

UniProt IDs and downloaded the data in an Excel file. The data of target protein sequences is 

shown in table 6. 

Table 6 Protein-Targets Sequences obtained from Uniprot 

Sr. # Targets Names Targets Sequences 

 

1. 

 

KCNU1 

>sp|A8MYU2|KCNU1_HUMAN Potassium channel subfamily U 

member 1 OS=Homo sapiens OX=9606 GN=KCNU1 PE=1 SV=2 

Figure 4.1 Network of protein targets obtained from STRING database. 
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MNPLAQPVIYSTIFAGTLITALSSHWFFTWVGLEMNMLAFIP

VLTKKMNPRSTEAAIKYFLTQATASMILLMAILFNNMLSGQ

WTMTNTTNQYSSLMIMMAMAMKLGMAPFHFWVPEVTQG

TPLTSGLLLLTWQKLAPISIMYQISPSLNVSLLLTLSILSIMAGS

WGGLNQTQLRKILAYSSITHMGWMMAVLPYNPNMTILNLTI

YIILTTTAFLLLNLNSSTTTLLLSRTWNKLTWLTPLIPSTLLSL

GGLPPLTGFLPKWAIIEEFTKNNSLIIPTIMATITLLNLYFYLRL

IYSTSITLLPMSNNVKMKWQFEHTKPTPFLPTLIALTTLLLPIS

PFMLMIL 

 

2. 

 

NCF1 

>sp|P14598|NCF1_HUMAN Neutrophil cytosol factor 1 OS=Homo 

sapiens OX=9606 GN=NCF1 PE=1 SV=4 

MGDTFIRHIALLGFEKRFVPSQHYVYMFLVKWQDLSEKVVY

RRFTEIYEFHKTLKEMFPIEAGAINPENRIIPHLPAPKWFDGQ

RAAENRQGTLTEYCSTLMSLPTKISRCPHLLDFFKVRPDDLK

LPTDNQTKKPETYLMPKDGKSTATDITGPIILQTYRAIANYEK

TSGSEMALSTGDVVEVVEKSESGWWFCQMKAKRGWIPASF

LEPLDSPDETEDPEPNYAGEPYVAIKAYTAVEGDEVSLLEGE

AVEVIHKLLDGWWVIRKDDVTGYFPSMYLQKSGQDVSQAQ

RQIKRGAPPRRSSIRNAHSIHQRSRKRLSQDAYRRNSVRFLQ

QRRRQARPGPQSPGSPLEEERQTQRSKPQPAVPPRPSADLILN

RCSESTKRKLASAV 

 

3. 

 

TAAR6 

>sp|Q96RI8|TAAR6_HUMAN Trace amine-associated receptor 6 

OS=Homo sapiens OX=9606 GN=TAAR6 PE=2 SV=1 

MSSNSSLLVAVQLCYANVNGSCVKIPFSPGSRVILYIVFGFGA

VLAVFGNLLVMISILHFKQLHSPTNFLVASLACADFLVGVTV

MPFSMVRTVESCWYFGRSFCTFHTCCDVAFCYSSLFHLCFISI

DRYIAVTDPLVYPTKFTVSVSGICISVSWILPLMYSGAVFYTG

VYDDGLEELSDALNCIGGCQTVVNQNWVLTDFLSFFIPTFIM

IILYGNIFLVARRQAKKIENTGSKTESSSESYKARVARRERKA

AKTLGVTVVAFMISWLPYSIDSLIDAFMGFITPACIYEICCWC
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AYYNSAMNPLIYALFYPWFRKAIKVIVTGQVLKNSSATMNL

FSEHI 

… … …… 

… … …… 

 

236. 

 

C1QC 

>sp|P02747|C1QC_HUMAN Complement C1q subcomponent 

subunit C OS=Homo sapiens OX=9606 GN=C1QC PE=1 SV=3 

MDVGPSSLPHLGLKLLLLLLLLPLRGQANTGCYGIPGMPGLP

GAPGKDGYDGLPGPKGEPGIPAIPGIRGPKGQKGEPGLPGHP

GKNGPMGPPGMPGVPGPMGIPGEPGEEGRYKQKFQSVFTVT

RQTHQPPAPNSLIRFNAVLTNPQGDYDTSTGKFTCKVPGLYY

FVYHASHTANLCVLLYRSGVKVVTFCGHTSKTNQVNSGGV

LLRLQVGEEVWLAVNDYYDMVGIQGSDSVFSGFLLFPD 

 

4.1.3 Drugs Data Retrieval: 
 

    The data of all the FDA-approved, experimental phase, investigational phase, nutraceutical, 

Illicit and withdrawn drugs was retrieved from multiple databases, such as, DrugCentral, e-

Drug3D, ChEMBL and DrugBank by giving the query of all the selected protein-targets one by 

one and all for all the Neurological and Neurodegenerative disorder individually. Then we merged 

the dataset of all the databases to remove duplicates of all drugs. Then we keep only the data of all 

FDA-approved drugs. After shortlisting, the data contained 964 unique drugs as shown in the Table 

7. The SMILES of all the selected drugs were obtained from PubChem database using the given 

drug name and downloaded the data in an Excel file. 

Table 7 Data of 964 unique FDA-approved drugs for all the neuronal disorders 

  .   .         .   .         .   .       

1 NADH 323 M c    m c    645        e acetate    

2 Metf  m   324    tama   b 646 De     e    

3 

  av   a e   e 

   uc e   e 325 L th um c t ate 647 

Dexametha   e 

acetate    

4 Ub  eca e   e 326 Ha  tha e 648 De  x meta   e    
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5  yc   p    e 327 Ibu    e    649 D flup e  ate    

6 Ha  pe      328 Levam    p  e   650   u   meth    e    

7  e ta y  329 Ra   az  e   651   u ca   e    

8  a  ub c   330 Ate        652    c  t    e    

9 Oxyge  331 Am   a   e  653 Mege t    acetate   

10 D Ty     e 332 D   azem  654   umetha   e   

11 I  t e      333 D   e a   e  655 Mep e      e   

12 M   ac p a   334 I avuc  az  e  656 A c  meta   e   

13   ta  p am 335 P  p ve   e  657 Amc      e   

14    m p am  e       336 T p  amate  658 D fl  a   e   

15 E c ta  p am 337 Am x c      659   u xyme te   e   

16   uv xam  e       338   avu a  c ac   660   u a   e     e   

17 Pa  xe  e       339  a bamazep  e      661   u ca   e fu  ate   

18 Se t a   e       340 Lam t  g  e     662 Hy   c  tamate   

19   u xe  e   341 Oxca bazep  e    663 

Hy   c      e 

buty ate   

20 De  p am  e 342 N t azepam    664 

Hy   c      e 

cyp   ate   

21 Du  xe  e 343 Phe acem  e    665 

Hy   c      e 

p  butate   

22 Im p am  e 344    bazam   666 

Hy   c      e 

va e ate   

23 N  t  pty   e      345 Leve  acetam   667 L tep e     etab  ate   

24  e  afax  e 346 Tet aca  e   668 Me  y   e   

25 At m xe  e     347 Pe meth      669 P e   ca bate   

26 Am t  pty   e     348 Phe az py     e   670 R mex    e   

27 Am xap  e     349 B  va acetam  671 U    e xych   c ac     

28 De ve  afax  e     350  h    p  ca  e  672 

Betametha   e 

ph  phate  

29 D xep   351 D ch    be zy  a c h    673    beta   e  

30 P  t  pty   e 352 P am ca  e  674 D   p  e   e  
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31 T  m p am  e     353 P  p xyca  e  675   u   c      e  

32   ca  e 354 E   ca bazep  e  676 Ge t     e  

33 Phe te m  e     355 E   ca bazep  e acetate  677 

Hy   c      e 

ph  phate  

34    az    e     356 Eth t     678 Lev    ge t e   

35 M  tazap  e    357 Lac  am  e  679 N  eth  te   e  

36 Lumatepe   e    358 Mex  e  e  680 Sege te   e acetate  

37      xe  e  359 P    ca  e  681 U  p   ta   

38 Bup  p    360 P  m    e  682 U  beta     

39 R  pe     e 361 P  pafe   e  683  yp  te   e acetate  

40 M  ap   e 362 Rufi am  e  684 Eth  y e t a      

41 T ama    363 Safi am  e  685   up e        e  

42 T az    e 364 Am      e  686 Methy te t  te   e  

43 Maz      365 Ge a      687 Pa ametha   e acetate  

44 Methy phe   ate    366 Hy   xyc t   e  a   688 P e        e tebutate  

45 D  u ep     367 L    e c ac    689  affe  e   

46 Dext  amphetam  e   368 Ouaba      690 Mag e  um  x  e  

47 D pam  e 369 D g x     691 S  ca   e   

48 Mepe     e 370 B  ac  y   692  h  ecy t k      

49  e apam   371 Rub   um Rb 82  693 G  ge   

50 Bup e   ph  e   372 Acety   g t x    694 Pa t the  c ac   

51 Etha    373 De  a     e  695 P     c ac   

52 Metha   e  374 D g t x    696 R    p am  

53 M  ph  e   375 B  mazepam   697 Am kac    

54 Racephe    e   376  h     azep x  e   698 A         e  

55 R bav       377     azepam   699 Hy  a az  e  

56    zap  e   378     azep c ac     700 Nabumet  e  

57 Dexmethy phe   ate 379     azepam   701 Phe y buty  c ac    

58 Dext  meth  pha    380 E taz  am   702 Th abe  az  e  

59 M a  e      381   u azepam   703 St ept z c   

60 A  p p az  e  382 M  az  am   704 Betu    c Ac   
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61 Be zat  p  e  383 Oxazepam   705 Ec  az  e 

62  h   phe   am  e  384 P azepam   706 Dap   e   

63  yc  be zap   e  385 Quazepam   707 Lapa   b   

64 L  p p az  e  386 Temazepam   708 R  uva ta     

65 L xap  e  387 T  az  am   709 A   pu       

66 P  ca  e  388 A p az  am  710 Nev  ap  e  

67 Tape ta     389 D azepam  711  a b maz  e  

68 Be be   e  390 Rem maz  am  712 Efav  e z  

69 O a zap  e  391 1,2 Be z   azep  e  713   uc  xac       

70 Que ap  e  392 

gamma Am   buty  c 

ac    714 Lum  ac x b  

71 S    amfet    393 M  tef    e   715 Meth maz  e  

72 Phe e z  e  394 Gemc tab  e   716 P tava ta    

73 Z p a     e  395 Ne fi av     717 T c  p    e  

74   ppe  396 A  e  c t   x  e   718    p  p f      

75 Myc phe    c ac   397 A a t  z  e  719 P pe az  e   

76 Dequa    um 398  u ve t a t  720 Z p c   e    

77 Ge  a  v   et ca    399 A ec   b  721  a    p       

78 Ket c  az  e 400 A pe    b  722 Na at  pta       

79 Azac     e  401 Dab afe  b  723 Z  m t  pta       

80  h    x  e  402 Eve    mu   724 Methy e g  e     

81 Dac   myc    403 I    teca   725 P            

82 Dau   ub c    404 L va ta    726 E et  pta    

83 D py  th   e  405 N  te a  b  727 P z  fe    

84   u  e ce    406 S  afe  b  728 Oxymetaz    e   

85   u p    e e  407 Tem      mu   729 Pe but       

86 I a ub c    408  emu afe  b  730 T  p  et      

87 Leflu  m  e  409   umaze     731 A ve   e   

88 M t xa t   e  410 Et m  ate  732 D hy   e g c     e  

89 Oxybe z  e  411 R  g   e     733 G  te     b  

90 P  flav  e  412 Pa  pe     e    734 L fex    e  
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91 P  methaz  e  413 Su p    e    735    vat  pta   

92 Te az      414 Meth t  mep az  e    736 R zat  pta   

93 

Tet amethy th u am 

m    u fi e  415 R p      e    737 M c  bem  e       

94 Th me   a   416  abe g    e    738 Se eg    e       

95 Th  am  417 L  u   e    739 L  ez          

96 T  c  ca ba   418 A e ap  e   740 T a y cyp  m  e      

97  a  eta  b  419 P  p  maz  e   741 I  ca b xaz       

98 H  tam  e   420 A  p p az  e  au  x    742 A m t  pta     

99 Ketam  e   421 Bu p    e  743 Pa gy   e    

100 N  ep  eph   e   422 Ep c  p  e  744 Te  z       

101 P am pex  e   423 E g      me y ate  745 R b flav     

102  a p   c ac     424    ba  e     746 Betah    e  

103 D am  ph  e   425 I  pe     e  747 E avacyc   e  

104 Sumat  pta    426 Na       e  eca  ate  748 Oxymeth    e  

105  ap a c     427 M  afi     749 P  ca baz  e  

106  h   p  maz  e   428 Amb   e ta   750 Te  z     ph  phate  

107    ch c  e   429 Am  u p   e  751 Te t  te   e cyp   ate  

108 D x  ub c     430 D mpe     e  752 Te t  te   e e a thate  

109 Ge tam c     431 Me     az  e  753 

Te t  te   e 

u  eca  ate  

110 I   methac     432 Met c  p am  e  754 Ub  gepa t  

111 Lev   pa   433 D  pe       755 G  kg  b   ba  

112 Pac  taxe    434 Phe y t   xam  e  756 A eth  e  

113 P   ca p  e   435 P  maz  e  757 M t ta e  

114 E ketam  e  436 Be pe       758 P mava  e        

115  h          u fate  437  e     pam  759 Mete g    e    

116 Ama ta   e  438 P  ch   pe az  e  760 Ep  a   e   

117  yp  hepta   e  439 Betametha   e 761 Ag me a  e  

118 E ta     e  440 S  ve  ca    762 Methy e g met   e  

119 Hy   c      e  441 R famp c   763  a   e 
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120 

Hy   c      e 

acetate  442 A e     e  764 Da famp     e  

121 

Hy   c      e 

 ucc  ate  443    fa ab  e  765 Gua     e  

122 L th um ca b  ate  444 Pe c c  v    766 G uc  am  e   

123 L  azepam  445 

S   um ph  phate, 

m   ba  c  767 P  g  taz  e   

124 Mep vaca  e  446  a ac c  v    768 R   g  taz  e   

125 G utam c ac   447 Dexametha   e 769  a b xymethy ce  u   e  

126 Bac  fe   448 E cu    770   u e xyg uc  e (18 )  

127 B  tez m b  449 Empag  fl z   771 L p  c ac    

128     c t  p    450 L  ag u  e 772 Aca ab u   b  

129  u cum    451 Amp c      773 Amph te  c   B  

130 D  a     e  452  a    ac      774 

Omacetax  e 

mepe ucc  ate  

131 D  epez    453  efama    e  afate 775 Py  metham  e  

132 D   ab      454  efix me 776 Be z ca  e 

133   u   u ac    455 D c  xac      777 Ta   c ac   

134   u b p  fe   456 Me a az  e 778 E tacap  e         

135 Gemfib  z    457 Ic  ape t 779 Op cap  e    

136 G ucag    458 L  a ta  780 Sufe ta      

137 L   ca  e  459 Ima   b   781 D butam  e   

138 Methy p e        e  460 I  p e a   e  782 M cafu g     

139 Mety     e  461 Qu      e 783    jugate  e t  ge    

140 M fep   t  e  462 A te  m    784 Ny        

141 Na  x  e  463 Ace c ac    785 A eme     e  

142 N ca   p  e  464 Beta  e  786 A fe ta     

143 N c   e  465 Py    x  e  787 But  pha     

144 Ny ta    466 D ethy p  p       788    e  e  

145 P  p a       467 Phe met az  e    789 Hy   c    e  

146 P  py th  u ac    468 A m  afi      790 Hy   m  ph  e  



99 | P a g e  
 

147 S mva ta    469 D  u fi am   791 T  hexyphe   y   

148 S   um ch     e  470 Be zphetam  e   792 W    c e   te  

149 T p teca   471 D phe y py a   e   793 Ez gab  e      

150  a  p e      472 L   examfetam  e   794 S  b t    

151  e tep  fi   473 Duta te   e  795 E yth  myc    

152    c     e  474 I flupa e 796 Hy   qu    e  

153  e  fib ate    475 Se  exmethy phe   ate  797   u a ab  e   

154 Te t  te   e   476 Acety cy te  e  798 The phy    e   

155 Z  c acetate  477  a bet c   799  e   z  e  

156  h  e te      478 At   ba  800   a   b  e  

157 Z  c ca     479 Oxyt c   801 Dec tab  e  

158 Z  c ch     e  480 De m p e     802   utam  e  

159 Z  c  u fate 481 

  methy tet ahy   f   c 

ac   803 Lev thy  x  e  

160 I fig a   b  482 

Huma   mmu  g  bu    

G  804 Me capt pu   e  

161 S     mu   483 Pemet exe  805 Ga   c  

162  u   em  e  484  up  c  h     e 806 P  fe     e  

163 Lam vu   e  485 Ra  x fe e   807 Lact  e 

164 L G utam  e    486         e  808 Xy   e 

165 A pa  c ac     487 Dexme et m    e  809 Am ac   e  

166 Amm   a  488 Et   c x b  810 Py  th   e  

167  am     e  489 Oxyc    e  811 Qu  e t     

168 Ph  ph   c ac    490 Rem fe ta     812 Saqu  av    

169 Wate   491 R cu    um  813 I    

170 Racemeth     e 492 Acamp   ate 814 T  em fe e 

171 Py  ph  ph   c ac   493 Pe phe az  e       815 D Phe y a a   e     

172 Se e  meth     e 494   uphe az  e      816 Sap  pte       

173 M c  az  e 495 B exp p az  e     817 D xycyc   e   

174 N t e   p  e 496  a  p az  e     818 I be gua e  u fate 

175 R t     e 497 Lu a     e    819 T  amte e e  
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176 T  mebu  e 498 B  mpe         820 E      c ac   

177 P ta   um 499 Qu  ag    e    821 T  u     c ac   

178 Py    xa  ph  phate 500 Acet phe az  e    822 A e      c ac   

179 T  flu pe az  e   501 M       e    823   ufe am c ac    

180 Azath  p   e 502 Th  th xe e    824 Bac t ac   

181 Me capt pu   e   503 T  flup  maz  e    825 Th  mb   

182 Meth t exate   504 Zuc  pe th x      826 P  maqu  e   

183   t  c ac     505 P p  az  e    827 Z   vu   e   

184 Mag e  um   506 Ra ag    e   828      amyc     

185 L pe am  e 507 E g tam  e   829 Abacav    

186 Setme a    e 508 Y h mb  e   830 At vaqu  e  

187 Afame a    e 509 

D hy    a pha 

e g c yp  e  831  a bam  e pe  x  e  

188 Ga act  e 510 Map      e  832    amp e av    

189    aca cet       511 Mema   e  833 Le a    m  e  

190   amyce      512 Tet abe az  e  834 Lev  euc v      

191 Ete ca ce  e    513 Na t ex  e  835 Ma av   c  

192 St    um ch     e   514 Dap p az  e  836 Pe tam    e  

193 Pam      c ac     515 D pexam  e  837 Stavu   e  

194  a c um c t ate  516 E g met   e  838 Su fameth xaz  e  

195  a c um Ph  phate  517 Mephe te m  e  839 T  meth p  m  

196 

 a c um ph  phate 

  hy  ate  518 Meta am      840     c ac    

197 At  va ta      519 Naphaz    e  841 Amp e av    

198   uva ta      520 Pe az  e  842    tem av    

199 P ava ta      521 Phe  xybe zam  e  843 T p a av    

200 Wa fa       522 Phe t  am  e  844 I  u    beef 

201 Ga a tam  e   523 Phe y eph   e  845 I  u    huma  

202 R va  gm  e   524 T  az    e  846 I  u       p   

203 Ace  c uma      525 

    c  e     v  e 

t  flutate  847 I  u    p  k 
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204 R t  av     526 Bu e     e  848 B     

205 Ga c c  v    527 Te ava c    849 U ea 

206 I be a ta   528 Ma ga e e 850 

T a tuzumab 

 e uxteca  

207 L  azepam  529 Butaba b ta     851 N t  c Ox  e 

208 P e      e  530 Buta b ta     852 Ly   e 

209 T  amc      e  531 But ba b ta     853 D fe    e  

210 Lute    532   u  t azepam    854 D xaz      

211 D me cap    533 Mep  bamate    855 Eba   e  

212 A um   um  534 Methy phe  ba b ta     856 G a  eg b  

213 

A um   um 

ph  phate  535 Pe t ba b ta     857 Paz pa  b  

214 A um  um acetate  536 Sec ba b ta     858 Da a   b  

215 Defe  xam  e  537 Ta buta     859 E t ec   b 

216     betabe  (18 )  538 Th  pe ta     860 DL a pha T c phe    

217     betap   (18 )  539 Apa utam  e   861   tam   A 

218   utemetam   (18 )  540 E z p c   e   862 I     uc   e 

219 T  metham  e  541 Ga ax    e   863 B   me   b 

220 Hy   xych    qu  e  542 G uteth m  e   864 T c phe    

221 P  p f    543 Ketaz  am  865 A  a t    

222    t  maz  e  544 L  metazepam  866 Ba  a az  e 

223 Hy   ge  pe  x  e  545 

Me   xyp  ge te   e 

acetate  867 Ne  c  m   

224 Tam x fe  546 S   pe t    868 Oxyqu      e 

225 E t a     547 Tau   e  869 R     

226  y te  e  548 Phe  ba b ta   870 If  fam  e 

227 B f  az  e  549  e  bamate  871 Lev fl xac   

228 

 he   e xych   c 

ac    550  yc  ph  pham  e 872 Met     az  e 

229 Dex bup  fe   551 Ep  ub c   873 M   cyc   e 

230 D c  fe ac  552   u   u ac   874  abaz taxe      
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231 E t   e  553 Tac    mu  875 P c  p   phy        

232   uc  az  e  554 Acety  a  cy  c ac   876 G   e fu v    

233 Ibup  fe   555 Ivab a   e 877 Ixabep    e  

234 P  ge te   e  556 A bum   huma  878 T a tuzumab emta    e  

235 R  uz  e  557   c  p   x  879    b a   e  

236 A e   e  558 T  ch   meth az  e 880    flu   e  

237 P a te   e  559 A m t   e    881      e b  e  

238 D cetaxe     560 B ety  um   882 Pe taz c  e    

239 La   p az  e   561 Etac y  c ac     883 N  cap  e  

240 Me a    e   562 Mag e  um acetate  884 Mecamy am  e     

241 D hy   e g tam  e   563 Mag e  um g uc  ate  885  a bam y ch    e    

242 Racep  eph   e   564 P ta   um acetate  886 Decameth   um    

243     tauc p     18  565 P ta   um ca     887 D xacu  um    

244 E  bu     566 P ta   um g uc  ate  888 Met cu   e    

245 Ethambut    567 P ta   um  u fate  889 M vacu  um    

246 Ac t e    568 Mag e  um ca     890 Pa cu    um    

247 Am   h ppu  c ac    569 A temethe   891 P pecu    um    

248 Am     e  570 Ep e e   e  892 Tub cu a   e    

249 Ap m  ph  e  571 Lumefa t   e  893  ecu    um    

250  a b   pa  572 D az x  e  894    at acu  um   

251  a b p a    573 Amb  x      895 At acu  um   

252  efac     574 

N acety  a pha D 

g uc  am  e  896 B pe   e    

253    p a    575 Beta D G uc  e  897 Ga  am  e t  eth     e   

254   e zyme M  576 Aca b  e  898 At acu  um be y ate  

255 Da t   e e  577 M ga a tat  899 Succ  y ch    e  

256 Dexket p  fe   578 M  tazap  e    900 Leva    pha   

257 D hy   e g c     e  579 Hy   c      e  901 Qu      e ba b tu ate  

258 D c  exe t  580 A c  b c ac   902 Lub p   t  e 

259 E  mep az  e  581 R fax m   903 M g u tat 

260  e    p  e  582 S   um  u fate 904 Amy metac e     
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261 Gefi   b  583 D  a et    905 E   ca  e  

262 

I   g      u f   c 

ac    584 G a   et    906 L   flaz  e  

263 It ac  az  e  585 G  mep    e 907 G  qu    e 

264 Ma  p  c    586 Repag     e 908 T  butam  e 

265 Me pha a   587 G  p z  e 909 Stea  c ac     

266 Methy   pa  588 G ybu   e 910 Et p    e  

267 Methy e e b ue  589  a b      x  e 911 Pa m  c Ac    

268 N c   am  e  590 Deutet abe az  e    912 La   p az  e 

269 N fe  p  e  591  a be az  e    913 A g    e 

270 N taz xa   e  592 De e p    e    914  h   p  pam  e  

271 Oxytet acyc   e  593 R  e be ga    915 G ym    e  

272 Pa t p az  e  594 I  methepte e   916 T  azam  e  

273 Rabep az  e  595 P  py hexe    e   917 M   x      

274 Su fa a az  e  596 Re c   am  e  918 N c  a      

275 T  c abe  az  e  597 O phe a    e    919 Hy   c      e 

276 T  met exate  598 G yc  e   920 E a av  e   

277 a pha L    e  c ac    599   uc c  v  e (18 )  921 Be z y  pe  x  e  

278  h  eca c fe     600 Gua fe e     922 

a pha T c phe    

acetate  

279 Ox t  pta   601 

Mag e  um acetate 

tet ahy  ate  923 

a pha T c phe    

 ucc  ate  

280 Z    am  e     602 Mag e  um ca b  ate  924   av   m    uc e   e   

281 I  a  p  e    603 Hupe z  e A 925 La  t ec   b   

282   u a  z  e    604  e bamate  926    z    b  

283 Ma    p  e   605 D Se   e  927 S   um  xybate   

284 N  va  p  e   606 P mec    mu  928    g   m   

285     a  z  e   607   c   p     929  h    e  

286 B  a  eth     608  apec tab  e   930  a e  c   e      

287  a  ab       609 E      b   931 At  p  e    
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288 E flu a e  610 

Methy p e        e 

hem  ucc  ate  932 Am ba b ta   

289 Sp      act  e  611 P e        e  933 E t a     acetate  

290 E g ca c fe     612 P e        e acetate  934 E t a     be z ate  

291 Am    p  e  613 

P e        e 

ph  phate  935 E t a     cyp   ate  

292   ev   p  e  614 Ab  ate   e  936 E t a       e a thate  

293 Lac   p  e  615 B   me   b  937 E t a     va e ate  

294 N      p  e  616   pa     b  938 Phy    gm  e  

295  e ec x b  617 Dac m    b  939 Sc p  am  e  

296 Eth  ux m  e  618 E c  afe  b  940 

H mat  p  e 

methy b  m  e  

297 Gabape     619 E za utam  e  941 Ip at  p um  

298 

Gabape    

e aca b    620 I e a    b  942 Meth c p  am  e  

299 Meth ux m  e  621 N  apa  b  943 Oxybuty     

300 Oxat m  e  622 O apa  b  944 P eg e     e  

301 Pa ametha    e  623 Oxa  p a    945 T  p cam  e  

302 Phe  ux m  e  624 Pa b c c  b  946 Pe t     um  

303 P egaba     625 Rucapa  b  947 T  methapha   

304 T  metha    e  626 Se ume   b  948  h   z xaz  e    

305 P m z  e  627 Ta az pa  b  949 Be    flumeth az  e   

306 N m   p  e  628 Tem z   m  e  950    m g  c c ac     

307 D  tave   e  629 T  ba  bu     951 Hy   ch    th az  e   

308 Mag e  um  u fate  630  e et c ax  952 G  c az  e  

309 Me th    631        tat  953 I  apam  e  

310 Phe yt     632 

gamma Hy   xybuty  c 

ac     954 Nateg     e  

311 Z c     e  633 Za ep     955  h    th az  e  

312 A ef v     p v x   634 

  u ca   e 

p  p   ate       956  a b   m   x  e  
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313 Te  f v       p  x   635   c e     e      957 Ep fiba  e  

314 Te b vu   e 636 

   beta    

p  p   ate      958 He pe       

315 Z  p  em 637 

  u c      e 

acet    e     959 D   py am  e   

316 D Th e    e 638   u c      e     960 Bumeta   e 

317 De flu a e    639 

Bec  metha   e 

  p  p   ate     961    a te   e  

318 Sev flu a e    640 Deflazac  t     962 T agab  e 

319 I  flu a e   641 M meta   e fu  ate     963  yc  th az  e    

320 Ha  tha e  642   u       e     964 Mec  fe am c ac    

321 Pe ampa e   643 P  acetam   965 Meth hex ta  

 

 

4.2 Descriptors Formation: 

 

    Once the data of the protein-targets, drugs and diseases was collected the descriptors were 

computed for proteins and drugs to train the various machine learning and deep learning models. 

 

4.2.1 Protein Descriptors Computation: 
 

    The sequence-based descriptors of all the selected protein-targets were computed using web 

interphase of ProtrWeb. 9921 descriptors were calculated for all the 238 unique protein-targets 

including amino acid composition, dipeptide and tripeptide composition, C/T/D 

(Composition/Transition/Distribution), conjoint triad, sequence-order coupling number, Quasi-

sequence-order descriptors, pseudo-amino acid, and amphiphilic pseudo-amino acid composition. 

The overview of the excel file of target sequence descriptors is shown in table 8 in appendix. 
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4.2.2 Drugs Fingerprints Computation:  
 

    For the drugs dataset, Morgan fingerprints were generated which is the best molecular 

fingerprint used for drug discovery purposes. The SMILES of all the drugs were extracted from 

PubChem which were used as input for the calculation of the Morgan fingerprints. The ALLChem 

package of RDKit library was imported in Python for the generation of Morgan fingerprints. 

Morgan fingerprints for all the drugs are shown in the table 9 in appendix. 

 

4.3 Targets-Diseases Network Construction: 

 

    After extracting the data of all the targets protein for ten neurodegenerative disorders and nine 

neurological disorders from STRING and Therapeutic Target Database, it was saved in an excel 

file and then give the class label for each target class with respect to the disorder type. The targets-

diseases network was constructed in such a way that there is an association of target-protein with 

the specific disorder type. The targets-diseases network is shown in table 10 in appendix. 

 

4.4 Diseases-Drugs Network Construction: 

 

    By using the collected data of the FDA-approved drugs associated with specific protein-targets 

and for all the selected disorders using different online available databases, as mentioned in the 

methodology chapter, we constructed the Diseases-Drugs network for association of the 10 

neurodegenerative disorders and nine neurological disorders with the drugs. The diseases-drugs 

network was constructed in such a way that there is an association of each FDA-approved drug 

with the specific disorder type. The data of the Diseases-Drugs Network saved in an csv file, shown 

in table 11 in appendix. 
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4.5 Targets-Diseases-Drugs Network Construction: 

 

    Targets-Diseases-Drugs Network is a comprehensive network that combines diverse data types 

to understand the intricate relationships between neurological and neurodegenerative disorders and 

their potential therapeutic interventions, which is constructed by combining the two networks: the 

Targets-Diseases Network and the Diseases-Drugs Network. The network provides an 

encompassing perspective, offering insights into the triadic relationship among protein targets, 

disorders, and the FDA-approved drugs. Each facet of the network is represented using distinct 

techniques, with protein targets characterized by descriptors and drugs represented by binary-

encoded Morgan fingerprints. The final constructed Targets-Diseases-Drugs association network 

is shown in the table 12 in appendix. 

 

4.6 Classification models for Targets-Diseases Network Model training & 

prediction: 

 

    Different classification models were trained to predict the disease association of the protein with 

respect to neurological and neurodegenerative disorders. Out of 4884 target proteins, 3440 came 

out to be associated with neurological disorders. While 1443 came out to be associated with 

neurodegenerative disorders. The models were built on the protein descriptors dataset used as the 

X-matrix while the class label was assigned based on the specific disorder type. All the protein 

targets associated with neurodegenerative diseases were labeled as 0 and all the protein targets 

associated with neurological diseases were labeled as 1.  For training the model, first the dataset 

was splitted into 80% training set and 20% testing set and then perform hyperparameters tunning 

through the GridSearchCV, short for Grid Search Cross-Validation, which is a hyperparameter 

tuning technique widely used in machine learning. It automated the process of finding the best 

combination of hyperparameters for a given machine learning model by exhaustively searching 

through a predefined set of hyperparameter values. The data matrix was of the order 4884×9921.  

    First, the Classification model was built by Support Vector Machine on the Target-Diseases 

association Network. Then a parameters grid was defined for the SVM model training such as ‘C’: 
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[0.1, 1, 10], ‘gamma’: [0.1, 0.01, 0.001], and ‘kernel’: ['rbf'] for the hyperparameters tunning of 

the model parameters. To achieve the best model performance for the Targets-Diseases Network 

by using SVM, a special hyperparameter tuning technique i.e., GridSearchCV was applied on the 

defined parameters grid. The model automatically learned by applying different sets of parameters 

and ultimately achieved the best performance. The best parameters set was 'C': 1, 'gamma': 0.1, 

and 'kernel': 'rbf'. After training the model, the model achieved 91.7% Accuracy, 91.3% Precision, 

97.3% Recall and 94.2% F1 Score on the test set. 

    Another Classification model was built by using Decision Tree Classifier on the Target-Diseases 

association Network. A parameters grid was defined for the decision tree model training such as 

'max_depth': [None, 5, 10, 15], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], and 

'max_features': [None, 'sqrt', 'log2'] for the hyperparameters tunning of the model parameters. 

GridSearchCV was applied on the defined parameters grid. The model automatically learned by 

applying different sets of parameters and ultimately achieved the best performance. The best 

parameters set was 'max_depth': 15, 'max_features': 'log2', 'min_samples_leaf': 1, and 

'min_samples_split': 5. After training the model, the model achieved 90.8% Accuracy, 91.4% 

Precision, 95.7% Recall and 93.5% F1 Score on the test set. 

    Another Classification model was built by using Random Forest Classifier on the Target-

Diseases association Network. A parameters grid was defined for the random forest model training 

such as 'n_estimators': [100, 200, 300], 'max_depth': [None, 5, 10], 'min_samples_split': [2, 5], 

'min_samples_leaf': [1, 2], and 'max_features': ['sqrt', 'log2'] for the hyperparameters tunning of 

the model parameters. GridSearchCV was applied on the defined parameters grid. The model 

automatically learned by applying different sets of parameters and ultimately achieved the best 

performance. The best parameters set was 'max_depth': None, 'max_features': 'sqrt', 

'min_samples_leaf': 1, 'min_samples_split': 5, and 'n_estimators': 200. After training the model, 

the model achieved 91.6% Accuracy, 91.7% Precision, 96.7% Recall and 94.1% F1 Score on the 

test set. 

    Gradient Bossting Machine (GBM) model was built on the Target-Diseases association Network 

dataset for classification. A parameters grid was defined for the GBM model training such as 

'n_estimators': [100, 200], 'learning_rate': [0.01, 0.1], 'max_depth': [3, 5], 'min_samples_split': [2, 

5], and 'min_samples_leaf': [1, 2] for the hyperparameters tunning of the model parameters. 
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GridSearchCV was applied on the defined parameters grid. The model automatically learned by 

applying different sets of parameters and ultimately achieved the best performance. The best 

parameters set was 'learning_rate': 0.1, 'max_depth': 3, 'min_samples_leaf': 1, 'min_samples_split': 

5, and 'n_estimators': 100. After training the model, the model achieved 91.8% Accuracy, 91.6% 

Precision, 97.2% Recall and 94.3% F1 Score on the test set. 

    At the end, another Classification model was built by using MLP classifier on the Target-

Diseases association Network. 80-20 train-test split was done for training and testing the MLP 

neural network model. The model learned by the following sets of parameters such as 

hidden_layer_sizes= (50, 100), activation='relu', solver='adam', alpha=0.01, and learning_rate = 

'adaptive'. After training the model, the model achieved 64.6% Accuracy, 68.8% Precision, 90.6% 

Recall and 79.7% F1 Score on the test set. Figure 4.2 shows a comparison between the performance 

measures such as accuracy, recall, precision and F1-Score on the test set among all the trained 

machine learning/deep learning models on Target-Disease Network. 

 

 

Figure 4.2 Performance measures comparison among all the models on Target-Disease Network 
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4.7 Classification models for Diseases-Drugs Network Model training & 

prediction: 

 

    There were different classification models which were trained for the prediction of the drugs 

against targets-protein associated with neurodegenerative disorders and with neurological 

disorders. The labels were given to the drugs based on the activation/inhibition data collected from 

different online available databases. Out of 4884 drugs, 3440 came out to be active against targets 

associated with neurological disorders while the other 1443 were active against targets associated 

with neurodegenerative disorders. The models were built on the morgan fingerprints dataset used 

as the X-matrix while the class label was assigned based on the specific disorder type. For training 

the model, first the dataset was splitted into 80% training set and 20% testing set and then perform 

hyperparameters tunning through the GridSearchCV. It automated the process of finding the best 

combination of hyperparameters for a given machine learning model by exhaustively searching 

through a predefined set of hyperparameter values. The data matrix was of the order 4884×2048. 

    The first Classification model was built by Support Vector Machine on the Diseases-Drugs 

association Network. Then a parameters grid was defined for the SVM model training such as 'C': 

[0.1, 1, 10], 'gamma': [0.1, 0.01, 0.001], and 'kernel': ['rbf'] for the hyperparameters tunning of the 

model parameters. To achieve the best model performance for the Diseases-Drugs Network by 

using SVM, a special hyperparameter tuning technique i.e., GridSearchCV was applied on the 

defined parameters grid. The model automatically learned by applying different sets of parameters 

and ultimately achieved the best performance. The best parameters set was 'C': 10, 'gamma': 0.1, 

and 'kernel': 'rbf'. After training the model, the model achieved 76.2% Accuracy, 78.1% Precision, 

91.8% Recall and 84.4% F1 Score on the test set. 

    Another Classification model was built by using Decision Tree Classifier on the Diseases-Drugs 

association Network. A parameters grid was defined for the decision tree model training such as 

'max_depth': [None, 5, 10, 15], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4], and 

'max_features': [None, 'sqrt', 'log2'] for the hyperparameters tunning of the model parameters. 

GridSearchCV was applied on the defined parameters grid. The model automatically learned by 

applying different sets of parameters and ultimately achieved the best performance. The best 

parameters set was 'max_depth': None, 'max_features': None, 'min_samples_leaf': 1, and 



111 | P a g e  
 

'min_samples_split': 10. After training, the model achieves 74.8% accuracy, 79.7% precision, 

85.8% recall, and 82.7% F1 score on the test set. 

    Another Classification model was built by using Random Forest Classifier on the Diseases-

Drugs association Network. A parameters grid was defined for the random forest model training 

such as 'n_estimators': [100, 200, 300], 'max_depth': [None, 5, 10], 'min_samples_split': [2, 5], 

'min_samples_leaf': [1, 2], and 'max_features': ['sqrt', 'log2'] for the hyperparameters tunning of 

the model parameters. GridSearchCV was applied on the defined parameters grid. The model 

automatically learned by applying different sets of parameters and ultimately achieved the best 

performance. The best parameters set was 'max_depth': None, 'max_features': 'sqrt', 

'min_samples_leaf': 2, 'min_samples_split': 5, and 'n_estimators': 100. After training, the model 

achieves 76.6% accuracy, 78.7% precision, 91.3% recall, and 84.5% F1 score on the test set. 

    Gradient Bossting Machine (GBM) model was built on the Diseases-Drugs association Network 

dataset for classification. A parameters grid was defined for the GBM model training such as 

'n_estimators': [100, 200], 'learning_rate': [0.01, 0.1], 'max_depth': [3, 5], 'min_samples_split': [2, 

5], and 'min_samples_leaf': [1, 2] for the hyperparameters tunning of the model parameters. 

GridSearchCV was applied on the defined parameters grid. The model automatically learned by 

applying different sets of parameters and ultimately achieved the best performance. The best 

parameters set was 'learning_rate': 0.1, 'max_depth': 5, 'min_samples_leaf': 2, 'min_samples_split': 

2, and 'n_estimators': 100. After training, the model achieves 74.6% accuracy, 76.8% precision, 

91.2% recall, and 83.4% F1 score on the test set. 

    At the end, another Classification model was built by using MLP classifier on the Diseases-

Drugs association Network. The model learned by the following sets of parameters such as 

hidden_layer_sizes= (50, 100), activation='relu', solver='adam', alpha=0.01, and learning_rate = 

'adaptive'. After training the model, the model achieved 75.1% Accuracy, 78.7% Precision, 88.4% 

Recall and 83.5% F1 Score on the test set. Figure 4.3 shows a comparison between the performance 

measures such as accuracy, recall, precision and F1-Score on the test set among all the trained 

machine learning/deep learning models on Disease-Drug Network. 
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4.8 Classification models for Targets-Diseases-Drugs association Network 

Model training & prediction: 

 

    There were different classification models which were trained on the combined Targets-

Diseases-Drugs Network to predict the disease association with the protein targets as well as their 

drugs with respect to neurological and neurodegenerative disorders. The dataset of Targets-

Diseases-Drugs association Network for training was built by combining the datasets of the two 

networks i.e., Targets-Diseases Network and Diseases-Drugs Network. Out of total 4884 number 

of instances in the network, 3440 target proteins and drugs came out to be associated with 

neurological disorders. While 1443 target proteins and drugs came out to be associated with 

neurodegenerative disorders. The models were built on the complete network dataset having 9921 

protein descriptors, 2048 morgan’s fingerprints of all the drugs, one hot encoding of the nineteen 

neuronal disorders, drugs activity and no. of protein edges were used as the X-matrix of the dataset 

while the class label was assigned based on the specific disorder type. To achieve the best 

performance by the models, GridSearchCV was used for model training. The data matrix was of 

the order 4884×11990. To compile a complete network dataset, total 4884 drugs as instances were 

Figure 4.3 Performance measures comparison among all the models on Disease-Drug Network 
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taken in each class active against neurological and neurodegenerative disorders having 2048 

features in X-matrix (4884×11990). 

    The first Classification model was built by Support Vector Machine on the Targets-Diseases-

Drugs association Network. A parameters grid was defined for the SVM model training such as 

‘C': [0.1, 1, 10], 'gamma': [0.1, 0.01, 0.001], and 'kernel': ['rbf'] for the hyperparameters tunning of 

the model parameters. For achieving the best model performance for the Targets-Diseases-Drugs 

Network by using SVM, a special hyperparameter tuning technique i.e., GridSearchCV was 

applied on the defined parameters grid. The model automatically learned by applying different sets 

of parameters and ultimately achieved the best performance. The best parameters set was 'C': 10, 

'gamma': 0.01, and 'kernel': 'rbf'. After training the model, the model achieved 99.2% Accuracy, 

99.2% Precision, 99.7% Recall and 99.4% F1 Score on the test set. 

    Another Classification model was built by using Decision Tree Classifier on the Targets-

Diseases-Drugs association Network. A parameters grid was defined for the decision tree model 

training such as 'max_depth': [None, 5, 10, 15], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': 

[1, 2, 4], and 'max_features': [None, 'sqrt', 'log2'] for the hyperparameters tunning of the model 

parameters. GridSearchCV was applied on the defined parameters grid. The model automatically 

learned by applying different sets of parameters and ultimately achieved the best performance. The 

best parameters set was 'max_depth': 15, 'max_features': None, 'min_samples_leaf': 1, and 

'min_samples_split': 2. After training the model, the model achieved 99.0% Accuracy, 99.8% 

Precision, 98.8% Recall and 99.3% F1 Score on the test set. 

    Random Forest Classifier was trained on the Targets-Diseases-Drugs association Network. A 

parameters grid was defined for the random forest model training such as 'n_estimators': [100, 200, 

300], 'max_depth': [None, 5, 10], 'min_samples_split': [2, 5], 'min_samples_leaf': [1, 2], and 

'max_features': ['sqrt', 'log2'] for the hyperparameters tunning of the model parameters. 

GridSearchCV was applied on the defined parameters grid. The model automatically learned by 

applying different sets of parameters and ultimately achieved the best performance. The best 

parameters set was 'max_depth': None, 'max_features': 'sqrt', 'min_samples_leaf': 2, 

'min_samples_split': 5, and 'n_estimators': 300. After training the model, the model achieved 

95.5% Accuracy, 94.9% Precision, 98.9% Recall and 96.9% F1 Score on the test set. 
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    Gradient Bossting Machine (GBM) model was built on the Targets-Diseases-Drugs association 

Network dataset for classification. A parameters grid was defined for the GBM model training 

such as 'n_estimators': [100, 200], 'learning_rate': [0.01, 0.1], 'max_depth': [3, 5], 

'min_samples_split': [2, 5], and 'min_samples_leaf': [1, 2] for the hyperparameters tunning of the 

model parameters. GridSearchCV was applied on the defined parameters grid. The model 

automatically learned by applying different sets of parameters and ultimately achieved the best 

performance. The best parameters set was 'learning_rate': 0.1, 'max_depth': 5, 'min_samples_leaf': 

2, 'min_samples_split': 5, and 'n_estimators': 100. After training the model, the model achieved 

99.3% Accuracy, 99.5% Precision, 99.4% Recall and 99.4% F1 Score on the test set. 

    At the end, another Classification model was built by using MLP classifier on the Targets-

Diseases-Drugs association Network. The model learned by the following sets of parameters such 

as hidden_layer_sizes= (50, 100), activation='relu', solver='adam', alpha=0.01, and learning_rate 

= 'adaptive'. After training the model, the model achieved 70.6% Accuracy, 75.4% Precision, 

86.1% Recall and 80.6% F1 Score on the test set. Figure 4.4 shows a comparison between the 

performance measures such as accuracy, recall, precision and F1-Score on the test set among all 

the trained machine learning/deep learning models on Target-Disease-Drug Network. 

Figure 4.4 Performance measures Comparison among all the models on Target-Disease-Drug Network 
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4.9 Multi-variate Artificial Neural network Construction for Drug 

Repurposing: 

 

    After the construction of three networks i.e., targets-disease network, diseases-drugs network 

and targets-disease-drugs association network, different machine learning and deep learning 

models were trained on these networks and achieved good accuracy. A multi-variate Artificial 

Neural network was designed to predict the interactions between drugs and target proteins linked 

to specific diseases. Two main datasets were utilized for this purpose: one encapsulating the 

Morgan's fingerprints of 4884 drugs as input dataset, and the other containing descriptors of 4884 

target proteins along with disease class labels (0 or 1) as output dataset. Then the model was trained 

using Artificial Neural Network (ANN) strategy, employing a multi-variate output configuration. 

The resultant model can comprehend the intricate connections between drug fingerprints, target 

protein descriptors, and disease classes, ultimately enabling predictions for both target protein 

descriptors and disease class for a given drug. 

 

4.9.1 Model’s Performance: 
 

    Designing a proper architecture for a Multi-Output Neural Network can be complex, especially 

when dealing with varying ranges and scales of output features. The alignment of datasets at a 

granular level ensures that the model comprehends the intricate interplay between drug attributes, 

target protein properties, and disease classifications. The ANN's structure was systematically 

optimized via hyperparameter tuning, encompassing the configuration of the different number of 

hidden layers, neurons in each layer, activation functions, batch size, and learning rate, to optimize 

the network's performance. Learning rate was adjusted during training to fine-tune the weights as 

the training progresses. Hyperparameters were optimized with different values to enhance the 

performance and generalization of our model for our desired task involving multiple output 

variables. But it still needs more hyperparameters tunning for giving best model performance. 
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Figure 4.32 shows the performance of our model with comparison to varying hyperparameters and 

predictions on Targets descriptors and disease class. 

4.9.2 Input Unknown drug for Validation. 
 

    Our model was validated by giving the SMILES of an unknown drug. It automatically computes 

the morgan’s fingerprints from the SMILES of that unidentified drug, using the RDkit library to 

form input features for the ANN. The model's outputs cater to predicting both target protein 

descriptors and disease class, presenting a holistic solution for drug-target interaction prediction. 

Our innovative model architecture predicted the target protein descriptors and disease class 

simultaneously for the given drug as shown in Figure 4.6. 

 

Figure 4.5 Performance measures of multi-variate ANN model 

Figure 4.6 multi-variate ANN model Validation 
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                                                                                    Chapter 5 

Conclusion                                                      
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5 Conclusion 
 

    The protein plays a critical role in governing essential biological processes and intricate 

signaling cascades in a cell. Perturbations in protein activity, manifested as Loss-of-Function and 

Gain-of-Function alterations, have profound implications for a diverse spectrum of ailments. In 

this study, Network pharmacology approach was employed to investigate the targets association 

and overlap in various neurological and neurodegenerative disorders. Three networks were built 

between the protein-targets, FDA-approved drugs and neuronal disorders. The datasets of all the 

networks were categorized into two classes i.e., neurological disorders and neurodegenerative 

disorders.  

    For the classification of protein-targets and FDA-approved drugs for each neuronal disorder, 

five machine learning models were trained on the three different networks, the Decision Tree, 

Random Forest and Gradient Boosting Classifiers equally emerged as the optimal models for 

predicting the disease association of a given protein-target and drug. (Specifically in relation to 

neurological and neurodegenerative disorders). About 91% accuracy was achieved on the 

classification of Target-Disease Network, about 76% accuracy was achieved on the classification 

of Disease-Drug Network and about 99% accuracy was achieved on the test set of Target-Disease-

Drug Network, which is an excellent model performance. 

    Our results provide a comprehensive view of the protein-targets association with the specific 

neurological and neurodegenerative disorders. Our study also revealed the target overlap among 

multiple neuronal disorders. We have developed a multi-variate Artificial Neural Network (ANN) 

to predict drug-target interactions linked to specific diseases. Our model was trained using a multi-

variate output configuration, enabling predictions for both target protein descriptors and disease 

class for a given drug. The model's structure was optimized via hyperparameter tuning, 

encompassing configuration of hidden layers, activation functions, learning rates, and 

regularization techniques. Our multi-variate ANN model predicts multiple outputs, specifically 

disease class with 82% accuracy and target protein descriptors with 53% accuracy, each 

corresponding to a distinct facet of the problem, which provides a holistic solution for drug-target 

interaction prediction. 
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    In conclusion, this study contributes to the database development for all the FDA-approved 

drugs and protein targets associated with many neurological and neurodegenerative disorders. We 

performed classification of all the protein-targets and drugs between neurological and 

neurodegenerative disorders. Our main contribution is the development of a model to predict target 

protein descriptors and disease class for CNS active agents. This will offer potential avenues for 

the development of new therapeutics for various un-treated disorders and ultimately pave a new 

insight into the personalized treatment strategies. 

 

5.1 Future aspects: 

 

Despite the insights provided by this study, there are several future directions that could be 

explored. First, multi label classification among the various neurological and neurodegenerative 

disorders could be performed based on the constructed database of all the protein targets and FDA-

approved drugs. Secondly, our model’s classification performance could be validated by clinical 

data to confirm the significance of our models in terms of targeted therapy approach. Additionally, 

the performance of our proposed model could be enhanced by further hyperparameters tuning and 

large computational resources. Lastly, our proposed model could be used as a helping hand in 

personalized treatment in hospitals.  Therefore, future studies should aim to validate and extend 

our findings and explore new avenues to provide deeper insights into the biology of neuroscience 

and facilitate the development of more effective treatments for patients. 
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7 Appendix 
Table 8: Target Sequences Descriptors 

TargetsA …AA …AAA …CIDH920105.lag1…BHAR880101.lag1…CHAM820101.lag1…CHOC760101.lag1… BIGC670101.lag1… DAYM780201.lag1…hydrophobicity.Group3… normwaalsvolume.Group1…polarizability.Group1… charge.Group1…secondarystruct.Group1… solventaccess.Group1… prop1.Tr1221… VS111…Grantham.Xd.28…Xc2.lambda.1…Pc1.A… Pc2.Hydrophobicity.1

MT-ND20 … 0 … 0 … 0 … 0.04 … 0 … 0.07 … 0 … 0 … 0 … 0.4 … 0 … 0 … 0 … 0 … 0 … 0 … 0 … 0 … 16 … 0

HSPG2 0 … 0 … 0 … 0 … 0.04 … 0 … 0.07 … 0 … 0 … 0 … 0.4 … 0 … 0 … 0 … 0 … 0 … 0 … 0 … 0 … 16 … 0

ASTN2 0 … 0 … 0 … 0 … 0.04 … 0 … 0.07 … 0 … 0 … 0 … 0.4 … 0 … 0 … 0 … 0 … 0 … 0 … 0 … 0 … 16 … 0

PRRT2 0 … 0 … 0 … 0 … 0.04 … 0 … 0.07 … 0 … 0 … 0 … 0.4 … 0 … 0 … 0 … 0 … 0 … 0 … 0 … 0 … 16 … 0

NPAS3 0 … 0 … 0 … 0 … 0.07 … 0.2 … 0.19 … 0.2 … -0 … 0 … 0.5 … 0 … 0.1 … 0 … 0 … 0 … 1 … 0 … 0 …340 … -0

NDN 0 … 0 … 0 … 0 … 0.07 … 0.2 … 0.19 … 0.2 … -0 … 0 … 0.5 … 0 … 0.1 … 0 … 0 … 0 … 1 … 0 … 0 …340 … -0

SLC6A4 0 … 0 … 0 … 0 … 0.07 … 0.1 … 0.1 … 0.1 … 0 … 0 … 0.4 … 0 … 0.1 … 0 … 0 … 0 … 1 … 0 … 0 … 81 … 0

SNCA 0 … 0 … 0 … 0 … 0.19 … 0.3 … 0.22 … 0.3 … -0 … 0 … 0.5 … 0 … 0.1 … 0 … 0 … 0 … 1 … 0 … 0 … 31 … 0

HTT 0 … 0 … 0 … 0 … 0.14 … 0.3 … 0.29 … 0.3 … 0 … 0 … 0.5 … 0 … 0.1 … 0 … 0 … 0 … 1 … 0 … 0 … 61 … 0

BDNF 0 … 0 … 0 … 0 … 0.05 … 0 … 0.01 … 0 … 0 … 0 … 0.4 … 0 … 0.1 … 1 … 0 … 0 … 0 … 0 … 0 … 34 … -0

APOA1 0 … 0 … 0 … 0 … 0.05 … 0 … 0.01 … 0 … 0 … 0 … 0.4 … 0 … 0.1 … 1 … 0 … 0 … 0 … 0 … 0 … 34 … -0

C1QB 0 … 0 … 0 … 0 … 0.01 … 0.1 … 0.06 … 0 … -0 … 0 … 0.4 … 0 … 0.1 … 0 … 1 … 0 … 0 … 0 … 0 … 38 … 0

CAD 0 … 0 … 0 … 0 … 0.01 … 0.1 … 0.06 … 0 … -0 … 0 … 0.4 … 0 … 0.1 … 0 … 1 … 0 … 0 … 0 … 0 … 38 … 0

MARS2 0 … 0 … 0 … 0 … 0.01 … 0.1 … 0.06 … 0 … -0 … 0 … 0.4 … 0 … 0.1 … 0 … 1 … 0 … 0 … 0 … 0 … 38 … 0

KCNMB30 … 0 … 0 … 0 … 0.01 … 0.1 … 0.06 … 0 … -0 … 0 … 0.4 … 0 … 0.1 … 0 … 1 … 0 … 0 … 0 … 0 … 38 … 0

PROSC 0 … 0 … 0 … 0 … 0.01 … 0.1 … 0.06 … 0 … -0 … 0 … 0.4 … 0 … 0.1 … 0 … 1 … 0 … 0 … 0 … 0 … 38 … 0

EPM2A 0 … 0 … 0 … 0 … 0.01 … 0.1 … 0.06 … 0 … -0 … 0 … 0.4 … 0 … 0.1 … 0 … 1 … 0 … 0 … 0 … 0 … 38 … 0

ITPA 0 … 0 … 0 … 0 … 0.01 … 0.1 … 0.06 … 0 … -0 … 0 … 0.4 … 0 … 0.1 … 0 … 1 … 0 … 0 … 0 … 0 … 38 … 0

POMC 0 … 0 … 0 … 0 … 0.01 … 0.1 … 0.06 … 0 … -0 … 0 … 0.4 … 0 … 0.1 … 0 … 1 … 0 … 0 … 0 … 0 … 38 … 0

SLC35A20 … 0 … 0 … 0 … 0.01 … 0.1 … 0.06 … 0 … -0 … 0 … 0.4 … 0 … 0.1 … 0 … 1 … 0 … 0 … 0 … 0 … 38 … 0

CASR 0 … 0 … 0 … 0 … 0.01 … 0.1 … 0.06 … 0 … -0 … 0 … 0.4 … 0 … 0.1 … 0 … 1 … 0 … 0 … 0 … 0 … 38 … 0

APOE 0 … 0 … 0 … 0 … 0.01 … 0.1 … 0.06 … 0 … -0 … 0 … 0.4 … 0 … 0.1 … 0 … 1 … 0 … 0 … 0 … 0 … 38 … 0

APP 0 … 0 … 0 … 0 … 0.01 … 0.1 … 0.06 … 0 … -0 … 0 … 0.4 … 0 … 0.1 … 0 … 1 … 0 … 0 … 0 … 0 … 38 … 0

GRN 0 … 0 … 0 … 0 … 0.01 … 0.1 … 0.06 … 0 … -0 … 0 … 0.4 … 0 … 0.1 … 0 … 1 … 0 … 0 … 0 … 0 … 38 … 0

TARDBP 0 … 0 … 0 … 0 … 0.01 … 0.1 … 0.06 … 0 … -0 … 0 … 0.4 … 0 … 0.1 … 0 … 1 … 0 … 0 … 0 … 0 … 38 … 0  
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Table 9 Morgan Fingerprints of FDA-approved Drugs 

Drugs Bit_1 Bit_2 Bit_3 … Bit_13 Bit_14 Bit_15 … Bit_2039 Bit_2040 Bit_2041 Bit_2047 Bit_2048

NADH 0 0 0 … 0 0 0 … 0 0 0 0 0

Metformin 0 0 0 … 0 0 0 … 0 0 0 0 0

Flavin adenine dinucleotide0 1 0 … 0 0 0 … 0 0 0 0 0

Ubidecarenone 0 0 0 … 0 0 0 … 0 0 0 0 0

Cyclosporine 0 1 0 … 0 0 0 … 0 0 1 0 0

Haloperidol 0 0 0 … 0 0 0 … 0 0 0 0 0

Fentanyl 0 0 0 … 0 0 0 … 0 0 0 0 0

Valrubicin 0 0 0 … 0 0 0 … 0 0 0 0 0

Oxygen 0 0 0 … 0 0 0 … 0 0 0 0 0

D-Tyrosine 0 1 0 … 0 0 0 … 0 0 0 0 0

Isotretinoin 0 0 0 … 0 0 0 … 0 0 0 0 0

Milnacipran  1 0 0 … 0 0 0 … 0 0 0 0 0

Citalopram 0 0 0 … 0 0 0 … 0 0 0 0 0

Clomipramine      0 0 0 … 0 0 0 … 0 0 0 0 0

Escitalopram 0 0 0 … 0 0 0 … 0 0 0 0 0

Fluvoxamine       0 0 0 … 0 1 0 … 0 0 0 0 0

Paroxetine       0 0 0 … 0 0 0 … 0 0 0 0 0

Sertraline       0 0 0 … 0 0 0 … 0 0 0 0 0

Fluoxetine   0 1 0 … 0 0 0 … 1 0 0 0 0

Desipramine 0 0 0 … 0 0 0 … 0 0 0 0 0

Duloxetine 0 1 0 … 0 0 1 … 1 0 0 0 0

Imipramine 0 0 0 … 0 0 0 … 0 0 0 0 0

Nortriptyline      0 0 0 … 0 0 0 … 0 0 0 0 0

Venlafaxine 0 1 1 … 0 0 0 … 0 0 0 0 0

Atomoxetine     0 1 0 … 0 0 0 … 1 0 0 0 0

Amitriptyline     0 0 0 … 0 0 0 … 0 0 0 0 0

Amoxapine     0 0 0 … 0 0 0 … 0 0 0 0 0

Desvenlafaxine    0 1 1 … 0 0 0 … 0 0 0 0 0  
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Table 10 Target-Disease Network 

Targets Targets_Sequences No._of_Edges Class_Label

MT-ND2 MNPLAQPVIYSTIFAGTLITALSSHWFFTWVGLEMNMLAFIPVLTKKMNPRSTEAAIKYFLTQATASMILLMAILFNNMLSGQWTMTNTTNQYSSLMIMMAMAMKLGMAPFHFWVPEVTQGTPLTSGLLLLTWQKLAPISIMYQISPSLNVSLLLTLSILSIMAGSWGGLNQTQLRKILAYSSITHMGWMMAVLPYNPNMTILNLTIYIILTTTAFLLLNLNSSTTTLLLSRTWNKLTWLTPLIPSTLLSLGGLPPLTGFLPKWAIIEEFTKNNSLIIPTIMATITLLNLYFYLRLIYSTSITLLPMSNNVKMKWQFEHTKPTPFLPTLIALTTLLLPISPFMLMIL3 Neurodegenerative disorder

HSPG2 MGWRAAGALLLALLLHGRLLAVTHGLRAYDGLSLPEDIETVTASQMRWTHSYLSDDEDMLADSISGDDLGSGDLGSGDFQMVYFRALVNFTRSIEYSPQLEDAGSREFREVSEAVVDTLESEYLKIPGDQVVSVVFIKELDGWVFVELDVGSEGNADGAQIQEMLLRVISSGSVASYVTSPQGFQFRRLGTVPQFPRACTEAEFACHSYNECVALEYRCDRRPDCRDMSDELNCEEPVLGISPTFSLLVETTSLPPRPETTIMRQPPVTHAPQPLLPGSVRPLPCGPQEAACRNGHCIPRDYLCDGQEDCEDGSDELDCGPPPPCEPNEFPCGNGHCALKLWRCDGDFDCEDRTDEANCPTKRPEEVCGPTQFRCVSTNMCIPASFHCDEESDCPDRSDEFGCMPPQVVTPPRESIQASRGQTVTFTCVAIGVPTPIINWRLNWGHIPSHPRVTVTSEGGRGTLIIRDVKESDQGAYTCEAMNARGMVFGIPDGVLELVPQRGPCPDGHFYLEHSAACLPCFCFGITSVCQSTRRFRDQIRLRFDQPDDFKGVNVTMPAQPGTPPLSSTQLQIDPSLHEFQLVDLSRRFLVHDSFWALPEQFLGNKVDSYGGSLRYNVRYELARGMLEPVQRPDVVLMGAGYRLLSRGHTPTQPGALNQRQVQFSEEHWVHESGRPVQRAELLQVLQSLEAVLIQTVYNTKMASVGLSDIAMDTTVTHATSHGRAHSVEECRCPIGYSGLSCESCDAHFTRVPGGPYLGTCSGCNCNGHASSCDPVYGHCLNCQHNTEGPQCNKCKAGFFGDAMKATATSCRPCPCPYIDASRRFSDTCFLDTDGQATCDACAPGYTGRRCESCAPGYEGNPIQPGGKCRPVNQEIVRCDERGSMGTSGEACRCKNNVVGRLCNECADGSFHLSTRNPDGCLKCFCMGVSRHCTSSSWSRAQLHGASEEPGHFSLTNAASTHTTNEGIFSPTPGELGFSSFHRLLSGPYFWSLPSRFLGDKVTSYGGELRFTVTQRSQPGSTPL3 Neurodegenerative disorder

ASTN2 MAAAGARLSPGPGSGLRGRPRLCFHPGPPPLLPLLLLFLLLLPPPPLLAGATAAASREPDSPCRLKTVTVSTLPALRESDIGWSGARAGAGAGTGAGAAAAAASPGSPGSAGTAAESRLLLFVRNELPGRIAVQDDLDNTELPFFTLEMSGTAADISLVHWRQQWLENGTLYFHVSMSSSGQLAQATAPTLQEPSEIVEEQMHILHISVMGGLIALLLLLLVFTVALYAQRRWQKRRRIPQKSASTEATHEIHYIPSVLLGPQARESFRSSRLQTHNSVIGVPIRETPILDDYDCEEDEEPPRRANHVSREDEFGSQVTHTLDSLGHPGEEKVDFEKKAAAEATQETVESLMQKFKESFRANTPIEIGQLQPPLRSTSAGKRKRRSKSRGGISFGRAKGTSGSEADDETQLTFYTEQYRSRRRSKGLLKSPVNKTALTLIAVSSCILAMVCGSQMSCPLTVKVTLHVPEHFIADGSSFVVSEGSYLDISDWLNPAKLSLYYQINATSPWVRDLCGQRTTDACEQLCDPETGECSCHEGYAPDPVHRHLCVRSDWGQSEGPWPYTTLERGYDLVTGEQAPEKILRSTFSLGQGLWLPVSKSFVVPPVELSINPLASCKTDVLVTEDPADVREEAMLSTYFETINDLLSSFGPVRDCSRNNGGCTRNFKCVSDRQVDSSGCVCPEELKPMKDGSGCYDHSKGIDCSDGFNGGCEQLCLQQTLPLPYDATSSTIFMFCGCVEEYKLAPDGKSCLMLSDVCEGPKCLKPDSKFNDTLFGEMLHGYNNRTQHVNQGQVFQMTFRENNFIKDFPQLADGLLVIPLPVEEQCRGVLSEPLPDLQLLTGDIRYDEAMGYPMVQQWRVRSNLYRVKLSTITLAAGFTNVLKILTKESSREELLSFIQHYGSHYIAEALYGSELTCIIHFPSKKVQQQLWLQYQKETTELGSKKELKSMPFITYLSGLLTAQMLSDDQLISGVEIRCEEKGRCPSTCHLCRRPGKEQLSPTPVLLEINRVVPLYTLIQDNGTKE3 Neurological disorder

PRRT2 MAASSSEISEMKGVEESPKVPGEGPGHSEAETGPPQVLAGVPDQPEAPQPGPNTTAAPVDSGPKAGLAPETTETPAGASETAQATDLSLSPGGESKANCSPEDPCQETVSKPEVSKEATADQGSRLESAAPPEPAPEPAPQPDPRPDSQPTPKPALQPELPTQEDPTPEILSESVGEKQENGAVVPLQAGDGEEGPAPEPHSPPSKKSPPANGAPPRVLQQLVEEDRMRRAHSGHPGSPRGSLSRHPSSQLAGPGVEGGEGTQKPRDYIILAILSCFCPMWPVNIVAFAYAVMSRNSLQQGDVDGAQRLGRVAKLLSIVALVGGVLIIIASCVINLGVYK3 Neurological disorder

NPAS3 MAPTKPSFQQDPSRRERITAQHPLPNQSECRKIYRYDGIYCESTYQNLQALRKEKSRDAARSRRGKENFEFYELAKLLPLPAAITSQLDKASIIRLTISYLKMRDFANQGDPPWNLRMEGPPPNTSVKVIGAQRRRSPSALAIEVFEAHLGSHILQSLDGFVFALNQEGKFLYISETVSIYLGLSQVELTGSSVFDYVHPGDHVEMAEQLGMKLPPGRGLLSQGTAEDGASSASSSSQSETPEPVESTSPSLLTTDNTLERSFFIRMKSTLTKRGVHIKSSGYKVIHITGRLRLRVSLSHGRTVPSQIMGLVVVAHALPPPTINEVRIDCHMFVTRVNMDLNIIYCENRISDYMDLTPVDIVGKRCYHFIHAEDVEGIRHSHLDLLNKGQCVTKYYRWMQKNGGYIWIQSSATIAINAKNANEKNIIWVNYLLSNPEYKDTPMDIAQLPHLPEKTSESSETSDSESDSKDTSGITEDNENSKSDEKGNQSENSEDPEPDRKKSGNACDNDMNCNDDGHSSSNPDSRDSDDSFEHSDFENPKAGEDGFGALGAMQIKVERYVESESDLRLQNCESLTSDSAKDSDSAGEAGAQASSKHQKRKKRRKRQKGGSASRRRLSSASSPGGLDAGLVEPPRLLSSPNSASVLKIKTEISEPINFDNDSSIWNYPPNREISRNESPYSMTKPPSSEHFPSPQGGGGGGGGGGGLHVAIPDSVLTPPGADGAAARKTQFGASATAALAPVASDPLSPPLSASPRDKHPGNGGGGGGGGGGAGGGGPSASNSLLYTGDLEALQRLQAGNVVLPLVHRVTGTLAATSTAAQRVYTTGTIRYAPAEVTLAMQSNLLPNAHAVNFVDVNSPGFGLDPKTPMEMLYHHVHRLNMSGPFGGAVSAASLTQMPAGNVFTTAEGLFSTLPFPVYSNGIHAAQTLERKED3 Neurological disorder

NDN MSEQSKDLSDPNFAAEAPNSEVHSSPGVSEGVPPSATLAEPQSPPLGPTAAPQAAPPPQAPNDEGDPKALQQAAEEGRAHQAPSAAQPGPAPPAPAQLVQKAHELMWYVLVKDQKKMIIWFPDMVKDVIGSYKKWCRSILRRTSLILARVFGLHLRLTSLHTMEFALVKALEPEELDRVALSNRMPMTGLLLMILSLIYVKGRGARESAVWNVLRILGLRPWKKHSTFGDVRKLITEEFVQMNYLKYQRVPYVEPPEYEFFWGSRASREITKMQIMEFLARVFKKDPQAWPSRYREALEEARALREANPTAHYPRSSVSED3 Neurological disorder

SLC6A4 METTPLNSQKQLSACEDGEDCQENGVLQKVVPTPGDKVESGQISNGYSAVPSPGAGDDTRHSIPATTTTLVAELHQGERETWGKKVDFLLSVIGYAVDLGNVWRFPYICYQNGGGAFLLPYTIMAIFGGIPLFYMELALGQYHRNGCISIWRKICPIFKGIGYAICIIAFYIASYYNTIMAWALYYLISSFTDQLPWTSCKNSWNTGNCTNYFSEDNITWTLHSTSPAEEFYTRHVLQIHRSKGLQDLGGISWQLALCIMLIFTVIYFSIWKGVKTSGKVVWVTATFPYIILSVLLVRGATLPGAWRGVLFYLKPNWQKLLETGVWIDAAAQIFFSLGPGFGVLLAFASYNKFNNNCYQDALVTSVVNCMTSFVSGFVIFTVLGYMAEMRNEDVSEVAKDAGPSLLFITYAEAIANMPASTFFAIIFFLMLITLGLDSTFAGLEGVITAVLDEFPHVWAKRRERFVLAVVITCFFGSLVTLTFGGAYVVKLLEEYATGPAVLTVALIEAVAVSWFYGITQFCRDVKEMLGFSPGWFWRICWVAISPLFLLFIICSFLMSPPQLRLFQYNYPYWSIILGYCIGTSSFICIPTYIAYRLIITPGTFKERIIKSITPETPTEIPCGDIRLNAV3 Neurological disorder

SNCA MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVLYVGSKTKEGVVHGVATVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIAAATGFVKKDQLGKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEPEA4 Neurodegenerative disorder

HTT MATLEKLMKAFESLKSFQQQQQQQQQQQQQQQQQQQQQPPPPPPPPPPPQLPQPPPQAQPLLPQPQPPPPPPPPPPGPAVAEEPLHRPKKELSATKKDRVNHCLTICENIVAQSVRNSPEFQKLLGIAMELFLLCSDDAESDVRMVADECLNKVIKALMDSNLPRLQLELYKEIKKNGAPRSLRAALWRFAELAHLVRPQKCRPYLVNLLPCLTRTSKRPEESVQETLAAAVPKIMASFGNFANDNEIKVLLKAFIANLKSSSPTIRRTAAGSAVSICQHSRRTQYFYSWLLNVLLGLLVPVEDEHSTLLILGVLLTLRYLVPLLQQQVKDTSLKGSFGVTRKEMEVSPSAEQLVQVYELTLHHTQHQDHNVVTGALELLQQLFRTPPPELLQTLTAVGGIGQLTAAKEESGGRSRSGSIVELIAGGGSSCSPVLSRKQKGKVLLGEEEALEDDSESRSDVSSSALTASVKDEISGELAASSGVSTPGSAGHDIITEQPRSQHTLQADSVDLASCDLTSSATDGDEEDILSHSSSQVSAVPSDPAMDLNDGTQASSPISDSSQTTTEGPDSAVTPSDSSEIVLDGTDNQYLGLQIGQPQDEDEEATGILPDEASEAFRNSSMALQQAHLLKNMSHCRQPSDSSVDKFVLRDEATEPGDQENKPCRIKGDIGQSTDDDSAPLVHCVRLLSASFLLTGGKNVLVPDRDVRVSVKALALSCVGAAVALHPESFFSKLYKVPLDTTEYPEEQYVSDILNYIDHGDPQVRGATAILCGTLICSILSRSRFHVGDWMGTIRTLTGNTFSLADCIPLLRKTLKDESSVTCKLACTAVRNCVMSLCSSSYSELGLQLIIDVLTLRNSSYWLVRTELLETLAEIDFRLVSFLEAKAENLHRGAHHYTGLLKLQERVLNNVVIHLLGDEDPRVRHVAAASLIRLVPKLFYKCDQGQADPVVAVARDQSSVYLKLLMHETQPPSHFSVSTITRIYRGYNLLPSITDVTMENNLSRVIAAVSHELITSTTRALTFG4 Neurodegenerative disorder

BDNF MTILFLTMVISYFGCMKAAPMKEANIRGQGGLAYPGVRTHGTLESVNGPKAGSRGLTSLADTFEHVIEELLDEDQKVRPNEENNKDADLYTSRVMLSSQVPLEPPLLFLLEEYKNYLDAANMSMRVRRHSDPARRGELSVCDSISEWVTAADKKTAVDMSGGTVTVLEKVPVSKGQLKQYFYETKCNPMGYTKEGCRGIDKRHWNSQCRTTQSYVRALTMDSKKRIGWRFIRIDTSCVCTLTIKRGR4 Neurodegenerative disorder

APOA1 MKAAVLTLAVLFLTGSQARHFWQQDEPPQSPWDRVKDLATVYVDVLKDSGRDYVSQFEGSALGKQLNLKLLDNWDSVTSTFSKLREQLGPVTQEFWDNLEKETEGLRQEMSKDLEEVKAKVQPYLDDFQKKWQEEMELYRQKVEPLRAELQEGARQKLHELQEKLSPLGEEMRDRARAHVDALRTHLAPYSDELRQRLAARLEALKENGGARLAEYHAKATEHLSTLSEKAKPALEDLRQGLLPVLESFKVSFLSALEEYTKKLNTQ4 Neurodegenerative disorder

C1QB MMMKIPWGSIPVLMLLLLLGLIDISQAQLSCTGPPAIPGIPGIPGTPGPDGQPGTPGIKGEKGLPGLAGDHGEFGEKGDPGIPGNPGKVGPKGPMGPKGGPGAPGAPGPKGESGDYKATQKIAFSATRTINVPLRRDQTIRFDHVITNMNNNYEPRSGKFTCKVPGLYYFTYHASSRGNLCVNLMRGRERAQKVVTFCDYAYNTFQVTTGGMVLKLEQGENVFLQATDKNSLLGMEGANSIFSGFLLFPDMEA4 Neurodegenerative disorder

CAD MAALVLEDGSVLRGQPFGAAVSTAGEVVFQTGMVGYPEALTDPSYKAQILVLTYPLIGNYGIPPDEMDEFGLCKWFESSGIHVAALVVGECCPTPSHWSATRTLHEWLQQHGIPGLQGVDTRELTKKLREQGSLLGKLVQNGTEPSSLPFLDPNARPLVPEVSIKTPRVFNTGGAPRILALDCGLKYNQIRCLCQRGAEVTVVPWDHALDSQEYEGLFLSNGPGDPASYPSVVSTLSRVLSEPNPRPVFGICLGHQLLALAIGAKTYKMRYGNRGHNQPCLLVGSGRCFLTSQNHGFAVETDSLPADWAPLFTNANDGSNEGIVHNSLPFFSVQFHPEHQAGPSDMELLFDIFLETVKEATAGNPGGQTVRERLTERLCPPGIPTPGSGLPPPRKVLILGSGGLSIGQAGEFDYSGSQAIKALKEENIQTLLINPNIATVQTSQGLADKVYFLPITPHYVTQVIRNERPDGVLLTFGGQTALNCGVELTKAGVLARYGVRVLGTPVETIELTEDRRAFAARMAEIGEHVAPSEAANSLEQAQAAAERLGYPVLVRAAFALGGLGSGFASNREELSALVAPAFAHTSQVLVDKSLKGWKEIEYEVVRDAYGNCVTVCNMENLDPLGIHTGESIVVAPSQTLNDREYQLLRQTAIKVTQHLGIVGECNVQYALNPESEQYYIIEVNARLSRSSALASKATGYPLAYVAAKLALGIPLPELRNSVTGGTAAFEPSVDYCVVKIPRWDLSKFLRVSTKIGSCMKSVGEVMGIGRSFEEAFQKALRMVDENCVGFDHTVKPVSDMELETPTDKRIFVVAAALWAGYSVDRLYELTRIDRWFLHRMKRIIAHAQLLEQHRGQPLPPDLLQQAKCLGFSDKQIALAVLSTELAVRKLRQELGICPAVKQIDTVAAEWPAQTNYLYLTYWGTTHDLTFRTPHVLVLGSGVYRIGSSVEFDWCAVGCIQQLRKMGYKTIMVNYNPETVSTDYDMCDRLYFDEISFEVVMDIYELENPEGVILSMGGQLPNNMA4 Neurological disorder

MARS2 MLRTSVLRLLGRTGASRLSLLEDFGPRYYSSGSLSAGDDACDVRAYFTTPIFYVNAAPHIGHLYSALLADALCRHRRLRGPSTAATRFSTGTDEHGLKIQQAAATAGLAPTELCDRVSEQFQQLFQEAGISCTDFIRTTEARHRVAVQHFWGVLKSRGLLYKGVYEGWYCASDECFLPEAKVTQQPGPSGDSFPVSLESGHPVSWTKEENYIFRLSQFRKPLQRWLRGNPQAITPEPFHHVVLQWLDEELPDLSVSRRSSHLHWGIPVPGDDSQTIYVWLDALVNYLTVIGYPNAEFKSWWPATSHIIGKDILKFHAIYWPAFLLGAGMSPPQRICVHSHWTVCGQKMSKSLGNVVDPRTCLNRYTVDGFRYFLLRQGVPNWDCDYYDEKVVKLLNSELADALGGLLNRCTAKRINPSETYPAFCTTCFPSEPGLVGPSVRAQAEDYALVSAVATLPKQVADHYDNFRIYKALEAVSSCVRQTNGFVQRHAPWKLNWESPVDAPWLGTVLHVALECLRVFGTLLQPVTPSLADKLLSRLGVSASERSLGELYFLPRFYGHPCPFEGRRLGPETGLLFPRLDQSRTWLVKAHRT4 Neurological disorder

KCNMB3 MDFSPSSELGFHFVAFILLTRHRTAFPASGKKRETDYSDGDPLDVHKRLPSSAGEDRAVMLGFAMMGFSVLMFFLLGTTILKPFMLSIQREESTCTAIHTDIMDDWLDCAFTCGVHCHGQGKYPCLQVFVNLSHPGQKALLHYNEEAVQINPKCFYTPKCHQDRNDLLNSALDIKEFFDHKNGTPFSCFYSPASQSEDVILIKKYDQMAIFHCLFWPSLTLLGGALIVGMVRLTQHLSLLCEKYSTVVRDEVGGKVPYIEQHQFKLCIMRRSKGRAEKS4 Neurological disorder

PROSC MWRAGSMSAELGVGCALRAVNERTFGENYVQELLEKASNPKILSLCPEIKWHFIGHLQKQNVNKLMAVPNLFMLETVDSVKLADKVNSSWQRKGSPERLKVMVQINTSGEESKHGLPPSETIAIVEHINAKCPNLEFVGLMTIGSFGHDLSQGPNPDFQLLLSLREELCKKLNIPADQVELSMGMSADFQHAVEVGSTNVRIGSTIFGERDYSKKPTPDKCAADVKAPLEVAQEH4 Neurological disorder

EPM2A MRFRFGVVVPPAVAGARPELLVVGSRPELGRWEPRGAVRLRPAGTAAGDGALALQEPGLWLGEVELAAEEAAQDGAEPGRVDTFWYKFLKREPGGELSWEGNGPHHDRCCTYNENNLVDGVYCLPIGHWIEATGHTNEMKHTTDFYFNIAGHQAMHYSRILPNIWLGSCPRQVEHVTIKLKHELGITAVMNFQTEWDIVQNSSGCNRYPEPMTPDTMIKLYREEGLAYIWMPTPDMSTEGRVQMLPQAVCLLHALLEKGHIVYVHCNAGVGRSTAAVCGWLQYVMGWNLRKVQYFLMAKRPAVYIDEEALARAQEDFFQKFGKVRSSVCSL4 Neurological disorder

ITPA MAASLVGKKIVFVTGNAKKLEEVVQILGDKFPCTLVAQKIDLPEYQGEPDEISIQKCQEAVRQVQGPVLVEDTCLCFNALGGLPGPYIKWFLEKLKPEGLHQLLAGFEDKSAYALCTFALSTGDPSQPVRLFRGRTSGRIVAPRGCQDFGWDPCFQPDGYEQTYAEMPKAEKNAVSHRFRALLELQEYFGSLAA4 Neurological disorder

POMC MPRSCCSRSGALLLALLLQASMEVRGWCLESSQCQDLTTESNLLECIRACKPDLSAETPMFPGNGDEQPLTENPRKYVMGHFRWDRFGRRNSSSSGSSGAGQKREDVSAGEDCGPLPEGGPEPRSDGAKPGPREGKRSYSMEHFRWGKPVGKKRRPVKVYPNGAEDESAEAFPLEFKRELTGQRLREGDGPDGPADDGAGAQADLEHSLLVAAEKKDEGPYRMEHFRWGSPPKDKRYGGFMTSEKSQTPLVTLFKNAIIKNAYKKGE4 Neurological disorder

SLC35A2 MAAVGAGGSTAAPGPGAVSAGALEPGTASAAHRRLKYISLAVLVVQNASLILSIRYARTLPGDRFFATTAVVMAEVLKGLTCLLLLFAQKRGNVKHLVLFLHEAVLVQYVDTLKLAVPSLIYTLQNNLQYVAISNLPAATFQVTYQLKILTTALFSVLMLNRSLSRLQWASLLLLFTGVAIVQAQQAGGGGPRPLDQNPGAGLAAVVASCLSSGFAGVYFEKILKGSSGSVWLRNLQLGLFGTALGLVGLWWAEGTAVATRGFFFGYTPAVWGVVLNQAFGGLLVAVVVKYADNILKGFATSLSIVLSTVASIRLFGFHVDPLFALGAGLVIGAVYLYSLPRGAAKAIASASASASGPCVHQQPPGQPPPPQLSSHRGDLITEPFLPKLLTKVKGS4 Neurological disorder

CASR MAFYSCCWVLLALTWHTSAYGPDQRAQKKGDIILGGLFPIHFGVAAKDQDLKSRPESVECIRYNFRGFRWLQAMIFAIEEINSSPALLPNLTLGYRIFDTCNTVSKALEATLSFVAQNKIDSLNLDEFCNCSEHIPSTIAVVGATGSGVSTAVANLLGLFYIPQVSYASSSRLLSNKNQFKSFLRTIPNDEHQATAMADIIEYFRWNWVGTIAADDDYGRPGIEKFREEAEERDICIDFSELISQYSDEEEIQHVVEVIQNSTAKVIVVFSSGPDLEPLIKEIVRRNITGKIWLASEAWASSSLIAMPQYFHVVGGTIGFALKAGQIPGFREFLKKVHPRKSVHNGFAKEFWEETFNCHLQEGAKGPLPVDTFLRGHEESGDRFSNSSTAFRPLCTGDENISSVETPYIDYTHLRISYNVYLAVYSIAHALQDIYTCLPGRGLFTNGSCADIKKVEAWQVLKHLRHLNFTNNMGEQVTFDECGDLVGNYSIINWHLSPEDGSIVFKEVGYYNVYAKKGERLFINEEKILWSGFSREVPFSNCSRDCLAGTRKGIIEGEPTCCFECVECPDGEYSDETDASACNKCPDDFWSNENHTSCIAKEIEFLSWTEPFGIALTLFAVLGIFLTAFVLGVFIKFRNTPIVKATNRELSYLLLFSLLCCFSSSLFFIGEPQDWTCRLRQPAFGISFVLCISCILVKTNRVLLVFEAKIPTSFHRKWWGLNLQFLLVFLCTFMQIVICVIWLYTAPPSSYRNQELEDEIIFITCHEGSLMALGFLIGYTCLLAAICFFFAFKSRKLPENFNEAKFITFSMLIFFIVWISFIPAYASTYGKFVSAVEVIAILAASFGLLACIFFNKIYIILFKPSRNTIEEVRCSTAAHAFKVAARATLRRSNVSRKRSSSLGGSTGSTPSSSISSKSNSEDPFPQPERQKQQQPLALTQQEQQQQPLTLPQQQRSQQQPRCKQKVIFGSGTVTFSLSFDEPQKNAMAHRNSTHQNSLEAQKSSDTLTRHEPLLPLQCGETDLD4 Neurological disorder

APOE MKVLWAALLVTFLAGCQAKVEQAVETEPEPELRQQTEWQSGQRWELALGRFWDYLRWVQTLSEQVQEELLSSQVTQELRALMDETMKELKAYKSELEEQLTPVAEETRARLSKELQAAQARLGADMEDVCGRLVQYRGEVQAMLGQSTEELRVRLASHLRKLRKRLLRDADDLQKRLAVYQAGAREGAERGLSAIRERLGPLVEQGRVRAATVGSLAGQPLQERAQAWGERLRARMEEMGSRTRDRLDEVKEQVAEVRAKLEEQAQQIRLQAEAFQARLKSWFEPLVEDMQRQWAGLVEKVQAAVGTSAAPVPSDNH4 Neurodegenerative disorder

APP MLPGLALLLLAAWTARALEVPTDGNAGLLAEPQIAMFCGRLNMHMNVQNGKWDSDPSGTKTCIDTKEGILQYCQEVYPELQITNVVEANQPVTIQNWCKRGRKQCKTHPHFVIPYRCLVGEFVSDALLVPDKCKFLHQERMDVCETHLHWHTVAKETCSEKSTNLHDYGMLLPCGIDKFRGVEFVCCPLAEESDNVDSADAEEDDSDVWWGGADTDYADGSEDKVVEVAEEEEVAEVEEEEADDDEDDEDGDEVEEEAEEPYEEATERTTSIATTTTTTTESVEEVVREVCSEQAETGPCRAMISRWYFDVTEGKCAPFFYGGCGGNRNNFDTEEYCMAVCGSAMSQSLLKTTQEPLARDPVKLPTTAASTPDAVDKYLETPGDENEHAHFQKAKERLEAKHRERMSQVMREWEEAERQAKNLPKADKKAVIQHFQEKVESLEQEAANERQQLVETHMARVEAMLNDRRRLALENYITALQAVPPRPRHVFNMLKKYVRAEQKDRQHTLKHFEHVRMVDPKKAAQIRSQVMTHLRVIYERMNQSLSLLYNVPAVAEEIQDEVDELLQKEQNYSDDVLANMISEPRISYGNDALMPSLTETKTTVELLPVNGEFSLDDLQPWHSFGADSVPANTENEVEPVDARPAADRGLTTRPGSGLTNIKTEEISEVKMDAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIATVIVITLVMLKKKQYTSIHHGVVEVDAAVTPEERHLSKMQQNGYENPTYKFFEQMQN4 Neurodegenerative disorder

GRN MWTLVSWVALTAGLVAGTRCPDGQFCPVACCLDPGGASYSCCRPLLDKWPTTLSRHLGGPCQVDAHCSAGHSCIFTVSGTSSCCPFPEAVACGDGHHCCPRGFHCSADGRSCFQRSGNNSVGAIQCPDSQFECPDFSTCCVMVDGSWGCCPMPQASCCEDRVHCCPHGAFCDLVHTRCITPTGTHPLAKKLPAQRTNRAVALSSSVMCPDARSRCPDGSTCCELPSGKYGCCPMPNATCCSDHLHCCPQDTVCDLIQSKCLSKENATTDLLTKLPAHTVGDVKCDMEVSCPDGYTCCRLQSGAWGCCPFTQAVCCEDHIHCCPAGFTCDTQKGTCEQGPHQVPWMEKAPAHLSLPDPQALKRDVPCDNVSSCPSSDTCCQLTSGEWGCCPIPEAVCCSDHQHCCPQGYTCVAEGQCQRGSEIVAGLEKMPARRASLSHPRDIGCDQHTSCPVGQTCCPSLGGSWACCQLPHAVCCEDRQHCCPAGYTCNVKARSCEKEVVSAQPATFLARSPHVGVKDVECGEGHFCHDNQTCCRDNRQGWACCPYRQGVCCADRRHCCPAGFRCAARGTKCLRREAPRWDAPLRDPALRQLL4 Neurodegenerative disorder

TARDBP MSEYIRVTEDENDEPIEIPSEDDGTVLLSTVTAQFPGACGLRYRNPVSQCMRGVRLVEGILHAPDAGWGNLVYVVNYPKDNKRKMDETDASSAVKVKRAVQKTSDLIVLGLPWKTTEQDLKEYFSTFGEVLMVQVKKDLKTGHSKGFGFVRFTEYETQVKVMSQRHMIDGRWCDCKLPNSKQSQDEPLRSRKVFVGRCTEDMTEDELREFFSQYGDVMDVFIPKPFRAFAFVTFADDQIAQSLCGEDLIIKGISVHISNAEPKHNSNRQLERSGRFGGNPGGFGNQGGFGNSRGGGAGLGNNQGSNMGGGMNFGAFSINPAMMAAAQAALQSSWGMMGMLASQQNQSGPSGNNQNQGNMQREPNQAFGSGNNSYSGSNSGAAIGWGSASNAGSGSGFNGGFGSSMDSKSSGWGM4 Neurodegenerative disorder

MAPT MAEPRQEFEVMEDHAGTYGLGDRKDQGGYTMHQDQEGDTDAGLKESPLQTPTEDGSEEPGSETSDAKSTPTAEDVTAPLVDEGAPGKQAAAQPHTEIPEGTTAEEAGIGDTPSLEDEAAGHVTQEPESGKVVQEGFLREPGPPGLSHQLMSGMPGAPLLPEGPREATRQPSGTGPEDTEGGRHAPELLKHQLLGDLHQEGPPLKGAGGKERPGSKEEVDEDRDVDESSPQDSPPSKASPAQDGRPPQTAAREATSIPGFPAEGAIPLPVDFLSKVSTEIPASEPDGPSVGRAKGQDAPLEFTFHVEITPNVQKEQAHSEEHLGRAAFPGAPGEGPEARGPSLGEDTKEADLPEPSEKQPAAAPRGKPVSRVPQLKARMVSKSKDGTGSDDKKAKTSTRSSAKTLKNRPCLSPKHPTPGSSDPLIQPSSPAVCPEPPSSPKYVSSVTSRTGSSGAKEMKLKGADGKTKIATPRGAAPPGQKGQANATRIPAKTPPAPKTPPSSGEPPKSGDRSGYSSPGSPGTPGSRSRTPSLPTPPTREPKKVAVVRTPPKSPSSAKSRLQTAPVPMPDLKNVKSKIGSTENLKHQPGGGKVQIINKKLDLSNVQSKCGSKDNIKHVPGGGSVQIVYKPVDLSKVTSKCGSLGNIHHKPGGGQVEVKSEKLDFKDRVQSKIGSLDNITHVPGGGNKKIETHKLTFRENAKAKTDHGAEIVYKSPVVSGDTSPRHLSNVSSTGSIDMVDSPQLATLADEVSASLAKQGL4 Neurodegenerative disorder

CTNND2 MFARKPPGAAPLGAMPVPDQPSSASEKTSSLSPGLNTSNGDGSETETTSAILASVKEQELQFERLTRELEAERQIVASQLERCKLGSETGSMSSMSSAEEQFQWQSQDGQKDIEDELTTGLELVDSCIRSLQESGILDPQDYSTGERPSLLSQSALQLNSKPEGSFQYPASYHSNQTLALGETTPSQLPARGTQARATGQSFSQGTTSRAGHLAGPEPAPPPPPPPREPFAPSLGSAFHLPDAPPAAAAAALYYSSSTLPAPPRGGSPLAAPQGGSPTKLQRGGSAPEGATYAAPRGSSPKQSPSRLAKSYSTSSPINIVVSSAGLSPIRVTSPPTVQSTISSSPIHQLSSTIGTYATLSPTKRLVHASEQYSKHSQELYATATLQRPGSLAAGSRASYSSQHGHLGPELRALQSPEHHIDPIYEDRVYQKPPMRSLSQSQGDPLPPAHTGTYRTSTAPSSPGVDSVPLQRTGSQHGPQNAAAATFQRASYAAGPASNYADPYRQLQYCPSVESPYSKSGPALPPEGTLARSPSIDSIQKDPREFGWRDPELPEVIQMLQHQFPSVQSNAAAYLQHLCFGDNKIKAEIRRQGGIQLLVDLLDHRMTEVHRSACGALRNLVYGKANDDNKIALKNCGGIPALVRLLRKTTDLEIRELVTGVLWNLSSCDALKMPIIQDALAVLTNAVIIPHSGWENSPLQDDRKIQLHSSQVLRNATGCLRNVSSAGEEARRRMRECDGLTDALLYVIQSALGSSEIDSKTVENCVCILRNLSYRLAAETSQGQHMGTDELDGLLCGEANGKDAESSGCWGKKKKKKKSQDQWDGVGPLPDCAEPPKGIQMLWHPSIVKPYLTLLSECSNPDTLEGAAGALQNLAAGSWKWSVYIRAAVRKEKGLPILVELLRIDNDRVVCAVATALRNMALDVRNKELIGKYAMRDLVHRLPGGNNSNNTASKAMSDDTVTAVCCTLHEVITKNMENAKALRDAGGIEKLVGISKSKGDKHSPKVVKAASQVLNSMWQYRDLRS4 Neurological disorder

CACNA1H MTEGARAADEVRVPLGAPPPGPAALVGASPESPGAPGREAERGSELGVSPSESPAAERGAELGADEEQRVPYPALAATVFFCLGQTTRPRSWCLRLVCNPWFEHVSMLVIMLNCVTLGMFRPCEDVECGSERCNILEAFDAFIFAFFAVEMVIKMVALGLFGQKCYLGDTWNRLDFFIVVAGMMEYSLDGHNVSLSAIRTVRVLRPLRAINRVPSMRILVTLLLDTLPMLGNVLLLCFFVFFIFGIVGVQLWAGLLRNRCFLDSAFVRNNNLTFLRPYYQTEEGEENPFICSSRRDNGMQKCSHIPGRRELRMPCTLGWEAYTQPQAEGVGAARNACINWNQYYNVCRSGDSNPHNGAINFDNIGYAWIAIFQVITLEGWVDIMYYVMDAHSFYNFIYFILLIIVGSFFMINLCLVVIATQFSETKQRESQLMREQRARHLSNDSTLASFSEPGSCYEELLKYVGHIFRKVKRRSLRLYARWQSRWRKKVDPSAVQGQGPGHRQRRAGRHTASVHHLVYHHHHHHHHHYHFSHGSPRRPGPEPGACDTRLVRAGAPPSPPSPGRGPPDAESVHSIYHADCHIEGPQERARVAHAAATAASLRLATGLGTMNYPTILPSGVGSGKGSTSPGPKGKWAGGPPGTGGHGPLSLNSPDPYEKIPHVVGEHGLGQAPGHLSGLSVPCPLPSPPAGTLTCELKSCPYCTRALEDPEGELSGSESGDSDGRGVYEFTQDVRHGDRWDPTRPPRATDTPGPGPGSPQRRAQQRAAPGEPGWMGRLWVTFSGKLRRIVDSKYFSRGIMMAILVNTLSMGVEYHEQPEELTNALEISNIVFTSMFALEMLLKLLACGPLGYIRNPYNIFDGIIVVISVWEIVGQADGGLSVLRTFRLLRVLKLVRFLPALRRQLVVLVKTMDNVATFCTLLMLFIFIFSILGMHLFGCKFSLKTDTGDTVPDRKNFDSLLWAIVTVFQILTQEDWNVVLYNGMASTSSWAALYFVALMTFGNYVLFNLLVAILVEGFQAEGDAN4 Neurological disorder

NCF1 MGDTFIRHIALLGFEKRFVPSQHYVYMFLVKWQDLSEKVVYRRFTEIYEFHKTLKEMFPIEAGAINPENRIIPHLPAPKWFDGQRAAENRQGTLTEYCSTLMSLPTKISRCPHLLDFFKVRPDDLKLPTDNQTKKPETYLMPKDGKSTATDITGPIILQTYRAIANYEKTSGSEMALSTGDVVEVVEKSESGWWFCQMKAKRGWIPASFLEPLDSPDETEDPEPNYAGEPYVAIKAYTAVEGDEVSLLEGEAVEVIHKLLDGWWVIRKDDVTGYFPSMYLQKSGQDVSQAQRQIKRGAPPRRSSIRNAHSIHQRSRKRLSQDAYRRNSVRFLQQRRRQARPGPQSPGSPLEEERQTQRSKPQPAVPPRPSADLILNRCSESTKRKLASAV4 Neurological disorder

CACNA1A MARFGDEMPARYGGGGSGAAAGVVVGSGGGRGAGGSRQGGQPGAQRMYKQSMAQRARTMALYNPIPVRQNCLTVNRSLFLFSEDNVVRKYAKKITEWPPFEYMILATIIANCIVLALEQHLPDDDKTPMSERLDDTEPYFIGIFCFEAGIKIIALGFAFHKGSYLRNGWNVMDFVVVLTGILATVGTEFDLRTLRAVRVLRPLKLVSGIPSLQVVLKSIMKAMIPLLQIGLLLFFAILIFAIIGLEFYMGKFHTTCFEEGTDDIQGESPAPCGTEEPARTCPNGTKCQPYWEGPNNGITQFDNILFAVLTVFQCITMEGWTDLLYNSNDASGNTWNWLYFIPLIIIGSFFMLNLVLGVLSGEFAKERERVENRRAFLKLRRQQQIERELNGYMEWISKAEEVILAEDETDGEQRHPFDALRRTTIKKSKTDLLNPEEAEDQLADIASVGSPFARASIKSAKLENSTFFHKKERRMRFYIRRMVKTQAFYWTVLSLVALNTLCVAIVHYNQPEWLSDFLYYAEFIFLGLFMSEMFIKMYGLGTRPYFHSSFNCFDCGVIIGSIFEVIWAVIKPGTSFGISVLRALRLLRIFKVTKYWASLRNLVVSLLNSMKSIISLLFLLFLFIVVFALLGMQLFGGQFNFDEGTPPTNFDTFPAAIMTVFQILTGEDWNEVMYDGIKSQGGVQGGMVFSIYFIVLTLFGNYTLLNVFLAIAVDNLANAQELTKDEQEEEEAANQKLALQKAKEVAEVSPLSAANMSIAVKEQQKNQKPAKSVWEQRTSEMRKQNLLASREALYNEMDPDERWKAAYTRHLRPDMKTHLDRPLVVDPQENRNNNTNKSRAAEPTVDQRLGQQRAEDFLRKQARYHDRARDPSGSAGLDARRPWAGSQEAELSREGPYGRESDHHAREGSLEQPGFWEGEAERGKAGDPHRRHVHRQGGSRESRSGSPRTGADGEHRRHRAHRRPGEEGPEDKAERRARHREGSRPARGGEGEGEGPDGGERRRRHRHGAPATYEGDARREDKER4 Neurological disorder

OCA2 MHLEGRDGRRYPGAPAVELLQTSVPSGLAELVAGKRRLPRGAGGADPSHSCPRGAAGQSSWAPAGQEFASFLTKGRSHSSLPQMSSSRSKDSCFTENTPLLRNSLQEKGSRCIPVYHPEFITAEESWEDSSADWERRYLLSREVSGLSASASSEKGDLLDSPHIRLRLSKLRRCVQWLKVMGLFAFVVLCSILFSLYPDQGKLWQLLALSPLENYSVNLSSHVDSTLLQVDLAGALVASGPSRPGREEHIVVELTQADALGSRWRRPQQVTHNWTVYLNPRRSEHSVMSRTFEVLTRETVSISIRASLQQTQAVPLLMAHQYLRGSVETQVTIATAILAGVYALIIFEIVHRTLAAMLGSLAALAALAVIGDRPSLTHVVEWIDFETLALLFGMMILVAIFSETGFFDYCAVKAYRLSRGRVWAMIIMLCLIAAVLSAFLDNVTTMLLFTPVTIRLCEVLNLDPRQVLIAEVIFTNIGGAATAIGDPPNVIIVSNQELRKMGLDFAGFTAHMFIGICLVLLVCFPLLRLLYWNRKLYNKEPSEIVELKHEIHVWRLTAQRISPASREETAVRRLLLGKVLALEHLLARRLHTFHRQISQEDKNWETNIQELQKKHRISDGILLAKCLTVLGFVIFMFFLNSFVPGIHLDLGWIAILGAIWLLILADIHDFEIILHRVEWATLLFFAALFVLMEALAHLHLIEYVGEQTALLIKMVPEEQRLIAAIVLVVWVSALASSLIDNIPFTATMIPVLLNLSHDPEVGLPAPPLMYALAFGACLGGNGTLIGASANVVCAGIAEQHGYGFSFMEFFRLGFPMMVVSCTVGMCYLLVAHVVVGWN4 Neurological disorder

SLC1A1 MGKPARKGCEWKRFLKNNWVLLSTVAAVVLGITTGVLVREHSNLSTLEKFYFAFPGEILMRMLKLIILPLIISSMITGVAALDSNVSGKIGLRAVVYYFCTTLIAVILGIVLVVSIKPGVTQKVGEIARTGSTPEVSTVDAMLDLIRNMFPENLVQACFQQYKTKREEVKPPSDPEMNMTEESFTAVMTTAISKNKTKEYKIVGMYSDGINVLGLIVFCLVFGLVIGKMGEKGQILVDFFNALSDATMKIVQIIMCYMPLGILFLIAGKIIEVEDWEIFRKLGLYMATVLTGLAIHSIVILPLIYFIVVRKNPFRFAMGMAQALLTALMISSSSATLPVTFRCAEENNQVDKRITRFVLPVGATINMDGTALYEAVAAVFIAQLNDLDLGIGQIITISITATSASIGAAGVPQAGLVTMVIVLSAVGLPAEDVTLIIAVDWLLDRFRTMVNVLGDAFGTGIVEKLSKKELEQMDVSSEVNIVNPFALESTILDNEDSDTKKSYVNGGFAVDKSDTISFTQTSQF4 Neurological disorder

APCS MNKPLLWISVLTSLLEAFAHTDLSGKVFVFPRESVTDHVNLITPLEKPLQNFTLCFRAYSDLSRAYSLFSYNTQGRDNELLVYKERVGEYSLYIGRHKVTSKVIEKFPAPVHICVSWESSSGIAEFWINGTPLVKKGLRQGYFVEAQPKIVLGQEQDSYGGKFDRSQSFVGEIGDLYMWDSVLPPENILSAYQGTPLPANILDWQALNYEIRGYVIIKPLVWV5 Neurodegenerative disorder

C1QC MDVGPSSLPHLGLKLLLLLLLLPLRGQANTGCYGIPGMPGLPGAPGKDGYDGLPGPKGEPGIPAIPGIRGPKGQKGEPGLPGHPGKNGPMGPPGMPGVPGPMGIPGEPGEEGRYKQKFQSVFTVTRQTHQPPAPNSLIRFNAVLTNPQGDYDTSTGKFTCKVPGLYYFVYHASHTANLCVLLYRSGVKVVTFCGHTSKTNQVNSGGVLLRLQVGEEVWLAVNDYYDMVGIQGSDSVFSGFLLFPD5 Neurodegenerative disorder

EEF1A2 MGKEKTHINIVVIGHVDSGKSTTTGHLIYKCGGIDKRTIEKFEKEAAEMGKGSFKYAWVLDKLKAERERGITIDISLWKFETTKYYITIIDAPGHRDFIKNMITGTSQADCAVLIVAAGVGEFEAGISKNGQTREHALLAYTLGVKQLIVGVNKMDSTEPAYSEKRYDEIVKEVSAYIKKIGYNPATVPFVPISGWHGDNMLEPSPNMPWFKGWKVERKEGNASGVSLLEALDTILPPTRPTDKPLRLPLQDVYKIGGIGTVPVGRVETGILRPGMVVTFAPVNITTEVKSVEMHHEALSEALPGDNVGFNVKNVSVKDIRRGNVCGDSKSDPPQEAAQFTSQVIILNHPGQISAGYSPVIDCHTAHIACKFAELKEKIDRRSGKKLEDNPKSLKSGDAAIVEMVPGKPMCVESFSQYPPLGRFAVRDMRQTVAVGVIKNVEKKSGGAGKVTKSAQKAQKAGK5 Neurological disorder

YWHAG MVDREQLVQKARLAEQAERYDDMAAAMKNVTELNEPLSNEERNLLSVAYKNVVGARRSSWRVISSIEQKTSADGNEKKIEMVRAYREKIEKELEAVCQDVLSLLDNYLIKNCSETQYESKVFYLKMKGDYYRYLAEVATGEKRATVVESSEKAYSEAHEISKEHMQPTHPIRLGLALNYSVFYYEIQNAPEQACHLAKTAFDDAIAELDTLNEDSYKDSTLIMQLLRDNLTLWTSDQQDDDGGEGNN5 Neurological disorder

MEF2C MGRKKIQITRIMDERNRQVTFTKRKFGLMKKAYELSVLCDCEIALIIFNSTNKLFQYASTDMDKVLLKYTEYNEPHESRTNSDIVETLRKKGLNGCDSPDPDADDSVGHSPESEDKYRKINEDIDLMISRQRLCAVPPPNFEMPVSIPVSSHNSLVYSNPVSSLGNPNLLPLAHPSLQRNSMSPGVTHRPPSAGNTGGLMGGDLTSGAGTSAGNGYGNPRNSPGLLVSPGNLNKNMQAKSPPPMNLGMNNRKPDLRVLIPPGSKNTMPSVSEDVDLLLNQRINNSQSAQSLATPVVSVATPTLPGQGMGGYPSAISTTYGTEYSLSSADLSSLSGFNTASALHLGSVTGWQQQHLHNMPPSALSQLGACTSTHLSQSSNLSLPSTQSLNIKSEPVSPPRDRTTTPSRYPQHTRHEAGRSPVDSLSSCSSSYDGSDREDHRNEFHSPIGLTRPSPDERESPSVKRMRLSEGWAT5 Neurological disorder

MT-ND1 MPMANLLLLIVPILIAMAFLMLTERKILGYMQLRKGPNVVGPYGLLQPFADAMKLFTKEPLKPATSTITLYITAPTLALTIALLLWTPLPMPNPLVNLNLGLLFILATSSLAVYSILWSGWASNSNYALIGALRAVAQTISYEVTLAIILLSTLLMSGSFNLSTLITTQEHLWLLLPSWPLAMMWFISTLAETNRTPFDLAEGESELVSGFNIEYAAGPFALFFMAEYTNIIMMNTLTTTIFLGTTYDALSPELYTTYFVTKTLLLTSLFLWIRTAYPRFRYDQLMHLLWKNFLPLTLALLMWYVSMPITISSIPPQT5 Neurological disorder

PARS2 MEGLLTRCRALPALATCSRQLSGYVPCRFHHCAPRRGRRLLLSRVFQPQNLREDRVLSLQDKSDDLTCKSQRLMLQVGLIYPASPGCYHLLPYTVRAMEKLVRVIDQEMQAIGGQKVNMPSLSPAELWQATNRWDLMGKELLRLRDRHGKEYCLGPTHEEAITALIASQKKLSYKQLPFLLYQVTRKFRDEPRPRFGLLRGREFYMKDMYTFDSSPEAAQQTYSLVCDAYCSLFNKLGLPFVKVQADVGTIGGTVSHEFQLPVDIGEDRLAICPRCSFSANMETLDLSQMNCPACQGPLTKTKGIEVGHTFYLGTKYSSIFNAQFTNVCGKPTLAEMGCYGLGVTRILAAAIEVLSTEDCVRWPSLLAPYQACLIPPKKGSKEQAASELIGQLYDHITEAVPQLHGEVLLDDRTHLTIGNRLKDANKFGYPFVIIAGKRALEDPAHFEVWCQNTGEVAFLTKDGVMDLLTPVQTV5 Neurological disorder

TNRC6A MRELEAKATKDVERNLSRDLVQEEEQLMEEKKKKKDDKKKKEAAQKKATEQKIKVPEQIKPSVSQPQPANSNNGTSTATSTNNNAKRATANNQQPQQQQQQQQPQQQQPQQQPQPQPQQQQPQQQPQALPRYPREVPPRFRHQEHKQLLKRGQHFPVIAANLGSAVKVLNSQSESSALTNQQPQNNGEVQNSKNQSDINHSTSGSHYENSQRGPVSSTSDSSTNCKNAVVSDLSEKEAWPSAPGSDPELASECMDADSASSSESERNITIMASGNTGGEKDGLRNSTGLGSQNKFVVGSSSNNVGHGSSTGPWGFSHGAIISTCQVSVDAPESKSESSNNRMNAWGTVSSSSNGGLNPSTLNSASNHGAWPVLENNGLALKGPVGSGSSGINIQCSTIGQMPNNQSINSKVSGGSTHGTWGSLQETCESEVSGTQKVSFSGQPQNITTEMTGPNNTTNFMTSSLPNSGSVQNNELPSSNTGAWRVSTMNHPQMQAPSGMNGTSLSHLSNGESKSGGSYGTTWGAYGSNYSGDKCSGPNGQANGDTVNATLMQPGVNGPMGTNFQVNTNKGGGVWESGAANSQSTSWGSGNGANSGGSRRGWGTPAQNTGTNLPSVEWNKLPSNQHSNDSANGNGKTFTNGWKSTEEEDQGSATSQTNEQSSVWAKTGGTVESDGSTESTGRLEEKGTGESQSRDRRKIDQHTLLQSIVNRTDLDPRVLSNSGWGQTPIKQNTAWDTETSPRGERKTDNGTEAWGSSATQTFNSGACIDKTSPNGNDTSSVSGWGDPKPALRWGDSKGSNCQGGWEDDSAATGMVKSNQWGNCKEEKAAWNDSQKNKQGWGDGQKSSQGWSVSASDNWGETSRNNHWGEANKKSSSGGSDSDRSVSGWNELGKTSSFTWGNNINPNNSSGWDESSKPTPSQGWGDPPKSNQSLGWGDSSKPVSSPDWNKQQDIVGSWGIPPATGKPPGTGWLGGPIPAPAKEEEPTGWEEPSPESIRRKMEIDDGTSAWGDPSKYNYKNVNMWNK5 Neurological disorder  
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Table 11 Disease-Drug Network 

Drugs Drugs_SMILES Status Class_Label

NADH C1C=CN(C=C1C(=O)N)[C@H]2[C@@H]([C@@H]([C@H](O2)COP(=O)(O)OP(=O)(O)OC[C@@H]3[C@H]([C@H]([C@@H](O3)N4C=NC5=C(N=CN=C54)N)O)O)O)OApproved Neurodegenerative disorder

Metformin CN(C)C(=N)N=C(N)N Approved Neurodegenerative disorder

Flavin adenine dinucleotideCC1=CC2=C(C=C1C)N(C3=NC(=O)NC(=O)C3=N2)C[C@@H]([C@@H]([C@@H](COP(=O)(O)OP(=O)(O)OC[C@@H]4[C@H]([C@H]([C@@H](O4)N5C=NC6=C(N=CN=C65)N)O)O)O)O)OApproved Neurodegenerative disorder

Ubidecarenone CC1=C(C(=O)C(=C(C1=O)OC)OC)C/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/CC/C=C(\C)/CCC=C(C)CApproved Neurodegenerative disorder

Cyclosporine CC[C@H]1C(=O)N(CC(=O)N([C@H](C(=O)N[C@H](C(=O)N([C@H](C(=O)N[C@H](C(=O)N[C@@H](C(=O)N([C@H](C(=O)N([C@H](C(=O)N([C@H](C(=O)N([C@H](C(=O)N1)[C@@H]([C@H](C)C/C=C/C)O)C)C(C)C)C)CC(C)C)C)CC(C)C)C)C)C)CC(C)C)C)C(C)C)CC(C)C)C)CApproved Neurodegenerative disorder

Haloperidol C1CN(CCC1(C2=CC=C(C=C2)Cl)O)CCCC(=O)C3=CC=C(C=C3)FApproved Neurodegenerative disorder

Fentanyl CCC(=O)N(C1CCN(CC1)CCC2=CC=CC=C2)C3=CC=CC=C3Approved   Neurological disorder

Valrubicin CCCCC(=O)OCC(=O)[C@]1(C[C@@H](C2=C(C1)C(=C3C(=C2O)C(=O)C4=C(C3=O)C=CC=C4OC)O)O[C@H]5C[C@@H]([C@@H]([C@@H](O5)C)O)NC(=O)C(F)(F)F)OApproved Neurological disorder

Oxygen O=O Approved Neurological disorder

D-Tyrosine C1=CC(=CC=C1C[C@H](C(=O)O)N)O Approved  Neurological disorder

Isotretinoin CC1=C(C(CCC1)(C)C)/C=C/C(=C/C=C/C(=C\C(=O)O)/C)/CApproved Neurological disorder

Milnacipran  CCN(CC)C(=O)[C@@]1(C[C@@H]1CN)C2=CC=CC=C2Approved    Neurological disorder

Citalopram CN(C)CCCC1(C2=C(CO1)C=C(C=C2)C#N)C3=CC=C(C=C3)FApproved  Neurological disorder

Clomipramine      CN(C)CCCN1C2=CC=CC=C2CCC3=C1C=C(C=C3)ClApproved    Neurological disorder

Escitalopram CN(C)CCC[C@@]1(C2=C(CO1)C=C(C=C2)C#N)C3=CC=C(C=C3)FApproved  Neurological disorder

Fluvoxamine       COCCCC/C(=N\OCCN)/C1=CC=C(C=C1)C(F)(F)FApproved   Neurological disorder

Paroxetine       C1CNC[C@H]([C@@H]1C2=CC=C(C=C2)F)COC3=CC4=C(C=C3)OCO4Approved   Neurological disorder

Sertraline       CN[C@H]1CC[C@H](C2=CC=CC=C12)C3=CC(=C(C=C3)Cl)ClApproved  Neurological disorder

Fluoxetine   CNCCC(C1=CC=CC=C1)OC2=CC=C(C=C2)C(F)(F)FApproved   Neurological disorder

Desipramine CNCCCN1C2=CC=CC=C2CCC3=CC=CC=C31 Approved   Neurological disorder

Duloxetine CNCC[C@@H](C1=CC=CS1)OC2=CC=CC3=CC=CC=C32Approved  Neurological disorder

Imipramine CN(C)CCCN1C2=CC=CC=C2CCC3=CC=CC=C31 Approved  Neurological disorder

Nortriptyline      CNCCC=C1C2=CC=CC=C2CCC3=CC=CC=C31 Approved  Neurological disorder

Venlafaxine CN(C)CC(C1=CC=C(C=C1)OC)C2(CCCCC2)O  Approved  Neurological disorder

Atomoxetine     CC1=CC=CC=C1O[C@H](CCNC)C2=CC=CC=C2Approved  Neurological disorder

Amitriptyline     CN(C)CCC=C1C2=CC=CC=C2CCC3=CC=CC=C31Approved  Neurological disorder

Amoxapine     C1CN(CCN1)C2=NC3=CC=CC=C3OC4=C2C=C(C=C4)ClApproved  Neurological disorder

Desvenlafaxine    CN(C)CC(C1=CC=C(C=C1)O)C2(CCCCC2)O Approved   Neurological disorder

Doxepin CN(C)CC/C=C/1\C2=CC=CC=C2COC3=CC=CC=C31Approved   Neurological disorder

Protriptyline CNCCCC1C2=CC=CC=C2C=CC3=CC=CC=C13 Approved  Neurological disorder

Trimipramine     CC(CN1C2=CC=CC=C2CCC3=CC=CC=C31)CN(C)CApproved  Neurological disorder

Cocaine CN1[C@H]2CC[C@@H]1[C@H]([C@H](C2)OC(=O)C3=CC=CC=C3)C(=O)OCApproved   Neurological disorder

Phentermine     CC(C)(CC1=CC=CC=C1)N Approved   Neurological disorder

Vilazodone     C1CN(CCN1CCCCC2=CNC3=C2C=C(C=C3)C#N)C4=CC5=C(C=C4)OC(=C5)C(=O)NApproved  Neurological disorder

Mirtazapine    CN1CCN2C(C1)C3=CC=CC=C3CC4=C2N=CC=C4 Approved  Neurological disorder

Lumateperone    CN1CCN2[C@H]3CCN(C[C@H]3C4=C2C1=CC=C4)CCCC(=O)C5=CC=C(C=C5)FApproved   Neurological disorder

Vortioxetine  CC1=CC(=C(C=C1)SC2=CC=CC=C2N3CCNCC3)C Approved   Neurological disorder

Bupropion CC(C(=O)C1=CC(=CC=C1)Cl)NC(C)(C)C Approved  Neurological disorder

Risperidone CC1=C(C(=O)N2CCCCC2=N1)CCN3CCC(CC3)C4=NOC5=C4C=CC(=C5)F Approved   Neurological disorder

Minaprine CC1=CC(=NN=C1NCCN2CCOCC2)C3=CC=CC=C3Approved  Neurological disorder  
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Table 12 Target-Disease-Drug Network 

Targets No._of_Edges Diseases Drugs Status Disorder_Class

MT-ND2 3 Alzheimers Disease NADH Approved Neurodegenerative disorder

MT-ND2 3 Alzheimers Disease Metformin Approved Neurodegenerative disorder

MT-ND2 3 Alzheimers Disease Flavin adenine dinucleotideApproved Neurodegenerative disorder

MT-ND2 3 Alzheimers Disease UbidecarenoneApproved Neurodegenerative disorder

HSPG2 3 Alzheimers Disease Cyclosporine Approved Neurodegenerative disorder

HSPG2 3 Alzheimers Disease Haloperidol Approved Neurodegenerative disorder

ASTN2 3 Migraine Fentanyl Approved   Neurological disorder

PRRT2 3 Migraine Valrubicin Approved Neurological disorder

NPAS3 3 Psychotic disorder Oxygen Approved Neurological disorder

NDN 3 Prader-Willi Syndrome D-Tyrosine Approved  Neurological disorder

NDN 3 Prader-Willi Syndrome Isotretinoin Approved Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderMilnacipran  Approved   Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderCitalopram Approved  Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderClomipramine      Approved   Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderEscitalopram Approved  Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderFluvoxamine      Approved   Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderParoxetine       Approved   Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderSertraline       Approved  Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderFluoxetine   Approved   Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderDesipramine Approved   Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderDuloxetine Approved  Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderImipramine Approved  Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderNortriptyline     Approved  Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderVenlafaxine Approved  Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderAtomoxetine    Approved  Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderAmitriptyline    Approved  Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderAmoxapine     Approved  Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderDesvenlafaxine    Approved   Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderDoxepin Approved   Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderProtriptyline Approved  Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderTrimipramine    Approved  Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderCocaine Approved   Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderPhentermine    Approved   Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderVilazodone     Approved  Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderMirtazapine    Approved  Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderLumateperone   Approved   Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderVortioxetine  Approved   Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderBupropion Approved  Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderRisperidone Approved   Neurological disorder

SLC6A4 3 Obsessive-compulsive disorderMinaprine Approved  Neurological disorder  
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Targets No._of_Edges Diseases Drugs Status Disorder_Class

BDNF 4 Huntingtons disease Vasopressin  Approved  Neurodegenerative disorder

BDNF 4 Huntingtons disease Verteporfin  Approved   Neurodegenerative disorder

BDNF 4 Huntingtons disease Vincristine  Approved   Neurodegenerative disorder

APOA1 4 Prion disease Fenofibrate    Approved  Neurodegenerative disorder

APOA1 4 Prion disease Copper  Approved   Neurodegenerative disorder

APOA1 4 Prion disease Testosterone   Approved   Neurodegenerative disorder

APOA1 4 Prion disease Zinc acetate  Approved   Neurodegenerative disorder

APOA1 4 Prion disease Cholesterol   Approved   Neurodegenerative disorder

APOA1 4 Prion disease Zinc cation  Approved    Neurodegenerative disorder

APOA1 4 Prion disease Zinc chloride  Approved   Neurodegenerative disorder

APOA1 4 Prion disease Zinc sulfate Approved   Neurodegenerative disorder

APOA1 4 Prion disease Infigratinib  Approved   Neurodegenerative disorder

APOA1 4 Prion disease Ethanol  Approved  Neurodegenerative disorder

APOA1 4 Prion disease Sirolimus  Approved   Neurodegenerative disorder

APOA1 4 Prion disease Furosemide  Approved   Neurodegenerative disorder

APOA1 4 Prion disease Glucagon  Approved  Neurodegenerative disorder

APOA1 4 Prion disease Lamivudine  Approved   Neurodegenerative disorder

C1QB 4 Prion disease Zinc cation  Approved    Neurodegenerative disorder

C1QB 4 Prion disease Zinc acetate  Approved   Neurodegenerative disorder

C1QB 4 Prion disease Zinc chloride  Approved   Neurodegenerative disorder

C1QB 4 Prion disease Zinc sulfate Approved   Neurodegenerative disorder

CAD 4 Epilepsy L-Glutamine    Approved Neurological disorder

CAD 4 Epilepsy Aspartic acid   Approved Neurological disorder

CAD 4 Epilepsy Ammonia  Approved  Neurological disorder

CAD 4 Epilepsy Famotidine  Approved  Neurological disorder

CAD 4 Epilepsy Phosphoric acid Approved   Neurological disorder

CAD 4 Epilepsy Water  Approved  Neurological disorder

CAD 4 Epilepsy Glutamic acid  Approved Neurological disorder

MARS2 4 Epilepsy RacemethionineApproved  Neurological disorder

MARS2 4 Epilepsy Phosphoric acidApproved Neurological disorder

MARS2 4 Epilepsy Pyrophosphoric acidApproved Neurological disorder

MARS2 4 Epilepsy SelenomethionineApproved Neurological disorder

KCNMB3 4 Epilepsy Miconazole Approved  Neurological disorder

KCNMB3 4 Epilepsy Nitrendipine Approved Neurological disorder

KCNMB3 4 Epilepsy Procaine Approved  Neurological disorder

KCNMB3 4 Epilepsy Ritodrine Approved Neurological disorder

KCNMB3 4 Epilepsy Trimebutine Approved Neurological disorder

KCNMB3 4 Epilepsy Potassium Approved Neurological disorder

PROSC 4 Epilepsy Pyridoxal phosphateApproved Neurological disorder

EPM2A 4 Epilepsy Chlorpromazine  Approved   Neurological disorder  
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Targets No._of_Edges Diseases Drugs Status Disorder_Class

SLC6A3 6 Dementia Metyrosine  Approved  Neurodegenerative disorder

SLC6A3 6 Dementia Phenelzine  Approved  Neurodegenerative disorder

TOMM40 6 Dementia 1,2-BenzodiazepineApproved Neurodegenerative disorder

TOMM40 6 Dementia Cholesterol Approved Neurodegenerative disorder

OXTR 6 Major Depressive Disorder Carbetocin Approved Neurodegenerative disorder

OXTR 6 Major Depressive Disorder Sodium chlorideApproved Neurodegenerative disorder

OXTR 6 Major Depressive Disorder Atosiban Approved Neurodegenerative disorder

OXTR 6 Major Depressive Disorder Oxytocin Approved Neurodegenerative disorder

OXTR 6 Major Depressive Disorder Desmopressin Approved Neurodegenerative disorder

OXTR 6 Major Depressive Disorder Estradiol Approved  Neurodegenerative disorder

OXTR 6 Major Depressive Disorder Progesterone Approved Neurodegenerative disorder

OXTR 6 Major Depressive Disorder Testosterone Approved Neurodegenerative disorder

OXTR 6 Major Depressive Disorder Vasopressin Approved Neurodegenerative disorder

WBSCR22 6 Williams-Beuren syndrome5-methyltetrahydrofolic acidApproved Neurological disorder

KCNK18 6 Migraine Desflurane Approved Neurological disorder

KCNK18 6 Migraine Enflurane Approved  Neurological disorder

KCNK18 6 Migraine Sevoflurane Approved Neurological disorder

KCNK18 6 Migraine Isoflurane Approved Neurological disorder

KCNK18 6 Migraine Halothane Approved Neurological disorder

YWHAZ 7 Parkinson's disease Zolpidem Approved Neurodegenerative disorder

C3 7 Prion disease Clozapine   Approved  Neurodegenerative disorder

C3 7 Prion disease Zinc chloride  Approved   Neurodegenerative disorder

C3 7 Prion disease Zinc sulfate Approved   Neurodegenerative disorder

C3 7 Prion disease Copper  Approved   Neurodegenerative disorder

C3 7 Prion disease Human immunoglobulin G Approved   Neurodegenerative disorder

C3 7 Prion disease Zinc acetate  Approved   Neurodegenerative disorder

C3 7 Prion disease Zinc cation  Approved    Neurodegenerative disorder

ATIC 7 Epilepsy Methotrexate Approved  Neurological disorder

ATIC 7 Epilepsy Pemetrexed Approved   Neurological disorder

ATIC 7 Epilepsy Water Approved  Neurological disorder

CSTB 7 Epilepsy Cupric Chloride Approved Neurological disorder

GRN 7 Frontotemporal DementiaTamoxifen Approved Neurodegenerative disorder

GRN 7 Frontotemporal DementiaEstradiol Approved  Neurodegenerative disorder

GRN 7 Frontotemporal DementiaCysteine  Approved Neurodegenerative disorder

TARDBP 7 Frontotemporal DementiaBifonazole  Approved   Neurodegenerative disorder

TARDBP 7 Frontotemporal DementiaChenodeoxycholic acid Approved  Neurodegenerative disorder

TARDBP 7 Frontotemporal DementiaDexibuprofen  Approved   Neurodegenerative disorder

TARDBP 7 Frontotemporal DementiaDiclofenac  Approved   Neurodegenerative disorder

TARDBP 7 Frontotemporal DementiaEstrone  Approved  Neurodegenerative disorder

TARDBP 7 Frontotemporal DementiaFluconazole  Approved   Neurodegenerative disorder 

 


