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Abstract

Accurate therapeutic intervention against many Neurological disorders is still not known. Only
symptomatic treatments are being used for the cure of such devasting disorders. Therefore, it is
crucial to probe the target associations with the drug followed by the subsequent disease
associations which could aid in more accurate and effective treatment against neurological
disorders. Additionally, there is a major overlap of targets in neurological and neurodegenerative
disorders. In this study, a database for known protein-targets and FDA-approved drugs for 10
neurodegenerative disorders and 9 neurological disorders is developed from publicly available
resources. The database contains 236 unique protein-targets with Protein-Protein Interactions
(PPIs) ranging from 3 to 71, and 964 FDA-approved drugs against selected target-proteins for the
19 neuronal disorders. Network pharmacology approach was used to investigate the targets
association and overlap in neurological and neurodegenerative disorders. Three networks i.e.,
Target-Disease, Disease-Drug and Target-Disease-Drug Networks, were built between protein-
targets, FDA-approved drugs, and neuronal disorders, with datasets categorized into neurological
and neurodegenerative disorders. Furthermore, five machine learning models were trained on the
networks, with Decision Tree, Random Forest, and Gradient Boosting Classifiers emerging as
optimal models for predicting disease association of protein-targets and drugs. The results provide
a comprehensive view of drugs and protein-targets’ association with specific neurological and
neurodegenerative disorders, as well as target overlap among multiple neuronal disorders. Finally,
a multi-variate Artificial Neural Network (ANN) to predict drug-target interactions linked to
specific diseases has been developed. The model was trained using a multi-variate output
configuration, enabling predictions for both target protein descriptors with 53% accuracy and
disease class with 82% accuracy, for a given drug. This study contributes to database development
and Network classification for FDA-approved drugs and protein targets associated with
neurological and neurodegenerative disorders including the multi-variate model development,

offering potential avenues for developing new therapeutics and personalized treatment strategies.
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Chapter 1

Introduction
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1 Introduction

1.1 Background:

Neurological disorders, a diverse group of conditions that includes both neurodevelopmental
and neuropsychiatric disorders, present significant challenges to global healthcare systems [1].
These disorders inflict debilitating effects on patients, impairing their cognitive, motor, and
emotional functions, leading to a diminished quality of life. Neurodegenerative diseases [2], such
as Alzheimer’s, Parkinson’s [3, 4], Huntington’s diseases [5], etc. are characterized by progressive
degeneration of nerve cells and neural networks, resulting in the deterioration of cognitive and
motor functions over time [6]. Neurodegenerative disorders are caused due to the inability of nerve
cells to perform their function well [7]. The loss of nerve cells is caused due to Increased ROS,
Imbalance of ions in nerve impulse transmission, Chronic neuroinflammation and intracellular and
extracellular accumulation of misfolded proteins, causing abnormalities in normal cellular
functions, and ultimately causing apoptosis of nerve cells as shown in Figure 1.1. As functional
neuronal death is almost certainly the key factor that mediates functional impairment, preventing
neuronal death and dysfunction will have a huge clinical benefit. Neurodegenerative diseases are
incurable and debilitating, resulting in the progressive degeneration and/or death of neurons [8].
On the other hand, psychiatric disorders encompass a wide range of mental health conditions [9],
including depression [10], anxiety [11], bipolar disorder [12], and schizophrenia [13], which

significantly impact a person’s thoughts, emotions, and behavior. In neuropsychiatric disorders,
Senile plaques Neurofibrillary tangles

Normal neuron Diseased neuron

Figure 1.1 Normal Vs Diseased Neuron
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there is an imbalance of ions and neurotransmitters between nerve cells, which occurs either due
to abnormal secretions of excitatory, inhibitory, or modulatory neurotransmitters, affecting
neurotransmission and ultimately causing many psychological problems. Neurons are the building
blocks of the nervous system [14] and are different from other cells of the body as they do not
reproduce or replace themselves, therefore, the body cannot replace them with other neurons when

they are damaged.

1.2 Prevalence and Mortality Rate:

According to National Health Survey conducted in 2000 [15], the prevalence of hypertension in
Pakistan is 33%, 91.1% for stroke, 22.9% for Migraine, 34% for depression and anxiety 1.5% for
Epilepsy, 39% for depression, 51% for Parkinson’s disease, and 60% for dementia due to

Alzheimer’s disease (AD).

According to Global Burden of Diseases, Injuries, and Risk Factors (GBD), Neurological
disorders are an important cause of disability and the second-leading cause group of deaths
worldwide [16]. Globally, the burden of neurological disorders has increased substantially over
the past 25 years because of expanding population numbers and aging. The most prevalent
neurological disorders are tension-type headache, migraine, Alzheimer’s disease and other
dementias. Between 1990 and 2015, the number of deaths from neurological disorders increased
by 36.7%, and the number of DALYs by 7.4%. The number of patients who will need care by

clinicians with expertise in neurological conditions will continue to grow in the coming decades.

World Health Organization (WHO) data suggests that neurological and psychiatric disorders are
an important and growing cause of morbidity, mortality, and disability worldwide [17].
Neurological disorders are the third most common cause of disability and premature death in the
Europe and their prevalence and burden will likely increase with the progressive ageing of the

European population.

A recent study of GBD in 2019 showed that the prevalence of mental disorders (depression,
anxiety, post-traumatic stress disorder, bipolar disorder, autism spectrum disorders and

schizophrenia) is 22.1% and remained among the top ten leading causes of burden worldwide,
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with no evidence of global reduction in the burden since 1990 [18]. The burden of mental disorders
is high in conflict-affected populations. Given the large numbers of people in need and the
humanitarian imperative to reduce suffering, there is an urgent need to implement scalable mental

health interventions to address this burden.

Neurological disorders stand as the second leading cause of death in the elderly population
worldwide. The demographic factors, particularly aging, might be related to an increase in the
mortality of neurological disorders. As the prevalence of these conditions continues to rise with an
aging population and changing lifestyles, the burden on healthcare systems and the economic

impact on societies are mounting [19].

1.3 Common Neurodegeneration Mechanisms:

Chronic neuroinflammation, increased ROS, imbalance of ions in nerve impulse transmission,
accumulation of misfolded proteins in nerve cells, has emerged as some common
neurodegenerative mechanisms across many neurological disorders, contributing to disease

progression and pathophysiology [20, 21]. The details of all the mechanisms are given below:

1.3.1 Chronic neuroinflammation:

Chronic neuroinflammation, characterized by persistent and prolonged activation of immune
responses within the central nervous system, has garnered significant attention as a common
underlying feature across a wide spectrum of neurological disorders. This chronic inflammatory
state has been implicated in the pathogenesis of diverse conditions, ranging from
neurodegenerative diseases like Alzheimer’s and Parkinson’s to psychiatric disorders such as
depression and schizophrenia. The recognition of chronic neuroinflammation as a shared
phenomenon in these seemingly disparate disorders has shed light on the intricate relationship
between molecular targets, drugs, and disease manifestations, presenting a promising avenue for
the development of more accurate and effective treatments [22]. Understanding the complex

interplay between molecular targets and disease outcomes is essential in the quest to decipher the
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underlying mechanisms driving neurological disorders. By elucidating the specific interactions
between biological targets and therapeutic agents, we can unlock novel strategies for intervention

and potentially halt disease progression.

1.3.2 Dysregulation of Reactive Oxygen Species (ROS):

Reactive Oxygen Species (ROS) are highly reactive molecules that contain oxygen and are
produced as natural byproducts of cellular metabolism. In normal physiological conditions, cells
maintain a delicate balance between ROS production and their elimination through antioxidant
defense systems. However, several factors, including environmental stress, exposure to toxins,
chronic inflammation, and dysfunction of mitochondria, can disrupt this balance and lead to an
excessive generation of ROS, resulting in a state of oxidative stress. The dysregulation of ROS
production stands out as a critical factor contributing to neuronal damage and inflammation.
Within the context of neurological disorders, the impact of increased ROS levels on disease
progression is profound [23]. Oxidative stress becomes a critical player in the pathophysiology of
these disorders. The deleterious effects of oxidative stress are primarily attributed to the damaging
effects on cellular components, including lipids, proteins, and DNA, within nerve cells. Such
damage can lead to cellular dysfunction and, in severe cases, cell death. The detrimental
consequences of oxidative stress extend to neuronal function and communication. Oxidative
damage can impair neuronal function, disturb synaptic communication, and facilitate the process
of neuroinflammation, which further exacerbates the disease’s severity. A particularly significant
consequence of ROS-induced damage is the accumulation of misfolded or abnormal proteins. This
accumulation is particularly relevant to neurodegenerative diseases like Alzheimer’s [24],
Parkinson’s [25], and Amyotrophic Lateral Sclerosis (ALS) [26], where protein misfolding plays
a central role in disease pathogenesis. To address the adverse effects of increased ROS and
oxidative stress in neurological disorders, researchers are actively exploring antioxidant therapies
and interventions to restore redox homeostasis and protect neurons from oxidative damage. By
mitigating oxidative stress, these treatments have the potential to slow down disease progression

and offer neuroprotection. The intricate relationship between ROS, oxidative stress, and
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neurological disorders underscores the significance of redox homeostasis in maintaining neuronal

health.

1.3.3 Imbalance of Ions & Neurotransmitters:

The proper functioning of the nervous system relies on the precise transmission of nerve
impulses, a process governed by the delicate balance of ions across neuronal membranes. Among
these ions, sodium (Na"), potassium (K*), calcium (Ca*"), and chloride (CI') play pivotal roles in
neuronal signaling. Neurons employ specialized protein structures called ion channels and pumps
to regulate the movement of these ions in and out of cells, leading to the generation of crucial
electrical signals that facilitate communication between neurons. Maintaining ion homeostasis is
of paramount importance for the overall health and function of neurons. Disruptions in this delicate
balance can have profound consequences, leading to abnormal nerve impulse transmission and
impairing neuronal communication and function [27]. An imbalance in ion concentrations in nerve
impulse transmission has been implicated in the hyperexcitability of neurons and the manifestation
of neurological symptoms as shown in Figure 1.2. In the context of neurological disorders, such
imbalances can become particularly significant. Neurological disorders, including epilepsy and
multiple sclerosis, are often characterized by disturbances in ion concentrations. In epilepsy,

excessive neuronal excitability arises due to imbalances in ion concentrations, leading to the
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Figure 1.2 Neurotransmitters Imbalance in Neurological disorders
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uncontrolled firing of neurons and the occurrence of seizures. On the other hand, multiple sclerosis
is marked by altered ion homeostasis, which can hinder the smooth transmission of signals between
neurons, resulting in motor dysfunction and cognitive impairments. These disruptions in ion
homeostasis contribute to the diverse array of symptoms observed in neurological disorders,
ranging from seizures to motor and cognitive impairments. As our knowledge of ion channel
dysfunctions continues to expand, we can anticipate the emergence of novel and innovative
treatment options for neurological disorders, providing hope and improved quality of life for those

affected by these conditions [28].

1.3.4 Accumulation of misfolded proteins:

Proteins, being the workhorses of cellular functions, assume critical roles in maintaining the
normal activities of living organisms. For proteins to function properly, their three-dimensional
structure must be correctly folded. However, under certain circumstances, proteins may misfold
due to genetic mutations, environmental influences, or cellular stress. Such misfolded proteins
have a tendency to aggregate and form toxic clumps within nerve cells, thereby disrupting vital
cellular processes and leading to impaired neuronal function [29]. The accumulation of misfolded
proteins represents a hallmark feature observed in numerous neurodegenerative diseases, including
Alzheimer’s [3, 4], Parkinson’s, and Huntington’s diseases. In Alzheimer’s disease, the formation
of amyloid-beta protein [30] aggregates gives rise to plaques, while in Parkinson’s disease, alpha-
synuclein [31] aggregates manifest as Lewy bodies. These protein aggregates exert toxic effects
on neurons, instigating dysfunction and eventual degeneration of these essential cells. A
comprehensive understanding of these mechanisms opens the door to potential therapies that can
protect neurons from the toxic effects of misfolded proteins, offering hope for improved treatment
strategies and ultimately enhancing the quality of life for individuals impacted by

neurodegenerative diseases.

In conclusion, neurological disorders represent a multifaceted and intricate web of
interconnected mechanisms, comprising chronic neuroinflammation, increased levels of Reactive
Oxygen Species (ROS), imbalances in ion homeostasis, and the accumulation of misfolded

proteins as shown in the Figure 1.3. The intricate understanding of these underlying mechanisms
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and their role in disease pathogenesis offers valuable insights that can pave the way for the
development of targeted and effective therapies and interventions, ultimately enhancing the
management and treatment of neurological disorders. Addressing these diverse facets of
neurological disorders is of paramount importance in unlocking novel treatment approaches and
mitigating the significant burden these disorders impose on affected individuals and global
healthcare systems alike. By delving into the complexities of chronic neuroinflammation,
oxidative stress, ion imbalances, and protein misfolding, researchers can identify potential targets
for intervention, thus providing new avenues for therapeutic development. The quest for
innovative treatments is a crucial endeavor, as it holds the promise of offering hope to patients and
healthcare systems worldwide. Through persistent dedication and interdisciplinary collaboration
among scientists, clinicians, and researchers, advancements in our understanding of neurological

disorders will continue to unfold, ushering in a new era of improved management and care.
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1.4 Disease Pathogenesis & Symptoms:

Neurological disorders encompass a broad spectrum of conditions that pose significant public

health challenges and impact millions of individuals worldwide. Despite dedicated research

efforts, developing precise and effective therapeutic interventions for many of these complex

disorders remains a formidable task. Among the diverse array of neurological disorders, several

stand out, each presenting its unique set of challenges. The selected disorders specifying their

disorder category in the context of common neurodegenerative mechanisms, including increased

Reactive Oxygen Species (ROS), imbalance of ions in nerve impulse transmission, accumulation

of misfolded proteins in nerve cells, and chronic neuroinflammation:

1.4.1

Neurodegenerative Disorders:

Alzheimer’s Disease is characterized by the accumulation of misfolded proteins such
amyloid-beta (4f) protein plaques, presenilin (PSEN), amyloid precursor protein (APP)
and tau protein tangles in the brain [32]. These protein aggregates trigger chronic
neuroinflammation, oxidative stress, and disruption of ion homeostasis, contributing to the
degeneration of nerve cells and cognitive decline [33]. Symptoms include memory loss,
confusion, and difficulty performing everyday tasks [32].

Huntington’s Disease is caused by a genetic mutation leading to the aggregation of mutant
huntingtin protein. The accumulation of misfolded proteins, along with increased ROS and
chronic neuroinflammation, contribute to the progressive degeneration of neurons.
Symptoms include motor problems, cognitive decline, and psychiatric symptoms [5].
Amyotrophic Lateral Sclerosis (ALS) is a progressive motor neuron disease involving
the degeneration of motor neurons in the brain and spinal cord [34]. Imbalance of ions and
increased ROS production contribute to the neurodegenerative process. ALS leads to
muscle weakness and paralysis.

Frontotemporal Lobar Degeneration (FTLD) encompasses a group of disorders
characterized by the degeneration of the frontal and temporal lobes of the brain. Several

genes have been associated with FTLD, and mutations in these genes play a significant role
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in the pathogenesis of the disease, such as C9ORF72, MAPT (Microtubule-Associated
Protein Tau) [35], Progranulin (GRN), TDP-43 (Transactive Response DNA-binding
Protein with Molecular Weight 43 kDa), FUS (Fused in Sarcoma), CHMP2B (Charged
Multivesicular Body Protein 2B), and V'CP (Valosin-containing Protein) [36]. Mutations in
these genes disrupt various cellular processes, including protein homeostasis, RNA
processing, inflammation, and cellular transport, leading to the characteristic neuronal
degeneration. FTLD results in changes in personality, behavior, and language difficulties.

e Multiple Sclerosis is an autoimmune disorder in which chronic inflammation damages the
myelin sheath around nerves. This chronic neuroinflammation and demyelination
contribute to nerve dysfunction and causing symptoms like fatigue, vision problems, and
difficulty walking [37].

e Parkinson’s Disease is characterized by the degeneration of dopamine-producing neurons
in the brain. Mutations in the several genes have been implicated in the development and
progression of Parkinson’s disease such as FMRI, a-synuclein, Parkin, PINKI, DJ-1,
PARKS and GBA [38]. Increased ROS production, misfolded protein accumulation (alpha-
synuclein), and chronic neuroinflammation contribute to the neurodegenerative process.
Symptoms include tremors, rigidity, and difficulty with balance and coordination.

e Dementia is a syndrome associated with a decline in memory, cognitive function, and
behavior. Several types of dementia, including Alzheimer’s disease, involve common
neurodegenerative mechanisms, such as misfolded protein accumulation, chronic
neuroinflammation, and oxidative stress [39]. Dementia results in memory loss, impaired
reasoning, and personality changes.

e Prion Disease, like Creutzfeldt-Jakob disease, involves the misfolding of prion proteins,
leading to the formation of infectious protein aggregates [40]. This accumulation of
misfolded proteins triggers neuroinflammation and neurodegeneration. Symptoms include
Rapidly Progressive Dementia, Movement Abnormalities, Behavioral Changes, Visual
Disturbances, Muscle Weakness, Difficulty Swallowing and Speaking.

e Progressive Supranuclear Palsy is a rare neurodegenerative disorder characterized by
movement and balance problems. Misfolded tau proteins and chronic neuroinflammation

contribute to the degeneration of brain cells [41]. Symptoms include Balance and Gait
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Problems, Stiffness and Rigidity, Slow Movements, Cognitive Changes, Speech
Difficulties, and Swallowing difficulties [42].

1.4.2 Neurological Disorders:

e Epilepsy is characterized by recurrent seizures resulting from abnormal electrical activity
in the brain [43]. Imbalance of ions, particularly sodium and potassium, disrupts nerve
impulse transmission and leads to epileptic seizures which can vary in intensity and
manifestation [44].

e Obsessive-Compulsive Disorder (OCD) is characterized by repetitive, intrusive thoughts
and behaviors. Abnormalities in brain neurotransmitters and neuroinflammatory processes
have been implicated in the disorder [45]. OCD involves intrusive thoughts and repetitive
behaviors, causing distress and impairment.

e Migraine is a complex neurological disorder with genetic and environmental factors
contributing to its pathogenesis. The exact mechanisms behind migraine are still under
investigation, but studies suggest that oxidative stress and neuroinflammation may play a
role in migraine attacks [46]. Migraine causes severe headaches, often accompanied by
nausea, sensitivity to light, and sound.

e Psychotic Disorder such as schizophrenia [47], involve altered brain connectivity and
neurotransmitter imbalances. Dysregulated ROS production, oxidative stress, and chronic
neuroinflammation may contribute to the pathophysiology of psychotic disorders. Such
disorders lead to delusions, hallucinations, and disorganized thinking [48].

e Autism Spectrum Disorder is a complex neurodevelopmental disorder with diverse
genetic and environmental influences. Imbalances in neurotransmitters and
neuroinflammatory processes may contribute to the neurological manifestations of autism.
ASD results in difficulties in social communication and repetitive behaviors [49].

e Anxiety Disorder involves dysregulation of brain circuits and neurotransmitters.
Neuroinflammation and oxidative stress have been implicated in the pathophysiology of
anxiety disorders [50]. Anxiety Disorders cause excessive worry, fear, and avoidance of

certain situations.
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e Major Depressive Disorder involves alterations in brain regions responsible for mood
regulation and neurotransmitter imbalances [11]. Chronic inflammation and oxidative
stress may contribute to the development and persistence of depressive symptoms [10].
Symptoms include persistent feelings of sadness and loss of interest in activities.

e Prader-Willi Syndrome results from genetic abnormalities and affects brain development
and function. While the exact mechanisms linking neurodegeneration to this disorder are
not fully understood, chronic neuroinflammation and oxidative stress could play a role
[51]. Prader-Willi Syndrome affects brain development, leading to intellectual disability
and behavioral problems.

¢ Down Syndrome is caused by the presence of an extra chromosome 21 [52]. Individuals
with Down syndrome have an increased risk of developing Alzheimer’s disease later in
life, likely due to shared neurodegenerative mechanisms involving misfolded proteins and
oxidative stress. Symptoms involve cognitive impairment, distinctive facial features, and
an increased risk of Alzheimer’s disease.

e Williams-Beuren Syndrome is a genetic disorder affecting multiple systems, including
the nervous system. The mechanisms underlying neurodegeneration in this disorder are not
fully understood but could involve oxidative stress and neuroinflammation [53]. It affects
multiple systems, including the nervous system, leading to developmental delays and

cardiovascular problems.

1.5 Ongoing therapies and their Limitations:

Below are some typical and well-known current treatment approaches for neurological,
neurodegenerative, neurodevelopmental, and neuropsychiatric along with their general success

rates and limitations:
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1.5.1 Neurological Disorders:

e Epilepsy: Antiepileptic medications are the mainstay of treatment and can control seizures
in about 60-70% of patients [54]. However, some individuals may not respond to
medications and may require other treatments, such as surgery or a ketogenic diet.

e Multiple Sclerosis: Disease-modifying therapies can slow disease progression and reduce
relapses in many patients, but they may not be effective for all individuals, and side effects
can occur [55].

e Migraine: Triptans and other migraine-specific medications can provide relief for many
patients [56], but they may not work for everyone and can have side effects.

e Parkinson’s Disease: Levodopa is the primary medication for managing motor symptoms,
and it is effective in improving mobility [57]. However, long-term use can lead to motor
complications.

e Depression: Antidepressant medications and psychotherapy can be effective for many
patients [58], but the success rate varies, and some individuals may require multiple trials
of different medications before finding one that works for them.

¢ Anxiety Disorders: Medications such as SSRIs and benzodiazepines can provide relief for
some patients [58], but they may not work for everyone and can have side effects.

e Bipolar Disorder: Mood stabilizers and antipsychotic medications are used to manage
bipolar disorder [59] but finding the right combination of medications can be challenging,
and some individuals may experience treatment-resistant symptoms.

e Psychotic Disorder or Schizophrenia: Antipsychotic medications can help manage
symptoms, but they may not be effective for all patients [48], and some individuals may
experience side effects.

e Obsessive-Compulsive Disorder (OCD): Treatment may involve cognitive-behavioral
therapy and/or medications such as SSRIs [60]. Success rates vary among patients.

e Autism Spectrum Disorder (ASD): Treatment may involve behavioral therapies, speech
therapy, and medications to manage associated symptoms [61].

e Prader-Willi Syndrome: There is no cure for Prader-Willi Syndrome, and treatment

focuses on managing symptoms and providing supportive care [62].
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e Down Syndrome: Treatment focuses on addressing associated medical conditions and
providing support for developmental and cognitive challenges [63].
e Williams-Beuren Syndrome: Treatment focuses on addressing associated medical and

developmental challenges and providing supportive care [64].

1.5.2 Neurodegenerative Disorders:

e Alzheimer’s Disease: Current medications, such as cholinesterase inhibitors and
memantine, can help manage symptoms, but they do not stop disease progression [65]. The
success of these medications varies among patients, and they may not work for all
individuals.

e Huntington’s Disease: There is no cure for Huntington’s disease, and current treatments
focus on managing symptoms [66] and providing supportive care to improve the patient’s
quality of life.

e Amyotrophic Lateral Sclerosis (ALS): Riluzole is the only FDA-approved drug for ALS
and may extend survival by several months [67]. However, its effects are modest, and there
is a need for more effective treatments.

e Prion Disease: There is no cure for prion diseases, and treatment focuses on managing
symptoms and providing supportive care [68].

e Progressive Supranuclear Palsy (PSP): Treatment is mainly supportive, focusing on
managing symptoms and providing physical therapy [69].

e Frontotemporal Lobar Degeneration (FTLD): Treatment is mainly supportive, focusing
on managing symptoms and providing cognitive and behavioral support [70].

e Dementia: Treatment aims to manage symptoms and improve quality of life, but there is

no cure for most forms of dementia [71].
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1.6 Network-based Drug Repurposing:

Network-based drug repurposing is a powerful approach in drug discovery and development
that leverages the principles of network pharmacology and computational methods to identify new
therapeutic uses for existing drugs [72]. This strategy involves constructing and analyzing complex
biological networks that integrate information about molecular targets, diseases, and drugs. The
process of network-based drug repurposing begins with the construction of Target-Disease-Drug
Association Networks. These networks elucidate the relationships between specific molecular
targets, neurological diseases, and available drugs or compounds as shown in Figure 1.4. Data for
these networks is curated from reputable databases and sources, ensuring the reliability and

accuracy of the information [73].
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Figure 1.4 Network-based Drug Repurposing

In neurodegenerative and neurological disorders, such as Alzheimer’s disease, Parkinson’s

disease, schizophrenia, and autism, the underlying molecular mechanisms are often multifactorial
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and involve intricate networks of molecular pathways [21]. Traditional drug discovery approaches
may be time-consuming and costly, with a high failure rate. Network pharmacology offers a
holistic perspective on the complex interactions between drugs, targets, and diseases at a molecular
level, making it a valuable tool in tackling these challenging disorders. Once the Target-Disease-
Drug Association Networks are in place, different Machine learning and deep learning methods
can be applied to guide classification and drug repurposing efforts. These algorithms can
effectively capture complex relationships within the dataset and make robust predictions,
ultimately leading to the identification of potential therapeutic interventions for neurological

disorders.

The integration of network pharmacology [74] and machine learning enables the identification
of existing drugs that show potential efficacy against specific molecular targets associated with
neurological disorders [75]. Drug repurposing offers an advantageous strategy as it capitalizes on
the safety profiles and known mechanisms of approved drugs, leading to faster and more cost-
effective drug development processes. By combining network-based drug repurposing with
traditional drug development approaches, researchers can accelerate the discovery of effective
treatments for neurological disorders. This approach holds great promise for revolutionizing
neurological disorder management and significantly improving patient outcomes, paving the way
for precision medicine in neurology. Overall, network-based drug repurposing is a data-driven,
systematic, and innovative approach that has the potential to transform the landscape of drug
discovery and significantly impact the field of neuroscience and neurological disorder

therapeutics.

1.6.1 Network pharmacology:

Network pharmacology leverages network-based analysis to identify potential drug candidates
for repurposing. It integrates various data sources, including protein-protein interactions, drug-
target interactions, and disease-associated pathways, to construct comprehensive interaction
networks [76]. These networks help reveal the underlying mechanisms of neurological disorders
and identify key drug targets. In the context of drug repurposing, network pharmacology enables

the identification of existing drugs that may have activity against multiple targets involved in
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different neurological disorders. This approach allows researchers to explore new therapeutic
options for known drugs, potentially accelerating the drug development process. Furthermore,
network pharmacology can facilitate the prediction of drug-disease associations and identify drugs
with potential off-target effects, leading to the discovery of new therapeutic uses for existing drugs.
By leveraging the wealth of available molecular data and employing advanced computational
techniques, network pharmacology provides a data-driven and efficient approach to drug
repurposing for neurological disorders. The integration of network pharmacology with machine
learning algorithms further enhances predictive power, allowing for the identification of drug-
target-disease associations with higher accuracy. By considering the complex interplay of
molecular interactions, network pharmacology contributes to a more targeted and personalized
approach to drug repurposing in neurological disorders. Network pharmacology is implemented
by the construction of Target-Disease-Drug Association Networks. Overall, network
pharmacology [77] holds the promise of uncovering novel therapeutic opportunities and improving
the treatment landscape for neurological disorders by repurposing existing drugs and expediting

the translation of potential treatments from bench to bedside.

1.6.2 Target-Disease-Drug Association Networks:

The critical role of understanding the intricate relationship between molecular targets, drugs,
and subsequent disease manifestations in the pursuit of more accurate and effective treatments for

neurological disorders involves following aspects:

Neurological disorders arise from complex interactions between various molecular targets in the
body. These targets can include proteins, enzymes, receptors, and other biomolecules that play key
roles in cellular signaling and regulation. Dysregulation or dysfunction of these targets can lead to
abnormal cellular processes, ultimately culminating in the manifestation of neurological diseases.
Understanding these molecular targets is essential as they serve as potential points of intervention
for therapeutic treatments. By identifying and targeting specific molecules involved in the disease
pathogenesis, researchers can develop drugs that aim to correct or modulate the malfunctioning
processes, leading to improved disease management and symptom relief. The development of

effective drugs is a critical aspect of treating neurological disorders. Drugs interact with specific
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molecular targets in the body, either promoting their activity or inhibiting their function, to bring
about the desired therapeutic effect. However, the process of drug development is highly intricate
and challenging, as researchers need to consider factors such as drug specificity, bioavailability,

and potential side effects.

The successful identification and optimization of drugs for neurological disorders rely heavily
on a deep understanding of the molecular targets and disease pathways involved [78]. Rigorous
research and preclinical studies are essential to evaluate the efficacy and safety of potential drug
candidates before they advance to clinical trials. Neurological disorders encompass a diverse range
of conditions, each with unique clinical presentations and underlying causes. However, there is
growing evidence to suggest that many neurological and neurodegenerative disorders share
common pathophysiological mechanisms. These shared mechanisms can include oxidative stress,
inflammation, protein misfolding, mitochondrial dysfunction, and synaptic abnormalities. The
recognition of overlapping targets and mechanisms across different neurological disorders presents
an opportunity for the development of novel therapeutic strategies. By understanding the common
pathways that contribute to the progression of various neurological conditions, researchers can
explore treatments that may have broader applications across multiple disorders. The intricate
relationship between molecular targets, drugs, and disease manifestations in neurological disorders
forms the foundation for developing more accurate and effective treatments. By comprehending
the molecular underpinnings of neurological diseases and identifying drug targets, researchers can
create therapies tailored to the specific mechanisms driving each disorder. Additionally, the
discovery of shared pathophysiological mechanisms among neurological disorders opens avenues
for innovative therapeutic approaches that could potentially have widespread benefits for patients
with diverse conditions. This multidimensional approach to understanding and treating
neurological disorders has the potential to revolutionize patient care and improve the quality of

life for millions of individuals worldwide.

1.6.3 Machine Learning Algorithms:

Machine learning algorithms are computational methods that enable machines to learn patterns

and make predictions from data without explicit programming. These algorithms are a core

33| Page



component of artificial intelligence and data science applications. There are various types of

machine learning algorithms, including:

>

Supervised Learning: In this type of algorithm, the model is trained on labeled data,
where each input is associated with a corresponding output. The goal is to learn a mapping
between inputs and outputs so that the model can make accurate predictions on new, unseen
data [79]. Examples of supervised learning algorithms [80] include Linear Regression,
Support Vector Machines, Decision Trees, Random Forests, and Neural Networks.
Unsupervised Learning: In contrast to supervised learning, unsupervised learning
algorithms work with unlabeled data, and the model tries to find patterns and structure
within the data [81]. Clustering and dimensionality reduction are common tasks in
unsupervised learning. K-Means, Hierarchical Clustering, Principal Component Analysis
(PCA), and Autoencoders are examples of unsupervised learning algorithms [82].
Semi-Supervised Learning: This is a hybrid approach that combines elements of
supervised and unsupervised learning [83]. The model is trained on a small amount of
labeled data and a larger amount of unlabeled data. It uses the labeled data to learn patterns
and then generalizes this knowledge to the unlabeled data.

Reinforcement Learning: This type of learning involves an agent that interacts with an
environment and receives feedback in the form of rewards or penalties based on its actions
[84]. The agent’s goal is to learn a policy that maximizes the cumulative rewards over time.
Reinforcement learning is commonly used in applications like gaming, robotics, and
autonomous vehicles.

Transfer Learning: Transfer learning involves using knowledge gained from solving one
problem to help solve a related but different problem [85]. This approach allows models to
leverage pre-trained representations and fine-tune them for specific tasks, saving time and
computational resources.

Ensemble Methods: Ensemble methods combine multiple base models to make more
accurate predictions [86]. Examples include Bagging (e.g., Random Forests) and Boosting
(e.g., Gradient Boosting Machines).

Deep Learning: Deep learning is a subfield of machine learning that uses artificial neural

networks with multiple layers (deep architectures) to learn complex patterns from data [87].
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Deep learning has shown remarkable success in tasks like image and speech recognition,

natural language processing, and autonomous systems.

These algorithms are used in a wide range of applications, including image and speech
recognition, natural language processing, recommendation systems, fraud detection, drug
discovery, healthcare, finance, and more. As computational power and data availability continue
to grow, machine learning algorithms are becoming increasingly powerful and capable of

addressing complex real-world problems.

Machine learning algorithms play a crucial role in drug repurposing by identifying potential
therapeutic candidates among existing drugs. These algorithms leverage the vast amount of data
available on molecular targets, diseases, and drugs to make accurate predictions about drug
efficacy and potential interactions [75]. The process of drug repurposing is more cost-effective and
time-efficient compared to traditional drug discovery, as it capitalizes on the known safety profiles
and mechanisms of approved drugs. Machine learning algorithms can be used in various
mechanisms of drug repurposing such as Data Integration and Analysis, Network Pharmacology,
Predictive Modeling, Drug-Target Prediction, Side Effect Prediction, Drug Combination
Prediction, Drug-Drug Interaction Prediction, and Virtual Screening. Machine learning models can
accelerate the process of drug discovery and facilitate precision medicine approaches for various
diseases [88]. However, it is important to note that the success of drug repurposing using machine
learning relies heavily on the quality and diversity of the data used for training and validation.
Additionally, experimental validation is essential to confirm the predictions made by these

algorithms before advancing to clinical trials.

1.7 Our Strategy:

The primary objective of the present thesis is to tackle the critical requirement for precise and
personalized therapeutic solutions for neurological disorders. We aim to achieve this goal by
concentrating on the creation and examination of Target-Disease-Drug association networks.
These networks are informed by network pharmacology principles and bolstered by advanced

machine learning algorithms. Through this approach, we seek to unravel the intricate relationships
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between molecular targets, neurological diseases, and potential therapeutic agents for precise

predictions of unknown drug efficacy against specific neurological disorder-associated targets.

In this thesis, we embark on a journey to address the crucial need for accurate and tailored
therapeutic interventions for neurological disorders. To accomplish this goal, we begin with
meticulous construction of Target-Disease-Drug Association Networks. These networks are
designed to unravel the intricate relationships between biological targets, neurological diseases,
and potential drugs. Through a rigorous curation process, we have compiled a comprehensive
dataset comprising 374 known targets and 2,452 drugs associated with the nineteen neuronal
disorders mentioned earlier. To ensure the reliability and accuracy of the data, we source
information from reputable and established databases such as STRING, UniProt, DrugBank,
Therapeutic Target Database, ChEMBL, and GeneCards. Drawing inspiration from network
pharmacology, our research efforts are dedicated to building two fundamental networks: the
Targets-Diseases Network and the Diseases-Drugs Network. The former seeks to shed light on the
specific molecular targets’ associations with the diverse range of neurological disorders under
investigation. By identifying and understanding key targets crucial in the pathogenesis and
progression of different neurological disorders, this network serves as a valuable resource for
guiding future research and therapeutic development. In parallel, the Diseases-Drugs Network
offers an extensive map of connections between neurological diseases and available drugs or
compounds. This network is instrumental in exploring potential therapeutic options and
opportunities for drug repurposing. By analyzing the associations between diseases and drugs, we
can identify existing drugs that hold the potential to be repurposed for the treatment of specific
neurological disorders. Drug repurposing presents a promising avenue for accelerating the
development of effective treatments, capitalizing on the safety profiles and known mechanisms of
established drugs. The construction of these association networks is a pivotal step towards gaining
deeper insights into the complex interactions between targets, diseases, and drugs concerning
neurological disorders. These networks lay the foundation for further analysis and exploration in
subsequent objectives of the thesis. Leveraging the wealth of information encapsulated within
these networks, we aim to identify promising therapeutic candidates and novel treatment strategies,
ultimately advancing the field of precision medicine in neurology. Then we performed Machine
Learning-Guided Classification and Drug Repurposing, by harnessing the constructed Target-

Disease-Drug association network. With this network in place, we harness the power of state-of-
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the-art machine learning algorithms to rank and link the role of different molecular targets in the
context of subsequent diseases. The objective is to identify potential therapeutic interventions for
neurological disorders that can significantly improve treatment outcomes. To achieve this
objective, we employ a diverse set of non-linear Machine Learning algorithms, including Support
Vector Machines (SVM), Decision Trees, Random Forests, Multi-layer Perceptron (MLP) Neural
Networks, and Gradient Boosting Machines (GBM). These algorithms effectively capture complex
relationships within the dataset and enable robust predictions. By training the machine learning
models on the combined network dataset, which integrates information from the Targets-Diseases
Network and the Diseases-Drugs Network, we gain a holistic perspective on the therapeutic
landscape for neurological disorders. To ensure the accuracy and reliability of predictions, we
undertake comprehensive hyperparameter tuning and rigorous validation procedures. Fine-tuning
the algorithm parameters to achieve optimal performance and validating the models on
independent datasets to assess their generalization capabilities are essential steps in this process.
The ultimate goal is to obtain precise predictions of drug efficacy against specific neurological
disorder-associated targets. Identifying drugs that exhibit potential efficacy against specific targets
opens novel drug repurposing opportunities, expediting drug development processes in a cost-
effective manner. The integration of network pharmacology and advanced machine learning offers
a systematic and data-driven approach to identify promising drug candidates, revolutionizing

neurological disorder management, and significantly impacting patient outcomes.

1.8 Thesis Objectives:

1. To build a comprehensive database of all the target-proteins and FDA-approved drugs for
all the neurological and neurodegenerative disorders.

2. To develop Target-Disease, Disease-Drug and Target-Disease-Drug association networks
to probe the target specificity for neuronal disorders.

3. To predict the target/drug attributes of neuronal disorders using linear and non—linear
classification models.

4. To develop a model to repurpose an unknown drug against specific target and disorder type.
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1.9 Thesis Outline:

The outline of this thesis is as follows: Chapter 1 introduces the research background, objectives,
and significance, as presented in this introduction. Chapter 2 provides a comprehensive review of
the literature, complexity and role of targets in neurological disorders, current state-of-the-art
advancements in neurological disorders research, focusing on the molecular and cellular
mechanisms of neurodegeneration progression, and the applications of network pharmacology,
drug repurposing, and machine learning for target-disease-drug association prediction and
treatment of neurological disorders. Chapter 3 describes the methodology, including data
collection procedures, network construction, and machine learning model implementation.
Chapter 4 presents the results and evaluation of the machine learning models using Target-Disease-
Drug association networks, showcasing their performance in predicting drug efficacy against
specific disorder types and their associated targets. The Discussion in Chapter 5 interprets the
findings and discusses their implications for drug repurposing and precision medicine in
neurological disorders. Moreover, we address the strengths and limitations of our approach and
highlight potential avenues for future research. Finally, Chapter 6 concludes the thesis,
summarizing the main contributions and emphasizing the potential impact of this research on

advancing treatments for neurological disorders.

In summary, this thesis seeks to contribute to the growing field of drug repurposing and precision
medicine for neurological disorders. By exploring the intricate associations between targets,
diseases, and drugs, we aspire to pave the way for more accurate, effective, and personalized
therapeutic interventions, ultimately improving the lives of patients and providing hope for a

brighter future in the fight against neurological disorders.
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Chapter 2

Literature Review
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2 Literature Review

2.1 Neuronal disorders:

The progressive and continual death of brain’s neurons, or nerve cells, is referred to as
neurodegeneration. Numerous neurodegenerative illnesses are at the root of this phenomenon
because nerve cells are unable to perform their tasks properly [89]. Nerve cell death is caused by
the intracellular or extracellular accumulation of misfolded proteins. As a result of these
disruptions, Apoptosis, or programmed cell death, is finally triggered in the regular functioning of
these cells [90]. One of the main factors causing the reduction in overall brain function is the
functional death of neurons. Because of this, the clinical importance of preventing neuronal death
and dysfunction is enormous [91]. Neurological disorders are caused by the imbalance of ions and
neurotransmitters between nerve cells. This imbalance results from aberrant neurotransmitter
releases that can either stimulate, inhibit, or alter the activity of nearby neurons. Such imbalances
influence neurotransmission, the mechanism through which nerve cells converse with one another,
and they can cause a variety of psychological issues [92]. Neurons, which are the fundamental
building blocks of the nervous system, differ from other cells in the body as they lack the ability
to reproduce or replace themselves. The complexity of treating neurological illnesses is increased
due to the limited ability for regeneration of the neurons. Additionally, ageing is a prominent
example of a demographic characteristic that is associated with an increasing prevalence of
neurological illnesses and may be a factor in the higher death rate for these disorders [93].
Neurodegenerative disorders are characterized by their persistent and disabling nature. They
include the gradual deterioration and frequently the demise of neurons. The blood-brain barrier is
a biological barrier that makes treating certain illnesses particularly difficult [94]. The purpose of
this barrier is to keep dangerous chemicals out of the brain. Treatment strategies are further

complicated in this situation by the complex regulatory networks in action in the body.

Every gene is linked with many other genes working in the cascade, forming a complex network
in the nerve cell, and are involved in many cell regulation processes. Many proteins or enzymes
play a supporting role in this regard. For the normal functioning of a cell, upregulation and

downregulation of different genes play a vital role. Sometimes, specific genes show under and
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overexpression in the nerve cell due to some genetic factors like mutations, and internal, or external
factors, causing accumulation of unwanted proteins and abnormalities in the neuron. If we focus
on one target with respect to one disease for drug binding, it may be possible that the target is
involved in other normal functions, thus, affecting the normal functioning of other organs as well,
which leads to abnormal cellular functions in the body. Therefore, predicting the target gene and
understanding the complex network is crucial for the cure of neurodegenerative disorders [95].
There are trillions of neural pathways involved in carrying the information between the CNS and
other organs of the body. These involvements of many neural pathways make the network more
complex [91]. A huge number of genes/proteins perform different functions in the various organs
of the body. More than one neurological disorder occurs by a mutation in a common gene but
follows the different neural pathways and show different negative outcomes. That is why this

network has become very complex and very challenging to handle.

2.2 Healthy versus degenerative neuron:

Each neurodegenerative disorder exhibit mutation in specific genes of genetic network. But some
genes are common in more than one neurodegenerative disorder, that’s why understanding the
complete pathway regarding abnormalities in those genes would be beneficial. 7au proteins [96],
TDP-43[97], C9ORF72 (98], PSENI & PSEN2, APP[99], LRRK2, APOE [100], etc. are the genes
involved in more than one neurodegenerative disorder. Let us talk about how tau protein is
responsible for neurodegeneration. In normal neurons, tau phosphorylation is done by the activities
of kinases such as GSK, CDK, or ERK and phosphatase 2A (PP2A4), which is a heterotrimeric
enzyme having 2 subunits 1.e., structural subunit A and catalytic subunit C. Each subunit has two
isoforms A and . PP2A takes on regulatory subunits that compete in binding. Their binding is
regulated by methylation of a catalytic subunit at C-terminal Leucine (L309) recruiting the
cytoplasmic enzyme LCMTI. PME-1I is a demethylating enzyme present in the nucleus. The C
subunit is phosphorylated by GSK3 at TYR(Y)307. There are two endogenous inhibitors, //PP2A4
and I2PP2A4 (also known as SET or TAFI). Generally, PP2A4 activity is decreased by
phosphorylation or via endogenous inhibitors and increased by methylation. Therefore, PP24 is

active in the nucleus and inactive in the cytoplasm, preventing phosphorylation of tau in the
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cytoplasm. Sometimes, the nuclear pores start to leak and /2PP24 again localizes to the cytoplasm.
12PP24 cleaved into two smaller fragments that can freely diffuse between the cytoplasm and
nucleus. Phosphorylation of 12PP2A at Ser(S)9 by CKII (casein kinase II) causes its retention in
the cytoplasm. Together with increased activity of GSK3 in the cytoplasm, the net effect is

increased tau phosphorylation.

Hyperphosphorylated tau disassembles microtubules that were assembled from normal tau and
tubulin causing degeneration of neuron as sown in Figure 2.1. Fibrillar tau is toxic and underscored

the importance of phosphorylation of tau in exerting this toxic effect [101]. Hyperphosphorylated
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tau is glycosylated, and abnormal phosphorylation might promote aggregation of tau, formed
Neurofibrillary tangles (NFTs), and inhibition of the assembly of microtubules, glycosylation
appeared to be responsible for the maintenance of the paired helical filaments (PHF) or tau
structure. Of the tau sites required for microtubule binding, Ser262 and the AT180 epitope Thr231
are critical. Combined phosphorylation of tau at Thr212, Thr231 and Ser262 has been shown to

cause neurodegeneration and has also been observed in the apoptosis of neurons.

2.3 Role of biological targets in neurological disorders:

Targets refer to specific molecular entities, such as proteins or genes, that are implicated in the
pathogenesis or progression of these disorders. Knowing the function of targets can shed light on
the disorder’s underlying mechanisms. These targets play a crucial role in various cellular
processes that contribute to the development and manifestation of neurological conditions.
Different neurological disorders may share certain molecular targets, but the ways in which these
targets are dysregulated can vary. The basis for logical medication design and precision medicine
is the identification and understanding of targets in neurological illnesses. Finding targets enables
the development of personalized medicine tactics, in which treatment plans are adapted to a
person’s genetic profile and the molecular reasons causing their condition [102]. Because they
affect various pathways, not only the ones relevant to the condition, but many current therapies for
neurological disorders also include side effects. Targeted medicines may be able to reduce side
effects and increase patient quality of life by reducing off-target effects. Identifying and
understanding targets in neurological disorders is essential for the development of effective

therapeutic interventions for several important reasons [103].

A huge number of genes have been identified for different neurological disorders. The
importance of certain protein targets such as Amyloid-f (Ap) [104], tau, presenilin (PSEN),
amyloid precursor protein (4PP), in Alzheimer’s disease (AD) are highlighted in literature. The
creation of distinctive brain lesions, including plaques and tangles, which are hallmarks of AD, is
primarily mediated by a buildup and alterations in tau protein. Cognitive decline and memory loss

are brought on by these protein clumps, which interfere with neuronal activity.
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Substantial research has been done on the function of many genes and proteins as targets in
Parkinson’s disease (PD). The importance of genes like Parkin, PINKI, and LRRK2 FMRI,
a(alpha)-synuclein, DJ— 1, PARKS, and GBA in PD development is highlighted in literature [105].
Important physiological functions like protein breakdown, mitochondrial function, and
neurotransmitter control are disrupted by mutations in these genes, which contributes to the
selective death of dopaminergic neurons and the recognizable motor symptoms of Parkinson’s

disease (PD).

A few genes have also been identified as major targets in Frontotemporal Lobar Degeneration
(FTLD) such as C9ORF72, MAPT (Microtubule-Associated Protein Tau), progranulin (GRN),
TDP-43 (transactive response DNA-binding protein with molecular weight 43 kDa) [12][13], FUS
(fused in sarcoma), TARDBP (transactive response DNA-binding protein), CHMP2B (Charged
multivesicular body protein 2B), and VCP (Valosin-containing protein) mutations [106] are
significant in FTLD and associated diseases. Changes in these genes impair cellular processes such
as protein synthesis and breakdown, which causes an accumulation of aberrant proteins and
neurodegeneration in particular brain regions. These examples from the literature show that it is
crucial for understanding the underlying mechanisms and creating new therapeutic approaches to
focus on specific genes or proteins linked to neurological illnesses. By concentrating on specific
targets, scientists can try to bring back healthy cellular functions, stop the buildup of abnormal
proteins, and eventually lessen the symptoms or stop the advancement of neurological illnesses.
Finding new targets can also result in the repurposing of already approved medications i.e.,
existing drugs. It may be possible to assess the effectiveness of medications authorized for other
ailments that also happen to interact with the identified target in the treatment of neurological
disorders [107]. When compared to creating completely novel medications, this method is more

cost- and time-effective.

In one of the studies, researchers found that higher expression levels of 424 and P2X7 receptors
in neurological disorders such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral

sclerosis, multiple sclerosis, and epilepsy, further complicate the disease condition [108].

In another study, it was investigated that S/00B protein plays a crucial role in Alzheimer’s
disease, Parkinson’s disease, multiple sclerosis, Schizophrenia and epilepsy because the high

expression of this protein directly targets astrocytes and promotes neuroinflammation. Under
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stressful conditions, S7/00B produces toxic effects mediated through receptor for advanced
glycation end products (AGE) binding. S/00B also mediates neuroprotection, minimizes
microgliosis and reduces the expression of tumor necrosis factor (TNF-alpha) but that are
concentration-dependent mechanisms [109]. It was also proposed that S/00B can be used as a

potential therapeutic target to reduce the prevalence of neurological disorders.

In many cases, important roles of a particular gene in embryonic development have precluded
the in vivo study of its function in the adult brain, which is usually the most relevant experimental
context for the study of neurological disorders. Conditional knockout technology has been used
successfully to generate viable mouse models with gene inactivation patterns in certain regions or

cell types of the postnatal brain [110].

In amyotrophic lateral sclerosis, AMPA receptors allow cytotoxic levels of calcium into neurons,
leading to motor neuron death. Likewise, in some epilepsies, overactivation of AMPA receptors
leads to neuron damage. The same is true for ischemia, where oxygen deprivation leads to
excitotoxicity. Conversely, Alzheimer’s disease is characterized by decreased AMPA activation and
synapse loss. Unfortunately, many clinical studies have had limited success by directly targeting
AMPA receptors in these diseases. Indirectly affecting AMPA receptors or by regulating
glutamatergic transmission, may provide new therapeutic potential for neurological disorders

[111].

Gene expression changes in neuropsychiatric and neurodegenerative disorders, as well as gene
responses to therapeutic drugs, offer new ways to identify central nervous system (CNS) targets
for drug discovery. Targets for Alzheimer’s disease and cognitive decline associated with normal
aging and mild cognitive impairment include 7, amyloid-f precursor protein, Af, all three high-
affinity neurotrophins receptors, fibroblast growth factor (FGF) system, synapse markers,
glutamate receptors (GluRs and transporters), and dopamine (DA) receptors, particularly the D2
subtype. Gene-based candidates for Parkinson’s disease include the ubiquitin—proteosome system,
scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor,
TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase
C and RAS pathways. Studies in schizophrenia reveal robust decreases in genes for GABA function,

including glutamic acid decarboxylase, HINTI, glutamate transport and G/uRs, BDNF and TrkB,
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numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic

functions, particularly glycolysis and ATP generation [112].

In a study, it was proposed that the carboxy-terminus of Hsc70-interacting protein (CHIP) is a
crucial molecular co-chaperone and ubiquitin E3 ligase that regulates various biological functions,
including misfolded-protein refolding, autophagy, immunity, and necroptosis. Its ubiquitous
expression in the central nervous system suggests its involvement in various neurological diseases.
Recent studies have highlighted CHIP’s beneficial role in the pathogenesis of stroke, intracerebral
hemorrhage, Alzheimer’s disease, Parkinson’s disease, and polyglutamine diseases. CHIP
mutations could also cause neurodegenerative diseases. Overexpression of CHIP could be a

promising therapeutic target for several neurological diseases, based on available literature [113].

In a finding, it was discovered that Acid-sensing ion channels (ASICs) are voltage-independent,
proton-gated cation channels found in the central and peripheral nervous system. They detect pH
changes during various activities, including pain perception, synaptic plasticity, learning, memory,
fear, and neuronal degeneration. ASICs are potential therapeutic targets for manipulating pain and

neurological diseases [114].

Authors, in another finding, investigated that Excitatory amino acid transporter 2 (EAAT?2) is a
crucial neurotransmitter in the central nervous system, responsible for clearing extracellular
glutamate to prevent neuronal excitotoxicity and hyperexcitability. It regulates synaptic activity
and plasticity and has been linked to various central nervous system disorders. EAAT2’s structure,
pharmacology, physiology, and functions are essential in understanding its role in various diseases
like stroke, Parkinson’s disease, epilepsy, Alzheimer’s disease, major depressive disorder, and
addiction. Up-regulation of EAAT2 protein has shown significant benefits in various disease

models, suggesting its activation as a promising therapeutic approach [115].

Cholesterol is a crucial component of the cell membrane, affecting membrane-bound protein
permeability and function. It plays a role in synaptogenesis, axonal growth, dendrite outgrowth,
and microtubule stability. Cholesterol metabolism in the brain is primarily mediated by CYP46A1,
or cholesterol 24-hydroxylase, which eliminates about 80% of cholesterol excess. Studies show
that cholesterol and 24HC levels change during neurological diseases, suggesting that inhibition
or activation of CYP46A1 could be an effective therapeutic strategy. Preclinical studies have

assessed its role in neurodegenerative disorders like Parkinson’s, Huntington’s, Alzheimer’s,
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multiple sclerosis, spinocerebellar ataxias, and amyotrophic lateral sclerosis. Recent development
of soticlestat, a selective and potent CYP46A1 inhibitor, has significant anti-seizure effects,
indicating its importance for future drug developments. Both activation and inhibition of CYP46A41

are of therapeutic value [116].

In one of the studies, Protein tyrosine phosphatase 1B (PTP1B) has been discovered as a key
enzyme in the PTP family, responsible for regulating receptors and kinases. It has been linked to
various diseases, including schizophrenia, anxiety, neurodegeneration, neuroinflammation, and
depression. Inhibition of PTPIB can prevent microglial activation, promoting anti-inflammatory
effects and potentially increasing cognitive function through stimulation of hippocampal insulin,
leptin, and BDNF/TrkB receptors. However, most research on PTPIB’s clinical efficacy has
focused on obesity and type 2 diabetes mellitus. Despite the link between metabolic alterations
and neurodegeneration, no clinical trials have assessed the neurological benefits of PTPIB
inhibition. Preclinical studies suggest that targeting PTP B could reach various pathophysiological

mechanisms simultaneously [117].

The NLRP3 (NLRP3: NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome is
the best-described inflammasome that plays a crucial role in the immune system and various
diseases, including neurological disorders. Its association with neurodegenerative diseases and
strokes highlights its importance as a clinical target for pharmacological intervention. However,
the mechanism of NLRP3 activation remains indefinite. Emerging pharmacological approaches
targeting NLRP3 inflammasome in neurological diseases have clinical translational potential.
Chinese herbal medicine and botanical ingredients have been specifically focused on as potential
therapeutics for central nervous system disorders, potentially contributing new perspectives to

neurological disease treatment [118].

It is proposed in the literature that mutations(repeats) in the C90RF72 gene are involved in many
neurological disorders such as Amyotrophic Lateral Sclerosis (ALS)/ Motor Neuron Disease
(MND) and Frontotemporal Dementia (FTD). Recent studies show the disease-target association
of Psychotic patients with the C90RF72 gene. The study demonstrates that the genetic counseling
of patients having psychotic disorders reveals the mutations(repeats) in the C90RF'72 gene [119].

Neurotransmitters are the chemicals released between presynaptic and postsynaptic neurons for

the transmission of nerve impulses either by their excitatory or inhibitory role [120]. They play an
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important role in the brain by influencing mood, which is why they are sometimes described as
“feel-good” chemicals. Five important neurotransmitters include dopamine, serotonin, oxytocin,
norepinephrine, and endorphins. Malfunctions of these neurotransmission processes can result in
clinical disease. The Loss of memory in Alzheimer’s disease is postulated to involve insufficiency
of the neurotransmitter acetylcholine in synapses, which mediates the laying down of new
memories. Certain drugs block the enzyme acetylcholinesterase (which breaks down
acetylcholine) and thus increase the amount of acetylcholine in the synapse. As a result, memory

function may improve [121].

Serotonin is a neurotransmitter affecting multiple physiological processes and cognitive brain
functions, among them mood and emotions, which is why it has been linked to mood disorders
such as depression [122]. Serotonin (5-hydroxytryptamine, or 5-HT) is generated by the raphe
nucleus and midline neurons of the pons and upper brain stem. Serotonin levels are controlled by
the uptake of tryptophan and intraneuronal monoamine oxidase (MAO), which breaks down
serotonin. Ultimately, serotonin is excreted in the urine as 5-hydroxyindoacetic acid or 5-HIAA.
Serotoninergic (5-HT) receptors are classified as 5-HT1, 5-HT2, and 5-HT3. Selective serotonin
receptor agonists (e.g., sumatriptan) can abort migraines. Selective serotonin reuptake inhibitors
(SSRIs) can also be used to treat several mental health disorders (e.g., depression, anxiety,
obsessive-compulsive disorder, and post-traumatic stress disorder) [50]. SSRIs perform

symptomatic treatment.

2.4 Network Pharmacology in Neurological disorders:

Network pharmacology is a bioinformatics-based research strategy used to explore the anti-
epileptic mechanism of Rhizoma Coptidis. One of the studies predicted protein targets and
validated the interaction between active components and predicted targets using molecular docking
technology. Nine active compounds were selected, with 68 targets associated with Rhizoma
Coptidis treating epilepsy. KEGG pathway enrichment analysis identified 89 signaling pathways
related to epilepsy. Quercetin and NAIVE-canadine exhibited good docking with key targets,
suggesting Rhizoma Coptidis can regulate various signaling pathways and have therapeutic effects
on epilepsy [123].
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Epilepsy is the fourth most common neurological disease, with one-third of cases refractory to
existing anticonvulsants. The study aims to discover new pharmacological targets for the treatment
of Refractory Epilepsy (RE) using network pharmacology methods. The researchers selected 83
potential targets linked to 83 genes associated with RE development, and then selected 10 most
promising targets based on published data. All selected target proteins play a key role in biological
processes involved in RE development. Nine of the 10 targets have potential associations with
different types of epilepsy, highlighting the potential of network pharmacology in finding new

molecular targets for RE treatment [124].

Ayurvedic medications, such as Saraswatarishta (SWRT), are prescribed to control neurological
disorders like slurred speech, anxiety, Parkinson’s disease, and Alzheimer’s disease. However,
there is limited scientific research on SWRT’s mode of action. This study uses network
pharmacology to understand its neuroprotective role in neurological disorders. Out of the 18
ingredients in SWRT, five were considered in this study due to their elevated therapeutic action in
neurological disorders. Further, nine active phytoconstituents were chosen from the five selected
ingredients. Gene targets were screened and selected using STITCH, SwissTargetPrediction, and
ChEMBL. Protein-Protein interaction and Gene Ontology enrichment analysis were performed
using STRING and g:Profiler. Cytoscape 3.7.2 was used to create three networks, and bioactivity
scores and blood-brain barrier probability scores were obtained. The phytoconstituents were found
to be linked to gene targets involved in 10 major neurological disorders, with bioactivity scores in

the active range and high BBB probability scores [125].

One of the studies explores a mechanism-based disease definition for network pharmacology,
focusing on ischemic stroke and reactive oxygen species (ROS) forming NADPH oxidase type 4
(Nox4) as primary causal targets. The study used classical protein-protein interactions and
metabolite-dependent interactions to identify suitable synergistic cotargets for network
pharmacology. The nitric oxide synthase gene family is identified as the closest target to Nox4.
Combining a NOS and a NOX inhibitor at subthreshold concentrations results in pharmacological
synergy, reducing cell death, infarct size, stabilized blood-brain barrier, reduced reoxygenation-
induced leakage, and preserved neuromotor function. This approach potentially reduces the risk of

failure in single-target and symptom-based drug discovery and therapy [126].
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C. pluricaulis Choisy, a perennial herb used in traditional folk medicine, has been extensively
researched and analyzed for its phytochemistry, neuropharmacological, and toxicological
properties. The herb and its metabolites have been found to have various in vitro and in vivo
neuropharmacological effects, including memory enhancement, anxiolytic, tranquilizing, anti-
depressant, anti-stress, neurodegenerative, anti-inflammatory, antioxidant, analgesic, sedative,
anti-convulsant, and Alzheimer’s disease-reversing effects. Network pharmacology results suggest
that C. pluricaulis compounds interact with proteins, neuro synapses, signaling pathways, and
serotonergic synapse, which are crucial in neurotransmission, Alzheimer’s disease, long-term
depression, alcohol addiction, cognitive disorders, psychological conditions, and increasing

serotonin concentration in synapses [127].

Icariin is a biologically active substance in Epimedii herba that is used for the treatment of
neurologic disorders. A comprehensive analysis of the molecular mechanisms of icariin is lacking.
In a study, a brief overview of the history of icariin’s used as a medication, the active chemical
elements of Epimedii herba are discussed, and looked at the data from experimental investigations
that have shown the molecular targets of icariin in various disorders. To predict the therapeutic
effects of icariin in nervous system diseases like Alzheimer’s disease, Parkinson’s disease,
ischemic stroke, depressive disorder, multiple sclerosis, glioblastoma, and hereditary spastic
paraplegias, the researchers built a protein-protein interaction network and performed Gene
Ontology and Kyoto Encyclopaedia of Genes and Genomes functional enrichment analyses using
Network Pharmacology approach. The conclusions from analyses can guide future studies on the

application of icariin to the treatment of neurologic disorders [128].

Major Depressive disorder is a common mental disorder characterized by depressed mood and
loss of interest or pleasure. As the Herbal medicines are mainly used as complementary and
alternative therapy for depression. A study investigates the antidepressant activity of Huang-lian
Jie-du Decoction (HLJDD) and its potential depression-associated targets. HLJDD was
administered to chronic unpredictable mild stress-induced (CUMS) depressive mice, and its effects
were evaluated through force swimming test, novelty-suppressed feeding test, and open field test.
Active components of HLJDD, potential targets, and metabolic pathways involved in depression
were explored through systemic biology-based network pharmacology assay, molecular docking

and metabolomics. The study identified 28 active compounds and ten biochemical pathways
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involved in HLJDD. The findings of the study show that HLJDD exhibited antidepressant effects.
SLC6A4 and MAOA may be the main antidepressant targets for HLJIDD [129].

Inflammatory responses play an extraordinary role in the pathogenesis of cerebrovascular and
neurological disorders. One significant flavonoid, baicalin, is obtained from Scutellaria baicalensis
Georgi. Baicalin has recently been proven in multiple in vivo and in vitro investigations to have
positive effects on anti-inflammatory and immunomodulatory processes, as well as to exert
positive therapeutic benefits in cerebrovascular and neurological illnesses. In this review, anti-
inflammatory effects of baicalin are studied via multiple pathways and targets, that affect the
production of a variety of inflammatory cytokines and the neuroprotective process of neurological
diseases. The related targets of the baicalin’s anti-inflammatory effects were analysed using the
tools of network pharmacology, providing theoretical support and novel ideas for the potential

clinical use of baicalin in the future [130].

2.5 Drug Repurposing in Neurological disorders:

Drug repurposing or repositioning refers to the study of clinically approved drugs in one disease
to see if they have therapeutic value and do not trigger side effects in other diseases. Today, it is
crucial to examine potential therapeutic benefits of already available medications or drug
candidates in a range of human diseases, including neurological disorders. The lack of funding and
time constraints seen during conventional drug development are overcome by this method. It offers
hope for some refractory illnesses, such as neurological conditions. Drug repurposing is especially
crucial since neuropathological problems generally make it more difficult to produce new
medications than diseases in other organs due to the nervous system’s complicated structural
makeup and the blood-brain barrier’s influence. Drug repurposing can be used to treat neurological
diseases, summarize the repurposing candidates that are presently being tested in clinical trials for

neurological diseases, and present some early findings [131].

Traumatic brain injury (TBI) is a major global cause of death and disability, with no FDA-
approved drugs to substantially attenuate its effects. This has led to the emergence of drug

repurposing, which involves repurposing existing drugs with well-characterized mechanisms of
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action and human safety profiles. Compared to the conventional discovery pathways, drug
repurposing is less costly, relatively rapid, and poses minimal risk of adverse outcomes. Drug
repurposing has been applied to various neurodegenerative diseases and neurological disorders,
including brain injury. Edaravone, glyburide, ceftriaxone, levetiracetam, and progesterone are
selected as potential TBI neurotherapeutic agents. Although FDA-approved for other purposes,
they have shown efficacy in ameliorating the detrimental outcomes of TBI in preclinical and

clinical studies [132].

Computational drug repurposing has the potential to significantly reduce drug development time
and cost, particularly in neurodegenerative diseases like Alzheimer’s disease. This approach
involves in silico screening of FDA-approved compounds for new indications and has the potential
to expedite the development of effective therapies for these diseases. Traditional drug
development, which can take 15 years and over one billion dollars, involves discovery, pre-clinical
research, safety review, clinical studies, FDA review, and post-market safety monitoring. However,
many repurposed drugs have already been FDA approved, making them a cheaper and quicker
route to the clinic. High throughput screening technologies and the growing repository of ‘omics-
based data across disease indications have catapulted computational drug repurposing methods to
the forefront of attractive drug discovery techniques for neurodegenerative diseases. The
integration of artificial intelligence and machine learning algorithms will enable the creation of
large-scale transcriptomic and electronic medical record databases. However, this process presents
unique challenges due to the lack of effective validation methods and the heterogeneous nature of
the disease. Successful repurposed drugs exist in fields like oncology, diabetes, leprosy, and
inflammatory bowel disease. This study examines existing approaches to computational drug
repurposing, including molecular, clinical, and biophysical methods, and proposes data sources

and methods to advance computational drug repurposing in neurodegenerative diseases [133].

Previously, fortunate discoveries in the laboratory and clinic resulted in the success of
repurposed medications. One pertinent illustration of this is the way zonisamide is used to treat
Parkinson’s disease. Murata found that when zonisamide was used to treat a Japanese epileptic
patient who also had Parkinson’s disease (PD), the patient’s PD symptoms also improved. In 2009,
Japan approved zonisamide as an anti-PD medication based on this coincidental discovery. High

throughput molecular, clinical, and structural biology technologies, along with the development of
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large-scale computational capacity that is economically feasible, have recently given rise to a novel
opportunity: the use of computational frameworks rather than random discoveries to rationally

repurpose existing drugs [133].

The development of new treatments for acute stroke has been fraught with costly and
spectacularly disappointing failures. Repurposing of drugs that are previously proven to be secure
offers a less dangerous option. Drug repurposing involves taking use of commercial medications’
secondary activities, and pursuing compounds with several modes of action, including vascular
protection. Protecting the ischemic vasculature is expected to offer long-term advantages and
support neural rehabilitation for stroke patients. Currently, acute aspirin therapy and drug-assisted
reperfusion are employed clinically to lessen ischemic stroke-related impairment. The use of
growth factors like erythropoietin and medications like statins, angiotensin II receptor blockers,
and minocycline is possible in the future. A clinical experiment on acute ischemic stroke has

already shown that the angiotensin Il receptor blocker candesartan can protect blood vessels [134].

Drug repurposing refers to a reinvestigation of existing drugs for new therapeutic interventions.
It is a promising, fast, and cost-effective method that can overcome traditional de novo drug
discovery and development challenges in targeting neuropsychiatric and other disorders.
Traditional methods are complicated due to limitations in understanding pathophysiological
phenomena and are risky, expensive, and time-consuming. Various drug classes such as selective
serotonin reuptake inhibitors (SSRIs), antipsychotic, cholinesterase inhibitors, and thrombolytic
agents show polypharmacological features. In addition, amantadine was initially developed for
influenza; however, after redirection, it is useful for Parkinson’s disease. Zidovudine was intended
for cancer treatment, and now it is redirected to targeting HIV/AIDS. An additional, but well-
known example is Viagra (Sildenafil) that was intended to antianginal medication but redirected
to penile erections. Drug repurposing takes advantage of off-target effects of existing drugs,
identifying new opportunities by understanding their biological and pharmacological mechanisms.
This approach is more effective in developing drugs against neuropsychiatric and other disorders

[135].
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2.6 Existing research on ML Algorithms for target-disease-drug association

prediction:

Artificial intelligence (AI) and machine learning (ML) methods are increasingly being used to
combine various types of data, including transcriptomic, structural, and clinical data. Companies
like IBM have developed Al- and ML-based frameworks for drug discovery, using Al-based text-
mining strategies to create a semantic model of ALS-associated RNA-binding proteins. ML is
particularly attractive in computational drug repurposing, where molecular and biophysical data
are integrated. A recent method used drug-induced gene expression signatures, molecular target
information, and structural information as features to train a multiclass support vector machine to
predict the therapeutic class of a given drug. This approach has shown a classification accuracy of
78%, demonstrating its potential usefulness in neurodegenerative disease. While Al and ML
models have shown promise in disease prediction for Parkinson’s disease, MS, and Alzheimer’s
disease, their full utility in computational drug repurposing for neurodegenerative diseases would
be realized as molecular, structural, and clinical data resources for neurodegenerative diseases

increase [133].

A study showed that supervised machine learning models have been proven feasible for Drug
Target Interaction (DTI) prediction, but they often generate inaccurate predictive results due to
their disregard for unlabeled drug-target pairs [136]. Similarity-based methods have limitations
when extending to large data sets due to high complexity of similarity matrices computation.
Nearest neighbor methods, bipartite local models, matrix factorization methods, semi-supervised
learning, ensemble methods, and ensemble methods all have their strengths and weaknesses.
However, machine learning has achieved favorable performance in DTI prediction. Factors such
as problem formulation, evaluation data set, evaluation procedure, and experimental setting
significantly impact prediction results. The imbalanced dataset problem is another challenge, as
current models like decision trees and SVMs have a bias for recognizing the majority class,
resulting in poor performance. Most machine learning models have poor interpretability properties,
making it difficult to understand the underlying drug mechanism of action from a biological
perspective. There are no uniform evaluation metrics special for DTI prediction, but AUPR and

AUC are generally adequate metrics for evaluating the performance of machine learning-based
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methods. In the currently accessible datasets, the number of unknown samples is much greater
than the known ones, so false positives should be weighed more. Overall, machine learning

methods have the potential to improve DTI prediction accuracy.

A study presents a network-based method called NEDNBI, which predicts disease-drug
associations using a gene-disease-drug tripartite network. The architecture of this network is
shown in Figure 2.2. This method is useful for drug repurposing, especially in finding old drugs
for new diseases like COVID-19. The method requires no negative data and allows new diseases
to be added to the network. The evaluation results show good performance, with 8 out of 20
predicted old drugs clinically tested for COVID-19 treatment, demonstrating the method's
usefulness in drug repurposing [137].

/' repoDB oA\ Network-based inference

0O ©
O o S 0 o [ © ©
e o D o o I'raining ,‘_ ::_: g g ‘,
LW @ O O © o @ @
O
€© o @ 0 © @ ey @
M Gene-Disease-Drug network k—:*.u. Tusioe
Discase-Drug network = P o=
“‘\t" ( O Q D \ (=) Q a
@D g @O Q M |redicion " O 3 '
D) &/ [ | = '
@ © @ o © z o ®
@ © @ o/ ®) o

Gene-Disease network

Q discase D drug O gene * New emerged disease (NED)

Figure 2.2 Drug Repurposing by Gene-Disease-Drug Network

A study presents a prediction method called multi-scale topology learning for drug-disease
(MTRD) that integrates and learns multi-scale neighboring topologies and attributes of a pair of
drug and disease nodes. It constructs multiple drug-disease heterogenous networks to integrate
drug similarities and associations. The method uses a Bi-directional long short-term memory-
based module to encode these embeddings and their relationships. Attention mechanisms at feature

and scale levels are designed to obtain more informative pairwise features and topology
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embeddings. MTRD achieves superior performance than other methods and retrieves more actual

drug-disease associations in top-ranked candidates [138].

Predicting binding affinity between compounds and proteins is crucial in drug discovery, as it
reduces the need for wet-lab experiments. Machine learning and deep-learning techniques,
including ligand-based and target-based approaches, are used to improve drug-target interaction
prediction. Popular machine-learning models include SVM, Random Forest, Naive Bayes, KNN,
GBT, GP, and XGBoost. Deep learning, using artificial neural networks, is used in medicinal
chemistry for compound classification, QSAR studies, and drug identification. PCM models
identify probable targets, predict binding affinity, and discover interactions between compounds
and targets. Convolutional neural networks predict binding affinity using 1D representations of

proteins and compounds [139].

Drug-Target interaction (DTI) is crucial for drug discovery, repositioning, and understanding
drug side effects. However, the exponential growth of genomic and drug data makes it difficult to
identify new associations between drugs and targets. A study addresses these challenges by
developing a predictive model for DTI prediction using computational methods. The study is
conducted on four protein classes: Enzyme, lon Channel, G Protein-Coupled Receptor (GPCR),
and Nuclear Receptor. The target protein sequence is encoded using the dipeptide composition and
drug with a molecular descriptor. A machine learning approach is employed to predict DTI using
wrapper feature selection and synthetic minority oversampling technique (SMOTE). To deal with
the problem of DTI, various classifiers are used in this study. This method could identify one target
protein interacting with many drugs and many drugs interacting with one protein, which are
experimentally verified. It can be used for understanding and identifying new drug-target

interactions. This method relies only on the dipeptide composition of the target descriptors [140].

A study utilizing machine learning methods to predict druggability of proteins used 443
sequence-derived features revealed the Neural Network as the most accurate classifier with
89.98% accuracy. The Support Vector Machine-Feature Selection (SVM-FS) algorithm had the
most relevant features at 130. This led to the discovery of new drug targets for cell signaling
pathways, gene expression, and signal transduction. Sequence properties determine a protein’s
targetability, and increasing the number of features is crucial for better prediction performance.

Among the algorithms used, NN showed superior performance compared to Naive Bayes, SVM,
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kNN, RF, and DT models. Protein-drug interactions, including amino acid hydrophobicity, acidity,
alpha helix, and sulfur atoms, are pivotal features in protein-drug interactions. This study
demonstrates that combining different protein attributes and efficient machine-learning algorithms

can significantly improve the predictability of target proteins [141].

Network medicine is a promising tool for understanding disease molecular complexities and
identifying new drug targets. Computational approaches for drug repositioning integrate
information from multiple sources and levels, providing valuable insights into complex
relationships among drugs, targets, disease genes, and diseases at a system level. This article
proposes a computational framework based on a heterogeneous network model for drug
repositioning using existing omics data about diseases, drugs, and drug targets. The framework
significantly outperforms several recent approaches, with case studies demonstrating its practical
usefulness. The three-layer heterogeneous graph model captures inter- and intra-relationships
among diseases, drugs, and targets for novel drug usage prediction. An iterative algorithm is
developed to obtain final proximity scores between diseases and drugs, which can be used to rank

candidate drugs for each disease [142].

Based on the essential findings discussed in this literature review, network pharmacology
approach is beneficial for a better understanding of interactions between multiple targets associated
in neurological as well as neurodegenerative disorders. It has been inferred that drug repurposing
has provided a powerful technique for personalized treatment of neurological disorders. Through
network pharmacology, researchers have been able to identify complex interaction patterns
between multiple targets in a neurological disease and gain insight into the molecular mechanisms
driving neurodegeneration and retarded nerve impulse transmission. Additionally, machine
learning approaches used in drug repurposing has identified interaction between therapeutic targets
and already approved drugs which helped to pave the way for personalized medicine approaches.
However, there are still knowledge gaps in this field that need to be addressed, such as the better
understanding of the target overlap exist between multiple neurological and neurodegenerative
disorders and identification of accurate machine learning model and deep neural network that can
be predictive for better treatment response to neuronal disorders. Another potential knowledge gap
could be the development of database for all the protein druggable targets and all the FDA-

approved drugs for all the important and lethal neurological and neurodegenerative disorders by
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utilizing various online available databases for targets and drugs data. Machine learning models
require huge amounts of data to be trained. A lot of work has been done on the Target-Drug
predictions but with limited data and on specific individual disorders. Addressing these gaps can
help to further advance our understanding of neurological and neurodegenerative disorders and
improve outcomes for patients. Overall, the findings discussed in this literature review highlight
the power of network pharmacology, machine learning, and drug repurposing for neuronal
disorders research and the potential for this technique to revolutionize neuronal disorders
treatment. The uniqueness of our work is the development of Target-Disease-Drugs Association
network for all the lethal neurological and neurodegenerative disorders and using machine learning
and deep neural network approaches for performing targets and drugs classification with respect

to specific disorder class and ultimately performing drug repurposing for Neurological disorders.
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Chapter 3

Methodology
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3 Methodology

The aim of the current study is to probe the association of the numerous targets with the drugs
and with the diseases i.e., neurological disorders (NLDs) and neurodegenerative disorders (NDDs).
In this chapter, the materials and methods used to collect all the data of disease-associated targets
and already approved drugs for the 19 neuronal disorders and to build the target-disease, drug-
disease and target-disease-drug association networks, classification using state-of-the-art machine
learning and deep-learning methods and ultimately drug repurposing for neurological disorders
using multi-variate artificial neural network architecture are described in detail. A lot of publicly
available databases were used to collect the datasets for targets and drugs for all the nine
neurological and 10 neurodegenerative disorders, which were further analyzed in this study. The
dataset was pre-processed by various data preprocessing techniques including handling missing
values, deduction of less important feature variables, normalization of data etc. and to construct
and classify networks using the Network pharmacology and Machine learning based approaches.
A standardized pipeline for data processing was applied in this study, which included filtering out

empty cells and normalizing feature variable values.

The methods described in this chapter were used to generate the results and insights presented
in the following chapter. Details of the methodology employed in this study for Target-Disease-
Drug Association Network-guided Classification are described in Figure 3.1 and multi-variate
ANN model architecture for prediction of Targets descriptors and disease class is shown in Figure

3.1.
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3.1 Data Collection:

3.1.1

Target Data Retrieval:

The data of all the protein-targets was retrieved from STRING database [145] and Therapeutic

Target Database (TTD) [146] by giving the query of each Neurological and Neurodegenerative

disorder individually. Subsequently, we merged the dataset of both databases to remove target

duplicates. After removing duplicates, the data contained 821 unique targets protein between the

protein-protein interaction edges zero to seventy-one. We shortlisted the targets datasets having

edges of at least three to seventy-one. So, the total unique data of target proteins remained 236.
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But the total dataset is composed of 4884 protein targets because of the target-overlap exists
between multiple neurological as well as neurodegenerative disorders. The dataset contains the
protein name, gene name, family, no. of edges and the UniProt IDs of all the target proteins. The
sequences of all the selected target proteins were obtained from UniProt [147] using the given

UniProt IDs and downloaded the data in an Excel file.

3.1.2 Drugs Data Retrieval:

The data of all the FDA-approved, experimental phase, investigational phase, nutraceutical,
Illicit and withdrawn drugs was retrieved from multiple databases, such as, DrugCentral [148], e-
Drug3D [149], ChEMBL [150] and DrugBank [151] by giving the query of all the selected protein-
targets one by one and all for all the Neurological and Neurodegenerative disorder individually.
Then we merged the dataset of all the databases to remove duplicates of all drugs. Then we keep
only the data of all FDA-approved drugs. After shortlisting, the data contained 964 unique drugs.
But the total dataset is composed of 4884 drugs because of the complementarity of same drug for
more than one protein-target associated with multiple neurological as well as neurodegenerative
disorders. The dataset contains the drug name, synonym, type, phase, physicochemical properties
along with the ChEMBL IDs and DrugBank IDs of all the drugs. The SMILES of all the selected
drugs were obtained from PubChem database using the given drug name and downloaded the data

in an Excel file.

3.1.3 Selection of Diseases:

Neurological and Neurodegenerative disorders are selected due to their prevalence and mortality
rate worldwide, with the help of literature and different organizations such as World Health
organization (WHO) [152], Global Burden of Diseases (GBD) [153], etc. The data of all the
protein-targets associated with the selected disorders, and all the FDA-approved drugs for those
specific targets was collected. To identify and validate the protein targets that have a role in the
progression of neurological and neurodegenerative disorders, STRING app plugin of Cytoscape

tool version 3.7.1 [154] was used.
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3.2 Descriptors Formation:

Once the data of the protein-targets, drugs and diseases was collected the descriptors were

computed for proteins and drugs to train the various machine learning and deep learning models.

3.2.1 Protein Descriptors Computation:

The sequence-based descriptors of all the selected protein-targets were computed using web
interphase of protr, a package of R. The ProtrWeb [155] is a freely available and used for the
computation of the structural and physiochemical descriptors of the proteins. 9921 descriptors
were calculated for each of the 4884 proteins including amino acid composition, dipeptide and
tripeptide composition, C/T/D (Composition/Transition/Distribution), conjoint triad, sequence-
order coupling number, Quasi-sequence-order descriptors, pseudo-amino acid, and amphiphilic
pseudo-amino acid composition. After computation of all these descriptors, it was saved in an excel
file having binary class label of neurodegenerative and neurological disorders. The order of the

data matrix of the Morgan fingerprints of inhibitors was 4884x9921.

3.2.2 Drugs Descriptors Computation:

For the drugs dataset, Morgan fingerprints were generated which is the best molecular
fingerprint used for drug discovery purposes [156]. For the calculation of the Morgan fingerprints,
SMILES of the inhibitors were used as input. The SMILES of all the drugs were extracted from
PubChem [157]. The ALLChem package of RDKit library [158] was imported in Python for the
generation of Morgan fingerprints. Morgan fingerprints were in the form of bits string (0,1) with
a length of 2048. The order of the data matrix of the Morgan fingerprints of inhibitors was
4884x2048. After computation of Morgan fingerprints for all the drug’s SMILES, it was saved in

an excel file having binary class label of neurodegenerative and neurological disorders.
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3.3 Tools:

To generate Morgan fingerprints of all the drugs’ SMILES in python language and all the
machine learning/deep learning models development, training and validation for classification of
networks datasets and for drug repurposing purposes, Jupyter notebook of Anaconda distribution
was used. To Compute the descriptors of targets proteins in R, R-studio tool was used. Following
is a brief description of Python language, Anaconda distribution, Jupyter notebook, R language,

and R-Studio (an R language IDE).

3.3.1 Python-Language:

Python is a high-level, dynamically typed programming language renowned for its simplicity
and readability. Created by Guido van Rossum in the late 1980s, Python emphasizes code clarity
and uses indentation to define code blocks, which enhances human readability. Its versatile nature
enables it to serve as a general-purpose language, suitable for web development, scientific
computing, data analysis, artificial intelligence, machine learning, automation, and more. Python's
extensive standard library provides a wealth of modules and functions for common tasks,
contributing to faster development [159]. The language's object-oriented, imperative, and
functional programming paradigms accommodate a range of coding styles. Python's popularity is
fueled by an active community, frequent updates, and a plethora of third-party packages accessible
via the Python Package Index (PyPI). Its cross-platform compatibility and ease of integration with

other languages make it a preferred choice for both beginners and experienced developers.

3.3.2 Anaconda distribution:

Anaconda is an open-source Python distribution for data science and machine learning, offering
a variety of pre-installed libraries and tools for data analysis, visualization, and scientific
computing workflows. Developed by Anaconda, Inc., it encompasses a curated collection of tools,

libraries, and packages that facilitate the development and deployment of data-intensive
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applications [160]. Anaconda Distribution includes the Python programming language along with
a multitude of libraries and tools for tasks like data manipulation, analysis, visualization, and
machine learning. One of its key features is the Anaconda Navigator, a graphical user interface
that aids in package management, environment creation, and launching applications. Anaconda
also offers the conda package manager, which allows users to create isolated environments to avoid
version conflicts among different packages. This distribution is widely used by data scientists,
researchers, and developers to streamline the process of setting up development environments and

to ensure consistent and reproducible results across various projects.

3.3.3 Jupyter notebook:

Jupyter Notebook is an interactive web-based environment that allows users to create and share
documents containing live code, equations, visualizations, and narrative text. Jupyter Notebook is
a powerful tool for creating interactive documents that combine code execution, visualizations,
and explanations [161]. It supports various programming languages but is primarily used with
Python. Key features of Jupyter Notebook include interactive execution, rich text support, data
visualization, and easy sharing. When working with Anaconda, users can launch Jupyter Notebook
from the Anaconda Navigator or directly from the command line using the jupyter notebook
command. This allows users to create, open, and edit notebooks in a user-friendly environment.
Overall, Jupyter Notebook offer a powerful platform for data scientists and analysts to work with
Python, manage environments, and create interactive documents that showcase their analysis and

findings.

3.3.4 R-Language:

R is a programming language and software environment that is widely used for statistical
computing and graphics. It provides a wide variety of statistical and graphical techniques,
including linear and nonlinear modeling, time-series analysis, classification, clustering, and more.

R is open-source, free software and is available for Windows, Mac OS X, and Linux operating
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systems. It has a large and active community of users and developers, and there are many resources
available online for learning and using the language. R is used by statisticians, data scientists, and
researchers in many different fields, including social sciences, finance, healthcare, and more. It is
also popular in the field of data analysis and visualization, as it offers many tools for working with
data sets and creating visualizations [162]. In summary, R is a powerful and versatile language
with many applications in statistical computing, data analysis, and visualization, and it is widely

used by professionals and researchers in many different fields.

3.3.5 R-Studio:

R Studio is a powerful and user-friendly integrated development environment (IDE) for the R
programming language. It provides a comprehensive set of tools and features that make it easy for
users to manage and analyze data, write code, and create visualizations. One of the key benefits of
R Studio is its ability to streamline the development process for R code. It includes an intuitive
code editor with features like syntax highlighting, code completion, and error highlighting to help
users write code more efficiently and with fewer errors. It also includes tools for managing data,
including importing and exporting data from a variety of file formats, and cleaning and
transforming data using R's built-in functions. In addition to its data management and code
development features, R Studio also offers a range of visualization tools, including plots, charts,
and graphs. These tools allow users to create high-quality visualizations of their data and
communicate their findings effectively. Another advantage of R Studio is its support for the
development of R packages. R packages are collections of R code and functions that can be easily
shared and reused by other users. R Studio provides tools for building, testing, and publishing R
packages, which makes it easier for users to contribute to the R community and collaborate with
others [163]. Overall, R Studio is a powerful and versatile IDE that is widely used by data
scientists, statisticians, and researchers in many different fields. Its intuitive interface and
comprehensive set of tools make it an essential tool for managing and analyzing data, writing code,

and creating visualizations in R.
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3.4 Data-preprocessing:

Data preprocessing is a crucial step in preparing data for training and developing machine
learning models. It involves cleaning, transforming, and organizing raw data into a suitable format
that can be effectively used by machine learning algorithms. The goal of data preprocessing is to
enhance the quality and reliability of the data, thereby improving the performance of the trained
models. One of the steps involved in data preprocessing is Data Cleaning. Identify and handle
missing data, either by inputting with statistical measures or removing the instances with missing
values. Data Transformation is another step of preprocessing. It includes feature scaling to ensure
that all the features are on a similar scale, preventing one feature from dominating others. Common
scaling methods include Min-Max Scaling and Standardization [164]. Converting categorical
variables into numerical format, such as one-hot encoding for nominal variables and label
encoding for ordinal variables, is important for model training. Splitting the preprocessed data into
training, validation, and test sets is also important. The training set is used for model training, the
validation set for hyperparameter tuning, and the test set for evaluating the final model's
performance. Normalization of data is necessary if needed, such as when working with neural

networks. Normalization ensures that the data falls within a specific range, often [0, 1].

3.5 Targets-Diseases Network Construction:

In the “STRING disease query” tab different keywords of each neuronal disorder were searched
to find out the disease associated proteins. The names of 10 most frequent Neurodegenerative
disorders were used as keywords to find out the disease associated proteins. The most common
and lethal neurodegenerative disorders include Alzheimer’s disease, Parkinson’s disease,
Huntington’s disease, Amyotrophic lateral sclerosis, Dementia, Prion disease, Frontotemporal
Lobar Degeneration, Multiple Sclerosis, Progressive Supranuclear Palsy, and Down Syndrome.
The most prevailing neurological disorders include Migraine, Psychotic disorder, Obsessive-
compulsive disorder, Epilepsy, Autism Spectrum Disorder, Williams-Beuren syndrome, Anxiety

disorder, Amyotrophic lateral sclerosis, and Major Depressive Disorder. Each keyword resulted in
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a list of related diseases, the network of all these diseases were selected and merged to form huge
networks against each keyword. The networks for all the neurological disorders were merged to
form a final network of proteins-associated with neurological disorders containing 171 nodes while
the merged network of neurodegenerative disorders has 65 proteins that have role in progression

of the disorders. After construction of the Targets-Diseases Network, the data is saved in a csv file.

3.6 Diseases-Drugs Network Construction:

By using the collected data of all the FDA-approved drugs associated with specific protein-
targets and for all the selected disorders using different online available databases, we constructed
the Diseases-Drugs network. For the ten most common and lethal neurodegenerative disorders and
nine neurological disorders, the data of drugs collected for each disorder separately to form
nineteen Diseases-Drugs Networks. The networks for all the neurological disorders were merged
to form a final network of drugs associated with neurological disorders containing 3440 entries
while the merged network of neurodegenerative disorders has total 1443 entries that have role for
the specific target-proteins in these disorders. The data of the final Diseases-Drugs Network saved

in an csv file.

3.7 Targets-Diseases-Drugs Network Construction:

We constructed Targets-Diseases-Drugs Network, which is a comprehensive network that
combines diverse data types to understand the intricate relationships between neurological and
neurodegenerative disorders and their potential therapeutic interventions, by combining the two
networks: the Targets-Diseases Network and the Diseases-Drugs Network. The Targets-Diseases
Network identifies protein targets and specific neuronal disorders, represented by 9921 descriptors
that quantitatively represent their attributes and properties. The Diseases-Drugs Network
highlights the interconnections between neurological disorders and potential drugs that hold
promise for their treatment, represented by 2048 Morgan fingerprints encoded in binary format.

The network provides an encompassing perspective, offering insights into the triadic relationship
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among protein targets, disorders, and the drugs. Each facet of the network is represented using
distinct techniques, with protein targets characterized by descriptors and drugs represented by
binary-encoded Morgan fingerprints. Neurological disorders comprise nineteen distinct entities,
each encoded using one-hot encoding. The class label of the dataset of Targets-Diseases-Drugs
Network divided the instances into neurodegenerative disorders (0) and neurological disorders (1)

for binary classification.

3.8 Compiling Data for Training Targets-Diseases Network Model:

Different classification models were trained to predict the disease association of the protein with
respect to neurological and neurodegenerative disorders. Out of 4884 target proteins, 3440 came
out to be associated with neurological disorders. While 1443 came out to be associated with
neurodegenerative disorders. The models were built on the protein descriptors dataset used as the
X-matrix while the class label was assigned based on the specific disorder type. All the protein
targets associated with neurodegenerative diseases were labeled as 0 and all the protein targets
associated with neurological diseases were labeled as 1. There is a difference of 1997 instances
between both classes which clearly demonstrates the class-imbalance between two target classes.
To prevent the model performance from deterioration, we perform hyperparameters tunning and
its special feature i.e., GridSearchCV [165], short for Grid Search Cross-Validation, which is a
hyperparameter tuning technique widely used in machine learning. It helps automate the process
of finding the best combination of hyperparameters for a given machine learning model by
exhaustively searching through a predefined set of hyperparameter values. The data matrix was of
the order 4884x9921. The class labels, total no. of descriptors for each target protein, and total
number of instances belonging to each class in the dataset of Targets-Diseases Network model are

presented in Table 1.

Table 1 Summary of Targets-Diseases network classification dataset

Class Labels Total no. of Instances Total no. of descriptors

1

3440 9921
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(Protein targets associated
with neurological disorders)
0
(Protein targets associated 1443 9921

with neurodegenerative

disorders)

3.9 Compiling Data for Training Diseases-Drugs Network Model:

There are different classification models which were built for the prediction of the drugs against
targets- protein associated with neurodegenerative disorders and with neurological disorders. The
labels were given to the drugs based on the activation/inhibition data collected from different
databases. In the Diseases-drugs network dataset, 3440 of the 4884 drugs were active against
targets associated with neurological disorders while the other 1443 were active against targets
associated with neurodegenerative disorders. Classification of the drugs for activity against
neurodegenerative disorders and with neurological disorders was done by taking morgan
fingerprints of the inhibitors as X-matrix. The class labels were given as 1 for neurological
disorders and zero for neurodegenerative disorders. To assign the class labels to the drugs, we took
help from different databases. To compile a complete network dataset, total 4884 drugs as instances
were taken in each class active against neurological and neurodegenerative disorders having 2048
features in X-matrix (4884x%2048). Table 2 shows the class labels, no. of Morgan’s Fingerprints for
each drug, and total number of instances belonging to each class in the dataset of Diseases-Drugs

Network model.

Table 2 Summary of Diseases-Drugs network classification dataset

Class Labels Total no. of Instances No. of Morgan’s
Fingerprints
1
3440 20438
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(Drugs associated with
neurological disorders)
0
(Drugs associated with 1443 2048

neurodegenerative disorders)

3.10 Compiling Data for Training Targets-Diseases-Drugs Network Model:

Different classification models were trained on the combined Targets-Diseases-Drugs Network
to predict the disease association of the protein targets as well as their drugs with respect to
neurological and neurodegenerative disorders. Out of total 4884 number of instances in the
network, 3440 target proteins and drugs came out to be associated with neurological disorders.
While 1443 target proteins and drugs came out to be associated with neurodegenerative disorders.
The models were built on the complete network dataset having 9921 protein descriptors, 2048
morgan’s fingerprints of all the drugs, one hot encoding of the nineteen neuronal disorders, drugs
activity and no. of protein edges were used as the X-matrix of the dataset while the class label was
assigned based on the specific disorder type. All the protein targets, drugs and disorders associated
with neurodegenerative diseases were labeled as 0 and all the protein targets, drugs and disorders
associated with neurological diseases were labeled as 1. There is a difference of 1997 instances
between both classes which clearly demonstrates the class-imbalance between two output classes.
To prevent the model performance from deterioration, we perform hyperparameters tunning and
its special feature i.e., GridSearchCV, short for Grid Search Cross-Validation, which is a
hyperparameter tuning technique widely used in machine learning. It helps automate the process
of finding the best combination of hyperparameters for a given machine learning model by
exhaustively searching through a predefined set of hyperparameter values. The data matrix was of
the order 4884x11990. To compile a complete network dataset, total 4884 drugs as instances were
taken in each class active against neurological and neurodegenerative disorders having 2048
features in X-matrix (4884x11990). Table 3 shows the class labels, total no. of feature variables,
and total number of instances belonging to each class in the complete dataset of Targets-Diseases-

Drugs Network model.
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Table 3 Total no. of instances & Features for Target-Disease-Drug Network

Class Labels Total no. of Instances Total no. of Features
1 3440 11990
(Neurological disorders)
0
(Neurodegenerative disorders) 1443 11990

3.11 Multi-variate Artificial Neural network Construction for Drug

Repurposing:

We have constructed three networks i.e., targets-disease network, diseases-drugs network and
targets-disease-drugs association network and then train these networks by using different machine
learning and deep learning models. Now we designed a multi-variate Artificial Neural network to
predict the interactions between drugs and target proteins linked to specific diseases. We have
utilized two datasets: one encapsulating the Morgan's fingerprints of 4884 drugs as input dataset,
and the other containing descriptors of 4884 target proteins along with disease class labels (0 or 1)
as output dataset. The distinctiveness of our approach lies in the meticulous correspondence
between the rows of these datasets, where each entry in the input dataset (housing drug
fingerprints) aligns with the corresponding entry in the output dataset (comprising target protein
descriptors and disease class labels). We devised a model capable of comprehending the intricate
connections between drug fingerprints, target protein descriptors, and disease classes, ultimately

enabling predictions for both target protein descriptors and disease class for a given drug.

In addressing this challenge, we adopted an Artificial Neural Network (ANN) [166] strategy,
employing a multi-variate output configuration. We designed our methodology to entail training
the ANN to decipher the intricate relationships between drug fingerprints and target protein
descriptors, also incorporating information about disease classes. Our model's architecture is
meticulously crafted to accept Morgan’s fingerprints of an unidentified drug, which undergo
transformation using the RDKkit library to form input features for the ANN. Upon processing, our
model yielded two outcomes: firstly, the descriptors of the target protein corresponding to the

drug's fingerprints, and secondly, the anticipated disease class associated with the drug. The heart
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of our approach lies in the concept of a Multi-Output Neural Network. In this framework, our ANN
is structured to simultaneously predict multiple outputs, specifically the target protein descriptors
and the disease class. Each of these outputs corresponds to a distinct facet of the problem. The
neural network is trained on the input drug fingerprints, effectively generating predictions for both
descriptors and disease class in a synchronized manner. This leverages the inherent relationships

embedded within the aligned datasets.

The alignment of datasets at a granular level ensures that the model comprehends the intricate
interplay between drug attributes, target protein properties, and disease classifications. The ANN's
structure is systematically optimized via hyperparameter tuning, encompassing the configuration
of hidden layers, activation functions, learning rates, and regularization techniques. The model's
outputs cater to predicting both target protein descriptors and disease class, presenting a holistic
solution for drug-target interaction prediction. After training of our datasets through the utilization
of multi-variate ANN i.e., Multi-Output Neural Network. We validate our model by giving the
SMILES of an unknown drug. Our innovative architecture predicted the target protein descriptors

and disease class simultaneously for the given drug.

3.12 Machine Learning Models Construction & Hyperparameter

Optimization:

The quality and acceptability of the machine learning model depends on the data set on which
they were trained. The data collected previously was prepared for the purpose of training the
models i.e., assigning class labels, treating class imbalance etc. The classification algorithms
chosen for the study were Linear and Non-Linear Support Vector Machine (SVM) classifier,
Decision Tree classifier, Random Forest classifier, Gradient Boosting Machines (GBM), Multi-
Layer Perceptron Neural Network (MLP-NN) and multi-variate Artificial Neural Network (ANN).
These models are trained on the three types of networks that we constructed for the dataset’s

protein-targets, drugs and neuronal disorders.
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3.12.1 Support Vector Machine (SVM) classifier:

Support Vector Machine (SVM) is a widely used supervised machine learning algorithm for
classification and regression tasks, particularly effective for complex decision boundaries and
high-dimensional data [167]. It is often used for binary classification, where it finds a hyperplane
that maximizes the margin between data points of different classes. For linearly separable data,
SVM aims to find the hyperplane that can perfectly separate the two classes. The optimal
hyperplane is the one that maximizes the distance (margin) between the support vectors of each
class. In real-world scenarios, SVM introduces a "soft margin" that allows some misclassification
of data points. This is achieved by introducing a regularization parameter (C) that balances the
trade-off between maximizing the margin and minimizing misclassification. SVM can handle not
only linearly separable data but also nonlinearly separable data in the original feature space. The
kernel trick is used to transform the original data into a higher-dimensional space where it might
become linearly separable. In the transformed higher-dimensional space, SVM finds a hyperplane
that separates the data classes, corresponding to a nonlinear decision boundary when projecting
back to the original space. In classification, the SVM algorithm assigns new data points to classes
based on their position relative to the learned hyperplane. The choice of hyperparameters like C
and the choice of kernel function significantly impacts the model's performance and generalization.
SVM is effective in high-dimensional spaces, handles complex decision boundaries, and is less
prone to overfitting when properly tuned. Hyperparameter tuning is crucial for optimizing SVM
performance, and GridSearchCV is a valuable technique for finding the best combination of
hyperparameters. Key hyperparameters include kernel type, regularization parameter, and kernel-
specific parameters. GridSearchCV automates the process by searching through a predefined grid
of hyperparameter values and systematically trains and evaluates SVM models on various
combinations using cross-validation. The training data is split into subsets for training and
validation, and the model's performance is evaluated based on a chosen metric. After all iterations,
GridSearchCV provides the best cross-validated hyperparameter combination, which is then used
to train a final SVM model on the entire training dataset. The model's performance is then assessed
on a separate test dataset to evaluate its generalization ability. This automated approach ensures
systematic exploration of parameter configurations and optimizes predictive accuracy, enhancing

the overall effectiveness of SVM for classification tasks.
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3.12.2 Decision Tree classifier:

A Decision Tree classifier is a machine learning algorithm used for classification and regression
tasks. It works by partitioning input data into subsets based on different input features, each of
which corresponds to a decision node in the tree. The top node, called the root node, represents the
entire dataset and is divided into subsets based on one of the input features' values. Each decision
node corresponds to a particular feature and a specific threshold value, representing a decision
point where data is split into different branches based on whether the feature value is above or
below the threshold [168]. The final decision or classification is represented by leaf nodes, which
correspond to predicted class labels or regression values. The algorithm selects the best feature
and threshold to split the data at each decision node, determined by criteria such as Gini impurity
or Mean Squared Error. The process of partitioning data and creating decision nodes is repeated
recursively for each subset, and the tree grows deeper as it splits the data into more subsets.
Decision Trees are easy to understand and interpret due to their visual representation resembling
human decision-making. They can handle both categorical and numerical features and are not
sensitive to feature scaling. However, they can be prone to overfitting, especially when the tree is
deep and complex, and may not generalize well to unseen data if not pruned properly. Ensemble
methods like Random Forest and Gradient Boosting use multiple Decision Trees to make
predictions and combine their outputs. Hyperparameter tuning is a crucial aspect of optimizing the
performance of a Decision Tree Classifier. The GridSearchCV technique can be used to find the
best combination of hyperparameters, such as the maximum depth of the tree, minimum number
of samples required to split an internal node, minimum number of samples at a leaf node, the
quality of a split, and the maximum number of features considered at each split. By defining a set
of possible values for each hyperparameter, the GridSearchCV process involves training and
evaluating Decision Tree models using all possible combinations of hyperparameters through
cross-validation. The model's performance is assessed using a chosen evaluation metric, and the
optimal set of hyperparameters is used to train a final Decision Tree Classifier on the entire training
dataset. This automated approach simplifies the process of finding the most suitable
hyperparameters and enhances the overall effectiveness of the Decision Tree algorithm for

classification tasks.
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3.12.3 Random Forest classifier:

The Random Forest classifier is an ensemble machine learning algorithm that combines multiple
Decision Trees to improve predictive accuracy and control overfitting. It works by constructing a
"forest" of decision trees and aggregating their predictions to make a final classification decision.
The algorithm uses bootstrap sampling to randomly select subsets of the original training data,
creating slightly different datasets for each tree. Each tree is grown through recursive binary
splitting, and the algorithm chooses the best feature and threshold based on the random subset of
features considered. After all trees are constructed, new data is fed into the forest, and each tree
makes an individual prediction based on its structure [169]. For classification tasks, the class
predicted by each tree is considered a "vote," and the final prediction is determined by the majority
vote from all the trees. In a classification problem, the class with the most votes becomes the final
prediction, while in a regression problem, the final prediction can be the mean or median of the
predicted values from all the trees. Random Forests are robust and can handle both categorical and
numerical features, making them suitable for a wide range of tasks, including classification and
regression. They reduce the variance of the model by averaging out individual errors and random
variations in each tree's predictions. They can estimate the generalization error using out-of-bag
samples, providing an internal validation measure during training. However, Random Forests may
not be as interpretable as individual Decision Trees and could become computationally expensive
for large datasets or trees. Parameters such as the number of trees, maximum depth of trees, and
the number of features considered at each node can be tuned to optimize the model's performance.
Hyperparameter tuning is crucial for optimizing the performance of a Random Forest Classifier.
The GridSearchCV technique can be used to explore different parameter combinations, including
the number of trees, maximum depth, minimum samples required to split an internal node,
minimum samples required to be at a leaf node, and the number of features considered at each
split. The approach defines a range of values for each hyperparameter and performs an exhaustive
search by training and evaluating Random Forest models with all possible combinations of
hyperparameters using cross-validation. The optimal combination of hyperparameters is then used
to train a final Random Forest Classifier on the entire training dataset. The model's performance is

evaluated on a separate test dataset to gauge its ability to generalize to new data. This automated
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approach streamlines the process of finding the most suitable hyperparameters and enhances the

overall effectiveness of the Random Forest algorithm for classification tasks.

3.12.4 Gradient Boosting Machines (GBM):

Gradient Boosting Machine (GBM) is an ensemble machine learning algorithm that combines
multiple weak learners, typically Decision Trees, to create a strong predictive model. The process
starts with creating an initial prediction based on a simple model, such as a single Decision Tree
with shallow depth or a constant value. The goal is to iteratively reduce residuals or errors by
adding new models. In each iteration, a new weak learner is added to the ensemble, trained to
predict the negative gradient of the loss function with respect to the current predictions. The new
model's predictions are weighted based on their contribution to reducing errors. The learning rate
parameter controls the step size of updates, preventing overfitting by regularizing the process. The
ensemble's predictions are updated accordingly, updating the ensemble toward the correct values
and reducing residuals. The boosting process continues for a predefined number of iterations or
until a stopping criterion is met [170]. The final prediction of the GBM ensemble is the sum of
predictions from all individual models in the ensemble, which is often more accurate than that of
any single model. GBM is known for its strong predictive power and robustness, handling different
types of data and automatically performing feature selection. However, it can be computationally
expensive and requires careful tuning of hyperparameters to avoid overfitting. Variants of Gradient
Boosting, such as XGBoost and LightGBM, have been developed to optimize performance and
speed up training. Hyperparameter tuning is crucial for optimizing GBM performance, and the
GridSearchCV technique can automate this process. Key hyperparameters include the number of
boosting stages, learning rate, maximum depth of individual trees, and number of features
considered at each split. Parameters related to subsampling and regularization can also be tuned to
prevent overfitting. To perform hyperparameter tuning using GridSearchCV, a range of values for
each hyperparameter is defined, and the algorithm explores all possible combinations through
cross-validation. The best combination of hyperparameters is returned, which is then used to train
a final GBM model on the entire training dataset. The model's performance is then evaluated on a

separate test dataset to assess its generalization ability. This approach automates the search for
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suitable parameter values, saving time and reducing the risk of selecting suboptimal

configurations.

3.12.5 Multi-Layer Perceptron Neural Network (MLP-NN):

A Multi-Layer Perceptron (MLP) is a feedforward artificial neural network consisting of
multiple layers of interconnected neurons designed to process and learn complex patterns in data.
It is a foundational architecture in deep learning and is used for tasks such as classification,
regression, and feature extraction. MLPs consist of three main types: an input layer, one or more
hidden layers, and an output layer. Each layer contains neurons that transform input data using
weights and biases [171]. The data flows through the network in a feedforward manner, starting
from the input layer and passing through the hidden layers to produce an output in the output layer.
Neurons in each layer are connected to neurons in adjacent layers through weighted connections.
Common activation functions include ReL U, sigmoid, and tanh, which introduce non-linearity into
the network, allowing it to learn complex relationships in data. Each neuron takes the weighted
sum of its inputs, multiplied by a weight associated with the connection, and adds a bias term
before passing it through the activation function. MLPs are trained using a process called
backpropagation, where the network compares its predictions (output) to the actual target values
and calculates the error. Optimization algorithms like Gradient Descent are used to update the
weights in the direction that minimizes the error. The difference between the predicted output and
the true target is quantified using a loss function, with the goal of training to minimize this loss
function. MLPs have several hyperparameters that need to be tuned for optimal performance,
including the number of hidden layers, the number of neurons in each layer, the choice of activation
functions, learning rate, batch size, and regularization strength. They can capture complex non-
linear relationships in data and are versatile for various tasks. Hyperparameter tuning is crucial for
optimizing MLP performance. Identify the hyperparameters that influence the behavior of your
MLP. These might include the number of hidden layers, the number of neurons in each hidden
layer, activation functions, learning rate, batch size, optimizer, dropout rate, weight decay, and
more. Create a parameter grid that includes different values for the hyperparameters you want to

tune. GridSearchCV can automate this process by identifying hyperparameters influencing MLP
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behavior, creating a parameter grid with different values, and deciding on the MLP architecture. A
function is built to create a MLP model based on these parameters, and GridSearchCV is imported
from scikit-learn. The function is fitted on training data, and the best hyperparameters are identified
using the best _params_ attribute. A new MLP model is created using these parameters, trained on
the full training dataset, and evaluated on a separate test dataset. This process avoids manual trial
and error, ensuring the best set of hyperparameters for a specific task. By using GridSearchCV for
hyperparameter tuning, the process is automated, avoiding manual trial and error and ensuring the

best hyperparameters for specific tasks.

3.12.6 Multi-variate Artificial Neural Network (ANN):

An Artificial Neural Network (ANN) with multi-variate output features, often referred to as a
Multi-Output Neural Network, is a type of neural network architecture that can make predictions
or classifications involving multiple output variables or features simultaneously. It works by
combining input, hidden, and output layers, with neurons in the output layer corresponding to each
output feature. The network can include one or more hidden layers between the input and output
layers, which enables the network to learn complex relationships within the input data. Activation
functions are applied to neurons in the hidden layers and the output layer, introducing non-linearity
and helping capture intricate patterns in the data [172]. The output layer contains neurons that
correspond to each desired output feature, and the loss function should consider the differences
between predicted and actual values for each output feature. Common loss functions for multi-
output tasks include Mean Squared Error (MSE) for regression and categorical cross-entropy for
classification. During training, the network computes the error between predicted and actual output
values using the chosen loss function. Backpropagation is used to propagate the error backward
through the network, updating weights and biases to minimize loss. Hyperparameters such as the
number of hidden layers, neurons in each layer, activation functions, learning rate, and
regularization should be tuned to optimize the network's performance. Multi-Output Neural
Networks are advantageous when dealing with tasks involving multiple output variables, as they
can capture dependencies and correlations among these variables. They find applications in various

domains such as multi-label classification, multi-variate time series prediction, and image
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segmentation with multiple classes. Designing a proper architecture for a Multi-Output Neural
Network can be complex, especially when dealing with varying ranges and scales of output
features. Hyperparameter tuning is a crucial step in optimizing the performance of a Multi-Output
Neural Network. It involves determining the number of hidden layers and neurons each layer
should contain, choosing appropriate activation functions, adjusting the learning rate, batch size,
and choosing an optimizer algorithm. Regularization techniques like L1 or L2 regularization can
help prevent overfitting by adding penalty terms to the loss function based on the magnitudes of
weights. Adjusting the learning rate during training helps fine-tune weights as the training
progresses. Determining the number of epochs to perform and implementing early stopping by
monitoring a validation metric can prevent overfitting. Experimenting with different architectures,
such as grid search, random search, or Bayesian optimization, can also be helpful. Using automated
hyperparameter tuning libraries like scikit-learn's GridSearchCV or RandomizedSearchCV, as well
as specialized libraries like Keras Tuner or Optuna, can help systematically explore the
hyperparameter space and find the optimal configuration for our model. By optimizing
hyperparameters, we can enhance the performance and generalization of our model for our desired

task involving multiple output variables.

3.13 Evaluation Methods

3.13.1 Confusion Matrices:

A confusion matrix is commonly used to evaluate the performance of machine learning or any
classification model. With the use of the confusion matrix, results may get a geed sense of whether
findings are high performing or not, as it provides a tabular representation of the predicted and
actual class labels. Typically, a confusion matrix consists of four cells true positives, true negatives,
false positives, and false negatives. In this proposed study, targets which are correctly classified as
for neurological disorders (in our case, true positives; TP), targets which are correctly classified as
for neurodegenerative disorders (in our case, true negatives; TN), targets which are incorrectly
classified as for neurological disorders, when the actual class label is for neurodegenerative

disorders (in our case, false positives; FP), and targets which are incorrectly classified as for

8l|Page



neurodegenerative disorders, when the actual class label is for neurological disorders (in our case,
false negatives; FN), are the elements of the confusion matrix. Predictions that turn out to be false
negatives and false positives are the wrong predictions by the model. Because the proposed study
presented the classification of neurodegenerative disorders Vs neurological disorders which is a
binary classification with two outcomes, we obtained a 2 X 2 matrix. To ensure the generalizability
of the models 10-fold Cross validation was performed. Subsequentially, the models were also used
for the classification of unknown datasets. By analysing the values of the confusion matrix, various
performance parameters such as precision, recall and F1 score etc. were calculated to determine
the effectiveness of the model in classifying neurodegenerative disorders and neurological

disorders.

3.13.2 Accuracy:

One indicator for assessing model performance is accuracy. The accuracy of the classifier is its
ability to correctly predict the class labels of instances of different classes (positive and negative
class). True positive (TP) are the instances of positive class that were correctly predicted by the
classifier. Likewise, the correctly predicted instances of negative class were termed as true
negative (TN). False positives (FP) and false negatives (FN) represent the fallacy of the classifier
to make correct prediction. FP is an outcome given by the classifier when it inaccurately predicts
the positive class while FN occurred due to misclassification of instances of positive class. These
four measures were used by all the performance metrices given below. Mathematically, accuracy

is defined as.

True Positives + True Negatives

Accuracy =
True Positives + True Negatives + False Positives + False Negatives
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3.13.3 Precision:

Precision is determined as the ratio of the total number of true positives to the total number of
instances predicted as positive.

True Positives

Precision =
True Positives + False Positives

3.13.4 Recall:

It is also known as sensitivity. Recall determines the proportion of correctly predicted
positive instances out of all actual positive instances. It is calculated by dividing the total number
of true positives by the sum of true positives and false negatives.

True Positives
Recall =

True Positives + False Negatives

3.13.5 F1 Score:

The F1 score is the harmonic mean of precision and recall scores. A higher F1 score indicates a

better-quality classifier.

Percision * Recall
F1 Score = 2+«

Percision + Recall

The model having all these measures satisfied would be considered as the best model as the
results predicted by the model would be reliable enough and then it be used as a generalized model

for the prediction on unknown dataset.
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Chapter 4

Results and Discussion
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4 Results and Discussion

The goal of this study was to collect the data of all the FDA-approved drugs and target proteins
associated with the nine neurological and ten neurodegenerative disorders from different online
available databases for the development of a comprehensive database. Using the developed
database, the construction and integration of three networks i.e., target-disease, disease-drug and
target-disease-drug association networks was performed. After networks construction, various
machine learning and deep learning models was developed and trained for the classification of the
networks with respect to neurological vs neurodegenerative disorders. The ultimate goal of our
proposed study was drug repurposing of neurological disorders by making a connection of drug
fingerprints with the target descriptors and associated disease. To achieve these goals, a couple of
online available target proteins and drugs databases are explored for the data collection and
different tools are used for descriptors computation, network construction, Machine
Learning/Deep Learning model building and development by undergoing series of different steps.
In this chapter, the results of each step of our methodology are presented and discussed to infer
from the analysis. In general, our models classify the target proteins and drugs for neurological
and neurodegenerative disorders separately. And the main achievement of our proposed work was
the prediction of an unknown drug based on their fingerprints for the disease type and specific
target descriptors, which is a significant success in the field of drug discovery and precision
medicine. Furthermore, several targets and drugs overlap are uncovered between various neuronal
disorders. Overall, the results provide a comprehensive view of the drugs and protein targets
associated with a specific neuronal disorder type. The results of each step are described in detail

in the following paragraphs:

4.1 Data Collection:

4.1.1 Selection of Diseases:

Neurological and Neurodegenerative disorders are selected due to their prevalence and mortality

rate worldwide, with the help of literature and different organizations such as World Health
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organization (WHO), Global Burden of Diseases (GBD), etc. Nine neurological disorders and ten

neurodegenerative disorders were selected, which are shown in Table 4.

Table 4 List of all selected Neurological & Neurodegenerative disorders

Serial no. Neuronal Disorders Disorder Class
1. Alzheimer’s Disease Neurodegenerative disorder
2. Huntington’s disease Neurodegenerative disorder
3. Prion disease Neurodegenerative disorder
4. Down Syndrome Neurodegenerative disorder
5. Progressive Supranuclear Palsy Neurodegenerative disorder
6. Major Depressive Disorder Neurodegenerative disorder
7. Multiple Sclerosis Neurodegenerative disorder
8. Parkinson's disease Neurodegenerative disorder
9. Dementia Neurodegenerative disorder
10. Frontotemporal Lobar Degeneration Neurodegenerative disorder
11. Migraine Neurological disorder
12. Psychotic disorder Neurological disorder
13. Prader-Willi Syndrome Neurological disorder
14. Obsessive-compulsive disorder Neurological disorder
15. Epilepsy Neurological disorder
16. Autism Spectrum Disorder Neurological disorder
17. Anxiety disorder Neurological disorder
18. Williams-Beuren syndrome Neurological disorder
19. Amyotrophic lateral sclerosis Neurological disorder

4.1.2 Target Data Retrieval:

In the first step of the methodology, a publicly available protein-targets dataset from the two
databases are collected for the nine neurological and ten neurodegenerative disorders one by one
and then merged all the datasets of all the selected neuronal disorders. The total data of the protein-

targets retrieved from STRING database, after merging the targets datasets for each disorder and
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the total data of the protein-targets retrieved from Therapeutic Target Database (TTD), after
merging the targets datasets of each disorder, by giving the query of each Neurological and
Neurodegenerative disorder individually and then merged the dataset of both databases to remove
target duplicates. After removing duplicates, the data contained 821 unique targets protein between
the protein-protein interaction edges zero to seventy-one. We shortlisted the targets datasets having
edges of at least three to seventy-one. The total unique data of target proteins for all the nineteen

neuronal disorders remained 236, which is shown in table 5.

Table 5 List of all the selected Protein-Targets for Neuronal disorders

Sr. no. Targets Name | No. of Edges | Serial. no. No. of Edges Targets Name
1 MT-ND2 3 120 10 CST3

2 HSPG2 3 121 10 IL7R

3 ASTN2 3 122 10 HLA-DRBI
4 PRRT2 3 123 10 PVALB

5 NPAS3 3 124 10 GABRB3
6 NDN 3 125 10 GABRAS
7 SLC6A4 3 126 10 HTR1A

8 SNCA 4 127 10 MAOA

9 HTT 4 128 10 HTR2A
10 BDNF 4 129 11 NALCN
11 APOAL 4 130 11 GABRE
12 C1QB 4 131 11 VARS

13 CAD 4 132 11 KCNS3
14 MARS2 4 133 11 SYNJ1

15 KCNMB3 4 134 11 SLC2A1
16 PROSC 4 135 11 STAT3

17 EPM2A 4 136 11 MOG

18 ITPA 4 137 11 RELN

19 POMC 4 138 11 COMT
20 SLC35A2 4 139 11 OXT

21 CASR 4 140 12 KCNQ5
22 APOE 4 141 12 ADAMI10
23 APP 4 142 12 IL17A
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24 GRN 4 143 12 CD40

25 TARDBP 4 144 12 IL2RA

26 MAPT 4 145 12 IFNBI

27 CTNND2 4 146 12 MLXIPL
28 CACNA1H 4 147 12 GRM3

29 NCF1 4 148 13 ATXN2
30 CACNAIA 4 149 13 ARX

31 OCA2 4 150 13 PICALM
32 SLC1A1 4 151 13 CD80

33 APCS 5 152 13 CD86

34 C1QC 5 153 13 DYRKIA
35 EEF1A2 5 154 14 TH

36 YWHAG 5 155 14 ATP6V1A
37 MEF2C 5 156 14 KCNT2
38 MT-ND1 5 157 14 A2M

39 PARS2 5 158 14 CD4

40 TNRC6A 5 159 14 NRXNI1
41 GSK3A 5 160 15 PFN1

42 CACNAIC 5 161 15 PNKP

43 HLA-DRBS 5 162 15 CACNA2D2
44 SCN1A 5 163 15 IDE

45 TRPMS 5 164 15 CTSB

46 ATP1A2 5 165 15 STX1A
47 OLIG2 5 166 15 GRIN2A
48 GABRRI1 5 167 16 KCNH1
49 AKTI 5 168 16 MTOR
50 GABRR3 5 169 16 MECP2
51 UBE3A 5 170 16 LIMK1
52 DRD4 5 171 16 DISCI1

53 MAPIB 6 172 17 TBK1

54 ATP1A3 6 173 17 IL6

55 CIQA 6 174 17 SYNGAPI1
56 CUX2 6 175 17 NSUNS
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57 AARS 6 176 18 DNAIJC6
58 POLG 6 177 18 CACNAIE
59 TPP1 6 178 18 CNTNAP2
60 GLS 6 179 18 FMR1

61 STK39 6 180 18 BAZ1B
62 MAPKI10 6 181 19 TUBA4A
63 DABI1 6 182 19 SIGMARI1
64 KCNU1 6 183 19 CHRNA2
65 ALDH7A1 6 184 20 NEK1

66 MDHI1 6 185 20 GABRA2
67 SLC6A3 6 186 20 CLU

68 TOMMA40 6 187 20 CHDS

69 OXTR 6 188 21 SPG11

70 WBSCR22 6 189 21 GRIK1

71 KCNK18 6 190 21 SCN2A

72 YWHAZ 7 191 21 GRIN2B
73 C3 7 192 22 NEFH

74 ATIC 7 193 22 SCN3A

75 CSTB 7 194 22 KCNBI1

76 FUS 7 195 23 PLA2G6
77 VCP 7 196 23 CACNAI1D
78 GRMS5 7 197 23 SLC25A22
79 DRD2 7 198 23 PLCBI1

80 CRHRI 7 199 23 DNM1

81 KATNAL2 7 200 25 MATR3

82 ADNP 7 201 25 KCNIJ10
83 ELN 7 202 25 CRH

84 GABRA4 7 203 26 PINK1

85 TAARG6 7 204 26 SOD1

86 PIGB 8 205 26 PNPO

87 SCARB?2 8 206 26 NTRK2

88 TSC1 8 207 26 SCNOA

89 HCN1 8 208 27 DCTNI1
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90 MDH?2 8 209 27 OPTN

91 ATP2A2 8 210 27 GABRB2
92 ATP1A1 8 211 28 GABBR2
93 GIG25 8 212 28 SLC1A2
94 GBA 8 213 28 CNTN2
95 MBP 8 214 29 CLCN2
96 DSCAM 8 215 29 CHRNA4
97 NOSIAP 8 216 30 STX1B
98 GAD2 8 217 30 LGI1

99 FKBP5 8 218 31 ATP13A2
100 SLCIBA2 9 219 31 PARK7
101 PRNP 9 220 32 KCNMAL
102 TSC2 9 221 32 CACNAIB
103 GRIN2D 9 222 37 PCDH19
104 QARS 9 223 37 CDKLS5
105 GRM7 9 224 38 KCND2
106 PPP3CA 9 225 38 SCN1B
107 KCNK4 9 226 39 SLC12A5
108 TNFRSF1A 9 227 39 GTF21
109 PTEN 9 228 40 KCNC1
110 GABRBI1 9 229 42 SLC6A1
111 NR3C1 9 230 42 GABRD
112 CCK 9 231 47 KCNTI1
113 SNCAIP 10 232 48 KCNA2
114 PANK2 10 233 49 GRIA2
115 ANG 10 234 52 KCNQ3
116 SMNI1 10 235 52 GABRA1
117 CASK 10 236 56 SCNSA
118 CTSD 10 237 63 GABRG2
119 GSK3B 10 238 71 KCNQ2

The Network of protein targets obtained from STRING database is shown in this figure:
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Figure 4.1 Network of protein targets obtained from STRING database.

The sequences of all the selected target proteins were obtained from UniProt using the given
UniProt IDs and downloaded the data in an Excel file. The data of target protein sequences is

shown in table 6.

Table 6 Protein-Targets Sequences obtained from Uniprot

Sr. # | Targets Names | Targets Sequences
>sp|ASMYU2[KCNUI_HUMAN Potassium channel subfamily U
1. KCNU1 member 1 OS=Homo sapiens OX=9606 GN=KCNU1 PE=1 SV=2
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MNPLAQPVIYSTIFAGTLITALSSHWFFTWVGLEMNMLAFIP
VLTKKMNPRSTEAAIKYFLTQATASMILLMAILFNNMLSGQ
WTMTNTTNQYSSLMIMMAMAMKLGMAPFHFWVPEVTQG
TPLTSGLLLLTWQKLAPISIMYQISPSLNVSLLLTLSILSIMAGS
WGGLNQTQLRKILAYSSITHMGWMMAVLPYNPNMTILNLTI
YILTTTAFLLLNLNSSTTTLLLSRTWNKLTWLTPLIPSTLLSL
GGLPPLTGFLPKWAIIEEFTKNNSLIIPTIMATITLLNLYFYLRL
IYSTSITLLPMSNNVKMKWQFEHTKPTPFLPTLIALTTLLLPIS
PFMLMIL

2. NCF1

>sp|P14598NCF1_HUMAN Neutrophil cytosol factor 1 OS=Homo
sapiens OX=9606 GN=NCF1 PE=1 SV=4
MGDTFIRHIALLGFEKRFVPSQHYVYMFLVKWQDLSEKVVY
RRFTEIYEFHKTLKEMFPIEAGAINPENRIIPHLPAPKWFDGQ
RAAENRQGTLTEYCSTLMSLPTKISRCPHLLDFFKVRPDDLK
LPTDNQTKKPETYLMPKDGKSTATDITGPIILQTYRAIANYEK
TSGSEMALSTGDVVEVVEKSESGWWFCQMKAKRGWIPASF
LEPLDSPDETEDPEPNYAGEPY VAIKAYTAVEGDEVSLLEGE
AVEVIHKLLDGWWYVIRKDDVTGYFPSMYLQKSGQDVSQAQ
RQIKRGAPPRRSSIRNAHSIHQRSRKRLSQDAYRRNSVRFLQ
QRRRQARPGPQSPGSPLEEERQTQRSKPQPAVPPRPSADLILN
RCSESTKRKLASAV

3. TAARG6

>sp|Q96RI8TAAR6 HUMAN Trace amine-associated receptor 6
OS=Homo sapiens OX=9606 GN=TAAR6 PE=2 SV=1
MSSNSSLLVAVQLCYANVNGSCVKIPFSPGSRVILYIVFGFGA
VLAVFGNLLVMISILHFKQLHSPTNFLVASLACADFLVGVTV
MPFSMVRTVESCWYFGRSFCTFHTCCDVAFCY SSLFHLCFISI
DRYIAVTDPLVYPTKFTVSVSGICISVSWILPLMYSGAVFYTG
VYDDGLEELSDALNCIGGCQTVVNQNWVLTDFLSFFIPTFIM
IILY GNIFLVARRQAKKIENTGSKTESSSESYKARVARRERKA
AKTLGVTVVAFMISWLPYSIDSLIDAFMGFITPACIYEICCWC
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AYYNSAMNPLIYALFYPWFRKAIKVIVTGQVLKNSSATMNL
FSEHI

236.

C1QC

>sp|P02747|C1QC_HUMAN Complement Clq
subunit C OS=Homo sapiens OX=9606 GN=C1QC PE=1 SV=3
MDVGPSSLPHLGLKLLLLLLLLPLRGQANTGCYGIPGMPGLP
GAPGKDGYDGLPGPKGEPGIPAIPGIRGPKGQKGEPGLPGHP
GKNGPMGPPGMPGVPGPMGIPGEPGEEGRYKQKFQSVFTVT
RQTHQPPAPNSLIRFNAVLTNPQGDYDTSTGKFTCKVPGLYY
FVYHASHTANLCVLLYRSGVKVVTFCGHTSKTNQVNSGGV
LLRLQVGEEVWLAVNDYYDMVGIQGSDSVFSGFLLFPD

subcomponent

4.1.3 Drugs Data Retrieval:

The data of all the FDA-approved, experimental phase, investigational phase, nutraceutical,

[licit and withdrawn drugs was retrieved from multiple databases, such as, DrugCentral, e-

Drug3D, ChEMBL and DrugBank by giving the query of all the selected protein-targets one by

one and all for all the Neurological and Neurodegenerative disorder individually. Then we merged

the dataset of all the databases to remove duplicates of all drugs. Then we keep only the data of all

FDA-approved drugs. After shortlisting, the data contained 964 unique drugs as shown in the Table

7. The SMILES of all the selected drugs were obtained from PubChem database using the given

drug name and downloaded the data in an Excel file.

Table 7 Data of 964 unique FDA-approved drugs for all the neuronal disorders

Sr. no. | Drugs Sr. no. | Drugs Sr. no. | Drugs
1 NADH 323 Micronomicin 645 Cortisone acetate
2 Metformin 324 Fostamatinib 646 Desonide

Flavin adenine Dexamethasone
3 dinucleotide 325 Lithium citrate 647 acetate
4 Ubidecarenone 326 Halothane 648 Desoximetasone
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5 Cyclosporine 327 Ibutilide 649 Difluprednate

6 Haloperidol 328 Levamlodipine 650 Fluorometholone

7 Fentanyl 329 Ranolazine 651 Fluticasone

8 Valrubicin 330 Atenolol 652 Clocortolone

9 Oxygen 331 Amiodarone 653 Megestrol acetate

10 D-Tyrosine 332 Diltiazem 654 Flumethasone

11 Isotretinoin 333 Dronedarone 655 Meprednisone

12 Milnacipran 334 Isavuconazole 656 Alclometasone

13 Citalopram 335 Propiverine 657 Amcinonide

14 Clomipramine 336 Topiramate 658 Diflorasone

15 Escitalopram 337 Amoxicillin 659 Fluoxymesterone

16 Fluvoxamine 338 Clavulanic acid 660 Flurandrenolide

17 Paroxetine 339 Carbamazepine 661 Fluticasone furoate

18 Sertraline 340 Lamotrigine 662 Hydrocortamate
Hydrocortisone

19 Fluoxetine 341 Oxcarbazepine 663 butyrate
Hydrocortisone

20 Desipramine 342 Nitrazepam 664 cypionate
Hydrocortisone

21 Duloxetine 343 Phenacemide 665 probutate
Hydrocortisone

22 Imipramine 344 Clobazam 666 valerate

23 Nortriptyline 345 Levetiracetam 667 Loteprednol etabonate

24 Venlafaxine 346 Tetracaine 668 Medrysone

25 Atomoxetine 347 Permethrin 669 Prednicarbate

26 Amitriptyline 348 Phenazopyridine 670 Rimexolone

27 Amoxapine 349 Brivaracetam 671 Ursodeoxycholic acid
Betamethasone

28 Desvenlafaxine 350 Chloroprocaine 672 phosphate

29 Doxepin 351 Dichlorobenzyl alcohol 673 Clobetasone

30 Protriptyline 352 Pramocaine 674 Drospirenone
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31 Trimipramine 353 Propoxycaine 675 Fludrocortisone

32 Cocaine 354 Eslicarbazepine 676 Gestrinone
Hydrocortisone

33 Phentermine 355 Eslicarbazepine acetate | 677 phosphate

34 Vilazodone 356 Ethotoin 678 Levonorgestrel

35 Mirtazapine 357 Lacosamide 679 Norethisterone

36 Lumateperone 358 Mexiletine 680 Segesterone acetate

37 Vortioxetine 359 Prilocaine 681 Ulipristal

38 Bupropion 360 Primidone 682 Ulobetasol

39 Risperidone 361 Propafenone 683 Cyproterone acetate

40 Minaprine 362 Rufinamide 684 Ethinylestradiol

41 Tramadol 363 Safinamide 685 Fluprednisolone

42 Trazodone 364 Amiloride 686 Methyltestosterone

43 Mazindol 365 Geraniol 687 Paramethasone acetate

a4 Methylphenidate 366 Hydroxycitronellal 688 Prednisolone tebutate

45 Dosulepin 367 Linoleic acid 689 Caffeine

46 Dextroamphetamine | 368 Ouabain 690 Magnesium oxide

47 Dopamine 369 Digoxin 691 Sincalide

48 Meperidine 370 Bisacodyl 692 Cholecystokinin

49 Verapamil 371 Rubidium Rb-82 693 Ginger

50 Buprenorphine 372 Acetyldigitoxin 694 Pantothenic acid

51 Ethanol 373 Deslanoside 695 Pidolic acid

52 Methadone 374 Digitoxin 696 Risdiplam

53 Morphine 375 Bromazepam 697 Amikacin

54 Racephedrine 376 Chlordiazepoxide 698 Anisindione

55 Ribavirin 377 Clonazepam 699 Hydralazine

56 Clozapine 378 Clorazepic acid 700 Nabumetone

57 Dexmethylphenidate | 379 Clotiazepam 701 Phenylbutyric acid

58 Dextromethorphan 380 Estazolam 702 Thiabendazole

59 Mianserin 381 Flurazepam 703 Streptozocin

60 Aripiprazole 382 Midazolam 704 Betulinic Acid
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61 Benzatropine 383 Oxazepam 705 Econazole

62 Chlorpheniramine 384 Prazepam 706 Dapsone

63 Cyclobenzaprine 385 Quazepam 707 Lapatinib

64 Lorpiprazole 386 Temazepam 708 Rosuvastatin

65 Loxapine 387 Triazolam 709 Allopurinol

66 Procaine 388 Alprazolam 710 Nevirapine

67 Tapentadol 389 Diazepam 711 Carbimazole

68 Berberine 390 Remimazolam 712 Efavirenz

69 Olanzapine 391 1,2-Benzodiazepine 713 Flucloxacillin
gamma-Aminobutyric

70 Quetiapine 392 acid 714 Lumiracoxib

71 Solriamfetol 393 Miltefosine 715 Methimazole

72 Phenelzine 394 Gemcitabine 716 Pitavastatin

73 Ziprasidone 395 Nelfinavir 717 Ticlopidine

74 Copper 396 Arsenic trioxide 718 Fospropofol

75 Mycophenolic acid 397 Anastrozole 719 Piperazine

76 Dequalinium 398 Fulvestrant 720 Zopiclone

77 Gentian violet cation | 399 Alectinib 721 Carisoprodol

78 Ketoconazole 400 Alpelisib 722 Naratriptan

79 Azacitidine 401 Dabrafenib 723 Zolmitriptan

80 Chloroxine 402 Everolimus 724 Methysergide

81 Dactinomycin 403 Irinotecan 725 Pindolol

82 Daunorubicin 404 Lovastatin 726 Eletriptan

83 Dipyrithione 405 Nintedanib 727 Pizotifen

84 Fluorescein 406 Sorafenib 728 Oxymetazoline

85 Fluspirilene 407 Temsirolimus 729 Penbutolol

86 Idarubicin 408 Vemurafenib 730 Tropisetron

87 Leflunomide 409 Flumazenil 731 Alverine

88 Mitoxantrone 410 Etomidate 732 Dihydroergocornine

89 Oxybenzone 411 Rotigotine 733 Gilteritinib

90 Proflavine 412 Paliperidone 734 Lofexidine
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91 Promethazine 413 Sulpiride 735 Frovatriptan
92 Terazosin 414 Methotrimeprazine 736 Rizatriptan
Tetramethylthiuram

93 monosulfide 415 Ropinirole 737 Moclobemide

94 Thimerosal 416 Cabergoline 738 Selegiline

95 Thiram 417 Lisuride 739 Linezolid

96 Triclocarban 418 Asenapine 740 Tranylcypromine

97 Vandetanib 419 Propiomazine 741 Isocarboxazid

98 Histamine 420 Aripiprazole lauroxil 742 Almotriptan

929 Ketamine 421 Buspirone 743 Pargyline

100 Norepinephrine 422 Epicriptine 744 Tedizolid

101 Pramipexole 423 Ergoloid mesylate 745 Riboflavin

102 Valproic acid 424 Flibanserin 746 Betahistine

103 Diamorphine 425 lloperidone 747 Eravacycline

104 Sumatriptan 426 Nandrolone decanoate | 748 Oxymetholone

105 Capsaicin 427 Modafinil 749 Procarbazine

106 Chlorpromazine 428 Ambrisentan 750 Tedizolid phosphate

107 Colchicine 429 Amisulpride 751 Testosterone cypionate

108 Doxorubicin 430 Domperidone 752 Testosterone enanthate
Testosterone

109 Gentamicin 431 Mesoridazine 753 undecanoate

110 Indomethacin 432 Metoclopramide 754 Ubrogepant

111 Levodopa 433 Droperidol 755 Ginkgo biloba

112 Paclitaxel 434 Phenyltoloxamine 756 Anethole

113 Pilocarpine 435 Promazine 757 Mitotane

114 Esketamine 436 Benperidol 758 Pimavanserin

115 Chondroitin sulfate 437 Fenoldopam 759 Metergoline

116 Amantadine 438 Prochlorperazine 760 Epinastine

117 Cyproheptadine 439 Betamethasone 761 Agomelatine

118 Eltanolone 440 Silver cation 762 Methylergometrine

119 Hydrocortisone 441 Rifampicin 763 Valine
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Hydrocortisone

120 acetate 442 Adenosine 764 Dalfampridine
Hydrocortisone
121 succinate 443 Clofarabine 765 Guanidine
122 Lithium carbonate 444 Penciclovir 766 Glucosamine
Sodium phosphate,
123 Lorazepam 445 monobasic 767 Pioglitazone
124 Mepivacaine 446 Valaciclovir 768 Rosiglitazone
125 Glutamic acid 447 Dexamethasone 769 Carboxymethylcellulose
126 Baclofen 448 Esculin 770 Fludeoxyglucose (18F)
127 Bortezomib 449 Empagliflozin 771 Lipoic acid
128 Corticotropin 450 Liraglutide 772 Acalabrutinib
129 Curcumin 451 Ampicillin 773 Amphotericin B
Omacetaxine
130 Didanosine 452 Carindacillin 774 mepesuccinate
131 Doneperzil 453 Cefamandole nafate 775 Pyrimethamine
132 Dronabinol 454 Cefixime 776 Benzocaine
133 Fluorouracil 455 Dicloxacillin 777 Tannic acid
134 Flurbiprofen 456 Mesalazine 778 Entacapone
135 Gemfibrozil 457 Icosapent 779 Opicapone
136 Glucagon 458 Losartan 780 Sufentanil
137 Lidocaine 459 Imatinib 781 Dobutamine
138 Methylprednisolone | 460 Isoprenaline 782 Micafungin
139 Metyrosine 461 Quinidine 783 Conjugated estrogens
140 Mifepristone 462 Artenimol 784 Nylidrin
141 Naloxone 463 Acetic acid 785 Ademetionine
142 Nicardipine 464 Betaine 786 Alfentanil
143 Nicotine 465 Pyridoxine 787 Butorphanol
144 Nystatin 466 Diethylpropion 788 Codeine
145 Propranolol 467 Phenmetrazine 789 Hydrocodone
146 Propylthiouracil 468 Armodafinil 790 Hydromorphone
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147 Simvastatin 469 Disulfiram 791 Trihexyphenidyl

148 Sodium chloride 470 Benzphetamine 792 Wood creosote

149 Topotecan 471 Diphenylpyraline 793 Ezogabine

150 Vasopressin 472 Lisdexamfetamine 794 Sorbitol

151 Verteporfin 473 Dutasteride 795 Erythromycin

152 Vincristine 474 loflupane 796 Hydroquinone

153 Fenofibrate 475 Serdexmethylphenidate | 797 Fludarabine

154 Testosterone 476 Acetylcysteine 798 Theophylline

155 Zinc acetate 477 Carbetocin 799 Cetirizine

156 Cholesterol 478 Atosiban 800 Cladribine

157 Zinc cation 479 Oxytocin 801 Decitabine

158 Zinc chloride 480 Desmopressin 802 Flutamide
5-methyltetrahydrofolic

159 Zinc sulfate 481 acid 803 Levothyroxine
Human immunoglobulin

160 Infigratinib 482 G 804 Mercaptopurine

161 Sirolimus 483 Pemetrexed 805 Garlic

162 Furosemide 484 Cupric Chloride 806 Pirfenidone

163 Lamivudine 485 Raloxifene 807 Lactose

164 L-Glutamine 486 Clonidine 808 Xylose

165 Aspartic acid 487 Dexmedetomidine 809 Amsacrine

166 Ammonia 488 Etoricoxib 810 Pyrithione

167 Famotidine 489 Oxycodone 811 Quinestrol

168 Phosphoric acid 490 Remifentanil 812 Saquinavir

169 Water 491 Rocuronium 813 Iron

170 Racemethionine 492 Acamprosate 814 Toremifene

171 Pyrophosphoric acid | 493 Perphenazine 815 D-Phenylalanine

172 Selenomethionine 494 Fluphenazine 816 Sapropterin

173 Miconazole 495 Brexpiprazole 817 Doxycycline

174 Nitrendipine 496 Cariprazine 818 lobenguane sulfate

175 Ritodrine 497 Lurasidone 819 Triamterene
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176 Trimebutine 498 Bromperidol 820 Etidronic acid

177 Potassium 499 Quinagolide 821 Tiludronic acid

178 Pyridoxal phosphate | 500 Acetophenazine 822 Alendronic acid

179 Trifluoperazine 501 Molindone 823 Flufenamic acid

180 Azathioprine 502 Thiothixene 824 Bacitracin

181 Mercaptopurine 503 Triflupromazine 825 Thrombin

182 Methotrexate 504 Zuclopenthixol 826 Primaquine

183 Citric acid 505 Pipotiazine 827 Zidovudine

184 Magnesium 506 Rasagiline 828 Clindamycin

185 Loperamide 507 Ergotamine 829 Abacavir

186 Setmelanotide 508 Yohimbine 830 Atovaquone
Dihydro-alpha-

187 Afamelanotide 509 ergocryptine 831 Carbamide peroxide

188 Galactose 510 Maprotiline 832 Fosamprenavir

189 Cinacalcet 511 Memantine 833 Lenalidomide

190 Framycetin 512 Tetrabenazine 834 Levoleucovorin

191 Etelcalcetide 513 Naltrexone 835 Maraviroc

192 Strontium chloride 514 Dapiprazole 836 Pentamidine

193 Pamidronic acid 515 Dopexamine 837 Stavudine

194 Calcium citrate 516 Ergometrine 838 Sulfamethoxazole

195 Calcium Phosphate 517 Mephentermine 839 Trimethoprim

Calcium  phosphate

196 dihydrate 518 Metaraminol 840 Folic acid

197 Atorvastatin 519 Naphazoline 841 Amprenavir

198 Fluvastatin 520 Perazine 842 Fostemsavir

199 Pravastatin 521 Phenoxybenzamine 843 Tipranavir

200 Warfarin 522 Phentolamine 844 Insulin beef

201 Galantamine 523 Phenylephrine 845 Insulin human

202 Rivastigmine 524 Tolazoline 846 Insulin lispro
Corticorelin ovine

203 Acenocoumarol 525 triflutate 847 Insulin pork
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204 Ritonavir 526 Budesonide 848 Biotin
205 Ganciclovir 527 Telavancin 849 Urea
Trastuzumab
206 Irbesartan 528 Manganese 850 deruxtecan
207 Lorazepam 529 Butabarbital 851 Nitric Oxide
208 Prednisone 530 Butalbital 852 Lysine
209 Triamcinolone 531 Butobarbital 853 Dofetilide
210 Lutein 532 Flunitrazepam 854 Doxazosin
211 Dimercaprol 533 Meprobamate 855 Ebastine
212 Aluminium 534 Methylphenobarbital 856 Glasdegib
Aluminium
213 phosphate 535 Pentobarbital 857 Pazopanib
214 Aluminum acetate 536 Secobarbital 858 Dasatinib
215 Deferoxamine 537 Talbutal 859 Entrectinib
216 Florbetaben (18F) 538 Thiopental 860 DL-alpha-Tocopherol
217 Florbetapir (18F) 539 Apalutamide 861 Vitamin A
218 Flutemetamol (18F) 540 Eszopiclone 862 Iron sucrose
219 Tromethamine 541 Ganaxolone 863 Binimetinib
220 Hydroxychloroquine | 542 Glutethimide 864 Tocopherol
221 Propofol 543 Ketazolam 865 Allantoin
222 Clotrimazole 544 Lormetazepam 866 Balsalazide
Medroxyprogesterone
223 Hydrogen peroxide 545 acetate 867 Nedocromil
224 Tamoxifen 546 Stiripentol 868 Oxyquinoline
225 Estradiol 547 Taurine 869 Rosin
226 Cysteine 548 Phenobarbital 870 Ifosfamide
227 Bifonazole 549 Cenobamate 871 Levofloxacin
Chenodeoxycholic
228 acid 550 Cyclophosphamide 872 Metronidazole
229 Dexibuprofen 551 Epirubicin 873 Minocycline
230 Diclofenac 552 Fluorouracil 874 Cabazitaxel
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231 Estrone 553 Tacrolimus 875 Picropodophyllin

232 Fluconazole 554 Acetylsalicylic acid 876 Griseofulvin

233 Ibuprofen 555 Ivabradine 877 Ixabepilone

234 Progesterone 556 Albumin human 878 Trastuzumab emtansine

235 Riluzole 557 Ciclopirox 879 Vinblastine

236 Adenine 558 Trichlormethiazide 880 Vinflunine

237 Prasterone 559 Almitrine 881 Vinorelbine

238 Docetaxel 560 Bretylium 882 Pentazocine

239 Lansoprazole 561 Etacrynic acid 883 Noscapine

240 Menadione 562 Magnesium acetate 884 Mecamylamine

241 Dihydroergotamine 563 Magnesium gluconate 885 Carbamoylcholine

242 Racepinephrine 564 Potassium acetate 886 Decamethonium

243 Flortaucipir F-18 565 Potassium cation 887 Doxacurium

244 Eribulin 566 Potassium gluconate 888 Metocurine

245 Ethambutol 567 Potassium sulfate 889 Mivacurium

246 Acitretin 568 Magnesium cation 890 Pancuronium

247 Aminohippuric acid 569 Artemether 891 Pipecuronium

248 Amrinone 570 Eplerenone 892 Tubocurarine

249 Apomorphine 571 Lumefantrine 893 Vecuronium

250 Carbidopa 572 Diazoxide 894 Cisatracurium

251 Carboplatin 573 Ambroxol 895 Atracurium
N-acetyl-alpha-D-

252 Cefaclor 574 glucosamine 896 Biperiden

253 Cisplatin 575 Beta-D-Glucose 897 Gallamine triethiodide

254 Coenzyme M 576 Acarbose 898 Atracurium besylate

255 Dantrolene 577 Migalastat 899 Succinylcholine

256 Dexketoprofen 578 Mirtazapine 900 Levallorphan

257 Dihydroergocristine 579 Hydrocortisone 901 Quinidine barbiturate

258 Doconexent 580 Ascorbic acid 902 Lubiprostone

259 Esomeprazole 581 Rifaximin 903 Miglustat

260 Felodipine 582 Sodium sulfate 904 Amylmetacresol
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261 Gefitinib 583 Dolasetron 905 Etidocaine
Indigotindisulfonic

262 acid 584 Granisetron 906 Lidoflazine

263 Itraconazole 585 Glimepiride 907 Gliquidone

264 Masoprocol 586 Repaglinide 908 Tolbutamide

265 Melphalan 587 Glipizide 909 Stearic acid

266 Methyldopa 588 Glyburide 910 Etoposide

267 Methylene blue 589 Carbon dioxide 911 Palmitic Acid

268 Niclosamide 590 Deutetrabenazine 912 Lansoprazole

269 Nifedipine 591 Valbenazine 913 Arginine

270 Nitazoxanide 592 Deserpidine 914 Chlorpropamide

271 Oxytetracycline 593 Rose bengal 915 Glymidine

272 Pantoprazole 594 Isometheptene 916 Tolazamide

273 Rabeprazole 595 Propylhexedrine 917 Minoxidil

274 Sulfasalazine 596 Rescinnamine 918 Nicorandil

275 Triclabendazole 597 Orphenadrine 919 Hydrocortisone

276 Trimetrexate 598 Glycine 920 Edaravone

277 alpha-Linolenic acid 599 Fluciclovine (18F) 921 Benzoyl peroxide

alpha-Tocopherol

278 Cholecalciferol 600 Guaifenesin 922 acetate
Magnesium acetate alpha-Tocopherol

279 Oxitriptan 601 tetrahydrate 923 succinate

280 Zonisamide 602 Magnesium carbonate 924 Flavin mononucleotide

281 Isradipine 603 Huperzine A 925 Larotrectinib

282 Flunarizine 604 Felbamate 926 Crizotinib

283 Manidipine 605 D-Serine 927 Sodium oxybate

284 Nilvadipine 606 Pimecrolimus 928 Fingolimod

285 Cinnarizine 607 Voclosporin 929 Choline

286 Bioallethrin 608 Capecitabine 930 Varenicline

287 Cannabidiol 609 Erlotinib 931 Atropine
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Methylprednisolone

288 Enflurane 610 hemisuccinate 932 Amobarbital

289 Spironolactone 611 Prednisolone 933 Estradiol acetate

290 Ergocalciferol 612 Prednisolone acetate 934 Estradiol benzoate
Prednisolone

291 Amlodipine 613 phosphate 935 Estradiol cypionate

292 Clevidipine 614 Abiraterone 936 Estradiol dienanthate

293 Lacidipine 615 Binimetinib 937 Estradiol valerate

294 Nisoldipine 616 Copanlisib 938 Physostigmine

295 Celecoxib 617 Dacomitinib 939 Scopolamine

Homatropine
296 Ethosuximide 618 Encorafenib 940 methylbromide
297 Gabapentin 619 Enzalutamide 941 Ipratropium
Gabapentin

298 enacarbil 620 Idelalisib 942 Methscopolamine

299 Methsuximide 621 Niraparib 943 Oxybutynin

300 Oxatomide 622 Olaparib 944 Pregnenolone

301 Paramethadione 623 Oxaliplatin 945 Tropicamide

302 Phensuximide 624 Palbociclib 946 Pentolinium

303 Pregabalin 625 Rucaparib 947 Trimethaphan

304 Trimethadione 626 Selumetinib 948 Chlorzoxazone

305 Pimozide 627 Talazoparib 949 Bendroflumethiazide

306 Nimodipine 628 Temozolomide 950 Cromoglicic acid

307 Drotaverine 629 Tirbanibulin 951 Hydrochlorothiazide

308 Magnesium sulfate 630 Venetoclax 952 Gliclazide

309 Menthol 631 Vorinostat 953 Indapamide
gamma-Hydroxybutyric

310 Phenytoin 632 acid 954 Nateglinide

311 Ziconotide 633 Zaleplon 955 Chlorothiazide
Fluticasone

312 Adefovir dipivoxil 634 propionate 956 Carbon monoxide
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313 Tenofovir disoproxil 635 Ciclesonide 957 Eptifibatide

Clobetasol

314 Telbivudine 636 propionate 958 Hesperidin

Fluocinolone

315 Zolpidem 637 acetonide 959 Disopyramide

316 D-Threonine 638 Fluocinonide 960 Bumetanide

Beclomethasone

317 Desflurane 639 dipropionate 961 Finasteride

318 Sevoflurane 640 Deflazacort 962 Tiagabine

319 Isoflurane 641 Mometasone furoate 963 Cyclothiazide

320 Halothane 642 Flunisolide 964 Meclofenamic acid
321 Perampanel 643 Piracetam 965 Methohexital

4.2 Descriptors Formation:

Once the data of the protein-targets, drugs and diseases was collected the descriptors were

computed for proteins and drugs to train the various machine learning and deep learning models.

4.2.1 Protein Descriptors Computation:

The sequence-based descriptors of all the selected protein-targets were computed using web
interphase of ProtrWeb. 9921 descriptors were calculated for all the 238 unique protein-targets
including amino acid composition, dipeptide and tripeptide composition, C/T/D
(Composition/Transition/Distribution), conjoint triad, sequence-order coupling number, Quasi-
sequence-order descriptors, pseudo-amino acid, and amphiphilic pseudo-amino acid composition.

The overview of the excel file of target sequence descriptors is shown in table 8 in appendix.
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4.2.2 Drugs Fingerprints Computation:

For the drugs dataset, Morgan fingerprints were generated which is the best molecular
fingerprint used for drug discovery purposes. The SMILES of all the drugs were extracted from
PubChem which were used as input for the calculation of the Morgan fingerprints. The ALLChem
package of RDKit library was imported in Python for the generation of Morgan fingerprints.

Morgan fingerprints for all the drugs are shown in the table 9 in appendix.

4.3 Targets-Diseases Network Construction:

After extracting the data of all the targets protein for ten neurodegenerative disorders and nine
neurological disorders from STRING and Therapeutic Target Database, it was saved in an excel
file and then give the class label for each target class with respect to the disorder type. The targets-
diseases network was constructed in such a way that there is an association of target-protein with

the specific disorder type. The targets-diseases network is shown in table 10 in appendix.

4.4 Diseases-Drugs Network Construction:

By using the collected data of the FDA-approved drugs associated with specific protein-targets
and for all the selected disorders using different online available databases, as mentioned in the
methodology chapter, we constructed the Diseases-Drugs network for association of the 10
neurodegenerative disorders and nine neurological disorders with the drugs. The diseases-drugs
network was constructed in such a way that there is an association of each FDA-approved drug
with the specific disorder type. The data of the Diseases-Drugs Network saved in an csv file, shown

in table 11 in appendix.
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4.5 Targets-Diseases-Drugs Network Construction:

Targets-Diseases-Drugs Network is a comprehensive network that combines diverse data types
to understand the intricate relationships between neurological and neurodegenerative disorders and
their potential therapeutic interventions, which is constructed by combining the two networks: the
Targets-Diseases Network and the Diseases-Drugs Network. The network provides an
encompassing perspective, offering insights into the triadic relationship among protein targets,
disorders, and the FDA-approved drugs. Each facet of the network is represented using distinct
techniques, with protein targets characterized by descriptors and drugs represented by binary-
encoded Morgan fingerprints. The final constructed Targets-Diseases-Drugs association network

is shown in the table 12 in appendix.

4.6 Classification models for Targets-Diseases Network Model training &

prediction:

Different classification models were trained to predict the disease association of the protein with
respect to neurological and neurodegenerative disorders. Out of 4884 target proteins, 3440 came
out to be associated with neurological disorders. While 1443 came out to be associated with
neurodegenerative disorders. The models were built on the protein descriptors dataset used as the
X-matrix while the class label was assigned based on the specific disorder type. All the protein
targets associated with neurodegenerative diseases were labeled as 0 and all the protein targets
associated with neurological diseases were labeled as 1. For training the model, first the dataset
was splitted into 80% training set and 20% testing set and then perform hyperparameters tunning
through the GridSearchCV, short for Grid Search Cross-Validation, which is a hyperparameter
tuning technique widely used in machine learning. It automated the process of finding the best
combination of hyperparameters for a given machine learning model by exhaustively searching

through a predefined set of hyperparameter values. The data matrix was of the order 4884x9921.

First, the Classification model was built by Support Vector Machine on the Target-Diseases

association Network. Then a parameters grid was defined for the SVM model training such as ‘C’:
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[0.1, 1, 10], ‘gamma’: [0.1, 0.01, 0.001], and ‘kernel’: ['rbf'] for the hyperparameters tunning of
the model parameters. To achieve the best model performance for the Targets-Diseases Network
by using SVM, a special hyperparameter tuning technique i.e., GridSearchCV was applied on the
defined parameters grid. The model automatically learned by applying different sets of parameters
and ultimately achieved the best performance. The best parameters set was 'C': 1, 'gamma': 0.1,
and 'kernel': 'rbf'. After training the model, the model achieved 91.7% Accuracy, 91.3% Precision,
97.3% Recall and 94.2% F1 Score on the test set.

Another Classification model was built by using Decision Tree Classifier on the Target-Diseases
association Network. A parameters grid was defined for the decision tree model training such as
'max_depth': [None, 5, 10, 15], 'min_samples_split'": [2, 5, 10], 'min_samples_leaf": [1, 2, 4], and
'max_features': [None, 'sqrt', 'log2'] for the hyperparameters tunning of the model parameters.
GridSearchCV was applied on the defined parameters grid. The model automatically learned by
applying different sets of parameters and ultimately achieved the best performance. The best
parameters set was 'max_depth: 15, 'max features: 'log2', 'min_samples leaf: 1, and
'min_samples_split": 5. After training the model, the model achieved 90.8% Accuracy, 91.4%
Precision, 95.7% Recall and 93.5% F1 Score on the test set.

Another Classification model was built by using Random Forest Classifier on the Target-
Diseases association Network. A parameters grid was defined for the random forest model training
such as 'n_estimators': [100, 200, 300], 'max_depth": [None, 5, 10], 'min_samples_split'": [2, 5],
'min_samples_leaf': [1, 2], and 'max_features': ['sqrt', 'log2'] for the hyperparameters tunning of
the model parameters. GridSearchCV was applied on the defined parameters grid. The model
automatically learned by applying different sets of parameters and ultimately achieved the best
performance. The best parameters set was 'max depth: None, 'max features': 'sqrt,
'min_samples_leaf': 1, 'min_samples split": 5, and 'n_estimators': 200. After training the model,
the model achieved 91.6% Accuracy, 91.7% Precision, 96.7% Recall and 94.1% F1 Score on the

test set.

Gradient Bossting Machine (GBM) model was built on the Target-Diseases association Network
dataset for classification. A parameters grid was defined for the GBM model training such as
'n_estimators': [100, 200], 'learning_rate": [0.01, 0.1], 'max_depth": [3, 5], 'min_samples_split": [2,

5], and 'min_samples_leaf’: [1, 2] for the hyperparameters tunning of the model parameters.
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GridSearchCV was applied on the defined parameters grid. The model automatically learned by
applying different sets of parameters and ultimately achieved the best performance. The best
parameters set was 'learning_rate': 0.1, 'max_depth': 3, 'min_samples leaf': 1, 'min_samples_split":
5, and 'n_estimators'": 100. After training the model, the model achieved 91.8% Accuracy, 91.6%
Precision, 97.2% Recall and 94.3% F1 Score on the test set.

At the end, another Classification model was built by using MLP classifier on the Target-
Diseases association Network. 80-20 train-test split was done for training and testing the MLP
neural network model. The model learned by the following sets of parameters such as
hidden layer sizes= (50, 100), activation="relu', solver="adam’, alpha=0.01, and learning_rate =
'adaptive'. After training the model, the model achieved 64.6% Accuracy, 68.8% Precision, 90.6%
Recall and 79.7% F1 Score on the test set. Figure 4.2 shows a comparison between the performance
measures such as accuracy, recall, precision and F1-Score on the test set among all the trained

machine learning/deep learning models on Target-Disease Network.

Performance measures comparison among all the models on
Target-Disease Network
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Figure 4.2 Performance measures comparison among all the models on Target-Disease Network
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4.7 Classification models for Diseases-Drugs Network Model training &

prediction:

There were different classification models which were trained for the prediction of the drugs
against targets-protein associated with neurodegenerative disorders and with neurological
disorders. The labels were given to the drugs based on the activation/inhibition data collected from
different online available databases. Out of 4884 drugs, 3440 came out to be active against targets
associated with neurological disorders while the other 1443 were active against targets associated
with neurodegenerative disorders. The models were built on the morgan fingerprints dataset used
as the X-matrix while the class label was assigned based on the specific disorder type. For training
the model, first the dataset was splitted into 80% training set and 20% testing set and then perform
hyperparameters tunning through the GridSearchCV. It automated the process of finding the best
combination of hyperparameters for a given machine learning model by exhaustively searching

through a predefined set of hyperparameter values. The data matrix was of the order 4884 x2048.

The first Classification model was built by Support Vector Machine on the Diseases-Drugs
association Network. Then a parameters grid was defined for the SVM model training such as 'C'":
[0.1, 1, 10], 'gamma": [0.1, 0.01, 0.001], and 'kernel': ['tbf'] for the hyperparameters tunning of the
model parameters. To achieve the best model performance for the Diseases-Drugs Network by
using SVM, a special hyperparameter tuning technique i.e., GridSearchCV was applied on the
defined parameters grid. The model automatically learned by applying different sets of parameters
and ultimately achieved the best performance. The best parameters set was 'C": 10, 'gamma': 0.1,
and 'kernel': 'rbf'. After training the model, the model achieved 76.2% Accuracy, 78.1% Precision,
91.8% Recall and 84.4% F1 Score on the test set.

Another Classification model was built by using Decision Tree Classifier on the Diseases-Drugs
association Network. A parameters grid was defined for the decision tree model training such as
'max_depth': [None, 5, 10, 15], 'min_samples_split": [2, 5, 10], 'min_samples_leaf": [1, 2, 4], and
'max_features': [None, 'sqrt', 'log2'] for the hyperparameters tunning of the model parameters.
GridSearchCV was applied on the defined parameters grid. The model automatically learned by
applying different sets of parameters and ultimately achieved the best performance. The best

parameters set was 'max_depth': None, 'max_ features': None, 'min_samples leaf: 1, and
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'min_samples_split": 10. After training, the model achieves 74.8% accuracy, 79.7% precision,

85.8% recall, and 82.7% F1 score on the test set.

Another Classification model was built by using Random Forest Classifier on the Diseases-
Drugs association Network. A parameters grid was defined for the random forest model training
such as 'n_estimators': [100, 200, 300], 'max_depth": [None, 5, 10], 'min_samples_split': [2, 5],
'min_samples_leaf': [1, 2], and 'max_features": ['sqrt', 'log2'] for the hyperparameters tunning of
the model parameters. GridSearchCV was applied on the defined parameters grid. The model
automatically learned by applying different sets of parameters and ultimately achieved the best

1 1

performance. The best parameters set was 'max depth': None, 'max_features': 'sqrt',
'min_samples_leaf: 2, 'min_samples_split": 5, and 'n_estimators': 100. After training, the model

achieves 76.6% accuracy, 78.7% precision, 91.3% recall, and 84.5% F1 score on the test set.

Gradient Bossting Machine (GBM) model was built on the Diseases-Drugs association Network
dataset for classification. A parameters grid was defined for the GBM model training such as
'n_estimators': [100, 200], 'learning_rate": [0.01, 0.1], 'max_depth": [3, 5], 'min_samples_split': [2,
5], and 'min_samples leaf’: [1, 2] for the hyperparameters tunning of the model parameters.
GridSearchCV was applied on the defined parameters grid. The model automatically learned by
applying different sets of parameters and ultimately achieved the best performance. The best
parameters set was 'learning_rate": 0.1, 'max_depth": 5, 'min_samples leaf': 2, 'min_samples_split":
2, and 'n_estimators': 100. After training, the model achieves 74.6% accuracy, 76.8% precision,

91.2% recall, and 83.4% F1 score on the test set.

At the end, another Classification model was built by using MLP classifier on the Diseases-
Drugs association Network. The model learned by the following sets of parameters such as
hidden layer sizes= (50, 100), activation="relu’, solver="adam’, alpha=0.01, and learning rate =
'adaptive'. After training the model, the model achieved 75.1% Accuracy, 78.7% Precision, 88.4%
Recall and 83.5% F1 Score on the test set. Figure 4.3 shows a comparison between the performance
measures such as accuracy, recall, precision and F1-Score on the test set among all the trained

machine learning/deep learning models on Disease-Drug Network.
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Performance measures comparison among all the models on
Disease-Drug Network
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Figure 4.3 Performance measures comparison among all the models on Disease-Drug Network

4.8 Classification models for Targets-Diseases-Drugs association Network

Model training & prediction:

There were different classification models which were trained on the combined Targets-
Diseases-Drugs Network to predict the disease association with the protein targets as well as their
drugs with respect to neurological and neurodegenerative disorders. The dataset of Targets-
Diseases-Drugs association Network for training was built by combining the datasets of the two
networks i.e., Targets-Diseases Network and Diseases-Drugs Network. Out of total 4884 number
of instances in the network, 3440 target proteins and drugs came out to be associated with
neurological disorders. While 1443 target proteins and drugs came out to be associated with
neurodegenerative disorders. The models were built on the complete network dataset having 9921
protein descriptors, 2048 morgan’s fingerprints of all the drugs, one hot encoding of the nineteen
neuronal disorders, drugs activity and no. of protein edges were used as the X-matrix of the dataset
while the class label was assigned based on the specific disorder type. To achieve the best
performance by the models, GridSearchCV was used for model training. The data matrix was of

the order 4884x11990. To compile a complete network dataset, total 4884 drugs as instances were
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taken in each class active against neurological and neurodegenerative disorders having 2048

features in X-matrix (4884x11990).

The first Classification model was built by Support Vector Machine on the Targets-Diseases-
Drugs association Network. A parameters grid was defined for the SVM model training such as
‘C": 0.1, 1, 10], 'gamma': [0.1, 0.01, 0.001], and 'kernel': ['rbf'] for the hyperparameters tunning of
the model parameters. For achieving the best model performance for the Targets-Diseases-Drugs
Network by using SVM, a special hyperparameter tuning technique i.e., GridSearchCV was
applied on the defined parameters grid. The model automatically learned by applying different sets
of parameters and ultimately achieved the best performance. The best parameters set was 'C': 10,
'gamma': 0.01, and 'kernel': 'tbf'. After training the model, the model achieved 99.2% Accuracy,
99.2% Precision, 99.7% Recall and 99.4% F1 Score on the test set.

Another Classification model was built by using Decision Tree Classifier on the Targets-
Diseases-Drugs association Network. A parameters grid was defined for the decision tree model
training such as 'max_depth': [None, 5, 10, 15], 'min_samples_split": [2, 5, 10], 'min_samples_leaf":
[1, 2, 4], and 'max_features': [None, 'sqrt', 'log2'] for the hyperparameters tunning of the model
parameters. GridSearchCV was applied on the defined parameters grid. The model automatically
learned by applying different sets of parameters and ultimately achieved the best performance. The
best parameters set was 'max_depth': 15, 'max_ features: None, 'min_samples leaf: 1, and
'min_samples_split: 2. After training the model, the model achieved 99.0% Accuracy, 99.8%
Precision, 98.8% Recall and 99.3% F1 Score on the test set.

Random Forest Classifier was trained on the Targets-Diseases-Drugs association Network. A
parameters grid was defined for the random forest model training such as 'n_estimators': [100, 200,
300], 'max_depth": [None, 5, 10], 'min_samples_split": [2, 5], 'min_samples leaf": [1, 2], and
'max_features: ['sqrt', 'log2'| for the hyperparameters tunning of the model parameters.
GridSearchCV was applied on the defined parameters grid. The model automatically learned by
applying different sets of parameters and ultimately achieved the best performance. The best
parameters set was 'max_depth: None, 'max features: 'sqrt, 'min samples leaf: 2,
'min_samples_split": 5, and 'n_estimators': 300. After training the model, the model achieved

95.5% Accuracy, 94.9% Precision, 98.9% Recall and 96.9% F1 Score on the test set.
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Gradient Bossting Machine (GBM) model was built on the Targets-Diseases-Drugs association
Network dataset for classification. A parameters grid was defined for the GBM model training
such as 'n_estimators: [100, 200], 'learning rate': [0.01, 0.1], 'max_ depth: [3, 5],
'min_samples_split'": [2, 5], and 'min_samples leaf': [1, 2] for the hyperparameters tunning of the
model parameters. GridSearchCV was applied on the defined parameters grid. The model
automatically learned by applying different sets of parameters and ultimately achieved the best
performance. The best parameters set was 'learning_rate': 0.1, 'max_depth': 5, 'min_samples_leaf"
2, 'min_samples_split": 5, and 'n_estimators": 100. After training the model, the model achieved

99.3% Accuracy, 99.5% Precision, 99.4% Recall and 99.4% F1 Score on the test set.

At the end, another Classification model was built by using MLP classifier on the Targets-
Diseases-Drugs association Network. The model learned by the following sets of parameters such
as hidden layer sizes= (50, 100), activation="relu', solver="adam', alpha=0.01, and learning_rate
= 'adaptive'. After training the model, the model achieved 70.6% Accuracy, 75.4% Precision,
86.1% Recall and 80.6% F1 Score on the test set. Figure 4.4 shows a comparison between the
performance measures such as accuracy, recall, precision and F1-Score on the test set among all

the trained machine learning/deep learning models on Target-Disease-Drug Network.

Performance measures Comparison among all the models on
Target-Disease-Drug Network
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Figure 4.4 Performance measures Comparison among all the models on Target-Disease-Drug Network
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4.9 Multi-variate Artificial Neural network Construction for Drug

Repurposing:

After the construction of three networks i.e., targets-disease network, diseases-drugs network
and targets-disease-drugs association network, different machine learning and deep learning
models were trained on these networks and achieved good accuracy. A multi-variate Artificial
Neural network was designed to predict the interactions between drugs and target proteins linked
to specific diseases. Two main datasets were utilized for this purpose: one encapsulating the
Morgan's fingerprints of 4884 drugs as input dataset, and the other containing descriptors of 4884
target proteins along with disease class labels (0 or 1) as output dataset. Then the model was trained
using Artificial Neural Network (ANN) strategy, employing a multi-variate output configuration.
The resultant model can comprehend the intricate connections between drug fingerprints, target
protein descriptors, and disease classes, ultimately enabling predictions for both target protein

descriptors and disease class for a given drug.

4.9.1 Model’s Performance:

Designing a proper architecture for a Multi-Output Neural Network can be complex, especially
when dealing with varying ranges and scales of output features. The alignment of datasets at a
granular level ensures that the model comprehends the intricate interplay between drug attributes,
target protein properties, and disease classifications. The ANN's structure was systematically
optimized via hyperparameter tuning, encompassing the configuration of the different number of
hidden layers, neurons in each layer, activation functions, batch size, and learning rate, to optimize
the network's performance. Learning rate was adjusted during training to fine-tune the weights as
the training progresses. Hyperparameters were optimized with different values to enhance the
performance and generalization of our model for our desired task involving multiple output

variables. But it still needs more hyperparameters tunning for giving best model performance.
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Figure 4.32 shows the performance of our model with comparison to varying hyperparameters and

predictions on Targets descriptors and disease class.

Performance measures of multi-variate ANN model by Drug's SMILES
for Disease & Target Descriptors Prediction
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Figure 4.5 Performance measures of multi-variate ANN model

4.9.2 Input Unknown drug for Validation.

Our model was validated by giving the SMILES of an unknown drug. It automatically computes
the morgan’s fingerprints from the SMILES of that unidentified drug, using the RDKkit library to
form input features for the ANN. The model's outputs cater to predicting both target protein
descriptors and disease class, presenting a holistic solution for drug-target interaction prediction.
Our innovative model architecture predicted the target protein descriptors and disease class

simultaneously for the given drug as shown in Figure 4.6.

Enter the SMILES string of the drug: ICI"-.I(C)CCCNlC2=CC=CC=C2CCC3=CC=CC=C31

Enter the SMILES string of the drug: CN{C)CCCN1C2=CC=CC=C2CCC3=CC=CC=C31

1/1 [=== == === ] - @s 18ms/step

Predicted Target Descriptors: [[8.87569497 ©.85344455 @.0332879%2 ... ©.00024510 @.00086426 0.20068%04]]

Predicted Disease Class: [[@]]

21/21 [= == SS< ==] - Bs 7ms/step - loss: 1.1588 - dense_5_loss: ©.3263 - dense_6_loss: ©.8246

Test Accuracy for Target Descriptors: B.53835757386236412
Test Accuracy for Disease class: @.8245556354522785

Figure 4.6 multi-variate ANN model Validation
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Conclusion
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5 Conclusion

The protein plays a critical role in governing essential biological processes and intricate
signaling cascades in a cell. Perturbations in protein activity, manifested as Loss-of-Function and
Gain-of-Function alterations, have profound implications for a diverse spectrum of ailments. In
this study, Network pharmacology approach was employed to investigate the targets association
and overlap in various neurological and neurodegenerative disorders. Three networks were built
between the protein-targets, FDA-approved drugs and neuronal disorders. The datasets of all the
networks were categorized into two classes i.e., neurological disorders and neurodegenerative

disorders.

For the classification of protein-targets and FDA-approved drugs for each neuronal disorder,
five machine learning models were trained on the three different networks, the Decision Tree,
Random Forest and Gradient Boosting Classifiers equally emerged as the optimal models for
predicting the disease association of a given protein-target and drug. (Specifically in relation to
neurological and neurodegenerative disorders). About 91% accuracy was achieved on the
classification of Target-Disease Network, about 76% accuracy was achieved on the classification
of Disease-Drug Network and about 99% accuracy was achieved on the test set of Target-Disease-

Drug Network, which is an excellent model performance.

Our results provide a comprehensive view of the protein-targets association with the specific
neurological and neurodegenerative disorders. Our study also revealed the target overlap among
multiple neuronal disorders. We have developed a multi-variate Artificial Neural Network (ANN)
to predict drug-target interactions linked to specific diseases. Our model was trained using a multi-
variate output configuration, enabling predictions for both target protein descriptors and disease
class for a given drug. The model's structure was optimized via hyperparameter tuning,
encompassing configuration of hidden layers, activation functions, learning rates, and
regularization techniques. Our multi-variate ANN model predicts multiple outputs, specifically
disease class with 82% accuracy and target protein descriptors with 53% accuracy, each
corresponding to a distinct facet of the problem, which provides a holistic solution for drug-target

interaction prediction.
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In conclusion, this study contributes to the database development for all the FDA-approved
drugs and protein targets associated with many neurological and neurodegenerative disorders. We
performed classification of all the protein-targets and drugs between neurological and
neurodegenerative disorders. Our main contribution is the development of a model to predict target
protein descriptors and disease class for CNS active agents. This will offer potential avenues for
the development of new therapeutics for various un-treated disorders and ultimately pave a new

insight into the personalized treatment strategies.

5.1 Future aspects:

Despite the insights provided by this study, there are several future directions that could be
explored. First, multi label classification among the various neurological and neurodegenerative
disorders could be performed based on the constructed database of all the protein targets and FDA-
approved drugs. Secondly, our model’s classification performance could be validated by clinical
data to confirm the significance of our models in terms of targeted therapy approach. Additionally,
the performance of our proposed model could be enhanced by further hyperparameters tuning and
large computational resources. Lastly, our proposed model could be used as a helping hand in
personalized treatment in hospitals. Therefore, future studies should aim to validate and extend
our findings and explore new avenues to provide deeper insights into the biology of neuroscience

and facilitate the development of more effective treatments for patients.
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Table 9 Morgan Fingerprints of FDA-approved Drugs
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Table 10 Target-Disease Network

Targets
MT-ND2
HSPG2
ASTN2
PRRT2
NPAS3
NDN
SLC6A4
SNCA
HTT
BDNF
APOA1l
C1QB
CAD
MARS2
KCNMB3
PROSC
EPM2A
ITPA
POMC
SLC35A2
CASR
APOE
APP
GRN
TARDBP
MAPT
CTNND2
CACNA1H
NCF1
CACNAI1A
OCA2
SLC1A1
APCS
ci1QcC
EEF1A2
YWHAG
MEF2C
MT-ND1
PARS2
TNRC6A

Targets_Sequences

MNPLAQPVIYSTIFAGTLITALSSHWFFTWVGLEMNMLA
MGWRAAGALLLALLLHGRLLAVTHGLRAYDGLSLPEDIET
MAAAGARLSPGPGSGLRGRPRLCFHPGPPPLLPLLLLFLLL
MAASSSEISEMKGVEESPKVPGEGPGHSEAETGPPQVLA
MAPTKPSFQQDPSRRERITAQHPLPNQSECRKIYRYDGIY
MSEQSKDLSDPNFAAEAPNSEVHSSPGVSEGVPPSATL/
METTPLNSQKQLSACEDGEDCQENGVLQKVVPTPGDK\
MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGV
MATLEKLMKAFESLKSFQQQQQQQQQ0000a00Qa
MTILFLTMVISYFGCMKAAPMKEANIRGQGGLAYPGVR1
MKAAVLTLAVLFLTGSQARHFWQQDEPPQSPWDRVKL
MMMKIPWGSIPVLMLLLLLGLIDISQAQLSCTGPPAIPGIF
MAALVLEDGSVLRGQPFGAAVSTAGEVVFQTGMVGYP
MLRTSVLRLLGRTGASRLSLLEDFGPRYYSSGSLSAGDDAC
MDFSPSSELGFHFVAFILLTRHRTAFPASGKKRETDYSDGI
MWRAGSMSAELGVGCALRAVNERTFGENYVQELLEKAS
MRFRFGVVVPPAVAGARPELLVVGSRPELGRWEPRGA\
MAASLVGKKIVFVTGNAKKLEEVVQILGDKFPCTLVAQK
MPRSCCSRSGALLLALLLQASMEVRGWCLESSQCQDLTT
MAAVGAGGSTAAPGPGAVSAGALEPGTASAAHRRLKYI
MAFYSCCWVLLALTWHTSAYGPDQRAQKKGDIILGGLFF
MKVLWAALLVTFLAGCQAKVEQAVETEPEPELRQQTEW
MLPGLALLLLAAWTARALEVPTDGNAGLLAEPQIAMFCC
MWTLVSWVALTAGLVAGTRCPDGQFCPVACCLDPGGA
MSEYIRVTEDENDEPIEIPSEDDGTVLLSTVTAQFPGACGI
MAEPRQEFEVMEDHAGTYGLGDRKDQGGYTMHQDQE!
MFARKPPGAAPLGAMPVPDQPSSASEKTSSLSPGLNTSI
MTEGARAADEVRVPLGAPPPGPAALVGASPESPGAPGF
MGDTFIRHIALLGFEKRFVPSQHYVYMFLVKWQDLSEKV
MARFGDEMPARYGGGGSGAAAGVVVGSGGGRGAGGS
MHLEGRDGRRYPGAPAVELLQTSVPSGLAELVAGKRRLP
MGKPARKGCEWKRFLKNNWVLLSTVAAVVLGITTGVLV
MNKPLLWISVLTSLLEAFAHTDLSGKVFVFPRESVTDHV M
MDVGPSSLPHLGLKLLLLLLLLPLRGQANTGCYGIPGMPG
MGKEKTHINIVVIGHVDSGKSTTTGHLIYKCGGIDKRTIEK
MVDREQLVQKARLAEQAERYDDMAAAMKNVTELNEPI
MGRKKIQITRIMDERNRQVTFTKRKFGLMKKAYELSVLCI
MPMANLLLLIVPILIAMAFLMLTERKILGYMQLRKGPNV\
MEGLLTRCRALPALATCSRQLSGYVPCRFHHCAPRRGRR
MRELEAKATKDVERNLSRDLVQEEEQLMEEKKKKKDDKF
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No._of_Edges Class_Label

3 Neurodegenerative dis
3 Neurodegenerative dis
3 Neurological disorder
3 Neurological disorder
3 Neurological disorder
3 Neurological disorder
3 Neurological disorder
4 Neurodegenerative dis
4 Neurodegenerative dis
4 Neurodegenerative dis
4 Neurodegenerative dis
4 Neurodegenerative dis
4 Neurological disorder
4 Neurological disorder
4 Neurological disorder
4 Neurological disorder
4 Neurological disorder
4 Neurological disorder
4 Neurological disorder
4 Neurological disorder
4 Neurological disorder
4 Neurodegenerative dis
4 Neurodegenerative dis
4 Neurodegenerative dis
4 Neurodegenerative dis
4 Neurodegenerative dis
4 Neurological disorder
4 Neurological disorder
4 Neurological disorder
4 Neurological disorder
4 Neurological disorder
4 Neurological disorder
5 Neurodegenerative dis
5 Neurodegenerative dis
5 Neurological disorder
5 Neurological disorder
5 Neurological disorder
5 Neurological disorder
5 Neurological disorder
5 Neurological disorder



Table 11 Disease-Drug Network

Drugs
NADH
Metformin

Drugs_SMILES Status
C1C=CN(C=C1C(=0O)N)[C@H]2[C@@H]([C@(Approved
CN(C)C(=N)N=C(N)N Approved

Flavin adenine d CC1=CC2=C(C=C1C)N(C3=NC(=0)NC(=0)C3=/Approved

Ubidecarenone
Cyclosporine
Haloperidol
Fentanyl
Valrubicin
Oxygen
D-Tyrosine
Isotretinoin
Milnacipran
Citalopram
Clomipramine
Escitalopram
Fluvoxamine
Paroxetine
Sertraline
Fluoxetine
Desipramine
Duloxetine
Imipramine
Nortriptyline
Venlafaxine
Atomoxetine
Amitriptyline
Amoxapine
Desvenlafaxine
Doxepin
Protriptyline
Trimipramine
Cocaine
Phentermine
Vilazodone
Mirtazapine
Lumateperone
Vortioxetine
Bupropion
Risperidone
Minaprine
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CC1=C(C(=0)C(=C(C1=0)0C)0C)C/C=C(\C)/CApproved
CC[C@H]1C(=0)N(CC(=0)N([C@H](C(=O)N[ Approved
C1CN(CCC1(C2=CC=C(C=C2)Cl)0)CCCC(=0)C Approved
CCC(=0)N(C1CCN(CC1)CCC2=CC=CC=C2)C3= Approved
CCCCC(=0)0CC(=0)[C@]1(C[C@@H](C2=C((Approved
0=0 Approved
C1=CC(=CC=C1C[C@H](C(=0)0O)N)O Approved
CC1=C(C(CCC1)(C)C)/C=C/C(=C/C=C/C(=C\C(Approved
CCN(CC)C(=0)[C@@]1(C[C@@H]1CN)C2=C(Approved
CN(C)CCCC1(C2=C(CO1)C=C(C=C2)CHN)C3=C Approved
CN(C)CCCN1C2=CC=CC=C2CCC3=C1C=C(C=C: Approved
CN(C)CCC[C@@]1(C2=C(CO1)C=C(C=C2)C#N Approved
COCCCC/C(=N\OCCN)/C1=CC=C(C=C1)C(F)(F Approved
CICNC[C@H]([C@@H]1C2=CC=C(C=C2)F)CC Approved
CN[C@H]1CC[C@H](C2=CC=CC=C12)C3=CC(: Approved
CNCCC(C1=CC=CC=C1)0C2=CC=C(C=C2)C(F)(Approved
CNCCCN1C2=CC=CC=C2CCC3=CC=CC=C31 Approved
CNCC[C@@H](C1=CC=CS1)0C2=CC=CC3=CC: Approved
CN(C)CCCN1C2=CC=CC=C2CCC3=CC=CC=C31 Approved
CNCCC=C1C2=CC=CC=C2CCC3=CC=CC=C31 Approved
CN(C)CC(C1=CC=C(C=C1)0C)C2(CCCCC2)0 Approved
CC1=CC=CC=C10[C@H](CCNC)C2=CC=CC=C2 Approved
CN(C)CCC=C1C2=CC=CC=C2CCC3=CC=CC=C3: Approved
C1CN(CCN1)C2=NC3=CC=CC=C30C4=C2C=C( Approved
CN(C)CC(C1=CC=C(C=C1)0)C2(CCCCC2)0 Approved
CN(C)CC/C=C/1\C2=CC=CC=C2C0OC3=CC=CC= Approved
CNCCCC1C2=CC=CC=C2C=CC3=CC=CC=C13 Approved
CC(CN1C2=CC=CC=C2CCC3=CC=CC=C31)CN((Approved
CN1[C@H]2CC[C@@H]1[C@H]([C@H](C2)C Approved
CC(C)(CC1=CC=CC=C1)N Approved
C1CN(CCN1CCCCC2=CNC3=C2C=C(C=C3)C#N Approved
CN1CCN2C(C1)C3=CC=CC=C3CC4=C2N=CC=C Approved
CN1CCN2[C@H]3CCN(C[C@H]3C4=C2C1=CC Approved
CC1=CC(=C(C=C1)SC2=CC=CC=C2N3CCNCC3) Approved
CC(C(=0)C1=CC(=CC=C1)Cl)NC(C)(C)C Approved
CC1=C(C(=0)N2CCCCC2=N1)CCN3CCC(CC3)C Approved
CC1=CC(=NN=C1INCCN2CCOCC(C2)C3=CC=CC=/Approved

Class_Label
Neurodegenerative disorder
Neurodegenerative disorder
Neurodegenerative disorder
Neurodegenerative disorder
Neurodegenerative disorder
Neurodegenerative disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder



Table 12 Target-Disease-Drug Network

Targets No._of Edges Diseases

MT-ND2
MT-ND2
MT-ND2
MT-ND2
HSPG2
HSPG2
ASTN2
PRRT2
NPAS3
NDN
NDN
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
SLC6A4
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3 Alzheimers Disease
3 Alzheimers Disease
3 Alzheimers Disease
3 Alzheimers Disease
3 Alzheimers Disease
3 Alzheimers Disease
3 Migraine

3 Migraine

3 Psychotic disorder

Drugs Status

NADH Approved
Metformin Approved
Flavin adenine Approved
Ubidecarenone Approved
Cyclosporine Approved
Haloperidol  Approved

Fentanyl Approved
Valrubicin Approved
Oxygen Approved

3 Prader-Willi Syndromn D-Tyrosine Approved
3 Prader-Willi Syndror Isotretinoin ~ Approved
3 Obsessive-compulsiv Milnacipran  Approved
3 Obsessive-compulsiv Citalopram Approved
3 Obsessive-compulsiv Clomipramine Approved
3 Obsessive-compulsiv Escitalopram  Approved
3 Obsessive-compulsiv Fluvoxamine Approved
3 Obsessive-compulsiv Paroxetine Approved
3 Obsessive-compulsivSertraline Approved
3 Obsessive-compulsiv Fluoxetine Approved
3 Obsessive-compulsiv Desipramine Approved
3 Obsessive-compulsiv Duloxetine Approved
3 Obsessive-compulsivlimipramine  Approved
3 Obsessive-compulsiv Nortriptyline Approved
3 Obsessive-compulsivVenlafaxine  Approved
3 Obsessive-compulsiv Atomoxetine Approved
3 Obsessive-compulsiv Amitriptyline Approved
3 Obsessive-compulsivAmoxapine  Approved
3 Obsessive-compulsiv Desvenlafaxine Approved
3 Obsessive-compulsiv Doxepin Approved
3 Obsessive-compulsiv Protriptyline  Approved
3 Obsessive-compulsiv Trimipramine Approved
3 Obsessive-compulsiv Cocaine Approved
3 Obsessive-compulsiv Phentermine Approved
3 Obsessive-compulsiv Vilazodone Approved
3 Obsessive-compulsiv Mirtazapine  Approved
3 Obsessive-compulsiv Lumateperone Approved
3 Obsessive-compulsiv Vortioxetine Approved
3 Obsessive-compulsiv Bupropion Approved
3 Obsessive-compulsiv Risperidone  Approved
3 Obsessive-compulsiv Minaprine Approved

Disorder_Class
Neurodegenerative disorde
Neurodegenerative disorde
Neurodegenerative disorde
Neurodegenerative disorde
Neurodegenerative disorde
Neurodegenerative disorde
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder



Targets
BDNF
BDNF
BDNF
APOA1
APOA1
APOA1
APOA1
APOA1
APOA1
APOA1
APOA1
APOA1l
APOA1
APOA1l
APOA1l
APOA1l
APOA1l
CclaB
C1Q0B
ClaB
C1Q0B
CAD
CAD
CAD
CAD
CAD
CAD
CAD
MARS2
MARS2
MARS2
MARS2
KCNMB3
KCNMB3
KCNMB3
KCNMB3
KCNMB3
KCNMB3
PROSC
EPM2A
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No._of Edges Diseases

4 Huntingtons disease
4 Huntingtons disease
4 Huntingtons disease
4 Prion disease
4 Prion disease
4 Prion disease
4 Prion disease
4 Prion disease
4 Prion disease
4 Prion disease
4 Prion disease
4 Prion disease
4 Prion disease
4 Prion disease
4 Prion disease
4 Prion disease
4 Prion disease
4 Prion disease
4 Prion disease
4 Prion disease
4 Prion disease
4 Epilepsy

4 Epilepsy

4 Epilepsy

4 Epilepsy

4 Epilepsy

4 Epilepsy

4 Epilepsy

4 Epilepsy

4 Epilepsy

4 Epilepsy

4 Epilepsy

4 Epilepsy

4 Epilepsy

4 Epilepsy

4 Epilepsy

4 Epilepsy

4 Epilepsy

4 Epilepsy

4 Epilepsy

Drugs
Vasopressin
Verteporfin
Vincristine
Fenofibrate
Copper
Testosterone
Zinc acetate
Cholesterol
Zinc cation
Zinc chloride
Zinc sulfate
Infigratinib
Ethanol
Sirolimus
Furosemide
Glucagon
Lamivudine
Zinc cation
Zinc acetate
Zinc chloride
Zinc sulfate
L-Glutamine
Aspartic acid
Ammonia
Famotidine

Status

Approved
Approved
Approved
Approved
Approved
Approved
Approved
Approved
Approved
Approved
Approved
Approved
Approved
Approved
Approved
Approved
Approved
Approved
Approved
Approved
Approved
Approved
Approved
Approved
Approved

Phosphoric acitApproved

Water

Approved

Glutamic acid Approved
Racemethionir Approved
Phosphoric acitApproved
Pyrophosphori Approved
Selenomethiol Approved

Miconazole
Nitrendipine
Procaine
Ritodrine
Trimebutine
Potassium

Approved
Approved
Approved
Approved
Approved
Approved

Pyridoxal phos Approved
Chlorpromazin Approved

Disorder_Class
Neurodegenerative disorde
Neurodegenerative disorde
Neurodegenerative disorde
Neurodegenerative disorde
Neurodegenerative disorde
Neurodegenerative disorde
Neurodegenerative disorde
Neurodegenerative disorde
Neurodegenerative disorde
Neurodegenerative disorde
Neurodegenerative disorde
Neurodegenerative disorde
Neurodegenerative disorde
Neurodegenerative disorde
Neurodegenerative disorde
Neurodegenerative disorde
Neurodegenerative disorde
Neurodegenerative disorde
Neurodegenerative disorde
Neurodegenerative disorde
Neurodegenerative disorde
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder



Targets No._of _Edges Diseases Drugs Status

SLC6A3 6 Dementia Metyrosine Approved
SLC6A3 6 Dementia Phenelzine Approved
TOMMA40 6 Dementia 1,2-Benzodiazef Approved
TOMMA40 6 Dementia Cholesterol Approved
OXTR 6 Major Depressive D Carbetocin Approved
OXTR 6 Major Depressive D Sodium chloride Approved
OXTR 6 Major Depressive D Atosiban Approved
OXTR 6 Major Depressive D Oxytocin Approved
OXTR 6 Major Depressive D Desmopressin  Approved
OXTR 6 Major Depressive D Estradiol Approved
OXTR 6 Major Depressive D Progesterone Approved
OXTR 6 Major Depressive D Testosterone  Approved
OXTR 6 Major Depressive D Vasopressin Approved
WBSCR22 6 Williams-Beuren sy 5-methyltetrahy Approved
KCNK18 6 Migraine Desflurane Approved
KCNK18 6 Migraine Enflurane Approved
KCNK18 6 Migraine Sevoflurane Approved
KCNK18 6 Migraine Isoflurane Approved
KCNK18 6 Migraine Halothane Approved
YWHAZ 7 Parkinson's disease Zolpidem Approved
Cc3 7 Prion disease Clozapine Approved
Cc3 7 Prion disease Zincchloride  Approved
Cc3 7 Prion disease Zinc sulfate Approved
Cc3 7 Prion disease Copper Approved
Cc3 7 Prion disease Human immuno Approved
Cc3 7 Prion disease Zinc acetate Approved
Cc3 7 Prion disease Zinc cation Approved
ATIC 7 Epilepsy Methotrexate Approved
ATIC 7 Epilepsy Pemetrexed Approved
ATIC 7 Epilepsy Water Approved
CSTB 7 Epilepsy Cupric Chloride Approved
GRN 7 Frontotemporal Dei Tamoxifen Approved
GRN 7 Frontotemporal DeiEstradiol Approved
GRN 7 Frontotemporal DeiCysteine Approved
TARDBP 7 Frontotemporal DelBifonazole Approved
TARDBP 7 Frontotemporal DeiChenodeoxychc Approved
TARDBP 7 Frontotemporal DeiDexibuprofen Approved
TARDBP 7 Frontotemporal DeiDiclofenac Approved
TARDBP 7 Frontotemporal DeiEstrone Approved
TARDBP 7 Frontotemporal DeiFluconazole Approved

136 |Page

Disorder_Class
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurological disorder
Neurological disorder
Neurological disorder
Neurological disorder
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!
Neurodegenerative disorde!



