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Abstract

Pakistan has witnessed recurring, devastating floods attributed to extreme rainfall,

causing loss of life and significant economic consequences. Studies have been conducted

with regards to flood prediction mapping in Pakistan using various remote sensing and

GIS techniques, the gap which has been identified is that the findings for the previous

studies conducted do not include a simulation aspect, only include results obtained

using past data. In our study we used a combination of GIS tools, remote sensing and

machine learning techniques to generate susceptibility maps for our region of interest.

We have focused on the area of Swat District in Khyber Pakhtunkhwa, Pakistan, a flash

flood-prone region, as our study area. Datasets were collected through reliable sources

such as Climate Research Unit, Open Topography, Global Flood Database, Geological

Survey database, Ensuring the quality of the data, preprocessing was applied to cater

for outliers, null data and redundant values. The central research question pertains

to flood susceptibility prediction within Swat District. The Frequency Ratio method

was employed for feature extraction, demonstrating the influence of factors such as

slope, flow accumulation, LULC, distance to rivers and precipitation patterns. After

analysis, a wide range of factors were examined to understand the vulnerability of the

area to sudden floods. This resulted in the development of a set of characteristics that

portrays the regions susceptibility to flash floods. Machine learning models, such, as

Random Forest (RF) k Nearest Neighbors (KNN) Support Vector Machine (SVM) and

XGBoost (XGB) were then applied on these features. The results of those models based

on hyperparameter tuning indicate high performance of those models with recall value

of 0.90, f1-score of 0.95 and AUC ROC values of 0.99 for RF and XBG and 0.96, for

KNN and SVM showcasing their capabilities. In conclusion, the results obtained used

x



List of Figures

a combination of weighted features, from the Frequency Ratio method and machine

learning models to create a map showing the susceptibility of Swat District to floods.

The predictions generated by simulating rainfall patterns across our study area we

can predict which regions are prone, to flooding and estimate the damage caused by

such events. This work will offer valuable guidance and aim to enhance flood risk

management strategies, ultimately contributing to the preservation of lives and the

reduction of flood-related damages.
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Chapter 1

Introduction

One of nature’s most destructive disasters, flooding may seriously harm people, agri-

culture, and infrastructure. As a result of climate change and urbanization, floods are

becoming more frequent and intense, necessitating the creation of efficient flood man-

agement measures[1]. Flood susceptibility mapping is a key technique in flood manage-

ment because it enables decision-makers to pinpoint regions that are most susceptible

to flooding and implement the necessary precautions to reduce the risks. Remote sens-

ing and machine learning approaches have become effective tools for forecasting flood

susceptibility in recent years[2]. This study focuses on a method for mapping flood sus-

ceptibility that combines machine learning and remote sensing techniques to identify

areas that are most vulnerable to flooding. This study focuses on the application of

these methods in a specific geographic region and discuss their potential for improving

flood management strategies.

1.1 What are Floods?

Floods are disasters that occur when water exceeds its boundaries and spreads onto

usually dry land. They are, among the financially devastating natural calamities world-

wide affecting millions of people every year and causing significant economic damage.

Floods can be caused by factors such, as rainfall melting snow storm surges, dam or

levee failures and tsunamis[3].
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Chapter 1: Introduction

Floods can bring about consequences, for the environment, economy and society at

large. They possess the ability to result in soil erosion harm crops and disrupt the

balance of ecosystems[4]. Floods have the potential to cause harm to homes and

infrastructure resulting in both setbacks and the displacement of people. Unfortunately

in situations floods can also tragically lead to loss of life[5].

1.2 Types of floods

There are several types of floods, each with unique characteristics and causes.

1. Flash Floods

2. River Floods

3. Coastal

4. Urban

5. Other

Flash Floods are intense floods that happen in areas, with elevation usually due to

heavy rain or a sudden discharge of water, from a dam or levee. These flash floods can

be highly hazardous since they can happen unexpectedly and the flowing water has

the potential to carry away individuals, animals and vehicles[6].

River Floods happen when the water levels, in a river or stream exceed their bound-

aries because of intense rainfall or melting snow. The speed at which river floods occur

can vary depending on the size of the river and the volume of water coursing through

it. These floods have the potential to cause harm to buildings, roads and other infras-

tructure. Can also disrupt transportation and communication networks[3].

Coastal Floods occur due, to storm surges or tsunamis leading to the flooding

of regions and causing harm to buildings and residences. These types of floods can

2
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be especially perilous because they can happen suddenly and unexpectedly leaving

opportunity for individuals to evacuate[7].

Urban Floods are a frequent occurrence in urban environments, including cities and

towns, and is frequently caused by elements including heavy rainfall, poorly planned

drainage systems, and growing urban expansion. These floods have the ability to

seriously damage structures and infrastructure, interfere with transportation and com-

munication systems, and endanger public health by spreading waterborne diseases[8].

Other types of floods, such as glacier lake outburst floods and dam failures. Each

type of flood has unique characteristics and causes and requires specific flood manage-

ment strategies to mitigate their impacts.

1.3 Impact of Floods

Floods rank as one of the most destructive natural calamities, resulting in extensive

harm to infrastructure, agricultural yields, and human lives. Their repercussions ex-

tend widely, impacting economies, societies, and the natural world. Floods can result

in harm to residences and enterprises, interrupt transportation and communication

networks, pollute water sources, and trigger electricity failures [9]. Furthermore, floods

can exert enduring effects, including heightened soil erosion, harm to ecosystems, and

the displacement of individuals[10].

One of the most significant impacts of floods is on infrastructure. Floods have the

potential to cause harm by impacting roads, bridges and other essential transportation

structures. This can create challenges, for emergency responders when trying to access

areas. Additionally floods can cause damage to buildings resulting in setbacks, for both

individuals and businesses[11]. In some cases, floods can cause buildings to collapse,

leading to loss of life[9].

3
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Floods can cause damage, to crops and livestock leading to food shortages and

higher prices. They also have the ability to erode soil and vital nutrients making it

difficult for farmers in affected areas to grow crops. Additionally floods can negatively

impact irrigation systems resulting in reduced crop yields and financial difficulties, for

farmers[10].

Apart, from the impact of floods there are also effects that can cause significant health

risks. Floods can contaminate water sources, which in turn increases the chances of

spreading diseases. Additionally they can result in the displacement of communities

thereby raising the risk of illnesses, in temporary shelters[12].

1.4 Detection and Prevention of Floods

Floods pose a threat, to both communities and ecosystems making it crucial to estab-

lish measures for early detection and prevention. Various strategies can be employed to

identify and mitigate the risks associated with floods, such as remote sensing[13][14][15],

machine learning[16][17][18], floodplain management[19][20][21], and early warning sys-

tems [22][23][24].

Remote sensing is a method used to track variations, in water levels acting as a

warning system for potential floods. It involves gathering information about the Earths

surface from a distance. Remote sensing data can come from sources like satellites,

aircraft and ground based sensors. Moreover the application of machine learning al-

gorithms, to this data enables the identification of patterns and trends that can be

utilized for predicting and preventing flood occurrences[25].

Floodplain management is another strategy that can be used to prevent floods. This

involves identifying areas that are at risk of flooding and implementing measures to

reduce the impact of floods. This can include zoning regulations that limit construction

in flood-prone areas, building levees or dams to redirect floodwaters, and restoring
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wetlands to absorb excess water[21].

Early warning systems play a role, in preventing floods. These systems gather infor-

mation from sources, like sensors, weather forecasts and hydrological models to evaluate

the chances and intensity of flooding. When a flood is expected these systems can send

out alerts to communities and emergency responders giving them time to evacuate and

prepare for the flood[26].

Apart, from the strategies there are additional approaches to identify and mitigate

floods[27]. One of these involves employing drones to collect data on areas to flooding.

Another method is the development of technologies for flood monitoring and prediction.

Additionally raising awareness and providing education about flood risks is crucial. In

summary there are techniques, for detecting and preventing floods. By implementing

a combination of these strategies, communities and governments can collaborate to

minimize the dangers and consequences associated with floods safeguarding people,

infrastructure and ecosystems.

In general there exist approaches to identify and mitigate floods. When these tactics

are combined communities and governments can collaborate effectively in order to mini-

mize the dangers and consequences of flooding, safeguarding individuals, infrastructure

and the environment.

1.5 Floods in Pakistan

Pakistan is, among the nations that face a vulnerability to flooding. This susceptibility

is primarily due to its location, climate conditions and infrastructure[28]. In years the

country has witnessed catastrophic floods resulting in substantial loss of life displace-

ment of communities and extensive damage, to residential areas, infrastructure and

agricultural yields[29].
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Floods, in Pakistan are frequently prompted by monsoon rainfall leading to the

overflowing of rivers and the submerging of regions. Inadequate drainage systems,

deforestation and various other factors can further worsen the impact of these floods.

Over the ten years Pakistan has faced devastating floods notably in 2010, 2011 and

2014[30].

The floods, in Pakistan have had an effect on the people and economy of the coun-

try. Based on information from the United Nations, the floods that occurred in 2010

impacted around 20 million individuals. Resulted in damages amounting to over 10

billion dollars. Moreover these floods caused losses in crops, which led to shortages

of food and an increase in prices. Additionally the floods have had a lasting impact,

on the infrastructure and progress of the country as many roads, bridges and other

structures were harmed or completely destroyed[29].

1.6 Problem Statement

Pakistan has been facing a series of flood incidents in the years due, to heavy rainfall

resulting in severe human casualties and significant financial losses. The purpose of this

study is to examine how advanced technologies and predictive methods can be utilized

to forecast and minimize the consequences of floods caused by rainfall, in Pakistan.

The ultimate objective is to save lives and reduce damages.

1.7 Objectives

1. To develop dataset of flood influencing factors (elevation, slope, slope aspect,

distance from river, land use, rainfall) for Swat.

2. To use modelling approaches for simulation of flood flow and determine water

accumulation levels.

6
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1.8 Thesis Layout

The remaining thesis is structured as follows. Chapter 2 will cover the extensive re-

search on climate change and flood susceptibility that has been done, and it will connect

our issue to the literature already in circulation. Chapter 3 focuses on the methodology

approach taken in this study to accomplish our goals. The outcomes and results that

emerged from using the suggested methodology are discussed in Chapter 4. Lastly, in

chapter 5 we will conclude our proposed work and address potential future approaches.

7



Chapter 2

Literature Review

Flash floods are natural disasters that present significant dangers, to human lives and

infrastructure. It is vital to identify and map areas to flash floods for effective risk

assessment, land use planning and the development of strategies and systems, for early

warning. In times researchers have utilized a range of modeling techniques and data

sources to enhance our understanding and prediction of flash floods. This review aims

to provide an overview of the methodologies and approaches employed in modeling

flash flood susceptibility and prediction including Early Warning Systems, Floodplain

Management, Machine Learning Models, Hybrid Models and Deep Learning.

2.1 Early Warning System

J Cools et al,2018.[31] discusses the creation of an early warning system (EWS) for

flash floods. Using the finest information available, including field measurements, sim-

ulations, and expert opinions, the EWS was developed and evaluated despite the lack

of available data and scientific uncertainties. The distribution of rainfall, prior event

inventory, transmission and infiltration losses, and warning thresholds were identified

as important characteristics. Nine flash floods were caused by 20 heavy rainfall events

over a 30-year span. Notably, infiltration and transmission losses resulted in a 90 per-

cent reduction in rainfall volume during the 2010 flash flood. For a successful EWS, the

study emphasises the necessity of institutional competence and strong communication.

8
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Acosta et al,2018.[32] discusses the rise of pluvial flash floods in urban areas and the

requirement for efficient Early Warning Systems (EWS). The article evaluates current

EWS architectures, specifies critical elements of an EWS, and identifies the primary

factors affecting flash flood intensity. Findings show that present implementations miss

key details, leading to the suggestion of a fundamental framework for an effective EWS

targeted at rain-induced flash floods.

Zang el al,2022.[33] highlights the value of flood early warning systems (FEWS) in min-

imising flood losses, particularly in metropolitan settings. To account for geographic

variations in flood losses, the proposed multi-information FEWS integrates rainfall,

inundation, and disaster information. In high-risk residential and commercial regions,

the study emphasises the necessity for preventive measures by highlighting disparities

in building property types and their associated losses. The research’s conclusions offer

useful information for global FEWS development and decision-making.

2.2 Floodplain Management

Olsen et al,2006.[34] investigates how federal agencies employ estimates of the frequency

of flooding and questions the typical flood risk analysis’s reliance on a fixed climate.

The promise of hydro-meteorological models is highlighted, along with analyses of

other statistical models for estimating flood risk. The study highlights how important

it is for floodplain managers to take into account the uncertainties brought on by

climate change and unpredictability in flood risk estimation and incorporate them into

decision-making and regulation.

Padi et al,2011.[35] focuses on finding sustainable solutions to Africa’s rising risk of

floods. Using quality-controlled databases, it gives a thorough statistical analysis of

flood data, including maximum discharge values and annual maximum flow time series.

Through a comprehensive regional analysis, the study generates probabilistic envelope

curves, offering useful insights into the statistical properties of floods in Africa. The

findings are quite useful and can be applied to help the continent’s flood management

efforts.

9
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Ndabula et al,2012.[36] monitored and mapped the trends of floodplain encroachment

along the River Kaduna in the Nigerian metropolis of Kaduna. The study found sig-

nificant levels of encroachment close to the Central Business District and industrial

sectors, indicating increasing flood risk, using multiple datasets and ArcGIS software.

The urban portion of the floodplain of the River Kaduna has been invaded to a de-

gree of 52.83 percent. The report emphasises the requirement for robust institutional

frameworks and financial support for floodplain management.

Kiedrzynska et al,2015.[37] investigates the function of eco-hydrology in managing flood

risk and river floodplain water quality. In light of climate change and extreme weather

events, it emphasises the significance of flood management and prevention. The ability

of floodplains to absorb flood and pollution peaks, hence lowering the risk of flooding,

is emphasised in the research. It suggests three methods for boosting water storage

capacity: ecohydrological biotechnologies, efficient infrastructure utilisation, and sus-

tainable ecohydrological management.

2.3 Machine Learning Models

Janizadeh et al,2019.[38] utilized five machine learning techniques—alternating deci-

sion tree (ADT), functional tree (FT), kernel logistic regression (KLR), multilayer

perceptron (MLP), and quadratic discriminant analysis (QDA)—this study sought to

determine the susceptibility of the Tafresh watershed in Iran to flash floods. Eight

flood affecting elements and 320 historical flood episodes from a geospatial database

were used. The FT, KLR, MLP, and QDA techniques came in second place to the ADT

method in terms of performance compared to the other approaches. All five machine

learning models were shown to be suitable for mapping flood susceptibility in various

places to lessen the impact of disastrous floods, despite some differences in performance

measures.

Bui et al,2019.[39] used feature selection and ensemble approaches to create a novel

method for modelling flash flood susceptibility. Traditional approaches were exceeded

by the FURIA-GA approach, and the FURIA-GA-Bagging model had the highest

10
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sensitivity (96.94) and accuracy (93.37). The model with the greatest AUC (0.9740)

was FURIA-GA-AdaBoost. These models provide useful resources for determining a

region’s sensitivity to flash floods.

Costache et al,2019.[40] examined how well the Analytical Hierarchy Process (AHP),

kNN, K-Star (KS), and their ensembles performed in mapping flash flood susceptibility.

70 percent of the previously damaged sites were used to train the models after the study

used remote sensing techniques to identify them. The slope angle was found to be the

most reliable of the ten flash flood predictors that were taken into consideration. The

normalised weights of the predictors were calculated using the AHP model, and the

Flash-Flood Potential Index (FFPI) was calculated using the kNN-AHP and KS-AHP

ensemble models. Statistical measures were used to assess the models’ performance,

and the Receiver Operating Characteristics (ROC) Curve and Area Under the Curve

(AUC) values served as validation. The kNN–AHP ensemble model demonstrated the

best performance overall.

Hosseini et al,2020.[41] The study focused on developing models to map flash flood

hazards, in Iran, a country that frequently experiences floods. To improve the perfor-

mance of flash flood prediction, state of the art ensemble models like the boosted model

(GLMBoost) random forest (RF) and Bayesian generalised linear model (BayesGLM)

were recommended. Simulated annealing (SA) a processing technique was used to elim-

inate unnecessary variables. The accuracy of the models ranged from 90 to 92 percent

with Kappa values ranging from 79 to 84 percent. Success ratios ranged from 94 to

96 percent threat scores from 80 to 84 percent and Heidke skill scores from 79 to 84

percent. Both models demonstrated performance. Key factors influencing flash flood

modeling included proximity to streams, vegetation cover, drainage density, land use

patterns and elevation. These findings are crucial, for identifying high risk areas. Can

aid watershed managers in preventing and mitigating flood related damages in data

regions.

Band et al,2020.[42]The main goal of the study was to assess the susceptibility of the

Kalvan watershed in Irans Markazi Province to floods. By analyzing 15 weather and

environmental factors researchers tested five machine learning techniques to identify
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areas to flooding. The results indicated that the randomised trees (ERT) model per-

formed the best with an area, under the curve (AUC) value of 0.82. The AUC values

for models were slightly lower ranging from 0.75 to 0.80 for regularised forest (RRF)

parallel random forest (PRF) random forest (RF) and boosted regression tree (BRT).

According to the ERT model about 28.33 percent (582.56 km2) of the study area was

at risk of flash flooding while most areas exhibited very low vulnerability levels. The

study concluded that factors such as altitude, slope, rainfall patterns and proximity,

to rivers played roles in determining vulnerability levels in this region.

Costache et al,2020.[43] focused on the development of two new modelling techniques,

ADT-IOE and ADT-AHP, for mapping flash flood susceptibility in the Suha river

watershed, Romania. These strategies were put up against two independent techniques,

IOE and AHP, in the study. The models were trained and assessed using ROC Curve,

classification accuracy, and Kappa index by examining 111 torrential points, 111 non-

torrential points, and 8 flash-flood conditioning factors. The outcomes demonstrated

that the ensemble models, ADT-IOE and ADT-AHP, outperformed the other models

and displayed strong prediction performance (AUC = 0.972, CLA = 86.37 percent,

Kappa = 0.727 and AUC = 0.926, CLA = 87.88 percent, Kappa = 0.758, respectively).

As a result, ADT-IOE and ADT-AHP are viewed as promising techniques for modelling

flash flood susceptibility.

El-Magd et al,2021.[44] used machine learning methods, particularly XGBoost and

KNN. Key determining elements included elevation, slope, separation from streams,

and stream density. The models’ performance was enhanced by hyper-parameter op-

timisation, with XGBoost outperforming KNN 80.7 percent in terms of accuracy with

a score of 90.2 percent. Decision-makers can use the generated flash flood prediction

map to plan and build new construction projects.

2.4 Hybrid Machine Learning Models

Ha el al,2021.[45] created cutting-edge hybrid machine learning methods for mapping

and modelling flash flood vulnerability along National Highway 6 in Vietnam’s Hoa
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Binh region.which consists of DCREPT, AdaBoostM1-REPT, Bagging-REPT and

MultiBoostAB-REPT were applied. The best-performing model, DCREPT, found

considerable areas with high- and very high-flash flood susceptibility (12,572-17,660

hectares) and attained high prediction accuracy (AUC=0.991). Other mountainous

transit routes can use the proposed technology for mapping flash flood predictions.

Elmahdy et al,2020.[46] tested three machine learning models: boosted regression tree

(BRT), classification and regression trees (CART), and naive Bayes tree (NBT), with

the goal of improving the mapping of flash flood (FF) susceptibility in an arid region.

The outcomes demonstrated that BRT worked better than the other models, enabling

precise FF susceptibility mapping. The study also developed new metrics to assess FF

magnitude in various basins, demonstrating that hilly and smaller basins had the high-

est likelihood of FF occurrence and amplitude. This method illustrates how machine

learning and geohydrological models can be used to enhance FF mapping and quantify

its size.

Chen et al,2019.[47] In order to forecast flood susceptibility, this study used machine

learning-based ensemble frameworks, notably Bag-REPTree and RS-REPTree, within

a geographic information system (GIS). Thirteen influencing elements and 363 flood

locations were used to generate a flood spatial database. The Wilcoxon signed-rank

test, standard error, confidence interval, and receiver operating characteristic (ROC)

curve were all used to gauge how well the models performed. As a result of having

the greatest area under the ROC curve (AUC) value of 0.949 for training datasets and

0.907 for validation datasets, the RS-REPTree model beat the other models, the results

showed. In terms of performance, the Bag-REPTree and REPTree models came next.

These results demonstrate the superiority of the ensemble method for assessing flood

susceptibility over individual methods.

Bui el al,2019.[48] proposed and validated a new soft computing approach. In order

to forecast flash floods in a region in Northwest Vietnam that experiences frequent

tropical typhoons, this study developed and verified the PSO-ELM soft computing

approach. With strong prediction performance (kappa statistics = 0.801, RMSE =

0.281, MAE = 0.079, R2 = 0.829, AUC-ROC = 0.954), the PSO-ELM model beat
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conventional machine learning techniques. The PSO-ELM model is a viable tool for

flash flood prediction in such settings.

Liu et al,2021.[49] discuss the difficulties in effectively modelling and forecasting flash

floods. Three hybrid models, which combined machine learning techniques were. Eval-

uated for the Dadu River Basin. The models utilized support vector machines (SVM)

classification and regression trees (CART) and convolutional neural networks (CNN)

with membership values. Among these models the CNN FMV hybrid model demon-

strated the performance in terms of fitting accuracy and prediction capabilities as, per

the findings. Moreover all three hybrid models outperformed their respective single

machine learning counterparts in predicting flood susceptibilities in the study region.

The study identified areas covering 13.21 percent to 22.03 percent of the region with

high to flood susceptibilities. These results suggest that the proposed hybrid models,

CNN FMV hold potential for future applications.

Ngo el al,2018.[50] develop a novel method for identifying flash flood-prone locations

utilizing Sentinel-1 SAR data and a hybrid machine learning approach known as FA-

LM-ANN. The study created a GIS database with 12 input variables using the Bac

Ha Bao Yen (BHBY) region of Vietnam as a case study. SAR imagery was used

to map the flood inundation zones, and the FA-LM-ANN model performed well in

forecasting the likelihood of flash floods. The proposed FA-LM-ANN is a useful tool

for flash flood prediction because the firefly algorithm (FA) and LM backpropagation

performed together very effectively.

2.5 Research Gap

According to the literature review, while research on flash floods has been done using

remote sensing tools and techniques, this field is still largely unexplored in developing

nations like Pakistan. There are not enough studies specifically using remote sensing

and machine learning to produce maps of flash flood susceptibility[51][52][53]. The

few studies that have been done in this area mainly focused on river-based analy-

sis and less focus on machine learning without taking into account the entire Swat
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district[54][55][56].

Therefore, this study aims to fill this research gap by developing a system tailored

for the Swat district area that utilizes remote sensing and machine learning techniques

to generate a comprehensive susceptibility map for assessing the impact of floods on

the region.
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Proposed Methodology

3.1 Study Area

The Swat study area covers approximately 5,337 square kilometers (2,059 square miles)

and is situated in the northwestern part of Pakistan from 35.87° N to 34.94° S latitude

and 72.165° W to 72.873° E longitude. It encompasses the Swat River and its tributaries

which has a drainage area of 3,584 km2, along with the high altitude, rugged terrain,

and a snowy basin and settlements[57]. The area is known for its landscape, which

includes mountains, narrow valleys and flat agricultural plains. The elevation ranges

from 1,000 meters (3,281 feet), in the plains to over 5,000 meters (16,404 feet) at the

highest peaks. The Swat basin experiences seasons throughout the year with winters

and pleasant summers. There are two weather patterns that bring rainfall to this

region; the monsoon in summer from the south and the Mediterranean system from

the west during winter. The melting of glaciers and monsoonal rains significantly affect

water flow, in the Swat basin.

The Swat region is prone to frequent and devastating floods, primarily caused by in-

tense rainfall, snow melt, and rapid land use changes[58].The Swat River Basin has been

severely affected by floods leading to loss of life, infrastructure damage, disruption of

livelihoods and displacement of communities. Over the years it has faced floods, includ-

ing incidents, in 1973, 1992, 1993 1994, 1995, 1996, 2001, 2005, 2010 and 2016.[59]. The
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impacts are particularly severe in low-lying areas and densely populated settlements

along the riverbanks. The Flood of 2010 was the most catastrophic in the history of

Swat (Fig 3.1), with 86 fatalities, killing 9800 livestock, destroyed 4000 houses, washed

several bridges, and damaged the Amandara and Munda Headworks[60][61].

Figure 3.1: Map of Pakistan along with Study Area

3.2 Methodology Workflow

This section discusses the overview of whole methodology. Starting from the data

acquisition followed by pre-processing techniques and the subsequent steps that are

involved in prediction mapping to the last step which is the generation of flash flood

susceptibility map.

The figure below (Fig 3.2) is designed to show the connectivity and link between all

the steps to acquire the susceptibility map.
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Figure 3.2: Methodology Workflow
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3.3 Dataset

3.3.1 The Global Flood Database

The Global Flood Database (GFD) was used to obtain flood data . the area affected

by natural catastrophes was pixelated in the data’s map representation. The GFD is

a thorough and comprehensive database of data about floods from all over the world.

The GFD includes a broad range of flood-related factors, such as flash flood occur-

rences’ size, length, frequency, and geographic scope. It contains information from a

variety of sources, including regional and national organizations, satellite observations,

on-the-ground measurements, and academic works. To ensure a complete and cur-

rent collection of data on flash floods, the database uses cutting-edge data collection

technologies, such as remote sensing, crowd-sourcing, and data mining.

3.3.2 Climate Research Unit

To conduct the study we gathered rainfall data for an area, from the Climate Research

Unit (CRU) over a period of 10 years. The data from CRU provides insights into his-

torical precipitation patterns and current climate conditions. Known for their expertise

in climate research the CRU maintains a database that includes variables like rainfall,

temperature and other meteorological characteristics. Professionals from fields such,

as researchers, climatologists, policymakers and those involved in studies related to

climate change, water resource management, agriculture and environmental planning

frequently rely on CRUs rainfall data.

The rainfall information utilized by CRU is derived from a blend of satellite data, on

site observations and simulations from climate models. The collection of rainfall data

encompasses both current records. Thanks to its dispersed data users can examine

rainfall patterns across scales ranging from the global level down, to regional and local

levels.
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3.3.3 Exploratory Data Analysis

Exploratory Data Analysis (EDA) refers to the process of examining and summarizing

datasets to gain an understanding of the underlying patterns and relationships, within

the data. This entails utilizing visual techniques to identify any outliers missing values

or anomalies well as exploring the distribution, correlation and trends exhibited by the

data.

The flash flood information collected from the Global Flood Database consisted of data

encompassing the country over a period of 15 years. This dataset provided an overview

of all flash flood incidents that occurred within our designated Area of Interest (AOI)

during that timeframe. To efficiently analyze and visualize this flash flood data we

utilized a Geographic Information System (GIS) platform, like QGIS to combine and

filter it.

The technique involved carefully picking and isolating the flash flood occurrences inside

the AOI from the wider dataset. To extract pertinent flash flood episodes that occurred

inside the defined area, this filtering involved applying particular spatial and temporal

characteristics. The flash floods that directly impacted the AOI were the only thing

that was of interest when the dataset was refined. the focus was narrowed down to the

flash floods that directly impacted the AOI, ensuring the analysis would be specific

and relevant to the research objectives.

3.4 Data Preprocessing

Pre processing plays a role, in flash flood prediction and susceptibility mapping. It

involves transforming and standardizing data to prepare it for analysis. This section

explains the processing methods utilized in this study, which encompass data quality

assurance, data integration, geographic data manipulation and data collection. These

essential steps ensure that the input data is accurate, consistent and suitable for mod-

eling and mapping processes. By addressing data inconsistencies, outliers and spatial

discrepancies the pre processing stage establishes a foundation, for flash flood predic-
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tion and susceptibility mapping. This significantly enhances the reliability and validity

of the studys findings.

3.4.1 Normalization

Normalization in QGIS refers to the process of transforming and rescaling data values

within a specified range. Making sure that various layers or attributes are comparable

and can be successfully combined or analyzed together is a common preprocessing step

in GIS (Geographic Information System) analysis.

When working with datasets which contain raw raster files,they have several scales

or measurement units, normalization is very crucial. By bringing all the numbers into

a standardized range, usually between 0 and 1 or -1 and 1, normalizing the data makes

it simpler to compare and analyze the data. the figure below (Fig 3.3) shows the raw

digital elevation model and normalized digital elevation model of the study area.

((a)) without normalization ((b)) with normalization

Figure 3.3: Study Area before and after Normalization
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3.4.2 Clipping

The raw raster files created earlier do not have defined boundaries. The imagery to

be classified must be explicit with no extra region. To achieve this, data clipping

is performed in QGIS software. The software runs Geospatial Data Abstraction Li-

brary(GDAL) algorithm to perform the task. The raster files are clipped according to

the boundaries of respective vector files to generate clipped raster of a specific region.

the figure below (Fig 3.4) shows the raw digital elevation model and normalized digital

elevation model of the study area.

((a)) normal DEM ((b)) clipped DEM

Figure 3.4: clipping of Study Area

3.4.3 Merging

flash Flood information for certain dates was included in the raw raster files that were

downloaded from The Global Flood Database. The raster files were brought together

to create a representation of flash flood occurrences, in the Area of Interest (AOI). By

merging these files a dataset was obtained that covers the relevant time period. This

guarantees that the flood data for both training and testing purposes. Combining the
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raster files also allowed to generate a representation of flash flood incidents, which will

be incredibly helpful for conducting further analysis and modeling in our study, on

flash flood prediction and susceptibility mapping. the figure below (Fig 3.5) shows the

flash flooded points for the study area.

Figure 3.5: flood prone areas of Swat

3.5 Feature Extraction

Feature extraction plays a role, in predicting floods and creating susceptibility maps.

It helps identify features and factors that contribute to flood events. To establish the

connections between flood occurrences and various terrain variables, the ratio model

was employed as a technique for feature extraction, in this section. A statistical tech-

nique known as the frequency ratio model calculates the chance of flooding based on the

proportion of flooded to unflooded areas with particular topographical characteristics.

Important topographical characteristics connected to flood occurrences can be found

by analysing these ratios, offering insightful information on the underlying causes of

flood risk. The resulting extracted features will serve as input variables for subsequent

modeling and mapping processes, aiding in the accurate prediction of areas prone to

flooding.
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3.5.1 Frequency Ratio (FR) Method

The predictive connection between dependent and independent variables can be mea-

sured using the FR model. A fundamental statistical analysis technique called the FR

method assesses the impact of each type of conditioning factor on flooding predictions.

[62][63][64]. According to Bonham-Carter [65], FR is the possibility of the emergence

of a certain event.

This method has been applied in a variety of sectors related to natural disasters, such

as the estimation of blast-induced air blast [66] landslide susceptibility mapping [67]

and flood susceptibility mapping [68][69]. This methodology has the advantage of being

easy to use and producing outcomes that are completely understood. Among numerous

bivariate statistical methods, the FR model was chosen for the current analyses’ flood

susceptibility mapping [70]. This method can be expressed by following Equation

FR = To

If

= (Pf/Pt)
(Af/At)

(3.1)

The frequency ratio (FR) represents the ratio of target occurrence, in each subcategory.

The percentage of the category is denoted as To while If represents the percentage of a

factor within that category.Pf and Pt denote the points within a factor class and total

points, respectively. Similarly Af and At represent the area, within a factor class and

total area, respectively.

The frequency ratio model has proven to be a useful technique for feature extraction

in flood prediction and susceptibility mapping. It helps identify key terrain attributes

that contribute to flood vulnerability, providing insights into the spatial patterns and

factors influencing flood occurrences. The extracted features can then be integrated

into predictive models or combined with other spatial datasets to develop comprehen-

sive flood susceptibility maps, aiding in informed decision-making, risk assessment, and

the development of effective flood mitigation strategies.
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3.6 Machine Learning Models

3.6.1 Random Forrest Classifier

Random forest as the name suggests consists of decision trees that collaborate as a

group. The prediction made by the model is determined by the class with the number

of votes. Each individual tree, in the forest contributes its class prediction.

The underlying principle behind forest is quite simple yet powerful – it leverages the

wisdom of crowds. The reason why random forest performs well is because it combines

a number of models (trees) that are generally uncorrelated. Working together these

models outperform any model working alone.

The key factor here lies in the correlation between the models. Since they are un-

correlated they can provide forecasts that’re more accurate than any single prediction.

This concept is similar to how assets with correlations, such, as stocks and bonds com-

bine to form a portfolio whose value exceeds that of its components. Long as the trees

don’t all lean in the same direction they provide mutual protection, against individual

errors resulting in this beautiful outcome. While some trees may be wrong the major-

ity will be right allowing the group of trees to move in the direction. Therefore for a

random forest to function effectively two requirements must be met;

• Our features should contain some signal so that models built using those features

perform better than guessing

• The predictions made by each tree (and their respective errors) should have

correlation, with each other.

3.6.2 K-Nearest Neighbor

K nearest neighbors (KNN) is a machine learning technique that can be used for both

regression and classification tasks. Its goal is to predict the class or value for a given

test data point by measuring the distances, between that point. All the training data
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points. It then identifies the K data points to the test data point. The algorithm

calculates the probability of the test data belonging to each class among these K

training data points. For classification tasks it selects the class with the probability

while for regression tasks it computes the value of these K nearest points.

The process of KNN can be summarized in these steps;

• Step-1: Determine the value of K, which represents the number of neighbors to

consider.

• Step-2: Calculate the distance, between the test data point and its K neighbors.

• Step-3: Select the K neighbors based on the calculated distances.

• Step-4: Within these K neighbors count how many data points fall into each

category (for classification) or calculate their value (for regression).

• Step-5: Assign the data point to the category that has the number of neighbors

(for classification) or use the calculated average value (for regression) from, among

its K nearest neighbors.

• Step-6: The KNN model is now prepared for use.

3.6.3 Support Vector Machine

Support Vector Machine (SVM) is a powerful machine learning algorithm used for

classification and regression tasks. It is frequently utilised in many fields, including the

visualisation of flood susceptibility.

SVM is used in flood susceptibility prediction mapping to evaluate and appraise an

area’s susceptibility to floods. The system takes into account a number of input factors,

including slope, land cover types, topographical characteristics, rainfall information,

and historical flood records. The SVM model is trained using these characteristics

so that it may discover the connections between the input variables and the flood

susceptibility levels.

26



Chapter 3: Proposed Methodology

The SVM algorithm finds an ideal hyperplane in a high-dimensional space that

maximally divides several classes or categories of data points. In the context of flood

susceptibility prediction mapping, the SVM model creates a decision boundary that

distinguishes areas with different levels of flood susceptibility. This boundary helps

identify regions that are more prone to flooding based on the input features.

3.6.4 Xtreme Gradient Boosting

XGBoost, also known as Extreme Gradient Boosting is an machine learning technique

commonly employed for a range of prediction tasks, such, as flood susceptibility map-

ping. It falls under the category of methods, which involve combining weaker models

to generate a robust predictive model.

XGBoost plays a role, in flood susceptibility prediction mapping by examining and

modeling the relationship between input features and the likelihood of flooding in a

specific area. These input features typically encompass elements, like the landscape,

water systems, weather patterns and vegetation cover among others. The system em-

ploys a boosting technique that constructs decision trees in succession and combines

their predictions to enhance accuracy.

The key benefits of utilizing XGBoost for flood susceptibility prediction mapping are;

• Accuracy: XGBoost is renowned for its excellent predicted accuracy because

of its capacity to recognise intricate connections and interactions among various

input variables.

• Robustness: XGBoost is made to properly manage missing data, outliers, and

noise. It can handle a variety of data types and manages missing values auto-

matically when training.

• Feature Importance: The built-in feature relevance ranking offered by XG-

Boost aids in identifying the most important elements influencing flood suscep-

tibility. Understanding the underlying mechanisms and allocating resources for
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mitigation are made easier with the use of this information.

• Scalability: XGBoost is effective and scalable, it can manage huge datasets

with a variety of input attributes. It can be parallelized to leverage the power of

modern hardware architectures, making it suitable for processing vast amounts

of data.

3.7 Flood Risk Map Generation

This methodology includes several crucial elements in the process of creating flood

risk maps. First, from the preprocessed DEM data, pertinent terrain attributes are

chosen and extracted. A training dataset is then created, consisting of examples of

flood occurrences that have been labelled and matched with the associated terrain

attributes. Using this dataset, machine learning models are developed and assessed

before being used to forecast flood risk throughout the study area. With the help

of predictions, continuous flood risk surfaces are created, which can then be divided

into discrete risk levels. The generated maps of flood risk offer useful details on areas

vulnerable to flooding, assisting in efficient flood management and decision-making

processes.

3.8 Performance Evaluation

After applying the machine learning models to the data, different evaluation measures

can be used to check the accuracy or correctness of the model. For that various

performance metrics are available, but for this problem, since it falls under the category

of Supervised Classification so the methods used in this methodology are accuracy,

kappa, F1-score and AUC-ROC.

Accuracy is assessed by comparing its predictions to the flood events. This is done

by calculating the ratio of identified instances, including both flooded and flooded areas
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to the total number of instances.

Accuracy = correct predictions
total predictions (3.2)

Kappa is a performance parameter commonly used in machine learning and classi-

fication tasks to assess the agreement between predicted and observed outcomes. It

measures the agreement beyond what would be expected by chance alone. Kappa

takes into account both the accuracy of the predictions and the possibility of random

agreement. it provides a reliable and robust measure of performance, especially in

situations where class imbalance or chance agreement may affect the interpretation of

other performance metrics.

κ = PObserved − Pbychance

1 − Pbychance

(3.3)

F1-score is a harmonic mean of precision and recall. It provides a single metric

that balances the trade-off between precision and recall. A higher F1 score indicates a

better balance between accurate positive predictions and the coverage of actual flood

occurrences.

F1 score = 2 ∗ Precision ∗ Recall

Precision + Recall
(3.4)

The ROC curve are depictions of a models performance showcasing the relationship,

between the positive rate (sensitivity) and the false positive rate (1. Specificity) at

various classification thresholds. The area, under the ROC curve (AUC) is commonly

employed as a metric to gauge the effectiveness of the model, where higher AUC values

suggest predictive capabilities.
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Results and Discussion

This section provides a comprehensive discussion of the outcomes derived from the

application of the proposed methodology. It includes a detailed study that begins with

the process of choosing features and explains the significance of the features chosen in

connection to the area of study. The analysis’s techniques are also discussed in detail,

along with a thorough review of the outcomes they produced.

4.1 Dataset Summary

In this section we will provide an overview of the dataset that formed the basis of our

research. We will discuss the origins and categories of the data we used to develop our

flood susceptibility prediction map. When conducting analysis it is crucial to have an

carefully curated dataset that is accurate and relevant. To ensure the reliability and

strength of our modeling and mapping endeavors we diligently. Integrated geographic,

hydrological and meteorological statistics, from multiple sources. This synthesis of data

was a step, in ensuring the credibility and robustness of our work. We will provide a

summary below outlining the sources, types and processing techniques applied during

our investigation.
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Factor Dataset
source

Spacial Reso-
lution

Type of Data

Elevation DEM 30x30m GRID
Slope DEM 30x30m GRID
Slope Aspect DEM 30x30m GRID
Rainfall Climatic Re-

search Unit
30x30m POINT

Curvature DEM 30x30m GRID
Flow Direction DEM 30x30m GRID
Flow Accumulation DEM 30x30m GRID
TWI DEM 30x30m GRID
LULC ESRI 10x10m GRID
Dist to River DEM 30x30m GRID
Dist to Road DEM 30x30m GRID
Soil FAO DSWM 1:50,000 VECTOR
Flood Inventory Global Flood

Database
30x30m POINT

Table 4.1: Summary Table

4.2 Selection of Features

Finding key factors that have a major impact on flood occurrences is necessary for

effectively predicting flood vulnerability. The selected features are anticipated to work

together to create an efficient framework for predicting flood occurrences in Pakistan’s

Swat District of KPK Province.

The features selected cover a broad range of geographic properties, including topo-

graphical features, climate variables, and anthropogenic causes. Each of these char-

acteristics significantly affects how susceptible a region is to flooding incidents. The

extracted features include:

4.2.1 Elevation

The chosen features encompass a range of characteristics, such, as topography, climate

factors and human influences. These attributes significantly impact the vulnerability

of a region to flooding incidents. The extracted features include; Elevation plays a role
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in the occurrence of floods[39]. To create an elevation map for this study we utilized an

elevation model (DEM) derived from a Sentinel 1 image with a resolution of 30 meters

obtained through OpenTopography. The elevation levels, within the study area vary

between 720 and 5841 meters. Have been divided into five classes as shown in Fig 4.1a.

4.2.2 Slope

The incline factor influences both how water flows on the ground and how well the soil

absorbs water[71]. We created a map using ArcGIS Pro software using DEM data with

a grid cell size of 30x30 meters to show the different slope angles in our study area.

The slope angle map ranges from 0° to 90°, as shown in Fig 4.1b.

4.2.3 Aspect, Curvature

In the context of flash flood modeling, we also consider additional topographic factors

such as aspect, curvature, and Topographic Wetness Index (TWI)[48] [72] [73]. These

factors were created using ArcGIS Pro software. Were derived from the DEM with

a grid cell size of 30x30 meters. The aspect map has been divided into ten classes

as shown in Fig 4.1c while the curvature map has been grouped into three levels as

depicted in Fig 4.2b.

4.2.4 Rainfall

In areas, with mountains extended periods of rainfall have the potential to trigger

destructive floods [74]. To address this concern we gathered rainfall information from

the Climate Research Unit covering the years 2008 to 2018. Using the Inverse Distance

Weighted method we generated a map that visualizes rainfall patterns [75]. The rainfall

map is shown below in Fig 4.2a.
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4.2.5 Flow Direction

Flow direction is crucial in flood prediction as it determines how water will move across

a landscape, guiding evacuation plans, infrastructure protection [76]. the feature was

produced in ArcGIS using the DEM with 30x30 m resolution. It is classified into 8

classes. The Flow Direction map is shown in Fig 4.2c.

4.2.6 Flow Accumulation

Flow Accumulation represents the horizontally topographic cleavage due to flow move-

ment [72]. It is essential to consider this aspect when preparing for the modeling of

flash flood susceptibility. To determine the length of the network we calculate the

length of rivers, within a specific river basin. Flow Accumulation refers to the ratio

between the length of drainage, in kilometers and an area of 1 kilometer. The drainage

density within the study area is visually represented in Fig 4.2d.

4.2.7 TWI

The Topographic Wetness Index (TWI) is commonly employed to assess the influence

of topography, on processes[77]. The TWI is represented in a raster format with a size

of 30x30 meters as depicted in Fig 4.2e.

4.2.8 Land Use

Land-use types influence some hydrological process components such as infiltration,

evaporation transpiration, and runoff generation [78]. We collected the land-use cate-

gory map of the study area ESRI and Impact Observatory institute which was released

in 2020. the map was of 10m resolution as shown in Fig 4.2f.
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4.2.9 Soil

Soil is another factor which can affect flood sensitive areas. The Soil units based

on the rock permeability is also required in flood hazard assessment. The Soil data

was obtained from Food and Agriculture Organization Soil map of the World (FAO-

DSMW). the figure is shown in Fig 4.2i.

4.2.10 Distance to River and Roads

The Distance to River (Fig 4.2g) and Distance to Road (Fig 4.2h)is also a commonly

used factor for identifying the flood susceptibility As river flooding primarily takes place

in proximity to streams and rivers, the distance from these water bodies serves as a

geomorphological factor of significance when mapping flood susceptibility[79]. Urban

roads and the adjacent surfaces reduce the terrain’s ability to absorb water, leading to

increased runoff, which significantly impacts flood levels. Therefore, the distance from

roads is an important factor to consider in flood susceptibility mapping. Additionally,

since river flows serve as the primary channels for flood discharge, regions in close

proximity to rivers are at a heightened risk of flooding[80]. the maps were generated

in ArcGIS using the Euclidean distance tool.

(a) Elevation (b) Slope (c) Slope Aspect

Figure 4.1: Visualization of Key Extracted Features from a Digital Elevation Model
(DEM) (a) elevation, (b) slope, (c) slope aspect
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(a) Rainfall (b) Curvature (c) Flow Direction

(d) Flow Accumulation (e) TWI (f) LULC

(g) Distance to river (h) Distance to road (i) Soil

Figure 4.2: Visualization of Key Extracted Features from a Digital Elevation Model
(DEM). (a) rainfall distribution, (b) curvature and (c) flow direction (d) Flow Accu-
mulation, (e) TWI, (f) LULC, (g) Distance to River, (h) Distance to Road and (i) Soil.
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the above features were selected after a comprehensive literature review and their pre-

diction rate was calculated using the Relative Frequency Ratio method. the prediction

rate of all the features generated is mentioned in the table below.

4.3 Flood Risk Prediction Model

The technique and results of our Flood Risk Prediction Model, which is essential to

improving flood risk assessment and management, are presented in this section. This

model was developed through a series of steps beginning with the identification of

features and concluding with the implementation of machine learning techniques. Now

each phase of our approach providing explanations and discussing the outcomes in the

sections will be explored.

4.3.1 Feature Selection Using Frequency Ratio Method

To ensure the precision and effectiveness of our Flood Risk Prediction Model we started

by choosing the valuable characteristics. We utilized the Frequency Ratio technique,

a established approach, in modeling for this purpose. This technique enables us to

evaluate the significance of geographical factors when determining flood risk.

The initial phase of our analysis involved the selection of relevant features using the

Frequency Ratio method. This method allowed us to assign weights to each feature,

thereby assessing their relative importance in the context of flood prediction. These

weighted features served as a foundation for our subsequent modeling endeavors.
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Features Frequency Ratio
Slope 6.6
Rainfall 5.75
TWI 2.84
Soil 3.91
LULC 5.41
Flow Dir 1.0
Curvature 2.34
Aspect 5.81
Elevation 2.65
Flow Accumulation 4.83
Dist to River 4.62
Dist to Road 2.53

Table 4.2: Frequency Ratio Table

4.3.2 Machine Learning Model Results

We used machine learning algorithms to forecast flood risk in the Swat region using the

weighted features. Precision, recall, F1-score, and AUC-ROC performance measures

were carefully assessed to assess how well these models classified locations susceptible

to flooding. The results of our Flood Risk Prediction Model are presented in Table 4.3.

Model Precision Recall F1-Score
Random Forest 1.0 0.90 0.95
K Nearest
Neighbor

1.0 0.891 0.945

Support Vector
Machine

1.0 0.889 0.949

eXtreme Gradi-
ent Boosting

1.0 0.91 0.95

Table 4.3: Model Performance Metrics
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(a) Random Forest (b) K Nearest Neighbor

(c) Support Vector Machines (d) eXtreme Gradient Boosting

Figure 4.3: Comparison of Confusion Matrix for four machine learning models: Ran-
dom Forest (RF), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and
XGBoost (XGB).

With an emphasis on both precision (the capacity to accurately predict floods), recall

(the capacity to record actual floods), F1-score, and the confusion matrix, to evaluate

the model’s effectiveness in predicting flood risks., these performance indicators offer

insights into the efficiency of our model in identifying locations at danger of flooding.

In summary, the Frequency Ratio technique led our feature selection procedure and

helped us identify the major geographic features that affect the likelihood of flooding.

The performance metrics mentioned above show that these characteristics’ integration

into our machine learning models produced positive flood risk prediction outcomes.
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4.4 AUC-ROC Curve plot

The AUC-ROC scores from our Flood Risk Prediction Model, which was developed

utilising a number of machine learning techniques, including Random Forest (RF), K-

Nearest Neighbours (KNN), Support Vector Machine (SVM), and XGBoost (XGB),

are presented in this section. These results show how well the models can distinguish

between locations that are at risk of flooding and those that are not.

(a) Random Forest (b) K Nearest Neighbor

(c) Support Vector Machines (d) eXtreme Gradient Boosting

Figure 4.4: Comparison of AUC-ROC curves for four machine learning models: Ran-
dom Forest (RF), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), and
XGBoost (XGB).

4.5 Flood Risk Maps

We used the generated feature weights to simulate several flood risk scenarios, drawing

on the conclusions drawn from our feature weighting and machine learning investiga-

tions. These simulations were run in response to various rainfall scenarios, and the
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maps of flood risk that were produced are seen below. These maps were made to fit

the geography and characteristics of the Swat region in the KPK District.

(a) Flood Risk Map 1 (b) Flood Risk Map 2

(c) Flood Risk Map 3 (d) Flood Risk Map 4

(e) Flood Risk Map 5

Figure 4.5: Five images depicting rainfall and flood risk maps for different districts.
Each pair of maps illustrates the correlation between rainfall levels (left) and the cor-
responding flood risk (right) in Swat district.

The flood risk maps created using feature weighting and machine learning methods

have significantly improved our understanding of flood dynamics, in the Swat region.

These maps have been scientifically. Provide an empirical foundation for proactive flood

risk mitigation plans and emergency response preparations. Additionally they serve as

tools, for governments and disaster management organizations enhancing their ability
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to effectively handle potential floods.

4.6 Results Validation

We conducted a validation process to assess the trustworthiness and accuracy of the

results obtained from our methodology. In this section we will compare our findings

with those presented in two studies that focus on flood risk assessment and prediction.

Our research findings align closely with those of Meliho et al.2021[81] During their

inquiry, into the potential for flooding in a vicinity the study reported an AUC ROC

score of 0.95 0.98. The research focused on an area with environmental characteristics

demonstrating the models ability to effectively differentiate between locations prone to

flooding and those that are not, within the researched domain.

In a separate study conducted by Ha et al.2021[45] In the study they achieved an AUC

ROC score of 0.96 which focused on predicting flood risk in a comparable context. This

score demonstrates the reliability of their model, in estimating flood risks.

In our investigation we obtained AUC ROC scores for various models; Random Forest

scored 0.99 K Nearest Neighbours scored 0.96 and Support Vector Machine also scored

0.96. These results indicate performance. Moreover our XGBoost model achieved an

AUC ROC score of 0.99 further reinforcing the accuracy and dependability of our Flood

Risk Prediction Model.
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Conclusion and Future Work

5.1 Conclusion

Pakistan is one of the countries that’s highly susceptible, to the impacts of climate

change. One of the challenges Pakistan faces is flooding, which can be attributed to

rainfall, poor management and planning melting glaciers and limited use of technology.

Certain regions in Pakistan, such as Swat which is at risk of floods based on the

recent 2022 floods. This study focuses on creating flood risk maps for Swat district in

the Malakand Division of Khyber Pakhtunkhwa province in Pakistan. By utilizing a

Digital Elevation Model (DEM) specific to Swat district relevant characteristics related

to flash flooding were extracted. Four different machine learning models including

Random Forest (RF) K Nearest Neighbors (KNN) Support Vector Machines (SVM)

and eXtreme Gradient Boosting (XGB) were employed with training data to identify

these characteristics. The evaluation of performance demonstrates an accuracy rate of

0.99 along with a precision and recall rate of 0.9 each an F1 score of 0.95 and an AUC

ROC within the range from 0.956 to 0.988. The outcomes obtained from this study

align with research findings[45][81], and highlight areas at risk for flooding such as low

lying regions, densely populated urban areas and residential settlements situated close,

to rivers. Rainfall is a factor that causes varying amounts of precipitation, in different

Swat regions. It has an impact, on all the outcomes thus supporting the conclusion

mentioned above.
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5.2 Future Work

There are a ways we can expand on this study. Firstly besides using the elevation model

and rainfall data we could incorporate detailed data and collect rainfall information,

from advanced weather stations. Secondly we could utilize imagery, with resolution to

further improve the outcomes.
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