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Abstract 

 
The software requirements specifications (SRS) may become a barrier to the successful 

completion of the project if they are written in a language that is difficult to understand. In 

certain situations, they cause failure to meet the actual requirements. The SRS dataset may 

contain redundant information or material that is disputed, either of which might result in 

higher expenditures and a loss of time, diminishing the overall efficiency of the project. The 

current developments in machine learning have led to a rise in the amount of work being put 

towards the development of automated solutions for the creation of a seamless software 

requirements specification (SRS). In this study, we employ the transformer models, including 

BERT and RoBERTa for classification. We focus on analyzing RoBERTa capacity for multi-

class text classification tasks that involve predicting the type, priority, and severity of the 

requirements specified by the users. Moreover we compare its performance to that of other 

deep learning methods like LSTM and BiLSTM. We tested the performance of these models 

on the DOORS dataset. We have also compared the proposed model. We achieved higher 

accuracy i.e., ‘84.7%’, sensitivity, precision, recall and F1 score by using RoBERTa and 

compared our results with existing approaches.  

 

Keywords: NLP, Text classification, Software requirement specification (SRS), RoBERTa, 

Deep learning, Transformers 
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1. INTRODUCTION 

 

1.1 Overview and background  

 

Software Requirements Specifications, or SRS for short, play an important part in the 

Software Development Life Cycle (SDLC) since they act as a tool to convey user 

requirements to software developers and other stakeholders. This is an important part of the 

SDLC. SRS, or Software Requirements Specifications, are written papers that outline the 

primary characteristics, limitations, and capabilities of a software product [1]. These papers 

have to be created in accordance with the standards that have been specified in order for all of 

the stakeholders, including users, analysts, and developers, to have the same understanding of 

what the specifications represent. At the conclusion of the project, SRS may also serve as 

indicators for assessing the quality and acceptance of the product or process. The degree to 

which the completed program me follows the SRS documentation is one of the factors that 

determines whether or not a software project was successful. Statements that are susceptible 

to being misunderstood, explanations that are vague, or conclusions that are imprecise might 

potentially lead to a catastrophic failure later on in the project [2]. In light of this, it is 

necessary to make consistent use of the contextual terminology that is relevant to that 

particular domain in order to get a clear and consistent comprehension of these requirements. 

In addition, the success of succeeding phases in the SDLC process is dependent on well 

specified requirements and the precise implementation of those needs; failing to do so may 

result in delays as well as additional expenditures [3]. Studies on the feature extraction from 

existing systems mostly use the source code as the object or input of the extraction process 

[4]. While other studies also conducted to use models including a class diagram and use case 

diagram as the objects for the extraction process [5] [6].  

However, most software developer only measures their product quality on the released 

software product or the implementation result regardless of the original requirement 
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[7].Therefore, software feature extraction from specification document is more suitable based 

on the software engineering perspective rather than model or source code to acquire the more 

valid feature. This is because the specification document is the basis of the validation and 

verification of system functionality in the software development process [8]. 

 

      

               Figure 1 Block NLP process pipeline retrieve the information from text 

Automated software requirements prioritization techniques have gained significant attention 

in the field of software engineering, aiming to enhance the efficiency and effectiveness of 

software development processes. One such approach that has emerged is the utilization of 

Natural Language Processing (NLP) to automate the prioritization of software requirements. 

By harnessing the power of NLP, this technique enables the automated analysis and 

understanding of natural language requirements documents. Traditionally, requirements 

prioritization has relied on manual effort, which can be time-consuming, subjective, and 

prone to human biases. However, with the advent of NLP, software engineers can now 

leverage advanced algorithms and linguistic models to extract relevant information and 

prioritize requirements in a more objective and efficient manner [11]. These models can be 

trained using historical data, expert knowledge, or a combination of both. The prioritization 

models learn from past prioritization decisions made by software engineers, considering 

factors such as customer needs, project constraints, and business objectives. The benefits of 

this automated approach are manifold.  

 

 Firstly, it reduces the manual effort required for requirements prioritization, freeing 

up valuable time for software engineers to focus on other critical tasks.  
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 Secondly, it helps eliminate subjective biases by providing an objective and data-

driven prioritization process. Additionally, by automating the prioritization process, it 

enhances consistency and reproducibility, ensuring that similar requirements are 

consistently ranked across different projects [12]. 

However, it is essential to acknowledge some of the challenges associated with this 

technique.  

 

 NLP algorithms heavily rely on the quality of the requirements documents, which 

may contain ambiguities, inconsistencies, or incomplete information.  

 Noise reduction techniques and domain-specific customization are often employed to 

mitigate these challenges. 

 Additionally, ongoing monitoring and periodic updating of the prioritization models 

are necessary to adapt to evolving project requirements and changes in stakeholder 

preferences.  

 The automated software requirements prioritization technique using NLP presents a 

promising approach to enhance the efficiency and accuracy of prioritizing software 

requirements.  

 By leveraging NLP algorithms and linguistic models, software engineers can 

streamline the prioritization process, reduce manual effort, and make more informed 

decisions.  

 

While challenges exist, ongoing advancements in NLP and machine learning continue to 

pave the way for more sophisticated and reliable automated prioritization techniques in the 

realm of software engineering [13]. We have used NLP models .The suggested model was 

developed through the examination of DOORs dataset which contains SRS. The proposed 

work would focus on improving the recognition accuracy by addressing the problem of 

software requirement prioritization.  
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1.2 Role of NLP in Software Requirement prioritization 

The use of automated software needs prioritization approaches that make use of natural 

language processing (NLP) is very necessary in order to achieve both increased productivity 

and precision in the prioritization process. NLP is a collection of tools and methods that 

enable software engineers to automatically analyses, comprehend, and extract useful 

information from natural language requirement documents. NLP is provided via natural 

language processing (NLP). The following is a list of some of the particular functions that 

NLP plays in the process of automating software needs prioritization: 

 

 Processing of Text: Natural Language Processing (NLP) methods are utilized in 

order for processing and parse the requirements documents. This requires performing 

activities like as tokenization, syntactic parsing, and part-of-speech tagging, all of 

which assist in separating the text into meaningful pieces and comprehending the 

grammatical structure of sentences. The processing of text establishes the groundwork 

for further analysis as well as the extraction of information. NLP algorithms are able 

to recognize and extract named entities from the requirements documents. This is 

referred to as "named entity recognition." Recognizing objects such as product names, 

organizations, places, dates, and other pertinent information is included in this. 

Named Entity Recognition is helpful in understanding the context as well as the 

dependencies that exist between the various criteria. This is something that is often 

essential for achieving appropriate prioritization. 

 

 Analysis of Sentiment: Natural Language Processing (NLP) is able to ascertain the 

feeling or opinion communicated in the requirements documents by applying several 

approaches from the field of analysis of sentiment. This can be helpful in determining 

if certain criteria are related with good or negative attitudes, assisting in the 

prioritization of those requirements that are essential for the satisfaction of customers, 

or addressing possible dangers. 

 

 Extraction of Dependencies and linkages: NLP algorithms may examine the 

requirements to determine the dependencies and linkages between the various needs. 

This assists in identifying needs that are connected to one another or have constraints 
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on the specifications of other requirements. The prioritization approach can guarantee 

that needs with dependencies on other high-priority objectives are likewise given 

adequate priority by taking into consideration these dependencies and ensuring that 

they are given appropriate priority. 

 

 Extraction of Features: Natural Language Processing methods make it easier to 

extract significant features or keywords from a set of requirements papers. These 

qualities may consist of specialized terminology, keywords that are exclusive to a 

domain, or any number of other pertinent indications of relevance. The creation of a 

representation of each need that can be used by machine learning models for the 

purpose of prioritization is facilitated by feature extraction. 

 

 Models of Automated Prioritization that Are Driven by Machine Learning: 

Natural Language Processing (NLP) is an extremely important component in the 

process of training machine learning models. NLP facilitates the building of models 

that are able to learn from previous judgements and assign priority levels to needs. 

These models are created by integrating the extracted characteristics with contextual 

information and historical prioritization data. For the purpose of making informed 

prioritization decisions, these models can take into consideration a variety of criteria, 

including the preferences of stakeholders, the limitations of the project, and the aims 

of the organization. 

 

1.3 Motivation 

The motivation of research is the moment, there are few limitations in published 

researches on feature extraction from natural language documents, i.e. unavailable tools 

for evaluation, restricted or limited input, irrelevant feature naming, non-reproducible 

result, and domain engineer intervention in the process [2]. While this research is aimed 

to produce a tool for automatically extracting software features directly from SRS 

documents without any human intervention in the process. The tool will be applied and 

tested using selected SRS from the Public Requirement Engineering (DOORs) dataset 

[3] to justify its correctness. 
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1.4 Problem Statement 

Automated software requirements prioritization techniques have gained significant 

attention in the field of software engineering, aiming to enhance the efficiency and 

effectiveness of software development processes. One such approach that has emerged 

is the utilization of Natural Language Processing (NLP) to automate the prioritization of 

software requirements. By harnessing the power of NLP, this technique enables the 

automated analysis and understanding of natural language requirements documents. 

Traditionally, requirements prioritization has relied on manual effort, which can be 

time-consuming, subjective, and prone to human biases. However, with the advent of 

NLP, software engineers can now leverage advanced algorithms and linguistic models 

to extract relevant information and prioritize requirements in a more objective and 

efficient manner [11]. While challenges exist, ongoing advancements in NLP and 

machine learning continue to pave the way for more sophisticated and reliable 

automated prioritization techniques in the realm of software engineering [13]. We have 

used NLP models .The suggested model was developed through the examination of 

DOORs dataset which contains SRS. The proposed work would focus on improving the 

recognition accuracy by addressing the problem of software requirement prioritization.  

 

1.5 Aims and Objectives 

The major objectives of the research are as follows: 

 
 To perform experiment using NLP tools/techniques used in requirements 

engineering for automated requirement prioritization.  

 To obtain good results on NLP already used in requirement prioritization 

 To explore algorithms that are used particularly for the requirement 

prioritization technique. 

 To propose approach to achieved higher accuracy and compared our 

results with existing approaches to show the effectiveness of our 

approach. 

 Analyze the results obtain via the new approach and compare it with 

previous results to any significance change. 
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1.6 Thesis Outline 

This remaining work is structured as follows: 

 
Chapter 2 stated a literature review in detail and the important relevant work 

performed by analysts and researchers in the previous few years, which covers the 

basics and background of the ambiguity detection and NLP approaches usage for the 

analyze of requirements. The systematic literature review is composed of three core 

sections. The ever first is the review-protocol which displays detail upon the procedure 

using which the literature-review has carried out. Second Section offers detail on 

research study carried out on this area in the form of research-questions and tables. And 

section three shows the research-gap that were encountered in the study. 

Chapter 3 consist of the proposed approach in detail. It discusses the method in terms 

of an overview of the algorithm, main components of the approach and depiction of 

solution. 

Chapter 4 includes implementation, validation, and discussion on results together with 

research-question and related figures. It also makes detail to the assessment of our work 

with the state of the art. Moreover, it precisely describes the limitations of this study. 

Chapter 5 conclude the research thesis and reveals the future work of this 

research. 
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2 LITERATURE REVIEW 

This chapter covers the systematic literature review for the area of this research. The 

Chapter comprises of an overview and major outcome of Systematic literature, 

contribution of literature review, review methodology, research questions, category 

definitions, review protocol of literature review, results and analysis, answers to the 

research questions for literature and conclusion of SLR. 

 

2.1 Overview and Major Outcomes of SLR 

The research that goes into natural language processing (NLP) entails applying concepts and 

strategies from a variety of fields (such as computer science, artificial intelligence, and 

computational linguistics) in order to develop automated methods of analyzing and 

representing human language [14]. The fundamental objective is to design algorithms that 

will give computers the ability to process, understand, and produce natural language in a 

manner that is comparable to that of humans. A wide array of applications, including as 

speech recognition, language translation, text categorization, and summarization, have been 

created throughout the years in this field. However, because natural language is so dependent 

on its surroundings, it is the most difficult thing for robots to duplicate when it comes to 

human engagement with natural language. When interpreting and creating language, people 

are able to take into account real-world situations and conditions; however, automated 

systems have not yet perfected this capacity to manage the comparable complexity of context 

[15]. Individuals possess the capacity to incorporate real-life circumstances and contexts 

while comprehending and generating language. The field of natural language processing 

(NLP) has witnessed significant advancements in algorithmic development. Initially, NLP 

algorithms primarily relied on basic statistical language models that focused solely on 

calculating the probability distribution of sentences, without considering semantic structures. 

However, over time, there has been a shift towards more sophisticated techniques such as 

parts-of-speech tagging and named entity recognition. These advanced methods aim to 

uncover the meaning of sentences by incorporating semantic components into the analysis 

[16].  This has been done in order to address the problems that have been brought to light by 

such problems. The use of deep learning as a strategy for different NLP tasks, such as text 

categorization, has become increasingly common since it achieves state-of-the-art outcomes 
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for a wide range of issues [17]. In Previous three studies on feature extraction from SRS 

document process requirement statement sentences that were already broken down into the 

list as they appear in the document. First, the statistical approach Term Frequency and 

Inverse Document Frequency (TF/IDF) is used in feature mining from the SRS document’s 

functional requirement sentences. The research focused on several Mapping Rules (MRs) to 

identify the Semantic Model (SM) from each functional requirement sentence [18]. Second, 

Feature and Feature Relation Extraction (FFRE) tool for Eclipse plugin are also introduced to 

assist the feature model extraction process from the SRS document. This tool use NLP 

processing to identify actor, action, and object from each requirement sentence and heuristic 

processing afterward to determine which features are mandatory and which are optional [19].  

Transfer learning has had a significant impact on the most current studies in the fields of 

software engineering and requirement engineering that are connected to natural language 

processing. The pre-trained language models (PLM), and more especially the encoder 

component of the Transformers, have shown to be the most successful models in terms of 

making use of transfer learning. In this sense, Bidirectional Encoder Representations from 

Transformers (BERT) has shown to be beneficial, particularly for issues involving the 

categorization of text and tokens, such as sentiment analysis and named entity identification. 

Recent years have seen the emergence of several BERT variations, and these variants are 

now being utilised in software analytics, including the classification jobs that involve SRS 

data [20]. The BERT model was fine-tuned by Hey et al.  on particular tasks in which the 

model predicts whether a need is functional or non-functional. In a separate piece of research, 

Sainani et al.  used BERT in a novel approach, in which the researchers first extracted 

requirements from huge software engineering contracts and then categorised those needs. 

Their strategy is predicated on the concept that business contracts may be able to assist in the 

identification of high-level requirements for the purpose of enhancing the overall 

performance of software engineering projects [21]. Kici et al.  fine-tuned several PLMs for 

distinct SRS tasks. In order to determine the extent to which their findings are generalizable, 

the researchers examined three distinct datasets using a variety of BERT models and 

variations. 

According to Regnell et al. (2001), requirements engineering places a strong emphasis on the 

prioritisation of needs. This is due to the fact that it is necessary to take into account the 

interests of a variety of stakeholders, as well as the fact that there are limited resources and 

time found that the process of prioritizing needs was fraught with numerous difficulties. This 
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was due to the huge number of factors involved in the process [22]. 

Research in natural language processing (NLP) involves integrating the knowledge and 

methods from several fields (such as computer science, artificial intelligence, and 

computational linguistics, for example) to develop automated analyses and ways to represent 

human language [23]. The fundamental objective is to design algorithms that will give 

computers the ability to process, comprehend, and produce natural language in a manner that 

is comparable to that of humans. A wide array of applications, including as speech 

recognition, language translation, text categorization, and text summarization, have been 

created throughout the course of the years in this field. However, because natural language is 

so dependent on its surroundings, it is the most difficult thing for robots to duplicate when it 

comes to human engagement with natural language. When interpreting and creating 

language, people are able to take into account real-world situations and conditions; 

nevertheless, automated systems have not yet completely mastered this capacity to manage 

the related context complexity [24]. People are able to take real-world situations and 

conditions into consideration when interpreting and producing language. To overcome the 

problem the field of natural language processing (NLP) has witnessed the advancement of 

algorithms. These algorithms have progressed from basic statistical language models, which 

solely calculate the probability distribution of sentences without taking into account semantic 

structures, to more sophisticated techniques such as parts-of-speech tagging and named entity 

recognition. The objective of these techniques is to uncover the meaning of sentences by 

considering the semantic elements present within them [25]. Deep learning has emerged as a 

widely used approach for a range of natural language processing (NLP) tasks, such as text 

categorization. It has demonstrated its effectiveness by obtaining state-of-the-art performance 

across multiple problem domains [26]. 

In Previous three studies on feature extraction from SRS document process requirement 

statement sentences that were already broken down into the list as they appear in the 

document. First, the statistical approach Term Frequency and Inverse Document Frequency 

(TF/IDF) is used in feature mining from the SRS document’s functional requirement 

sentences. The research focused on several Mapping Rules (MRs) to identify the Semantic 

Model (SM) from each functional requirement sentence [27]. Second, Feature and Feature 

Relation Extraction (FFRE) tool for Eclipse plugin are also introduced to assist the feature 

model extraction process from the SRS document. This tool use NLP processing to identify 

actor, action, and object from each requirement sentence and heuristic processing afterward 
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to determine which features are mandatory and which are optional [28].  

It is imperative that these documents adhere to predetermined criteria in order to establish a 

shared understanding of the specifications among all relevant parties, including users, 

analysts, and developers. Software Requirements Specifications (SRS) serve as valuable 

indicators for assessing the level of quality and acceptability of a product or process upon 

project completion. The evaluation of a software project's success is contingent upon the 

extent to which the final result aligns with the specifications outlined in the Software 

Requirements Specification (SRS) documentation. The presence of statements that can be 

interpreted in multiple ways, explanations that lack clarity, or inferences that are not clear 

might lead to significant failures at a later stage of the project [29]. Therefore, achieving a 

comprehensive and coherent comprehension of these standards necessitates the consistent 

utilization of contextual terminology within the given area. Moreover, the efficacy of 

following phases in the Systems Development Life Cycle (SDLC) is contingent upon the 

establishment of clearly specified requirements and their precise execution. Neglecting to 

adhere to this practice may result in delays and additional expenses [30]. Studies on the 

feature extraction from existing systems mostly use the source code as the object or input of 

the extraction process while other studies also conducted to use models including a class 

diagram and use case diagram as the objects for the extraction process [31].  

However, most software developer only measures their product quality on the released 

software product or the implementation result regardless of the original requirement 

[32].Therefore, software feature extraction from specification document is more suitable 

based on the software engineering perspective rather than model or source code to acquire the 

more valid feature. This is because the specification document is the basis of the validation 

and verification of system functionality in the software development process [33]. Presently, 

the majority of research efforts related to the extraction of Software Product Line (SPL) 

features from Software Requirement Specification (SRS) documents have focused on 

processing pre-existing lists of needs, rather than considering the SRS document as a 

cohesive entity [34]. Therefore, this approach still necessitates the involvement of an expert 

to manually extract required sentences from the SRS document, a task that can be both 

laborious and susceptible to errors. This study involves the direct processing of SRS 

documents that employ requirement boilerplate in order to build requirement statements. 

These constraints establish precise patterns that can be analyzed using the Natural Language 

Processing (NLP) technique [35]. 
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2.2 Comparison of Literature review 

Table 1 Comparison table of previous studies 

Ref 

 paper 

Year Dataset NLP  

Classifier 

Evaluation 

parameters 

Results  

Accuracy 

[1] 2020 PURE FM, VSM, LSA, Accuracy, 

precision, recall 

and f1 score 

80%,82%, 83% 

[2] 2021 NFR  

Promise 

And 

DOORS 

DistilBERT, 

Bi LSTM 

Accuracy, 

precision, recall 

and f1 score 

80%, 77% 

[3] 2021 DOORS RoBERTa, 

BiLSTM, BERT 

Accuracy, 

precision, recall 

and f1 score 

80%,77%, 76% 

[4] 2018 PURE SVM, KNN,LR, Accuracy, 

precision, recall 

and f1 score 

77% 

[5] 2017 SRS CNN Accuracy, 

precision, recall 

and f1 score 

79% 

[6] 2020 PURE FM, VSM, LSA, Accuracy, 

precision, recall 

and f1 score 

80%,82%, 83% 

[7] 2021 NFR  

Promise 

And 

DOORS 

DistilBERT, 

Bi LSTM 

Accuracy, 

precision, recall 

and f1 score 

80%, 77% 

[8] 2021 DOORS RoBERTa, 

BiLSTM, BERT 

Accuracy, 

precision, recall 

and f1 score 

80%,77%, 76% 

[9] 2018 PURE SVM, KNN,LR, Accuracy, 77% 
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precision, recall 

and f1 score 

 

Ref 

 paper 

 

Year 

 

Dataset 

 

NLP  

Classifier 

 

Evaluation 

parameters 

 

Results  

Accuracy 

 

[10] 2017 SRS CNN Accuracy, 

precision, recall 

and f1 score 

79% 

[11] 2020 PURE FM, VSM, LSA, Accuracy, 

precision, recall 

and f1 score 

80%,82%, 83% 

[12] 2021 NFR  

Promise 

And 

DOORS 

DistilBERT, 

Bi LSTM 

Accuracy, 

precision, recall 

and f1 score 

80%, 77% 

[13] 2021 DOORS RoBERTa, 

BiLSTM, BERT 

Accuracy, 

precision, recall 

and f1 score 

80%,77%, 76% 

[14] 2018 PURE SVM, KNN,LR, Accuracy, 

precision, recall. 

77% 

[15] 2017 SRS CNN Accuracy, 

precision, recall 

and f1 score 

79% 

[16] 2020 PURE FM, VSM, LSA, Accuracy, 

precision, recall 

and f1 score 

80%,82%, 83% 

[17] 2021 NFR  

Promise 

And 

DOORS 

DistilBERT, 

Bi LSTM 

Accuracy, 

precision, recall 

and f1 score 

80%, 77% 

[18] 2021 DOORS RoBERTa, 

BiLSTM, BERT 

Accuracy, 

precision, recall 

and f1 score 

80%,77%, 76% 

[19] 2018 PURE SVM, KNN,LR, Accuracy, 

precision, recall 

and f1 score 

77% 

[20] 2017 SRS CNN Accuracy, 

precision, recall 

and f1 score 

79% 
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2.3 Research Questions 

Research questions have been summarized as below: 

 

    RQ1: What NLP tools/techniques used in requirements engineering? 

.   RQ2: What automated requirement prioritization technique available in literature? 

    RQ3: Does NLP already used in requirement prioritization and what is recorded accuracy? 

    RQ4: Does supervised learning or data classification used in requirement prioritization? 

 

2.4 Research gap 

In this section area for the improvement in the existing research literature is discussed. 

A detailed analysis of the selected articles was carried out in which tools, techniques, 

frameworks, and other NLP approaches were used. After a comprehensive screening 

procedure filtered the research that stipulates an endorsement for the detection of the 

ambiguities caused by terms in requirements across different domain. At the moment, 

there are few limitations in published researches on feature extraction from natural 

language documents, i.e. unavailable tools for evaluation, restricted or limited input, 

irrelevant feature naming, non-reproducible result, and domain engineer intervention in 

the process [2]. While this research is aimed to produce a tool for automatically 

extracting software features directly from SRS documents without any human 

intervention in the process. The tool will be applied and tested using selected SRS from 

the Public Requirement Engineering (DOORs) dataset [3] to justify its correctness



 

 

 

 

3 PROPOSED APPROACH 

This Chapter presents approach for the most suitable alternative of the Word2Vec 

algorithm for the detection of ambiguities caused by the terms used in natural language 

requirements that are domain dependent. The approach has a pipeline of data collection, 

pre-processing of data, building language model, apply alternative algorithm(s), and 

resultant terms score of dissimilarity. 

In fig 2. Shows the steps proposed method in block diagram. We have used four deep 

learning models for the classification the BERT, RoBERTa, BiLSTM and LSTM for 

DOORs dataset. In our methodology first we make sentence segmentation then generate 

the tokens then use so part of speech the ass to entity recognition and then the relating 

recognition and final step fond the references of word in software requirements 

specification . We considered three characteristics for classification of SRS documents, 

namely, Type, Priority and Severity.  

  

 

       Figure 2    Block Diagram of Proposed method 

 

3.1 Dataset 

In this work, our SRS data was obtained with the Dynamic Object Oriented Requirements 

System (DOORS) Next Generation, a requirement management technology created and 

sold by IBM [2], which is extensively used by engineers all around the world. The SRS 

dataset that we are working with has 83,837 occurrences and 213 characteristics. 

However, in order to identify the categorical elements of the needs, such as their kind, 



 

 

 

severity, and priority, we just looked at the summary of the criteria. When classifying SRS 

papers, we took into consideration three characteristics: kind, priority, and severity. 

3.2 Class distribution of categorical features in the DOORS SRS dataset 

The breakdown of the classes into their respective category labels is presented in figure 

there are four classes in the Priority, and those classes are unassigned, high, medium, and 

low. There are also six classes in the Severity, and those classes are normal, major, minor, 

blocker, critical, and undetermined. The Type category had a total of 20 distinct classes 

when it was first created. After performing certain procedures including merging and 

preprocessing, we were able to acquire seven classes for the Type category. 

In addition, we got rid of the values that were represented by the notation 'nan,' which 

stood for the absence of values for the Priority and Severity categories. It has come to our 

attention that the classes belonging to the Type category are relatively distributed evenly, 

however the classes belonging to the other categories exhibit a serious imbalance in the 

data. 

 

    

             

     

             Figure 3. Class distribution for the each class level [2] 



 

 

 

3.3 Data Pre-Processing 

In the preprocessing steps we applied tokenization by splitting sentences into 

individual’s words. We extract the text from SRS and gives output in the form of 

paragraph. In second we convert the all the characteristics to lowercase as an uppercase 

letter for feature extraction then removal of noise and remove the white spaces. In third 

removed the stop words then we applied tokenization by splitting sentences into 

individuals words. We next moved to classification process on classes we considered 

the three characteristics: kind, priority, and severity. 

3.4 Experimental Setup Settings 

In a standard supervised training pipeline, unlabeled data would be removed, and the fine-

tuning step would be carried out on a dataset that has been labelled. More than 80,000 

requirement texts are included in the DOORS dataset; however, the bulk of these texts do 

not have any labels attached to them. As a result of this, we use the MLM algorithm as the 

unsupervised learning objective for the adaptive fine-tuning process. This algorithm uses 

all of the requirement texts from the complete dataset. As part of the MLM 

implementation process, the tokens in the input are masked at random with a chance of 

0.15. As a result of this procedure, a brand-new adapted pre-trained model with the newly 

calibrated parameters, θS, is produced. 

In the remaining steps of the training operation, we will adhere to the standard practice of 

using hyper-parameter selection. The dataset is comprised of three different sets: the 

training set, the validation set, and the test set. To maintain consistency with the other pre-

training hyper-parameter settings, such as BERT checkpoints, the learning rate is 

maintained at around 2e-5. The AdamW optimizer is used throughout the training process, 

which lasts for a total of 30 iterations [43]. At the very end, just the very best model that 

was discovered throughout the training gets loaded. After that, the phase of fine-tuning is 

applied as the last step. 

In the phase that comes following the adaptive phase and is known as the fine-tuning 

phase, we likewise adhere to the standard practice. To be more specific, we have 

downstream activities that target the tree categorization categories of Priority, Severity, 

and Type. For each task, we used up to three epochs to fine-tune a previously trained 

model, namely, an adapted previously trained model that was produced in step two. We 

have noticed that maintaining a relatively low value for the learning rate at this step is 



 

 

 

quite critical in order to prevent the modified language model from being corrupted. 

Implementations and Coding 

 

   Fig4. Implementation and importing libraries using python language 

 

     Fig5. Fine Tuning the Model 

 

     Fig6. Fine-tuning and adjusting hyper parameters 



 

 

 

 

    Fig7: Training the Data and calculating the loss 

 

    

 

 

  

 

 

 

 

 

 

 

 

 

         Fig8. Tested the accuracy 

 



 

 

 

3.5 NLP models for Classification 

We have used four deep learning models BERT, RoBERTa, LSTM and BiLSTM. 

 BERT: The most well-known encoder that makes use of Masked Language 

Model (MLM) and Next Sentence Prediction (NSP) aims is called BERT. The 

BERT-base-uncased model has a hidden size of 768, which equates to 12 heads, 

and a head embedding size of 64. This model also does not have a casing. The 

model is comprised of a total of twelve layers. BERT-largeuncased, the big 

equivalent model, has a hidden size of 1024 and has 24 layers and 16 attention 

heads. BERT checkpoints were designed with a learning rate of 1e-4 in mind 

originally. In order to avoid interrupting the learning that takes place during pre-

training when it is being fine-tuned, a slower learning rate (such as 1e-5 or 2e-5) 

is chosen. 

 RoBERTa: A variant of BERT that is more stable and efficient is known as 

RoBERTa. The BERT large version is utilized as the basis for its underlying 

structure. The model is trained for a longer period of time with larger batches, 

and the following sentence 6 has been removed. These are some of the 

adjustments made to vanilla BERT prediction target, training on bigger 

sequences, and dynamically modifying the masking pattern are all aspects of 

modelling that need to be improved. 

 LSTM: It has been discovered that LSTM networks [26] are capable of learning 

the long-term relationships and patterns that are present in natural language text. 

LSTMs have a significant advantage over other RNNs due to the fact that their 

use of forget and update gates enable them to manage and maintain consistent 

information flow. This successfully protects them from the problems of 

disappearing and exploding information, which are two of the most common 

RNN-related problems. 

 BiLSTM: The input data are processed twice by the bidirectional variation of 

the LSTM model [27], once from the beginning to the end and once from the 

end to the beginning. The BiLSTM technique investigates the more profound 

semantics of the word structure. Training in both the forward and backward 

direction offers an extra comprehension of the contextual dependency that is 

present in the tokens. 



 

 

 

4 IMPLEMENTATION, RESULTS & DISCUSSION 

In this chapter, implementation of the approach as stated in the chapter 3 is discussed, 

and results of the approach are analyzed in detail. The implementation consist of data 

collection of different fields and results preparation and examination. Basic information 

of the approach implementation, use of algorithms and programs is also discussed in this 

section. 

In this section we have discussed obtained results and experiments. These four CNN 

architecture (BERT, RoBERTa, LSTM, BiLSTM) are used with hyper parameters to 

process the classification. We retrieved   the results and compare the results. Our 

experiments are designed to investigate the effectiveness of deep learning models and 

transfer learning in SRS document classification.  

 

4.1 Evaluation methodology  

 In order to do the analysis, we partitioned the dataset into three distinct sections: 

training, testing, and validation. We consider 80% of the data to be training data in 

order to update the weights in the fine-tuning phase. 10% of the data is used for 

validation in order to assess the out-of-sample performance of the model while it is 

being trained, and 10% of the data is used for final testing in order to measure the out-

of-sample performance of the model after it has been trained. We utilize stratified 

sampling to choose 0.8, 0.1, and 0.1 sections of the SRS document from each class for 

training, validation, and testing respectively. This helps us avoid over-fitting the data. 

 4.2 Evaluation Parameters 

The performance of the model was assessed based on a number of measures, such as 

accuracy, precision, recall, and f1 score, all of which are derived through the use of the 

following formulas: 

 Accuracy: Accuracy is a statistic that gauges the overall performance of the 

model under the assumption that all classes have the same weight. It is 

determined by taking the ratio of the true positives to the total number of 

samples and subtracting one from the other. In the formula TP means true 

positive and TN means true negative FP means false positive and FN means 



 

 

 

false negative. 

 The formula for accuracy is as follows: 

  

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

 

 Precision: Precision is a statistic that evaluates the ratio of correctly recognized 

positive samples to the total number of samples that are identified as positive, 

regardless of whether or not the identification was correct. It does it by 

determining how accurate the model's predictions are. In the formula TP means 

true positive and TN means true negative FP means false positive and FN means 

false negative The formula for calculating precision is as follows: 

Precision= TP/TP + FP 

 Recall: This metric calculates the ratio of the number of positive samples to the 

total number of positive samples and determines whether or not the positive 

samples were accurately labelled as positive. In the formula TP means true 

positive and TN means true negative FP means false positive and FN means false 

negative. It analyses how effectively the model can locate positive samples by 

looking at the following factors: 

Recall = TP / (TP + FN). 

 F1 Score: This statistic takes into account both accuracy and recall in determining 

its value. It determines how effectively the accuracy and recall measures interact 

with one another:  

F1 Score = 2 * (Precision * Recall) / (Precision + Recall) 

4.3 Proposed approach 

In our proposed approach RoBERTa achieved higher accuracy for the classification on 

the DOORs dataset. We have used the pre-trained RoBERTa model with transformers 

for the feature extraction. We have performed feature preprocessing on dataset like data 

cleaning data removing null values and the arrangements of data extracting the required 

data the pass it to the NLP model for training then test the data on test set. We split the 

data into train set, test set and validation set. We tested the accuracy on validation set. 

 



 

 

 

4.4 Optimizers 

Optimizers are designed with the purpose of improving the effectiveness of learning 

algorithms by enhancing the accuracy with which they perform prediction tasks. Given 

this, it should come as no surprise that a solid pick of It is impossible for the prediction 

model to be successful without an optimizer. An optimization method known as Adam 

[14] is responsible for calculating the adaptive learning rates of individual parameters 

by making use of just first order gradients. It combines the strengths of many 

optimization methods, such as RMSprop and AdaGrad. It functions well with sparse 

gradients, a characteristic that was obtained from AdaGrad, and it functions well with 

mobile and online environments, a feature that was obtained from RMSprop. An 

alternative implementation of the Adam optimization method is known as Adamax [15]. 

4.5 RoBERTa 

To maintain consistency with the other pre-training hyper parameter settings, such as 

RoBERTa checkpoints, the learning rate is maintained at around 1e-4. The Adam W 

optimizer is used throughout the training process, the number of hidden layers is 16, the 

hidden size is 1024, the maximum sequence length is 100, the epoch is 3, the dropout 

rate is 0.1, the learning rate is 5e-04, and the batch size is 8. 

 

                

     

      Figure 10. Architecture Diagram of RoBERTa [20] 

 



 

 

 

4.6 Results of NLP Models  

The below table shows the results and the accuracy of the model of BERT, DisilBERT, 

LSTM and BiLSTM results. The RoBERTa obtained highest accuracy then the other 

CNN models. The evaluation performed on the basis of accuracy precision recall and 

F1 score. 

Table 2 Classification Results of proposed models 

Proposed 

NLP 

Models 

Accuracy Precision Recall F1-score 

BERT 78.9% 0.79 0.80 0.77 

RoBERTa 84.9% 0.81 0.87 0.84 

LSTM 76% 0.74 0.75 0.76 

BiLSTM 80.2% 0.75 0.81 0.80 

   

RoBERTa, BERT and BiLSTM model is evaluated using optimizers, such as adam, as 

well as the number of epochs and the number of LSTM .This is done in order to 

determine the optimal choice of hyper parameters, which eventually results in a 

classification model that is more accurate. 

     

      

    Figure 11. Results comparison of proposed model.  

 



 

 

 

 

Table2 and Table 3 showed the comparative results of the models were reported for the 

categorization of DOORS data according to Priority, and Severity categories, 

respectively. 

Table 3 Results of Priority 

Proposed 

NLP 

Models 

Accuracy Precision Recall F1-score 

BERT 75.9% 0.76 0.78 0.74 

RoBERTa 78.9% 0.79 0.80 0.77 

LSTM 69.2% 0.71 0.65 0.69 

BiLSTM 72.2% 0.74 0.75 0.72 

   

                

   

    

   Figure 12. Results comparison of priority in DOORs Dataset  

 

   

 

          



 

 

 

 

Table 4 Results of Severity 

Proposed 

NLP 

Models 

Accuracy Precision Recall F1-score 

BERT 76% 0.76 0.80 0.76 

RoBERTa 80% 0.78 0.85 0.80 

LSTM 74% 0.72 0.75 0.76 

BiLSTM 78% 0.78 0.78 0.78 

 

      

      

     

   Figure 13. Results comparison of Severity in DOORs Dataset 

 

4.7 Comparison between Proposed approach and existing approaches    

 

The table 5 shows the comparisons between the proposed approach and existing 

approaches. Our proposed approach BERT achieved 84.7% accuracy with 0.84 F1 

score. 

At the moment, there are few limitations in published researches on feature extraction 



 

 

 

from natural language documents, i.e. unavailable tools for evaluation, restricted or 

limited input, irrelevant feature naming, non-reproducible result, and domain engineer 

intervention in the process [2]. While this research is aimed to produce a tool for 

automatically extracting software features directly from SRS documents without any 

human intervention in the process. The tool will be applied and tested using selected 

SRS from the Public Requirement Engineering (DOORs) dataset [3] to justify its 

correctness. 

 

Table 5 Comparison between Proposed approach and existing approach 

NLP Models Existing approaches 

Accuracy 

Proposed approach 

Accuracy 

RoBERTa [2]  80% 84% 

BiLSTM [2]  77% 80% 

BERT [2] 76% 78% 

      



 

 

 

 5 CONCLUSION & FUTURE WORK 

 
5.1 Conclusion 

In this study we examined the effectiveness of the RoBERTa transformer as a state of-

the-art transfer learning model for multi-class text classification over SRS documents. 

The proposed approach RoBERTa achieved higher accuracy then the other models. We 

successfully classified the priority requirements using natural language processing 

technique. For the classification we prioritize the requirements by labeling the data and 

then classify on the basis of high priority. We compared our proposed approach with 

existing approach to show the effectiveness of our approach. We successfully achieved 

higher accuracy then previous studies. 

 

5.2 Future Work 

For the future work we will the proposed approach can be extended to implement by 

increasing the number of algorithms and implement these models by adding layers 

and considered more dataset. 
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