
Automated Software Requirements Prioritization using

Natural Language Processing

By

Israr Ahmad

(Registration No.: 00000317474)

Supervisor: Dr. Wasi Haider Butt

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

 NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

September 2023

i

ii

Dedicated to my exceptional parents and adored brothers whose

tremendous support and cooperation led me to this accomplishment.

iii

Acknowledgements

All praise and glory to Almighty Allah (the most glorified, the most high) who gave me the

courage, patience, knowledge and ability to carry out this work and to persevere and

complete it satisfactorily. Undoubtedly, HE eased my way and without HIS blessings I can

achieve nothing.

I would like to express my sincere gratitude to my advisor Dr Wasi Haider Butt for boosting

my morale and for his continual assistance, motivation, dedication and invaluable guidance in

my quest for knowledge. I am blessed to have such a co-operative advisor and kind mentor

for my research.

Along with my advisor, I would like to acknowledge my entire thesis committee: Dr. Arslan

Shaukat and Dr Farooq e Azam for their cooperation and prudent suggestions.

My acknowledgement would be incomplete without thanking the biggest source of my

strength, my family. I am profusely thankful to my beloved mother and father (late) who

raised me when I was not capable of walking and continued to support me throughout every

department of my life and my loving brothers who were with me through my thick and thin.

Finally, I would like to express my gratitude to all my friends and the individuals who have

encouraged and supported me through this entire period.

iv

Abstract

The software requirements specifications (SRS) may become a barrier to the successful

completion of the project if they are written in a language that is difficult to understand. In

certain situations, they cause failure to meet the actual requirements. The SRS dataset may

contain redundant information or material that is disputed, either of which might result in

higher expenditures and a loss of time, diminishing the overall efficiency of the project. The

current developments in machine learning have led to a rise in the amount of work being put

towards the development of automated solutions for the creation of a seamless software

requirements specification (SRS). In this study, we employ the transformer models, including

BERT and RoBERTa for classification. We focus on analyzing RoBERTa capacity for multi-

class text classification tasks that involve predicting the type, priority, and severity of the

requirements specified by the users. Moreover we compare its performance to that of other

deep learning methods like LSTM and BiLSTM. We tested the performance of these models

on the DOORS dataset. We have also compared the proposed model. We achieved higher

accuracy i.e., ‘84.7%’, sensitivity, precision, recall and F1 score by using RoBERTa and

compared our results with existing approaches.

Keywords: NLP, Text classification, Software requirement specification (SRS), RoBERTa,

Deep learning, Transformers

v

 Table of Contents

ACKNOWLEDGEMENTS.. III

ABSTRACT ... IV

1. INTRODUCTION ... 1

1.1 OVERVIEW AND BACKGROUND .. 1

1.2 ROLE OF NLP IN SOFTWARE REQUIREMENT PRIORITIZATION ... 4

1.3 MOTIVATION ... 5

1.4 PROBLEM STATEMENT ... 6

1.5 AIMS AND OBJECTIVES .. 6

1.6 THESIS OUTLINE .. 7

2 LITERATURE REVIEW ... 8

2.1 OVERVIEW AND MAJOR OUTCOMES OF SLR .. 8

2.2 COMPARISON OF LITERATURE REVIEW ... 12

2.3 RESEARCH QUESTIONS .. 14

2.4 RESEARCH GAP .. 14

3 PROPOSED APPROACH .. 15

3.1 DATASET ... 15

3.2 CLASS DISTRIBUTION OF CATEGORICAL FEATURES IN THE DOORS SRS DATASET.................. 16

3.3 DATA PRE-PROCESSING ... 17

3.4 EXPERIMENTAL SETUP SETTINGS ... 17

3.5 NLP MODELS FOR CLASSIFICATION.. 20

4.1 EVALUATION METHODOLOGY .. 21

4.2 EVALUATION PARAMETERS ... 21

4.3 PROPOSED APPROACH .. 22

4.4 OPTIMIZERS ... 23

4.5 ROBERTA ... 23

4.6 RESULTS OF NLP MODELS ... 24

4.7 COMPARISON BETWEEN PROPOSED APPROACH AND EXISTING APPROACHES 26

5 CONCLUSION & FUTURE WORK .. 28

5.1 CONCLUSION ... 28

vi

5.2 FUTURE WORK .. 28

REFERENCES .. I

vii

 List of Figures

Figure 1 Block NLP process pipeline retrieve the information from text……………..2

Figure 2 Block Diagram of Proposed method………………………………………..15

Figure 3. Class distribution for the each class level [2]………………………………..16

Figure 4. Implementation and importing libraries using python language…… 22

Fig5. Fine Tuning the Model………………………………………….. …………. …...22

Fig6. Fine-tuning and adjusting hyper parameters………………………………...…22

Fig7: Training the Data and calculating the loss………………………………………23

Fig8. Tested the accuracy……………………………………………………………. ...23

Figure 9 Architecture Diagram of RoBERTa [20]…………………………………….23

Figure 10 Results comparison of proposed model……………………………………..24

Figure 11 Results comparison of priority in DOORs Dataset………………………...25

Figure 12 Results comparison of Severity in DOORs Dataset………………………..26

viii

 List of Tables

Table 1 Comparison table of previous studies .. 12

Table 2 Classification Results of proposed models .. 24

Table 3 Results of Priority ... 25

Table 4 Results of Severity .. 26

Table 5 Comparison between Proposed approach and existing approach 27

1

1. INTRODUCTION

1.1 Overview and background

Software Requirements Specifications, or SRS for short, play an important part in the

Software Development Life Cycle (SDLC) since they act as a tool to convey user

requirements to software developers and other stakeholders. This is an important part of the

SDLC. SRS, or Software Requirements Specifications, are written papers that outline the

primary characteristics, limitations, and capabilities of a software product [1]. These papers

have to be created in accordance with the standards that have been specified in order for all of

the stakeholders, including users, analysts, and developers, to have the same understanding of

what the specifications represent. At the conclusion of the project, SRS may also serve as

indicators for assessing the quality and acceptance of the product or process. The degree to

which the completed program me follows the SRS documentation is one of the factors that

determines whether or not a software project was successful. Statements that are susceptible

to being misunderstood, explanations that are vague, or conclusions that are imprecise might

potentially lead to a catastrophic failure later on in the project [2]. In light of this, it is

necessary to make consistent use of the contextual terminology that is relevant to that

particular domain in order to get a clear and consistent comprehension of these requirements.

In addition, the success of succeeding phases in the SDLC process is dependent on well

specified requirements and the precise implementation of those needs; failing to do so may

result in delays as well as additional expenditures [3]. Studies on the feature extraction from

existing systems mostly use the source code as the object or input of the extraction process

[4]. While other studies also conducted to use models including a class diagram and use case

diagram as the objects for the extraction process [5] [6].

However, most software developer only measures their product quality on the released

software product or the implementation result regardless of the original requirement

2

[7].Therefore, software feature extraction from specification document is more suitable based

on the software engineering perspective rather than model or source code to acquire the more

valid feature. This is because the specification document is the basis of the validation and

verification of system functionality in the software development process [8].

 Figure 1 Block NLP process pipeline retrieve the information from text

Automated software requirements prioritization techniques have gained significant attention

in the field of software engineering, aiming to enhance the efficiency and effectiveness of

software development processes. One such approach that has emerged is the utilization of

Natural Language Processing (NLP) to automate the prioritization of software requirements.

By harnessing the power of NLP, this technique enables the automated analysis and

understanding of natural language requirements documents. Traditionally, requirements

prioritization has relied on manual effort, which can be time-consuming, subjective, and

prone to human biases. However, with the advent of NLP, software engineers can now

leverage advanced algorithms and linguistic models to extract relevant information and

prioritize requirements in a more objective and efficient manner [11]. These models can be

trained using historical data, expert knowledge, or a combination of both. The prioritization

models learn from past prioritization decisions made by software engineers, considering

factors such as customer needs, project constraints, and business objectives. The benefits of

this automated approach are manifold.

 Firstly, it reduces the manual effort required for requirements prioritization, freeing

up valuable time for software engineers to focus on other critical tasks.

3

 Secondly, it helps eliminate subjective biases by providing an objective and data-

driven prioritization process. Additionally, by automating the prioritization process, it

enhances consistency and reproducibility, ensuring that similar requirements are

consistently ranked across different projects [12].

However, it is essential to acknowledge some of the challenges associated with this

technique.

 NLP algorithms heavily rely on the quality of the requirements documents, which

may contain ambiguities, inconsistencies, or incomplete information.

 Noise reduction techniques and domain-specific customization are often employed to

mitigate these challenges.

 Additionally, ongoing monitoring and periodic updating of the prioritization models

are necessary to adapt to evolving project requirements and changes in stakeholder

preferences.

 The automated software requirements prioritization technique using NLP presents a

promising approach to enhance the efficiency and accuracy of prioritizing software

requirements.

 By leveraging NLP algorithms and linguistic models, software engineers can

streamline the prioritization process, reduce manual effort, and make more informed

decisions.

While challenges exist, ongoing advancements in NLP and machine learning continue to

pave the way for more sophisticated and reliable automated prioritization techniques in the

realm of software engineering [13]. We have used NLP models .The suggested model was

developed through the examination of DOORs dataset which contains SRS. The proposed

work would focus on improving the recognition accuracy by addressing the problem of

software requirement prioritization.

4

1.2 Role of NLP in Software Requirement prioritization

The use of automated software needs prioritization approaches that make use of natural

language processing (NLP) is very necessary in order to achieve both increased productivity

and precision in the prioritization process. NLP is a collection of tools and methods that

enable software engineers to automatically analyses, comprehend, and extract useful

information from natural language requirement documents. NLP is provided via natural

language processing (NLP). The following is a list of some of the particular functions that

NLP plays in the process of automating software needs prioritization:

 Processing of Text: Natural Language Processing (NLP) methods are utilized in

order for processing and parse the requirements documents. This requires performing

activities like as tokenization, syntactic parsing, and part-of-speech tagging, all of

which assist in separating the text into meaningful pieces and comprehending the

grammatical structure of sentences. The processing of text establishes the groundwork

for further analysis as well as the extraction of information. NLP algorithms are able

to recognize and extract named entities from the requirements documents. This is

referred to as "named entity recognition." Recognizing objects such as product names,

organizations, places, dates, and other pertinent information is included in this.

Named Entity Recognition is helpful in understanding the context as well as the

dependencies that exist between the various criteria. This is something that is often

essential for achieving appropriate prioritization.

 Analysis of Sentiment: Natural Language Processing (NLP) is able to ascertain the

feeling or opinion communicated in the requirements documents by applying several

approaches from the field of analysis of sentiment. This can be helpful in determining

if certain criteria are related with good or negative attitudes, assisting in the

prioritization of those requirements that are essential for the satisfaction of customers,

or addressing possible dangers.

 Extraction of Dependencies and linkages: NLP algorithms may examine the

requirements to determine the dependencies and linkages between the various needs.

This assists in identifying needs that are connected to one another or have constraints

5

on the specifications of other requirements. The prioritization approach can guarantee

that needs with dependencies on other high-priority objectives are likewise given

adequate priority by taking into consideration these dependencies and ensuring that

they are given appropriate priority.

 Extraction of Features: Natural Language Processing methods make it easier to

extract significant features or keywords from a set of requirements papers. These

qualities may consist of specialized terminology, keywords that are exclusive to a

domain, or any number of other pertinent indications of relevance. The creation of a

representation of each need that can be used by machine learning models for the

purpose of prioritization is facilitated by feature extraction.

 Models of Automated Prioritization that Are Driven by Machine Learning:

Natural Language Processing (NLP) is an extremely important component in the

process of training machine learning models. NLP facilitates the building of models

that are able to learn from previous judgements and assign priority levels to needs.

These models are created by integrating the extracted characteristics with contextual

information and historical prioritization data. For the purpose of making informed

prioritization decisions, these models can take into consideration a variety of criteria,

including the preferences of stakeholders, the limitations of the project, and the aims

of the organization.

1.3 Motivation

The motivation of research is the moment, there are few limitations in published

researches on feature extraction from natural language documents, i.e. unavailable tools

for evaluation, restricted or limited input, irrelevant feature naming, non-reproducible

result, and domain engineer intervention in the process [2]. While this research is aimed

to produce a tool for automatically extracting software features directly from SRS

documents without any human intervention in the process. The tool will be applied and

tested using selected SRS from the Public Requirement Engineering (DOORs) dataset

[3] to justify its correctness.

6

1.4 Problem Statement

Automated software requirements prioritization techniques have gained significant

attention in the field of software engineering, aiming to enhance the efficiency and

effectiveness of software development processes. One such approach that has emerged

is the utilization of Natural Language Processing (NLP) to automate the prioritization of

software requirements. By harnessing the power of NLP, this technique enables the

automated analysis and understanding of natural language requirements documents.

Traditionally, requirements prioritization has relied on manual effort, which can be

time-consuming, subjective, and prone to human biases. However, with the advent of

NLP, software engineers can now leverage advanced algorithms and linguistic models

to extract relevant information and prioritize requirements in a more objective and

efficient manner [11]. While challenges exist, ongoing advancements in NLP and

machine learning continue to pave the way for more sophisticated and reliable

automated prioritization techniques in the realm of software engineering [13]. We have

used NLP models .The suggested model was developed through the examination of

DOORs dataset which contains SRS. The proposed work would focus on improving the

recognition accuracy by addressing the problem of software requirement prioritization.

1.5 Aims and Objectives

The major objectives of the research are as follows:

 To perform experiment using NLP tools/techniques used in requirements

engineering for automated requirement prioritization.

 To obtain good results on NLP already used in requirement prioritization

 To explore algorithms that are used particularly for the requirement

prioritization technique.

 To propose approach to achieved higher accuracy and compared our

results with existing approaches to show the effectiveness of our

approach.

 Analyze the results obtain via the new approach and compare it with

previous results to any significance change.

7

1.6 Thesis Outline

This remaining work is structured as follows:

Chapter 2 stated a literature review in detail and the important relevant work

performed by analysts and researchers in the previous few years, which covers the

basics and background of the ambiguity detection and NLP approaches usage for the

analyze of requirements. The systematic literature review is composed of three core

sections. The ever first is the review-protocol which displays detail upon the procedure

using which the literature-review has carried out. Second Section offers detail on

research study carried out on this area in the form of research-questions and tables. And

section three shows the research-gap that were encountered in the study.

Chapter 3 consist of the proposed approach in detail. It discusses the method in terms

of an overview of the algorithm, main components of the approach and depiction of

solution.

Chapter 4 includes implementation, validation, and discussion on results together with

research-question and related figures. It also makes detail to the assessment of our work

with the state of the art. Moreover, it precisely describes the limitations of this study.

Chapter 5 conclude the research thesis and reveals the future work of this

research.

8

2 LITERATURE REVIEW

This chapter covers the systematic literature review for the area of this research. The

Chapter comprises of an overview and major outcome of Systematic literature,

contribution of literature review, review methodology, research questions, category

definitions, review protocol of literature review, results and analysis, answers to the

research questions for literature and conclusion of SLR.

2.1 Overview and Major Outcomes of SLR

The research that goes into natural language processing (NLP) entails applying concepts and

strategies from a variety of fields (such as computer science, artificial intelligence, and

computational linguistics) in order to develop automated methods of analyzing and

representing human language [14]. The fundamental objective is to design algorithms that

will give computers the ability to process, understand, and produce natural language in a

manner that is comparable to that of humans. A wide array of applications, including as

speech recognition, language translation, text categorization, and summarization, have been

created throughout the years in this field. However, because natural language is so dependent

on its surroundings, it is the most difficult thing for robots to duplicate when it comes to

human engagement with natural language. When interpreting and creating language, people

are able to take into account real-world situations and conditions; however, automated

systems have not yet perfected this capacity to manage the comparable complexity of context

[15]. Individuals possess the capacity to incorporate real-life circumstances and contexts

while comprehending and generating language. The field of natural language processing

(NLP) has witnessed significant advancements in algorithmic development. Initially, NLP

algorithms primarily relied on basic statistical language models that focused solely on

calculating the probability distribution of sentences, without considering semantic structures.

However, over time, there has been a shift towards more sophisticated techniques such as

parts-of-speech tagging and named entity recognition. These advanced methods aim to

uncover the meaning of sentences by incorporating semantic components into the analysis

[16]. This has been done in order to address the problems that have been brought to light by

such problems. The use of deep learning as a strategy for different NLP tasks, such as text

categorization, has become increasingly common since it achieves state-of-the-art outcomes

9

for a wide range of issues [17]. In Previous three studies on feature extraction from SRS

document process requirement statement sentences that were already broken down into the

list as they appear in the document. First, the statistical approach Term Frequency and

Inverse Document Frequency (TF/IDF) is used in feature mining from the SRS document’s

functional requirement sentences. The research focused on several Mapping Rules (MRs) to

identify the Semantic Model (SM) from each functional requirement sentence [18]. Second,

Feature and Feature Relation Extraction (FFRE) tool for Eclipse plugin are also introduced to

assist the feature model extraction process from the SRS document. This tool use NLP

processing to identify actor, action, and object from each requirement sentence and heuristic

processing afterward to determine which features are mandatory and which are optional [19].

Transfer learning has had a significant impact on the most current studies in the fields of

software engineering and requirement engineering that are connected to natural language

processing. The pre-trained language models (PLM), and more especially the encoder

component of the Transformers, have shown to be the most successful models in terms of

making use of transfer learning. In this sense, Bidirectional Encoder Representations from

Transformers (BERT) has shown to be beneficial, particularly for issues involving the

categorization of text and tokens, such as sentiment analysis and named entity identification.

Recent years have seen the emergence of several BERT variations, and these variants are

now being utilised in software analytics, including the classification jobs that involve SRS

data [20]. The BERT model was fine-tuned by Hey et al. on particular tasks in which the

model predicts whether a need is functional or non-functional. In a separate piece of research,

Sainani et al. used BERT in a novel approach, in which the researchers first extracted

requirements from huge software engineering contracts and then categorised those needs.

Their strategy is predicated on the concept that business contracts may be able to assist in the

identification of high-level requirements for the purpose of enhancing the overall

performance of software engineering projects [21]. Kici et al. fine-tuned several PLMs for

distinct SRS tasks. In order to determine the extent to which their findings are generalizable,

the researchers examined three distinct datasets using a variety of BERT models and

variations.

According to Regnell et al. (2001), requirements engineering places a strong emphasis on the

prioritisation of needs. This is due to the fact that it is necessary to take into account the

interests of a variety of stakeholders, as well as the fact that there are limited resources and

time found that the process of prioritizing needs was fraught with numerous difficulties. This

10

was due to the huge number of factors involved in the process [22].

Research in natural language processing (NLP) involves integrating the knowledge and

methods from several fields (such as computer science, artificial intelligence, and

computational linguistics, for example) to develop automated analyses and ways to represent

human language [23]. The fundamental objective is to design algorithms that will give

computers the ability to process, comprehend, and produce natural language in a manner that

is comparable to that of humans. A wide array of applications, including as speech

recognition, language translation, text categorization, and text summarization, have been

created throughout the course of the years in this field. However, because natural language is

so dependent on its surroundings, it is the most difficult thing for robots to duplicate when it

comes to human engagement with natural language. When interpreting and creating

language, people are able to take into account real-world situations and conditions;

nevertheless, automated systems have not yet completely mastered this capacity to manage

the related context complexity [24]. People are able to take real-world situations and

conditions into consideration when interpreting and producing language. To overcome the

problem the field of natural language processing (NLP) has witnessed the advancement of

algorithms. These algorithms have progressed from basic statistical language models, which

solely calculate the probability distribution of sentences without taking into account semantic

structures, to more sophisticated techniques such as parts-of-speech tagging and named entity

recognition. The objective of these techniques is to uncover the meaning of sentences by

considering the semantic elements present within them [25]. Deep learning has emerged as a

widely used approach for a range of natural language processing (NLP) tasks, such as text

categorization. It has demonstrated its effectiveness by obtaining state-of-the-art performance

across multiple problem domains [26].

In Previous three studies on feature extraction from SRS document process requirement

statement sentences that were already broken down into the list as they appear in the

document. First, the statistical approach Term Frequency and Inverse Document Frequency

(TF/IDF) is used in feature mining from the SRS document’s functional requirement

sentences. The research focused on several Mapping Rules (MRs) to identify the Semantic

Model (SM) from each functional requirement sentence [27]. Second, Feature and Feature

Relation Extraction (FFRE) tool for Eclipse plugin are also introduced to assist the feature

model extraction process from the SRS document. This tool use NLP processing to identify

actor, action, and object from each requirement sentence and heuristic processing afterward

11

to determine which features are mandatory and which are optional [28].

It is imperative that these documents adhere to predetermined criteria in order to establish a

shared understanding of the specifications among all relevant parties, including users,

analysts, and developers. Software Requirements Specifications (SRS) serve as valuable

indicators for assessing the level of quality and acceptability of a product or process upon

project completion. The evaluation of a software project's success is contingent upon the

extent to which the final result aligns with the specifications outlined in the Software

Requirements Specification (SRS) documentation. The presence of statements that can be

interpreted in multiple ways, explanations that lack clarity, or inferences that are not clear

might lead to significant failures at a later stage of the project [29]. Therefore, achieving a

comprehensive and coherent comprehension of these standards necessitates the consistent

utilization of contextual terminology within the given area. Moreover, the efficacy of

following phases in the Systems Development Life Cycle (SDLC) is contingent upon the

establishment of clearly specified requirements and their precise execution. Neglecting to

adhere to this practice may result in delays and additional expenses [30]. Studies on the

feature extraction from existing systems mostly use the source code as the object or input of

the extraction process while other studies also conducted to use models including a class

diagram and use case diagram as the objects for the extraction process [31].

However, most software developer only measures their product quality on the released

software product or the implementation result regardless of the original requirement

[32].Therefore, software feature extraction from specification document is more suitable

based on the software engineering perspective rather than model or source code to acquire the

more valid feature. This is because the specification document is the basis of the validation

and verification of system functionality in the software development process [33]. Presently,

the majority of research efforts related to the extraction of Software Product Line (SPL)

features from Software Requirement Specification (SRS) documents have focused on

processing pre-existing lists of needs, rather than considering the SRS document as a

cohesive entity [34]. Therefore, this approach still necessitates the involvement of an expert

to manually extract required sentences from the SRS document, a task that can be both

laborious and susceptible to errors. This study involves the direct processing of SRS

documents that employ requirement boilerplate in order to build requirement statements.

These constraints establish precise patterns that can be analyzed using the Natural Language

Processing (NLP) technique [35].

12

2.2 Comparison of Literature review

Table 1 Comparison table of previous studies

Ref

 paper

Year Dataset NLP

Classifier

Evaluation

parameters

Results

Accuracy

[1] 2020 PURE FM, VSM, LSA, Accuracy,

precision, recall

and f1 score

80%,82%, 83%

[2] 2021 NFR

Promise

And

DOORS

DistilBERT,

Bi LSTM

Accuracy,

precision, recall

and f1 score

80%, 77%

[3] 2021 DOORS RoBERTa,

BiLSTM, BERT

Accuracy,

precision, recall

and f1 score

80%,77%, 76%

[4] 2018 PURE SVM, KNN,LR, Accuracy,

precision, recall

and f1 score

77%

[5] 2017 SRS CNN Accuracy,

precision, recall

and f1 score

79%

[6] 2020 PURE FM, VSM, LSA, Accuracy,

precision, recall

and f1 score

80%,82%, 83%

[7] 2021 NFR

Promise

And

DOORS

DistilBERT,

Bi LSTM

Accuracy,

precision, recall

and f1 score

80%, 77%

[8] 2021 DOORS RoBERTa,

BiLSTM, BERT

Accuracy,

precision, recall

and f1 score

80%,77%, 76%

[9] 2018 PURE SVM, KNN,LR, Accuracy, 77%

13

precision, recall

and f1 score

Ref

 paper

Year

Dataset

NLP

Classifier

Evaluation

parameters

Results

Accuracy

[10] 2017 SRS CNN Accuracy,

precision, recall

and f1 score

79%

[11] 2020 PURE FM, VSM, LSA, Accuracy,

precision, recall

and f1 score

80%,82%, 83%

[12] 2021 NFR

Promise

And

DOORS

DistilBERT,

Bi LSTM

Accuracy,

precision, recall

and f1 score

80%, 77%

[13] 2021 DOORS RoBERTa,

BiLSTM, BERT

Accuracy,

precision, recall

and f1 score

80%,77%, 76%

[14] 2018 PURE SVM, KNN,LR, Accuracy,

precision, recall.

77%

[15] 2017 SRS CNN Accuracy,

precision, recall

and f1 score

79%

[16] 2020 PURE FM, VSM, LSA, Accuracy,

precision, recall

and f1 score

80%,82%, 83%

[17] 2021 NFR

Promise

And

DOORS

DistilBERT,

Bi LSTM

Accuracy,

precision, recall

and f1 score

80%, 77%

[18] 2021 DOORS RoBERTa,

BiLSTM, BERT

Accuracy,

precision, recall

and f1 score

80%,77%, 76%

[19] 2018 PURE SVM, KNN,LR, Accuracy,

precision, recall

and f1 score

77%

[20] 2017 SRS CNN Accuracy,

precision, recall

and f1 score

79%

14

2.3 Research Questions

Research questions have been summarized as below:

 RQ1: What NLP tools/techniques used in requirements engineering?

. RQ2: What automated requirement prioritization technique available in literature?

 RQ3: Does NLP already used in requirement prioritization and what is recorded accuracy?

 RQ4: Does supervised learning or data classification used in requirement prioritization?

2.4 Research gap

In this section area for the improvement in the existing research literature is discussed.

A detailed analysis of the selected articles was carried out in which tools, techniques,

frameworks, and other NLP approaches were used. After a comprehensive screening

procedure filtered the research that stipulates an endorsement for the detection of the

ambiguities caused by terms in requirements across different domain. At the moment,

there are few limitations in published researches on feature extraction from natural

language documents, i.e. unavailable tools for evaluation, restricted or limited input,

irrelevant feature naming, non-reproducible result, and domain engineer intervention in

the process [2]. While this research is aimed to produce a tool for automatically

extracting software features directly from SRS documents without any human

intervention in the process. The tool will be applied and tested using selected SRS from

the Public Requirement Engineering (DOORs) dataset [3] to justify its correctness

3 PROPOSED APPROACH

This Chapter presents approach for the most suitable alternative of the Word2Vec

algorithm for the detection of ambiguities caused by the terms used in natural language

requirements that are domain dependent. The approach has a pipeline of data collection,

pre-processing of data, building language model, apply alternative algorithm(s), and

resultant terms score of dissimilarity.

In fig 2. Shows the steps proposed method in block diagram. We have used four deep

learning models for the classification the BERT, RoBERTa, BiLSTM and LSTM for

DOORs dataset. In our methodology first we make sentence segmentation then generate

the tokens then use so part of speech the ass to entity recognition and then the relating

recognition and final step fond the references of word in software requirements

specification . We considered three characteristics for classification of SRS documents,

namely, Type, Priority and Severity.

 Figure 2 Block Diagram of Proposed method

3.1 Dataset

In this work, our SRS data was obtained with the Dynamic Object Oriented Requirements

System (DOORS) Next Generation, a requirement management technology created and

sold by IBM [2], which is extensively used by engineers all around the world. The SRS

dataset that we are working with has 83,837 occurrences and 213 characteristics.

However, in order to identify the categorical elements of the needs, such as their kind,

severity, and priority, we just looked at the summary of the criteria. When classifying SRS

papers, we took into consideration three characteristics: kind, priority, and severity.

3.2 Class distribution of categorical features in the DOORS SRS dataset

The breakdown of the classes into their respective category labels is presented in figure

there are four classes in the Priority, and those classes are unassigned, high, medium, and

low. There are also six classes in the Severity, and those classes are normal, major, minor,

blocker, critical, and undetermined. The Type category had a total of 20 distinct classes

when it was first created. After performing certain procedures including merging and

preprocessing, we were able to acquire seven classes for the Type category.

In addition, we got rid of the values that were represented by the notation 'nan,' which

stood for the absence of values for the Priority and Severity categories. It has come to our

attention that the classes belonging to the Type category are relatively distributed evenly,

however the classes belonging to the other categories exhibit a serious imbalance in the

data.

 Figure 3. Class distribution for the each class level [2]

3.3 Data Pre-Processing

In the preprocessing steps we applied tokenization by splitting sentences into

individual’s words. We extract the text from SRS and gives output in the form of

paragraph. In second we convert the all the characteristics to lowercase as an uppercase

letter for feature extraction then removal of noise and remove the white spaces. In third

removed the stop words then we applied tokenization by splitting sentences into

individuals words. We next moved to classification process on classes we considered

the three characteristics: kind, priority, and severity.

3.4 Experimental Setup Settings

In a standard supervised training pipeline, unlabeled data would be removed, and the fine-

tuning step would be carried out on a dataset that has been labelled. More than 80,000

requirement texts are included in the DOORS dataset; however, the bulk of these texts do

not have any labels attached to them. As a result of this, we use the MLM algorithm as the

unsupervised learning objective for the adaptive fine-tuning process. This algorithm uses

all of the requirement texts from the complete dataset. As part of the MLM

implementation process, the tokens in the input are masked at random with a chance of

0.15. As a result of this procedure, a brand-new adapted pre-trained model with the newly

calibrated parameters, θS, is produced.

In the remaining steps of the training operation, we will adhere to the standard practice of

using hyper-parameter selection. The dataset is comprised of three different sets: the

training set, the validation set, and the test set. To maintain consistency with the other pre-

training hyper-parameter settings, such as BERT checkpoints, the learning rate is

maintained at around 2e-5. The AdamW optimizer is used throughout the training process,

which lasts for a total of 30 iterations [43]. At the very end, just the very best model that

was discovered throughout the training gets loaded. After that, the phase of fine-tuning is

applied as the last step.

In the phase that comes following the adaptive phase and is known as the fine-tuning

phase, we likewise adhere to the standard practice. To be more specific, we have

downstream activities that target the tree categorization categories of Priority, Severity,

and Type. For each task, we used up to three epochs to fine-tune a previously trained

model, namely, an adapted previously trained model that was produced in step two. We

have noticed that maintaining a relatively low value for the learning rate at this step is

quite critical in order to prevent the modified language model from being corrupted.

Implementations and Coding

 Fig4. Implementation and importing libraries using python language

 Fig5. Fine Tuning the Model

 Fig6. Fine-tuning and adjusting hyper parameters

 Fig7: Training the Data and calculating the loss

 Fig8. Tested the accuracy

3.5 NLP models for Classification

We have used four deep learning models BERT, RoBERTa, LSTM and BiLSTM.

 BERT: The most well-known encoder that makes use of Masked Language

Model (MLM) and Next Sentence Prediction (NSP) aims is called BERT. The

BERT-base-uncased model has a hidden size of 768, which equates to 12 heads,

and a head embedding size of 64. This model also does not have a casing. The

model is comprised of a total of twelve layers. BERT-largeuncased, the big

equivalent model, has a hidden size of 1024 and has 24 layers and 16 attention

heads. BERT checkpoints were designed with a learning rate of 1e-4 in mind

originally. In order to avoid interrupting the learning that takes place during pre-

training when it is being fine-tuned, a slower learning rate (such as 1e-5 or 2e-5)

is chosen.

 RoBERTa: A variant of BERT that is more stable and efficient is known as

RoBERTa. The BERT large version is utilized as the basis for its underlying

structure. The model is trained for a longer period of time with larger batches,

and the following sentence 6 has been removed. These are some of the

adjustments made to vanilla BERT prediction target, training on bigger

sequences, and dynamically modifying the masking pattern are all aspects of

modelling that need to be improved.

 LSTM: It has been discovered that LSTM networks [26] are capable of learning

the long-term relationships and patterns that are present in natural language text.

LSTMs have a significant advantage over other RNNs due to the fact that their

use of forget and update gates enable them to manage and maintain consistent

information flow. This successfully protects them from the problems of

disappearing and exploding information, which are two of the most common

RNN-related problems.

 BiLSTM: The input data are processed twice by the bidirectional variation of

the LSTM model [27], once from the beginning to the end and once from the

end to the beginning. The BiLSTM technique investigates the more profound

semantics of the word structure. Training in both the forward and backward

direction offers an extra comprehension of the contextual dependency that is

present in the tokens.

4 IMPLEMENTATION, RESULTS & DISCUSSION

In this chapter, implementation of the approach as stated in the chapter 3 is discussed,

and results of the approach are analyzed in detail. The implementation consist of data

collection of different fields and results preparation and examination. Basic information

of the approach implementation, use of algorithms and programs is also discussed in this

section.

In this section we have discussed obtained results and experiments. These four CNN

architecture (BERT, RoBERTa, LSTM, BiLSTM) are used with hyper parameters to

process the classification. We retrieved the results and compare the results. Our

experiments are designed to investigate the effectiveness of deep learning models and

transfer learning in SRS document classification.

4.1 Evaluation methodology

 In order to do the analysis, we partitioned the dataset into three distinct sections:

training, testing, and validation. We consider 80% of the data to be training data in

order to update the weights in the fine-tuning phase. 10% of the data is used for

validation in order to assess the out-of-sample performance of the model while it is

being trained, and 10% of the data is used for final testing in order to measure the out-

of-sample performance of the model after it has been trained. We utilize stratified

sampling to choose 0.8, 0.1, and 0.1 sections of the SRS document from each class for

training, validation, and testing respectively. This helps us avoid over-fitting the data.

 4.2 Evaluation Parameters

The performance of the model was assessed based on a number of measures, such as

accuracy, precision, recall, and f1 score, all of which are derived through the use of the

following formulas:

 Accuracy: Accuracy is a statistic that gauges the overall performance of the

model under the assumption that all classes have the same weight. It is

determined by taking the ratio of the true positives to the total number of

samples and subtracting one from the other. In the formula TP means true

positive and TN means true negative FP means false positive and FN means

false negative.

 The formula for accuracy is as follows:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

 Precision: Precision is a statistic that evaluates the ratio of correctly recognized

positive samples to the total number of samples that are identified as positive,

regardless of whether or not the identification was correct. It does it by

determining how accurate the model's predictions are. In the formula TP means

true positive and TN means true negative FP means false positive and FN means

false negative The formula for calculating precision is as follows:

Precision= TP/TP + FP

 Recall: This metric calculates the ratio of the number of positive samples to the

total number of positive samples and determines whether or not the positive

samples were accurately labelled as positive. In the formula TP means true

positive and TN means true negative FP means false positive and FN means false

negative. It analyses how effectively the model can locate positive samples by

looking at the following factors:

Recall = TP / (TP + FN).

 F1 Score: This statistic takes into account both accuracy and recall in determining

its value. It determines how effectively the accuracy and recall measures interact

with one another:

F1 Score = 2 * (Precision * Recall) / (Precision + Recall)

4.3 Proposed approach

In our proposed approach RoBERTa achieved higher accuracy for the classification on

the DOORs dataset. We have used the pre-trained RoBERTa model with transformers

for the feature extraction. We have performed feature preprocessing on dataset like data

cleaning data removing null values and the arrangements of data extracting the required

data the pass it to the NLP model for training then test the data on test set. We split the

data into train set, test set and validation set. We tested the accuracy on validation set.

4.4 Optimizers

Optimizers are designed with the purpose of improving the effectiveness of learning

algorithms by enhancing the accuracy with which they perform prediction tasks. Given

this, it should come as no surprise that a solid pick of It is impossible for the prediction

model to be successful without an optimizer. An optimization method known as Adam

[14] is responsible for calculating the adaptive learning rates of individual parameters

by making use of just first order gradients. It combines the strengths of many

optimization methods, such as RMSprop and AdaGrad. It functions well with sparse

gradients, a characteristic that was obtained from AdaGrad, and it functions well with

mobile and online environments, a feature that was obtained from RMSprop. An

alternative implementation of the Adam optimization method is known as Adamax [15].

4.5 RoBERTa

To maintain consistency with the other pre-training hyper parameter settings, such as

RoBERTa checkpoints, the learning rate is maintained at around 1e-4. The Adam W

optimizer is used throughout the training process, the number of hidden layers is 16, the

hidden size is 1024, the maximum sequence length is 100, the epoch is 3, the dropout

rate is 0.1, the learning rate is 5e-04, and the batch size is 8.

 Figure 10. Architecture Diagram of RoBERTa [20]

4.6 Results of NLP Models

The below table shows the results and the accuracy of the model of BERT, DisilBERT,

LSTM and BiLSTM results. The RoBERTa obtained highest accuracy then the other

CNN models. The evaluation performed on the basis of accuracy precision recall and

F1 score.

Table 2 Classification Results of proposed models

Proposed

NLP

Models

Accuracy Precision Recall F1-score

BERT 78.9% 0.79 0.80 0.77

RoBERTa 84.9% 0.81 0.87 0.84

LSTM 76% 0.74 0.75 0.76

BiLSTM 80.2% 0.75 0.81 0.80

RoBERTa, BERT and BiLSTM model is evaluated using optimizers, such as adam, as

well as the number of epochs and the number of LSTM .This is done in order to

determine the optimal choice of hyper parameters, which eventually results in a

classification model that is more accurate.

 Figure 11. Results comparison of proposed model.

Table2 and Table 3 showed the comparative results of the models were reported for the

categorization of DOORS data according to Priority, and Severity categories,

respectively.

Table 3 Results of Priority

Proposed

NLP

Models

Accuracy Precision Recall F1-score

BERT 75.9% 0.76 0.78 0.74

RoBERTa 78.9% 0.79 0.80 0.77

LSTM 69.2% 0.71 0.65 0.69

BiLSTM 72.2% 0.74 0.75 0.72

 Figure 12. Results comparison of priority in DOORs Dataset

Table 4 Results of Severity

Proposed

NLP

Models

Accuracy Precision Recall F1-score

BERT 76% 0.76 0.80 0.76

RoBERTa 80% 0.78 0.85 0.80

LSTM 74% 0.72 0.75 0.76

BiLSTM 78% 0.78 0.78 0.78

 Figure 13. Results comparison of Severity in DOORs Dataset

4.7 Comparison between Proposed approach and existing approaches

The table 5 shows the comparisons between the proposed approach and existing

approaches. Our proposed approach BERT achieved 84.7% accuracy with 0.84 F1

score.

At the moment, there are few limitations in published researches on feature extraction

from natural language documents, i.e. unavailable tools for evaluation, restricted or

limited input, irrelevant feature naming, non-reproducible result, and domain engineer

intervention in the process [2]. While this research is aimed to produce a tool for

automatically extracting software features directly from SRS documents without any

human intervention in the process. The tool will be applied and tested using selected

SRS from the Public Requirement Engineering (DOORs) dataset [3] to justify its

correctness.

Table 5 Comparison between Proposed approach and existing approach

NLP Models Existing approaches

Accuracy

Proposed approach

Accuracy

RoBERTa [2] 80% 84%

BiLSTM [2] 77% 80%

BERT [2] 76% 78%

 5 CONCLUSION & FUTURE WORK

5.1 Conclusion

In this study we examined the effectiveness of the RoBERTa transformer as a state of-

the-art transfer learning model for multi-class text classification over SRS documents.

The proposed approach RoBERTa achieved higher accuracy then the other models. We

successfully classified the priority requirements using natural language processing

technique. For the classification we prioritize the requirements by labeling the data and

then classify on the basis of high priority. We compared our proposed approach with

existing approach to show the effectiveness of our approach. We successfully achieved

higher accuracy then previous studies.

5.2 Future Work

For the future work we will the proposed approach can be extended to implement by

increasing the number of algorithms and implement these models by adding layers

and considered more dataset.

i

REFERENCES

[1] Haris, M.S., Kurniawan, T.A. and Ramdani, F., 2020. Automated features

extraction from software requirements specification (SRS) documents as the basis

of software product line (SPL) engineering. Journal of Information Technology and

Computer Science, 5(3), pp.279-292.

[2] Kici, D., Malik, G., Cevik, M., Parikh, D. and Basar, A., 2021, June. A BERT-

based transfer learning approach to text classification on software requirements

specifications. In Canadian Conference on AI.

[3] Savas Yildirim1 , Mucahit Cevik1*, Devang Parikh2 and Ayse Basar1 1 Toronto

Metropolitan University, 44 Gerrard St E, Toronto, M5B 1G3, Ontario, Canada. 2

IBM, Cary, 27709, North Carolina, USA. Adaptive Fine-tuning for Multiclass

Classification over Software Requirement Data

[4] Ali, M. Asif, M. Shahbaz, A. Khalid, M. Rehman, and A. Guergachi. “Text

categorization approach for secure design pattern selection using software

requirement specification”. In: IEEE Access 6 (2018), pp. 73928–73939.

[5] R. Navarro-Almanza, R. Juarez-Ramirez, and G. Licea. “Towards supporting

software engineering using deep learning: A case of software requirements

classification”. In: CONISOFT 2017. IEEE. 2017, pp. 116–120.

[6] Hussain, O. Ormandjieva, and L. Kosseim. “Automatic quality assessment of SRS

text by means of a decision-tree-based text classifier”. In: Seventh International

Conference on Quality Software (QSIC 2007). IEEE. 2007, pp. 209–218.

[7] U Shah and D Jinwala. “Resolving ambiguities in natural language software

requirements: a comprehensive survey”. In: ACM SIGSOFT Software Engineering

Notes 40.5 (2015), pp. 1–7.

[8] S. Ruder, M. E. Peters, S. Swayamdipta, and T. Wolf. “Transfer learning in natural

language processing”. In: Proceedings of the 2019 Conference of the North

American Chapter of the ACL: Tutorials. 2019, pp. 15–18.

[9] E. Hull, K. Jackson, and J. Dick. “DOORS: a tool to manage requirements”. In:

Requirements engineering. Springer, 2002, pp. 187–204.

[10] J. Dick, E. Hull, and K. Jackson. “Requirements Engineering in the Problem

Domain”. In: Requirements Engineering. Springer, 2017, pp. 113–134.

ii

[11] T. Young, D. Hazarika, S. Poria, and E. Cambria. “Recent trends in deep learning

based natural language processing”. In: ieee Computational intelligenCe magazine

13.3 (2018), pp. 55– 75.

[12] B. S. Haney. “Patents for NLP Software: An Empirical Review”. In: Available at

SSRN 3594515 (2020). [13] N. Ranjan, K. Mundada, K. Phaltane, and S. Ahmad.

“A Survey on Techniques in NLP”. In: International Journal of Computer

Applications 134.8 (2016), pp. 6–9.

[13] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, and J. Gao.

“Deep learning based text classification: A comprehensive review”. In: arXiv

preprint arXiv:2004.03705 (2020).

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “Bert: Pre-training of deep

bidirectional transformers for language understanding”. In: arXiv preprint

arXiv:1810.04805 (2018).

[15] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. “DistilBERT, a distilled version of

BERT: smaller, faster, cheaper and lighter”. In: arXiv preprint arXiv:1910.01108

(2019).

[16] A. Bacchelli, T. Dal Sasso, M. D’Ambros, and M. Lanza. “Content classification

of development emails”. In: 2012 34th International Conference on Software

Engineering (ICSE). IEEE. 2012, pp. 375–385.

[17] B. Khan, T. Syed, Z. Khan, and M. Rafi. “Textual analysis of End User License

Agreement for red-flagging potentially malicious software”. In: ICECCE 2020.

IEEE. 2020, pp. 1–5. [19] E. Dias Canedo and B. Cordeiro Mendes. “Software

Requirements Classification Using Machine Learning Algorithms”. In: Entropy

22.9 (2020), p. 1057.

[18] D. Ott. “Automatic requirement categorization of large natural language

specifications at mercedes-benz for review improvements”. In: International

Working Conference on Requirements Engineering: Foundation for Software

Quality. Springer. 2013, pp. 50–64

[19] J. Wieting, M. Bansal, K. Gimpel, K. Livescu, Towards universal paraphrastic

sentence embeddings, arXiv preprint arXiv:1511.08198 (2015).

[20] D. Cer, Y. Yang, S.-y. Kong, N. Hua, N. Limtiaco, R. S. John, N. Constant, M.

Guajardo-C´espedes, S. Yuan, C. Tar, et al., Universal sentence encoder, arXiv

preprint arXiv:1803.11175 (2018).

iii

[21] Q. Le, T. Mikolov, Distributed representations of sentences and documents, in:

International conference on machine learning, PMLR, 2014, pp. 1188–1196.

[22] N. Reimers, I. Gurevych, Sentence-bert: Sentence embeddings using siamese bert-

networks, arXiv preprint arXiv:1908.10084 (2019).

[23] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, S.

Fidler, Skip-thought vectors, in: Advances in neural information processing

systems, 2015, pp. 3294–3302.

[24] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, L.

Zettlemoyer, Deep contextualized word representations, arXiv preprint

arXiv:1802.05365 (2018).

[25] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.

Kaiser, I. Polosukhin, Attention is all you need, in: Advances in neural information

processing systems, 2017, pp. 5998–6008.

[26] A. Mustafa, W. M. W. Kadir, and N. Ibrahim, “Automated Natural Language

Requirements Analysis using General Architecture for Text Engineering (GATE)

Framework,” Journal of Telecommunication, Electronic and Computer Engineering

(JTEC)JTEC, vol. 9, no. 3–4, pp. 97–101, 2017, [Online]. Available:

https://jtec.utem.edu.my/jtec/article/view/2925

[27] V. Jain, R. Malhotra, S. Jain, and N. Tanwar, “Cross-Domain Ambiguity Detection

using Linear Transformation of Word Embedding Spaces.” arXiv, Mar. 29, 2020.

[28] Accessed: Apr. 11, 2023. [Online]. Available: http://arxiv.org/abs/1910.12956

[29] S. Çevikol and F. B. Aydemir, “Detecting Inconsistencies of Natural Language

Requirements in Satellite Ground Segment Domain,” REFSQ Workshops, 2019,

[Online].

[30] Available: https://ceur-ws.org/Vol-2376/NLP4RE19_paper15.pdf

[31] A. Chattopadhyay, N. Niu, Z. Peng, and J. Zhang, “Semantic Frames for

Classifying Temporal Requirements: An Exploratory Study,” REFSQ Workshops,

pp. 1–9, 2021, [Online]. Available:

https://homepages.uc.edu/~niunn/papers/NLP4RE21.pdf

[32]

[33] M. Arrabito, A. Fantechi, S. Gnesi, and L. Semini, “A comparison of NLP Tools

for RE to extract Variation Points,” REFSQ Workshops, 2020, [Online]. Available:

https://ceur-ws.org/Vol-2584/NLP4RE-paper1.pdf

iv

[34] T. Baldwin, Y. Li, B. Alexe, and I. R. Stanoi, “Automatic Term Ambiguity

Detection,” Proceedings of the 51st Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short Papers), pp. 804–809, Aug. 2013.

[35] D. M. Blei, Andrew Y. Ng, and Michael I. Jordan, “Latent Dirichlet Allocation,”

[36] Journal of Machine Learning Research 3 (2003) 993-1022, pp. 993–1022, Jan.

2003.

[37] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, “Automated Extraction and

Clustering of Requirements Glossary Terms,” IEEE Trans. Softw. Eng., vol. 43, no.

10, pp. 918–945, Oct. 2017, doi: 10.1109/TSE.2016.2635134.

[38] Z. S. Harris, “Distributional Structure,” WORD, vol. 10, no. 2–3, pp. 146–162,

Aug. 1954, doi: 10.1080/00437956.1954.11659520.

[39] R. Collobert and J. Weston, “A Unified Architecture for Natural Language

Processing: Deep Neural Networks with Multitask Learning”.

[40] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed

Representations of Words and Phrases and their Compositionality”.

[41] P. D. Turney and P. Pantel, “From Frequency to Meaning: Vector Space Models of

Semantics,” J. Artif. Intell. Res., vol. 37, pp. 141–188, Feb. 2010, doi:

10.1613/jair.2934.

[42] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of Word

Representations in Vector Space.” arXiv, Sep. 06, 2013. Accessed: May 05, 2023.

[Online]. Available: http://arxiv.org/abs/1301.3781

[43] K. Bhatia, S. Mishra, and A. Sharma, “Clustering Glossary Terms Extracted from

Large-Sized Software Requirements using FastText,” in Proceedings of the 13th

Innovations in Software Engineering Conference on Formerly known as India

Software Engineering Conference, Jabalpur India: ACM, Feb. 2020, pp. 1–11. doi:

10.1145/3385032.3385039.

[44] F. Dalpiaz and N. Niu, “Requirements Engineering in the Days of Artificial

Intelligence,” IEEE Softw., vol. 37, no. 4, pp. 7–10, Jul. 2020, doi:

10.1109/MS.2020.2986047.

[45] B. Wang, A. Wang, F. Chen, Y. Wang, and C.-C. J. Kuo, “Evaluating word

embedding models: methods and experimental results,” APSIPA Trans. Signal Inf.

Process., vol. 8, no. 1, 2019, doi: 10.1017/ATSIP.2019.12.

[46] P. Vora, M. Khara, and K. Kelkar, “Classification of Tweets based on Emotions

v

using Word Embedding and Random Forest Classifiers,” Int. J. Comput. Appl., vol.

178, no. 3, pp. 1–7, Nov. 2017, doi: 10.5120/ijca2017915773.

[47] S. Mishra and A. Sharma, “A Generalized Semantic Filter for Glossary Term

Extraction from Large-Sized Software Requirements,” in 14th Innovations in

Software Engineering Conference (formerly known as India Software Engineering

Conference), Bhubaneswar, Odisha India: ACM, Feb. 2021, pp. 1–9. doi:

10.1145/3452383.3452387.

[48] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching Word Vectors

with Subword Information.” arXiv, Jun. 19, 2017. Accessed: May 02, 2023.

[Online].

[49] Available: http://arxiv.org/abs/1607.04606

[50] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of Tricks for Efficient

Text Classification.” arXiv, Aug. 09, 2016. Accessed: May 05, 2023. [Online].

Available: http://arxiv.org/abs/1607.01759

[51] “Word representations · fastText.” https://fasttext.cc/index.html (accessed May 17,

2023).

[52] C. D. Manning, “Part-of-Speech Tagging from 97% to 100%: Is It Time for Some

Linguistics?,” in Computational Linguistics and Intelligent Text Processing, A. F.

Gelbukh, Ed., in Lecture Notes in Computer Science, vol. 6608. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2011, pp. 171–189. doi: 10.1007/978-3-642-19400-

9_14.

[53] J. Pfeiffer, A. R¨uckl´e, C. Poth, A. Kamath, I. Vuli´c, S. Ruder, K. Cho, I.

Gurevych, Adapterhub: A framework for adapting transformers, arXiv preprint

arXiv:2007.07779 (2020).

[54] S.-A. Rebuffi, H. Bilen, A. Vedaldi, Learning multiple visual domains with

residual adapters, arXiv preprint arXiv:1705.08045 (2017).

[55] V. Sanh, L. Debut, J. Chaumond, T. Wolf, Distilbert, a distilled version of bert:

smaller, faster, cheaper and lighter, arXiv preprint arXiv:1910.01108 (2019).

[56] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L.

Zettlemoyer, V. Stoyanov, Roberta: A robustly optimized bert pretraining approach,

arXiv preprint arXiv:1907.11692 (2019).

[57] A. Torralba, A. A. Efros, Unbiased look at dataset bias, in: CVPR 2011, IEEE,

2011, pp. 1521–1528.

vi

[58] J. Qui˜nonero-Candela, M. Sugiyama, N. D. Lawrence, A. Schwaighofer, Dataset

shift in machine learning, Mit Press, 2009.

[59] I. Loshchilov, F. Hutter, Decoupled weight decay regularization, arXiv preprint

arXiv:1711.05101 (2017).

[60] E. Alpaydm, Combined 5× 2 cv f test for comparing supervised classification

learning algorithms, Neural computation 11 (1999) 1885–1892.

[61] J. Pfeiffer, A. R¨uckl´e, C. Poth, A. Kamath, I. Vuli´c, S. Ruder, K. Cho, I.

Gurevych, Adapterhub: A framework for adapting transformers, arXiv preprint

arXiv:2007.07779 (2020).

[62] S.-A. Rebuffi, H. Bilen, A. Vedaldi, Learning multiple visual domains with

residual adapters, arXiv preprint arXiv:1705.08045 (2017).

[63] V. Sanh, L. Debut, J. Chaumond, T. Wolf, Distilbert, a distilled version of bert:

smaller, faster, cheaper and lighter, arXiv preprint arXiv:1910.01108 (2019).

[64] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L.

Zettlemoyer, V. Stoyanov, Roberta: A robustly optimized bert pretraining approach,

arXiv preprint arXiv:1907.11692 (2019).

[65] A. Torralba, A. A. Efros, Unbiased look at dataset bias, in: CVPR 2011, IEEE,

2011, pp. 1521–1528.

[66] J. Qui˜nonero-Candela, M. Sugiyama, N. D. Lawrence, A. Schwaighofer, Dataset

shift in machine learning, Mit Press, 2009.

[67] I. Loshchilov, F. Hutter, Decoupled weight decay regularization, arXiv preprint

arXiv:1711.05101 (2017).

[68] N. Reimers, I. Gurevych, Sentence-bert: Sentence embeddings using siamese bert-

networks, arXiv preprint arXiv:1908.10084 (2019).

[69] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun,

A. Torralba, S. Fidler, Skip-thought vectors, in: Advances in neural information

processing systems, 2015, pp. 32

