Secure Messaqing System Based on McEliece

Encryption Scheme

By
Humera Javed
00000319724

Submitted to the faculty of Information Security Department, Military College of Signals,
National University of Sciences and Technology, Rawalpindi in partial fulfillment of the

requirements for the degree of MS in Information Security

Jun 2023

THESIS ACCEPTANCE CERTIFICATE

Certified that final copy of MS Thesis written by Ms Humera Javed,
Registration No. 00000319724, of Military College of Signals has been vetted by
undersigned, found complete in all respects as per NUST Statutes/Regulations/MS
Policy, is free of plagiarism, errors, and mistakes and is accepted as partial fulfillment
for award of MS degree. It is further certified that necessary amendments as pointed
out by GEC members and local evaluators of the scholar have also been incorporated
in the said thesis.

Signature: =

i, At
Name of Supervisor Brig, Abdul Ghafoor,Ph®

Date:

Signature (HOD); W

Date: — !2-!-8 Pz

inicrmation Security
Wiiitary College of Sigs

®)

Signature (Dean/Principal)

e 2|[2[23 /1 g

, MCS (NUST)
i§ Masood, Phd)

Table of Contents

Certificate

Declaration

Dedication

Abstract

Acknowledgments

Introduction

11
1.2
1.3
14
1.5
1.6

Literature

Overview

Motivation and Problem Statement
Research Objective

Scope of Research

Significance of Research

Thesis Organization

Review

2.1 Limitation of the existing literature

Post Quantum Cryptography

3.1

3.2

3.3
3.3.1
3.3.2
3.33
3.34
3.35
3.3.6

3.4

3.6
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6
3.6.7

Introduction

Explanatory Chart

Algorithms
Lattice-based cryptography
Multivariate cryptography
Hash-based cryptography
Code-based cryptography
Super singular elliptic curve isogeny cryptography
Symmetric key quantum resistance

Key Attributes of PQC Algorithms

Security reductions
Lattice-based cryptography — Ring-LWE Signature
Lattice-based cryptography — NTRU, BLISS
Multivariate cryptography — Unbalanced Oil and Vinegar
Hash-based cryptography — Merkle signature scheme
Code-based cryptography — McEliece
Code-based cryptography — RLCE
Super singular elliptic curve isogeny cryptography

3

O 00 N O

10
11
11
11
12
12
13
14
15
20
21
21
22
22
22
22
23
23
23
24
25
28
28
28
28
29
29
29
29

3.7 Comparison
McEliece cryptosystem
4.1 Introduction
4.2 Part I: Basic Terminology
4.1.1 Cryptology
4.1.2 Error Correcting Codes
4.1.3 Fields
4.1.4 Binary
4.15 Hamming Distance
4.1.6 Linear Codes
4.3 Goppa Codes
421 Parameters
4.2.2 Binary Goppa Codes
4.2.3 Parity Check Matrix
4.2.4 Encoding
425 Irreducible Binary Goppa Code Example
4.2.6 Error Correction
4.2.7 Decoding
4.4 The McEliece Cryptosystem with Example
43.1 Example
Application Implementation and Results
51 Application GUI
5.2 Key Generation:
5.3 Keys Generation
5.4 Encryption and Decryption Process
531 Private Key
5.3.2 Public Key
Discussion and Analysis
6.1 Creation of Parameters
6.1.1 Finite Field:
6.1.2 Goppa Polynomial:
6.2 Number of Random Vectors tested while decryption

6.3 Initial Parameters vs. Key length

29
31
31
33
33
34
34
37
37
38
38
39
39
39
40
41
43
45
45
46
49
49
50
65
71
72
73
78
79
79
80
83
83

6.4 Encryption and Decryption Time

References

84
87

Certificate

This is to certify that NS Humera Javed Student of MSIS-18 Course Reg. No. 00000319724 has
completed his MS Thesis title “Secure Messaging System Based on McEliece Encryption

Scheme” under my supervision. | have reviewed his final thesis copy and am satisfied with his

work.

Thesis Supervisor
Dated: May 2023 (Brig Dr. Abdul Ghafoor)

Declaration

I hereby declare that no portion of the work presented in this thesis has been submitted in support
of another award or qualification either at this institution or elsewhere.

Humera Javed

Dedication
I dedicate this thesis to Almighty Allah, my source of inspiration, wisdom, knowledge, blessing,

and understanding.

My thesis is also dedicated to my families, who have been very supportive during the duration of

my endeavor.

This thesis is also dedicated to the people who inspired me to work hard and never give up on a

goal | set for myself.

Abstract

The security of important applications of the internet such as e-commerce, banking, and
eHealth is furnished by public-key cryptographic systems (or cryptosystems, for short). Underlying
hard problems of presently used public cryptosystems are factoring and computing discrete
logarithms which are unable to solve by conventional computers. Main disadvantage of these
systems is that they are not resistant against quantum computers. It is anticipated that during the
next 10-20 years, quantum computers will be ready for widespread use. Code based encryption
systems are one of the cryptosystems that are capable to resist quantum computing and hence
provides an area in Post-Quantum Cryptography. McEliece cryptosystem which is also a code-
based cryptosystem is one of the few that is expected to withstand future assaults from powerful
computers. Despite of several attempts by the crypto community, the McEliece system has not been
cracked to this day.

In recent years, internet-based messaging applications have been widely used as they make
it easy to communicate and connect with people around the world. There are many chat apps that
offer secure messaging services by using conventional encryption schemes however, they are not
quantum resistive. So, need of the time is to implement the messaging System based on McEliece
encryption scheme that is prone to Quantum attacks. The McEliece cryptographic system is one of
the suitable options to ensure secure communications over the Internet when quantum computers
become practical.

By using McEliece public key encryption system we have proposed/developed Quantum-
resistant communications system/ app. It is a desktop app that can be used in computers for secure
and Quantum resistive environment. The final product that we will be providing to the two users is
just an exe file that can be installed in any computer and shortcut as well as the icon will be visible
on the desktop. As the underlying encryption scheme used in the app is McEliece encryption
scheme so it is supposed to be resistive against cyber-attacks generated by quantum computers.
Moreover, this application may be integrated with financial systems to facilitate secure
transactions. The secure nature of app can prevent unauthorized access to sensitive financial
information, making it harder for hackers to intercept or manipulate transactions. This can enhance
the security and integrity of digital payments, banking, and other financial services. It can also be
used in Government and military organizations for communication. Governments and military
organizations deal with highly sensitive information, and secure communication is crucial for their
operations. This app can ensure that their messages remain confidential and resistant to interception

by adversaries.

Acknowledgments

I express my deepest gratitude to my supervisor, Brig. Dr. Abdul Ghafoor, for his countless hours
in reflecting, reading, encouraging, guidance and continuous support throughout this journey. It
was a great privilege and honor for me to work and study under his supervision. His vision,
dynamism, prompt response and valuable suggestions make it possible to complete this tedious task
in due course of time. His suggestions helped me to improve my problem-solving capabilities and

research skills.

I would like to extend my gratitude to co-supervisor Dr. Shahzaib Tahir Butt and committee
members Dr. Fawad Khan and Maj Bilal Ahmed for their support and recommendations, which

improved this research study.

For the chance to hone my research abilities and have a positive impact on the world, I am very
grateful to the College of Signals and National University of Science and Technology.

I am also very thankful to the organization and individuals who participated in this research study

directly or indirectly to implement and test the proposed idea.

Finally, 1 would want to express my appreciation to everyone who has helped me in any way with

this research project, whether it be via providing me with information or advice.

Thank you all.

10

Chapter 1

Introduction

1.1 Overview

The security of today's traditional cryptosystems is increasingly at risk as quantum computers
become closer to commercialization and can solve the issues that these systems rely on, such as
integer factorization and discrete logarithm. Since quantum computers can effectively solve certain
problems that classical computers cannot, they will eventually be able to crack the security
protocols now in use. We need to create cryptographic systems that can function in a post-quantum
world so that we are ready for the day when quantum computers become a realistic reality. In order
to achieve this objective, it is necessary to investigate other computing problems that are difficult
for both conventional and quantum computers. “The National Institute of Standards and
Technology (NIST) in the United States is now running a competition to standardize a public-key

encryption system suitable for use once quantum computers have been built.

1.2 Motivation and Problem Statement

Quantum computers, which are still in their infancy but have the potential to greatly boost the
speed with which specific problems like the ones listed above are addressed by conventional
computers, are now the subject of intense research and development. Within the next decade to two
decades, quantum computers may find widespread use [31]. If they materialized now, they would

instantly make vast sections of the internet unsafe.

For these reasons, in November 2017, NIST held a competition to determine which, if any,
quantum-resistant public-key cryptosystems should be adopted as the industry standard. McEliece
crypto system was one of the finalists of NIST’s Post Quantum Cryptography Standardization
Process round 02. Other Candidates in second round of NIST along with McEliece cryptosystem

were as listed below:-

e BIKE

e CRYSTALS-KYBER
e FrodoKEM

e HQC

11

e LAC

e LEDACcrypt (merger of LEDAkem/LEDApKc)

e NewHope

e NTRU (merger of NTRUENcrypt/NTRU-HRSS-KEM)
e NTRU Prime

e NTS-KEM

e ROLLO (merger of LAKE/LOCKER/Ouroboros-R)

e Round5 (merger of Hila5/Round?2)

e RQC
e SABER
e SIKE

e Three Bears

In principle, the advent of quantum computers makes obsolete long-standing public key
cryptosystems predicated on the challenge of computing logarithms over finite fields. The
McEliece system is one of the few that is expected to withstand assaults from powerful computers
in the future, despite several efforts by the crypto community to break it. Because of the
vulnerability of our current communications infrastructure to Quantum assaults, the adoption of a
Quantum-Resistant Crypto System has become an urgent need. When quantum computers become
commonplace, we'll need to employ the McEliece cryptography scheme to keep Internet

connections safe.

1.3 Research Objective

Research objective of the thesis is as follow:-

e In depth analysis of McEliece Cryptosystem in comparison with available Quantum
resistive algorithms

e Implementation of McEliece Cryptosystem based on Goppa Codes

e Implementation of Secure Quantum Resistive messaging application

e Analysis of Quantum Resistive Secure Communication messaging Solution

1.4 Scope of Research

In this thesis we developed a Messaging application that uses McEliece encryption. We can use this

application anywhere in between two clients that have insecure media or channel. Most of the

12

application now a days use conventional encryption techniques, this is out of the box solution for
secure messaging application. Specifically on wireless Medias where most of the messaging
applications cannot be used, this solution after implementation can be tested.

Some of the advantages of this research will be:

° Develop an understanding of McEliece cryptosystem
° Develop an understanding asymmetric messaging architecture between two clients
° Design and implementation of McEliece cryptosystem using Goppa Codes for

secure encrypted messaging
° Paving a way for future work to include other features like Audio, Videos, and

images encryption using McEliece cryptosystem

1.5 Significance of Research

Secure communication between two parties, even in the presence of an eavesdropper, is one of the
main goals of cryptography. An area of cryptography known as "post-quantum cryptography"
focuses on classical cryptographic methods that are expected to be secure against quantum assaults.
In this thesis, we will examine the use of a supposedly Quantum-resistant code-based encryption
system in a secure communication application. In 1978, after the RSA cryptosystem had already
been introduced, Robert McEliece suggested it. The security cryptosystem is predicated on issues
that are thought to be intractable by quantum computers, making it resistant to assaults that can
crack it in polynomial time. To protect sensitive information, modern cryptosystems like RSA use
mathematical challenges like factoring large integers and solving the discrete logarithm problem.
Integer factorization and the discrete logarithm problem in a finite field may be solved in
polynomial time with the help of a technique discovered by Peter W. Shor [7] in the late 1990s.

While quantum computers only exist in theory at the moment, it is believed that a working
prototype might be constructed in the near future [4]. NIST has just released a document [8] in

which they state:

“It is unclear when scalable quantum computers will be available. However, [...] it is likely
that a quantum computer capable of breaking 2000-bit RSA in a matter of hours could be
built by 2030 for a budget of about a billion dollars.”
This gives rise to a justifiable worry that widely used cryptosystems like RSA may be cracked over
the next few years. Code-based cryptography is one such alternate approach in the scenario when

quantum computers will be practically in use. For the same reason, we have implemented the

13

McEliece cryptosystem in a closed-source messaging app that is meant to be immune to quantum
assaults.

Our study's focus is on "Development of Quantum Resistive Messaging Solution,” however the

underlying architecture may be used in following sectors as well.

° Wireless Communication

° May be integrated with financial systems to facilitate secure transactions

° E-commerce and Online Retail-Secure communication between buyers and sellers

° Can be used in Govt and Military organizations to ensure the confidentiality of

messages and resistance to interception by adversaries.
As scope of this research we are now making a secure chat application that can be deployed at
Computers and end to end encrypted messages can be forwarded which are encrypted based on
McEliece algorithms. As a future work our work can be extended to make this application workable

on mobile phone or on even hardware to achieve desired results.

1.6 Thesis Organization

The thesis is structured as follows:

e Chapter1 covers the introduction part of the thesis that enlightens/highlights the
problem statement, research objectives, thesis scope, and its contribution.

e Chapter 2 is dedicated to essential literature review on the subject topic that helps us in
writing and developing the Quantum resistive application.

e Chapter 3 covers the different Quantum resistive techniques and algorithms that are
developed over the period of time and also lay down basis on choice of code based McEliece
Cryptosystem.

e Chapter4 covers the McEliece Crypto system basics terminologies, Public and Private
Key generation algorithm along with the encryption and decryption process.

e Chapter5 explains the implementation of the secure Quantum resistive messaging
application.

e Chapter 6 presents the analysis of the developed application.

e Chapter 7 concludes the reporting part of the research/ thesis and proposes a future

research direction.

14

Chapter 2

Literature Review

In 1978, R. J. McEliece introduced the McEliece Encryption technique based on the Binary Goppa
code, which appears highly safe while still allowing extraordinarily quick communication rates [9].
This cryptosystem is well suited for deployment in a distributed communication network, such as
those expected to be used by NASA to disseminate data gathered from orbit.

In 1986, Niederreiterintroduced a cryptosystem that uses a public key with fewer bits than
ChorRivest but achieves a greater information rate [10]. This secure network was developed using

Algebraic Coding Theory.

In 1988, Leon provided an approach for determining the smallest possible size of massive error-
correcting codes. Stern provided a method for locating lightweight code words, while Lee made a
security remark about the McEliece public key cryptosystem. The matrix B may be determined
using O(s4 + sN) Fq arithmetic operations, thanks to an approach reported by Sidelnilkov et al in
1992 [11], which exploited a weakness in [9], [10]. This technique is used to show the vulnerability
of public-key cryptosystems like these.

In the same year, 1994, Sidelnikov et alproposed a further enhancement to the cryptosystem [12]
described in [9] and [10] and offered some supporting data. They also looked at how difficult it
would be to break the original and updated versions of the encryption scheme. They concluded that

the latter had a significantly higher level of security for numbers N larger than or equal to 1024.

A year and a half later, in 1996, Janwa et alexamined important versions of the McEliece
encryption method employing a new and bigger class of g-are A-G (Algebraic Geometric) gompa
codes [13]. In 1998, Sendrier investigated code recovery by constructing a linear code C from its
generating matrix to create a concatenated pattern [14].

15

The McEliece cryptography approach was strengthened by Loidreau et alin 2000 without needing a
larger public key [7]. They could do this by generating decipherable patterns of large-weight errors

utilizing certain regions of the automorphism groups of the codes.

In 2000, Canteaut et alissued a rebuttal to [9]. This technique is a novel probabilistic method for
identifying the low-weight words in any large linear code. Public key cryptography with key sizes
of fewer than 4000 bits was suggested by Berger et alin 2005[16]. Also, they demonstrated how to
conceal the underlying code structure while exploiting the features of subcodes to shrink the public

key size.

In addition, Minder et aldemonstrated in 2007 how the Sidelnikov cryptosystem might be
compromised based on its design [6]. A private key is generated from a public key in this attack. If
the parameters efficiently sample the code word with the least weight, then Reed-Muller is an
effective code. The execution time of the code is sub-exponential in this example. McEliece, a

cryptosystem built on low-genus curves, is the primary target of this attack.

For their 2008 study, Baldi et al settled on a group of QC-LDPC Codes (Quasi-Cyclic Low-Density
Parity Check Codes) [17]. Due to its reliance on Goppa codes, the initial McEliece cryptosystem
suffered from large key sizes and sluggish transmission rates. However, these issues were
circumvented. Codes are generated utilizing a novel technique based on Random Difference
Families that allows for generating a huge number of sets of mutually-indistinguishable codes.
Comprehensive cryptanalysis was built to confirm the security level attainable via a selection of
system characteristics. To address the major issues identified as potentially harmful attacks, they
refined a QC-LDPC code implementation of the McEliece cryptographic system. Baldi made a few
adjustments. throughout the next year. It was proposed in 2009 that a public key may be shrunk by

creating quasi-cyclic codes over F28.

A cryptanalysis based on QC (Quasi Cyclic) codes and their variants was published in 2010; this
method ultimately allowed the McEliece encryption scheme to be cracked. Berger and Loidreau
developed Subcodes for generalized Reed Solomon codes. A novel structural attack on the
McEliece/Niederreiter public key cryptosystem was developed in the same year by Wieschebrink et
al18]. Thus, for almost all practicable parameter selections, the private key can be rebuilt with high

confidence in polynomial time.

16

In 2012, two variants of the McEliece cryptosystem were developed, one based on MDPC
(Moderate Density Parity-Check) codes and another on QC-MDPC (Quasi Cyclic MDPC) codes
[6]. Everything, from generating keys to encrypting and decrypting data, is simplified in this new
edition. That year, a novel kind of public key encryption using convolutional codes called McElece
was also introduced. Important to this design are random-generated parity checks. They hinder

one's ability to mount a structural assault.

Coureur et aldemonstrated that the A-G-coded McEliece public key encryption scheme could be
cracked in under two years using a polynomial-time attack [5]. A public-key decoding technique
can be found for the first time, even for codes constructed on high-genus curves. Because of this,

their assaults are very effective compared to their predecessors.

In 2014, Illantheral et alpresented hexi polynomial codes, hexi Maximum Rank Distance codes,
hexi Rank Distance codes, hexi wild Goppa codes, and hexiGoppa codes[19]. These new McEliece
codes were used to develop a public-key cryptosystem called Hexi McEliece. The temporal
complexity of this newly developed cryptosystem is lower, and its error-correcting capability is
higher, making it more practical for widespread implementation. Signatures using chained hex
codes (CHC) were also suggested that year by Ilantheral et al[20]. The suggested scheme's main
benefit is a size reduction, particularly in the public key and signature. The public key's compact
size sped up decoding, signing, and verifying. As a possible post-quantum cryptography approach,

Shrestha et alexplored a polar-code-based variation of the McEliece cryptosystem in 2014 [21].

In the same year, Hooshmand suggested a public key technique using polar codes to improve the
McEliece cryptosystem's efficiency further [16]. Related to the original McEliece cryptosystem, the
proposed approach has an upper transmission rate R = 0.85 and a smaller private and public key
size MPB = 65.19 bytes, MPR = 2.75 kbs. Bardet et al explained the polar code's construction in
2015which, together with a key-recovery attack provided by Shrestha [21], allows every message
to be decoded. Different strategies for creating public encryption systems based on universal
random linear codes were disclosed by Wang et alin the same year (2015) [8]. They demonstrated
that their techniques were impervious to common assaults against linear-code-based encryption. In
2016, Moufek presented a modified version of the McEliece cryptographic system that relies on
Quasi Cyclic-LDPC and Quasi Cyclic MDPC codes [24]. The generator matrix's random bits were
derived from a self-shrinking generator with some tweaks. They proved that their system was safe
from common structural and decoding threats. The updated McEliece cryptographic system

developed by Moufek, Guenda, and Aaron Gulliver in 2017 was attacked by Dragoi et al[8].
17

Independent of the second code's characteristics, the attack relies solely on discovering its structure

to succeed. Therefore, their conclusion holds even if a different code is used in place of the MDPC.

Developing a post-quantum secure McEliece cryptographic implementation is described in [1],
which details the design process for an embedded co-processor. A co-design between hardware and
software has been prioritized to ensure McEliece's success on low-cost, embedded devices in the
real world. Parameters of the system, algorithms, architectural choices, and even elementary
mathematical operations are all considered throughout the optimization design process. An 8-bit
PicoBlaze softcore is used in the final design for its adaptability, and multiple parallel acceleration
units help maximize throughput. The co-processor prototype runs on a Spartan-3an FPGA, which is
only being put to 30% of its capacity. If the FPGA's clock frequency is set to 92 MHz, decrypting a
single 80-bit key using McEliece takes less than 100K clock cycles or just one millisecond. The

present design is ten times larger and slower than this.

The study of cryptography using codes has great promise. It paves the way for developing several
cryptographic techniques, such as authentication protocols, public-key cryptosystems, etc. The
McEliece cryptosystem was the first code-based public-key cryptosystem, and other variations
were proposed to develop different security protocols. Radio-frequency identification systems
utilize a wide variety of authentication methods, some of which are very new and rely on other
implementations of the McEliece cryptosystem. These protocols are surveyed by Chikouche,
Cherif, and Cayrel [2]. In addition, we analyze the safety and efficiency of each approach. Digital
signature systems based on the McEliece cryptosystem are discussed in [4], as are several widely-
used significant codes. Goppa codes, used in the McEliece cryptographic method, are extremely
fast and were thought to be safe against multiple quantum assaults; nevertheless, the vast amount of
its public keys is a serious downside. Much advancementhave been made, and more are being made
all the time, to lower the size of public keys without sacrificing security. This document details
several enhancements and adjustments made to the McEliece cryptosystem. Pay attention to code-

based cryptography's digital signature techniques as well.

It is often said that a digital computer is an effective universal computing device capable of
simulating any physical computing equipment with an increase in a calculation time of, at most, a
polynomial factor. In light of quantum physics, this might be different. Several suggested
cryptosystems have their foundations in difficulties like factoring integers and calculating discrete

logarithms, both of which have been considered challenging for a classical computer. PETER W.

18

SHOR examines these issues [3]. These two issues on a theoretical quantum computer are solved
with efficient random methods. These methods have a runtime that scales with the input size, or in
this case, the number of digits in the integer being factored. If you're looking for an alternative to
the more traditional symmetric encryption method, look no further than public key cryptography,
also known as an asymmetrical encryption scheme. It was in the seminal work of Hellman and

Diffie that the first modern Asymmetric cryptographic scheme was introduced [5].

The Internet, a worldwide system that enables constant interaction between total strangers, was
born out of their vaticinator desires. Their proposal for the DH cryptosystem was founded on a
solution to a discrete logarithm problem in mathematics. The knapsack problem provides the basis
for the public key cryptosystem known as Merkle-Hellman [6]. However, it is obsolete and
malfunctioning. The RSA cryptosystem developed simultaneously by Rivest, Adleman, and
Shamir, has yet to be cracked and is still in widespread use [6]. Multiplication of numbers, even
large ones, is easy, but factorization is very difficult, which is why the RSA cryptosystem relies on
it. Then, Shor created an algorithm with an exceptional trait that effectively processes integers [3].
The only catch is that it can only be used with a quantum computer. Manin and Feynman in the
1980s conceptualized the idea of a quantum computer [7] [8]. The use of quantum physics enables
the quantum computer to do massively parallel processing. A quantum computer easily handles
difficulties in number theory and various logarithmic problems. Research into cryptography has
taken a new, post-quantum-era turn due to a string of surprising findings. One potential successor
to quantum cryptography is code-based cryptography. It has a basis in linear coding theory and is

connected to that field.

Golay codes first introduced in the early 1950s have recently seen a tremendous uptick in interest
[25]. After 15 years of tweaks to the proposal’s security parameters [26], the asymmetric encryption
cryptosystem McEliece [9] presented in 1978 based on Goppa codes has remained uncracked.
Niederreiter proposed the knapsack cryptosystem, based on Reed-Solomon regulations, as one such
system [27]. Sidelnikov showed that the Niederreiter cryptosystem was insecure by using the Reed-
Solomon and Goppa codes [28]. Sidelnikov proposed a PKC (Public Key Crypto System) using
binary Reed-Muller codes [29]. It offered great safety despite its very low transmission rate (nearly
1) and simple encryption and decryption procedures. Minder cracked the Sidelnikov PKC, which
relied on a previously established public key to generate a hidden one [30]. It has been revealed that
the execution time of an attack that uses low-weight discovery approaches is sub exponential. Most

common attacks employed to crack LDPC and QCLDPC were also examined. Londahl and

19

Johanssoncreated a convolutional-code-based variant of the McEliece cryptosystem [36]. The
convolutional codes used by Landais and Tillich in their assault on the McEliece cryptosystem
were successful [37]. Several academics have proposed improved versions of the McEliece
cryptosystem that use error-correcting codes other than Goppa codes, such as AGC, LDPC, and
convolutional codes. Despite this, it has been shown that each approach is insecure, leading to the

widespread use of Goppa codes.

2.1 Limitation of the existing literature

Table 1 shows some weaknesses/ limitations of the existing literature:

Table 1: Limitations of Existing Literature

S. No

Limitations

In the existing literature,
there are rare evidences
where standard McEliece
encryption has been
analyzed/ improved just
the

instead of

by changing
parameters

changing coding family.

There is an exhaustive list where the researchers proposed different
coding schemes /families other than Goppa codes to improve the
McEliececryptosystem by decreasing public and private key lengths.
However, there are rare evidences where problem of original
McEliece cryptosystem based on Goppa codes is addressed by

varying parameters.

Existing literature s
lacking in
implementation of
McEliece encryption in

any practical application.

Existing literature is lacking in implementing original McEliece
cryptosystem based on Goppa codes in any telecommunication
standard/application. However, the proposed use case of McEliece
cryptosystem in this research paper is quantum resistive and can be

used as an alternate of chat app .

20

Chapter 3

Post Quantum Cryptography

3.1 Introduction

Quantum-proof, quantum-safe, and quantum-resistant are all terms that may be used to describe the
encryption methods used in the post-quantum era.Cryptographic approaches (often public-key
algorithms) that are assumed to be secure against the cryptanalytic assault of a quantum computer
are the focus of this field of study. Popular methods rely on solutions to the integer factorization,
discrete logarithm, and elliptic curve discrete logarithm issues, all of which have a fundamental
flaw. A sufficiently powerful quantum computer may use Shor's approach to solve these issues in a
matter of seconds [55] [57].

Although quantum computers lack the processing ability to break any practical cryptographic
technique at the present time,[58] several cryptographers are working on alternative solutions just
in case. Since 2006, academics and crypto business experts have gathered at PQCrypto
conferences. The European Telecommunications Standards Institute (ETSI) and the Institute for
Quantum Computing have recently given talks on Quantum-Safe Cryptography. While quantum
computers pose a significant risk to traditional public-key protocols, most contemporary symmetric
cryptographic algorithms and hash functions are thought to be mostly immune to such
assaults[59][61] [57] [62]. Even if attacks on symmetric cyphers are sped up using the quantum
version of Grover's technique, increasing the key size by two may effectively circumvent this [63].
As a result, despite the arrival of quantum computers, symmetric cryptography implementations
will not need significant changes. However, existing asymmetric/ public key crypto systems like
RSA and ECC will no longer be secure once quantum computers become practical. So, there must
be alternate public key cryptosystems/ algorithms that are equally good and secure post quantum

world as well.
21

3.2 Explanatory Chart

Traditional cryptography technology Quantum computer threat to cryptography Post-Quantum cryptography
RSA Elliptic curve

cryptography cryptography . Lattice-based cryptography, etc.
o
n=pq e » 4 ‘..';.Plain_’ text Cipher text
Encrypted ' Development of quantum computers r y :.; J
communica- . 1000000 7 o {:::lpug_lng—t.:-[e Nphes fouct 2 by
- l'liﬂﬂ - Emﬂiﬁle 100000 In practical use ~ -:uh:_“:EKE:.; i R
p—- by 20307 :

QBits

10000
B » Tx’t Compromised Unbreakahle Secure evaluation
L]
B F B 100 _
:) oome
Certification , ot g :.:"..._..‘
:. ... 3 Attacker can retrieve and store enc.rvp'rted files and NTT technology selected as a fina-

B calls now, and decrypt them once a guantum compu- list in an international standardizati-
ter is developed. on contest

Figure 1: Explanatory Chart [8]

3.3 Algorithms
There are now six main areas of concentration in post-quantum cryptography research.

3.3.1 Lattice-based cryptography
Several different cryptographic methods use this method, from the more traditional NTRU or GGH

encryption to the more modern NTRU signature and BLISS signature, and everything in
between[67].The NTRU encryption system, for example, has been researched for a long time, but
no one has yet found a practical attack on it. The security of other algorithms, such as the ring-
LWE methods, is a worst-case concern [68] [69] [70]. NTRU was still under patent protection at
the time. Some research suggests that NTRU's security features are even more robust than other

lattice-based algorithms[71].

3.3.2 Multivariate cryptography
This category covers cryptographic schemes that rely on the complexity of terminal access

controller access control of multivariate equations, like the Rainbow (Unbalanced Oil and Vinegar)
scheme. Many insecure encryption techniques have been developed for multivariate equations. It is
possible, however, that multivariate signature methods like Rainbow form the foundation of a
quantum-safe digital signature[72]. A patent protects Rainbow signatures.

22

3.3.3 Hash-based cryptography
This class of cryptographic systems includes, but is not limited to, Lamport signatures, Merkle

signature schemes, XMSS,[73] SPHINCS[74], and WOTS schemes. However, there has been a
rebirth in the use of such signatures in recent years due to growing interest in quantum-resistant
encryption. Merkle signatures and any hash techniques used in conjunction with them are not
patentable. The XMSS stateful hash-based signature mechanism created by Johannes Buchmann's
team is described in RFC 8391[75]. In the past, systems were either one-time-use or restricted in
their potential applications. UOWHF hashing was devised in 1989 by Moni Naor and Moti Yung,
who also developed a hash-based signature (the Naor-Yung scheme) that may be used
indefinitely[76].

3.3.4 Code-based cryptography
Error-correcting codes are used by many encrypted systems, like the McEliece and Niederreiter

encryption algorithms and the Courtois, Finiasz, and Sendrier Signature methods that go with them,
to make sure that their messages are secure. The original McEliece signature, which was sealed
with random Goppa codes about 40 years ago, has not been decrypted yet. McEliece has been
shown to be unsafe, even though the code has been improved to make it more organized and the
size of the keys has been cut down. The Post-Quantum Cryptography Study Group, which is
funded by the European Commission, has found that the McEliece public key encryption method
could be used to protect against future attacks that use quantum computers[69].

3.3.5 Super singular elliptic curve isogeny cryptography
This encryption scheme is a forward-secrecy alternative to Diffie-Hellman that makes use of

supersingular elliptic and super singular isogeny graphs. This cryptographic implementation of a
key exchange mechanism similar to Diffie-Hellman is based on the well-studied mathematics of
super singular elliptic curves. Since the widely-used Diffie-Hellman and elliptic curve Diffie-
Hellman key exchange techniques are vulnerable to quantum computing, this is a straightforward
substitute[78]. It functions similarly to existing Diffie-Hellman implementations;therefore, it
provides forward secrecy, which is crucial for preventing both widespread government surveillance
and the accidental disclosure of long-term keys [79]. In 2012, scientists Sun, Tian, and Wang from
Xidian University and the Chinese State Key Lab for Integrated Service Networks created digital
signatures that were immune to quantum attacks. De Feo, Jao, and Plut served as inspiration for
their art [80]. No patents exist to protect this method of encryption.

23

3.3.6 Symmetric key quantum resistance
Symmetric-key algorithms, such as AES and SNOW 3G, are unbreakable by a quantum computer

with sufficiently high key sizes[81]. A quantum computer might theoretically break public key
encryption. Symmetric key cryptography, on the other hand, is safe enough to be used by Kerberos
and the 3GPP Mobile Network Authentication Structure, two popular key management tools and
systems. Post-quantum cryptography may be implemented quickly and easily, according to some
studies, by expanding the usage of symmetric key management systems like Kerberos [82].

Code-Based

Hash-Based
Cryptography

Signatures

Post-Quantum
Cryptography
(PQC)

Lattice-Based

Cryptography

Figure 2: Types of Post Quantum Cryptography [69]

24

3.4 Key Attributes of POC Algorithms

Few of Key attributes of above-mentioned schemes/ algorithms are mentioned in Table 2: -

Table 2: Key attributes of PQC Schemes/algorithms

PQC Algorithm Family = Function/Use Example Notable Attributes
Hash-based Cryptography Digital signatures | Digital signatures ‘Well-understood. Stateful schemes needed to
reduce large signature sizes.
Lattice-based Cryptography | KEM/Encryption, | FrodoKEM, NewHope, Short ciphertext and keys, good performance,
Digital signatures | NTRU, FALCON, qTESLA | sometimes complex. Short signatures.

Code-based Cryptography KEM/Encryption | BIKE, Classic McEliece, High confidence. Fast encryption but larger
HQC, NTS-KEM, RQC public keys.
Multivariate Cryptography Digital signatures | EMSS, LUOV, MQDSS, Large key sizes (~1 MB / ~11 KB). Schemes
Rainbow need more analysis
Supersingular Elliptic Curve | KEM/Encryption SIKE Very small key sizes (less than 500 B), slower
Isogeny Cryptography performance, relatively new.
3.5Performance Comparison
Table 3: Quantum Resistive algorithms comparison
Algorithm Advantages ‘ Disadvantages

Lattice based Cryptography o
[91]

Fast and Efficient due
to linear algebraic
based matrix and
vector operations on
integers

Small key size

Can be used in other
security services like
homomorphism
encryption, identity-
based encryption and
attribute-based
encryption

More versatile and can

Computationally
intensive so not
suitable for resource
constraint devices
Difficult to give
accurate estimations of
the security level on
software and hardware
as its comparatively
new and active area of
cryptography and
future advancement
can weaken the

security of lattice-

25

be used in encryption,
digital signature and

key exchange etc

based schemes.
Hardware
implementation is
vulnerable to physical
attacks such as timing
attacks, fault attacks

and power analysis

Multivariate cryptography
[91]

Fast and good
approach for
signatures, it offers
shorter signatures than
those offered by other
schemes

Potential for efficient
implementations
Relatively small key

sizes

Vulnerability to
advancements in

algebraic techniques

Security is not assured
as quite a number of
multivariate
cryptosystems have
been broken over the

years

Limited number of

practical schemes

Hash-based cryptography
[91]

Fast as they need only
computer hash
functions

Quite secure as hash
function is resistant to
collision and primage
attacks

Efficient
implementations

possible

Record of previous
signature is required, if
not done it creates
insecurity in large
environments

Can produce a limited
number of signatures,
if number is increased
the signature size
increase that is
ineffective

Limited versatility

26

compared to some

other schemes

Code Based Cryptography
[91]

It has proven security
as underlying
mathematical problem
related to error
correcting codes has
long history and have
been extensively
studied.

Fast in doing
encryption and
decryption. So
computationally more
efficient than other

schemes.

Large key length
difficult to implement
with low processing
power and less storage

devices

Supersingular elliptic curve

isogeny cryptography

Efficient key exchange
protocols
Relatively small key

sizes

Complex mathematics
and implementation
requirements

Slower performance
Vulnerability to
potential cryptanalytic
advances

Relatively new

27

3.6 Security reductions

Proving the equivalency of a cryptographic technique to a well-known difficult mathematical
equation is the desired goal in the field of cryptography research. Security reductions are proofs
used to show how tough it is to break an encryption method. A cryptographic algorithm's security
may be limited to protecting some well-known hard problem. For the sake of more secure post-
quantum cryptography, researchers are aggressively searching for potential security holes. The

most recent findings are shown below:

3.6.1 Lattice-based cryptography — Ring-L WE Signature

Some ways to use Ring-LWE make it easier to use by reducing security to solving the shortest-
vector problem (SVP) in a lattice. Everyone knows that the SVP is NP-hard[83]. It has been shown
that some ring-LWE systems, like the one described by Guneysu, Lyubashevsky, and Poppelmann,
reduce security in a way that can be proven[65]. The GLP signature made by Glneysu,
Lyubashevsky, and Poppelmann was changed into the GLYPH signature so that it could include
new information learned from further study. The GLP signature was made public for the first time
in 2012. The Ring-TESLA signature can be used instead of the Ring-LWE signature[84]. Learning
with Rounding (LWR) is a "DE randomized variation” of LWE that makes efficiency and
bandwidth better "by avoiding tiny sampling mistakes from a Gaussian-like distributed with
deterministic errors” [85]. LWE rounds up to hide the smaller numbers, while LWR rounds down
to show them.

3.6.2 Lattice-based cryptography — NTRU, BLISS
The Closest Vector Problem (CVP) in a Lattice is believed to be related to the security of the

NTRU encryption technique and the BLISSsignature[67]. However, this issue cannot be reduced to
mere evidence. The NP-hardness of the CVP has long been accepted as fact. For long-term use,
the Post Quantum Cryptography Study Group recommended the less secure Stehle-Steinfeld

variant of NTRU. This research was financed by the European Commission [69].

3.6.3 Multivariate cryptography — Unbalanced Oil and Vinegar

Unbalanced Oil and Vinegar signature methods are the asymmetric cryptographic counterpart of
cavemen. They are based on multivariate polynomials over a finite field show style. mathbb B
mathbb F. Bulygin, Petzoldt, and Buchmann showed that solving the NP-Hard Multivariate
Quadratic Equation Solving problem is the same as solving general multivariate quadratic UOV

systems|[86].

28

3.6.4 Hash-based cryptography — Merkle signature scheme

In 2005, Luis Garcia demonstrated that the integrity of a Merkle Hash Tree signature is only as
good as the underlying hash algorithm. Garcia demonstrated in his article that one-way hash

functions may be used to guarantee the security of a Merkle Hash Tree signature [87].

The security of the Merkle tree signature may be compromised by the use of a hash function with
such a reduction to a known issue, however this is something that can be verified.[88] Merkle
signatures have been proposed as a long-term security mechanism against quantum computers by

the European Commission-funded Post Quantum Cryptography Study Group [69].

3.6.5 Code-based cryptography — McEliece

The Syndrome Decoding Problem (SDP) exposes a weakness in the McEliece encryption
mechanism. The SDP's NP-hardness has been extensively documented[89]. The Post Quantum
encryption Study Group, funded by the European Commission, has argued in favor of adopting this

encryption to protect against the eventual development of quantum computers[69].

3.6.6 Code-based cryptography — RLCE

Using the same principles as the McEliece techniques, Wang presented the RLCErandom linear

code encryption scheme in 2016 [90]. Any linear code, including the Reed-Solomon code, may
create an RLCE method by introducing random columns into the underpinning linear code

generator matrix.

3.6.7 Super singular elliptic curve isogeny cryptography

The construction of an isogeny among two super singular curves of equal point count is relevant to
the issue of security. Recent research on the problem's complexity by Delfs and Galbraith confirms
that it is as challenging as the creators of the encrypting and decrypting claim it to be. Security
cannot be reduced to a known NP-hard issue [91].

3.7 Comparison
Many algorithms developed after the advent of quantum mechanics call for greater key sizes than

the conventional "pre-quantum” public key methods. Key size, computational efficiency, and the
size of the cipher text or signature are all factors that must frequently be balanced. There are several
values for various schemes in the table 3, all of which have a post-quantum security level of 128
bits.

Table 3: Quantum Resistive Algorithms Comparison

29

Algorithm Type Public Key Private Key Signature

NTRU Encrypt Lattice 766.25 B 842.875 B

Streamlined NTRU Prime Lattice 154 B

Rainbow Multivariate 124 KB 95 KB

SPHINCS Hash 1KB 1 KB 41 KB
Signature

SPHINCS Hash 32B 64 B S§ KB
Signature

BLISS-IT Lattice 7KB 2KB 5KB

GLP-Variant GLYPH Signature Ring-LWE 2KB 0.4 KB 1.8 KB

NewHope Ring LWE 2KB 2KB

Goppa-based McEliece Code-based 1MB 11.5KB

Random Linear Code based RL.CE 11S KB 3KB

encryption

Quasi-cyclic MDPC-based McEliece Code-based 1,232 B 2,464 B

SIDH Isogeny 564 B 48 B

SIDH (compressed keys) Isogeny 3308 48 B

3072-bit Discrete Log not PQC 384 B 32B 9% B

256-bit Elliptic Curve not PQC 32B 32B 65B

The time and energy needed to transmit public keys over the internet is a real-world factor that

should be considered while deciding between post-quantum cryptography methods.

30

Chapter 4

McEliece cryptosystem

4.1 Introduction

Communication systems that are both reliable and safe have been in use since far before the
Roman Empire's zenith. A cryptosystem is a system for sending information in such a way that
only the recipient can decipher it. Interception during transmission, mistakes, and whether or not a
technique is even usable are just a few examples of the many challenges encountered with these
approaches. Goppa codes, the first codes employed in the McEliece cryptosystem, are an example
of error-correcting codes. In this chapter, we'll look at the safety of the original McEliece

cryptosystem, which makes use of Goppa codes, and explain how they work.

Messages don't always get through as expected. The prevalence of mistakes is largely to blame
for this. Multiple factors, including chance, neighboring channels, and external interference, may
contribute to transmission errors. Message faults may be detected and fixed via error-correcting
codes. Including redundancy in the message ensures that the intended meaning of the message is
sent even if a mistake occurs in its transmission. For whatever reason, the receiver hears "I'm
bringing my brushes" instead of "I'm bringing my gloves." An erroneous communication may be
received without the intended meaning being understood by the recipient. Now imagine if there
were some more redundancy in the message, like "Because it is snowing severely outside, I am
going to carry my gloves.” This bolstered safety net allowed the receiver to properly infer that the
sender intended to indicate he or she would bring something to keep warm, and that the message
received was a mistake[4].

The Goppa code is an error-correcting coding scheme that uses modular arithmetic, in which an
increasing series of integers is repeated until the desired value is reached, at which point the
process begins again from zero. One useful use of modular arithmetic is the use of a 24-hour
clock rather than a 12-hour clock for maintaining time. Modulo 24 is used to represent the hour on
a 24-hour clock, whereas modulo 12 is used on a 12-hour clock. It doesn't matter whether you use
a 12-hour or 24-hour clock, the time at three in the morning is the same either way. Even though
15:00 on a 24-hour clock corresponds to 3:00 on a 12-hour clock, the latter "wraps back around,"”

making each hour above 12 a multiple of 3[5].

A key generation algorithm, an encryption technique, and a decryption technique are the basic

31

minimum for every cryptosystem. Suppose, for the purpose of argument that Alice and Bob want
to hold a private conversation but are aware that a third person, Eve, may be listening in. Alice
wants to get in contact with Bob. Alice encodes the plaintext of her message to Bob using a key.
Bob may be able to decipher the original message from the cipher text if he finds the key. We
always simply assume that Eve is familiar with the overall procedure but not the essential details.
While Eve instructs us to safely infer that she wants us to study the message, locate the key and
decode all communications encrypted with that key, alter Alice's message, or pretend to be Alice

while corresponding with Bob.

The McEliece cryptosystem requires two different keys—public and a private—to encrypt and
decrypt a message. Let's say Bob freely shares his public key online for anyone to see. With Bob's
public key, Alice may send him an encrypted message. Bob has to use his private key in order to
decrypt the communication. In order for this to be useful, however, it requires that Eve needs
more than simply a public key in order to decrypt messages. Instead, Bob would need to provide
Eve the secret key to decipher the cipher text[18].

Bob produce a public key for use in the McEliece Cryptosystem by selecting a Goppa polynomial
(2) of degree t and calculating the generator matrix G of the Goppa code. “After that, Bob would
choose two invertible and permutable matrices, S and P, at random. and plug them into the

equation G’ = SGP. Bob’s public key would be (G, t), while his private key is (S, G, P).

Alice's first step would be to construct her message as a series of binary strings that would be sent
out as the final encrypted message, which contains a random error vector with a weight of t or
less y = mG’ + ¢ added to it.

Next, Bob would utilize his P matrix to get y’ = yP1. Then, Bob would apply the Goppa code G
decoding technique to turn y' into the right code word m’ = mS.with the help of S1, Bob would

derive the original message as m = m'S1.

It is very unlikely that Eve would be able to understand Alice's message without her secret key.
This is because she needs to separate matrix G from its mirror image, matrix G'. Since Eve can't
just look up the inverse of the matrix G', she'd need to know the inverse of the unpublished
random matrix S as well. Eve doesn't know what the matrix P, thus she has no notion where to
seek for y' to get m'. The security of this cryptosystem depends on how difficult it is to interpret
y' and find m'. This task makes use of a massive Goppa code. For instance, in his first
cryptosystem work published in 1978, McEliece suggested a [1024, 524] Goppa code (i.e., a
32

Goppa code of length 1024 and dimension 524).

The bigger the code, however, the less useful the cryptosystem becomes;therefore, this is a
serious problem. This cryptosystem is currently not very practical, however that should change as

technology and storage space improve [33].

The system is also more susceptible to attack since the same encryption matrix G' will be used to
deliver the same message several times. Unlike the Rivest-Shamir-Adleman cryptosystem, this
one doesn't come with a clear method of creating signatures (RSA). Since anybody may use Bob's
public key to send him a message and has no way of knowing whether the sender was indeed

Alice unless they both know a shared Goppa Code.

The system's benefits, on the other hand, include the fact that it is one of the simplest
cryptosystems out there and has been extensively researched ever since it was first introduced in
1978. The use of this technology also enables quick times for both encrypting and decrypting
data.

4.2 Part |: Basic Terminology

4.1.1 Cryptology

The study of cryptology centers on the transmission and reception of information securely,
without the possibility of interception, reading, or modification by a third party [25].

Think about Alice and Bob, two pals of ours. They want to talk to one other secretly, but
they're worried that a person called Eve could listen in. Say Alice has to contact Bob and she
decides to use a messenger service. Alice transforms the plaintext of her communication into
the cypher text, a sequence of code words, using a cryptosystem that has been mutually agreed
upon by the two friends. It is often assumed that Eve is aware of the particular cypher or
cryptosystem being used, and that the only thing preventing her from reading the message is

the key or keys being used to encrypt and decrypt it.

It's important to note that the process of encoding and decoding a message may be variable
based on the cryptosystem in use. The class of cryptosystems known as Public Key

Cryptosystems is one such example [73].

Each of these forms of cryptography relies on a pair of keys—a public one and a private one.
Bob shares his public key online, where it may be seen by anybody, including Alice and Eve.
To transmit the message to Bob, Alice uses the public key to encrypt it, and Bob receives it and

33

decodes it using his private key. However, Eve cannot read the message even if she has the
public key because of the mechanism employed. Private keys are required to decode cypher
texts, and Bob is the only person who has access to the private key since he is the intended

recipient of the cypher text[69].

4.1.2 Error Correcting Codes

It's unclear what Alice was trying to tell Bob in her message. So, what happened? Obviously, Eve
was making a clumsy effort at diversion here, or the letter got corrupted in transit. The purpose of
error correcting codes (ECC) is to identify and fix transmission errors. In order to do this,
redundancy is added to the message to ensure its clarity in the event of a misinterpretation. As
soon as a message is encoded, it is transformed into a code word that includes both the original
message and the redundancy. Certain error rates that can be tolerated by the decoding algorithms
are used for these codes. This decoding technique allows for the correction of transmission
mistakes and the subsequent restoration of the original message. This gives the cipher texty = ¢ +
e, where c is the code word and e is an error vector. This is helpful because Eve would have had a

hard time figuring out the secret message from the coded text she got.

4.1.3 Fields
An essential component of mathematics, a field enables us to classify numbers into distinct
categories.[10]
Definition 1.3.1 A field F is a collection of elements that are closed under two processes and meet

the following conditions:

1. Thereexistsanelementa€Fsuchthat, forallx€F, x + a = x.
2. Thereexistsanelementb€Fsuchthat, forallx€F, xb = x.
Forallx, y, z€Z,
. x+y=y+x
4, xy = yx
5. (xty)tz=x+ (y+2)
6. (xy)= (y2)
7.(y+z)=xy+ xz
8. Foreachx, thereexistsanelement — xsuchthatx + (—x) = a.
9. Foreachx # a, thereexistsanelementx 'suchthatxx ' = b.
Example 1.3.1. The numbers, which are written as Z3,.2,.1,.0,.1,.2,.3,..., are not an area under
34

(+,). This is because, besides the numbers 1, 1, and 0, none of the other integers meet property

number 9.

Example 1.3.2 The set of rational numbers
Q = {a/b suchthata,b € Z }

is a field closed under (+,") and as such, upholds the previous nine rules.

1. y= gforanyelementz #Osothatg+x=x

2. y= 2 suchthat = .x =x
1 1

Forall a,b,c,d Z

a (4 C a
3 staTaty

a c C a
& 5aT

a C e a (o4 e
5. (G+a) +i=3+(G+9)

a ¢c e a c e
6. (52)-7=1 (G

a (o e a (o4 a e
7. Z(d +_f)__b'd +_b'f
8. Foreach—zL € Q,one has ;a+ —Z= 0

a . a . . a b

9. For each Y € Q ,witha + 0,the element—bsatlsfles P =1

When the number of possible values in a field is finite, we say that it is a Galois field. A Galois
field is denoted by the notation GF(q), where q is the field's order [12].
Theorem: Assume p is prime. There is only one finite field of order pm, and this holds true for
all powers pm.
Suppose p is prime, K is positive and less than Z, and p > 0. The Galois field of order q = pk, where
p and k are the numbers of elements in the field, is denoted by the notation.GF(pm), which is the

extension Galois field of (p) of degree m[8].

An irreducible polynomial over (pm) is one that cannot be factored into a lower degree

polynomial over (pm) [6].

Example: Multiply 1 + + 3 by (2). X and/or X2 must be included in any polynomial with a
degree lower than 3. There is no division by such a polynomial.the answer is 1+.X+.X3, etc.An
irreducible polynomial over (2) is given by (1 +.X +.X3).

35

Example: X + X is not an irreducible polynomial over (2) because

X+ X°

=1+ Xx*
¥ +

Let's pretend x is an irreducible m-degree polynomial over.GF(p). An example of a primitive

polynomial if n= pm — 1 is the smallest possible integer for which (x) divides X»— 1 [3].

Example: Suppose (x) = 1+ X + X* with degree 3 over GF(2). n = 2°— 1 = 7 and so we
have X’ — 1. X’ — 1 can be factored into irreducible polynomials as (X + 1)(1 + X + X?*)(Xx®
+ X2+ 1). It can be checked that (x) does not divide Xv such that v< 7.

Therefore, 1+ X + X3 is a primitive polynomial of degree 3 over (2).

Definition: Integers a and b are said to be congruent modulo n, written a b (mod n), if and only if a

b = kn for any integer k, where k is an integer greater than or equal to n.

Example: Create a congruent representation of 49 modulo 5, where 49-b is evenly divisible by 5.
Finding a value of k such that is required by the definition.49 — .b = .5k. Finding $5,000, though, is
sufficient. 45, 40, and 35 are all multiples of 7, hence b = 4, 9, and 14 accordingly.

We want to find a value for b such that. 0 < .b< .5. The term "smallest possible non-negative
residue™ is used to describe this b. When b = 4, the residue is the minimum it can be without being

negative. This would be represented as.49 .4 (mod 5).

Example: Write 81 = (mod 2) such that b is the smallest possible non-negative residue.

81 — b= 2k
81— b= 2 (40)
b=1

Therefore, 81 = 1 (mod 2).
Example: (2)= Z,={0,1} =The integers modulo 2. This is also known as the binary
field.

36

4.1.4 Binary

As a common practicewe reduce data to a series of 1s and Os before feeding it into a central
processing unit. Binary encoding is used to describe this shift. Our usual practice is to think
about digits in the 10s-base system. Despite the fact that binary uses a base 2 representation for
numbers. Each component of a power of 2 may be either 0 or 1, every integer can be written as
an additive sequence of power of 2 when converted into binary number. Putting the
coefficients in descending order yields a binary representation of the number[67].

In binary, only 0 and 1 are utilized; they have the additive qualities of components modulo 2
(0+1=1, 1+1=0, 0+0=0, and 1+1=0).

415 Hamming Distance

Definition: A code word, lawful code word, or code vector is a subset of code words represented
by the notation = (.cl,.c2,.....,.cn). If a sequence of length n is in An but not in a code, it is
considered an unlawful code word.

The binary digits 0 and 1 will be assumed to make up alphabet A. The playing field is the
alphabet.2. =.{0,1}.=.Modulo 2: the integers. A code constructed using this alphabet is called a
binary code[87].

If we make a mistake, we can fix it more easily if the code words are spread widely apart from
one another. Otherwise, an accidental transposition of letters might change the meaning of the
code. To prevent this, the forbidden code phrases are usually placed at random intervals among
the permitted ones. In doing so, we increase the Hamming distance between the two words.

If message m contains the code words cii and cjj, then the distance between these two words is
the Hamming distance. It is quantified by tallying the number of bits that are distinct between the

two code phrases [65].

C is the smallest Hamming distance possible between two lawful code words, ci and cj. The
smallest Hamming distance from C is denoted by the symbol C. This demonstrates how

well a code handles errors [25].

For a code word c;, the Hamming weight, denoted (c;), is the number of nonzero places inc;.

This is the amount of ones in a binary coding word [48].

37

4.1.6 Linear Codes

Definition: A linear code over a field of k dimensions and n length is a k-dimensional vector
space subset.Fn is a [n, k] code for an array of n-dimensional vectors. We call a code an. [n, k, d]
if its minimum Hamming distance is at most d. To this goal, we'll refer to a sequence of 2k binary

digits (a binary code of length n and dimension k) as a linear code[4].

4.3 Goppa Codes
In order to encrypt and decode messages, weutilize a Goppa code, which is a linear, error-
correcting code. This definition applies to any such code: [3]

Definition: Polynomials over (pm) are what we'll call "Goppa polynomials,” and we'll define

them as such,
9= got Gy t gy = T 9X

with each g;€ GF(p™). Let L be a finite subset of the extension field (p™), p being a prime

number, say
L={ai, ..., an} € GF(p™)
such that g(a:) # 0 for all a;€ L. Given a code word vector ¢ = (c1, ..., cn) OVer GF(q), we have
the function
n
C.
RC(Z) = z l
. X —a
i=1
Where
1
X — a;

38

Is a unique polynomial with (x — a;) * 1 (mod (g(x))degree less than or equal to t

X—a;
minus 1. After that, a Goppa code. Each code vector ¢ in (L,g(x)). Satisfies the condition that (x) 0

(.mod (x).). If x divides a polynomial, then the polynomial is divisible.(x).
4.2.1 Parameters

Theorem: Goppa code's k-dimension. (.L, (x).) with length n is bigger than or equal to n mt, or.k

.n.mt.

Theorem: Minimal conceivable Goppa distance (d).The n-length sequence (L, (X)) is greater than

orequaltot+ 1,thatis d> t+ 1.

4.2.2 Binary Goppa Codes

A binary Goppa code is supposed to be written as I" (L, (x)) have to use a polynomial (x) over
(2m) of degree t[28].

Theorem 2.3.1 Any irreducible, binary Goppa code T" (L, g(x)) has a least distance d of greater
than or equal to 2t + 1, thatis, d >2t + 1.

The parameters are supposed to be as written below: [n, >n — mt, > 2t +1].

4.2.3 Parity Check Matrix
Parity check matrixes are used in Goppa codes to decode and recover the original message as sent

by the receiver.

Proposition: If we set H = XY Z such that

39

X=(g:00 09,y g:0 0 ~i g, 9295 9t) Y =

(11 1la; a an,i ~ atajt at1),and Z =
(L 0 o0o0 ! 0 “~ 0 0 #) then matrix H is a parity check
g(a1) g(az) g(an)/’

matrix for a Goppa Code T (L, (x))

Since (x) is irreducible, there exists a primitive element a \foralla€ (2™) in such a way thatg(a)

0 . Therefore subset L can encompass all basic elements of (2m).

90— g(@) N o 4 = t

— : - = j—1—1 .

X— q; = Za gj T ai: Za xw Z a gjai] Jforall 1 <i
t=0 w=0 j=w+1

< n+1

There is supposed to be an arbitrary vector ceI'(L, g(x)) if and only if

t

C 1 j-1-1

Za (Za g;a;)- ¢;= 0)forall w= 0,..., t—1

= g(a;)

i=1 w+1

So we can write the parity check matrix denoted as H (H = XYZ), where X =
X=(9:00 09190 0 w01 92 93 9 Y=
(11 1 a a a, w~abt abtl at1),and Z =
1 1 . 1

(g(a) 0 00 9(az) 0 -0 0 g(an))’

Therefore, we have that any code wordc€eI'(L, g(z)) if and only if HcT = 0.

4.2.4 Encoding
Multiplying the input message by the Goppa Codes and generator matrix yields the encoded
message.

Definition: The Goppa code generating matrix G is a k by n matrix with rows ordered according to
their basisT'(L, g(x)).

Proposition: In matrix theory, a generator matrix G is any a matrix with rank k for which

40

GHT =0.

When we have to send the message we have to adopt the following steps:-
e Write the message in blocks of k Symbols

e The generator matrix (G) is then multiplied by each block of k symbols.
e The result we achieve after multiplying is denoted as code words.
Below is the example that explains the encoding of one block of message: -

(my, mo, ..., mg) *G=(cy, ... , Cn).

4.2.5 Irreducible Binary Goppa Code Example
As we have already explained that (2*) = GF(2) [X]/ (k(X)) for each irreducible polynomial

k(X) having a degree of 4. In the very first step we have to find the primitive element (). By

using mathematical formulas we can factor X* — 1 (mod 2) into irreducible factors [73].

XP =1 (mod2)=(X+ 1)(X*+ X+ D(X+ X+)X+ X+ 1)(X+ X3+ X2+ X+ 1)
For example, if we imagine that k(X)=.X4+.X+.1, then a root of k(X) is assumed to be a
primitive element if and only if the order of is 15. We just need to verify when 3 1 and 5 1 since
we already know that 1 and that the order of an element should split the order of the group. By
applying the equation a* = @ + 1, we cancompute @* = a*# land @’ = a- a*= (1 +a) = &
+ a#l.

We can conclude that, (2%, is the multiplicative group of all the nonzero elements which

are present in GF(2%), also this is a cyclic subgroup that is generated by a.

)= GFYUu{0}={01,a, & o ..., a"}.
Therefore, we may represent the components of (24) using the powers of plus zero, much like

binary notation. We rely on the fact that again.a4 = .a + .1.

0=0-1+ 0-a+ 0-a’+ 0- &= (0,0,0,0)”

1=1-1+ 0-a+ 0 -+ 0-a®=(1,0,0,0) T
a=0-1+1-a+0 -a*+0-a*= (0,1,0,0)”
a*=0'1+0-a+1-a®°+0-a*= (0,0,1,0)7
a®=01+0-a+0-a*+1-a>= (0,0,0,1)7
a*=11+1-a+0-a?+0-a>= (1,1,0,0)
@=01+1-a+1-a*+0-a>= (0,1,1,0)7

41

a®=01+0-a+1-a*+1-a*= (0,0,1,1)"
a’=11+1-a+0-a*+1-a*= (1,1,0,1)"
=11+0-a+1-a*+0-a>= (1,0,1,0)7
=01+1-a+0-a*+1-a>= (0,1,0,1)7
a®=11+1-a+1-a®+0-a>= (1,1,1,0)7
at=01+1-a+1-a®+1-a°= (0,1,1,1)T
a?=11+1-a+1-a®+1-a°= (1,1,1,1)T
a®=11+0-a+1-a®+1-a°= (1,0,1,1)7
a*=11+0-a+0-a*+1-a®= (1,0,0,1)"
If we have Goppa code as L = {aisuchth2 < i< 13} with (x) = x*+ x + .

This code is supposed to be irreducible over (2*). However, this code has the parameters p = 2, m
=4, n=12,and t =2. We can conclude that k >n —mt=12 — 4 -2=4.
As,d>2t +1=2-2+1=5.

So, final Goppa Code would be [12,

v
>
v

5]

We can then compute XYZ =
H.

42

= (g2 9 (@) g2 g (az") = g2 g (1)@ 1+ 92 -a1). g (a7")(g
+ 9,0a).9 (a3 - g1+ goa15 -9 (a12))

9 7 414 6 7 410 4 13)

=(a® a° a*at ata® a®a®ata?a?*a®1 a'® a’ a* a® 0a'* a®a’ a'® a* a

=(0 010100000010 111000010000 00011
0101111 100011100001 111001011110
010000011100 100000101010 11110111001)

Since, GHT = 0. Therefore, we can easily calculate the rows of matrix G as the vectors of Null space
(Hmod 2)
Finally G will be equal to:
¢=(01101010010001111001100011011
0000001111011010010)

We can see that this is a 4x12 matrix which means that the dimension of I'(L, g(x)) is 4.

And also conclusively [12, 4, > 5] are the parameters of this Goppa code.

4.2.6 Error Correction

We assume that the received code word is denoted as y with » < t errors. So,

y=(y1, ...,yn)=(c1, ..., cn)*+ (€1, ..., en),

This code word haver places in such a way where e; # 0. The mistake vector must be located
before the corrected code words may be reinserted into the original message. To achieve this, one
must first determine the set of error positions E = i such that ei 0 and the associated error values ei
for all €E.

Definition 2.7.1 Error locating polynomial written as (x) can be defined as:

=[] (x-a

i€E
In binary Goppa codes we can have only two possible values (Errors, No errors) so we only have

43

to find the location of the errors as all other values other than errors will be correct. But if we are
using the regular conventional Goppa Code then along with the errors we also have to find out

the error correction polynomial as well along with the location of errors[39].

We are using the Patterson’s algorithm [H] in order to correct the errors present in the code
word. The algorithm to find correct the errors in range of r<t for (x) which is irreducible

over (2m) is as follows:

1. Lety=(yi, ... ,Yyn) be areceived code word. Compute the syndrome

n

s(x) = ; x+iai mod g(x)
2. Below are steps which are needed to Calculate o (x):
= First step is to find h(x) such that s(x) h(x) =1 (modg(x)). If h(x) =x, then
the answer is o(x)= x.
= Second step is calculation of (x) such that d*(x) = h(x) + x (modg(x)).
= Third step is finding (x),along with b(x) which is supposed to be of least degree,
in such a way that d(x)b(x) = (x) (modg(x)).

= Fourth and last step is to set (x) = a’(x) + b%(x)x.
3. Then, we utilize (x) to determine the set of error positions E =i for which (i) = 0.
4. The error vector e is defined in the following Step 4 as ei = 1 for i E and ei = 0 everywhere.

5. Finally, the secret phrase is defined asc = y.e.

44

4.2.7 Decoding
Original message may be readily recovered by the recipient after all possible faults in the code

word have been fixed.
As we defined above (mq, m», ... ,mg) *G = (ca, ..., Cn).

This equation can be rearranged as m,, m,, -, my, * G = (Cq ., cn)so that GT.(my; m,

my) =(c¢ ¢,)

Solving this equation by Row reduction method:
(2 Cp)~~(10 0 mO01:- 0 m,
100 1my— — — —— X)

Here, X is defined as a matrix of (n —k) x (k +1).

4.4 The McEliece Cryptosystem with Example

Using a linear error-correcting code, the McEliece Cryptosystem generates public and private keys.
The error-correcting binary Goppa code made its debut in the McEliece Cryptosystem. A public
key is one that is freely accessible to the public. The public key is constructed using the public key,
but in a manner that makes deconstructing it difficult. Send encrypted information to a specific
recipient using a private key. | usually go back to the tale of Alice and Bob whenever | need to
explain cryptography to someone[3].

Consider the hypothetical situation when Alice has something confidential to share with Bob. Bob
must first share his public key with everyone before he may share his private key with anybody.
After that, Alice uses Bob's public key to encrypt her message. Here, the information is coded into
a hidden word. Even though it was encrypted, Bob was able to read her message. Now that Bob
knows his codeword, he can decipher the message. He only has to use his hidden key[1].

To begin creating the public and private keys, Bob selects a Goppa polynomial (z) of degree t over
GF (2m). The Goppa code values generated by the above-selected equation must fall between the
range [n, mt- 2t+1]. Bob would then use these factors and the selected Goppa codes to calculate the
Goppa code's generator matrix (G), which would be a k by n matrix. Next, Bob chooses two
matrices, S (an invertible k by k matrix) and P (a permutation matrix n by n). Each row and column
of (P) has the value 1, whereas all other cells have 0. After that, he calculates that G'=SGP. G'. The

45

solution to this equation is the single component of the public key, G', together with the constant t.
Bob's secret information includes the polynomial (z), the original matrix (G), and two additional
matrices (S, P) that are prepared so that G’ = SGP[2].

When Bob shares his public key, Alice generates a binary vector e at random, giving it a length of k
and a weight of t. Alice may then encrypt her message m = (m1, m2,..., mk) with the key y = mG’ +
e. The ciphertext y is then sent by Alice.

Bob learns Alice's code phrase and applies his knowledge of the permutation matrix P to the
problem.

y' =yP'=mGP ' +eP"' =mSGPP™' + & = (mS)G +¢'.

By employing Patterson's technique, Bob is able to decode y’ into the message m’ = mS. After this
is complete, Bob is able to retrieve the original message by calculating m = m'S—1. from y —

e’=mSG because he already knows what S is.

4.3.1 Example
To explain the McEliece Cryptosystem in depth, we consider the generator matrix G as,

¢=(01101010010001111001100011011000
0001111011010010)

In second step we have to select random matrices (S) and (P) and modify matrix (G). As we
can see that dimensions of G are 4 x 12 so dimensions of S would also be 4 x 4 and
dimensions of P matrix would be 12 x 12. For this example we have selected the random
matrix as:

§=(1001010101000011)

P=(10000000000100100000100
0.000000010111000001010000
0.00010001111010000001110000
1.0001010100000001100100000001

0.0000000000001000000000000100000
46

00100000)

We calculate the public encryption matrix G’ using above selected matrices
G'=SGP=(1101000001111100010100100010110110010

10001101011)

Bob then distributes this matrix G' along with t = 2.

Now let’s assume Alice have a message as m = (1,0,1,0) that it want to send to Bob.

First, we calculate the matrix
mG=(1,1,1,1,1,1,0,1,1,1,1,0),
and then we add a random error vectore=(1,1, 0,0, 0,0, 0,0, 0, 0, 0, 0) so that,

y= mG + e
What you're about to read is the encrypted message Alice intended to deliver to Bob. Finally,
Bob must reverse engineer the encrypted message m that was sent out using the secret key y. He

does this by first computing yP1 using his top-secret permutation matrix P.
yP'=mGP ' +eP”!
=m(SGP)P* + ¢
=(mS)G +e

=(0,0,1,1,1,1,0,1,1,1,1,0).
1000000000010010000010000

0000001011100 000 10100000000
1.000111101 0000001110000 1 0001
010100000001100100 0000010000000

00000010000 00O0O0D000010000000100000)

=(0,1,1,1,1,0,1,0,1,1,1,0).
By employing the above mentioned technique the errors have been shifted 1% and the 6™ column of

47

the matrix. Bob then correct these errors by using the error correcting algorithm which generates
the following output:

mS¢=(1,1,1,1,1,1,1,0,1,1,1,0).
In order to retrieve the original message m we reduce the given matrix by Row reduction procedure
and calculate the final message as

mS =(1,1,0,1) and m =

(1,1,0,1).(1110001001110110)=(1,0,1,0)

48

Chapter 5

Application Implementation and Results

In order to develop the secure messaging system/ app based on Mceliece cryptosystem we have
used visual studio. We have divided the complete deployment process into multiple steps so that

we have ease of understanding and debugging of each step of the communication model.

5.1 Application GUI

The GUI of application gives us two options of sending a text i.e. unencrypted messages and

encrypted messages using Mceliece Cryptosystems. There are two things of participating entities

are required to enter in GUI before starting any chat session: -

e |P address

e Socket address

For debugging purpose, initially we have kept the static IP and Socket address for both the

entities (fig 3) but these can be automatically assigned and kept in database.

Figure 3: Initial Application GUI

Above is the simple GUI that we have created for testing and debugging purpose. There are two

options of starting a session i.e

e Encrypted Session

e Plain Session

49

If we select the Plain session then there will be no encryption taking place for sending of
messages between the two parties. This feature is not necessary for the model but we have kept
this for debugging purpose as to test whether two hosts are connected via socket programming or
not. If we are able to send messages in plain mode, this confirms that two communicating parties
are connected with each other. If we select the Encrypted session that means now messages will

be sent after encryption with McEliece crypto.

Below the session choice we have local and remote IP and port address fields. Local IP and port
address is of the sender Computer while the Remote IP and port address corresponds to the
receiver computer. Then we have the chat and message fields where we write the messages that
are to be sent to the receiver. Chat field is also used for debugging purpose during the
deployment phase of the application. The plain message is written in the message box whereas
cypher text corresponding to that plain text and reception acknowledgment of message on

receiver end are displayed in the chat box.

Now we explain each step of implementation individually with the help of screenshots

5.2 Key Generation:

= private wvoid buttonl Click(object sender, Eventirgs e)
{
try
{
o ben = new MPKCKeyGenerator(ps);

kp = gen.GenerateKeyPair();
data = kp.PrivateKey.ToBytes();
//MessageBox.Show(data[2].ToString());
// encrypt an array
using (MPKCEncrypt cipher = new MPKCEncrypt{(ps))

cipher.Initialize(kp.PublicKey);
encr = cipher.Encrypt{System.Text.Encoding.UTF8.GetBytes (txtmsg.Text));

¥

string encascii = Encoding.ASCII.GetString(encr, @, encr.Length);

110 % - 4

Locals -~ 0
Mame Value Type
+ & this {Test.Chat, Text: Chat} Test.Cha
T @ sender {Text = "Send"} object {5
+ & e {¥=11% = 19 Button = Left} System.E

W encascii null string

Figure 4: Key Generation Process

To begin encrypting and decrypting a message, we must first generate the corresponding public

key and private key before proceeding to the next step. In order to do this, we first built a

50

function called "gen" that generates a set of both private and public encryption keys, as seen in
figure(fig 9-12).

Using the publicly known parameters m, t, and n, the method creates a pair of keys. There are 3
parts to the public key: n, t, and G. Field polynomials, Goppa polynomials, G', S, and P are all
part of the private key.

e Ifn=2m and k is selected maximally, i.e. k = n - mt, then GC is a binary irreducible
(n,K) Goppa code with up to t correctable mistakes.

e Inthe Goppa code GC, H is a parity check matrix of size mt by n.

e Sisak by k non-singular binary matrix with a random distribution.

e Here, P represents a random n by n permutation matrix.

e G=SG'P.

For constructor class we have defined the following parameters (fig 5): -

= ES
-
= #region Constructor
/ Tmitialize the class
e">The block cipher that powers the rng (default is RDX)</param>
">The Seed engine used to create keyng material (default is CSPRsg)</param>
">The size of the cache of random bytes (must be more than 1824 to enable parallel pr Cce;;.\.ng) ‘param>
he key size (in bytes) of the symmetric cipher; a <c>@</c> value will auto size the key</param
@ = public CTRPr‘ng(BchkC1pher‘s BlnckEng1ne ~ BlockCiphers.RDX, SeedGenerators SeedEngine — SeedGenerators.CSPRsg, int Buffersize — 4096
if (Buffersize < 64)
throw new CryptoRandemException("CTRPrng:Ctor”, "Buffer size must be at least 64 bytes!", new ArgumentNullException()};
_engineType = BlockEngine;
“seedType = SeedEngine;
“hyteBuffer — new byte[Buffersize];
Thuffersize — Buffersize;
if (KeySize > @)
_keySize — KeySize;
else) -
wow - 4 >
Locals -3 x Rx
Mame Value Type
H @ this {VTDev.Libraries.CEXEngine.Crypto.Prng.CTRPrng} VTDew.Li
@ EBlockEngine RDX VTDev.Li
@ SeedEngine CSPRsg VTDew.Li
@ BufferSize 096 int
@ KeySize 0 int

Figure 5: Initial Parameters Generation

BlockEngine: The block cipher that powers the rng (default is RDX)

SeedEngine: The Seed engine used to create keyng material (default is CSPRsQ)

BufferSize: The size of the cache of random bytes (must be more than 1024 to enable parallel
processing)

KeySize: The key size (in bytes) of the symmetric cipher; a value will auto size the key

51

= public CTRPrng(byte[] Seed, BlockCiphers BlockEngine = BlockCiphers.RDX, int BufferSize = 4096)

if (BufferSize < 64)

throw new CryptoRandomException("CTRPrng:Ctor™, "Buffer size must be at least 64 bytes!™, new ArgumentNullException(});
if (Seed == null)
throw new CryptoRandomException("CTRPrng:Ctor”, "Seed can not be null!™, new ArgumentNullException(});

if (GetKeySire(BlockEngine) < Seed.Length)
throw new CryptoRandomException("CTRPrng:Ctor™, String.Format("The state seed is too small! must be at least {8} bytes”, Getkey

_engineType = BlockEngine;
stateSeed = Seed;|

“byteBuffer — new byte[Buffersize];
_buffersize = Buffersize;
Reset();
¥
100 %% -~ 4 »
Locals - 0 o>
MName Value Type
W@ this {VTDev Libraries.CEXEngine.Crypto.Prng.CTRPrng} VTDev.Li
& BlockEngine RDX VTDev.Li
W@ SeedEngine CSPRsg VTDev.Li
& BufferSize 4096 int
@ KeySize o int

Figure 6: Initial Parameters Created (1)

CipherParams: The RLWE Parameters instance containing the cipher settings
Rng Engine: An initialized Prng instance
Parallel: Use parallel processing when generating a key; set to false if using a passphrase type

generator (default is true)

X3

= #region Constructor

= /// <summary>
Initialize this class
</summary>

<param name="
<param name="Parallel">Use parallel processing when generating a key; set to false if using a passphrase type generator (defaul

pherParams”>The MPKCParameters instance containing thecipher settings</param>

<exception cref="CryptoAsymme
= public MPKCKeyGenerator(/PKCParamet

{

tion">Thrown if a Prng that requires pre-initislization is specified; (wrong constructor)
< CipherParams, bool Parallel = true)

if (CipherParams.RandomEngine == Prngs.PBPrng)

throw new CryptoAsymmetricException("MPKCKeyGenerator:Ctor”, "Passphrase based digest and CTR generators must be pre-initiz

_frclinear = ParallelUtils.Forcelinear;

ParallelUtils.Forcelinear = Parallel;
_mpkcParams = (MPKCFarameters)CipherParams;
// set sour|El @y =
ot _rndEngine = (-
T - mpkcpar: accslEngine Fujisaki
TN - Tmpkcpar: ¥adgtEnginfype SHA2S .
@, _fieldPoly 2053
I @, _isDisposed false L
Locals @M n I T Ix Ix
Name Value s N 2048 Type
@ this {VTDe :f *fn':EnginETwE ‘Cb%;[r?; Incrypt.McEliece. MPKCKeyGenerator} VTDevLi
© CipherParams (VDe g™ 7 w nerypt McEliece MPKCParameters) VTDev.Li
@ Parallel tue | g CCAZEngine Fomr beol
¥ Digest 5HAZ56
K FieldPolynomial 2053
M 1
&N 2048
Locaks | Watch 1 5 Name Q -+ "MPKCParameters" AL

Figure 7: Initial Parameters Created (2)

Above mentioned parameters are generated after series of iterations (fig 6-7).

After defining the above-mentioned parameters next step is generation of finite field GF(2"m)

with fixed field polynomial as shown in fig 8-9

52

this._degree = Degree;
_polynomial = PolynomialRingGF2.GetIrreduciblePolynomial(Degree);

=] £ <summary>
Create a finite field GF(2°m) with the fixed field polynomial
/7 </summary>

<param nam

"Degree”>The degree of the field</param>
| /// <param name="Polynomial”>The field polynomial</param:>

L= S| bubllc GF2mField(int Degree, int Polynomial)

{

if (Degree != PolynomialRingGF2.Degree(Polynomial))
throw new ArgumentException(™ Error: the degree is not correctl!™);
if (!PeolynomialRingGF2.IsIrreducible(Polynomial))
throw new ArgumentExcepticon(” Error: given polynomial is reducible!™);

_degree = Degree;
_polynomial = Polynomial;
L ¥
= /77 <summary>
100 %% -
Locals 2
Mame Value Type
@ this {Finite Field GF(2*0) = GF(2)[X]/<0> } VTDev.Li
@ Degree 11 int
& Polynomial 2053 int

Figure 8: Finite Field Generation (1)

! <summary >
Create a finite field GF(2"m) with the fixed field polynomial
</ summary >

<param name="Degree”:The degree of the field</param:
<param name="Polynomial”>The field polynomial</param:>
= publlc GF2mField(int Degree, int Polynomial)

x if (Degree != PolynomialRingGF2.Degree(Polynomial))
throw new ArgumentException(™ Error: the degree is not correct!™);
if (!PolynomialRingGF2.IsIrreducible(Polynomial))
throw new ArgumentException("” Error: given polynomial is reducible!™};

_degree = Degree;
_polynomial = Polynomial;

0% -

ocals
Mame
= {Finite Field GF(2~0) = GF(2)[X]/<0> }
&5 _degree
w5 _polynomial
K& Degree
& Polynomial
@ Degree
@ Polynomial

Figure 9: Finite Field Generation (2)

Methods for working with polynomials over the finite field GF(2) are described in "this" class.,
In next step we have checked the irreducibility of polynomial as it must be irreducible for
generation of keys.

53

<summary >

Checking polynomial for irreducibility]
</ summary >
<param name="P">The polinomial</param>
| <returns>Returns true if p dis dirreducible and false otherwise</returns>
=] ic static bool IsIrreducible(int P)
if (P —— @)
return false;
z int d = IntUtils.URShift(Degree(P), 1);
int u = 2;
for (int i = @; i < d; i++)
i
u = ModMultiply(u, u, P);
if (Ged{u ~ 2, P} != 1)
return false;
¥
return true;
L ¥
= A <summary s
10 %% - 4
ocals s ses SR smssstaas
Mame Walue Type
- P 2053 int
& d o int
- u 0 int

Figure 10: Checking Reducibility of Finite Field (1)

=] A <summary>
Create a finite field GF(2"m) with the fixed field polynomial
! </ summary >

' <param nam
' <param nam

Degree”>The degree of the field</param>
="Polynomial”>The field polynomial</param:

=] public GF2mField(int Degree, int Polynomial)
{
if (Degree != PolynomialRingGF2.Degree(Polynomial))
throw new ArgumentExcepticon(" Error: the degree is not correct!™);
pas I:i.f (!PolynomialRingGF2.IsIrreducible(Polynomial))

throw new ArgumentException(” Error: given polynomial is reducible!™);

_degree = Degree;
_polynomial = Polynomial;

L 1
= ! <summary>
' Create a finite field GF(2*m) using an encoded array
</ summary >
| / <param name="Encoded">The polynomial and degree encoded as a byte array</param>
=] public GF2mField(byte[] Encoded)
100 % -
Locals 1
Marne Value Type
@ this {Finite Field GF{(20) = GF(2)[X]/<0=> } WTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Encrypt.McEliece Algebra. GF2ZmField
& Degree 11 int
« Polynomial 2053 int

Figure 11: Checking Reducibility of Finite Field (2)

Next phase is generation of irreducible Goppa Polynomial which is further used for generation of
matrixes and goppa codes

54

= #regien PuUDLlC METnoas
£/ <summary>
/// Generate an encryption Key pair
f} </ summary>

= public TAsymmetricKeyPair GenerateKeyPair()

// finite field GF(2m)
cFanFicld field = new GFamField(_M, _fieldPely);
// irreducible Goppa polynomial

= polynomialRing6F2m ring = new PolynomialRingGF2m(field, gp);
// matrix for computing square roots in (GF(2°m))"t
PolynomialGF2msmallM[] qInv = ring.SquareRootMatrix;

// generate canonical check matrix

GF2Matrix h = GoppaCode.CreateCanonicalCheckMatrix(field, gp);
// compute short systematic form of check matrix
GoppaCode.MaMaPe mmp = GoppaCode.ComputeSystematicForm(h, _rndEngine);
GF2Matrix shortH = mmp.SecondMatrix;

Permutation p = mmp.Permutation;

// compute short systematic form of generator matrix

GF2Matrix shortG = (GF2Matrix)shortH.ComputeTranspose();

/7 obtain number of rows of G (= dimension of the code)

/// <returns>a McElieceKeyPair containing public and private keys</returns>

@ ring._sqMatrix[0] { Polynomial over Finite Field GF2*11) = GF(ZI[X]/<1+x"2+x 115 1\

PolynomialGF2msmalli gp = new PolynomialGF2msmalli(field, T, PolynomialGF2mSmall®.RANDOM_IRREDUCIBLE_POLYNOMIAL, _rndEngine);

100% - 4 1
Locals T3 x -
Figure 12: Goppa Polynomial Generation (1)
Name Value Type -
&, _isDisposed false bool
L int
{¥TDev.Libraries.CEXEngine.Crypte.Cipher.Asymmetric.Encrypt.McEliece MPKCF VTDev.Libraries.CEXEngine, Crypto.Cipher.Asymmetric Encrypt. McEliece.MPKCParameters
2048 int
{WTDev Libraries.CEXEngine.Crypto.Prng.CTRPrng} VTDev.Libraries.CEXEngine.Crypto.Prng IRandom {VTDev.Libraries.CEXEngine.Crypte.Prng.CTRPrng
40 int
K Name “MPKCKeyGenerator” string

{Finite Field GF(2*11) = GF(2)[X]/<1+x"2+x 11> }

VTDev.Libraries.CEXEngine Crypto.Cipher.Asymmetric.Encrypt.McEliece.Algebra. GF2ZmField

{int[41]}
40
{Finite Field GF(2*11) = GF()[X]/ <1+x*2+x 11> }
K Degree 40
K Field {Finite Field GF(2411) = GF2)[X]/<T+x*2+x 11> }
& Head 1
#5 Static members
@ ring null
@ glnv null
@ h null
@ mmp null
@ shortH null
@ p null
@ shortG null
@ k 0
@ pubKey null
@ privkey null

Figure 13: Goppa Polynomial Generation (2)

VTDev.Libraries.CEXEngine Crypto.Cipher.Asymmetric.Encrypt.McEliece. AlgebraPolynomial GFZm§
int[]

int

VTDev.Libraries.CEXEngine.Crypto.Cipher.Asymmetric. Encrypt. McEliece. Algebra.GF2mField

int

VDev.Libraries.CEXEngine. Crypto.Cipher.Asymmetric. Encrypt. McEliece. Algebra. GF2mField

int

VTDev.Libraries.CEXEngine. Crypto.Cipher. Asymmetric.Encrypt. McEliece. Algebra PolynemialRing GF
VTDev.Libraries.CEXEngine. Crypto.Cipher. Asymmetric.Encrypt. McEliece. Algebra Polynemial GF2ZmS
VTDev.Libraries. CEXEngine.Crypto.Cipher. Asymmetric.Encrypt. McEliece. Algebra. GFZMatrix
VTDev.Libraries. CEXEngine.Crypto.Cipher. Asymmetric.Encrypt. McEliece. Algebra. GoppaCode.MaM:
VTDev.Libraries.CEXEngine Crypto.Cipher.Asymmetric.Encrypt.McEliece.Algebra GF2Matrix
VTDev.Libraries.CEXEngine Crypto.Cipher. Asymmetric.Encrypt.McEliece.Algebra Permutation
VTDev.Libraries.CEXEngine. Crypto.Cipher. Asymmetric Encrypt. McEliece. Algebra. GF2Matrix

int

VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric Interfaces.|AsymmetricKey
VDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Interfaces.|AsymmétricKey

Goppa Polynomial Coefficients with degree 40 are shown in fig 14-16

55

B T T T T P P PR S R T PP iy uny

E:\ #region Public Methods
100% = 4
Mame Value Type
el _cosfficient (ot g |
@ [0 902 int
® [1] 15 int
@ (2] 1761 int
@ [3] 457 int
@ [4] 1982 int
@ [3] 355 int
@ [6] 695 int
@ [7] 575 int
@ [3] 123 int
@ [9] 206 int
@ [10] 1378 int
@ [11] 587 int
@ [12] 1488 int
@ [13] 1398 int
@ [14] 1307 int
@ [13] 1973 int
@ [16] 1701 int
@ [17] 1614 int
@ [18] 1602 int
@ [19] 1827 int
@ [20] 372 int
@ [21] 574 int
e [22] 837 int
@ [23] 1324 int
@ [24] 277 int
@ [29] 327 int
@ e 1088 o

Locals | Watch 1

Figure 14: Goppa Polynomial (1)

@ [16] 1701 int
@ [17] 1614 int
@ [13] 1602 int
@ [19] 1827 int
@ [20] n int
@ [21] 574 int
@ [2] 837 int
@ [23] 1324 int
@ [24] n int
@ [25] 327 int
@ [26] 1855 int
@ [27] 524 int
@ [23] 453 int
@ [29] 1453 int
@ [30] 51 int
@ [31] 1702 int
@ [32] 739 int
@ [33] 515 int
@ [34] a7 int
@ [35] 1546 int
@ [36] 203 int
@ [37] 300 int
@ [38] 113 int
@ [39] 1885 int
@ [40] 1 int

& _degree 40 int

Figure 15: Goppa Polynomial (2)

Then in next step we have generated canonical check matrix H and systematic form of check

matrix by usinggoppa polynomial as shown in fig 16

56

Granfield field = new GF2nField(M, _fieldPoly);

/4 irreducible Goppa polynomial

PolynomialGF2zmsmalld gp = new PolynomialGFzmSmallv(field, _T, PolynomialGF2mSmallM.RANDOM_IRREDUCIBLE POLYNOMIAL, _rndEngine);

£ PolynomialRingGF2m ring = new PolynomizlRingGF2m(field, gp)s; E@ ring._sqMatrix[0] { Polynomial aver Finite Field GF(2411) = GF(2)[X]/< T+x*2+x 11> : \n00DODDBODDT YA D}
// matrix for computing square roots in (G6F(2"m))"t

PolynomialGF2zmsmallM[] gInv = ring.SquareRootMatrix;

// generate canonical check matrix

GF2Matrix h = GoppaCode.CreateCanonicalCheckMatrix(field, gp);

1/ comp|E %3 GF2Matrix ymmetric.Encr ra.GF2Matrix =+

] GoppaCode. (5] # base {VTDev.Librar 2. Matrix}| VTDev.Libraries.CEXEngine Crypto.Cipher Asymmetric.Encrypt.McEliece Algebra. Matrix
GFaMatrix SN ég pase {object} object |
Permutation '@ MATRIX_TYPE_RANDOM_LT 76l
// compute s g MATRIX_TYPE RANDOM REGULAR 82°'R' Frix
GF2Matrix sh g MATRIX TYPE_RANDOM_UT 85'0r spose();
// obtain nu g MATRIX_TYPE_UNIT 73 B code)
int k = shor @ MATRIX_TYPE_ZERO 0z

// generate keys
IAsymmetricKey pubKey = new MPKCPublicKey(N, _T, shortG);
IAsymmetricKey privKey = new MPKCPrivatekey(N, k, field, gp, p, h, qInv);

00% - 4 3
Locals ryRx -1
Mame Value Type -

@ this {VTDev.Libraries. CEXEngine.Crypto.Cipher. Asymmetric.Encrypt McEliece. MPKCK VTDev.Libraries.CEXEngine. Crypto.Cipher Asymmetric Encrypt.McEliece. MPKCKeyGenerator

@ field {Finite Field GF2411) = GF[K)/<1+x"2+x 115 } VTDev.Libraries.CEXEngine Crypte. Cipher.Asymmetric.Encrypt.McEliece. Algebra.GF2mField

@ g { Polynomial over Finite Field GF(2*11) = GF(2)[X]/<1+x"2+x"11> : 01110000111 VTDev.Libraries.CEXEngine.Crypto.Cipher.Asymmetric.Encrypt.McEliece. Algebra.Polynomial GF2mS.

@ ring {VTDev.Libraries. CEXEngine.Crypto.Cipher. Asymmetric.Encrypt.McEliece. Algebr: VTDev.Libraries.CEXEngine.Crypto.Cipher Asymmetric.Encrypt.McEliece. Algebra.PolynomialRingGF

@ glnv {VTDev Libraries. CEXEngine.Crypto.Cipher.Asymmetric.Encrypt McEliece.Algebr: VTDev.Libraries.CEXEngine Crypto. Cipher. Asymmetric.Encrypt.McEliece. Algebra.PolynomialGF2mS

@ h {0: 11110101011101001000100701111111 01010111100010011000100001011111 00(VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Encrypt.McEliece. Algebra. GF2Matrix

@ mmp null VTDev.Libraries.CEXEngine. Crypto.Cipher.Asymmetric.Encrypt.McEliece. Algebra.GoppaCode.MaM:

@ shortH null VTDev.Libraries.CEXEngine.Crypto.Cipher.Asymmetric.Encrypt.McEliece. Algebra. GF2Matrix

@p null VTDevLibraries.CEXEngine.Crypto.Cipher.Asymmetric.Encrypt.McEliece Algebra.Permutation

@ shortG null VTDev.Libraries.CEXEngine.Crypto.Cipher.Asymmetric Encrypt. McEliece. Algebra. GF2Matrix

@ L 0 int -
Locals Watch 1 Ay

Figure 16: Generation of Canonial Matrix

GFamField field = new GFamField(M, _fieldPoly);

/4 irreducible Goppa polynomial

PolynomialGF2mSmallM gp = new PolynomialGF2msmallM(field, _T, PolynomialGF2mSmallM.RANDOM_IRREDUCIBLE_POLYNOMIAL, _rndEngine);

tH PolynomialRingGF2m ring = new PolynomialRingGFom(field, gp); B ring._sqMatrix[0] { Polynomial over Finite Field GF(2"11) = GFZ)[X]/<1+x"2+x 11> : \n0OOOODRODOTY D+:}
/4 matrix for computing square roots in (GF(2°m))"t

PolynomialGFzmsmallM[] gInv = ring.SquareRocotMatrix;

// generate canonical check matrix

GF2Matrix h = GoppaCode.CreateCanonicalCheckMatrix(field, gp);

// compute short systematic form of check matrix

GoppaCode.MaMaPe mmp = GoppaCode.ComputeSystematicForm(h, _rndEngine);

GF2Matrix shortH = mmp.SecondMatrix;

x5 PermutatiE) #g GF2Matrix| VIDev.Librarie

// compute | #g base [VTDev.Lib

ra.GF2Matrix =
2. Matrix}| VTDev.Librar

mimetric.En

mmetric.Encry

EXEngine.C 2 Matri

pto.Cipher.Asymmetric Encrypt

GFaMatrix sOT &y pase fobject) object 952(J5

// obtain numtg MATRIX_TYPE_RANDOM_LT 76°'L |code)

int k = shortCe MATRIX TYPE RANDOM REGULAR 82 R

// generate kegy MATRIX TYPE RANDOM UT 85w

Lasymretrickey g MATRIX_TYPE UNIT 73 shortG);
Iasymmetrickey g MATRIX_TYPE_ZERO o'z field, gp, p, h, gInv);

W% ~ 4 »
Name Value Type -
@ this {VTDevLibraries. CEXEngine Crypto.Cipher. Asymmetric. Encrypt.McEliece MPKCK VTDev.Libraries.CEXEngine. Crypto. Cipher.Asymmetric Encrypt.McEliece. MPKCKeyGenerator

@ field {Finite Field GF2*11) = GFQ)[X]/<1+x42+xA 11> } VTDev.Libraries.CEXEngine.Crypto. Cipher.Asymmetric Encrypt.McEliece. Algebra.GF2mField

@ g { Polynomial over Finite Field GF(2*11) = GFI[X}/<1+x*2+x*11> : 0111000011! VTDev.Libraries.CEXEngine.Crypto. Cipher.Asymmetric EncryptMcEliece. Algebra.PolynomialGF2ms
@ ring {VTDevLibraries. CEXEngine Crypto Cipher. Asymmetric.Encrypt. McEliece. Algebr VTDev.Libraries.CEXEngine. Crypto. Cipher. Asymmetric Encrypt McEliece. Algebra.PolynomialRing GF
@ gnv {VTDevLibraries. CEXEngine Crypto Cipher. Asymmetric.Encrypt. McEliece. Algebr: VTDev.Libraries.CEXEngine.Crypto. Cipher.Asymmetric Encrypt.McEliece. Algebra.PolynomialGF2ms
@ h {0: 11110101011101001000100101111111 01010111100010011000100001011111 0B VTDev.Libraries.CEXEngine.Crypto. Cipher.Asymmetric. Encrypt.McEliece. Algebra.GF2Matrix

@ mmp {VTDev.Libraries.CEXEngine.Crypte.Cipher.Asymmetric.Encrypt.McEliece. Algebri VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric. Encrypt.McEliece.Algebra.GoppaCede.MaM:
@ shortH {0: 11011010000000010000100001110101 10101101010111011010010001100111 01° VTDev.Libraries.CEXEngine. Crypto. Cipher. Asymmetric. Encrypt.McEliece. Algebra.GF2Matrix

@p null VTDev.Libraries.CEXEngine.Crypto. Cipher. Asymmetric Encrypt McEliece. Algebra Permutation

@ shortG null VTDev.Libraries.CEXEngine.Crypto. Cipher.Asymmetric. Encrypt.McEliece. Algebra.GFZMatrbt

Result/Output (H matrix)

B @ base :
@, _columnCount 2043 int
@, _rowCount 440 int
% ColumnCount 2048 int
% RowCount 440 int

#5 Static members

64 int
{int[440][T} int[][]
& Length 64 int

Figure 17: Generation of H Matrix

57

a3 s = 4

Name Value Type -
Bl man g
o {int[84]} int[]
{int[64]} int[]
[int[64]} int[]
{int[64]} int[]
{int[64]} int[]
{int[64]} int[]
{int[64]} int[]
{int[64]} int[]
{int[64]} int[]
{int[64]} int[]
{int[64]} int[]
{int[64]} int[]
{int[64]} int[]
{int[64]} int[]
{int[64]} int[]
{int[64]} int[]
{int[64]} int[]
{int[64]} int[]
{int[64]} int[]
{int[64]} int[]
{int[64]} int[]
Figure 18: H Matrix (1)

Mame Value Type
@ [421] {int[64]} int{]
@ [422] {int[64]} int{]
@ [423] {int[64]} int{]
@ [424] {int[64]} int[]
@ [425] {int[64]} int[]
@ [426] {int[64]} int[]
@ [427] {int[64]} int[]
@ [428] {int[64]} int[]
@ [429] {int[64]} int[]
@ [430] {int[64]} int[]
@ [431] {int[64]} int[]
@ [432] {int[64]} int[]
@ [433] {int[64]} int[]
@ [434] {int[B4]} int[]
@ [435] {int[B4]} int[]
@ [436] {int[64]} int[]
@ [437] {int[64]} int[]
@ [438] {int[84]} int[]
@ [430] {int[64]} int[]

Figure 19: H Matrix (2)
]

Name Value Type -
= (T

@ [0] -983706010 int
@ [1] 91300953 int
@ [2] 1342433510 int
@ [3] 1472606004 int
@ [4] 1859187636 int
@ [3] 968063365 int
@ [6] -13095651542 int
@ [7] -1981064605 int
@ [8] 1789527735 int
@ [9] -656849560 int
@ [10] 40883043 int
@ [11] 436547310 int
@ [12] -042085446 int
@ [13] -1563082722 int
@ [14] 1400903774 int
@ [15] 2082078226 int
@ [16] 2085512406 int
@ [17] 1037782683 int
@ [18] 2038896285 int
@ [19] 1601973358 int
@ [20] -1158084103 int

Figure 20: H Matrix (3)

58

After generation of H matrix we have generated G, P and S matrixes which are further used for

keys generation as shown in fig 21-23

-G matrix
= @ shortG {0: 11010010110111111010110011100011 00111000101010111111101111011010 11(VTDev Libraries. CEXEngine.Crypto.Cipher. Asymmetric.Encrypt.McEliece. Algebra.GF2Matrix
[l @ base {0: 11010010110111111010110011100071 001110001010101111111011110711070 11{ VTDev Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Encrypt.McEliece. Algebra.Matrix {VTDev.Libr
&, _columnCount 440 int
@, _rowCount 1608 int
& ColumnCount 440 int
& RowCount 1608 int
Elca seticmernbers | |
&g MATRIX_TYPE_RANDOM_LT 76'L' char
&y MATRIX_TYPE_RANDOM_REG 82 'R char
&g MATRIX_TYPE_RANDOM_UT 83'U" char
& MATRIX_TYPE_UNIT Bl char
&g MATRIX_TYPE_ZERO %0 char
&; _length 14 int
@ _matrix {int[1608][]} int[][]
K Length 14 int

Figure 21: Generator Matrix
Matrix has 440 columns with 1608 rows.

Locals

Name Value Type
o O TS - T
@ [0] {int[14]} int[]
@ [1] {int[14]} int[]
@ [2] {int[14]} int[]
@ [3] {int[14]} int[]
@ [4] {int[14]} int[]
@ [5] {int[14]} int[]
@ [6] {int[14]} int[]
@ [7] {int[14]} int[]
@ [3] {int[14]} int[]
@ [9] {int[14]} int[]
@ [10] {int[14]} int[]
@ [11] {int[14]} int[]
@ [12] {int[14]} int[]
@ [13] {int[14]} int[]
@ [14] {int[14]} int[]
@ [15] {int[14]} int[]
@ [16] {int[14]} int[]
@ [17] {int[14]} int[]
@ [13] {int[14]} int[]
@ [19] {int[14]} int[]
@ [20] {int[14]} int[]
@ [21] {int[14]} int[]
@ [22] {int[14]} int[]
@ [23] {int[14]} int[]

59

Locals

MName Value Type
@ [1381] {int[14]} int[]
@ [1582] {int[14]} int[]
@ [1383] {int[141} int[]
@ [1584] {int[14]} int[]
@ [1585] {int[14]} int[]
@ [1386] {int[141} int[]
@ [1387] {int[14]} int[]
@ [1588] {int[14]} int[]
@ [1589] {int[14]} int[]
@ [1590] {int[14]} int[]
@ [1591] {int[141} int[]
@ [1592] {int[14]} int[]
@ [1593] {int[14]} int[]
@ [1594] {int[141} int[]
@ [1595] {int[14]} int[]
@ [1596] {int[14]} int[]
@ [1597] {int[141} int[]
@ [1598] {int[14]} int[]
@ [1599] {int[14]} int[]
@ [1600] {int[14]} int[]
@ [1601] {int[14]} int[]
@ [1602] {int[14]} int[]
@ [1603] {int[14]} int[]
@ [1604] {int[14]} int[]
@ [1605] {int[141} int[]
@ [1608] {int[14]} int[]
@ [1607] {int[14]} int[]
& Length 14 int

Each entry has further 14 sub values as shown below:-

@ [1608] (int[14]} int(]

@
@ [0 1016407633 int
@ [1] -1529248160 int
@ 2] 1200340282 int
@ [3] -141519750 int
@ [4] 240234500 int
@ [5] 1177248467 int
@ [6] 1570458784 int
@ [7] 39350620 int
@ [g] 301206606 int
@ [9] 174851979 int
@ [10] -167627595 int
@ [11] 382661601 int
@ [12] 95360482 int
@ [13] 16179108 int

Length 14 int

-Permutation Matrix P

{int[2048]} int[]
& s {0: 01000101170100100010017007100701 00100110111110011101110110011000 01 VTDev.Libraries.CEXEngine.Crypto.Cipher.Asymmetric.Encrypt. McEliece Algebra. GF2Matrix
K FirstMatrix {0: 01000101110100100010011001100101 00100110111110011101110110011000 01° VTDev.Libraries.CEXEngine.Crypto.Cipher.Asymmetric.Encrypt.McEliece. Algebra. GF2Matrix
F Permutation {1568, 420, 1446, 1184, 1307, 848, 321, 860, 87, 1640, 2028, 731, 585, 600, 1338, 991 VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Encrypt.McEliece. Algebra.Permutation
K SecondMatrix {0: 11071070000000010000100001110701 10101101010111011010010001100111 017 VTDev.Libraries.CEXEngine.Crypto.Cipher.Asymmetric.Encrypt.McEliece. Algebra. GF2Matrix

Figure 22: Permutation Matrix (1)

Total of 2048 entries with random values as shown below:-

60

Bl pem——— Jiimiz0ie)
1568 int

@ [0]

@ [1] 420 int

@ 2] 1446 int

@ [3] 1184 int

@ 1 1301 int

@ [3] 849 int

@ [6] 321 int

@ [7 860 int

@ 18 &7 int

@ (9] 1640 int

@ [10] 2029 int

@ [11] FE3| int

@ [12] 595 int

@ [13] 600 int

@ [14] 1358 int

w [15] 991 int

@ [15] 232 int

w [17] 2022 int

@ [18] 1764 int

w [19] e int

@ [20] 1023 int

w [21] 1609 int

@ 2] 1367 int

w [23] 217 int

@ 24 551 int

w [25] 1793 int

@ [26]1 2046 int
@ [2022] 1289 int
@ [2023] 23 int
@ [2024] 1839 int
@ [2025] 753 int
@ [2026] 1913 int
@ [2027] 928 int
@ [2028] 865 int
@ [2029] 612 int
@ [2030] 33 int
@ [2031] 856 int
@ [2032] 1604 int
@ [2033] 956 int
@ [2034] 1672 int
@ [2035] 1110 int
@ [2036] 1174 int
@ [2037] 833 int
@ [2038] 1405 int
@ [2039] 969 int
@ [2040] 1103 int
@ [2041] 1114 int
@ [2042] 1903 int
@ [2043] 1305 int
@ [2044] 839 int
@ [2045] 1719 int
@ [2046] 1158 int
@ [2047] 933 int

Figure 23: Permutation Matrix (1-2)

Results achieved after first permutation are shown in fig 24:-

= FirstMatrix {0: 01000101110100700010011001100101 00100110111110011101110110011000 01° VTDev.Libraries.CEXEngine.Crypto.Cipher.Asymmetric.Encrypt.McEliece. Algebra. GF2Matrix
@ base {0: 01000101110100700010011001100101 00100110111110011101110110011000 01° VTDev.Libraries.CEXEngine.Crypto.Cipher.Asymmetric.Encrypt.McEliece. Algebra.Matrix {VTDev.Libr
&, length 14 int
&5 _matrix {int[440](1} int[][]
& Length 14 int

61

= M FirstMatrix {0: 01000101110100100010011001100101 00100110111110011101110110011000 01° VTDev.Libraries. CEXEngine.Crypto.Cipher.Asymmetric. Encrypt.McEliece. Algebra. GF2Matrix

= @ base {0: 01000101110100100010011001100101 00100110111110011101110110017000 01" VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric. Encrypt.McEliece. Algebra. Matrix {VTDev.Libr
@ _columnCount 440 int
@, rowCount 40 int
& ColumnCount 440 int
4 RowCount 440 int
BICS e memner: |
&g MATRIX_TYPE_RANDOM_L 76 'L' char
&y MATRIX_TYPE_RANDOM F 82 'R char
& MATRIX_TYPE_RANDOM_L 85°'U" char
&g MATRIXC_TYPE_UNIT B char
&y MATRIX_TYPE_ZERO 90 Z' char
& _length 14 int
@ _matrix {int[440][]} int[][]
K Length 14 int

Figure 24: Results after first permutation

It has total 440 rows and 440 Columns as shown below

s
@ [0] fint[14]} int[]
0] {int[14]} int[]
121 fint{14]} int[]
13 fint[14]} int[]
4] {int{14]} int[]
5] fint{14]} int[]
6] {int[14]} int[]
| {int{14]} int[]
18] fint[14]} int[]
19] {int[14]} int[]
[10] fint{14]} int[]
] {int[14]} int[]
[12] {int{14]} int[]
[13] fint{14]} int[]
[14] {int[14]} int[]
[15] {int{14]} int[]
[16] fint[14]} int[]
[7] {int[14]} int[]
[18] fint{14]} int[]
[19] fint[14]} int[]
[20] {int[14]} int[]
[21] fint{14]} int[]
[22] {int[14]} int[]
[23] {int{14]} int[]
[24] fint{14]} int[]
[25) {int[14]} int[]
1261 fintT141} intfl

EEEEEEEEEEEEEEEEEEEEE B EEHBR
teccCccooCCcCECCCCEREECECOCECRCOECOQEUCOEUOOCE

62

@ [414] {int[14]} int{]
@ [415] {int[14]} int{]
@ [416] {int[14]} int{]
@ [417] {int[14]} int{]
@ [418] {int[14]} int{]
@ [419] {int[14]} int{]
@ [420] {int[14]} int{]
@ [421] {int[14]} int{]
@ [422] {int[14]} int{]
@ [423] {int[14]} int{]
@ [424] {int[14]} int{]
@ [425] {int[14]} int{]
@ [426] {int[14]} int{]
@ [427] {int[14]} int{]
@ [429] {int[14]} int{]
@ [420] {int[14]} int{]
@ [430] {int[14]} int{]
@ [431] {int[14]} int{]
@ [432] {int[14]} int{]
@ [433] {int[14]} int{]
@ [434] {int[14]} int{]
@ [435] {int[14]} int{]
@ [436] {int[14]} int{]
@ [437] {int[14]} int{]
@ [439] {int[14]} int{]
@ [439] {int[14]} int[]

Figure 25: Number of columns after permutation

Second matrix generated after the second permutation have 1608 columns, 440 Rows and each

values have 51 entries as shown in fig 26-29

= S SecondMatrix {0: 11011010000000010000100001110101 10101101010111011010010001100111 01° VTDev.Libraries.CEXEngine.Crypto.Cipher.Asymmetric.Encrypt.McEliece. Algebra.GF2Matrix
E @ base {0: 11011010000000010000100001110101 10101101010111011010010001100111 01° WTDev.Libraries. CEXEngine.Crypto.Cipher.Asymmetric.Encrypt.McEliece. Algebra.Matrix {VTDev.Libr
&; _columnCount 1608 int
&; _rowCount 440 int
J ColumnCount 1608 int
J RowCount 440 int
IS sne memner
&y MATRIX_TYPE_RANDOM_L 76 L' char
&y MATRIX_TYPE_RANDOM_F 82 'R’ char
&y MATRIX_TYPE_RANDOM_L 85'U' char
&y MATRIX_TYPE_UNIT BT char
& MATRIX_TYPE_ZERO %7 char
&; _length 51 int
@ _matrix [int[440][]} int[][]
K Length 51 int

Figure 26: Second Matrix (1)

63

Name Value Type

& N [
@ [0 {int[51]} int(]
@ [1] {int[51]} int]
@ 2 {int[51]} int]
@ 3] {int[51]} int]
@ [4 {int[51]} int]
@ [5) {int[51]} int]
@ [6] {int[51]} int]
@ [7] {int[51]} int]
@ [{int[51]} int]
@ [9] {int[51]} int]
@ [10] {int[51]} int]
@ [11] {int[51]} int]
@ [12] {int[51]} int]
@ [13] {int[51]} int]
@ [14] {int[51]} int]
@ [15] {int[51]} int]
@ [1g] {int[51]} int]
@ [17] {int[51]} int]
@ [13] {int[51]} int]
@ [19] {int[51]} int]
@ [20] {int[51]} int]
@ [21] {int[51]} int]
@ [22] {int[51]} int]
@ [23] {int[51]} int]
@ [24] {int[51]} int]
@ [25] {int[51]} int]
@ 1261 fintl5114 intl

Figure 27: Second Matrix (2)

Name Value Type
@ [414] {int[31]} int[]
@ [413] {int[31]} int[]
@ [416] {int[31]} int[]
@ [417] {int[31]} int[]
@ [418] {int[31]} int[]
@ [419] {int[31]} int[]
@ [420] {int[31]} int[]
@ [421] {int[31]} int[]
@ [427] {int[31]} int[]
@ [423] {int[31]} int[]
@ [424] {int[31]} int[]
@ [425] {int[31]} int[]
@ [426] {int[31]} int[]
@ [427] {int[31]} int[]
@ [428] {int[31]} int[]
@ [429] {int[31]} int[]
@ [430] {int[31]} int[]
@ [431] {int[31]} int[]
@ [432] {int[31]} int[]
@ [433] {int[31]} int[]
@ [434] {int[31]} int[]
@ [433] {int[31]} int[]
@ [436] {int[31]} int[]
@ [437] {int[31]} int[]
@ [438] {int[31]} int[]
@ [439] {int[31]} int[]
F Length 51 int

Figure 28: Second Matrix (3)

64

Locals

Mame Value Type
Bl (439 {int[51]} o) ________________________|
@ [0] 266663350 int

0] -790191687 int
12 -1481137443 int
13 2147183474 int
4] -295762224 int
5] -1505178567 int
[6] -2034024217 int
| 1453142562 int
19 -1839735123 int
19] -1454479814 int
[10] 1492253857 int
[11] 630488381 int
[12] 406041696 int
[13] -553876399 int
[14] -1577562649 int
[15] 263703014 int
[16] -83040970 int
[17] 627791006 int
[18] -1303326472 int
[19] -1298326757 int
[20] -2044602998 int
[21] 1772606460 int
[22] -1188295553 int
[23] -1553043773 int
[24] 1164893754 int
[25] -894605852 int

tetteceCCCEOCCOCOCOCOCOCOREOCREOECORCUORCULCE

Figure 29: Second Matrix (4)

Value of “k” generated at the end of the generation of all matrices is 1608 as shown in fig 30.

Mame Value Type
@ this {VTDev Libraries.CEXEngine.Crypto.Cipher.Asymmetric. Encrypt.McEliece.MPKCEk VTDev.Libraries.CEXEngine Crypta.Cipher.Asymmetric.Encrypt. McEliece MPKCKeyGenerator
@ field {Finite Field GF(2*11) = GF(2)[X]/<1+x*2+x 11> } VTDev Libraries.CEXEngine. Crypto.Cipher. Asymmetric.Encrypt McEliece. Algebra. GF2mField
@ gp { Polynomial over Finite Field GF(2"11) = GF(2)[X]/<1+x"2+x"11= : 0111000017 VTDev.Libraries. CEXEngine.Crypte.Cipher. Asymmetric. Encrypt McEliece. Algebra.Polynomial GF2ZmS
@ ring {VTDev Libraries. CEXEngine Crypto.Cipher. Asymmetric Encrypt.McEliece.Algebri VTDev.Libraries. CEXEngine. Crypte.Cipher. Asymmetric. Encrypt. McEliece. Algebra.PolynomialRingGF
@ ginv {VTDev.Libraries.CEXEngine Crypto.Cipher.Asymmetric Encrypt.McEliece.Algebr VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric Encrypt. McEliece.Algebra.Palynomial GF2mS
@ h {0: 11110101011101001000100101111111 01010111100010011000100001011111 00(VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Encrypt. McEliece.Algebra. GF2Matrix
@ mmp {VTDev Libraries.CEXEngine Crypto.Cipher.Asymmetric. Encrypt.McEliece.Algebri VTDev.Libraries.CEXEngine. Crypto.Cipher.Asymmetric.Encrypt.McEliece.Algebra.GoppaCode.MaM:
@ shortH {0: 11011010000000010000100001110101 10101101010111011010010001100111 01° VTDev. Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Encrypt McEliece. Algebra. GF2Matrix
@ p {[1568, 420, 1446, 1184, 1301, 845, 321, 860, 87, 1640, 2029, 731, 595, 600, 1338, 991 VIDev.Libraries.CEXEngine.Crypte.Cipher. Asymmetric.Encrypt McEliece. Algebra.Permutation
@ shortG {0: 11010010110711111010110011100011 00111000107010111111101111011010 110 VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Encrypt. McEliece. Algebra. GF2Matrix

@ k 1608 int

@ pubKey null VTDev.Libraries, CEXEngine Crypto.Cipher. Asymmetric.Interfaces.|AsymmetricKey

@ privKey null VTDev.Libraries.CEXEngine. Crypto.Cipher. Asymmetric.Interfaces. | AsymmetricKey

Figure 30: K value

Up till this process generation of all Matrices is completed. With the help of these generated

matrices, we will create pair of keys and encrypt the messages to be sent.

5.3 Keys Generation

Basic algorithm for generation of Ordered pair of keys is below: -

Alice chooses a linear code C from a family of codes for which she already knows a good way to
decode it. She then makes C public but keeps the method for decoding it secret. To use this kind
of decoding method, you need to know the parameters used to define the chosen family of codes

and also understand C, in the sense that you know how to make a random generating matrix.

65

For binary Goppa codes, examples of such data are the Goppa polynomial and error locators. So,
Alice could release a C generator matrix that has been covered up in the right way.

Here are the specific steps you need to take:

e Alice picks a code C from a big family of codes, such binary Goppa codes, that can
(efficiently) fix t' mistakes. An effective decoding algorithm, A, should emerge from this
selection. Assume further that C has a generator matrix G. There is a wide variety of
possible generating matrices for linear codes, but often one stands out as the best. This
information should be kept hidden since it reveals A.

e To begin, Alice chooses a binary non-singular matrix S of size k by k at random.

e A random nxn permutation matrix P is chosen by Alice.

e Alice determines G = SGP to be a kxn matrix.

e (N,Gt) is Alice's public key, and (S,P,A) is her private key.
where

e "N">The length of the code
e "T">The error correction capability of the code

e "G'"> Generator matrix

//{ <param name="N">The length of the code</param»
/// <param name="T">The error correction capability of the code</param>
//{ <param name="G">The generator matrix</param>

2 = internal MPKCPublicKey(int N, int T, GF2Matrix G)

N = N;
T=T;

H
_G = new GF2Matrix(@);

= '}/ <summarys|
/// Constructor used by McElieceKeyFactory

in
in
v
in
in

100% -
LIS 5 0 0 B 0 0 B D
Name Value
@ this {VTDev.Libraries.CEXEngine.Crypto.Cipher.Asymmetric.Encrypt.McEliece MPKCPublicKey}
@ N 2048
T 40
e G {0:11010110111111111111011100110111 10010000010010001011111001100010 10001001101010111010011010000001 100001101111110100101011010:
@ base {0:11010110111111111111011100110111 10010000010010001011111001100010 10001001101010111010011010000001 100001101111110100101011010:
&; _length 14
&5 _matrix {int[1608][1}
K Length 14

Figure 31: Initial Parameters Created

66

in

E@® G
= @ base

{0:11010110111111111111011100110111 10010000010010001011111001100010 10001001101010111010011010000001 100001101111110100101011010: VTDev.Li
{0:11010110111111111111011100110111 10010000010010001011111001100010 10001001101010111010011010000001 100001101111110100101011010 VTDev.Li

&; _columnCount 440 int
&; _rowCount 1608 int
& ColumnCount 440 int
K RowCount 1608 int
= S e N
&y MATRIX_TYPE_RANDOM_LT 6L char
&n MATRIX_TYPE_RAMDOM_REGULAR 82'R' char
& MATRIX_TYPE_RANDOM_UT 85w char
&y MATRIX_TYPE_UNIT 3T char
& MATRIX_TYPE_ZERO 907" char
&; _length 14 int

Figure 32: Length of rows and Columns

Length of the Matrix is 1607 with 14 sub entries

Public key generated by using above parameters and matrixes is as shown in fig 33

/7 COMPUTE SNOrT SYSTEMaTlC TOrm 0T CNeCK Matrix

3 MaMa mm| a mpu
GF2Matrix shortH = mmp.SecondMatrix;
Permutation p = mmp.Permutation;

// compute short systematic form of generator matrix
GF2Matrix shortG = (GF2Matrix)shortH.ComputeTranspose();
// obtain number of rows of G (= dimension of the code)

aticForm(h, _rnden;

> o x
Walue Type o
{ Polynomial over Finite Field GF(2*11} = GF(2)[X]/<1+x"2+x*11> : 00011000000Y*0+1110000001 VTDev.Libraries. CEXEngine.Crypto.Cipher.Asymmetric.Er
{VTDev.Libraries. CEXEngine.Crypta.Cipher. Asymmetric.Encrypt. McEliece. Algebra.PalynomialRing VTDev.Libraries, CEXEngine.Crypto, Cipher.Asyrmmetric.Er
{VTDev.Libraries. CEXEngine.Crypta.Cipher. Asymmetric.Encrypt. McEliece. Algebra.Palynomial GF2: VTDev.Libraries. CEXEngine.Crypta. Cipher.Asymmetric.Er
{0: 00100010001111011011001000001000 01000110000000000010011110110011 00111100100011011C VTDev.Libraries.CEXEngine.Crypto.Cipher Asymmetric.Er
{VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Encrypt.McEliece.Algebra.GoppaCode.Ma VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Er
{0: 11111100000011110001001111010010 10100010100101010011010000111101 00111010001000010C VTDev.Libraries. CEXEngine.Crypto.Cipher Asymmetric.Er
{[1800, 1134, 317, 623, 223, 1913, 1921, 573, 607, 1097, 935, 901, 859, 633, 585, 979, 1379, 1068, 1160, VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Er

shortG {0: 11010110111111111111011100110111 10010000010010001011111001100010 10001001101010111C VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Er
k 1608 int
=] pubKey {VTDev.Libraries, CEXEngine.Crypto.Cipher Asymmetric.Encrypt.McEliece MPKCPublicKey} VTDev.Libraries, CEXEngine.Crypto.Cipher. Asymmetric.In

iR % T N O K R OV)
&
=
]
EES

{VTDev.Libraries.CEXEngine.Crypto.Cipher.Asymmetric.Encrypt.McEliece MPKCPublicKey} VTDev.Libraries. CEXEngine.Crypto.Cipher.Asymmetric.

& G {0: 11010110111111111111011100110111 10010000010010001011111001100010 10001001101010111C VTDev.Libraries.CEXEngine.Crypto.Cipher Asymmetric.Er
@, _isDisposed false bool
@ N 2048 int
& T 40 int

G {0: 11010110111111111111011100110111 10010000010010001011111001100010 10001001101010111C VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Er
KK 1608 int
&N 2048 int
& Name "MPKCPublicKey" Q, - string
AT 40 int

#5 Static members

@ privkey null VTDev Libraries.CEXEngine.Crypto.Cipher.AsymmetricIn +
Figure 33: Public Key (1)

Loca A X
MName Value Type =
= @ pubKey {VTDev.Libraries. CEXEngine.Crypte.Cipher.Asymmetric. Encrypt. McEliece.MPKCPublicKey} VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric.In

= @ [VTDev.Libraries.CEXEngine.Crypte.Cipher.Asymmetric.Encryp {VTDev.Libraries.CEXEngine.Crypto.Cipher.Asymmetric.Encrypt. McEliece MPKCPublicKey} VTDev.Libraries.CEXEngine.Crypte.Cipher. Asymmetric.Er
E & G {0:11010110111111111111011100110111 10010000010010001011111001100010 10001001101010111C VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Er
@ base {0:11010110111111111111011100110111 10010000010010001011111001100010 10001001101010111C VTDev.Libraries.CEXEngine.Crypto.Cipher.Asymmetric.Er
& _length 14 int
&5 _matrix {int[1608][1} int{][]
K Length 14 int
& _isDisposed false bool
N 2048 int
o T 40 int
B &G {0:11010110111111111111011100110111 10010000010010001011111001100010 10001001101010111C VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Er
@ base {0:11010110111111111111011100110111 10010000010010001011111001100010 10001001101010111C VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Er
@5 length 14 int
&5 _matrix {int[1608][1} int[][]
K Length 14 int
&K 1608 int
&N 2043 int
& Name "MPKCPublicKey" Q, - string
& T 40 int
BIS Sricmembe: e
&g ALG_NAME "MPKCPublicKey" Q, - string
@ privkey null VTDev.Libraries. CEXEngine.Crypto.Cipher.AsymmetricIn +

Figure 34: Public Key (2)

67

Wue -

Name Value Type o
E @ pubKey {VTDev.Libraries. CEXEngine.Crypto.Cipher.Asymmetric.Encrypt.McEliece MPKCPublicKey} WTDev.Libraries.CEXEngine.Crypto.Cipher.Asymmetric.In
£ @ [VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric. Encryp: {VTDev.Libraries.CEXEngine.Crypto.Cipher.Asymmetric.Encrypt.McEliece MPKCPublicKey} VTDev.Libraries.CEXEngine.Crypto.Cipher.Asymmetric Er
EICE: G {0: 11010110111111111111011100110111 10010000010010001011111001100010 100010011010101110 VTDev.Librari
@ base {0:11010110111111111111011100110111 10010000010010001011111001100010 10001001101010111C VTDev.Libraries.CEXEngine.Crypto.Cipher.Asymmetric.Er
_length 14 int
5 _matrix [int[1608][]} int][]
K Length 14 int
&, _isDisposed false bool
;N 2048 int
e T 40 int
@ base {0:11010110111111111111011100110111 10010000010010001011111001100010 10001001101010111C VTDev.Libraries.CEXEngine.Crypto.Cipher.Asymmetric.Er
&5 _length 14 int
s _matrix {int[1608][]} int[][]
K Length 14 int
&K 1608 int
AN 2048 int
& Name "MPKCPublicKey" Q ~ string
2T int
(= #5 Static members
%ty ALG_NAME "MPKCPublicKey" Q - string
@ privey null WTDev.Libraries.CEXEngine.Crypto.Cipher.AsymmetricIn «
Figure 35: Public Key (3)
Length of public key is 88456 Bytes as shown in fig 36-37
Chat.cs [Design] & 5 X MPKCKeyGenerator.cs &
Test.Chat + @, buttonl_Click{object sender, EventArgs €)
=] private void buttonl_Click(cbject sender, Eventirgs e)
{ ey
{
[]

kp = gen.GenerateKeyPair();

data = kp.PrivateKey.ToBytes();

data2 = kp.PublicKey.ToBytes();

1M data2 {byte[88456]} = bString()):

/4 encrypt an array

© using (MPKCEncrypt cipher = new MPKCEncrypt(ps))
{

cipher.Initialize(kp.PublicKey);
encr = cipher.Encrypt(System.Text.Encoding. UTFE. GetBytes (txtmsg. Text));

string encascii = Encoding.ASCII.GetString(encr, @, encr.length);

//System.Text .ASCIIEncoding enc = new System.Text.ASCIIEncoding();
//byte[] msg = new byte[1508];

//msg = enc.GetBytes(txtmsg.Text);

/4 sending the message

Listener.Send(encr);

W% -
Locals iwiminin s w IXC
Name Value Type
@ this {Test.Chat, Text: Chat} Test.Chat €
@ sender {Text = "Send"} object {System.Windows.Forms.Button}
e {X= 36V = 13 Button = Left} stem.EventArgs {System.Windows.Forms.
@ cipher null TDev.Libraries.CEXEngine.Crypto.Cipher.Asymmetric.Er
@ encascii null string

Figure 36: Length of Public Key (1)

68

(3]
-]

private void buttenl_Click(object sender, Eventargs e)

try Allt
{ Sea
kp = gen.GenerateKeyPair(); o
data = kp.PrivateKey.ToBytes(); [=]
data2 = k= & o)
//MessageBo: 5 @
/I encrypt al g Q- (]
using (MPKCEI @ & o
=]
cipher.Init - @ o
@ G {0:11010110111111111111011100110111 10010000010010001011111001100010 10001001101010111010011010000001 10000110111111010010101101011110 11011101011111011000011111010100 101000110111110101.
&5 _isDisposed false
@ N 2048
& T
BG {0:11010110111111111111011100110111 10010000010010001011111001100010 10001001101010111010011010000001 10000110111111010010101101011110 11011101011111011000011111010100 101000110111110101
FK
£ N 2048
F Name Q ~ "MPKCPublicKey"
T 40
“#g Static members
v
wr X Cov BX o
e Value Type Lang o
this {Test.Chat, Text: Chat} Test.Chat o o
sender {Text = "Send"} abject {System.Windows.Forms.Button} o
e {X =36 Y = 13 Button = Left] System.EventArgs {System Windows Forms.MouseEvents c= o
cipher null VTDev.Libraries.CEXEngine.Crypto.Cipher.Asymmetric.Er
encascii null strina &

Figure 37: Public Key Generated (2)

Generation of Private Key: Fol parameters and matrices (which have already been defined/

generated previously) are used to generate private key. Results are shown below

e "N">Length of the code

e "K">The dimension of the code

e "Gf">The finite field GF(2"m)

e "Gp">The irreducible Goppa polynomial
e "P">The permutation matrix

e "H">The canonical check matrix

e "QInv">The matrix used to compute square roots in (GF(2”m))"t

@ pubKey {VTDev.Libraries. CEXEngine.Crypto.Cipher. Asymmetric.Encrypt.McEliece MPKCPublicKey} WTDev.Libraries, CEXEngine.Crypto.CipherAsymmetricIn
B @ privkey {VTDev.Libraries.CEXEngine.Crypta.Cipher. Asymmetric.Encrypt.McEliece MPKCPrivateKey} VTDev.Libraries.CEXEngine.Crypto.Cipher. AsymmetricIn
VTDev.Libraries.CEXEngine.Crypto.Cipher Asymmetric,Fi
&5 _gField {Finite Field GF(2"11) = GF(2)[X]/«1+x"2+x" 11> } WTDev.Libraries.CEXEngine.Crypto.Cipher Asymmetric.Er
@; _goppaPoly { Polynomial over Finite Field GF(2*11) = GF{2)[X]/<1+x*2+x11> : 00011000000Y*0+1110000001 VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Er
@ {0: 00100010001111011011001000001000 01000110000000000010011110110011 00111100100011011C VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Er
&, _isDisposed false bool
& K 1608 int
@ N 2048 int
& Pl {[1800, 1134, 317, 623, 223, 1913, 1921, 573, 607, 1097, 935, 901, 859, 633, 585, 979, 1379, 1068, 1160, WTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Er
@ _qlinv {VTDev Libraries.CEXEngine.Crypta.Cipher.Asymmetric.Encrypt.McEliece. Algebra.PalynomialGF2: VTDev.Libraries. CEXEngine.Crypta. Cipher.Asymmetric.Er
5 GF {Finite Field GF(2411) = GF(2)[X]/<1+x"2+x"11> } VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Er
5 GP { Polynomial over Finite Field GF(2411) = GF{2)[X]/«1+x"2+x 11> : 00011000000Y"0+1110000001 VTDev.Libraries.CEXEngine.Crypto.Cipher Asymmetric.Er
BH {0: 00100010001111011011001000001000 01000110000000000010011110110011 00111100100011011C VTDev.Libraries. CEXEngine.Crypto.Cipher. Asymmetric.Er
&K 1608 int
&N 2048 int
F Name "MPKCPrivateKey" Q - string
5Pl {[1800, 1134, 317, 623, 223, 1913, 1921, 573, 607, 1097, 935, 901, 859, 633, 585, 978, 1379, 1068, 1160, VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Er
5 Qlnv {VTDev Libraries. CEXEngine.Crypta. Cipher. Asymmetric.Encrypt. McEliece. Algebra.PalynomialGF2r VTDev.Libraries. CEXEngine.Crypto. Cipher.Asymmetric.Er
FT 40 int

#4 Static members

Locals | Watch1

Figure 38: Private Key

69

Name Value Type -

@ pubKey {VTDev.Libraries.CEXEngine.Crypto.Cipher.Asymmetric.Encrypt.McEliece MPKCPublicKey} VTDev.Libraries. CEXEngine Crypto.Cipher Asymmetric.In =
a {VTDev.Libraries. CEXEngine.Crypto.Cipher. Asymmetric. Encrypt McEliece. MPKCPrivatekey} VTDev.Libraries. CEXEngine. Crypto.Cipher.Asymmetric.In)
B @ [VTDev.Libraries.CEXEngine.Crypto.Cipher.Asymmetric.Encryp {VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Encrypt McEliece MPKCP rivateKey) VTDev.Libraries. CEXEngine.Crypto.Cipher. Asymmetric.Er
& _gField {Finite Field GF(2"11) = GF(2)[X]/«1+x2+x"11> WTDev.Libraries. CEXEngine.Crypto.Cipher. Asymmetric.Er
=)= Grp
&; _coefficients {int[41]} int[]
@; _degree 40
Gl
&; _degree
&; _polynomisl
K Degree
Polynomial
F Degree
=) /2 Field
& _degree
&; _polynomisl
K Degree
& Polynomial
K Head
5 Static members

Figure 39: Private Key with fields

Length of Private Key is 119038 Bytes as shown in fig 40

E private void buttenl Click{object sender, EventArgs e)
try
{

[] H W

kp = gen.GenerateKeyPair();

data = kp.PrivateKey.ToBytes();

dat & data {byte[119038]} = ();

//Messagebox.Show(data[2].Tostring());

// encrypt an array
o using (MPKCEncrypt cipher = new MPKCEncrypt(ps))

{

cipher.Initialize(kp.PublicKey);
encr = cipher.Encrypt(System. Text.Encoding.UTF8. GetBytes (txtmsg. Text));

string encascii = Encoding.ASCII.GetString(encr, 8, encr.length);

//System.Text.ASCIIEncoding enc = new System.Text.ASCITEncoding();

//byte[] msg = new byte[1580];

//msg = enc.GetBytes(txtmsg.Text);

// sending the message

Listener.Send(encr);
00% -
Locals . ~ B X Co
Name Value Type
@ this {Test.Chat, Text: Chat} Test.Chat)
@ sender {Text = "Send"} object {System.Windows.Forms.Button}
@ e {X =36 =13 Button = Left} System.EventArgs {System.Windows.Forms.MouseEvent
@ cipher null

VTDev Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Er

Figure 40: Length of Private Key

70

that.cs [Design]
'3 Test.Chat - @, buttonl_Click(object sender, EventArgs €}

MPKCKeyGenerator.cs &

= private void buttonl_Click(object sender, £
{
try
{
)
kp = gen.GenerateKeyPair();
data = kp.PrivateKey.ToBytes();
dataz = k - @5 =
//MessageBor @ @ [VTDev.Libraries. CEXEngine.Crypto. Cipher.Asymmetric.Encrypt.McEliece, MPKCKeyPair] {VTDev.Libraries.CEXEngine. Crypto.Cipher. Asymmetric.Encrypt. McEliece MPKCKeyPairt
// encrypt ar 4 Name Q + "MPKCKeyPair"
» using (MPKCEr] J PrivateKey {VTDev.Libraries.CEXEngine.Crypto.Cipher Asymmetric.Encrypt.McEliece. MPKCPrivateKey}
{ F PublicKey {VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Encrypt. McEliece MPKCPublicKey}
cipher.In1T1aI17E(Kp.FUDLIICKEY);
encr = cipher.Encrypt(System.Text.Encoding.UTFS.GetBytes(txtmsg.Text));

string encascii = Encoding.ASCII.GetString(encr, 8, encr.length);

//System.Text.ASCIIEncoding enc = new System.Text.ASCIIEnceding();
//byte[] msg = new byte[1500];

//msg = enc.GetBytes(txtmsg.Text);

// sending the message

Listener.Send(encr);

B x C.
Value Type
this {Test.Chat, Text: Chat} Test.Chat >
sender {Text = "Send") object {System. Windows.Forms.Button}
e {X= 36 =13 Button = Left} System.EventArgs {System.Windows.Forms.MouseEvent
cipher null VTDev.Libraries.CEXEngine Crypto.Cipher. Asymmetric.Er

Figure 41: Private Key with parameters

st.Chat -9, buttonl_Click{object sender, EventArgs)

B
o~

private void buttonl_Click(object sender, Eventirgs e)

()

try All Cate
{ Search

n = new MPKCKeyGenerator(ps

p = gen.GenerateKeyPair(); O el
data = kp.PrivateKey.ToBytes(); O Del
data2 = kp.PublicKey.ToBytes();
Del
//Messagel £ @ = © Del
// encrypt anm @ O Del
using (MPKCEn @ Q- O Del
i =]
cipher.Ing @ O Del
- del

gField {Finite Field GF211) = GF2)[X]/<L+xt2+x 11> }
goppaPaly {Polynomial over Finite Field GF(2*11) = GF2)[X]/<1+x*2+x"11> ; 00011000000 A0+ 11100000011Y 1 +00000111011¥ A2+ 11110100100Y*3+ 01011001 111¥ A4+ 101011110105+ 11000111001 ¥ A6+ 1101(,. ¢!
{0: 00100010001111011011001000001000 61000110000000000010011110110011 00111100100011011001011100101010 11101011100101101111010111001010 11011010001000111111111000011011 010011010C... el

eﬁ,
.

false

e del
2048 del
{[1800, 1134, 317, 623, 223, 1913, 1921, 573, 607, 1097, 935, 901, 859, 633, 585, 979, 1379, 1068, 1160, 556, 747, 1650, 664, 1197, 1122, 1989, 20, 253, 1462, 346, 890, 1659, 90, 201, 304, 71, 1730, 930, 1898, 828, ©..{

{VTDevLibraries. CEXEngine.Crypto.Cipher.Asymmetric EncryptMcEliece.Algebra.Polynomial GF2mSmallM[40]}

{Finite Field GF2*11) = GF2)[X)/<L+x*2+x 11> } del
{ Polynormial over Finite Field GF(2*11) = GF(2)[X]/<1+x"2+x*11> : 00011000000Y*0+11100000011¥*1-00000111011Y "2+ 11110100100Y *3-01011001 111V "4+ 10101111010Y 5+ 11000111001V "6+11011... ey
{0: 001000100011 10110T1001000001000 01000110000000000010011110110011 00111100100011011001011100101010 11101011100101101111010111001010 11011010001000111111111000011071 010011010C..|

L 1608 el
2048 el
L K Mame Q - "MPKCPrivateKey"
? this {11800, 1134, 317, 623, 223, 1913, 1921, 573, 607, 1087, 935, 901, 859, 633, 585, 979, 1379, 1068, 1160, 556, 747, 1650, 664, 1197, 1122, 1989, 20, 253, 1462, 346, 890, 1659, 50, 201, 304, 71, 1730, 930, 1898, 828, °. "'
sender sel
"e {X =36 =13 Butten = Left] System.EventArgs {System.Windows.Forms MouseEvents (€2 a Del
cipher null VTDev.Libraries.CEXEngine.Crypto.Cipher. Asymmetric.Er
3 encascii null string [}Iiivn
u

Figure 42: Generated Private Key

5.4 Encryption and Decryption Process

Next phase is encrypting the data by using public key and sending it to recipient. At receiving

end encrypted data / cypher text is decrypted by using private key as shown in fig 43.

71

}

private void buttonl_Click({ecbject sender, Eventfrgs e)
{
try
{
gen = new MPKCKeyGenerator(ps);
kp = gen.GenerateKeyPair();
data = kp.PrivateKey.ToBytes();
data2 = kp.PublicKey.ToBytes();
//MessageBox. Show(data[2].Tostring());
// encrypt an array
using (MPKCEncrypt cipher = new MPKCEncryptips))
1
cipher.Initialize(kp.PublicKey);
encr = cipher.Encrypt(System.Text.Encoding.UTF8.GetBytes (txtmsg. Text));

}

string encascii = Encoding.ASCIL.GetString(encr, @, encr.length);

//System. Text.ASCIIEnceding enc = new System.Text.ASCIIEncoding();
fihrtal 1 meo = new hutal 15047

Figure 43: Encrypting Plain Text with Public Key

In the above fig 43 two variables are being declared as data and data2. Data type variable contain
the Private Key while Data2 variable contain the generated Public Key.

The size of the Private key generated is 119038 Bytes whereas of Public Key is 88456 Bytes as
shown in fig 44-46.

5.3.1 Private Key

Jgen - new MPKCKeyGenerator (ps);|
kp = gen.GenerateKeyPair():
data = kp.PrivateKey.ToBytes();
dat (¥ & data {byte[119038]} = }s();
//Meszagedox. Show(data[2] Tostring());
// encrypt an array
using (MPKCEnerypt cipher = new MPKCEncrypt(ps))
{
cipher.Initialize(kp.Publickey);
encr = cipher.Encrypt(System.Text.Encoding. UTFS. GetBytes (txtmsg. Text));

}

string encascii = Encoding.ASCII.GetString(encr, @, encr.length);

F/Sustem Text ASCTTERcading enc = new Sustem. Text ASCTTFacadine():

Figure 44: Separating Public and Private Keys

72

- o~
} All Cate
Search
Er‘ivata void buttonl_Click{object sender, Eventirgs e) ——
try O Exc
{ O Exc
e new MPKCKeyGenerator(ps);|
kp = gen.GenerateKeyPair(); O Exc
data = kp.PrivateKey.ToBytes(); O Exc
dataz = kp.Pub o & =
//MessageBox.Shoi @ O Exc
- XC
_gField {Finite Field GF211) = GF@)[X]/<1+x"2+x"11> }
_goppaPoly { Polynomial over Finite Field GF(2#11) = GF@Z)[X]f<1+x"2+x"11> : 10000000110¥ 0001111001101 +10001111010Y2+10110001011Y3+11011000010Y 4+ 11010101010Y5+001 11010000 46 + 1000-... %€
H {0: 00001101011111101010000100010001 11101001010000000111110101110011 00110111100011100010111101100001 00100001001110011100011111011100 11110000111010111110111011000010 001001 110L... see
_isDisposed false
1608 del
N 2048 del
v _PL {[2021, 143, 272, 1878, 802, 1715, 1725, 850, 1967, 641, 1610, 685, 1754, 407, 1446, 1976, 921, 1740, 570, 1063, 95, 1131, 1852, 136, 408, 426, 16, 1630, 569, 1034, 1757, 539, 341, 1537, 1459, 1144, 976, 429, 1522,..., |
5 _qlnv {VTDev.Libraries.CEXEngine. Crypto.Cipher.Asymmetric.Encrypt.McEliece. Algebra.PolynomialGF2mSmalIM[40]}
£ GF {Finite Field GF2"11) = GF(2)[X]/<1+x"2+x*11> } del
£GP { Polynomial over Finite Field GF(2"11) = GF(2)[X]/<1+x"2+x*11> : 10000000110Y"0+00111100110Y1+10001111010Y 2+ 10110001011V *3+11011000010Y *4 + 11010101010V *5+00111010000Y "6+ 1000y
- £EH {0: 00001101011111101010000100010001 11101001010000000111110101110011 001101111000111000101111 01100001 00100001001110011100011111011100 11110000111010111110111011000010 001001110
KK 1608 del
KN 2048 Yel
£ Name Q - "MPKCPrivateKey"
his £r1 {12021, 143, 272, 1878, 802, 1715, 1725, 850, 1967, 641, 1610, 635, 1754, 407, 1446, 1976, 921, 1740, 570, 1063, 95, 1131, 1352, 136, 408, 426, 16, 1630, 569, 1034, 1757, 599, 341, 1537, 1459, 1144, 976, 429, 1522,.. 7!
ender ~ B - el
: {X=42Y =7 Button = Left} System.E =
Del
ipher null VTDev.Li O e
‘neascii null strina > Liwe

Figure 45: Private Key

5.3.2 Public Key

Chat - &, buttonl_Click{object sender, EventArgs) =]
LnitlallzeLomponent();

=
- o -
1 AllCe
Searc
private void buttonl Click(object sender, Eventirgs e) pn
try oE
{ o E
gen = new MPKCKeyGenerator(ps);
kp = gen.GenerateKeyPair(); O E
data = kp.Privatekey.ToBytes(); oE
data2 = kp.PublicKey.ToBytes();
//MessageBox. Shov 0 s oE
// encrypt an array 0@ o E
{0: 01000100100000001101101100111010 01101000100011111001010000110100 10010001101010100010110111110110 11011100101101001001100001000000 01011001100100000010110101100101 110010111101000001...,
false |
2048

1
{0: 01000100100000001101101100111010 01101000100011111001010000110100 10010001101010100010110111110110 11011100101101001001100001000000 01011001100100000010110101100101 110010111101000001”.]
1608

2048]
Q ~ "MPKCPublicKey" 1
40
#5 Static members]
TR = L]
---------------- P

1
private veid buttenl_Click(object sender, EventArgs e)
i

try

i

new MPKCKeyGenerator(ps);
gen.GenerateKeyPair();

data = kp.PrivateKey.ToBytes();

data2 = kp.PublicKey.ToBytes();

//Me! @ @ data2 {byte[88456]) = |string()):

// encrypt an array

using (MPKCEncrypt cipher = new MPKCEncrypt(ps))

cipher.Initialize(kp.Publickey);
encr = cipher.Encrypt(System. Text.Encoding. UTF8. GetBytes (txtmsg. Text));

1

string encascii = Encoding.ASCII.GetString(encr, 8, encr.length);

Figure 46: Public Key

In app interface plain text is entered in message field and corresponding cypher text is displayed
in chat field as shown in fig 47. In this example we have added the text as “Hello World”.

73

@ Encrypted Session) Plain Session
Local IP 192.168.56.1 Local Port
Remate IP Remate Port
Chat
Message Hello Word Send

Figure 47: Sending Plain Text "Hello World"

The same plain text will be available in the plain text box in code that will be encrypted with the

generated keys.

kp = gen.GenerateKeyPair();

data = kp.PrivateKey.ToBytes();

data2 = kp.PublicKey.ToBytes();
//MessageBox.Show(data[2].ToString());

// encrypt an array

using (MPKCEncrypt cipher = new MPKCEncrypt(ps))

{

cipher.Initialize(kp.Publickey);
encr = cipher.Encrypt(System. Text.Encoding.UTF8. GetBytes(txtmsg. Text));
K bdmsg Text Q -~ "Hello World" =
1

string encascii = Encoding.ASCII.GetString(encr, @, encr.Length);

1/System.Text.ASCIIEncoding enc = new System.Text.ASCIIEncoding();
//byte[] msg = new byte[15€@];

//msg = enc.GetBytes(txtmsg.Text);

// sending the message

Listener.Send(encr);

// add to listbox

Figure 48: Plain Text in Debugging Mode

74

e N

3

[v

=
=1

n
8

QO EFBEEBEBEHEBE BB BB BBEGQB

In fig 48 we can see that the text “Hello World” that we have entered is available and will be
encrypted with the Public key. The resultant Encrypted Text will be stored in data variable

“encr”.

Initially the encr type variable is initialized as Null but after encryption it will be populated with

the cipher text as shown in fig 49.

try . o~
{

Al Catg

kp = gen.GenerateKeyPair(); Search

data = kp.PrivateKey.ToBytes(); o Exe
data? = kp.PublicKey.ToBytes();

//MessageBox. Show(data[2].Tostring()); O Exc

// encrypt an array O Exe

using (MPKCEncrypt cipher = new MPKCEncrypt(ps))

{ O Exc
cipher.Initialize(kp.PublicKey); O Exc
encr = cipher.Encrypt(System.Text.Encoding.UTF8.GetBytes (txtmsg. Text));

@ encr null = O Bxc

T O Exc

string encascii = Encoding.ASCII.GetString(encr, 8, encr.length); 2 b

//system.Text.ASCIIEncoding enc = new System.Text.ASCIIEncoding(); 0 Exc

//byte[] msg = new byte[1500]; 0 Exc

//msg = enc.GetBytes (txtmsg.Text);

// sending the message O Exc

Listener.Send(encr); O Exc

M Exc

// add te listbox S @ B

© Del

Ex C-1x

Figure 49: Encrypting plain text

try
{

kp = gen.GenerateKeyPair();

data = kp.PrivateKey.ToBytes();

dataz = kp.Publickey.ToBytes();

//MessageBox. Show(data[2] . ToString());

/1 encrypt an array

using (MPKCEncrypt cipher = new MPKCEncrypt(ps))

{
cipher.Initialize(kp.PublicKey);
encr = cipher.Encrypt(System.Text.Encoding. UTFS. GetBytes(txtmsg. Text));
@ encr {byte[267]) =
}

string encascii = Encoding.ASCII.GetString(encr, @, encr.length);

//System.Text .ASCIIEncoding enc = new System.Text.ASCIIEncoeding();
//byte[] msg = new byte[1500];

//msg = enc.GetBytes(txtmsg.Text);

// sending the message

Listener.Send(encr);

Figure 50: Bytes generated of plain Text

75

L

kp = gen.GenerateKeyPair();
data = kp.PrivateKey.ToBytes();
data2 = kp.PublicKey.ToBytes();
//MessageBox.Show(data[2].ToString());
// encrypt an array
using (MPKCEncrypt cipher = new MPKCEncrypt(ps))
{

cipher.Initialize(kp.PublicKey);

encr = cipher.Encrypt(System.Text.Encoding.UTFS. GetBytes(txtmsg. Text));

= =
-

i @ [0] 40 i . .
string enc coding.ASCII.GetString(encr, @, encr.length);
@ [1] 203

/15ystem.T® [21 114 heoging enc = new System.Text.ASCIIEnceding();
srbyte[] n® [B1 125 Lior1sea];
timsg = er® [B1 23 piyemsg. Text)s
/4 sending® B 132 oo
Listener.s® [6] 38
@ [7] 1712
@ 8] 6
// add to @ [9] 64
Chatarea. 1% (01 185 4o 4 tyemsg.Text);
(hatArEa,I: U1] 58 cipher: " + encasciid:

nzy 57
@)1 X

Value Type
Figure 51: Encrypted Text generated

In fig 49-51 we can see that the encr type of variable now have 267 Bytes which is encrypted

version of the entered Plain text.

This encrypted text is then sent to the receiver using the socket address as shown in fig 52

string encascii = Encoding.ASCII.GetString(encr, @, encr.length);
//5ystem. Text.ASCIIEncoding enc = new System.Text.ASCIIEncoding();
//byte[] msg = new byte[1588];

//msg = enc.GetBytes(twimsg.Text);

// sending the message
Listener.Send(encr);

// add to listbox
ChatArea.Items.Add("You: " + txtmsg.Text);
ChatArea.Items.Add("Cipher: ™ + encascii);

// clear txtMessage
txtmsg.Clear();

katch (Exception ex)
;

Figure 52: Sending Encrypted text to Recipient over socket

At receiver side this data is decrypted by using private key as shown in fig 53:-

76

int size = Listener.EndReceiveFrom(aResult, ref epRemote);
/! check if theres actually information
if (size » @)
1
// used to help us on getting the data
byte[] receivedData = new byte[1588];
// getting the message data
receivedData = (byte[])aResult.AsyncState;
receivedData = TrimEnd({receivedData);
// converts message data byte array to string
ASCIIEncoding eEncoding = new ASCIIEncoding();
string receivedMessage = eEncoding.GetString(receivedData);
/[decrypt the cipher text
using (MPKCEncrypt cipher = new MPKCEncrypt(ps)}
{
cipher.Initialize(kp.Privatekey);
dec = cipher.Decrypt(receivedData);

}
string asciiString = Encoding.ASCII.GetString(dec, @, dec.Length);

// adding Message to the listbox
this.Invoke(new MethodInveker(delegate()

Figure 53: Receiving Cipher text

The Variable type “dec” contains the decrypted data or plain text as received after decryption

using the private key.

Numbers of Bytes as recovered after decryption are as shown in fig 54

P S RV
if (size » @)
{
/1 used to help us on getting the data
byte[] receivedData = new byte[1588];
/4 getting the message data
receivedata = (byte[])aResult.AsyncState;
receivedData = TrimEnd(receivedData);
// converts message data byte array to string
ASCIIEncoding eEncoding = new ASCITEncoding()s
string receivedMessage = eEncoding.GetString(receivednata);
/4 decrypt the cipher text
using (MPKCEncrypt cipher = new MPKCEncrypt(ps))

cipher.Initialize(kp.Privatekey);
dec = cipher.Decrypt(receivedData);
} @, dec {bytell1]} =

string asciiString = Encoding.ASCII.GetString(dec, @, dec.Length);

// adding Message to the listbox
this.Invoke(new MethodInvoker(delegate()

Figure 54: Received Cipher Text Bytes same as sent

At receiving end app interface this decrypted text is displayed in fig 55

77

Chat You: Hello World

Cipher: 72@Q 72w 2] | 71 770 077777027 _wplb PHL 777U R P 2=y g E~ 2@ 202175, | 757707
Friend: Hello World

You:

Cipher: 1 IL77H50A]HCHIR 72957 | [77777287=47 |z LA T2PTH?F 2 TMIX 77 L2922)) 3777379 21R2s"
Friend:

You: Hello World

Cipher: a; 1 Iv? g ?[}?E777372772 V2777 |p?Nn. 727747377072 2K 2+plm

Friend: Hello World

Message

Figure 55: Sent and Received Cipher Text on GUI

Chapter 6

Discussion and Analysis

Before analysis on the results below are the specifications of the machine that we have used
while implementing McEliece cryptosystem bases messaging application:-

o 13" Generation Core i7 13700HX

e 16 GB DDR5 RAM

e Windows 11

e 1TBROM SSD

e HM770 Chip Set

e Nvidia Graphics Card 8 GB GDDR6

78

The results that we have drawn in previous chapter we can summarize them as below:-
e Creation of parameters for the purpose of key generation
e Public and Private Key Generation
e Encryption Process of the plain text using McEliece Crypto system

e Decryption process of the received cipher text

We will do analysis of each portion one by one.

6.1 Creation of Parameters

McEliece crypto system use different matrices along with polynomials for the purpose of key
generation. These matrices are of different sizes and some are of random values. Below are listed
the different Parameters generated along with their size that are used for the key generation

process.

6.1.1 Finite Field:

A finite field, also called Galois field, is a mathematical structure that consists of a finite set of
elements along with two binary operations, addition and multiplication. It provides the necessary
mathematical framework for the construction, encoding, and decoding of goppa codes used in
the McEliece cryptosystem. It is also used in key generation, encryption and decryption in
McEliececryptosystem. The use of finite fields ensures the security and reliability of the
encryption and decryption processes which is required for the safety of sensitive information

against attacks.

Table 4: Finite Field Analysis

Finite Field / Degree Finite Field Generated = Remarks

Polynomial
1 Finite field | 11 GF(2"11) = | Finite fields can be constructed
GF(2"m) GF(2)[X]/<1+x"2+x"11> | using different methods, such as
} polynomial basis representation,
normal basis representation, or

79

irreducible polynomial
representation. We have used
irreducible polynomial
representation to achieve better
security. The security of the
system relies on the difficulty of
decoding the code, which
depend upon the properties of

the irreducible polynomial.

6.1.2 Goppa Polynomial:

A Goppa polynomial is an irreducible polynomial with coefficients in a finite field which is
explained above. It is used in construction of goppa codes, encoding and decoding process in
mcEliece encryption. The selection of Goppa polynomial play crucial role in code length, code's
error-correction capability, and resistance to various attacks, such as the Information Set
Decoding (ISD) attack. So, properties/ attributes of Goppa polynomials are carefully considered
to ensure the security of system against potential attacks and to achieve the desired performance
goals in the encryption and decryption processes of the McEliece cryptosystem. Goppa

polynomial we used in our app implementation is given below in table 5.

Table 5: Goppa Polynomial Analysis

Sr. Finite Field / Degree Goppa Polynomial Over Finite Field

No Polynomial
2. Goppa 40 11101000011Y”~0+11111010111Y”1+00100100101Y"2+00
Polynomial 001101011Y”3+00111001111Y”"4+01101100000Y”"5+1001

1001110Y”6+00001100100Y~7+01110000101Y”8+000111
00011Y”"9+11111001101Y”10+11010111101Y”11+001101
10011Y”12+11111110011Y”*13+11000011110Y”14+01000
100010Y”15+00010111000Y”16+00010000000Y"17+1001
0100100Y”18+01010111000Y”"19+01110111111Y”20+010

80

00001011Y”"21+11110110000Y”22+10101001111Y"23+11
101000100Y”24+11111000001Y”25+01011001100Y"26+1
1100000001Y”27+10110101101Y”28+00100101010Y"29+
00000011010Y”30+01101001001Y”31+10010110000Y"32
+10001000110Y”"33+10001000001Y”34+00000001000Y"3
5+10000011101Y”36+01000010111Y"37+11100111000Y"
38+10101101010Y”39+00000000001Y"40+;}

Next are the different matrices that we have generated for the purpose of generating the Public

and Private keys. The analysis part of these is listed below in table 6:

Table 6: Generated Matrices Analysis

Matrix Name Purpose Size

1. qinv It is used for computing square roots in Coefficients
(GF(2"m))"t 40, Degree 39
2. h (canonical check matrix) | It is a compact or systematic form of a parity 64

check matrix which is in binary form. It is used
in decoding algorithm to identify and correct
errors in received codewords. Syndrome (used
to determine the error pattern and apply error
correction to the received codeword) of the
received word is obtained by multiplying it

with canonical check matrix.

3. p (Permutation Matrix) Permutation matrix is a square matrix with 1 in 2048
each row and each column, and remaining
entries being zero. It is part of private key
which is used in encryption and decryption
processes of mcEilece cryptosystem. It adds an
extra layer of security by introducing

81

randomness and complexity, which makes the
cryptosystem resistant to various potential

attacks.

s (Singular Matrix)

It is non invertible matrix which is used in
encryption and decryption process of mcEliece
cryptosystem as shown in previous chapter.
During encryption process it is used to multiply
the encoded message and inverse of the same
matrix is used during decryption process. It add
and additional layer of security in mcEliece

cryptosystem against attacks.

16

G (Generator Matrix)

Generator matrix is a binary matrix which is
the basic component used in encryption and
decryption processes of mcEliececryptosytem.
It is part of both public and private keys. It is
generated using a specific form of the error-
correcting code, in our case by using Goppa
codes. The construction involves selecting
appropriate code parameters which includes
code length, dimension, and minimum distance,
to achieve the required error-correction
capability, properties and security level for the

cryptosystem.

Short G

It is systematic form of generator matrix.
Systematic form of generator matrix makes the
encoding and decoding process of mcEliece
cryptosystem simple and more efficient which
makes it suitable for implementing the

encryption and decryption operations in the

16

82

McEliece cryptosystem and reduce

computational complexity

6.2 Number of Random Vectors tested while decryption

Table 7: Random Variable testing

Parameters (n,k,m,t) Number of Random Vector Tested
(2048, 1707, 11, 31) 7000
(4096, 3604, 12, 41) 20500
(4096, 3352, 12, 62) 11000
(6960, 5413, 13, 119) 250

6.3 Initial Parameters vs. Key length

As we have already explained in the theoretical part of the algorithm that the length of the public
and private key is dependent upon the initial values of the size of the matrix. So, we have tested
the application with the different values of the k and n to determine the exact size of the Public

and Private Key. The results thus obtained are as shown in table 7: -

Table 8: Key Size VS. Initial Parameters

Max Text Length Public Key Private Security

Size Key Size Level

1. 1608 2048 201 88488 119071 Low

2. 1520 2048 190 100368 142531 Low
3. 3724 4096 465 175076 200119 Low to
Medium
4, 3604 4096 450 223496 262519 Medium
5. 3520 2096 440 253488 306371 Medium
6. 3448 4096 431 306371 344039 Medium

83

7. 3292 4096 431 332540 425928 High
8. 7815 8192 976 375168 403733 High
9. 7620 8192 952 548688 604893 High

From the results we have obtained above we can say that by increasing the values of the K and N
the size of the Public and Private Key increase which ultimately results in increase in security

level of the application.

6.4 Encryption and Decryption Time

In order to analyze the application, we have also inserted the timer in the application with the
help of which we can calculate the encryption and decryption time of the plain text. The results

thus obtained are as shown in table 8: -

Table 9: Encryption and Decryption Time with plain text length

Text Entered Encryption Time Decryption Time
(ms) (ms)
1. A 404 46
2. Aa 950 31
3. Aaa 648 31
4. Aaaa 308 46
5. Aaaaa 886 31
6. Aaaaaa 918 46
7. Aaaaaaa 404 46
8. Aaaaaaaa 591 46
9. Aaaaaaaaa 497 31
10. Aaaaaaaaaa 528 31

84

Chapter 7

Conclusion and Future Work

In this thesis we have successfully implemented the McEliece Cryptosystem based secure chat
application. Security of most of communication systems/ apps is furnished by public
cryptographic systems. Presently used public cryptosystems i.e. RSA and ECC are considered
secure in the presence of conventional computers. Underlying hard problems of these systems
are factorization and discrete logarithm problems which are unable to solve by conventional
computers. However, Quantum computers which are in their early stage of development will
someday be able to break the security systems now in use because they can efficiently solve
these problems that conventional computers cannot. In order to be ready for the day when
guantum computers are a practical reality, it is required to look at additional computing issues
85

that are equally challenging for both conventional and quantum computers. In this regard we
short listed McEliece Crypto System which is code based cryptographic algorithm and is
quantum resistive as well. We chose this scheme/ cryptosystem because it is one of the few
cryptosystems that is expected to withstand assaults from powerful computers in the future,
despite several efforts by the crypto community to break it, it is secure till today. Before
developing the application, we did a complete in-depth analysis of this crypto system and
literature review on work that has already been done in this field. The application has been
developed using the Visual studio software and using C Shrap language. The final product that
we will be providing to the two users is just an exe file which will be installed in the computer
and shortcut as well as the icon will be visible on the desktop. All the required repositories and
data files along with the encryption algorithms will be placed in installation folder automatically.
Once the socket established between the two users, they can easily communicate with each other.
It may be used between any two clients who are using an unsecured channel or media.
Nowadays, the majority of applications employ traditional encryption methods; which will be
insecure in the presence of quantum computers. The security of the developed application is
based on McEliece cryptosystem. As the underlying cryptosystem of this app is McEliece
cryptosystem which is a quantum resistive cryptosystem so this app is also secure against
quantum attacks in other words we can say that it is a quantum resistive messaging application.
Moreover, this application may be integrated with financial systems to facilitate secure
transactions. The secure nature of app can prevent unauthorized access to sensitive financial
information, making it harder for hackers to intercept or manipulate transactions. This can
enhance the security and integrity of digital payments, banking, and other financial services. It
can also be used in Government and military organizations for communication. Governments
and military organizations deal with highly sensitive information, and secure communication is
crucial for their operations. This app can ensure that their messages remain confidential and

resistant to interception by adversaries.

As far as the future work is concerned, we have used the socket programming to connect two
clients who are intended to communicate each other using our application which means that a
dedicated IP connectivity and free socket will be required for establishment of connection before

communication start. Due to this limitation, we can use this application in private LAN or private

86

dedicated WAN environment only. However, by embedding port translation function it can be

used on the internet as well.

Another limitation of the application is that it is computer-based application where it utilizes the
processing power and other resources of the CPUI to calculate the crypto key pairs. Same
algorithms can be modified to run this application on mobile phone / android or any other

platform.

Moreover, we have designed this Quantum resistive application for chat purpose only, this can

be enhanced for images, videos and files as well.

References

[1] Ghosh, Santosh, et al. "A speed area optimized embedded co-processor for McEliece
cryptosystem.” 2012 IEEE 23rd International Conference on Application-Specific Systems,
Architectures and Processors. IEEE, 2012.

[2] Chikouche, Noureddine, et al. "RFID authentication protocols based on error-correcting

codes: a survey." Wireless Personal Communications 96 (2017): 509-527.

[3]Shor, Peter W. "Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer.” SIAM review 41.2 (1999): 303-332.

[4] Perlner, Ray A., and David A. Cooper. "Quantum resistant public key cryptography: a
survey." Proceedings of the 8th Symposium on Identity and Trust on the Internet. 2009.

87

[5] Diffie, Whitfield, and Martin E. Hellman. "New directions in cryptography." Democratizing
Cryptography: The Work of Whitfield Diffie and Martin Hellman. 2022. 365-390.

[6] Minder, Lorenz, and Amin Shokrollahi. "Cryptanalysis of the Sidelnikov
cryptosystem.” Advances in Cryptology-EUROCRYPT 2007: 26th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Barcelona, Spain,
May 20-24, 2007. Proceedings 26. Springer Berlin Heidelberg, 2007.

[7] Manin, Y. "Computable and incomputable. Sovetskoye Radio, 1980."

[8] Feynman, Richard P. "Simulating physics with computers.” Feynman and computation. CRC
Press, 2018. 133-153.

[9] McEliece, Robert J. "A public-key cryptosystem based on algebraic." Coding Thv 4244
(1978): 114-116.

[10] Niederreiter, Harald. "Knapsack-type cryptosystems and algebraic coding theory." Prob.
Contr. Inform. Theory 15.2 (1986): 157-166.

[11] Sidelnikov, Vladimir Michilovich, and Sergey O. Shestakov. "On insecurity of
cryptosystems based on generalized Reed-Solomon codes.” (1992): 439-444.

[12] Sidelnikov, Vladimir Michilovich. "A public-key cryptosystem based on binary Reed-
Muller codes.” (1994): 191-208.

[13] Kandasamy, llanthenral, and K. S. Easwarakumar. "Chained Hexi Codes Signature
Scheme.” International Journal of Computer Science and Network Security (IJCSNS) 14.12
(2014): 20.[14] Greenwell, Raymond N. "Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer.” The College Mathematics Journal 31.1 (2000):
70.

[15] Baldi, Marco. QC-LDPC code-based cryptography. Springer Science & Business, 2014.

[16] Berger, Thierry P., and Pierre Loidreau. "How to mask the structure of codes for a

cryptographic use.” Designs, Codes and Cryptography 35 (2005): 63-79.

88

[17] Baldi, Marco, and Franco Chiaraluce. "Cryptanalysis of a new instance of McEliece
cryptosystem based on QC-LDPC codes." 2007 IEEE International Symposium on Information
Theory. IEEE, 2007.

[18] Wieschebrink, Christian. "Cryptanalysis of the Niederreiter public key scheme based on
GRS subcodes.” Post-Quantum Cryptography: Third International Workshop, PQCrypto 2010,
Darmstadt, Germany, May 25-28, 2010. Proceedings 3. Springer Berlin Heidelberg, 2010.

[19] Janwa, Heeralal, and Oscar Moreno. "McEliece public key cryptosystems using algebraic-

geometric codes." Designs, Codes and Cryptography 8.3 (1996): 293-307.
[20] Loidreau, Pierre. "Strengthening McEliece cryptosystem.” ASIACRYPT. 2000.

[21] Shrestha, Sujan Raj, and Young-Sik Kim. "New McEliece cryptosystem based on polar
codes as a candidate for post-quantum cryptography.” 2014 14th International Symposium on
Communications and Information Technologies (ISCIT). IEEE, 2014.

[22] Chabaud, Florent. "On the security of some cryptosystems based on error-correcting
codes.” Workshop on the Theory and Application of of Cryptographic Techniques. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1994.

[23] Xinmei, Wang. "Digital signature scheme based on error-correcting codes." Electronics
Letters 26.13 (1990): 898-899.

[24] Faugere, Jean-Charles, et al. "A distinguisher for high-rate McEliece cryptosystems." IEEE
Transactions on Information Theory 59.10 (2013): 6830-6844.

[25] Hall, Jonathan I. Notes on coding theory. FreeTechBooks. com, 2003.

[26] Sendrier, Nicolas. "On the concatenated structure of a linear code.” Applicable Algebra in

Engineering, Communication and Computing 9.3 (1998): 221-242.

[27] Niederreiter, Harald. "Knapsack-type cryptosystems and algebraic coding theory." Prob.
Contr. Inform. Theory 15.2 (1986): 157-166.

[28] Sidelnikov, Vladimir Michilovich, and Sergey O. Shestakov. "On insecurity of
cryptosystems based on generalized Reed-Solomon codes.” (1992): 439-444.

89

[29] Sidelnikov, Vladimir Michilovich. "A public-key cryptosystem based on binary Reed-
Muller codes." (1994): 191-208.

[30] Oswald, Elisabeth, and Marc Fischlin, eds. Advances in Cryptology-EUROCRYPT 2015:
34th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part Il. VVol. 9057. Springer, 2015.

[31] Shooshtari, MasumehKoochak, Mahmoud Ahmadian, and Ali Payandeh. "Improving the
security of McEliece-like public key cryptosystem based on LDPC codes." 2009 11th
International Conference on Advanced Communication Technology. Vol. 2. IEEE, 2009.

[32] Faure, Cédric, and Lorenz Minder. "Cryptanalysis of the McEliece cryptosystem over
hyperelliptic codes.” Proceedings of the 11th international workshop on Algebraic and
Combinatorial Coding Theory, ACCT. Vol. 2008. 2008.

[33] Couvreur, Alain, Irene Méarquez-Corbella, and Ruud Pellikaan. "A polynomial time attack
against algebraic geometry code based public key cryptosystems." 2014 IEEE International

Symposium on Information Theory. IEEE, 2014.

[34] Monico, Chris, Joachim Rosenthal, and Amin Shokrollahi. "Using low density parity check
codes in the McEliece cryptosystem.” 2000 IEEE International Symposium on Information
Theory (Cat. No. 00CH37060). IEEE, 2000.

[35] Garello, R., et al. "Quasi-Cyclic Low-Density Parity-Check Codes in the McEliece
Cryptosystem." Titolo volume non avvalorato. 2007.

[36] Londahl, Carl, and Thomas Johansson. "A new version of McEliece PKC based on
convolutional codes.” Information and Communications Security: 14th International
Conference, ICICS 2012, Hong Kong, China, October 29-31, 2012. Proceedings 14. Springer
Berlin Heidelberg, 2012.

[37] Landais, Grégory, and Jean-Pierre Tillich. "An efficient attack of a McEliece cryptosystem
variant based on convolutional codes.” Post-Quantum Cryptography: 5th International
Workshop, PQCrypto 2013, Limoges, France, June 4-7, 2013. Proceedings 5. Springer Berlin

Heidelberg, 2013.
90

[38] Li, Yuan Xing, Robert H. Deng, and Xin Mei Wang. "On the equivalence of McEliece's and
Niederreiter's public-key cryptosystems.” IEEE Transactions on Information Theory 40.1 (1994):
271-273.[39] Gabidulin, Ernst M., A. V. Paramonov, and O. V. Tretjakov. "ldeals over a non-
commutative ring and their application in cryptology.” Advances in Cryptology—
EUROCRYPT’91: Workshop on the Theory and Application of Cryptographic Techniques
Brighton, UK, April 8-11, 1991 Proceedings 10. Springer Berlin Heidelberg, 1991.

[40] Gabidulin, Ernst M., et al. "Reducible rank codes and their applications to
cryptography.” IEEE Transactions on Information Theory 49.12 (2003): 3289-3293.

[41] Gaborit, Philippe. "Shorter keys for code based cryptography.” Proceedings of the 2005
International Workshop on Coding and Cryptography (WCC 2005). 2005.

[42] Sidelnikov, VIadimir Michilovich. "A public-key cryptosystem based on binary Reed-
Muller codes." (1994): 191-208.

[43] Janwa, Heeralal, and Oscar Moreno. "McEliece public key cryptosystems using algebraic-

geometric codes.” Designs, Codes and Cryptography 8.3 (1996): 293-307.

[44] Overbeck, Raphael. "A new structural attack for GPT and variants." Progress in
Cryptology—Mycrypt 2005: First International Conference on Cryptology in Malaysia, Kuala
Lumpur, Malaysia, September 28-30, 2005. Proceedings 1. Springer Berlin Heidelberg, 2005.

[45] Kobara, Kazukuni, and Hideki Imai. "On the one-wayness against chosen-plaintext attacks
of the Loidreau's modified McEliece PKC." IEEE Transactions on Information Theory 49.12
(2003): 3160-3168.[46] Kobara, Kazukuni, and Hideki Imai. "Semantically secure McEliece
public-key cryptosystems-conversions for McEliece PKC." Public Key Cryptography: 4th
International Workshop on Practice and Theory in Public Key Cryptosystems, PKC 2001 Cheju
Island, Korea, February 13-15, 2001 Proceedings 4. Springer Berlin Heidelberg, 2001.

[47] Sendrier, Nicolas. "Code-based cryptography: State of the art and perspectives." IEEE
Security & Privacy 15.4 (2017): 44-50.

[48] Xinmei, Wang. "Digital signature scheme based on error-correcting codes.” Electronics
Letters 26.13 (1990): 898-899..

91

[49] Harn, L., and D. C. Wang. "Cryptanalysis and modification of digital signature scheme
based on error-correcting code.” Electronics Letters 2.28 (1992): 157-159.

[50] Alabbadi, Mohssen, and Stephen B. Wicker. "A digital signature scheme based on linear
error-correcting block codes.” International Conference on the Theory and Application of

Cryptology. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994.

[51] Stern, Jacques. "Can one design a signature scheme based on error-correcting
codes?." ASIACRYPT. Vol. 94. 1994,

[52] Courtois, Nicolas T., Matthieu Finiasz, and Nicolas Sendrier. "How to achieve a McEliece-
based digital signature scheme.” Advances in Cryptology—ASIACRYPT 2001: 7th International
Conference on the Theory and Application of Cryptology and Information Security Gold Coast,
Australia, December 9-13, 2001 Proceedings 7. Springer Berlin Heidelberg, 2001.

[53] Stern, Jacques. "A new identification scheme based on syndrome decoding." Annual

International Cryptology Conference. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993.

[54] Augot, Daniel, Matthieu Finiasz, and Nicolas Sendrier. "A family of fast syndrome based
cryptographic hash functions." Mycrypt. Vol. 3715. 2005.

[55] Fischer, Jean-Bernard, and Jacques Stern. "An efficient pseudo-random generator provably
as secure as syndrome decoding.” Advances in Cryptology—EUROCRYPT’96: International
Conference on the Theory and Application of Cryptographic Techniques Saragossa, Spain, May
12-16, 1996 Proceedings 15. Springer Berlin Heidelberg, 1996.

[56] Shor, Peter W. "Algorithms for quantum computation: discrete logarithms and
factoring.” Proceedings 35th annual symposium on foundations of computer science. leee,
1994.[57] Daniel J. Bernstein (2009). "Introduction to post-quantum cryptography” (PDF). Post-
Quantum Cryptography.

[58] Gershon, Eric. "New qubit control bodes well for future of quantum computing.” Phys.
org (2014).

[59] Monica, Heger. "Cryptographers take on quantum computers.” Cryptography 2 (2018): 1.
92

[60] Buchmann, Johannes, and Jintai Ding, eds. Post-Quantum Cryptography: Second
International Workshop, PQCrypto 2008 Cincinnati, OH, USA October 17-19, 2008
Proceedings. Vol. 5299. Springer Science & Business Media, 2008.

[61] Mosca, Michele. "Setting the scene for the etsi quantum-safe cryptography workshop." e-

proceedings of 1st Quantum-Safe-Crypto Workshop, Sophia Antipolis. 2013.

[62] Bernstein, Daniel J. "Cost analysis of hash collisions: Will quantum computers make
SHARCS obsolete.” SHARCS 9 (2009): 105.

[63] Bernstein, Daniel J. "Grover vs. mceliece." Post-Quantum Cryptography: Third
International Workshop, PQCrypto 2010, Darmstadt, Germany, May 25-28, 2010. Proceedings
3. Springer Berlin Heidelberg, 2010.

[64] Peikert, Chris. "Lattice cryptography for the internet.” Post-Quantum Cryptography: 6th
International Workshop, PQCrypto 2014, Waterloo, ON, Canada, October 1-3, 2014.
Proceedings 6. Springer International Publishing, 2014.

[65] Glneysu, Tim, Vadim Lyubashevsky, and Thomas Poppelmann. "Practical lattice-based
cryptography: A signature scheme for embedded systems.” Cryptographic Hardware and
Embedded Systems—CHES 2012: 14th International Workshop, Leuven, Belgium, September 9-
12, 2012. Proceedings 14. Springer Berlin Heidelberg, 2012.

[66] Zhang, Jiang, et al. "Authenticated key exchange from ideal lattices.” Advances in
Cryptology-EUROCRYPT 2015: 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings,
Part 11 34. Springer Berlin Heidelberg, 2015.

[67] Ducas, Léo, et al. "Lattice signatures and bimodal Gaussians.” Advances in Cryptology-
CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2013. Proceedings, Part I. Springer Berlin Heidelberg, 2013.

[68] Lyubashevsky, Vadim, Chris Peikert, and Oded Regev. "On ideal lattices and learning with
errors over rings." Journal of the ACM (JACM) 60.6 (2013): 1-35.
93

[69] Daniel, Augot, and B. Lejla. "Initial recommendations of long-term secure post-quantum
systems.” PQCRYPTO. EU. Horizon 2020 (2015).

[70] Stehle, D., and R. Steinfeld. "Making NTRUEnrypt and NTRUSign as secure as standard
worst-case problems over ideal lattices.” Cryptology ePrint Archive, Report 2013/004 (2013).

[71] Easttom, Chuck. "An analysis of leading lattice-based asymmetric cryptographic
primitives.” 2019 IEEE 9th Annual Computing and Communication Workshop and Conference
(CCWC). IEEE, 2019.

[72] Ding, Jintai, and Dieter Schmidt. "Rainbow, a new multivariable polynomial signature
scheme.” ACNS. Vol. 5. 2005.

[73] Buchmann, Johannes, Erik Dahmen, and Andreas Hilsing. "XMSS-a practical forward
secure signature scheme based on minimal security assumptions.” Post-Quantum Cryptography:
4th International Workshop, PQCrypto 2011, Taipei, Taiwan, November 29-December 2, 2011.
Proceedings 4. Springer Berlin Heidelberg, 2011.

[74] Bernstein, Daniel J., et al. "The SPHINCS+ signature framework." Proceedings of the 2019

ACM SIGSAC conference on computer and communications security. 2019.
[75] Huelsing, A., et al. "RFC 8391: XMSS: eXtended Merkle Signature Scheme." (2018).

[76] Naor, Moni, and Moti Yung. "Universal one-way hash functions and their cryptographic
applications.” Proceedings of the twenty-first annual ACM symposium on Theory of computing.
1989.

[77] Overbeck, Raphael, and Nicolas Sendrier. "Code-based cryptography.” Post-quantum
cryptography (2009): 95-145.

[78] Jao, David, and Luca De Feo. "Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies." Post-Quantum Cryptography: 4th International
Workshop, PQCrypto 2011, Taipei, Taiwan, November 29-December 2, 2011. Proceedings 4.
Springer Berlin Heidelberg, 2011.

g4

[79] Higgins, Parker. "Pushing for perfect forward secrecy, an important web privacy
protection.” (2013).[80] Carracedo, Jorge Martiez, et al. "Cryptography for security in
I0T." 2018 Fifth International Conference on Internet of Things: Systems, Management and
Security. IEEE, 2018.[81] Perlner, Ray; Cooper (2009). "Quantum Resistant Public Key
Cryptography: A Survey". NIST. Retrieved 23 Apr 2015.

[82] Campagna, Matt, et al. "Kerberos revisited quantum-safe authentication.” ETSI Quantum-
Safe-Crypto Workshop. 2013.

[83] Lyubashevsky, Vadim, Chris Peikert, and Oded Regev. "On ideal lattices and learning with
errors over rings." Journal of the ACM (JACM) 60.6 (2013): 1-35.

[84] Akleylek, Sedat, et al. "An efficient lattice-based signature scheme with provably secure
instantiation.” Progress in Cryptology—AFRICACRYPT 2016: 8th International Conference on
Cryptology in Africa, Fes, Morocco, April 13-15, 2016, Proceedings 8. Springer International
Publishing, 2016.

[85] Nejatollahi, Hamid, et al. "Post-quantum lattice-based cryptography implementations: A
survey." ACM Computing Surveys (CSUR) 51.6 (2019): 1-41.

[86] Bulygin, Stanislav, Albrecht Petzoldt, and Johannes Buchmann. "Towards provable security
of the unbalanced oil and vinegar signature scheme under direct attacks.” Progress in
Cryptology-INDOCRYPT 2010: 11th International Conference on Cryptology in India,
Hyderabad, India, December 12-15, 2010. Proceedings 11. Springer Berlin Heidelberg, 2010.

[87] Pereira, Geovandro CCF, Cassius Puodzius, and Paulo SLM Barreto. "Shorter hash-based
signatures.” Journal of Systems and Software 116 (2016): 95-100.

[88] Garcia, LC Coronado. "On the security and the efficiency of the Merkle signature
scheme." Technical Report 2005/192, Cryptology ePrint Archive (2005).

[89] McEliece, Robert J. Information, coding and mathematics. Springer Science & Business
Media, 2002.

95

[90] Wang, Yongge. "Quantum resistant random linear code based public key encryption scheme
RLCE." 2016 IEEE International Symposium on Information Theory (ISIT). IEEE, 2016.

[91] Grimes, Roger A. Cryptography apocalypse: preparing for the day when quantum
computing breaks today's crypto. John Wiley & Sons, 2019.[92] Delfs, Christina; Galbraith
(2013). "Computing isogenies between supersingular elliptic curves over F_p". arXiv:1310.7789
[math.NT].

[93] Hirschhorn, Philip S., et al. "Choosing NTRUEnNcrypt parameters in light of combined
lattice reduction and MITM approaches.” Applied Cryptography and Network Security: 7th
International Conference, ACNS 2009, Paris-Rocquencourt, France, June 2-5, 2009.

Proceedings 7. Springer Berlin Heidelberg, 2009.

[94] Petzoldt, Albrecht, Stanislav Bulygin, and Johannes Buchmann. "Selecting parameters for
the rainbow signature scheme." Post-Quantum Cryptography: Third International Workshop,
PQCrypto 2010, Darmstadt, Germany, May 25-28, 2010. Proceedings 3. Springer Berlin
Heidelberg, 2010.

[95]Biirstinghaus-Steinbach, Kevin, et al. "Post-quantum tls on embedded systems: Integrating
and evaluating kyber and sphincs+ with mbedtls.” Proceedings of the 15th ACM Asia

Conference on Computer and Communications Security. 2020.

[96] Chopra, Arjun. "Glyph: A new instantiation of the glp digital signature scheme."” Cryptology
ePrint Archive (2017).

96

	Certificate
	Declaration
	Dedication
	Abstract
	Introduction
	1.1 Overview
	1.2 Motivation and Problem Statement
	1.3 Research Objective
	1.4 Scope of Research
	1.5 Significance of Research
	1.6 Thesis Organization

	Literature Review
	2.1 Limitation of the existing literature

	Post Quantum Cryptography
	3.1 Introduction
	3.2 Explanatory Chart
	3.3 Algorithms
	3.3.1 Lattice-based cryptography
	3.3.2 Multivariate cryptography
	3.3.3 Hash-based cryptography
	3.3.4 Code-based cryptography
	3.3.5 Super singular elliptic curve isogeny cryptography
	3.3.6 Symmetric key quantum resistance

	3.4 Key Attributes of PQC Algorithms
	3.6 Security reductions
	3.6.1 Lattice-based cryptography – Ring-LWE Signature
	3.6.2 Lattice-based cryptography – NTRU, BLISS
	3.6.3 Multivariate cryptography – Unbalanced Oil and Vinegar
	3.6.4 Hash-based cryptography – Merkle signature scheme
	3.6.5 Code-based cryptography – McEliece
	3.6.6 Code-based cryptography – RLCE
	3.6.7 Super singular elliptic curve isogeny cryptography

	3.7 Comparison

	McEliece cryptosystem
	4.1 Introduction
	4.2 Part I: Basic Terminology
	4.1.1 Cryptology
	4.1.2 Error Correcting Codes
	4.1.3 Fields
	4.1.4 Binary
	4.1.5 Hamming Distance
	4.1.6 Linear Codes

	4.3 Goppa Codes
	4.2.1 Parameters
	4.2.2 Binary Goppa Codes
	4.2.3 Parity Check Matrix
	4.2.4 Encoding
	4.2.5 Irreducible Binary Goppa Code Example
	4.2.6 Error Correction
	4.2.7 Decoding

	4.4 The McEliece Cryptosystem with Example
	4.3.1 Example

	Application Implementation and Results
	5.1 Application GUI
	5.2 Key Generation:
	5.3 Keys Generation
	5.4 Encryption and Decryption Process
	5.3.1 Private Key
	5.3.2 Public Key

	Discussion and Analysis
	6.1 Creation of Parameters
	6.1.1 Finite Field:
	6.1.2 Goppa Polynomial:

	6.2 Number of Random Vectors tested while decryption
	6.3 Initial Parameters vs. Key length
	6.4 Encryption and Decryption Time

	References

