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Abstract 
The security of important applications of the internet such as e-commerce, banking, and 

eHealth is furnished by public-key cryptographic systems (or cryptosystems, for short).  Underlying 

hard problems of presently used public cryptosystems are factoring and computing discrete 

logarithms which are unable to solve by conventional computers. Main disadvantage of these 

systems is that they are not resistant against quantum computers. It is anticipated that during the 

next 10–20 years, quantum computers will be ready for widespread use. Code based encryption 

systems are one of the cryptosystems that are capable to resist quantum computing and hence 

provides an area in Post-Quantum Cryptography. McEliece cryptosystem which is also a code-

based cryptosystem is one of the few that is expected to withstand future assaults from powerful 

computers. Despite of several attempts by the crypto community, the McEliece system has not been 

cracked to this day.  

In recent years, internet-based messaging applications have been widely used as they make 

it easy to communicate and connect with people around the world. There are many chat apps that 

offer secure messaging services by using conventional encryption schemes however, they are not 

quantum resistive. So, need of the time is to implement the messaging System based on McEliece 

encryption scheme that is prone to Quantum attacks. The McEliece cryptographic system is one of 

the suitable options to ensure secure communications over the Internet when quantum computers 

become practical. 

By using McEliece public key encryption system we have proposed/developed Quantum-

resistant communications system/ app. It is a desktop app that can be used in computers for secure 

and Quantum resistive environment. The final product that we will be providing to the two users is 

just an exe file that can be installed in any computer and shortcut as well as the icon will be visible 

on the desktop. As the underlying encryption scheme used in the app is McEliece encryption 

scheme so it is supposed to be resistive against cyber-attacks generated by quantum computers. 

Moreover, this application may be integrated with financial systems to facilitate secure 

transactions. The secure nature of app can prevent unauthorized access to sensitive financial 

information, making it harder for hackers to intercept or manipulate transactions. This can enhance 

the security and integrity of digital payments, banking, and other financial services. It can also be 

used in Government and military organizations for communication. Governments and military 

organizations deal with highly sensitive information, and secure communication is crucial for their 

operations. This app can ensure that their messages remain confidential and resistant to interception 

by adversaries. 
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Chapter 1 

Introduction 

1.1 Overview 

The security of today's traditional cryptosystems is increasingly at risk as quantum computers 

become closer to commercialization and can solve the issues that these systems rely on, such as 

integer factorization and discrete logarithm. Since quantum computers can effectively solve certain 

problems that classical computers cannot, they will eventually be able to crack the security 

protocols now in use. We need to create cryptographic systems that can function in a post-quantum 

world so that we are ready for the day when quantum computers become a realistic reality. In order 

to achieve this objective, it is necessary to investigate other computing problems that are difficult 

for both conventional and quantum computers. “The National Institute of Standards and 

Technology (NIST) in the United States is now running a competition to standardize a public-key 

encryption system suitable for use once quantum computers have been built.  

1.2 Motivation and Problem Statement 

Quantum computers, which are still in their infancy but have the potential to greatly boost the 

speed with which specific problems like the ones listed above are addressed by conventional 

computers, are now the subject of intense research and development. Within the next decade to two 

decades, quantum computers may find widespread use [31]. If they materialized now, they would 

instantly make vast sections of the internet unsafe.  

For these reasons, in November 2017, NIST held a competition to determine which, if any, 

quantum-resistant public-key cryptosystems should be adopted as the industry standard. McEliece 

crypto system was one of the finalists of NIST’s Post Quantum Cryptography Standardization 

Process round 02. Other Candidates in second round of NIST along with McEliece cryptosystem 

were as listed below:- 

• .BIKE. 

• .CRYSTALS-KYBER. 

• .FrodoKEM. 

• .HQC. 
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• .LAC. 

• .LEDAcrypt (merger of LEDAkem/LEDApkc) . 

• .NewHope. 

• .NTRU (merger of NTRUEncrypt/NTRU-HRSS-KEM) . 

• .NTRU Prime. 

• .NTS-KEM. 

• .ROLLO (merger of LAKE/LOCKER/Ouroboros-R) . 

• .Round5 (merger of Hila5/Round2) . 

• .RQC. 

• .SABE.R 

• .SIKE. 

• .Three Bears. 

In principle, the advent of quantum computers makes obsolete long-standing public key 

cryptosystems predicated on the challenge of computing logarithms over finite fields. The 

McEliece system is one of the few that is expected to withstand assaults from powerful computers 

in the future, despite several efforts by the crypto community to break it. Because of the 

vulnerability of our current communications infrastructure to Quantum assaults, the adoption of a 

Quantum-Resistant Crypto System has become an urgent need. When quantum computers become 

commonplace, we'll need to employ the McEliece cryptography scheme to keep Internet 

connections safe. 

1.3 Research Objective 

Research objective of the thesis is as follow:- 

● In depth analysis of McEliece Cryptosystem in comparison with available Quantum 

resistive algorithms 

● Implementation of McEliece Cryptosystem based on Goppa Codes 

● Implementation of Secure Quantum Resistive messaging application  

● Analysis of Quantum Resistive Secure Communication messaging Solution 

1.4 Scope of Research 

In this thesis we developed a Messaging application that uses McEliece encryption. We can use this 

application anywhere in between two clients that have insecure media or channel. Most of the 
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application now a days use conventional encryption techniques, this is out of the box solution for 

secure messaging application. Specifically on wireless Medias where most of the messaging 

applications cannot be used, this solution after implementation can be tested. 

Some of the advantages of this research will be: 

● Develop an understanding of McEliece cryptosystem 

● Develop an understanding asymmetric messaging architecture between two clients 

● Design and implementation of McEliece cryptosystem using Goppa Codes for 

secure encrypted messaging  

● Paving a way for future work to include other features like Audio, Videos, and 

images encryption using McEliece cryptosystem 

1.5 Significance of Research 

Secure communication between two parties, even in the presence of an eavesdropper, is one of the 

main goals of cryptography. An area of cryptography known as "post-quantum cryptography" 

focuses on classical cryptographic methods that are expected to be secure against quantum assaults. 

In this thesis, we will examine the use of a supposedly Quantum-resistant code-based encryption 

system in a secure communication application. In 1978, after the RSA cryptosystem had already 

been introduced, Robert McEliece suggested it. The security cryptosystem is predicated on issues 

that are thought to be intractable by quantum computers, making it resistant to assaults that can 

crack it in polynomial time. To protect sensitive information, modern cryptosystems like RSA use 

mathematical challenges like factoring large integers and solving the discrete logarithm problem. 

Integer factorization and the discrete logarithm problem in a finite field may be solved in 

polynomial time with the help of a technique discovered by Peter W. Shor [7] in the late 1990s.” 

While quantum computers only exist in theory at the moment, it is believed that a working 

prototype might be constructed in the near future [4]. NIST has just released a document [8] in 

which they state: 

“It is unclear when scalable quantum computers will be available. However, [...] it is likely 

that a quantum computer capable of breaking 2000-bit RSA in a matter of hours could be 

built by 2030 for a budget of about a billion dollars.” 

This gives rise to a justifiable worry that widely used cryptosystems like RSA may be cracked over 

the next few years. Code-based cryptography is one such alternate approach in the scenario when 

quantum computers will be practically in use. For the same reason, we have implemented the 
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McEliece cryptosystem in a closed-source messaging app that is meant to be immune to quantum 

assaults. 

Our study's focus is on "Development of Quantum Resistive Messaging Solution," however the 

underlying architecture may be used in following sectors as well. 

● Wireless Communication 

● May be integrated with financial systems to facilitate secure transactions 

● E-commerce and Online Retail-Secure communication between buyers and sellers 

● Can be used in Govt and Military organizations to ensure the confidentiality of 

messages and resistance to interception by adversaries. 

As scope of this research we are now making a secure chat application that can be deployed at 

Computers and end to end encrypted messages can be forwarded which are encrypted based on 

McEliece algorithms. As a future work our work can be extended to make this application workable 

on mobile phone or on even hardware to achieve desired results. 

 

1.6 Thesis Organization 

The thesis is structured as follows:  

● Chapter 1 covers the introduction part of the thesis that enlightens/highlights the 

problem statement, research objectives, thesis scope, and its contribution. 

●  Chapter 2 is dedicated to essential literature review on the subject topic that helps us in 

writing and developing the Quantum resistive application.   

●  Chapter 3 covers the different Quantum resistive techniques and algorithms that are 

developed over the period of time and also lay down basis on choice of code based McEliece 

Cryptosystem.   

●  Chapter 4 covers the McEliece Crypto system basics terminologies, Public and Private 

Key generation algorithm along with the encryption and decryption process. 

● Chapter 5 explains the implementation of the secure Quantum resistive messaging 

application.   

● Chapter 6 presents the analysis of the developed application.  

● Chapter 7 concludes the reporting part of the research/ thesis and proposes a future 

research direction.   
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Chapter 2 

Literature Review 
In 1978, R. J. McEliece introduced the McEliece Encryption technique based on the Binary Goppa 

code, which appears highly safe while still allowing extraordinarily quick communication rates [9]. 

This cryptosystem is well suited for deployment in a distributed communication network, such as 

those expected to be used by NASA to disseminate data gathered from orbit.  

In 1986, Niederreiterintroduced a cryptosystem that uses a public key with fewer bits than 

ChorRivest but achieves a greater information rate [10]. This secure network was developed using 

Algebraic Coding Theory.  

In 1988, Leon provided an approach for determining the smallest possible size of massive error-

correcting codes. Stern provided a method for locating lightweight code words, while Lee made a 

security remark about the McEliece public key cryptosystem. The matrix B may be determined 

using O(s4 + sN) Fq arithmetic operations, thanks to an approach reported by Sidelnilkov et al in 

1992 [11], which exploited a weakness in [9], [10]. This technique is used to show the vulnerability 

of public-key cryptosystems like these. 

In the same year, 1994, Sidelnikov et alproposed a further enhancement to the cryptosystem [12] 

described in [9] and [10] and offered some supporting data. They also looked at how difficult it 

would be to break the original and updated versions of the encryption scheme. They concluded that 

the latter had a significantly higher level of security for numbers N larger than or equal to 1024.  

A year and a half later, in 1996, Janwa et alexamined important versions of the McEliece 

encryption method employing a new and bigger class of q-are A-G (Algebraic Geometric) gompa 

codes [13]. In 1998, Sendrier investigated code recovery by constructing a linear code C from its 

generating matrix to create a concatenated pattern [14].  
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The McEliece cryptography approach was strengthened by Loidreau et alin 2000 without needing a 

larger public key [7]. They could do this by generating decipherable patterns of large-weight errors 

utilizing certain regions of the automorphism groups of the codes.  

In 2000, Canteaut et alissued a rebuttal to [9]. This technique is a novel probabilistic method for 

identifying the low-weight words in any large linear code. Public key cryptography with key sizes 

of fewer than 4000 bits was suggested by Berger et alin 2005[16]. Also, they demonstrated how to 

conceal the underlying code structure while exploiting the features of subcodes to shrink the public 

key size.  

In addition, Minder et aldemonstrated in 2007 how the Sidelnikov cryptosystem might be 

compromised based on its design [6]. A private key is generated from a public key in this attack. If 

the parameters efficiently sample the code word with the least weight, then Reed-Muller is an 

effective code. The execution time of the code is sub-exponential in this example. McEliece, a 

cryptosystem built on low-genus curves, is the primary target of this attack.  

For their 2008 study, Baldi et al settled on a group of QC-LDPC Codes (Quasi-Cyclic Low-Density 

Parity Check Codes) [17]. Due to its reliance on Goppa codes, the initial McEliece cryptosystem 

suffered from large key sizes and sluggish transmission rates. However, these issues were 

circumvented. Codes are generated utilizing a novel technique based on Random Difference 

Families that allows for generating a huge number of sets of mutually-indistinguishable codes. 

Comprehensive cryptanalysis was built to confirm the security level attainable via a selection of 

system characteristics. To address the major issues identified as potentially harmful attacks, they 

refined a QC-LDPC code implementation of the McEliece cryptographic system. Baldi made a few 

adjustments. throughout the next year. It was proposed in 2009 that a public key may be shrunk by 

creating quasi-cyclic codes over F28.  

A cryptanalysis based on QC (Quasi Cyclic) codes and their variants was published in 2010; this 

method ultimately allowed the McEliece encryption scheme to be cracked. Berger and Loidreau 

developed Subcodes for generalized Reed Solomon codes. A novel structural attack on the 

McEliece/Niederreiter public key cryptosystem was developed in the same year by Wieschebrink et 

al18]. Thus, for almost all practicable parameter selections, the private key can be rebuilt with high 

confidence in polynomial time.  
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In 2012, two variants of the McEliece cryptosystem were developed, one based on MDPC 

(Moderate Density Parity-Check) codes and another on QC-MDPC (Quasi Cyclic MDPC) codes 

[6]. Everything, from generating keys to encrypting and decrypting data, is simplified in this new 

edition. That year, a novel kind of public key encryption using convolutional codes called McElece 

was also introduced. Important to this design are random-generated parity checks. They hinder 

one's ability to mount a structural assault.  

Coureur et aldemonstrated that the A-G-coded McEliece public key encryption scheme could be 

cracked in under two years using a polynomial-time attack [5]. A public-key decoding technique 

can be found for the first time, even for codes constructed on high-genus curves. Because of this, 

their assaults are very effective compared to their predecessors.  

In 2014, Illantheral et alpresented hexi polynomial codes, hexi Maximum Rank Distance codes, 

hexi Rank Distance codes, hexi wild Goppa codes, and hexiGoppa codes[19]. These new McEliece 

codes were used to develop a public-key cryptosystem called Hexi McEliece. The temporal 

complexity of this newly developed cryptosystem is lower, and its error-correcting capability is 

higher, making it more practical for widespread implementation. Signatures using chained hex 

codes (CHC) were also suggested that year by Ilantheral et al[20]. The suggested scheme's main 

benefit is a size reduction, particularly in the public key and signature. The public key's compact 

size sped up decoding, signing, and verifying. As a possible post-quantum cryptography approach, 

Shrestha et alexplored a polar-code-based variation of the McEliece cryptosystem in 2014 [21]. 

In the same year, Hooshmand suggested a public key technique using polar codes to improve the 

McEliece cryptosystem's efficiency further [16]. Related to the original McEliece cryptosystem, the 

proposed approach has an upper transmission rate R = 0.85 and a smaller private and public key 

size MPB = 65.19 bytes, MPR = 2.75 kbs. Bardet et al explained the polar code's construction in 

2015which, together with a key-recovery attack provided by Shrestha [21], allows every message 

to be decoded. Different strategies for creating public encryption systems based on universal 

random linear codes were disclosed by Wang et alin the same year (2015) [8]. They demonstrated 

that their techniques were impervious to common assaults against linear-code-based encryption. In 

2016, Moufek presented a modified version of the McEliece cryptographic system that relies on 

Quasi Cyclic-LDPC and Quasi Cyclic MDPC codes [24]. The generator matrix's random bits were 

derived from a self-shrinking generator with some tweaks. They proved that their system was safe 

from common structural and decoding threats. The updated McEliece cryptographic system 

developed by Moufek, Guenda, and Aaron Gulliver in 2017 was attacked by Dragoi et al[8]. 
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Independent of the second code's characteristics, the attack relies solely on discovering its structure 

to succeed. Therefore, their conclusion holds even if a different code is used in place of the MDPC. 

Developing a post-quantum secure McEliece cryptographic implementation is described in [1], 

which details the design process for an embedded co-processor. A co-design between hardware and 

software has been prioritized to ensure McEliece's success on low-cost, embedded devices in the 

real world. Parameters of the system, algorithms, architectural choices, and even elementary 

mathematical operations are all considered throughout the optimization design process. An 8-bit 

PicoBlaze softcore is used in the final design for its adaptability, and multiple parallel acceleration 

units help maximize throughput. The co-processor prototype runs on a Spartan-3an FPGA, which is 

only being put to 30% of its capacity. If the FPGA's clock frequency is set to 92 MHz, decrypting a 

single 80-bit key using McEliece takes less than 100K clock cycles or just one millisecond. The 

present design is ten times larger and slower than this. 

The study of cryptography using codes has great promise. It paves the way for developing several 

cryptographic techniques, such as authentication protocols, public-key cryptosystems, etc. The 

McEliece cryptosystem was the first code-based public-key cryptosystem, and other variations 

were proposed to develop different security protocols. Radio-frequency identification systems 

utilize a wide variety of authentication methods, some of which are very new and rely on other 

implementations of the McEliece cryptosystem. These protocols are surveyed by Chikouche, 

Cherif, and Cayrel [2]. In addition, we analyze the safety and efficiency of each approach. Digital 

signature systems based on the McEliece cryptosystem are discussed in [4], as are several widely-

used significant codes. Goppa codes, used in the McEliece cryptographic method, are extremely 

fast and were thought to be safe against multiple quantum assaults; nevertheless, the vast amount of 

its public keys is a serious downside. Much advancementhave been made, and more are being made 

all the time, to lower the size of public keys without sacrificing security. This document details 

several enhancements and adjustments made to the McEliece cryptosystem. Pay attention to code-

based cryptography's digital signature techniques as well. 

It is often said that a digital computer is an effective universal computing device capable of 

simulating any physical computing equipment with an increase in a calculation time of, at most, a 

polynomial factor. In light of quantum physics, this might be different. Several suggested 

cryptosystems have their foundations in difficulties like factoring integers and calculating discrete 

logarithms, both of which have been considered challenging for a classical computer. PETER W. 
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SHOR examines these issues [3]. These two issues on a theoretical quantum computer are solved 

with efficient random methods. These methods have a runtime that scales with the input size, or in 

this case, the number of digits in the integer being factored. If you're looking for an alternative to 

the more traditional symmetric encryption method, look no further than public key cryptography, 

also known as an asymmetrical encryption scheme. It was in the seminal work of Hellman and 

Diffie that the first modern Asymmetric cryptographic scheme was introduced [5]. 

The Internet, a worldwide system that enables constant interaction between total strangers, was 

born out of their vaticinator desires. Their proposal for the DH cryptosystem was founded on a 

solution to a discrete logarithm problem in mathematics. The knapsack problem provides the basis 

for the public key cryptosystem known as Merkle-Hellman [6]. However, it is obsolete and 

malfunctioning. The RSA cryptosystem developed simultaneously by Rivest, Adleman, and 

Shamir, has yet to be cracked and is still in widespread use [6]. Multiplication of numbers, even 

large ones, is easy, but factorization is very difficult, which is why the RSA cryptosystem relies on 

it. Then, Shor created an algorithm with an exceptional trait that effectively processes integers [3]. 

The only catch is that it can only be used with a quantum computer. Manin and Feynman in the 

1980s conceptualized the idea of a quantum computer [7] [8]. The use of quantum physics enables 

the quantum computer to do massively parallel processing. A quantum computer easily handles 

difficulties in number theory and various logarithmic problems. Research into cryptography has 

taken a new, post-quantum-era turn due to a string of surprising findings. One potential successor 

to quantum cryptography is code-based cryptography. It has a basis in linear coding theory and is 

connected to that field.  

Golay codes first introduced in the early 1950s have recently seen a tremendous uptick in interest 

[25]. After 15 years of tweaks to the proposal's security parameters [26], the asymmetric encryption 

cryptosystem McEliece [9] presented in 1978 based on Goppa codes has remained uncracked. 

Niederreiter proposed the knapsack cryptosystem, based on Reed-Solomon regulations, as one such 

system [27]. Sidelnikov showed that the Niederreiter cryptosystem was insecure by using the Reed-

Solomon and Goppa codes [28]. Sidelnikov proposed a PKC (Public Key Crypto System) using 

binary Reed-Muller codes [29]. It offered great safety despite its very low transmission rate (nearly 

1) and simple encryption and decryption procedures. Minder cracked the Sidelnikov PKC, which 

relied on a previously established public key to generate a hidden one [30]. It has been revealed that 

the execution time of an attack that uses low-weight discovery approaches is sub exponential. Most 

common attacks employed to crack LDPC and QCLDPC were also examined. Londahl and 
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Johanssoncreated a convolutional-code-based variant of the McEliece cryptosystem [36]. The 

convolutional codes used by Landais and Tillich in their assault on the McEliece cryptosystem 

were successful [37]. Several academics have proposed improved versions of the McEliece 

cryptosystem that use error-correcting codes other than Goppa codes, such as AGC, LDPC, and 

convolutional codes. Despite this, it has been shown that each approach is insecure, leading to the 

widespread use of Goppa codes. 

2.1 Limitation of the existing literature 

Table 1 shows some weaknesses/ limitations of the existing literature: 

Table 1: Limitations of Existing Literature 

S. No Limitations Detail 

1 In the existing literature, 

there are rare evidences 

where standard McEliece 

encryption has been 

analyzed/ improved just 

by changing the 

parameters instead of 

changing coding family. 

There is an exhaustive list where the researchers proposed different 

coding schemes /families other than Goppa codes to improve the 

McEliececryptosystem by decreasing public and private key lengths. 

However, there are rare evidences where problem of original 

McEliece cryptosystem based on Goppa codes is addressed by 

varying parameters. 

2 Existing literature is 

lacking in 

implementation of 

McEliece encryption in 

any practical application. 

Existing literature is lacking in implementing original McEliece 

cryptosystem based on Goppa codes in any telecommunication 

standard/application. However, the proposed use case of McEliece 

cryptosystem in this research paper is quantum resistive and can be 

used as an alternate of chat app . 

. 
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Chapter 3 

Post Quantum Cryptography 

3.1 Introduction 

Quantum-proof, quantum-safe, and quantum-resistant are all terms that may be used to describe the 

encryption methods used in the post-quantum era.Cryptographic approaches (often public-key 

algorithms) that are assumed to be secure against the cryptanalytic assault of a quantum computer 

are the focus of this field of study. Popular methods rely on solutions to the integer factorization, 

discrete logarithm, and elliptic curve discrete logarithm issues, all of which have a fundamental 

flaw. A sufficiently powerful quantum computer may use Shor's approach to solve these issues in a 

matter of seconds [55] [57]. 

Although quantum computers lack the processing ability to break any practical cryptographic 

technique at the present time,[58] several cryptographers are working on alternative solutions just 

in case. Since 2006, academics and crypto business experts have gathered at PQCrypto 

conferences. The European Telecommunications Standards Institute (ETSI) and the Institute for 

Quantum Computing have recently given talks on Quantum-Safe Cryptography. While quantum 

computers pose a significant risk to traditional public-key protocols, most contemporary symmetric 

cryptographic algorithms and hash functions are thought to be mostly immune to such 

assaults[59][61] [57] [62]. Even if attacks on symmetric cyphers are sped up using the quantum 

version of Grover's technique, increasing the key size by two may effectively circumvent this [63]. 

As a result, despite the arrival of quantum computers, symmetric cryptography implementations 

will not need significant changes. However, existing asymmetric/ public key crypto systems like 

RSA and ECC will no longer be secure once quantum computers become practical. So, there must 

be alternate public key cryptosystems/ algorithms that are equally good and secure post quantum 

world as well. 
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3.2 Explanatory Chart 

 

Figure 1: Explanatory Chart [8] 

3.3 Algorithms 
There are now six main areas of concentration in post-quantum cryptography research. 

3.3.1 Lattice-based cryptography 

Several different cryptographic methods use this method, from the more traditional NTRU or GGH 

encryption to the more modern NTRU signature and BLISS signature, and everything in 

between[67].The NTRU encryption system, for example, has been researched for a long time, but 

no one has yet found a practical attack on it.” The security of other algorithms, such as the ring-

LWE methods, is a worst-case concern [68] [69] [70]. NTRU was still under patent protection at 

the time. “Some research suggests that NTRU's security features are even more robust than other 

lattice-based algorithms[71].  

3.3.2 Multivariate cryptography 

This category covers cryptographic schemes that rely on the complexity of terminal access 

controller access control of multivariate equations, like the Rainbow (Unbalanced Oil and Vinegar) 

scheme. Many insecure encryption techniques have been developed for multivariate equations. It is 

possible, however, that multivariate signature methods like Rainbow form the foundation of a 

quantum-safe digital signature[72]. A patent protects Rainbow signatures. 
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3.3.3 Hash-based cryptography 

This class of cryptographic systems includes, but is not limited to, Lamport signatures, Merkle 

signature schemes, XMSS,[73] SPHINCS[74], and WOTS schemes. However, there has been a 

rebirth in the use of such signatures in recent years due to growing interest in quantum-resistant 

encryption. Merkle signatures and any hash techniques used in conjunction with them are not 

patentable. The XMSS stateful hash-based signature mechanism created by Johannes Buchmann's 

team is described in RFC 8391[75]. In the past, systems were either one-time-use or restricted in 

their potential applications. UOWHF hashing was devised in 1989 by Moni Naor and Moti Yung, 

who also developed a hash-based signature (the Naor-Yung scheme) that may be used 

indefinitely[76]. 

3.3.4 Code-based cryptography 

Error-correcting codes are used by many encrypted systems, like the McEliece and Niederreiter 

encryption algorithms and the Courtois, Finiasz, and Sendrier Signature methods that go with them, 

to make sure that their messages are secure. The original McEliece signature, which was sealed 

with random Goppa codes about 40 years ago, has not been decrypted yet. McEliece has been 

shown to be unsafe, even though the code has been improved to make it more organized and the 

size of the keys has been cut down. The Post-Quantum Cryptography Study Group, which is 

funded by the European Commission, has found that the McEliece public key encryption method 

could be used to protect against future attacks that use quantum computers[69]. 

3.3.5 Super singular elliptic curve isogeny cryptography 

This encryption scheme is a forward-secrecy alternative to Diffie-Hellman that makes use of 

supersingular elliptic and super singular isogeny graphs.“This cryptographic implementation of a 

key exchange mechanism similar to Diffie-Hellman is based on the well-studied mathematics of 

super singular elliptic curves. Since the widely-used Diffie-Hellman and elliptic curve Diffie-

Hellman key exchange techniques are vulnerable to quantum computing, this is a straightforward 

substitute[78]. It functions similarly to existing Diffie-Hellman implementations;therefore, it 

provides forward secrecy, which is crucial for preventing both widespread government surveillance 

and the accidental disclosure of long-term keys [79]. In 2012, scientists Sun, Tian, and Wang from 

Xidian University and the Chinese State Key Lab for Integrated Service Networks created digital 

signatures that were immune to quantum attacks. De Feo, Jao, and Plut served as inspiration for 

their art [80]. No patents exist to protect this method of encryption. 
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3.3.6 Symmetric key quantum resistance 

Symmetric-key algorithms, such as AES and SNOW 3G, are unbreakable by a quantum computer 

with sufficiently high key sizes[81]. A quantum computer might theoretically break public key 

encryption. Symmetric key cryptography, on the other hand, is safe enough to be used by Kerberos 

and the 3GPP Mobile Network Authentication Structure, two popular key management tools and 

systems. Post-quantum cryptography may be implemented quickly and easily, according to some 

studies, by expanding the usage of symmetric key management systems like Kerberos [82]. 

 

Figure 2: Types of Post Quantum Cryptography [69] 

  



25 
 

3.4 Key Attributes of PQC Algorithms 

Few of Key attributes of above-mentioned schemes/ algorithms are mentioned in Table 2: - 

Table 2: Key attributes of PQC Schemes/algorithms 

 

3.5Performance Comparison 

Table 3: Quantum Resistive algorithms comparison 

Algorithm Advantages Disadvantages 

Lattice based Cryptography 

[91] 

• Fast and Efficient due 

to linear algebraic 

based matrix and 

vector operations on 

integers 

• Small key size 

• Can be used in other 

security services like 

homomorphism 

encryption, identity-

based encryption and 

attribute-based 

encryption 

• More versatile and can 

• Computationally 

intensive so not 

suitable for resource 

constraint devices 

• Difficult to give 

accurate estimations of 

the security level on 

software and hardware 

as its comparatively 

new and active area of 

cryptography and 

future advancement 

can weaken the 

security of lattice-
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be used in encryption, 

digital signature and 

key exchange etc 

based schemes. 

• Hardware 

implementation is 

vulnerable to physical 

attacks such as timing 

attacks, fault attacks 

and power analysis 

Multivariate cryptography 

[91] 

• Fast and  good 

approach for 

signatures, it offers 

shorter signatures than 

those offered by other 

schemes 

• Potential for efficient 

implementations 

• Relatively small key 

sizes 

• Vulnerability to 

advancements in 

algebraic techniques 

 

• Security is not assured 

as quite a number of 

multivariate 

cryptosystems have 

been broken over the 

years 

 

• Limited number of 

practical schemes 

Hash-based cryptography 

[91] 

• Fast as they need only 

computer hash 

functions 

• Quite secure as hash 

function is resistant to 

collision and primage 

attacks 

• Efficient 

implementations 

possible 

• Record of previous 

signature is required, if 

not done it creates 

insecurity in large 

environments 

• Can produce a limited 

number of signatures, 

if number is increased 

the signature size 

increase that is 

ineffective 

• Limited versatility 
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compared to some 

other schemes 

Code Based Cryptography 

[91] 

• It has proven security 

as underlying 

mathematical problem 

related to error 

correcting codes has 

long history and have 

been extensively 

studied. 

• Fast in doing 

encryption and 

decryption. So 

computationally more 

efficient than other 

schemes. 

•  

• Large key length 

difficult to implement 

with low processing 

power and less storage 

devices 

Supersingular elliptic curve 

isogeny cryptography 

 

• Efficient key exchange 

protocols 

• Relatively small key 

sizes 

• Complex mathematics 

and implementation 

requirements 

• Slower performance 

• Vulnerability to 

potential cryptanalytic 

advances 

• Relatively new 
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3.6 Security reductions 

Proving the equivalency of a cryptographic technique to a well-known difficult mathematical 

equation is the desired goal in the field of cryptography research. Security reductions are proofs 

used to show how tough it is to break an encryption method. A cryptographic algorithm's security 

may be limited to protecting some well-known hard problem. For the sake of more secure post-

quantum cryptography, researchers are aggressively searching for potential security holes. The 

most recent findings are shown below: 

3.6.1 Lattice-based cryptography – Ring-LWE Signature 

Some ways to use Ring-LWE make it easier to use by reducing security to solving the shortest-

vector problem (SVP) in a lattice. Everyone knows that the SVP is NP-hard[83]. It has been shown 

that some ring-LWE systems, like the one described by Güneysu, Lyubashevsky, and Poppelmann, 

reduce security in a way that can be proven[65]. The GLP signature made by Güneysu, 

Lyubashevsky, and Poppelmann was changed into the GLYPH signature so that it could include 

new information learned from further study.” The GLP signature was made public for the first time 

in 2012. The Ring-TESLA signature can be used instead of the Ring-LWE signature[84]. Learning 

with Rounding (LWR) is a "DE randomized variation" of LWE that makes efficiency and 

bandwidth better "by avoiding tiny sampling mistakes from a Gaussian-like distributed with 

deterministic errors" [85]. LWE rounds up to hide the smaller numbers, while LWR rounds down 

to show them. 

3.6.2 Lattice-based cryptography – NTRU, BLISS 

The Closest Vector Problem (CVP) in a Lattice is believed to be related to the security of the 

NTRU encryption technique and the BLISSsignature[67]. However, this issue cannot be reduced to 

mere evidence. The NP-hardness of the CVP has long been accepted as fact. “For long-term use, 

the Post Quantum Cryptography Study Group recommended the less secure Stehle-Steinfeld 

variant of NTRU. This research was financed by the European Commission [69]. 

3.6.3 Multivariate cryptography – Unbalanced Oil and Vinegar 

Unbalanced Oil and Vinegar signature methods are the asymmetric cryptographic counterpart of 

cavemen. They are based on multivariate polynomials over a finite field show style. mathbb B 

mathbb F. Bulygin, Petzoldt, and Buchmann showed that solving the NP-Hard Multivariate 

Quadratic Equation Solving problem is the same as solving general multivariate quadratic UOV 

systems[86]. 
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3.6.4 Hash-based cryptography – Merkle signature scheme 

In 2005, Luis Garcia demonstrated that the integrity of a Merkle Hash Tree signature is only as 

good as the underlying hash algorithm. Garcia demonstrated in his article that one-way hash 

functions may be used to guarantee the security of a Merkle Hash Tree signature [87]. 

The security of the Merkle tree signature may be compromised by the use of a hash function with 

such a reduction to a known issue, however this is something that can be verified.[88] Merkle 

signatures have been proposed as a long-term security mechanism against quantum computers by 

the European Commission-funded Post Quantum Cryptography Study Group [69]. 

3.6.5 Code-based cryptography – McEliece 

The Syndrome Decoding Problem (SDP) exposes a weakness in the McEliece encryption 

mechanism. The SDP's NP-hardness has been extensively documented[89]. The Post Quantum 

encryption Study Group, funded by the European Commission, has argued in favor of adopting this 

encryption to protect against the eventual development of quantum computers[69]. 

3.6.6 Code-based cryptography – RLCE 

Using the same principles as the McEliece techniques, Wang presented the RLCErandom linear 

code encryption scheme in 2016 [90].” Any linear code, including the Reed-Solomon code, may 

create an RLCE method by introducing random columns into the underpinning linear code 

generator matrix. 

3.6.7 Super singular elliptic curve isogeny cryptography 

The construction of an isogeny among two super singular curves of equal point count is relevant to 

the issue of security. Recent research on the problem's complexity by Delfs and Galbraith confirms 

that it is as challenging as the creators of the encrypting and decrypting claim it to be. Security 

cannot be reduced to a known NP-hard issue [91]. 

3.7 Comparison 
Many algorithms developed after the advent of quantum mechanics call for greater key sizes than 

the conventional "pre-quantum" public key methods. “Key size, computational efficiency, and the 

size of the cipher text or signature are all factors that must frequently be balanced. There are several 

values for various schemes in the table 3, all of which have a post-quantum security level of 128 

bits. 

Table 3: Quantum Resistive Algorithms Comparison 
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The time and energy needed to transmit public keys over the internet is a real-world factor that 

should be considered while deciding between post-quantum cryptography methods.  
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Chapter 4 

McEliece cryptosystem 

4.1 Introduction 

Communication systems that are both reliable and safe have been in use since far before the 

Roman Empire's zenith. A cryptosystem is a system for sending information in such a way that 

only the recipient can decipher it. Interception during transmission, mistakes, and whether or not a 

technique is even usable are just a few examples of the many challenges encountered with these 

approaches. Goppa codes, the first codes employed in the McEliece cryptosystem, are an example 

of error-correcting codes. In this chapter, we'll look at the safety of the original McEliece 

cryptosystem, which makes use of Goppa codes, and explain how they work. 

Messages don't always get through as expected. The prevalence of mistakes is largely to blame 

for this. Multiple factors, including chance, neighboring channels, and external interference, may 

contribute to transmission errors. Message faults may be detected and fixed via error-correcting 

codes. Including redundancy in the message ensures that the intended meaning of the message is 

sent even if a mistake occurs in its transmission. For whatever reason, the receiver hears "I'm 

bringing my brushes" instead of "I'm bringing my gloves." An erroneous communication may be 

received without the intended meaning being understood by the recipient. Now imagine if there 

were some more redundancy in the message, like "Because it is snowing severely outside, I am 

going to carry my gloves." This bolstered safety net allowed the receiver to properly infer that the 

sender intended to indicate he or she would bring something to keep warm, and that the message 

received was a mistake[4]. 

The Goppa code is an error-correcting coding scheme that uses modular arithmetic, in which an 

increasing series of integers is repeated until the desired value is reached, at which point the 

process begins again from zero. One useful use of modular arithmetic is the use of a 24-hour 

clock rather than a 12-hour clock for maintaining time. Modulo 24 is used to represent the hour on 

a 24-hour clock, whereas modulo 12 is used on a 12-hour clock. It doesn't matter whether you use 

a 12-hour or 24-hour clock, the time at three in the morning is the same either way. Even though 

15:00 on a 24-hour clock corresponds to 3:00 on a 12-hour clock, the latter "wraps back around," 

making each hour above 12 a multiple of 3[5]. 

A key generation algorithm, an encryption technique, and a decryption technique are the basic 
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minimum for every cryptosystem. Suppose, for the purpose of argument that Alice and Bob want 

to hold a private conversation but are aware that a third person, Eve, may be listening in. Alice 

wants to get in contact with Bob. Alice encodes the plaintext of her message to Bob using a key. 

Bob may be able to decipher the original message from the cipher text if he finds the key. We 

always simply assume that Eve is familiar with the overall procedure but not the essential details. 

While Eve instructs us to safely infer that she wants us to study the message, locate the key and 

decode all communications encrypted with that key, alter Alice's message, or pretend to be Alice 

while corresponding with Bob. 

The McEliece cryptosystem requires two different keys—public and a private—to encrypt and 

decrypt a message. Let's say Bob freely shares his public key online for anyone to see. With Bob's 

public key, Alice may send him an encrypted message. Bob has to use his private key in order to 

decrypt the communication. In order for this to be useful, however, it requires that Eve needs 

more than simply a public key in order to decrypt messages. Instead, Bob would need to provide 

Eve the secret key to decipher the cipher text[18]. 

Bob produce a public key for use in the McEliece Cryptosystem by selecting a Goppa polynomial 

(z) of degree t and calculating the generator matrix G of the Goppa code. “After that, Bob would 

choose two invertible and permutable matrices, S and P, at random. and plug them into the 

equation G′ = SGP. Bob’s public key would be (G′, t), while his private key is (S, G, P). 

Alice's first step would be to construct her message as a series of binary strings that would be sent 

out as the final encrypted message, which contains a random error vector with a weight of t or 

less y = mG′ + e added to it. 

Next, Bob would utilize his P matrix to get y′ = yP1. Then, Bob would apply the Goppa code G 

decoding technique to turn y′ into the right code word m′ = mS.with the help of S1, Bob would 

derive the original message as m = m′S1. 

It is very unlikely that Eve would be able to understand Alice's message without her secret key. 

This is because she needs to separate matrix G from its mirror image, matrix G′. Since Eve can't 

just look up the inverse of the matrix G′, she'd need to know the inverse of the unpublished 

random matrix S as well. Eve doesn't know what the matrix P, thus she has no notion where to 

seek for y' to get m′. The security of this cryptosystem depends on how difficult it is to interpret 

y′ and find m′. This task makes use of a massive Goppa code. For instance, in his first 

cryptosystem work published in 1978, McEliece suggested a [1024, 524] Goppa code (i.e., a 
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Goppa code of length 1024 and dimension 524).  

The bigger the code, however, the less useful the cryptosystem becomes;therefore, this is a 

serious problem. This cryptosystem is currently not very practical, however that should change as 

technology and storage space improve [33]. 

The system is also more susceptible to attack since the same encryption matrix G′ will be used to 

deliver the same message several times. Unlike the Rivest-Shamir-Adleman cryptosystem, this 

one doesn't come with a clear method of creating signatures (RSA). Since anybody may use Bob's 

public key to send him a message and has no way of knowing whether the sender was indeed 

Alice unless they both know a shared Goppa Code. 

The system's benefits, on the other hand, include the fact that it is one of the simplest 

cryptosystems out there and has been extensively researched ever since it was first introduced in 

1978.” The use of this technology also enables quick times for both encrypting and decrypting 

data. 

4.2 Part I: Basic Terminology 

4.1.1 Cryptology 

The study of cryptology centers on the transmission and reception of information securely, 

without the possibility of interception, reading, or modification by a third party [25]. 

Think about Alice and Bob, two pals of ours. They want to talk to one other secretly, but 

they're worried that a person called Eve could listen in. Say Alice has to contact Bob and she 

decides to use a messenger service. Alice transforms the plaintext of her communication into 

the cypher text, a sequence of code words, using a cryptosystem that has been mutually agreed 

upon by the two friends. It is often assumed that Eve is aware of the particular cypher or 

cryptosystem being used, and that the only thing preventing her from reading the message is 

the key or keys being used to encrypt and decrypt it.  

It's important to note that the process of encoding and decoding a message may be variable 

based on the cryptosystem in use. The class of cryptosystems known as Public Key 

Cryptosystems is one such example [73]. 

Each of these forms of cryptography relies on a pair of keys—a public one and a private one. 

Bob shares his public key online, where it may be seen by anybody, including Alice and Eve. 

To transmit the message to Bob, Alice uses the public key to encrypt it, and Bob receives it and 
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decodes it using his private key. However, Eve cannot read the message even if she has the 

public key because of the mechanism employed. Private keys are required to decode cypher 

texts, and Bob is the only person who has access to the private key since he is the intended 

recipient of the cypher text[69]. 

4.1.2 Error Correcting Codes 

It's unclear what Alice was trying to tell Bob in her message. So, what happened? Obviously, Eve 

was making a clumsy effort at diversion here, or the letter got corrupted in transit. The purpose of 

error correcting codes (ECC) is to identify and fix transmission errors. In order to do this, 

redundancy is added to the message to ensure its clarity in the event of a misinterpretation. As 

soon as a message is encoded, it is transformed into a code word that includes both the original 

message and the redundancy. Certain error rates that can be tolerated by the decoding algorithms 

are used for these codes. This decoding technique allows for the correction of transmission 

mistakes and the subsequent restoration of the original message. This gives the cipher text y = c + 

e, where c is the code word and e is an error vector. This is helpful because Eve would have had a 

hard time figuring out the secret message from the coded text she got. 

4.1.3 Fields 

An essential component of mathematics, a field enables us to classify numbers into distinct 

categories.[10] 

Definition 1.3.1 “A field F is a collection of elements that are closed under two processes and meet 

the following conditions: 

1.   𝑇𝑇ℎ𝑒𝑒𝑟𝑟𝑒𝑒exists𝑎𝑎𝑛𝑛𝑒𝑒𝑙𝑙𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡𝑎𝑎∈𝐹𝐹𝑠𝑠𝑢𝑢𝑐𝑐ℎ𝑡𝑡ℎ𝑎𝑎𝑡𝑡, for𝑎𝑎𝑙𝑙𝑙𝑙𝑥𝑥∈𝐹𝐹, 𝑥𝑥 + 𝑎𝑎 = 𝑥𝑥. 

2.   𝑇𝑇ℎ𝑒𝑒𝑟𝑟𝑒𝑒exists𝑎𝑎𝑛𝑛𝑒𝑒𝑙𝑙𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡𝑏𝑏∈𝐹𝐹𝑠𝑠𝑢𝑢𝑐𝑐ℎ𝑡𝑡ℎ𝑎𝑎𝑡𝑡, for𝑎𝑎𝑙𝑙𝑙𝑙𝑥𝑥∈𝐹𝐹, 𝑥𝑥𝑏𝑏 = 𝑥𝑥. 

𝐹𝐹𝑜𝑜𝑟𝑟𝑎𝑎𝑙𝑙𝑙𝑙𝑥𝑥, 𝑦𝑦, 𝑧𝑧∈𝑍𝑍, 

3. .𝑥𝑥 + .𝑦𝑦 = .𝑦𝑦 +.𝑥𝑥 

4. .𝑥𝑥𝑦𝑦 = .𝑦𝑦𝑥𝑥 

5. . (𝑥𝑥 + 𝑦𝑦) + .𝑧𝑧 = .𝑥𝑥 + . (𝑦𝑦 + 𝑧𝑧) 

6. . (𝑥𝑥𝑦𝑦) = .(𝑦𝑦𝑧𝑧) 

7. (.𝑦𝑦 +.𝑧𝑧) = .𝑥𝑥𝑦𝑦 + .𝑥𝑥𝑧𝑧 

8.   𝐹𝐹𝑜𝑜𝑟𝑟𝑒𝑒𝑎𝑎𝑐𝑐ℎ𝑥𝑥, 𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒exists𝑎𝑎𝑛𝑛𝑒𝑒𝑙𝑙𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡 − 𝑥𝑥𝑠𝑠𝑢𝑢𝑐𝑐ℎ𝑡𝑡ℎ𝑎𝑎𝑡𝑡𝑥𝑥 + (−𝑥𝑥) = 𝑎𝑎. 

9.   𝐹𝐹𝑜𝑜𝑟𝑟𝑒𝑒𝑎𝑎𝑐𝑐ℎ𝑥𝑥 ≠ 𝑎𝑎, 𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒exists𝑎𝑎𝑛𝑛𝑒𝑒𝑙𝑙𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡𝑥𝑥−1𝑠𝑠𝑢𝑢𝑐𝑐ℎ𝑡𝑡ℎ𝑎𝑎𝑡𝑡𝑥𝑥𝑥𝑥−1 = 𝑏𝑏. 

Example 1.3.1. The numbers, which are written as Z ....3,.2,.1,.0,.1,.2,.3,..., are not an area under 



35 
 

(+,). This is because, besides the numbers 1, 1, and 0, none of the other integers meet property 

number 9. 

Example 1.3.2 The set of rational numbers 

𝑄 =  {𝑎𝑎/𝑏𝑏  𝑠𝑠𝑢𝑢𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑎𝑎, 𝑏𝑏 ∈  𝑍𝑍  }   

is a field closed under (+,∙) and as such, upholds the previous nine rules.” 

1. 𝑦𝑦 =  0
𝑧

 𝑓𝑜𝑜𝑟𝑟 𝑎𝑎𝑛𝑛𝑦𝑦 𝑒𝑒𝑙𝑙𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡 𝑧𝑧 ≠ 0 𝑠𝑠𝑜𝑜 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 0
𝑧

+ 𝑥𝑥 = 𝑥𝑥 

2. .𝑦𝑦 = . 1
1

 𝑠𝑠𝑢𝑢𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 . 1
1

 . 𝑥𝑥 = 𝑥𝑥 

 

For all 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑  𝑍𝑍 

3. . 𝑎
𝑏

+ . 𝑐
𝑑

= . 𝑐
𝑑

+. 𝑎
𝑏
 

4. . 𝑎
𝑏

. . . 𝑐
𝑑

= . 𝑐
𝑑

. . . 𝑎
𝑏
 

5. . �𝑎
𝑏

+ 𝑐
𝑑.
� . +. 𝑒

𝑓
= . 𝑎

𝑏
+. �𝑐

𝑑
+ 𝑒

𝑓
� 

6. . �𝑎
𝑏

. 𝑐
𝑑
� . . 𝑒

𝑓
. = . 𝑎

𝑏
. . �𝑐

𝑑
. 𝑒
𝑓
�. 

7. . 𝑎
𝑏

. ( 𝑐
𝑑 .

+  .𝑒
 .𝑓

) =   .𝑎
 .𝑏

.  .𝑐
𝑑 .

+  .𝑎
 .𝑏

. . 𝑒 .
𝑓 .

. 

8. 𝐹𝐹𝑜𝑜𝑟𝑟 𝑒𝑒𝑎𝑎𝑐𝑐ℎ  .𝑎
 .𝑏

 ∈  𝑄, 𝑜𝑜𝑛𝑛𝑒𝑒 ℎ𝑎𝑎𝑠𝑠  .−𝑎
𝑏 .

+   .𝑎
 .𝑏

=  .0 

9. 𝐹𝐹𝑜𝑜𝑟𝑟 𝑒𝑒𝑎𝑎𝑐𝑐ℎ  . 𝑎
𝑏

 .∈  𝑄 . ,𝑤𝑖𝑖𝑡𝑡ℎ 𝑎𝑎 ≠ 0, 𝑡𝑡ℎ𝑒𝑒 𝑒𝑒𝑙𝑙𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡 𝑎 .
 .𝑏

 𝑠𝑠𝑎𝑎𝑡𝑡𝑖𝑖𝑠𝑠𝑓𝑖𝑖𝑒𝑒𝑠𝑠  . 𝑎
𝑏

. � . 𝑏
 .𝑎

 . � = 1 

When the number of possible values in a field is finite, we say that it is a Galois field. A Galois 

field is denoted by the notation GF(q), where q is the field's order [12]. 

Theorem: Assume p is prime. There is only one finite field of order pm, and this holds true for 

all powers pm. 

Suppose p is prime, k is positive and less than Z, and p > 0. The Galois field of order q = pk, where 

p and k are the numbers of elements in the field, is denoted by the notation.GF(pm), which is the 

extension Galois field of (p) of degree m[8]. 

An irreducible polynomial over (pm) is one that cannot be factored into a lower degree 

polynomial over (pm) [6]. 

Example: Multiply 1 + + 3 by (2). X and/or X2 must be included in any polynomial with a 

degree lower than 3. There is no division by such a polynomial.the answer is 1+.X+.X3, etc.An 

irreducible polynomial over (2) is given by (1 +.X +.X3). 
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Example: .X + .X5 is not an irreducible polynomial over (2) because 

 .𝑋 +  .𝑋5

 .𝑋
=  .1 +  .𝑋4 

Let's pretend x is an irreducible m-degree polynomial over.GF(p). An example of a primitive 

polynomial if .𝑛𝑛 = .𝑝𝑝𝑚𝑚 − .1 is the smallest possible integer for which (𝑥𝑥) divides .X𝑛𝑛 − .1 [3]. 

Example: Suppose . (𝑥𝑥) = .1 + .X + .X3 with degree 3 over .𝐺𝐺𝐹𝐹(2). 𝑛𝑛 = .23 − .1 = .7 and so we 

have .X7 − .1. .X7 − .1 can be factored into irreducible polynomials as (.X + 1.)(.1 + .X + .X3)(.X3 

+ .X2 + .1). It can be checked that (𝑥𝑥) does not divide X𝑣𝑣 such that 𝑣𝑣< 7. 

Therefore, .1 + .X + .X3 is a primitive polynomial of degree 3 over (2). 

Definition: Integers a and b are said to be congruent modulo n, written a b (mod n), if and only if a 

b = kn for any integer k, where k is an integer greater than or equal to n.” 

Example: Create a congruent representation of 49 modulo 5, where 49-b is evenly divisible by 5. 

Finding a value of k such that is required by the definition.49 − .𝑏𝑏 = .5𝑘𝑘. Finding $5,000, though, is 

sufficient. 45, 40, and 35 are all multiples of 7, hence b = 4, 9, and 14 accordingly. 

We want to find a value for b such that. 0 ≤ .𝑏𝑏< .5. The term "smallest possible non-negative 

residue" is used to describe this b. When b = 4, the residue is the minimum it can be without being 

negative. This would be represented as.49 .4 (mod 5).” 

Example: “Write .81 ≡ . (𝑚𝑚𝑜𝑜𝑑𝑑 2.) such that 𝑏𝑏 is the smallest possible non-negative residue. 

.81. − .𝑏𝑏 = .2𝑘𝑘 

.81 −.𝑏𝑏 = .2. (40) 

.𝑏𝑏 = .1. 

Therefore, 81 ≡ .1 (𝑚𝑚𝑜𝑜𝑑𝑑 2). 

Example: .. (2)=..ℤ2.=.{0,1}.=.The integers modulo.2. “This is also known as the binary 

field. 
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4.1.4 Binary 

As a common practicewe reduce data to a series of 1s and 0s before feeding it into a central 

processing unit. Binary encoding is used to describe this shift. Our usual practice is to think 

about digits in the 10s-base system. Despite the fact that binary uses a base 2 representation for 

numbers. Each component of a power of 2 may be either 0 or 1, every integer can be written as 

an additive sequence of power of 2 when converted into binary number. Putting the 

coefficients in descending order yields a binary representation of the number[67]. 

In binary, only 0 and 1 are utilized; they have the additive qualities of components modulo 2 

(0+1=1, 1+1=0, 0+0=0, and 1+1=0). 

4.1.5 Hamming Distance 

Definition: A code word, lawful code word, or code vector is a subset of code words represented 

by the notation = (.c1,.c2,.....,.cn). If a sequence of length n is in An but not in a code, it is 

considered an unlawful code word. 

The binary digits 0 and 1 will be assumed to make up alphabet A.” The playing field is the 

alphabet.2. =.{0,1}.=.Modulo 2: the integers. A code constructed using this alphabet is called a 

binary code[87]. 

If we make a mistake, we can fix it more easily if the code words are spread widely apart from 

one another. Otherwise, an accidental transposition of letters might change the meaning of the 

code. To prevent this, the forbidden code phrases are usually placed at random intervals among 

the permitted ones. In doing so, we increase the Hamming distance between the two words. 

If message m contains the code words cii and cjj, then the distance between these two words is 

the Hamming distance. It is quantified by tallying the number of bits that are distinct between the 

two code phrases [65]. 

C is the smallest Hamming distance possible between two lawful code words, ci and cj. The 

smallest Hamming distance from C is denoted by the symbol C. This demonstrates how 

well a code handles errors [25]. 

For a code word .𝑐𝑐𝑖𝑖, the Hamming weight, denoted. (𝑐𝑐𝑖𝑖), is the number of nonzero places in.𝑐𝑐𝑖𝑖.” 

This is the amount of ones in a binary coding word [48]. 
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4.1.6 Linear Codes 

Definition: A linear code over a field of k dimensions and n length is a k-dimensional vector 

space subset.Fn is a [n, k] code for an array of n-dimensional vectors. We call a code an. [n, k, d] 

if its minimum Hamming distance is at most d. To this goal, we'll refer to a sequence of 2k binary 

digits (a binary code of length n and dimension k) as a linear code[4]. 

4.3 Goppa Codes 

In order to encrypt and decode messages, weutilize a Goppa code, which is a linear, error-

correcting code. This definition applies to any such code: [3] 

Definition: “Polynomials over (pm) are what we'll call "Goppa polynomials," and we'll define 

them as such, 

.𝑔𝑔(𝑥𝑥) =  .𝑔𝑔0+  .𝑔𝑔1𝑥𝑥 ….…... + .𝑔𝑔𝑥𝑥𝑡𝑡 .
𝑡𝑡 = .∑𝑡𝑡𝑖𝑖=0 𝑔𝑔𝑖𝑖𝑥𝑥

𝑖𝑖 . 

with each .𝑔𝑔𝑖𝑖∈.𝐺𝐺𝐹𝐹(𝑝𝑝𝑚𝑚). Let 𝐿𝐿 be a finite subset of the extension field (𝑝𝑝𝑚𝑚), 𝑝𝑝 being a prime 

number, say 

𝐿𝐿 = {.𝛼𝛼1,. …. , .𝛼𝛼𝑛𝑛} ⊆.G𝐹𝐹(𝑝𝑝𝑚𝑚) 

such that .𝑔𝑔(𝛼𝛼𝑖𝑖) ≠ 0 for all αi∈ L. Given a code word vector 𝑐𝑐 = (.𝑐𝑐1, .… ,.𝑐𝑐𝑛𝑛) over 𝐺𝐺𝐹𝐹(𝑞𝑞), we have 

the function

 .𝑅𝑐(𝑧𝑧) = .�
𝑛

𝑖=1

 . 𝑐𝑐𝑖
𝑥𝑥 − 𝑎𝑎𝑖 .

Where 

 .1
𝑥𝑥 − 𝑎𝑎𝑖

 .
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Is a unique polynomial with . (𝑥𝑥 − 𝑎𝑎𝑖) .∗   .1
 .𝑥−𝑎𝑖

 .≡  .1 . (𝑚𝑚𝑜𝑜𝑑𝑑 (𝑔𝑔(𝑥𝑥))degree less than or equal to t 

minus 1. After that, a Goppa code. Each code vector c in (L,g(x)). Satisfies the condition that (x) 0 

(.mod (x).). If x divides a polynomial, then the polynomial is divisible.(𝑥𝑥). 

4.2.1 Parameters 

Theorem: Goppa code's k-dimension. (.L, (x).) with length n is bigger than or equal to n mt, or.k 

.n .mt. 

Theorem: Minimal conceivable Goppa distance (d).The n-length sequence (L, (x)) is greater than 

or equal to.𝑡𝑡 + .1, that is .𝑑𝑑 ≥ .𝑡𝑡 + 1. 

4.2.2 Binary Goppa Codes 

A binary Goppa code is supposed to be written as Γ (𝐿𝐿, (𝑥𝑥)) have to use a polynomial (𝑥𝑥) over 

(2𝑚𝑚) of degree 𝑡𝑡[28].” 

Theorem 2.3.1 Any irreducible, binary Goppa code .Γ (.𝐿𝐿, 𝑔𝑔(𝑥𝑥).) has a least distance 𝑑𝑑 of greater 

than or equal to.2𝑡𝑡.+ .1, that is, .𝑑𝑑 ≥.2𝑡𝑡.+ 1. 

The parameters are supposed to be as written below: [.𝑛𝑛, ≥ 𝑛𝑛. − .𝑚𝑚𝑡𝑡, ≥ .2𝑡𝑡 +.1]. 

4.2.3 Parity Check Matrix 

Parity check matrixes are used in Goppa codes to decode and recover the original message as sent 

by the receiver. 

Proposition: If we set 𝐻𝐻 = X𝑌𝑌𝑍𝑍 such that
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𝑋 . = � .𝑔𝑔𝑡  .0 .0 .⋯  .0  .𝑔𝑔 .𝑡−1  .𝑔𝑔  .𝑡  .0 .⋯ 0 . . ⋮ . ⋮ . ⋮ .⋱ ⋮ .   .𝑔𝑔 .1  .𝑔𝑔2𝑔𝑔 .3  .⋯𝑔𝑔𝑡  . �, Y = 

� .1 .1 .⋯1 .𝑎𝑎.1  .𝑎𝑎2 .⋯𝑎𝑎 .𝑛𝑛  ⋮ . . ⋮ .⋱ . ⋮ 𝑎𝑎1
𝑡𝑡− .1 .𝑎𝑎2

𝑡𝑡−1 .⋯  .𝑎𝑎𝑛𝑛𝑡𝑡−1�, and Z =  

� . 1
𝑔𝑔(𝑎𝑎1)  . .0 .⋯0 . .0  .  .  .1

 .𝑔𝑔(𝑎𝑎2) .⋯0 . . ⋮  . . ⋮  . .⋱ . ⋮   .0 . .⋯   . .0 . 1
𝑔𝑔(𝑎𝑎𝑛𝑛)�, then matrix H is a parity check 

matrix for a Goppa Code .Γ (𝐿𝐿, (𝑥𝑥)) 

“Since (𝑥𝑥) is.irreducible, there exists a primitive element 𝛼𝛼 \forall𝛼𝛼∈ (2𝑚𝑚) in such a way  that𝑔𝑔(𝛼𝛼) 

≠ 0 . Therefore subset 𝐿𝐿 can encompass all basic elements of (2𝑚𝑚). 

 

 .𝑔𝑔(𝑥𝑥)− .𝑔𝑔(𝑎𝑎𝑖)
 . 𝑥𝑥 −  . 𝑎𝑎𝑖

=  .�𝑎𝑎
𝑡

𝑖=0

 .𝑔𝑔𝑗  . .
 . 𝑥𝑥𝑖 −  .𝑎𝑎𝑖

𝑥𝑥 .−  .𝑎𝑎𝑖
=  . �𝑎𝑎

𝑡−1

𝑤=0

 .𝑋𝑤 . � 𝑎𝑎
𝑡

𝑗=𝑤+1

 .𝑔𝑔𝑗 .𝑎𝑎𝑖
𝑗−1−1 . ,𝑓𝑜𝑜𝑟𝑟 𝑎𝑎𝑙𝑙𝑙𝑙  .1 ≤ 𝑖𝑖 

≤ .𝑛𝑛 + 1 . 

There is supposed to be an arbitrary vector 𝑐𝑐∈Γ(𝐿𝐿, 𝑔𝑔(𝑥𝑥)) if and only if  

.�𝑎𝑎
𝑛

𝑖=1

 . (
 .1

 .𝑔𝑔(𝑎𝑎𝑖)
 . �𝑎𝑎

𝑡

𝑤+1

 .𝑔𝑔𝑗𝑎𝑎𝑖
𝑗−1−1). . 𝑐𝑐𝑖 =  .0 )𝑓𝑜𝑜𝑟𝑟 𝑎𝑎𝑙𝑙𝑙𝑙  .𝑤 =  .0, … ., . 𝑡𝑡 − 1  

So we can write the parity check matrix denoted as H (𝐻𝐻 = X𝑌𝑌𝑍𝑍), where X = 

𝑋 = ( .𝑔𝑔𝑡  .0 .0 .⋯  .0 .𝑔𝑔𝑡−1 .𝑔𝑔𝑡  .0 .⋯  .0 . ⋮ . ⋮ . ⋮ .⋱ . ⋮  .𝑔𝑔1 .𝑔𝑔2 .𝑔𝑔3 .⋯  .𝑔𝑔𝑡), Y = 

� .1 .1 .⋯  .1 .𝑎𝑎1 .𝑎𝑎2 .⋯  .𝑎𝑎𝑛𝑛 . ⋮ . ⋮ .⋱ . ⋮  .𝑎𝑎1
𝑡𝑡−1 .𝑎𝑎2

𝑡𝑡−1 .⋯  .𝑎𝑎𝑛𝑛𝑡𝑡−1�, and Z =  

� . 1
𝑔𝑔(𝑎𝑎1) .0 .⋯0 . .0 . 1

𝑔𝑔(𝑎𝑎2) .⋯0 . . ⋮ . ⋮ .⋱ . ⋮  .0 .⋯  .0 . 1
𝑔𝑔(𝑎𝑎𝑛𝑛)�,  

Therefore, we have that any code word𝑐𝑐∈Γ(𝐿𝐿, 𝑔𝑔(𝑧𝑧)) if and only if 𝐻𝐻𝑐𝑐𝑇𝑇 = 0.” 

4.2.4 Encoding 

Multiplying the input message by the Goppa Codes and generator matrix yields the encoded 

message. 

Definition: The Goppa code generating matrix G is a k by n matrix with rows ordered according to 

their basis.Γ(.𝐿𝐿, 𝑔𝑔(𝑥𝑥).).” 

Proposition: In matrix theory, a generator matrix G is any a matrix with rank k for which 
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GHT = 0. 

When we have to send the message we have to adopt the following steps:- 

● Write the message in blocks of k Symbols 

● The generator matrix (G) is then multiplied by each block of k symbols. 

● The result we achieve after multiplying is denoted as code words. 

Below is the example that explains the encoding of one block of message: - 

(𝑚𝑚1., .𝑚𝑚2, … ,.𝑚𝑚𝑘𝑘) ∗.𝐺𝐺 = (.𝑐𝑐1, .…. , .𝑐𝑐𝑛𝑛). 

4.2.5 Irreducible Binary Goppa Code Example 

As we have already explained that (24) .≅ .𝐺𝐺𝐹𝐹(2).[X]./.(𝑘𝑘(X).) for each irreducible polynomial 

𝑘𝑘(X) having a degree of 4. In the very first step we have to find the primitive element (𝛼𝛼). By 

using mathematical formulas we can factor X15 − 1 (𝑚𝑚𝑜𝑜𝑑𝑑 2) into irreducible factors [73]. 

.X15 − 1. (𝑚𝑚𝑜𝑜𝑑𝑑 2) = (.X + .1)(.X2 + .X + .1)(.X4 + .X + .1)(.X4 + .X3 + .1)(.X4 + .X3 + .X2 + .X + .1) 

For example, if we imagine that k(X)=.X4+.X+.1, then a root of k(X) is assumed to be a 

primitive element if and only if the order of is 15. We just need to verify when 3 1 and 5 1 since 

we already know that 1 and that the order of an element should split the order of the group. By 

applying the equation 𝛼𝛼4 = 𝛼𝛼 + 1, we can compute 𝛼𝛼3 = 𝛼𝛼3 ≠ 1 and .𝛼𝛼5 = .𝛼𝛼 ∙ .𝛼𝛼4 = . (1 + 𝛼𝛼). = .𝛼𝛼2 

+ .𝛼𝛼 ≠ 1. 

We can conclude that, (24)∗, is the multiplicative group of all the nonzero elements which 

are present in 𝐺𝐺𝐹𝐹(24), also this is a cyclic subgroup that is generated by 𝛼𝛼.

. (24) = .𝐺𝐺𝐹𝐹(24) 𝖴𝖴 {0} = .{0,1,.𝛼𝛼, .𝛼𝛼2, .𝛼𝛼3,. … , .𝛼𝛼14}. 

Therefore, we may represent the components of (24) using the powers of plus zero, much like 

binary notation. We rely on the fact that again.𝛼𝛼4 = .𝛼𝛼 + .1. 

.0=.0∙1+.0∙𝛼𝛼+.0∙𝛼𝛼2+.0∙.𝛼𝛼3=.(0,0,0,0)𝑇𝑇 

.1=1∙1+.0∙𝛼𝛼+.0.∙𝛼𝛼2+.0∙𝛼𝛼3=(1,0,0,0). P

𝑇𝑇 

.𝛼𝛼=0∙1+1∙𝛼𝛼+0.∙𝛼𝛼2+0∙𝛼𝛼3=.(0,1,0,0)𝑇𝑇 

.𝛼𝛼2.=0∙1+ 0 ∙ 𝛼𝛼 + 1.∙ 𝛼𝛼2 + 0 ∙ 𝛼𝛼3 =. (0,0,1,0)𝑇𝑇. 

.𝛼𝛼3.= 0∙1 + 0 ∙ 𝛼𝛼 + 0.∙ 𝛼𝛼2 + 1 ∙ 𝛼𝛼3 =. (0,0,0,1)𝑇𝑇. 

.𝛼𝛼4.= 1∙1 + 1 ∙ 𝛼𝛼 + 0.∙ 𝛼𝛼2 + 0 ∙ 𝛼𝛼3 =. (1,1,0,0)𝑇𝑇. 

.𝛼𝛼5.= 0∙1 + 1 ∙ 𝛼𝛼 + 1.∙ 𝛼𝛼2 + 0 ∙ 𝛼𝛼3 =. (0,1,1,0)𝑇𝑇. 
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.𝛼𝛼6.= 0∙1 + 0 ∙ 𝛼𝛼 + 1.∙ 𝛼𝛼2 + 1 ∙ 𝛼𝛼3 =. (0,0,1,1)𝑇𝑇. 

.𝛼𝛼7.= 1∙1 + 1 ∙ 𝛼𝛼 + 0.∙ 𝛼𝛼2 + 1 ∙ 𝛼𝛼3 =. (1,1,0,1)𝑇𝑇. 

.𝛼𝛼8.= 1∙1 + 0 ∙ 𝛼𝛼 + 1.∙ 𝛼𝛼2 + 0 ∙ 𝛼𝛼3 =. (1,0,1,0)𝑇𝑇. 

.𝛼𝛼9.= 0∙1 + 1 ∙ 𝛼𝛼 + 0.∙ 𝛼𝛼2 + 1 ∙ 𝛼𝛼3 =. (0,1,0,1)𝑇𝑇. 

.𝛼𝛼10.= 1∙1 + 1 ∙ 𝛼𝛼 + 1.∙ 𝛼𝛼2 + 0 ∙ 𝛼𝛼3 =. (1,1,1,0)𝑇𝑇. 

.𝛼𝛼11.= 0∙1 + 1 ∙ 𝛼𝛼 + 1.∙ 𝛼𝛼2 + 1 ∙ 𝛼𝛼3 =. (0,1,1,1)𝑇𝑇. 

.𝛼𝛼12.= 1∙1 + 1 ∙ 𝛼𝛼 + 1.∙ 𝛼𝛼2 + 1 ∙ 𝛼𝛼3 =. (1,1,1,1)𝑇𝑇. 

.𝛼𝛼13.= 1∙1 + 0 ∙ 𝛼𝛼 + 1.∙ 𝛼𝛼2 + 1 ∙ 𝛼𝛼3 =. (1,0,1,1)𝑇𝑇. 

𝛼𝛼14 = 1∙1 + 0 ∙ 𝛼𝛼 + 0.∙ 𝛼𝛼2 + 1 ∙ 𝛼𝛼3 =. (1,0,0,1)𝑇𝑇. 

If we have Goppa code as 𝐿𝐿 = {𝛼𝛼𝑖𝑖𝑠𝑠𝑢𝑢𝑐𝑐ℎ𝑡𝑡ℎ.2 ≤ .i ≤ .13} with. (𝑥𝑥) = .𝑥𝑥2 + .𝑥𝑥 + .𝛼𝛼3. 

This code is supposed to be irreducible over (24). However, this code has the parameters 𝑝𝑝 = 2, .𝑚𝑚 

= 4, .𝑛𝑛 = 12, and .𝑡𝑡 = 2. We can conclude that .𝑘𝑘 ≥.𝑛𝑛 −.𝑚𝑚𝑡𝑡=.12 − 4.∙2=4. 

As,.𝑑𝑑 ≥.2𝑡𝑡 + 1=2.∙2+1=.5.  

So, final Goppa Code would be [12, ≥ 4, ≥ 5].

We can then compute X𝑌𝑌𝑍𝑍 = 

𝐻𝐻. 
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=  (.𝑔𝑔2. .𝑔𝑔. (𝑎𝑎1−1).𝑔𝑔2. .𝑔𝑔. (𝑎𝑎2−1) ⋯ . .𝑔𝑔2. .𝑔𝑔. (𝑎𝑎12−1)(𝑔𝑔.1+.𝑔𝑔2. .𝑎𝑎1). .𝑔𝑔. (𝑎𝑎1−1)(.𝑔𝑔1
+.𝑔𝑔2.𝑎𝑎2).𝑔𝑔. (.𝑎𝑎2−1) ⋯ . (.𝑔𝑔1+.𝑔𝑔2.𝑎𝑎12). .𝑔𝑔. (𝑎𝑎12−1)) 

 

= (.𝑎𝑎3. .𝑎𝑎9. . 𝑎𝑎4. 𝑎𝑎1. 𝑎𝑎8𝑎𝑎.6 .𝑎𝑎3.𝑎𝑎6.𝑎𝑎1.𝑎𝑎2.𝑎𝑎2.𝑎𝑎8. 1. .𝑎𝑎13. .𝑎𝑎7.𝑎𝑎14.𝑎𝑎3. 0.𝑎𝑎14. 𝑎𝑎6. 𝑎𝑎7. 𝑎𝑎10.𝑎𝑎4.𝑎𝑎13) 

=( 0. .0.1.0.1.0.0.0.0.0.0.10. .1.1.1.0.0.0.0.1.0.0.00. .0.0.0.1.1 

. 0.1.0.1.1.11. .1.0.0.0.1.1.1.0.0.0.01. .1.1.1.0.0.1.0.1.1.1.10.. 

0.1.0.0.0.0.0.1.1.1.00. .1.0.0.0.0.0.1.0.1.0.10. .1.1.1.1.0.1.1.1.0.0.1) 

Since, 𝐺𝐺𝐻𝐻𝑇𝑇 = 0. Therefore, we can easily calculate the rows of matrix 𝐺𝐺 as the vectors of Null space 

(𝐻𝐻𝑚𝑚𝑜𝑜𝑑𝑑 2) 

Finally G will be equal to: 

𝐺𝐺 =(.0.1.1.0.1.0.1.0.0.1.0.0.0.1.1.1.1.0.0.1.1.0.0.0 .1.1.0.1.1 

. 0.0.0.0.0.0.1.1.1.1.0.1.1.0.1.0.0.1.0) 

 

We can see that this is a 4x12 matrix which means that the dimension of Γ(𝐿𝐿, 𝑔𝑔(𝑥𝑥)) is 4.” 

And also conclusively [12, 4, ≥ 5] are the parameters of this Goppa code. 

4.2.6 Error Correction 

We assume that the received code word is denoted as 𝑦𝑦 with 𝑟𝑟 ≤ 𝑡𝑡 errors. “So, 

𝑦𝑦 = (.𝑦𝑦1, .… ,.𝑦𝑦𝑛𝑛) = (.𝑐𝑐1, .… , .𝑐𝑐𝑛𝑛) + (.𝑒𝑒1, .… , .𝑒𝑒𝑛𝑛), 

This code word have𝑟𝑟 places in such a way where 𝑒𝑒𝑖𝑖𝑖𝑖 ≠ 0. The mistake vector must be located 

before the corrected code words may be reinserted into the original message. To achieve this, one 

must first determine the set of error positions E = i such that ei 0 and the associated error values ei 

for all ∈𝐸𝐸. 

Definition 2.7.1 Error locating polynomial written as (𝑥𝑥) can be defined as: 

 

.𝜎𝜎(𝑥𝑥). =  �
𝑖∈ 𝐸 

. (. 𝑥𝑥 −  𝛼𝛼𝑖𝑖) 

In binary Goppa codes we can have only two possible values (Errors, No errors) so we only have 
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to find the location of the errors as all other values other than errors will be correct. But if we are 

using the regular conventional Goppa Code then along with the errors we also have to find out 

the error correction polynomial as well along with the location of errors[39]. 

We are using the Patterson’s algorithm [H] in order to correct the errors present in the code 

word. The algorithm to find correct the errors in range of.𝑟𝑟≤.𝑡𝑡 for (𝑥𝑥) which is irreducible 

over .(2𝑚𝑚) is as follows: 

1. Let 𝑦𝑦 = (.𝑦𝑦1, … ,.𝑦𝑦𝑛𝑛) be a received code word. Compute the syndrome 

. 𝑠𝑠(𝑥𝑥) =  �
𝑛𝑛

𝑖𝑖=1
.

.𝑦𝑦𝑖𝑖
.𝑥𝑥 −.𝑎𝑎𝑖𝑖

.𝑚𝑚𝑜𝑜𝑑𝑑 .𝑔𝑔(𝑥𝑥) 

2. Below are steps which are needed to Calculate 𝜎𝜎(𝑥𝑥): 

▪ First step is to find ℎ(𝑥𝑥) such that .𝑠𝑠(𝑥𝑥) .ℎ(𝑥𝑥) ≡ 1 (.𝑚𝑚𝑜𝑜𝑑𝑑𝑔𝑔(𝑥𝑥) ). If .ℎ(𝑥𝑥) .=.𝑥𝑥, then 

the answer is .𝜎𝜎(𝑥𝑥)= .𝑥𝑥. 

▪ Second step is calculation of (𝑥𝑥) such that .𝑑𝑑2(𝑥𝑥) .≡ .ℎ(𝑥𝑥) .+ .𝑥𝑥. (𝑚𝑚𝑜𝑜𝑑𝑑𝑔𝑔(𝑥𝑥)). 

▪ Third step is finding (𝑥𝑥),along with 𝑏𝑏(𝑥𝑥) which is supposed to be of least degree,  

in such a way that 𝑑𝑑(𝑥𝑥)𝑏𝑏(𝑥𝑥) ≡ (𝑥𝑥) (𝑚𝑚𝑜𝑜𝑑𝑑𝑔𝑔(𝑥𝑥) ). 
▪ Fourth and last step is to set (𝑥𝑥) .=.𝑎𝑎2(𝑥𝑥) .+ .𝑏𝑏2(𝑥𝑥)𝑥𝑥.. 

3. Then, we utilize (x) to determine the set of error positions E = i for which (i) = 0. 

4. The error vector e is defined in the following Step 4 as ei = 1 for i E and ei = 0 everywhere. 

5. Finally, the secret phrase is defined as c = y.e. 
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4.2.7 Decoding 

Original message may be readily recovered by the recipient after all possible faults in the code 

word have been fixed.  

“As we defined above (𝑚𝑚1, 𝑚𝑚2, … ,𝑚𝑚𝑘𝑘) ∗𝐺𝐺 = (𝑐𝑐1, … , 𝑐𝑐𝑛𝑛). 

This equation can be rearranged as (.𝑚𝑚1, .𝑚𝑚2, .⋯ , .𝑚𝑚𝑘) ∗.𝐺𝐺 = �. 𝑐𝑐1,.⋯,.𝑐𝑐𝑛�𝑠𝑠𝑜𝑜 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 .𝐺𝐺𝑇 . (.𝑚𝑚1.𝑚𝑚2. ⋮

.𝑚𝑚𝑘) = (. 𝑐𝑐1. 𝑐𝑐2. ⋮. 𝑐𝑐𝑛) 

Solving this equation by Row reduction method: 

((. 𝑐𝑐1.. 𝑐𝑐2. . ⋮. . 𝑐𝑐𝑛. ) ~⋯~ (.1. .0. .⋯ . .0. .𝑚𝑚1. 0. .1.⋯ .⋯ . .0. .𝑚𝑚.2. ⋮. . ⋮. .⋱. . ⋮.

⋮. .0. .0. .⋯ . .1.𝑚𝑚.𝑘 −.−.−. .−− 𝑋) 

Here, X is defined as a matrix of. (𝑛𝑛 − 𝑘𝑘) .×. (𝑘𝑘 + 1). 

 

4.4 The McEliece Cryptosystem with Example 

Using a linear error-correcting code, the McEliece Cryptosystem generates public and private keys. 

The error-correcting binary Goppa code made its debut in the McEliece Cryptosystem. A public 

key is one that is freely accessible to the public. The public key is constructed using the public key, 

but in a manner that makes deconstructing it difficult. Send encrypted information to a specific 

recipient using a private key. I usually go back to the tale of Alice and Bob whenever I need to 

explain cryptography to someone[3]. 

Consider the hypothetical situation when Alice has something confidential to share with Bob. Bob 

must first share his public key with everyone before he may share his private key with anybody. 

After that, Alice uses Bob's public key to encrypt her message. Here, the information is coded into 

a hidden word. Even though it was encrypted, Bob was able to read her message. Now that Bob 

knows his codeword, he can decipher the message. He only has to use his hidden key[1]. 

To begin creating the public and private keys, Bob selects a Goppa polynomial (z) of degree t over 

GF (2m). The Goppa code values generated by the above-selected equation must fall between the 

range [n, mt- 2t+1]. Bob would then use these factors and the selected Goppa codes to calculate the 

Goppa code's generator matrix (G), which would be a k by n matrix. Next, Bob chooses two 

matrices, S (an invertible k by k matrix) and P (a permutation matrix n by n). Each row and column 

of (P) has the value 1, whereas all other cells have 0. After that, he calculates that G′=SGP. 𝐺𝐺′. The 
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solution to this equation is the single component of the public key, G′, together with the constant t. 

Bob's secret information includes the polynomial (z), the original matrix (G), and two additional 

matrices (S, P) that are prepared so that G′ = SGP[2]. 

When Bob shares his public key, Alice generates a binary vector e at random, giving it a length of k 

and a weight of t. Alice may then encrypt her message m = (m1, m2,..., mk) with the key y = mG′ + 

e. The ciphertext y is then sent by Alice. 

Bob learns Alice's code phrase and applies his knowledge of the permutation matrix P to the 

problem. 

𝑦𝑦′ = 𝑦𝑦𝑃𝑃−1 = 𝑚𝑚𝐺𝐺′𝑃𝑃−1 + 𝑒𝑒𝑃𝑃−1 = 𝑚𝑚𝑆𝑆𝐺𝐺𝑃𝑃𝑃𝑃−1 + 𝑒𝑒′ = (𝑚𝑚𝑆𝑆)G + 𝑒𝑒′. 

By employing Patterson's technique, Bob is able to decode y′ into the message m′ = mS. After this 

is complete, Bob is able to retrieve the original message by calculating 𝑚𝑚 = 𝑚𝑚′𝑆𝑆−1. from 𝑦𝑦 − 

𝑒𝑒′=𝑚𝑚𝑆𝑆𝐺𝐺 because he already knows what S is. 

4.3.1 Example 

To explain the McEliece Cryptosystem in depth, we consider the generator matrix G as, 

 

𝐺𝐺 = (.0.1.1.0.1.0.1.0.0.1.0.0.0.1.1.1.1.0.0.1.1.0.0.0.1.1.0.1.1.0.0.0. 

0.0.0.1.1.1.1.0.1.1.0.1.0.0.1.0) 

In second step we have to select random matrices (𝑆𝑆) and (𝑃𝑃) and modify matrix (𝐺𝐺). As we 

can see that dimensions of 𝐺𝐺 are 4 × 12 so dimensions of 𝑆𝑆 would also be 4 × 4 and 

dimensions of 𝑃𝑃 matrix would be 12 × 12. For this example we have selected the random 

matrix as: 

𝑆𝑆 = (.1.0.0.1.0.1.0.1.0.1.0.0.0.0.1.1) 

P = ( . 1.0.0.0.0.0.0.0.0.0.0.1.0.0.1.0.0.0.0.0.1.0.0. 

0.0.0.0.0.0.0.0.1.0.1.1.1.0.0.0.0.0.1.0.1.0.0.0.0. 

0.0.0.0.1.0.0.0.1.1.1.1.0.1.0.0.0.0.0.0.1.1.1.0.0.0.0. 

1.0.0.0.1.0.1.0.1.0.0.0.0.0.0.0.1.1.0.0.1.0.0.0.0.0.0.0.1. 

0.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.0.0.0.0.0.0.0.0.0.0.1.0.0.0.0.0. 
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0.0.1.0.0.0.0.0) 

We calculate the public encryption matrix 𝐺𝐺′ using above selected matrices 

𝐺𝐺′ = 𝑆𝑆𝐺𝐺𝑃𝑃 = ( .1.1.0.1.0.0.0.0.0.1.1.1.1.1.0.0.0.1.0.1.0.0.1.0.0.0.1.0.1.1.0.1.1.0.0.1.0. 

1.0.0.0.1.1.0.1.0.1.1) 

Bob then distributes this matrix 𝐺𝐺′ along with 𝑡𝑡 = 2.  

Now let’s assume Alice have a message as 𝑚𝑚 = (1,0,1,0) that it want to send to Bob. 

First, we calculate the matrix 

𝑚𝑚𝐺𝐺′ = (.1., .1., .1., .1., .1., .1., .0., .1., .1., .1., .1., .0.), 

and then we add a random error vector 𝑒𝑒 = (.1., .1., .0., .0., .0., .0., .0., .0., .0., .0., .0.., .0.) so that, 

 

𝑦𝑦 = 𝑚𝑚𝐺𝐺′ + 𝑒𝑒 

What you're about to read is the encrypted message Alice intended to deliver to Bob. Finally, 

Bob must reverse engineer the encrypted message m that was sent out using the secret key y. He 

does this by first computing yP1 using his top-secret permutation matrix P. 

𝑦𝑦𝑃𝑃−1 = 𝑚𝑚𝐺𝐺′𝑃𝑃−1 + 𝑒𝑒𝑃𝑃−1 

= m(SGP)P-1 + e’ 

= (mS)G + e’ 

=(.0., .0., .1., .1., .1., .1., .0., .1., .1., .1., .1., .0.). 

. 1. .0. .0. .0. .0. .0. .0. .0.0.0.0.1.0. .0. .1. .0. .0. .0.0. .0.1.0.0.0.0.. 

0. .0. .0. .0. .0.0. .1.0.1.1.1.0. .0. .0. .0. .0. .1.0.1.0.0.0.0.0. .0. .0. .0.. 

1. .0.0.0.1.1.1.1.0.1. .0. .0. .0. .0.0.0.1.1.1.0.0. .0. .0. .1. .0. .0.0.1. 

0.1.0.1.0. .0. .0. .0. .0. .0.0.1.1.0.0.1.0. .0. .0. .0. .0. .0.0.1.0.0.0.0.0. .0. .0.. 

0. .0. .0.0.0.0.1.0.0.0. .0. .0. .0. .0. .0.0.0.0.0.1.0.0. .0. .0. .0. .0. .0.1.0.0.0.0.0) 

. 

By employing the above mentioned technique the errors have been shifted 1st and the 6th column of  
=(0,1,1,1,1,0,1,0,1,1,1,0). 



48 

 

the matrix. Bob then correct these errors by using the error correcting algorithm which generates 

the following output: 

 

In order to retrieve the original message m we reduce the given matrix by Row reduction procedure 

and calculate the final message as 

mS = (1,1,0,1) and m =  

 

(. 1, .1, .0, .1). (. 1.1.1.0.0.0.1.0.0.1.1.1.0.1.1.0) = (.1, .0, .1, .0) 

 

 

 

 

 

 

 

 

 

 

 

 

𝑚𝑚𝑆𝑆𝐺𝐺=(1,1,1,1,1,1,1,0,1,1,1,0). 
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Chapter 5 

Application Implementation and Results 
In order to develop the secure messaging system/ app based on Mceliece cryptosystem we have 

used visual studio. We have divided the complete deployment process into multiple steps so that 

we have ease of understanding and debugging of each step of the communication model. 

5.1 Application GUI 

The GUI of application gives us two options of sending a text i.e. unencrypted messages and 

encrypted messages using Mceliece Cryptosystems. There are two things of participating entities 

are required to enter in GUI before starting any chat session: - 

● IP address  

● Socket address 

For debugging purpose, initially we have kept the static IP and Socket address for both the 

entities (fig 3) but these can be automatically assigned and kept in database. 

 

Figure 3: Initial Application GUI 

Above is the simple GUI that we have created for testing and debugging purpose. There are two 

options of starting a session i.e 

● Encrypted Session 

● Plain Session 



50 

 

If we select the Plain session then there will be no encryption taking place for sending of 

messages between the two parties. This feature is not necessary for the model but we have kept 

this for debugging purpose as to test whether two hosts are connected via socket programming or 

not. If we are able to send messages in plain mode, this confirms that two communicating parties 

are connected with each other. If we select the Encrypted session that means now messages will 

be sent after encryption with McEliece crypto.  

Below the session choice we have local and remote IP and port address fields. Local IP and port 

address is of the sender Computer while the Remote IP and port address corresponds to the 

receiver computer. Then we have the chat and message fields where we write the messages that 

are to be sent to the receiver. Chat field is also used for debugging purpose during the 

deployment phase of the application. The plain message is written in the message box whereas 

cypher text corresponding to that plain text and reception acknowledgment of message on 

receiver end are displayed in the chat box.  

Now we explain each step of implementation individually with the help of screenshots 

5.2 Key Generation: 

 

Figure 4: Key Generation Process 

To begin encrypting and decrypting a message, we must first generate the corresponding public 

key and private key before proceeding to the next step. In order to do this, we first built a 
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function called "gen" that generates a set of both private and public encryption keys, as seen in 

figure(fig 9-12). 

Using the publicly known parameters m, t, and n, the method creates a pair of keys. There are 3 

parts to the public key: n, t, and G. Field polynomials, Goppa polynomials, G', S, and P are all 

part of the private key. 

 

● If n = 2m and k is selected maximally, i.e. k = n - mt, then GC is a binary irreducible 

(n,k) Goppa code with up to t correctable mistakes. 

● In the Goppa code GC, H is a parity check matrix of size mt by n. 

● S is a k by k non-singular binary matrix with a random distribution. 

● Here, P represents a random n by n permutation matrix. 

● G = SG'P. 

For constructor class we have defined the following parameters (fig 5): - 

 

Figure 5: Initial Parameters Generation 

BlockEngine: The block cipher that powers the rng (default is RDX) 

SeedEngine: The Seed engine used to create keyng material (default is CSPRsg) 

BufferSize: The size of the cache of random bytes (must be more than 1024 to enable parallel 

processing) 

KeySize: The key size (in bytes) of the symmetric cipher; a value will auto size the key 
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Figure 6: Initial Parameters Created (1) 

 

CipherParams: The RLWE Parameters instance containing the cipher settings 

Rng Engine: An initialized Prng instance 

Parallel: Use parallel processing when generating a key; set to false if using a passphrase type 

generator (default is true) 

 

 

Figure 7: Initial Parameters Created (2) 

Above mentioned parameters are generated after series of iterations (fig 6-7).  

After defining the above-mentioned parameters next step is generation of finite field GF(2^m) 

with fixed field polynomial as shown in fig 8-9 
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Figure 8: Finite Field Generation (1) 

 

Figure 9: Finite Field Generation (2) 

Methods for working with polynomials over the finite field GF(2) are described in "this" class., 

In next step we have checked the irreducibility of polynomial as it must be irreducible for 

generation of keys. 
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Figure 10: Checking Reducibility of Finite Field (1) 

 

Figure 11: Checking Reducibility of Finite Field (2) 

Next phase is generation of irreducible Goppa Polynomial which is further used for generation of 

matrixes and goppa codes  
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Figure 12: Goppa Polynomial Generation (1) 

 

Figure 13: Goppa Polynomial Generation (2) 

Goppa Polynomial Coefficients with degree 40 are shown in fig 14-16 
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Figure 14: Goppa Polynomial (1) 

 

Figure 15: Goppa Polynomial (2) 

Then in next step we have generated canonical check matrix H and systematic form of check 

matrix by usinggoppa polynomial as shown in fig 16 
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Figure 16: Generation of Canonial Matrix 

 

Result/Output (H matrix) 

 

Figure 17: Generation of H Matrix 
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Figure 18: H Matrix (1) 

 

Figure 19: H Matrix (2) 

 

Figure 20: H Matrix (3) 
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After generation of H matrix we have generated G, P and S matrixes which are further used for 

keys generation as shown in fig 21-23 

-G matrix 

 

Figure 21: Generator Matrix 

Matrix has 440 columns with 1608 rows. 
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Each entry has further 14 sub values as shown below:- 

-Permutation Matrix P 

 

Figure 22: Permutation Matrix (1) 

Total of 2048 entries with random values as shown below:- 
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Figure 23: Permutation Matrix (1-2) 

Results achieved after first permutation are shown in fig 24:- 
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Figure 24: Results after first permutation 

It has total 440 rows and 440 Columns as shown below 
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Figure 25: Number of columns after permutation 

Second matrix generated after the second permutation have 1608 columns, 440 Rows and each 

values have 51 entries as shown in fig 26-29 

 

Figure 26: Second Matrix (1) 
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Figure 27: Second Matrix (2) 

 

Figure 28: Second Matrix (3) 
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Figure 29: Second Matrix (4) 

Value of “k” generated at the end of the generation of all matrices is 1608 as shown in fig 30.  

 

Figure 30: K value 

Up till this process generation of all Matrices is completed. With the help of these generated 

matrices, we will create pair of keys and encrypt the messages to be sent. 

5.3 Keys Generation 

Basic algorithm for generation of Ordered pair of keys is below: - 

Alice chooses a linear code C from a family of codes for which she already knows a good way to 

decode it. She then makes C public but keeps the method for decoding it secret. To use this kind 

of decoding method, you need to know the parameters used to define the chosen family of codes 

and also understand C, in the sense that you know how to make a random generating matrix.  
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For binary Goppa codes, examples of such data are the Goppa polynomial and error locators. So, 

Alice could release a C generator matrix that has been covered up in the right way. 

Here are the specific steps you need to take: 

● Alice picks a code C from a big family of codes, such binary Goppa codes, that can 

(efficiently) fix t' mistakes. An effective decoding algorithm, A, should emerge from this 

selection. Assume further that C has a generator matrix G. There is a wide variety of 

possible generating matrices for linear codes, but often one stands out as the best. This 

information should be kept hidden since it reveals A. 

● To begin, Alice chooses a binary non-singular matrix S of size k by k at random. 

● A random nxn permutation matrix P is chosen by Alice. 

● Alice determines G = SGP to be a kxn matrix. 

● (N,G,t) is Alice's public key, and (S,P,A) is her private key. 

where 

● "N">The length of the code 

● "T">The error correction capability of the code 

● "G"> Generator matrix 

 
Figure 31: Initial Parameters Created 
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Figure 32: Length of rows and Columns 

Length of the Matrix is 1607 with 14 sub entries 

Public key generated by using above parameters and matrixes is as shown in fig 33 

 

 
Figure 33: Public Key (1) 

 
Figure 34: Public Key (2) 
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Figure 35: Public Key (3) 

Length of public key is 88456 Bytes as shown in fig 36-37 

 
Figure 36: Length of Public Key (1) 
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Figure 37: Public Key Generated (2) 

Generation of Private Key: Fol parameters and matrices (which have already been defined/ 

generated previously ) are used to generate private key. Results are shown below 

● "N">Length of the code 

● "K">The dimension of the code 

● "Gf">The finite field GF(2^m) 

● "Gp">The irreducible Goppa polynomial 

● "P">The permutation matrix 

● "H">The canonical check matrix 

● "QInv">The matrix used to compute square roots in (GF(2^m))^t 

 

 
Figure 38: Private Key 
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Figure 39: Private Key with fields 

Length of Private Key is 119038 Bytes as shown in fig 40 

 
Figure 40: Length of Private Key 
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Figure 41: Private Key with parameters 

 
Figure 42: Generated Private Key 

5.4 Encryption and Decryption Process 

Next phase is encrypting the data by using public key and sending it to recipient. At receiving 

end encrypted data / cypher text is decrypted by using private key as shown in fig 43. 
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Figure 43: Encrypting Plain Text with Public Key 

In the above fig 43 two variables are being declared as data and data2. Data type variable contain 

the Private Key while Data2 variable contain the generated Public Key. 

The size of the Private key generated is 119038 Bytes whereas of Public Key is 88456 Bytes as 

shown in fig 44-46. 

5.3.1 Private Key 

 

Figure 44: Separating Public and Private Keys 
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Figure 45: Private Key 

5.3.2 Public Key 

 

 

Figure 46: Public Key 

In app interface plain text is entered in message field and corresponding cypher text is displayed 

in chat field as shown in fig 47. In this example we have added the text as “Hello World”.  
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Figure 47: Sending Plain Text "Hello World" 

The same plain text will be available in the plain text box in code that will be encrypted with the 

generated keys. 

 

Figure 48: Plain Text in Debugging Mode 
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In fig 48 we can see that the text “Hello World” that we have entered is available and will be 

encrypted with the Public key. The resultant Encrypted Text will be stored in data variable 

“encr”. 

Initially the encr type variable is initialized as Null but after encryption it will be populated with 

the cipher text as shown in fig 49. 

 

Figure 49: Encrypting plain text 

 

Figure 50: Bytes generated of plain Text 
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Figure 51: Encrypted Text generated 

In fig 49-51 we can see that the encr type of variable now have 267 Bytes which is encrypted 

version of the entered Plain text. 

This encrypted text is then sent to the receiver using the socket address as shown in fig 52 

 

 

Figure 52: Sending Encrypted text to Recipient over socket 

At receiver side this data is decrypted by using  private key as shown in fig 53:- 
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Figure 53: Receiving Cipher text 

The Variable type “dec” contains the decrypted data or plain text as received after decryption 

using the private key. 

Numbers of Bytes as recovered after decryption are as shown in fig 54 

 

 

Figure 54: Received Cipher Text Bytes same as sent 

At receiving end app interface this decrypted text is displayed in fig 55 
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Figure 55: Sent and Received Cipher Text on GUI 

 

 

 

 

 

Chapter 6 

Discussion and Analysis 
Before analysis on the results below are the specifications of the machine that we have used 

while implementing McEliece cryptosystem bases messaging application:- 

• 13th Generation Core i7 13700HX 

• 16 GB DDR5 RAM 

• Windows 11 

• 1 TB ROM SSD 

• HM770 Chip Set 

• Nvidia Graphics Card 8 GB GDDR6 
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The results that we have drawn in previous chapter we can summarize them as below:- 

● Creation of parameters for the purpose of key generation 

● Public and Private Key Generation 

● Encryption Process of the plain text using McEliece Crypto system 

● Decryption process of the received cipher text 

 

We will do analysis of each portion one by one. 

6.1 Creation of Parameters 

McEliece crypto system use different matrices along with polynomials for the purpose of key 

generation. These matrices are of different sizes and some are of random values. Below are listed 

the different Parameters generated along with their size that are used for the key generation 

process. 

 

6.1.1 Finite Field: 

A finite field, also called Galois field, is a mathematical structure that consists of a finite set of 

elements along with two binary operations, addition and multiplication. It provides the necessary 

mathematical framework for the construction, encoding, and decoding of goppa codes used in 

the McEliece cryptosystem. It is also used in key generation, encryption and decryption in 

McEliececryptosystem. The use of finite fields ensures the security and reliability of the 

encryption and decryption processes which is required for the safety of sensitive information 

against attacks. 

Table 4: Finite Field Analysis 

Sr. No Finite Field / 

Polynomial 

Degree Finite Field Generated Remarks 

1 Finite field 

GF(2^m) 

11 GF(2^11) = 

GF(2)[X]/<1+x^2+x^11> 

} 

Finite fields can be constructed 

using different methods, such as 

polynomial basis representation, 

normal basis representation, or 
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irreducible polynomial 

representation. We have used 

irreducible polynomial 

representation to achieve better 

security. The security of the 

system relies on the difficulty of 

decoding the code, which 

depend upon the properties of 

the irreducible polynomial. 

 

6.1.2 Goppa Polynomial: 

A Goppa polynomial is an irreducible polynomial with coefficients in a finite field which is 

explained above. It is used in construction of goppa codes, encoding and decoding process in 

mcEliece encryption. The selection of Goppa polynomial play crucial role in code length, code's 

error-correction capability, and resistance to various attacks, such as the Information Set 

Decoding (ISD) attack. So, properties/ attributes of Goppa polynomials are carefully considered 

to ensure the security of system against potential attacks and to achieve the desired performance 

goals in the encryption and decryption processes of the McEliece cryptosystem. Goppa 

polynomial we used in our app implementation is given below in table 5. 

Table 5: Goppa Polynomial Analysis 

Sr. 

No 

Finite Field / 

Polynomial 

Degree Goppa Polynomial Over Finite Field 

2. Goppa 

Polynomial 

40 11101000011Y^0+11111010111Y^1+00100100101Y^2+00

001101011Y^3+00111001111Y^4+01101100000Y^5+1001

1001110Y^6+00001100100Y^7+01110000101Y^8+000111

00011Y^9+11111001101Y^10+11010111101Y^11+001101

10011Y^12+11111110011Y^13+11000011110Y^14+01000

100010Y^15+00010111000Y^16+00010000000Y^17+1001

0100100Y^18+01010111000Y^19+01110111111Y^20+010
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00001011Y^21+11110110000Y^22+10101001111Y^23+11

101000100Y^24+11111000001Y^25+01011001100Y^26+1

1100000001Y^27+10110101101Y^28+00100101010Y^29+

00000011010Y^30+01101001001Y^31+10010110000Y^32

+10001000110Y^33+10001000001Y^34+00000001000Y^3

5+10000011101Y^36+01000010111Y^37+11100111000Y^

38+10101101010Y^39+00000000001Y^40+;} 

 

Next are the different matrices that we have generated for the purpose of generating the Public 

and Private keys. The analysis part of these is listed below in table 6: 

Table 6: Generated Matrices Analysis 

Sr. 

No 

Matrix Name Purpose Size 

1. qInv It is used for computing square roots in 

(GF(2^m))^t 

Coefficients 

40, Degree 39 

2. h (canonical check matrix) It is a compact or systematic form of a parity 

check matrix which is in binary form. It is used 

in decoding algorithm to identify and correct 

errors in received codewords. Syndrome (used 

to determine the error pattern and apply error 

correction to the received codeword) of the 

received word is obtained by multiplying it 

with canonical check matrix.  

64 

3. p (Permutation Matrix) 

 

Permutation matrix is a square matrix with 1 in 

each row and each column, and remaining 

entries being zero. It is part of private key 

which is used in encryption and decryption 

processes of mcEilece cryptosystem. It adds an 

extra layer of security by introducing 

2048 
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randomness and complexity, which makes the 

cryptosystem resistant to various potential 

attacks. 

4. s (Singular Matrix) 

 

It is non invertible matrix which is used in 

encryption and decryption process of mcEliece 

cryptosystem as shown in previous chapter. 

During encryption process it is used to multiply 

the encoded message and inverse of the same 

matrix is used during decryption process. It add 

and additional layer of security in mcEliece 

cryptosystem against attacks.  

16 

4. G ( Generator Matrix) Generator matrix is a binary matrix which is 

the basic component used in encryption and 

decryption processes of mcEliececryptosytem. 

It is part of both public and private keys. It is 

generated using a specific form of the error-

correcting code, in our case by using Goppa 

codes. The construction involves selecting 

appropriate code parameters which includes 

code length, dimension, and minimum distance, 

to achieve the required error-correction 

capability, properties and security level for the 

cryptosystem.  

 

4. Short G It is systematic form of generator matrix. 

Systematic form of generator matrix makes the 

encoding and decoding process of mcEliece 

cryptosystem simple and more efficient which 

makes it suitable for implementing the 

encryption and decryption operations in the 

16 
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McEliece cryptosystem and reduce 

computational complexity  

 

6.2 Number of Random Vectors tested while decryption 

 

Table 7: Random Variable testing 

Parameters (n,k,m,t) Number of Random Vector Tested 

(.2048, .1707, .11, .31) .7000. 

(.4096, .3604, .12, .41) .20500. 

(.4096, .3352, .12, .62) .11000. 

( .6960, .5413, .13, .119) .250. 

 

6.3 Initial Parameters vs. Key length 

As we have already explained in the theoretical part of the algorithm that the length of the public 

and private key is dependent upon the initial values of the size of the matrix. So, we have tested 

the application with the different values of the k and n to determine the exact size of the Public 

and Private Key. The results thus obtained are as shown in table 7: - 

Table 8: Key Size VS. Initial Parameters 

Sr. No K N Max Text Length Public Key 

Size 

Private 

Key Size 

Security 

Level 

1. 1608 2048 201 88488 119071 Low 

2. 1520 2048 190 100368 142531 Low 

3. 3724 4096 465 175076 200119 Low to 

Medium 

4. 3604 4096 450 223496 262519 Medium 

5. 3520 2096 440 253488 306371 Medium 

6. 3448 4096 431 306371 344039 Medium 
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7. 3292 4096 431 332540 425928 High 

8. 7815 8192 976 375168 403733 High 

9. 7620 8192 952 548688 604893 High 

 

 

From the results we have obtained above we can say that by increasing the values of the K and N 

the size of the Public and Private Key increase which ultimately results in increase in security 

level of the application. 

6.4 Encryption and Decryption Time 

In order to analyze the application, we have also inserted the timer in the application with the 

help of which we can calculate the encryption and decryption time of the plain text. The results 

thus obtained are as shown in table 8: - 

Table 9: Encryption and Decryption Time with plain text length 

Sr. No Text Entered Encryption Time 

(ms) 

Decryption Time 

(ms) 

1. A 404 46 

2. Aa 950 31 

3. Aaa 648 31 

4. Aaaa 308 46 

5. Aaaaa 886 31 

6. Aaaaaa 918 46 

7. Aaaaaaa 404 46 

8. Aaaaaaaa 591 46 

9. Aaaaaaaaa 497 31 

10. Aaaaaaaaaa 528 31 
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Chapter 7 

Conclusion and Future Work 

In this thesis we have successfully implemented the McEliece Cryptosystem based secure chat 

application. Security of most of communication systems/ apps is furnished by public 

cryptographic systems. Presently used public cryptosystems i.e. RSA and ECC are considered 

secure in the presence of conventional computers. Underlying hard problems of these systems 

are factorization and discrete logarithm problems which are unable to solve by conventional 

computers. However, Quantum computers which are in their early stage of development will 

someday be able to break the security systems now in use because they can efficiently solve 

these problems that conventional computers cannot. In order to be ready for the day when 

quantum computers are a practical reality, it is required to look at additional computing issues 
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that are equally challenging for both conventional and quantum computers. In this regard we 

short listed McEliece Crypto System which is code based cryptographic algorithm and is 

quantum resistive as well. We chose this scheme/ cryptosystem because it is one of the few 

cryptosystems that is expected to withstand assaults from powerful computers in the future, 

despite several efforts by the crypto community to break it, it is secure till today. Before 

developing the application, we did a complete in-depth analysis of this crypto system and 

literature review on work that has already been done in this field. The application has been 

developed using the Visual studio software and using C Shrap language. The final product that 

we will be providing to the two users is just an exe file which will be installed in the computer 

and shortcut as well as the icon will be visible on the desktop. All the required repositories and 

data files along with the encryption algorithms will be placed in installation folder automatically. 

Once the socket established between the two users, they can easily communicate with each other. 

It may be used between any two clients who are using an unsecured channel or media. 

Nowadays, the majority of applications employ traditional encryption methods; which will be 

insecure in the presence of quantum computers. The security of the developed application is 

based on McEliece cryptosystem.  As the underlying cryptosystem of this app is McEliece 

cryptosystem which is a quantum resistive cryptosystem so this app is also secure against 

quantum attacks in other words we can say that it is a quantum resistive messaging application. 

Moreover, this application may be integrated with financial systems to facilitate secure 

transactions. The secure nature of app can prevent unauthorized access to sensitive financial 

information, making it harder for hackers to intercept or manipulate transactions. This can 

enhance the security and integrity of digital payments, banking, and other financial services. It 

can also be used in Government and military organizations for communication. Governments 

and military organizations deal with highly sensitive information, and secure communication is 

crucial for their operations. This app can ensure that their messages remain confidential and 

resistant to interception by adversaries. 

As far as the future work is concerned, we have used the socket programming to connect two 

clients who are intended to communicate each other using our application which means that a 

dedicated IP connectivity and free socket will be required for establishment of connection before 

communication start. Due to this limitation, we can use this application in private LAN or private 
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dedicated WAN environment only. However, by embedding port translation function it can be 

used on the internet as well. 

Another limitation of the application is that it is computer-based application where it utilizes the 

processing power and other resources of the CPUI to calculate the crypto key pairs. Same 

algorithms can be modified to run this application on mobile phone / android or any other 

platform.  

Moreover, we have designed this Quantum resistive application for chat purpose only, this can 

be enhanced for images, videos and files as well.  
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