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Abstract 
 

Software Bug Prediction is an active research area and is being widely explored 

with the help of Machine Learning technique. The goal of bug prediction models 

is to identify potential software defects or bugs early in the development process, 

enabling developers to take preventive actions and improve software quality. 

Since bug prediction is now considered as an important measure of SDLC, there 

is need to have an efficient bug prediction model. Presently transfer learning, 

class imbalance and ensemble learning approaches are being researched much. 

In this research work an efficient model design is proposed and implemented. 

The proposed design caters the class imbalance issue of datasets as this is not 

much touched in the past. Class imbalance can affect the model accuracy by 

overfitting the model prediction results. The proposed design employ feature 

engineering technique which is used to add more domain information in the 

dataset for accurate prediction. Transfer learning is used to train and test the 

model on different datasets to analyze how much of the learning is passed to 

other dataset for cross project defect prediction; and ensemble method is utilized 

to explore the increase in performance upon combining multiple classifiers in a 

model. So, a model design is proposed which involve employing feature 

engineering, class imbalance and ensemble methods using machine learning 

technique for cross project defect prediction. Five NASA and four Promise 

datasets are used in the study for experimental analysis. Decision Tree (DT) and 

Random Forest (RF) are used as an individual base classifier. Three ensemble 

methods of bagging, boosting and stacking are used. The results shown that 

model attain the best accuracy with RF classifiers both as an individual and in 
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ensemble methods.   The model has highest accuracy of 84% with RF as an 

individual classifier and also 84% with adaBoost in ensemble methods on NASA 

dataset. Whereas in PROMISE dataset, again RF have highest accuracy of 77% as 

an individual classifier and 79% with stacked ensemble method. Some other 

experiments are also conducted to evaluate buggy class recall score and it reveals 

that by using class imbalance, the recall of buggy class is high which indicates the 

model accuracy for prediction bugs in datasets. 
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Chapter 1 

 
Introduction 

 

1.1 Introduction 

This chapter gives a general overview of the research work. It starts with an outline, 

purpose and background review of the proposed research work. Then it describes 

the motivation/ justification to carry out this work. The proposed methodology of 

the dissertation is discussed. The objectives, scope and national needs of the research 

work is also discussed. Finally, the sections of further chapters are defined. 

 

1.2 Purpose 

The goal of this research work is to use machine learning technique to design and 

implement an effective software bug prediction model.  The focus is on to design a 

model by employing different parameters like feature engineering and class 

imbalance issue. Class imbalance affects the model’s performance by over fitting 

the model and neglecting prediction of a buggy class.  The designed model is 

implemented in Python. Two data repositories are used to access the accuracy of 

the proposed designed model using different software metrics. 

 

1.3 Background 

Each day brings new change in technology, especially in the world of Information 

Technology (IT). New software releases, new versions of old applications or 

languages come up, or entirely new techniques and programs innate. With such a 

rapid increase in software-based products, it has become a need to make these 

products successful and avoid any sort of failure. Defective software modules have 
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a significant impact on the quality of software, causing cost overruns, delays in 

delivery, and much higher maintenance expenses. Software Bug Prediction (SBP), 

which can directly affect the quality and has gained substantial popularity in recent 

years, is therefore the most crucial part of software.  

A new dimension of mitigating the errors in software is being explored by the 

researchers and practitioners of industry. SBP methods are implemented to 

increase the efficiency, reduce failures, minimize resource loss and boost the 

performance. Machine learning approaches have shown to be quite successful in 

getting the desired outcomes for this purpose. Utilizing resources effectively for 

evaluating and testing programming modules is one of the key goals of defect 

prediction models. This helps in efficient allocation of resources in testing and 

fixing of error prone modules and hence producing high quality products at lower 

cost. Technically bug/defect predictor is a machine learning model applied on 

historical software metrics data to predict defects in software modules. The 

efficiency of model depends on quality of training data provided in addition to the 

machine learning classification technique used.  

1.4 Software Bug Prediction 

Software bug prediction refers to the process of identifying and predicting potential 

bugs or defects in software applications before they occur. This proactive approach 

allows developers and testers to focus their efforts on specific areas of the code that 

are more likely to have bugs, ultimately improving software quality and reducing 

the number of defects that make it to production. 

There are various techniques and methods used for software bug prediction, 

including statistical analysis, machine learning, and data mining. These techniques 

often make use of historical data, such as previous bug reports, system logs, and 

code metrics, to identify patterns and indicators that can help predict the occurrence 

of bugs. 

One common approach in bug prediction is through the use of metrics or code 
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complexity measures. By analyzing certain code metrics, such as lines of code, 

cyclomatic complexity, and code churn, developers can identify areas of the code 

that are more prone to defects. For example, if a specific module has a high 

cyclomatic complexity or has recently undergone many code changes, it may 

indicate a higher likelihood of bugs. 

Machine learning algorithms are also widely used in bug prediction. These 

algorithms learn from historical bug data, code metrics, and other relevant 

information to build models that can predict the likelihood of bugs in different parts 

of the software. These models can then be used to prioritize testing efforts or allocate 

resources more efficiently. 

Bug prediction can bring several benefits to software development. By identifying 

potential bugs early in the development process, developers can take preventive 

measures to address them, reducing the cost and effort required for bug fixing. It 

also helps in improving software reliability, reducing customer complaints, and 

enhancing user satisfaction. However, it is important to note that software bug 

prediction is not a foolproof solution. Predictive models are based on historical data 

and patterns, and they may not account for unforeseen factors or changes in the 

software development process. Therefore, bug prediction should be used as a 

complementary technique to traditional testing and not as a replacement. 

In conclusion, software bug prediction is a proactive approach to identify and 

predict potential bugs in software applications. It leverages techniques like 

statistical analysis and machine learning to analyze historical data and code metrics 

to predict areas prone to defects. Bug prediction can help improve software quality, 

reduce bug fixing efforts, and enhance user satisfaction, but it should be used in 

conjunction with other testing methods. 

1.5 Scope 

The scope of software bug prediction is to identify and predict potential defects or 

bugs in software systems before they occur. This can include various aspects such 
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as code quality, design issues, configuration errors, or vulnerabilities. It aims to 

improve software quality and reduce the number of defects that occur in the 

production environment. By predicting bugs in advance, developers can take 

preventive measures to rectify the issues and avoid the negative consequences of 

bugs, such as system failures, security breaches, or customer dissatisfaction. 

The scope of software bug prediction includes both static and dynamic analysis 

techniques. Static analysis involves examining the source code, design, or other 

artifacts without executing the program, whereas dynamic analysis involves 

monitoring the program during execution to identify issues. 

Bug prediction can be applied throughout the software development life cycle, 

starting from the initial design phase to the testing and maintenance phases. It can 

also be used across different types of software projects, ranging from small-scale 

applications to complex, large-scale systems. Its scope can vary depending on the 

specific techniques and tools used. For example, some bug prediction approaches 

focus on code-level defects, while others may consider higher-level architectural 

issues or system-level vulnerabilities. 

Overall, the scope of software bug prediction is to proactively identify and prevent 

defects in software systems, thereby improving software quality and reducing the 

potential negative impacts of bugs. 

1.6 Problem Statement 

The idea behind this research work is to develop a model or algorithm that can 

accurately predict the occurrence and location of bugs or defects in software 

applications. The goal is to identify potential issues early on in the development 

process, enabling developers to proactively address them and improve the overall 

software quality. This problem involves analyzing historical data, such as source 

code metrics, bug reports, and version control information, to detect patterns or 

indicators that can be used to predict the likelihood of future bugs. The challenge 

lies in finding the right set of features and developing a predictive model that can 
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generalize well to new software projects.  

1.7 Reason / Justification for the Selection of the Topic  

The literature review and industrial needs evidently show that an efficient model 

on this aspect of software development is warmly welcomed in market. Since the 

world is rapidly shifting towards software-based products, therefore our reliance of 

software has drastically increased. This gives rise to the idea of error-free software. 

A lot of models, principles and techniques are followed to achieve this notion such 

as small iterations, documentation, user interaction and well-organized process; still 

some inevitable defects occur causing a great distress to the software users and 

owners. Therefore, in order to mitigate these defects an efficient model for 

predicting them before they are born is necessary. This will give a boost in the 

performance of the final product and save much time and resources. 

1.8 Methodology 

The research aims to design an efficient model for software bug prediction and it 

involves 3 major steps: design of a model, implementation of a model and analysis 

of a model using different metrics. The design of a model involves data 

preprocessing, feature engineering, handling class imbalance and employing 

different machine learning classifiers for prediction. The process followed by 

implementing the same model in Python with individual classifiers and with 

ensemble methods also. The analysis includes prediction model accuracy, Precision, 

Recall and F1-score on two data repositories. The model detailed design and 

implementation details will be covered in Chapter 3 and 4 respectively. 

1.9 Objectives 

The main objectives of the study include  

(i) Design of an efficient model for software bug prediction using machine 

learning techniques  
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(ii) Implementation of the same model in python language using datasets 

obtained from popular open-source software 

(iii) Analysis of the implemented model using different performance measures for 

different databases  

1.10  Relevance to National Needs  

During the last decade, Pakistan has seen significant improvement in the software 

development with the sudden increase observed in software product usage globally. 

However, due to increased complexity, short time to market and high customer 

demands, often a software crisis or failure occurs which consume time and budget. 

This research will provide insights to predict the defects that become a critical 

challenge for system efficiency. The early defect prediction will help improve the 

software reliability and performance. This, in return, will give a major push to the 

national prosperity in IT world globally.  

1.11 Advantages  

It is necessary to discover the faults at early phase of software development to 

reduce the development cost and increase the success rate. This research will help 

to achieve this task in a well-structured way. Software testing, at the last stage of 

development cycle becomes painful with so many bugs coming up but with optimal 

prediction techniques, it will be made convenient and quicker.  

1.12 Area of Application  

This research will be utilized in the software industry, in detecting the bugs and 

their probable causes with the most efficient technique or model. All the software-

based products will see a great spike in their performance and efficiency, be it 

medical software, safety critical software, e-commerce websites, home-based 

software products etc. 
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1.13 Thesis Outline 

In the following chapters of thesis, different sections of research work are discussed 

at length.  

Chapter 1 Introduction: An Overview of proposed research topic that includes 

introduction, motivation, scope, objectives and problem statement  

Chapter 2 Related Work: Discussion and highlighting of work already carried out 

on this topic by other researchers. 

Chapter 3 Proposed Design and Methodology: The design and methodology of the 

proposed Model is discussed in detail. 

Chapter 4 Implementation: Explanation of the proposed model implementation in 

Python 

Chapter 5 Results and Discussion: Model results on two data repositories are 

discussed using different software metrics 

Chapter 6 Conclusion and Future Work: Final remarks about proposed model and 

future expansion is elaborated 

1.14 Summary 

In this chapter, introduction of research work is provided by giving background of 

the problem discussed. The scope and reason for choosing this research work is 

discussed. The proposed methodology, objectives, national needs, and advantages 

provide a bit more understanding about research work. At the end, area of 

application and organization of thesis is provided. 
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Chapter 2 

2 Related Work 

2.1 Introduction 

In this chapter the already published work with relevance to software bug 

prediction, feature engineering and class imbalance is reviewed. It provides a 

general overview of the previous research work in this field.  

 

2.2 Software Bug Prediction (SBP) 

There are various approaches to create software bug prediction models mainly 

depending on factors like the required output, availability of datasets, features in a 

dataset, class imbalance handling and ML classifiers etc. The previous models often 

ignored some of the above-mentioned factors, which made them less effective. Later 

on, with the rapid growth of complexity of a software, the domain of software bug 

prediction became a popular research area in the field of software engineering. 

Many researchers are attracted towards this field proposing a variety of 

frameworks, models and techniques for bug prediction.  

There are additional researchers who have concentrated on enhancing the currently 

utilized methods and models. Despite several efforts, there are still significant 

uncertainties in the field of software bug prediction research. Although numerous 

models and frameworks have been put forth, every method has its own drawbacks. 

To find bugs, several machine learning techniques are utilized, and datasets are 

made freely accessible so that practitioners can simply run their experiments 

without worrying about data. [1] 

It is necessary to review the experimental data obtained on these techniques through 

the current studies in order to make machine learning techniques practicable in the 

context of bug prediction. [1] The figure 2.1 shows the elements what normally is 
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included in literature review in the area of SBP. Often, there are surveys or reviews 

conducted, discussions of previously used techniques, their pros and cons, the latest 

trends and famous topics as all this is very much required for a researcher to conduct 

a relevant and fruitful research project. 

 

Figure 2.1: Literature Review in the domain of Software Bug Prediction 

2.3 Machine Learning Techniques 

From the literature review, it is found that various frameworks and techniques have 

been proposed to perform software bug prediction by combining data 

preprocessing, feature engineering, class imbalance and ensemble methods in a 

systematic manner to build models.  Machine learning techniques, such as decision 

trees, random forests, and support vector machines, can be applied to predict 

software bugs. These algorithms learn from labeled datasets and develop models to 

classify whether a code segment is likely to contain a bug or not. Researchers have 

preferred them in order to ease the evaluation of the performance of their work. 

Apart from the mentioned approaches, different kinds of preprocessing methods 

are used in the cleaning of data and feature selection or feature ranking methods 
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are also utilized to reduce the dimensionality of dataset. After data cleaning, 

different classifiers are applied on the dataset, either individual classifiers or 

ensemble methods, to train the model. 

 

2.3.1 Class Imbalance Handling 

The problem of class imbalance has not been studied extensively in the last years. 

However, it impacts the model performance and an important factor which needs 

to be consider when designing a potential model. The following table 2.1 shows a 

list of related works using class imbalance for SBP. It shows the aim of study, 

ensemble method, dataset, performance measure and results. 
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Table 2.1: SBP Using Class Imbalance  
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2.3.2 Cross Project Defect Prediction: 

Cross-project defect prediction refers to predicting defects in a target project based 

on data from other projects. This approach is used when the target project has 

limited or no historical defect data available, but there is sufficient data from other 

similar projects. The idea is to transfer the knowledge and patterns learned from the 

source projects to the target project. 

 

Cross-project defect prediction uses machine learning techniques to build a 

predictive model using data from multiple projects. It involves identifying relevant 

features (e.g., code complexity, developer experience, etc.) and training a model on 

historical defect data from different projects. This model is then applied to the target 

project to predict the likelihood of defects in the code. 

 

There are various challenges in cross-project defect prediction, including the 

differences in software characteristics, coding practices, and development 

environments across projects. These differences can affect the accuracy and 

effectiveness of the predictive model. Therefore, it is important to carefully select 

appropriate source projects that have similarities with the target project and 

consider the transferability of the learned models. 

 

Cross-project defect prediction can be beneficial for projects that have limited defect 

data, especially for early defect detection and prioritizing limited testing resources. 

However, it should be used as a supplementary approach and not solely rely on the 

predictions, as the transferability and generalizability of the models may vary across 

projects. The following table 2.2 shows a list of related works performing SBP for 

cross-project.  
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Table 2.2: Cross-Project Bug Prediction 
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2.3.3 SBP Using Ensemble Methods 

Ensemble methods in software bug prediction refer to the combination of multiple 

prediction models or algorithms to improve the accuracy and reliability of defect 

prediction. These methods combine the predictions from different models in 

various ways, such as bagging, boosting, stacking, averaging, voting, or weighting, 

to make a final prediction. These methods have been shown to improve prediction 

performance compared to single models. They benefit from the diversity of the 

individual models and leverage their strengths to make more accurate and robust 

predictions. The following table 2.3 shows a list of related works using ensemble 

methods for SBP. 
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Table 2.3: SBP Using Ensemble Methods  
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2.4 Summary 

This chapter sheds light on the previous work done in the domain of software bug 

prediction, the approaches, methods, advantages and limitations of their work is 

shown. The widely used dataset, tools and approaches for creating a prediction 

model has also been considered. 
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CHAPTER 3 

 

3 PROPOSED DESIGN & METHDOLOGY 

 

3.1 Introduction 

This chapter gives details overview of proposed design, its theoretical concept and 

methodology. The design of the proposed research project is discussed in detail and 

the methodology is also described.  The analysis of the used data set, their features, 

relevancy of features and metrics are also discussed. The machine learning classifier, 

tools, and performance metrics used in this work are also explained. This chapter 

concludes with design and methodology of efficient bug prediction model using 

machine learning technique that will help to predict software bugs with greater 

accuracy. 

 

3.2 Theoretical Concept of Proposed Design / Methodology 

The proposed research project involves a design and implementation of an efficient 

model for software bug prediction. It requires clean dataset with relevant features, 

efficient classifier and valid training and testing of model for efficient bug 

prediction. For this purpose, distinct methods are used to build the model more 

robust and novel among the previously built models discussed in the literature 

survey. These methods are discussed as follows: 

 Transfer Learning  

 Ensemble Method 

 Class Imbalance 

 Feature Engineering 

3.2.1 Transfer Learning 

Software bug prediction can be performed within the same project or on cross-
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projects. Transfer learning is used in cross-project software bug prediction and it 

refers to the use of pre-trained models on one project and predicts bugs in another 

project. This approach recognizes that software projects often share common 

characteristics and patterns, even across different domains or applications. The 

typical process of transfer learning in cross-project bug prediction involves the 

following steps: 

• Pre-training: A model is trained on a source project(s) that contains 

labeled bug data. The model learns to understand the underlying patterns 

and features associated with bug-prone code. 

• Knowledge Transfer: After pre-training, the trained model's knowledge 

is transferred to a different target project that has limited labeled bug data. 

This step involves adapting the pre-trained model to the target project by 

fine-tuning or retraining it on the available labeled bug data in the target 

project. 

• Prediction: Once the transfer learning process is complete, the adapted 

model is used to predict bugs in the target project. The model leverages 

the knowledge gained from the source project to make accurate 

predictions on the bug-proneness of the target project's code. 

3.2.1.1 Benefits of using transfer learning in cross-project bug prediction 

Limited labeled data requirement: Using knowledge transferred from a source 

project, the target project can benefit from the pre-trained model's understanding 

of bugs without requiring a massive amount of labeled bug data. 

Improved bug prediction accuracy: The pre-trained model has already learned 

general patterns and features associated with bugs, making it more likely to make 

accurate predictions on the target project's code. 

Time and resource efficiency: Transfer learning allows for the reuse of pre-trained 

models, reducing the time and resources needed to train a model from scratch for 
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each project. This approach can speed up the bug prediction process for new 

projects. 

While transfer learning offers promising advantages, it is crucial to consider the 

differences between the source and target projects such as codebase, programming 

language, or domain. The transferability of knowledge depends on the similarity 

and level of commonality between the projects. Therefore, careful analysis and 

adaptation of the pre-trained model to the target project are necessary to ensure 

effective bug prediction. 

In this research work, the cross-project defect prediction is performed where source 

and target data are from different projects. The model is built using one project 

considered as source project and employed for prediction on another project called 

as target project. The features in both the projects are kept same but feature 

engineering technique is employed for model efficient training and prediction. 

 

3.2.2 Ensemble Method 

Machine learning techniques called ensemble methods combine several models or 

algorithms to increase overall performance and prediction accuracy. The underlying 

idea is that by combining weak models, a stronger and more accurate model is 

obtained. There are several popular ensemble methods, including: 

Bagging: This method involves training multiple models on different subsets of the 

training data and combining their predictions through majority voting or averaging. 

The most commonly used algorithm for bagging is the Random Forest, which 

combines multiple decision trees. 

Boosting: In boosting, models are trained sequentially, where each subsequent 

model focuses on the instances that the previous models struggled to predict 

accurately. The final prediction is made by combining the outputs of all models. 

Gradient Boosting (XG) and Adaptive Boosting (AdaBoost) are popular boosting 

algorithms. 

Stacking: In stacking, multiple models are trained and their forecasts are combined 



23 

 

 

using a meta-learner or meta-model, a different model.  

The meta-learner learns to combine the predictions of the base models, potentially 

achieving better performance. 

Voting: Voting methods combine the predictions of multiple models by majority 

voting or weighted averaging. There are different types of voting, such as hard 

voting (majority voting) and soft voting (weighted averaging based on predicted 

probabilities). 

Ensemble methods provide better predictive performance than using a single model 

alone in many cases. They help in reducing overfitting, improving generalization, 

and handling bias-variance trade-off. Ensemble approaches, however, could need 

more training data than a single model and can be computationally expensive. In 

this research work Bagging, Ada boosting and stacking are employed for bug 

prediction. 

 

3.2.3 Class Imbalance 

Class imbalance occurs when the number of instances in one class is much lower 

than the number of instances in another. In the context of software bug prediction, 

this means that the number of instances representing bugs (the minority class) is 

much smaller than the number of instances representing non-bugs (the majority 

class). 

Class imbalance can pose challenges in software bug prediction because traditional 

machine learning algorithms tend to favor the majority class, leading to biased and 

inaccurate predictions. This is because these algorithms are typically designed to 

minimize overall error, which leads them to focus on the majority class and ignore 

the minority class. As a result, the model may have poor performance in predicting 

the minority class (bugs). 

To address the issue of class imbalance in software bug predictions, several 

techniques can be employed: 

Oversampling the minority class: To boost the minority class's representation in 
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the training data, this entails creating synthetic instances of the minority class. 

Techniques like SMOTE (Synthetic Minority Over-sampling Technique) can be used 

to create synthetic instances based on the existing minority class instances. 

Undersampling the majority class: This involves lowering the number of instances 

in the majority class to match the number of instances in the minority class. This can 

be done by randomly removing instances or using more advanced techniques like 

Tomek Links or Cluster Centroids. 

Using ensemble methods: Ensemble methods combine multiple models to make 

predictions. They can be effective in dealing with class imbalance by combining 

models that are trained on different subsets of the data or using techniques like 

boosting, where the focus is shifted towards the minority class. 

Adjusting class weights: Many machine learning algorithms provide the option to 

assign different weights to different classes. By assigning higher weights to the 

minority class, the algorithm gives it more importance during training and 

evaluation. 

Changing the evaluation metric: Instead of using traditional metrics like accuracy, 

precision, recall, or F1-score, evaluation metrics specific to imbalanced datasets, 

such as Area Under the Precision-Recall Curve (AUPRC) or Cohen's kappa 

coefficient, can be used to assess the model's performance more accurately. 

It is significant to remember that the technique selected relies on the particular 

situation and dataset. Different techniques may work better in different scenarios, 

so experimentation and evaluation are crucial to finding the most effective 

approach. In this research work, oversampling technique is employed to handle the 

class imbalance in the datasets. 

 

3.2.4 Feature Engineering 

Feature engineering is a crucial step in building software bug prediction models. It 

involves selecting, transforming, and creating relevant features from raw data that 

can effectively represent the characteristics of software systems and help improve 
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the performance of bug prediction models. Some common feature engineering 

techniques used in software bug prediction includes: 

Metrics-based features: Software systems often generate various metrics, such as 

code complexity, code churn, and code ownership. These metrics can be used as 

features to capture important aspects of software systems that may impact bug 

occurrence. For example, the number of code changes or the number of developers 

modifying a particular module can be important indicators of bug-prone areas. 

Textual features: Bug reports, source code comments, and documentation can be 

valuable sources of information for feature engineering. Techniques like text 

mining, natural language processing (NLP), and information retrieval can be used 

to extract useful features from these textual data. For example, keywords related to 

software modules, error messages, or specific bug-fixing activities can be important 

indicators of bug-prone areas. 

Temporal features: Considering the temporal aspect of software development can 

be useful in bug prediction. Features such as the number of bugs reported in the 

past, the time since the last bug fix, or the number of code changes over time can 

provide insights into the dynamics of the software system and potentially help 

identify bug-prone periods. 

Social features: In collaborative software development environments, features 

related to social interactions among developers can be informative. For example, 

features like the number of code reviews, code ownership distribution, or developer 

network centrality can capture the social dynamics of the development process and 

potentially influence bug occurrence. 

Code structure and dependencies: Features related to the software code structure 

and dependencies can also be valuable. These features might include the size of code 

modules, code coupling and cohesion measures, or architectural properties of the 

system. Such features can provide insights into the structural complexity and 

organization of the software, which can impact bug occurrence. 

Domain-specific features: Depending on the specific software domain, additional 
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features related to the application domain can be considered in feature engineering. 

For example, if the software is dealing with financial data, features related to 

financial metrics or risk indicators can be incorporated. 

It is important to note that effective feature engineering requires domain knowledge 

and a deep understanding of the software development process. Iterative 

refinement and experimentation with different feature combinations are often 

necessary to achieve optimal performance in bug prediction models. 

 

3.3 Proposed Model 

 The model design is proposed to carry out efficient prediction of bugs in a software. 

In the proposed design, transfer learning, feature engineering, class imbalance and 

ensemble methods are used for efficient bug prediction. The block diagram of the 

proposed design is shown in Figure 3.1 which has mainly five parts i.e., labeled data 

availability, handling class imbalance, feature engineering, creating training set and 

building prediction model. The detailed diagram of the same is shown in Figure 3.2. 

 

 

 
Figure 3.1:  Block Diagram of Proposed Model Design 
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Figure 3.2: Detailed Diagram of Proposed Model Design 

 

3.3.1 Data Set: 

The effectiveness of the suggested model is assessed on five NASA benchmark 

datasets and four datasets from Promise Repository. These datasets are publicly 

available and consist of historical data of software modules. Many studies have 

utilized these datasets in their research and this is the primary reason of our interest 

in them as it will be easier to compare our results with them. The selected datasets 

include several features and a known output class that determines the defectiveness 

of an instance. Based on data available for other features, this output class is 

predicted by the prediction model. The datasets have many projects with various 

attributes, sizes, and defective rates that help to check the generality of research. [55] 

 

3.3.1.1 NASA MDP Data Set 

From the NASA MDP Dataset's CM1, MW1, PC1, PC3, and PC4 subsets are selected, 

which are made available to the public on the PROMISE Software Engineering 
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Repository. Table 3.1 shows the features present in NASA datasets. McCabe and 

Halstead source code extractors provide data from software for storage 

management for receiving and analyzing ground data. These characteristics were 

defined in the 1970s in an attempt to objectively characterize code characteristics 

related with software quality. [56] 

 

Table 3.1: Features in NASA Datasets 

 

3.3.1.2 Promise Dataset 

The data in Promise dataset refers to open-source Java systems and ant-1.7, camel-

1.6, ivy-2.0 and xalan-2.4 are selected for experiments in this research work. The 

features present in them are shown in table 3.2. The table shows all of the twenty 

features present in the dataset. The first column displays the feature ID while the 

second and third column shows the feature name and detail respectively. These IDs 

are used in another table to show the selected features which are used in this study. 
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Table 3.2: Features in PROMISE Datasets 

 

 

3.3.2 Data Preprocessing  

First step in the proposed design after dataset selection is data preprocessing. Two 

version of NASA datasets are provided by [57]. DS’ refers to version of dataset that 

includes duplicate and inconsistent instances whereas DS” refers to dataset that 

does not include redundant and inconsistent instances. Originally, these datasets 

were available at NASA website; however, they are removed from this source. 

Backup of 12 cleaned NASA datasets is available at [58]. 5 cleaned and widely used 
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datasets are selected from the available datasets available at [58] which include 

CM1, MW1, PC1, PC3, PC4. Previous studies have already discussed and used these 

cleaned versions of datasets in their experiments. The other four datasets have been 

taken from PROMISE repository available at [59]. They contain 20 Object Oriented 

metrics as independent features and defect-proneness of class as dependent 

variable. The criteria of cleaning as stated in [57] is shown in Table 3.3. 

Table 3.3: Cleaning Criteria of NASA Dataset 

 

3.3.3 Feature Engineering 

In the proposed design, Domain-specific features engineering is explored. 

Depending on the existing five features of software domain which includes 

BRANCH_COUNT, CONDITION_COUNT, CYCLOMATIC_COMPLEXITY, 

DECISION_COUNT and NUMBER_OF_LINES are used to create an additional 

feature and added in the model training phase. This feature helps model to learn 

more efficiently that at a particular threshold the features have specific value of 

being buggy or not. 
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3.3.4 Handling Data Class Imbalance 

The literature review suggest that the problem of Class imbalance had not been 

studied in detail. However, it has an important role in model prediction capability. 

Keeping this in view, the class imbalance has been incorporated in the proposed 

design. There are many techniques as discussed above to cater class imbalance, but 

in the proposed design, Oversampling has been used which Oversample the 

minority class. It involves generating instances of the minority class to increase its 

representation in the training data. The notion of “Yes” indicates that there is a bug 

in data instance and “No” indicates that there is no bug in the data instance. The 

class information of all data sets before and after class imbalance have been shown 

below in table 3.4.  

Table 3.4: Class Imbalance Handling 

Sr.No. Dataset Dataset Class Info 

before Class Imbalance 

Dataset Class Info After 

Class Imbalance 

Yes No Yes No 

1 CM1 42 285 285 285 

2 MW1 27 226 226 226 

3 PC1 61 644 644 644 

4 PC3 134 943 943 943 

5 PC4 177 1110 1110 1110 

6 Ant-1.7 166 579 579 579 

7 Camel-1.6 188 777 777 777 

8 Ivy-2.0 40 312 312 312 

9 Xalan-2.4 110 613 613 613 

 

 

3.3.5 Machine Learning Classifier  

A model is the result of the classifier's machine learning, whereas a classifier is an 

algorithm or collection of rules used to categorize or classify data. The model is 

trained using the classifier, and the classifier is then used by the model to categorize 

the data. In the scenario of this study, this step consists of choosing individual 
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classifiers that were mostly used in artificial intelligence and the integration of well-

known algorithm to form an ensemble-learning model. In the first step, I chose two 

individual classifiers i.e., Decision Tree and Random Forest. These are frequently 

used classifiers and give good performance in defect prediction. [60,61] In the 

second step, ensemble-learning method is proposed where the trained base classifier 

in the first step, used ensemble classifiers to create a model. For ensemble methods 

Bagging, AdaBoost and Stacking are used. The source dataset after passing through 

preprocessing, feature selection and class imbalance phase was trained using these 

individual classifiers and then with ensemble method. Trained model was then 

tested on source dataset to see which classifier achieved better accuracy values. On 

the other hand, target dataset is also preprocessed and then by using the same 

trained and tested model, prediction is performed on target dataset. The Individual 

and ensemble classifiers used in this study are descried below: 

 

3.3.5.1 Decision Tree 

A graphical representation of a series of decisions is called a decision tree, that lead 

to a particular outcome. It is a way of visualizing and understanding the decision-

making process. Every node in the tree indicates a decision or a test on a particular 

feature, and each branch represents an outcome or a possible result of that decision 

or test. The tree starts with a root node and ends with leaf nodes, which represent 

the final outcomes. 

Decision trees are commonly used in various fields such as data mining, machine 

learning, and business analytics. They are particularly useful when dealing with 

classification or regression problems, where the objective is to forecast or estimate a 

target variable based on a set of input variables or features. 

Some advantages of using decision trees include their simplicity and 

interpretability. Decision trees are easy to understand and visualize, making them 

useful for explaining the logic and reasoning behind a particular decision. They can 

also handle both categorical and numerical data, making them suitable for a wide 
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range of problems. 

 

3.3.5.2 Random Forest 

An ensemble learning technique for classification and regression applications. It is 

a type of supervised learning algorithm that combines multiple decision trees to 

make predictions. 

In Random Forest, multiple decision trees are created using a subset of the training 

data and a random subset of the input features. Each decision tree is trained 

independently on the different subsets of data to generate a prediction. During 

prediction, the random forest algorithm takes the majority vote from all the decision 

trees to make the final prediction. 

Random Forests have several advantages over a single decision tree. They reduce 

overfitting by creating multiple decision trees and combining their predictions. They 

can handle a large number of input features and are able to capture non-linear 

relationships between features and the output variable. Random Forests are also 

capable of handling missing values and outliers in the data. 

Random Forests have various applications and are commonly used in fields like 

finance, healthcare, and e-commerce. They can be used for predicting stock prices, 

diagnosing diseases, and recommending products to users, among other tasks. 

 

3.3.5.3 Bagging 

Bagging, also known as bootstrap aggregating, is a technique used in machine 

learning for improving the accuracy and stability of models. It involves creating 

multiple subsets of the original dataset through random sampling with replacement, 

training a separate model on each subset, and then combining their predictions 

through averaging or voting. 

Bagging is commonly used with decision trees, where each model in the ensemble 

is trained on a different random sample of the training dataset. As each model may 

have different strengths and weaknesses, the combination of their predictions can 
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lead to better overall performance. 

Bagging helps to reduce overfitting by inducing diversity among the models, as each 

model is trained on a slightly different subset of the data. It also helps in reducing 

bias by reducing the variance of the models' predictions. 

Bagging can be used for both regression and classification tasks. In the case of 

regression, the final prediction is usually the average of the predictions from each 

model. In classification, the final prediction can be determined by majority voting 

or by taking the class with the highest probability. 

Overall, bagging is a powerful technique for improving the accuracy and robustness 

of machine learning models, especially when dealing with complex and noisy 

datasets. 

 

3.3.5.4 AdaBoost 

AdaBoost is an ensemble learning method that combines multiple weak classifiers to 

create a strong classifier. It works by sequentially training weak classifiers on different 

subsets of the training data. In each iteration, the algorithm gives more weight to 

misclassified samples, so the subsequent weak classifiers focus on correctly 

classifying these samples. The final classifier is a weighted combination of the weak 

classifiers, where the weights are determined based on their individual performance. 

Advantages of AdaBoost: 

 AdaBoost is a versatile algorithm that can be used with various base classifiers. 

 It is less prone to overfitting, as the algorithm focuses on misclassified 

examples in each iteration. 

 It performs well in practice and has been widely used in various domains of 

machine learning. 

3.3.5.5 Stacking 

Stacking is an ensemble learning method that combines multiple classifiers or 

regression models to improve the overall performance. It involves training multiple 
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models, also known as base models or learners, on a given dataset. These base 

models can be of any type, such as decision trees, support vector machines, or neural 

networks. 

The stacking ensemble method consists of two stages: 

1. Base Models Training: In this stage, various base models are trained using 

the input data. Each base model is trained on a portion of the dataset, either 

through random sampling or specific strategies such as k-fold cross-

validation. The predictions of these base models are then stored for further 

use. 

2. Meta-Model Training: In this stage, a meta-model, also called a blender or 

stacking model, is trained using the predictions from the base models. The 

meta-model learns to combine the base models' predictions and generate a 

final prediction. This can be achieved through multiple approaches, such as 

averaging the predictions, using a weighted sum, or training another model 

on top of the base model predictions. 

The stacking ensemble method can provide better predictive performance 

compared to using individual models because it leverages the diversity of the base 

models. Each base model may have different strengths, weaknesses, and biases, and 

by combining their predictions, the stacking model can compensate for these 

differences and make more accurate predictions. 

One important consideration in stacking is avoiding overfitting. Since the base 

models are trained on the same dataset, there is a risk of overfitting if the stacking 

model simply memorizes the base models' predictions. To mitigate this, techniques 

like cross-validation and regularization can be applied. 

Overall, the stacking ensemble method is an effective methodology for combining 

multiple models to generate a more robust and accurate prediction model. 

 

3.3.6 Performance Metrics 

The performance of prediction model is evaluated based on certain evaluation 
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criteria and are generated through confusion matrix, which includes Accuracy, 

Recall, Precision, and Area Under Receiver Operating Characteristics Curve (AUC-

ROC), F-measure etc. However, in this study Accuracy, one of the most widely used 

performance metric is used. [61] These metrics help to quantify the performance of 

machine learning models. [62] 

 

3.3.6.1 Confusion Matrix 

A specific table known as the confusion matrix is used to evaluate the effectiveness 

of machine learning algorithms. Each column of the matrix depicts the instance 

belonging to the predicted class whereas each row shows the actual class instance 

or vice versa. This matrix briefly represents the result given by the testing algorithm 

by providing a report of the number of True Positive (TP), False Positives (FP), True 

Negatives (TN), and False Negatives (FN). [63]  

 

Figure 3.3: Confusion Matrix 

 

3.3.6.2 Accuracy 

The ratio of the correctly predicted instances to the total number of instances by the 

classifier is called accuracy. It measures the hit and miss of the classifier.  
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         (1) 

3.3.6.3 Precision  

Precision is defined as the percentage of accurately predicted positive instances by 

the classifier out of all positively classified instances. 

                                       

 (2) 

 

3.3.6.4 Recall 

The proportion of correctly classified positive examples to total positive instances 

for a given class. It is also referred to as true positive rate or sensitivity and it counts 

the number of hits of the classifier for the class.  

                                        

                                                           (3) 

 

3.3.6.5 F1 Score Measure 

 It is the harmonic mean of recall and precision.  

                          

    (4) 

 

3.4 Summary 

This section concludes and briefly highlights the major parts of the proposed design. 

It includes the theoretical approach used to make this model. The design of the 

proposed model is discussed that involves preprocessing, feature engineering, 

transfer learning, handling class imbalance and ensemble learning method. The data 

sets, all of their features and then the feature engineering step is described. 

Moreover, the classifiers used in this model and the performance metrics which will 

be used to calculate the efficiency of model are also discussed. In short, the technical 

approach to make the software defect prediction model is described. 
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CHAPTER 4 

4 Implementation 

 

4.1 Introduction 

In this chapter the implementation details of proposed design are discussed. It gives 

details overview of used language, hardware, software requirements and other 

information related to model implementation. 

4.2 Environment (Hardware and Software) 

Google Colab environment is used for the implementation of the proposed model. 

Python 3.10.12 is used for implementation. 8 GB RAM with windows 10 on Core i7 

PC is used in this research work. The libraries used in this model are sklearn, 

imblearn, pandas and numpy. For plotting the graphs matplotlib library is used. 

4.3 Implementation Details 

The implementation details of all steps mentioned in the previous chapter are 

discussed in detail as below: 

4.3.1 Data Pre-Processing (Step 1) 

To normalize the dataset, first the null values and Noise is checked and removed 

from the dataset.  

4.3.1.1 Null values and Noise 

The repository has null values and noise in the form of missing and duplicated rows. 

The null values are first identified and then removed by replacing with zero. Noise 

is reduced from the dataset by reducing redundant data, allowing our trained 
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algorithm to identify defects more correctly. 

Implementation Steps: 

To address the issue of Null, NAN, and noise in the dataset, the following steps are 

performed: 

1. Read CSV File 

2. Remove all unnecessary columns, i.e., name and version 

3. Use panda’s isnull (). sum () method on the data retrieved from CSV file 

4. This method traverses all columns and sum number of null values in them 

5. Use panda’s fillna () method to fill the null values with 0. 

6. Use panda’s isna () method on the data retrieved from CSV file 

7. This method traverses all rows in the dataset and highlight the NAN values. 

8. Use panda’s fillna () method to fill the NAN values with 0 

9. Use panda’s duplicated method on the data retrieved from CSV file 

10. Duplicating method of panda’s library, traversing each row in the dataset one 

by one across the file and picking the duplicated rows. 

11. Use pandas’ method drop_duplicates on the data retrieved from the CSV file 

12. Use drop_duplicates method to eliminate all the retrieved duplicated rows 

from the dataset. 

4.3.1.2 Dataset Scaling 

The data distribution gap in the datasets is filled after removing the null values and 

noise. Standard Scaler is a useful approach that is used as a preprocessing step to 
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standardize the range of functionality of the input dataset.  Some factors assessed at 

different scales do not contribute equally to model fitting and model learned 

function and may result in bias. To address this potential issue, feature-wise 

standardized (μ=0, σ =1) is typically utilized prior to model fitting. 

Implementation Steps: 

1. Read source CSV File 

2. Split the dataset into independed variables features and depended target 

variable. 

3. Grouped the independed variables features set  

4. Used the sklearn standardscaler feature and passed the independed variables 

features set to it  

5. Standard Scaler removes the mean and scales each feature/variable to unit 

variance. This operation is performed feature-wise in an independent way. 

6. The new scaled values of all independed features are saved in new data 

frame. 

7. The implementation code of the above procedure is as follows:  

from sklearn.preprocessing import StandardScaler 

scaler = StandardScaler() 

X_scaled = scaler.fit_transform(X_res) 

 

4.3.1.3 Handling Multiclass Nature of Promise Dataset: 

After removing null values and noise, the Promise dataset is converted to 2 class 

problem as this dataset is of multiclass nature. The multi-class nature of the dataset 

is described visually in the Figure 4.1 below.  

https://www.mdpi.com/2076-3417/12/23/12167#fig_body_display_applsci-12-12167-f002
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The detailed analysis about classes in Promise Dataset reveals that most of the 

classes have much less data. To get better results, we kept class 0 but combined the 

classes with the bug labels 2,3,4,5,6,7 as 1. This indicated that Class 1 contained all 

of the bugs found in Classes 2, 3, 4, 5, 6, and 7. This step is performed to collect as 

much data as possible for training the model. 

 

 

 

 

 

 

Figure 4.1: Multiclass Data of Ant Dataset 

Implementation Steps: 

To resolve the multiclass issue, following steps were performed: 

1. Read CSV File of Promise dataset 

2. Use NumPy’s, where () method to traverse the target variable and highlight 

the values equal or greater than 1. 

3. Replace all the highlighted values with 1in the CSV File. 

4.3.2 Feature Engineering (Step 2) 

For the efficient prediction of bugs by the proposed model, the concept of feature 

engineering has been incorporated.  

Implementation Steps: 

1. Read CSV File of dataset 

2. Define a new variable named “eval”  



42 

 

 

3. Define a condition combining 5 existing features of a dataset, set a threshold 

value of each feature and used logical operator AND. 

4. Insert a record in new feature when the condition of AND operator becomes 

“TRUE” 

5. Convert the new feature to data frame and add it in the CSV file. 

6. Transverse the newly added feature values and replace the True values with 1 

and False values with 0. 

7. The implementation code of the above procedure is as follows:  

eval = (data.BRANCH_COUNT < 200) & (data.CONDITION_COUNT < 250) & 

(data.CYCLOMATIC_COMPLEXITY < 100) & (data.DECISION_COUNT < 150) 

& (data.NUMBER_OF_LINES < 500) 

data['eval'] = pd.DataFrame(eval) 

data['eval'] = [1 if e == True else 0 for e in data['eval']] 

 

4.3.3 Class Imbalance (Step 3) 

The proposed model also addresses the issue of class imbalance. In the proposed 

work, the issue of class imbalance is resolved both in terms of the overall number of 

instances and the total number of output classes. Random Over Sampler is used to 

tackle the class imbalance problem.  

Implementation Steps: 

The following steps are performed to resolve the class imbalance issue in the dataset: 

1. Once the null and noise had been removed from the dataset, 

RandomOverSampler is used. It randomly selecting examples from the 

minority class, with replacement, and adding them to the training dataset. 

2. The random state value is set to 26 and passed the dataset as independed 

variables features and target feature variable. 
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3. The dataset is passed and then, using this technique, all the minority 

classes were oversampled to the majority class.  

4. The implementation code is as follows:  

from imblearn.over_sampling import RandomOverSampler 

os = RandomOverSampler(random_state = 26) 

X_res, y_res = os.fit_resample(X,y) 

 

The dataset results after applying class imbalance on both data repositories are 

shown below in table 4.1. 

Table 4.1: Class Imbalance Results on Both Data Repositories 

Sr.No. Dataset Dataset Class Info before 

Class Imbalance 

Dataset Class Info After 

Class Imbalance 

Yes No Yes No 

1 CM1 42 285 285 285 

2 MW1 27 226 226 226 

3 PC1 61 644 644 644 

4 PC3 134 943 943 943 

5 PC4 177 1110 1110 1110 

6 Ant-1.7 166 579 579 579 

7 Camel-1.6 188 777 777 777 

8 Ivy-2.0 40 312 312 312 

9 Xalan-2.4 110 613 613 613 

 

4.3.4 Dataset Division (Step 4) 

After features scaling and class imbalance, the dataset is divided into training and 

testing dataset. The 75% portion of the dataset is used for training and 25% for 

testing. Model is trained and tested on one project and then prediction is conducted 

on another dataset.  The python code for dataset division is as follows: 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X_scaled , y_res, random_state = 

1, test_size = 0.25) 
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4.3.5 Classification (Step 5) 

Data classification is performed to ensure the accuracy of the suggested design. To 

accomplish this, various machine learning classifiers are used [15][56]. Decision tree, 

random forest, bagging, boosting, and stacking are selected for the classification of 

buggy data in datasets because the dataset is multi-class and proposed model will be 

applied on the cross-project. The classifier predicts the output using the mapped 

instances as training data. The data is classified into Class 0 and Class 1 using this 

classifier. The performance of each project is examined as a source and target, i.e., first 

picked CM1 as the source project and MW1 as the target project and performed 

prediction on this dataset and calculate accuracy. Then this step is repeated by 

changing all other datasets of NASA as target. The same process is repeated both data 

repositories which includes NASA and PROMISE and for all 9 datasets i.e., one 

dataset is source at a time and all others are target. But the datasets of NASA and 

PROMISE are treated separately due to different nature of features in both 

repositories.  

The implementation details of one dataset are described below: 

1. After data preprocessing, scaler transform, feature engineering and class 

imbalance, the dataset i.e., CM1 is divided into training and test dataset. The 

dataset is divided on the ratio of 75% for training and 25% for testing. By 

using the sklearn library and train_ test split function, the dataset is split into 

training and test dataset. 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X_scaled , y_res, 

random_state = 1, test_size = 0.25) 
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2. First Decision tree classifier is applied on training set of CM1 dataset to train 

the model. Sklearn library tree function is used to implement decision tree on 

training dataset. 

dtree=DecisionTreeClassifier() 

dtree.fit(X_train, y_train) 

  

3. Then test dataset is passed to the model to predict the values by using 

decision tree predict property. 

dtree.predict(X_test) 

4. Then the same trained and tested model is passed to the ensemble classifier 

of bagging, AdaBoost and stacking. 

 

5. In bagging method, sklearn.ensemble property is used to call bagging 

classifier. The base classifier is decision tree along with other parameters. 

from sklearn.ensemble import BaggingClassifier 

bag_model = BaggingClassifier( 

    estimator = DecisionTreeClassifier(), 

    n_estimators = 100, 

    max_samples = 0.8, 

    oob_score = True, 

    random_state = 26 

) 

 

6. After model definition, the train dataset is passed to the classifier. 

bag_model.fit(X_train,y_train) 

 

7. Then the test dataset is passed to the model for prediction. 

y_pred = bag_model.predict(X_test) 

8. The classification report is generated to check the accuracy of the model 

within a project. Sklearn.metrics property is used to call accuracy score and 

classification report. 
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# Evaluate the model 

from sklearn.metrics import accuracy_score 

from sklearn.metrics import classification_report 

print (classification_report(y_test, y_pred)) 

print ("Accuracy: ",accuracy_score(y_pred ,y_test)) 

 

9. The prediction result is shown in figure 4.2, gives an insight into model 

prediction accuracy. 
 

precision    recall  f1-score   support 

 

           0       1.00      0.86      0.92        57 

           1       0.88      1.00      0.93        57 

 

    accuracy                           0.93       114 

   macro avg       0.94      0.93      0.93       114 

weighted avg       0.94      0.93      0.93       114 

Accuracy:  0.9298245614035088 

Figure 4.2: Model Prediction Results Within Project 

10. As the proposed model is for cross project defect prediction, so target project 

is loaded and split into independed variables features and depended target 

variable. 

X1 = test_data.drop('Defective',axis='columns') 

y1 = test_data.Defective 

 

11.  The independed variable features are passed to previously trained model for 

prediction. 

y1_pred = bag_model.predict(X1) 

 

12. The classification report is generated to check the accuracy of the model 

within a project. Sklearn.metrics property is used to call accuracy score and 

classification report. 

 

# Evaluate the model 

print (classification_report(y1, y1_pred)) 



47 

 

 

print ("ACC: “, accuracy_score(y1_pred, y1)) 

 

13. The prediction results as shown in figure 4.3, gives an insight into model 

prediction accuracy. 

precision    recall  f1-score   support 

 

           0       0.94      0.80      0.86       644 

           1       0.17      0.43      0.24        61 

 

    accuracy                           0.77       705 

   macro avg       0.55      0.61      0.55       705 

weighted avg       0.87      0.77      0.81       705 

 

ACC:  0.7659574468085106 

 

Figure 4.3: Model Prediction Results Across Projects 

14. Steps as mentioned above from serial 5 to 13 are repeated for two others 

below mentioned ensemble methods and a base classifier i.e., Random Forest 

Classifier also. 

15. For AdaBoost, the sklearn library is used to call Adaboost classifier. 

ada=AdaBoostClassifier (base_estimator=dTree_clf, n_estimators = 

500,) 

 

16. For stacking classifier, different base classifiers are used which includes 

LinearSVC, MLP classifier and final estimator as decision tree. Sklearn library 

is used to call and define the classifier in python. 

estimators = [ 

    ('svr', make_pipeline(StandardScaler(), 

                           LinearSVC(random_state=1))), 

    ('mlp’, make_pipeline(StandardScaler(), MLPClassifier(alpha=1, 

max_iter=200))) 

] 

stack_model = StackingClassifier( 

    estimators=estimators, 

    # final_estimator = RandomForestClassifier(random_state=1), 

    final_estimator = DecisionTreeClassifier(random_state=1), 
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    cv=10 

) 

The same above procedure is followed for all classifiers on all datasets of both 

repositories.  

4.4 Summary 

This section concludes and briefly highlights the implementation details of the 

proposed design. It includes the tools used to implement this model. The 

implementation details of proposed model are discussed that involves preprocessing, 

feature engineering, transfer learning, handling class imbalance and ensemble 

learning method.  The classifiers used in this model and the performance metrics 

which will be used to calculate the efficiency of model are described. In short, the 

practical approach to proposed model is discussed to make the software defect 

prediction model. 
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CHAPTER 5 

1. Results and Discussion 

 

5.1 Introduction 

In this chapter the model results will be discussed in detail. Different aspects of 

model prediction accuracy will be discussed to highlight the efficiency of the 

proposed model.  

 

5.2 Implementation Details 

Using the Random over sampling technique, the majority and minority classes in 

each dataset are balanced using the experimental framework. As in previous studies 

[55,59], the balanced representation of the classes was based on 50% defective and 

50% non-defective classes. The goal is to ensure that the resulting models were 

trained with each class label and to provide credibility to the proposed model in 

predicting the proper class labels (defective or non-defective). Random 

Oversampling technique is used as a sampling approach because of its performance. 

 

5.3 Results 

This section presents and discusses the results received after evaluating the various 

classifiers. It is critical to demonstrate the significance of sampling technique on bug 

prediction model development. Furthermore, the efficacy of the class imbalance and 

ensemble approaches over the base-line classifier is a focus of this research. 

 

5.3.1 Base Classifiers Results for NASA Dataset  

At first the results will be presented to reflect the effects of each base-line classifier. 

Table 5.1 presents the prediction performances of base classifiers Decision Tree (DT) 
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and Random Forest (RF) on the datasets of NASA repository. The values shown the 

accuracy of the proposed prediction model employing both classifiers. The DT 

classifier, as seen in Table 5.1, yielded an average accuracy of 82% and RF have 84%. 

The RF classifier had highest prediction performances with an average accuracy of 

84% as a base classifier. 

 

Table 5.1: Prediction Performance of DT and RF on the NASA dataset 

Sr.No Dataset Decision 

Tree (DT)  

Random Forest 

(RF) 

1 PC1-PC3 0.83 0.86 

2 PC1-PC4 0.86 0.84 

3 PC1-CM1 0.78 0.85 

4 PC1-MW1 0.81 0.87 

5 PC3-PC1 0.90 0.84 

6 PC3-PC4 0.87 0.83 

7 PC3-CM1 0.78 0.81 

8 PC3-MW1 0.84 0.83 

9 PC4-PC1 0.90 0.84 

10 PC4-PC3 0.83 0.81 

11 PC4-CM1 0.80 0.81 

12 PC4-MW1 0.83 0.87 

13 CM1-PC1 0.81 0.87 

14 CM1-PC3 0.82 0.86 

15 CM1-PC4 0.68 0.82 

16 CM1-MW1 0.68 0.85 

17 MW1-PC1 0.90 0.87 

18 MW1-PC3 0.86 0.85 

19 MW1-PC4 0.85 0.84 

20 MW1-CM1 0.80 0.82 

Average Accuracy % 0.82 0.84 
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5.3.2 Ensemble Methods along with Base Classifiers Results for NASA Dataset  

Table 5.2 represents the proposed model prediction accuracy results on 2 individual 

classifiers and 3 different ensemble methods. Accuracy is a statistic that describes 

how the model performs in general across all classes. It is helpful when all classes 

are equally important. It is determined by dividing the number of right guesses by 

the total number of forecasts. 

The method of bagging, boosting and stacking has been employed with base 

classifiers as DT and RF. The results shown that among the ensemble methods, 

boosting have the highest average accuracy with base classifier of RF. It has the 

average accuracy of 84% with lowest accuracy of 81% on PC3 and CM1 dataset and 

highest accuracy of 89% on PC1 dataset. CM1 dataset has less numbers of samples 

which may contribute to low accuracy of model prediction.  

In the comparison of all three ensemble methods, stacking with DT have better 

average accuracy of 82%. Among bagging, BaggedDT has better results than 

BaggedRF. Where as in boosting, Ada boosted method is employed and 

AdaBoostRF yields better average prediction accuracy. The prediction results 

reveals that RF works better with proposed model, whether it’s for individual 

classifier or for ensemble-based methods. The overall results indicate the model 

minimum accuracy up to 75%. The graph view of above results is shown in Figure 

5.1.  

Table 5.2: Prediction Performance of Ensemble Methods on NASA Dataset 

Sr.No Dataset Decision 

Tree 

(DT)  

Random 

Forest 

(RF) 

Bagging Boosting Stacking 

DT RF AdaBoost 

DT 

AdaBoost 

RF 

DT RF 

1 PC1-PC3 0.83 0.86 0.84 0.84 0.80 0.85 0.82 0.84 

2 PC1-PC4 0.86 0.84 0.81 0.81 0.80 0.83 0.82 0.87 

3 PC1-CM1 0.78 0.85 0.83 0.79 0.81 0.85 0.81 0.69 

4 PC1-MW1 0.81 0.87 0.85 0.83 0.86 0.86 0.81 0.87 

5 PC3-PC1 0.90 0.84 0.82 0.78 0.73 0.84 0.87 0.81 

6 PC3-PC4 0.87 0.83 0.78 0.77 0.70 0.83 0.83 0.81 
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Figure 5.1:  Model Prediction Results on NASA Repository 

The results for the precision score of the proposed model are shown in Table 5.3. 

0.5

0.55
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0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Model Prediction Results on NASA Repository

DT

RF

BaggedDT

BaggedRF

AdaBoostDT

AdaBoostRF

StackedDT

SatckedRF

7 PC3-CM1 0.78 0.81 0.80 0.76 0.72 0.82 0.81 0.69 

8 PC3-MW1 0.84 0.83 0.80 0.76 0.79 0.84 0.83 0.77 

9 PC4-PC1 0.90 0.84 0.79 0.73 0.54 0.84 0.86 0.84 

10 PC4-PC3 0.83 0.81 0.73 0.70 0.71 0.81 0.79 0.77 

11 PC4-CM1 0.80 0.81 0.73 0.75 0.65 0.81 0.75 0.64 

12 PC4-MW1 0.83 0.87 0.83 0.78 0.60 0.85 0.80 0.86 

13 CM1-PC1 0.81 0.87 0.77 0.75 0.85 0.87 0.86 0.88 

14 CM1-PC3 0.82 0.86 0.78 0.78 0.62 0.86 0.80 0.85 

15 CM1-PC4 0.68 0.82 0.65 0.74 0.70 0.83 0.80 0.85 

16 CM1-MW1 0.68 0.85 0.68 0.76 0.65 0.85 0.83 0.85 

17 MW1-PC1 0.90 0.87 0.84 0.84 0.89 0.89 0.87 0.88 

18 MW1-PC3 0.86 0.85 0.83 0.84 0.86 0.86 0.81 0.84 

19 MW1-PC4 0.85 0.84 0.82 0.81 0.84 0.84 0.75 0.84 

20 MW1-CM1 0.8 0.82 0.81 0.80 0.81 0.82 0.86 0.81 

Average Accuracy % 0.82 0.84 0.79 0.78 0.75 0.84 0.82 0.81 
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The results highlights that an average precision of all classifiers is above 80% on all 

datasets. The precision is computed as the ratio of Positive samples that were 

correctly classified to all samples that were correctly or mistakenly identified as 

Positive. The precision measures how well the model categorizes a sample as 

positive. 

Table 5.3:  Precision Score of Proposed Model on NASA Dataset 

Sr.No Dataset Decisio

n Tree 

(DT)  

Random 

Forest 

(RF) 

Bagging Boosting Stacking 

DT RF AdaBoos

t DT 

AdaBoost 

RF 

DT RF 

1 PC1-PC3 0.81 0.83 0.84 0.85 0.82 0.83 0.82 0.82 

2 PC1-PC4 0.79 0.82 0.80 0.82 0.79 0.80 0.82 0.84 

3 PC1-CM1 0.84 0.83 0.83 0.82 0.81 0.84 0.81 0.79 

4 PC1-MW1 0.83 0.87 0.86 0.86 0.86 0.87 0.81 0.82 

5 PC3-PC1 0.87 0.87 0.89 0.89 0.85 0.88 0.87 0.89 

6 PC3-PC4 0.79 0.80 0.78 0.82 0.77 0.80 0.83 0.83 

7 PC3-CM1 0.80 0.80 0.82 0.82 0.78 0.81 0.81 0.84 

8 PC3-MW1 0.85 0.86 0.85 0.86 0.86 0.86 0.83 0.84 

9 PC4-PC1 0.87 0.87 0.89 0.88 0.83 0.87 0.86 0.86 

10 PC4-PC3 0.84 0.82 0.84 0.82 0.83 0.81 0.79 0.80 

11 PC4-CM1 0.77 0.81 0.81 0.83 0.77 0.82 0.75 0.74 

12 PC4-MW1 0.82 0.82 0.82 0.83 0.77 0.83 0.80 0.81 

13 CM1-PC1 0.86 0.86 0.87 0.87 0.87 0.85 0.86 0.86 

14 CM1-PC3 0.81 0.81 0.82 0.83 0.77 0.82 0.80 0.81 

15 CM1-PC4 0.76 0.77 0.75 0.78 0.77 0.77 0.80 0.78 

16 CM1-MW1 0.84 0.87 0.85 0.88 0.81 0.85 0.83 0.85 

17 MW1-PC1 0.85 0.87 0.88 0.88 0.87 0.88 0.87 0.86 

18 MW1-PC3 0.80 0.79 0.81 0.82 0.81 0.80 0.81 0.81 

19 MW1-PC4 0.78 0.79 0.78 0.78 0.78 0.79 0.75 0.75 

20 MW1-CM1 0.78 0.81 0.82 0.82 0.79 0.82 0.86 0.80 

Average Precision % 0.82 0.83 0.83 0.84 0.81 0.83 0.82 0.82 

 

In the next table 5.4, the recall score for the model prediction results has been shown. 
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The recall of the model assesses its ability to detect Positive samples. The more 

positive samples identified, the larger the recall. 

Table 5.4: Recall Score of Proposed Model on NASA Dataset 

 

Sr.No Dataset Decisio

n Tree 

(DT)  

Random 

Forest 

(RF) 

Bagging Boosting Stacking 

DT RF AdaBoost 

DT 

AdaBoost 

RF 

DT RF 

1 PC1-PC3 0.80 0.85 0.84 0.84 0.80 0.85 0.81 0.81 

2 PC1-PC4 0.81 0.84 0.81 0.81 0.80 0.83 0.84 0.86 

3 PC1-CM1 0.84 0.84 0.83 0.79 0.81 0.85 0.67 0.63 

4 PC1-MW1 0.82 0.86 0.85 0.83 0.86 0.86 0.80 0.83 

5 PC3-PC1 0.78 0.82 0.82 0.77 0.73 0.84 0.77 0.76 

6 PC3-PC4 0.76 0.83 0.78 0.77 0.70 0.83 0.81 0.81 

7 PC3-CM1 0.78 0.82 0.80 0.76 0.72 0.82 0.58 0.56 

8 PC3-MW1 0.83 0.84 0.80 0.76 0.79 0.84 0.67 0.68 

9 PC4-PC1 0.83 0.84 0.79 0.73 0.54 0.84 0.82 0.82 

10 PC4-PC3 0.78 0.78 0.84 0.70 0.71 0.81 0.75 0.75 

11 PC4-CM1 0.76 0.79 0.73 0.75 0.65 0.81 0.63 0.62 

12 PC4-MW1 0.85 0.85 0.83 0.78 0.60 0.85 0.79 0.77 

13 CM1-PC1 0.77 0.85 0.77 0.75 0.85 0.87 0.84 0.87 

14 CM1-PC3 0.74 0.84 0.73 0.78 0.62 0.86 0.81 0.85 

15 CM1-PC4 0.67 0.81 0.65 0.74 0.70 0.83 0.85 0.85 

16 CM1-MW1 0.68 0.85 0.66 0.76 0.65 0.85 0.84 0.88 

17 MW1-PC1 0.89 0.87 0.84 0.84 0.89 0.89 0.88 0.89 

18 MW1-PC3 0.86 0.84 0.83 0.84 0.86 0.86 0.84 0.86 

19 MW1-PC4 0.85 0.84 0.82 0.81 0.84 0.84 0.83 0.85 

20 MW1-CM1 0.82 0.82 0.81 0.80 0.81 0.82 0.84 0.83 

Average Recall % 0.80 0.83 0.79 0.78 0.75 0.84 0.78 0.79 

 

 

Ideally, both precision and recall metrics should be maximized to obtain the perfect 

classifier. The average recall of model ranges from 0.75 to 0.84.   

The F1 score combines precision and recall by using their harmonic mean, thus 
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maximizing the F1 score implies maximizing both precision and recall at the same 

time. As a result, researchers have chosen the F1 score to evaluate their models in 

conjunction with accuracy. The F1 score of the proposed model has been shown in 

Table 5.5.  It ranges from 0-100%, and a higher F1 score denotes a better-quality 

classifier. The results indicate that F1 score of a proposed model is greater than 75% 

for all individual and ensemble classifiers.  

Table 5.5: F1-Score of Proposed Model on NASA Dataset 

Sr.No Dataset Decisio

n Tree 

(DT)  

Random 

Forest 

(RF) 

Bagging Boosting Stacking 

DT RF AdaBoost 

DT 

AdaBoost 

RF 

DT RF 

1 PC1-PC3 0.81 0.84 0.84 0.84 0.81 0.84 0.81 0.82 

2 PC1-PC4 0.80 0.82 0.81 0.81 0.80 0.81 0.83 0.85 

3 PC1-CM1 0.84 0.83 0.83 0.80 0.81 0.84 0.72 0.69 

4 PC1-MW1 0.83 0.86 0.86 0.85 0.86 0.86 0.81 0.83 

5 PC3-PC1 0.82 0.84 0.85 0.81 0.78 0.86 0.81 0.81 

6 PC3-PC4 0.77 0.81 0.78 0.79 0.73 0.81 0.82 0.82 

7 PC3-CM1 0.79 0.81 0.81 0.78 0.75 0.81 0.65 0.63 

8 PC3-MW1 0.84 0.85 0.82 0.80 0.82 0.85 0.73 0.74 

9 PC4-PC1 0.85 0.85 0.83 0.79 0.64 0.85 0.84 0.84 

10 PC4-PC3 0.80 0.80 0.77 0.74 0.76 0.81 0.77 0.77 

11 PC4-CM1 0.77 0.80 0.77 0.78 0.70 0.82 0.68 0.67 

12 PC4-MW1 0.83 0.83 0.82 0.80 0.67 0.84 0.80 0.79 

13 CM1-PC1 0.81 0.85 0.81 0.79 0.85 0.86 0.85 0.87 

14 CM1-PC3 0.77 0.83 0.77 0.80 0.68 0.83 0.81 0.83 

15 CM1-PC4 0.71 0.79 0.69 0.76 0.73 0.79 0.81 0.80 

16 CM1-MW1 0.74 0.86 0.72 0.80 0.71 0.85 0.83 0.86 

17 MW1-PC1 0.87 0.87 0.86 0.86 0.88 0.89 0.88 0.87 

18 MW1-PC3 0.82 0.81 0.82 0.83 0.83 0.82 0.82 0.83 

19 MW1-PC4 0.80 0.81 0.80 0.79 0.80 0.81 0.79 0.79 

20 MW1-CM1 0.80 0.81 0.81 0.81 0.80 0.82 0.85 0.81 

Average F1-Score % 0.80 0.83 0.80 0.80 0.77 0.83 0.80 0.80 
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5.3.3 Base Classifiers Results for PROMISE Dataset 

In the next step, the same proposed model is used for prediction on PROMISE 

dataset to check the model accuracy. Table 5.6 represents the prediction results of 

proposed model on PROMISE dataset for individual classifiers of DT and RF. The 

prediction result reveals that RF works better than DT. RF have an average accuracy 

of 77% with highest accuracy of 83% on ivy-2.0 dataset and lowest accuracy of 66% 

on Camel -1.6 dataset. 

 Table 5.6: Prediction Performance of DT and RF on PROMISE dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.4 Ensemble Methods along with Base Classifiers Results for PROMISE Dataset  

After individual classifiers prediction, the model is tested using 3 ensemble methods 

for PROMISE Dataset. Table 5.7, shows the prediction results of a proposed model 

for PROMISE datsets. The prediction results reveal that, model performance is 

around 65% for all ensemble methods with both base classifiers. In Bagging, 

BaggedDT have high average accuracy of 71% with highest accuracy of 79% on 

Sr.No Dataset Decision Tree  Random Forest 

1 Ant-1.7-Camel-1.6 0.55 0.66 

2 Ant-1.7-Ivy-2.0 0.72 0.80 

3 Ant-1.7-Xalan-2.4 0.69 0.80 

4 Camel-1.6- Ant-1.7- 0.73 0.74 

5 Camel-1.6- Ivy-2.0 0.76 0.83 

6 Camel-1.6- Xalan-2.4 0.73 0.79 

7 Ivy-2.0- Ant-1.7 0.71 0.81 

8 Ivy-2.0- Camel-1.6 0.70 0.75 

9 Ivy-2.0- Xalan-2.4 0.72 0.82 

10 Xalan-2.4- Ant-1.7 0.63 0.73 

11 Xalan-2.4- Camel-1.6 0.64 0.69 

12 Xalan-2.4- Ivy-2.0 0.72 0.76 

Average Accuracy % 0.69 0.77 
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Xalan-2.4 dataset and lowest of 60% on Camel-1.6 dataset. BaggedRF have average 

accuracy of 70% with highest on Ivy-2.0 dataset and lowest on Camel-1.6 dataset. In 

Boosting, AdaBoostRF have high accuracy of 76% with highest accuracy of 83% on 

Ivy-2.0 and Xalan-2.4 dataset. AdaboostDT have average accuracy of 64% with 

highest on Xalan-2.4 dataset and lowest on Camel-1.6.  Whereas for Stacking, again 

SatckedRF have highest average accuracy of 79%. Both base classifiers have highest 

accuracy for Ivy-2.0 Dataset.  

 

Table 5.7: Prediction Performance of Ensemble Methods on PROMISE datasets 

Sr.No Dataset Decisi

on 

Tree 

(DT)  

Rando

m 

Forest 

(RF) 

Bagging Boosting Stacking 

DT RF AdaBoost 

DT 

AdaBoost 

RF 

DT RF 

1 Ant-1.7-Camel-1.6 0.55 0.66 0.60 0.61 0.60 0.64 0.72 0.74 

2 Ant-1.7-Ivy-2.0 0.72 0.80 0.72 0.75 0.59 0.80 0.81 0.86 

3 Ant-1.7-Xalan-2.4 0.69 0.80 0.71 0.75 0.58 0.77 0.74 0.82 

4 Camel-1.6- Ant-1.7- 0.73 0.74 0.70 0.68 0.70 0.73 0.67 0.75 

5 Camel-1.6- Ivy-2.0 0.76 0.83 0.74 0.79 0.69 0.83 0.75 0.79 

6 Camel-1.6- Xalan-2.4 0.73 0.79 0.79 0.78 0.72 0.80 0.72 0.81 

7 Ivy-2.0- Ant-1.7 0.71 0.81 0.76 0.73 0.62 0.79 0.76 0.82 

8 Ivy-2.0- Camel-1.6 0.70 0.75 0.63 0.65 0.66 0.75 0.75 0.73 

9 Ivy-2.0- Xalan-2.4 0.72 0.82 0.72 0.77 0.73 0.83 0.78 0.80 

10 Xalan-2.4- Ant-1.7 0.63 0.73 0.70 0.66 0.65 0.72 0.73 0.76 

11 Xalan-2.4- Camel-1.6 0.64 0.69 0.65 0.60 0.53 0.66 0.69 0.74 

12 Xalan-2.4- Ivy-2.0 0.72 0.76 0.74 0.67 0.62 0.75 0.79 0.84 

Average Accuracy % 0.60 0.77 0.71 0.70 0.64 0.76 0.74 0.79 

 

 

The model prediction results on PROMISE repository indicates the stable nature of 

model prediction as there is no huge variation in the prediction results on different 

datasets. The graph view of Table 5.7 is shown in Figure 5.2. 
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Figure 5.2: Model Prediction Results on PROMISE Repository 

The model prediction results for precision, recall and F1 score on the RPOMISE 

repository has been shown in the Table 5.8, 5.9 and 5.10 respectively. 

 

Table 5.8: Precision Score of Proposed Model on PROMISE Dataset 
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Sr.No Dataset Decision 

Tree 

(DT)  

Random 

Forest 

(RF) 

Bagging Boosting Stacking 

DT RF AdaBoo

st DT 

AdaBoost 

RF 

DT RF 

1 Ant-1.7-Camel-1.6 0.68       0.72       0.71       0.72       0.72       0.72       0.71       0.72       

2 Ant-1.7-Ivy-2.0 0.81       0.89       0.87       0.88       0.84       0.89       0.86       0.88       

3 Ant-1.7-Xalan-2.4 0.84       0.82       0.87       0.84       0.75       0.83       0.79       0.82       

4 Camel-1.6- Ant-1.7- 0.68       0.72       0.72       0.74       0.69       0.72       0.67       0.71       

5 Camel-1.6- Ivy-2.0 0.81       0.85       0.81       0.85       0.80       0.85       0.81       0.83       

6 Camel-1.6- Xalan-2.4 0.77       0.78       0.78       0.80       0.77       0.79       0.76       0.79       

7 Ivy-2.0- Ant-1.7 0.72       0.81       0.80       0.81       0.71       0.79       0.73       0.80       

8 Ivy-2.0- Camel-1.6 0.70       0.74       0.71       0.73         0.71       0.73       0.72       0.71       

9 Ivy-2.0- Xalan-2.4 0.78       0.81       0.80       0.83       0.79       0.81       0.76       0.81       

10 Xalan-2.4- Ant-1.7 0.69       0.77       0.74       0.78       0.69       0.75       0.71       0.73       

11 Xalan-2.4- Camel-1.6 0.67       0.72       0.70       0.73       0.68       0.71       0.70       0.71       

12 Xalan-2.4- Ivy-2.0 0.81       0.84       0.82       0.87       0.82       0.86       0.83       0.82       

Average Precision % 0.75 0.79 0.78 0.80 0.75 0.79 0.75 0.78 
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Table 5.9:  Recall Score of Proposed Model on PROMISE Dataset 

 

 

Table 5.10: F1-Score of Proposed Model on PROMISE Dataset 

 

Sr.No Dataset Decisi

on 

Tree 

(DT)  

Rando

m 

Forest 

(RF) 

Bagging Boosting Stacking 

DT RF AdaBoost 

DT 

AdaBoost 

RF 

DT RF 

1 Ant-1.7-Camel-1.6 0.55 0.66 0.60 0.61 0.60 0.64 0.72 0.74 

2 Ant-1.7-Ivy-2.0 0.52 0.80 0.72 0.75 0.59 0.80 0.81 0.86 

3 Ant-1.7-Xalan-2.4 0.72 0.79 0.72 0.75 0.58 0.77 0.74 0.82 

4 Camel-1.6- Ant-1.7- 0.68 0.73 0.70 0.68 0.70 0.73 0.67 0.75 

5 Camel-1.6- Ivy-2.0 0.75 0.83 0.74 0.79 0.69 0.83 0.75 0.79 

6 Camel-1.6- Xalan-2.4 0.73 0.79 0.79 0.78 0.72 0.80 0.72 0.81 

7 Ivy-2.0- Ant-1.7 0.71 0.81 0.76 0.73 0.62 0.79 0.76 0.82 

8 Ivy-2.0- Camel-1.6 0.68 0.75 0.63 0.65 0.66 0.75 0.75 0.73 

9 Ivy-2.0- Xalan-2.4 0.72 0.82 0.72 0.77 0.73 0.82 0.78 0.80 

10 Xalan-2.4- Ant-1.7 0.63 0.73 0.70 0.66 0.65 0.72 0.73 0.76 

11 Xalan-2.4- Camel-1.6 0.64 0.69 0.65 0.60 0.53 0.66 0.69 0.74 

12 Xalan-2.4- Ivy-2.0 0.72 0.76 0.74 0.67 0.62 0.75 0.79 0.84 

Average Recall % 0.67 0.76 0.71 0.70 0.64 0.76 0.74 0.79 

Sr.No Dataset Decisi

on 

Tree 

(DT)  

Rando

m 

Forest 

(RF) 

Bagging Boosting Stacking 

DT RF AdaBoost 

DT 

AdaBoost 

RF 

DT RF 

1 Ant-1.7-Camel-1.6 0.60 0.68 0.64 0.65 0.64 0.67 0.71 0.73 

2 Ant-1.7-Ivy-2.0 0.61 0.82 0.77 0.79 0.66 0.83 0.83 0.87 

3 Ant-1.7-Xalan-2.4 0.77 0.80 0.77 0.78 0.64 0.79 0.76 0.82 

4 Camel-1.6- Ant-1.7- 0.68 0.73 0.71 0.70 0.69 0.72 0.67 0.72 

5 Camel-1.6- Ivy-2.0 0.78 0.84 0.77 0.81 0.74 0.84 0.77 0.81 

6 Camel-1.6- Xalan-2.4 0.75 0.78 0.79 0.79 0.74 0.80 0.74 0.80 
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5.3.5 Recall Comparison with and without Class Imbalance 

Another experimental results of model prediction shown that model average 

accuracy without employing class imbalance is high i.e., 87% for random forest (RF) 

for cross project defect prediction as compared to with class imbalance. But the 

careful analysis of other performance metrics like precision, recall and F1 score 

indicates that average recall of buggy class without handling class imbalance is 0.05 

which indicates that model prediction for buggy class is not efficient and model is 

overfitting the results by neglecting the buggy class instances. The class imbalance 

resolves this issue by generating equal samples of minority class for efficient model 

prediction. After employing the class imbalance, the recall of buggy class becomes 

0.27. The analysis of the same is shown in Table 5.11. 

 

Table 5.11: Prediction Analysis with and Without Class Imbalance 

7 Ivy-2.0- Ant-1.7 0.71 0.81 0.77 0.75 0.65 0.79 0.74 0.81 

8 Ivy-2.0- Camel-1.6 0.69 0.74 0.66 0.68   0.68 0.74 0.73 0.72 

9 Ivy-2.0- Xalan-2.4 0.75 0.82 0.75 0.79 0.76 0.82 0.77 0.80 

10 Xalan-2.4- Ant-1.7 0.65 0.74 0.72 0.69 0.66 0.73 0.72 0.74 

11 Xalan-2.4- Camel-1.6 0.65 0.71 0.67 0.63 0.58 0.68 0.70 0.72 

12 Xalan-2.4- Ivy-2.0 0.76 0.79 0.77   0.73 0.69 0.79 0.81 0.83 

Average F1-Score % 0.70 0.77 0.73 0.73 0.68 0.77 0.75 0.78 

Sr. 

No 

 

Dataset Without Class Imbalance With Class Imbalance 

RF 

Accuracy 

Precision 

of Buggy 

Class 

Recall 

of 

Buggy 

Class 

F1 

Score of 

Buggy 

Class 

RF 

Accura

cy 

Precision 

of Buggy 

Class 

Recall of 

Buggy 

Class 

F1 Score 

of Buggy 

Class 

1 PC1-PC3 0.87 0.21 0.02 0.04 0.86 0.39 0.25 0.31 

2 PC1-PC4 0.86 0.57 0.05 0.08 0.84 0.36 0.23 0.28 

3 PC1-CM1 0.87 0.33 0.05 0.08 0.85 0.32 0.29 0.30 

4 PC1-MW1 0.88 0.17 0.04 0.06 0.87 0.39 0.44 0.41 
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5.3.6 Average Comparison Results on Both Repositories 
 

The average comparison of all classifiers employed for model prediction is showed 

in table 5.12 and 5.13 for NASA and PROMISE repository respectively. The 

prediction results shown that RF have highest average accuracy on both data 

repositories.  The graph view of the same is shown in figure 5.3 and 5.4. 

 

Table 5.12: Average Prediction Performance Comparison for NASA Repository 

Prediction Models Average Accuracy % 

Decision Tree (DT) 82 

Random Forest (RF) 84 

BaggedDT 79 

5 PC3-PC1 0.91 0.43 0.15 0.22 0.84 0.21 0.39 0.28 

6 PC3-PC4 0.86 0.44 0.05 0.08 0.83 0.28 0.19 0.23 

7 PC3-CM1 0.86 0.25 0.05 0.08 0.81 0.26 0.26 0.26 

8 PC3-MW1 0.88 0.17 0.04 0.06 0.83 0.29 0.44 0.35 

9 PC4-PC1 0.91 0.40 0.16 0.23 0.84 0.2 0.31 0.24 

10 PC4-PC3 0.86 0.28 0.07 0.11 0.81 0.22 0.29 0.25 

11 PC4-CM1 0.85 0 0 0 0.81 0.26 0.26 0.26 

12 PC4-MW1 0.89 0 0 0 0.87 0.35 0.22 0.27 

13 CM1-PC1 0.91 0.3 0.05 0.08 0.87 0.24 0.21 0.22 

14 CM1-PC3 0.87 0.44 0.03 0.06 0.86 0.31 0.13 0.18 

15 CM1-PC4 0.85 0.13 0.02 0.04 0.82 0.21 0.11 0.14 

16 CM1-MW1 0.85 0.13 0.02 0.04 0.85 0.34 0.41 0.37 

17 MW1-PC1 0.91 0.55 0.1 0.17 0.87 0.24 0.39 0.30 

18 MW1-PC3 0.87 0.33 0.02 0.04 0.85 0.25 0.1 0.15 

19 MW1-PC4 0.85 0.17 0.02 0.03 0.84 0.29 0.11 0.16 

20 MW1-CM1 0.87 0.40 0.05 0.09 0.82 0.29 0.29 0.29 

Average 0.87 0.29 0.05 0.08 0.84 0.29 0.27 0.26 
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BaggedRF 78 

AdaBoostDT 75 

AdaBoostRF 84 

StackedDT 82 

StackedRF 81 

 

 

 

 

Figure 5.3: Average Prediction Performance Comparison for NASA Repository 

 

Table 5.13:  Average Prediction Performance Comparison for PROMISE Repository 

 

Prediction Models Average Accuracy % 

Decision Tree (DT) 69 

Random Forest (RF) 77 

BaggedDT 71 

BaggedRF 70 

AdaBoostDT 64 

AdaBoostRF 76 

StackedDT 74 

StackedRF 79 

82
84

79
78

75

84
82

81

PREDICTION PERFORMANCE 
COMPARISON FOR NASA REPOSITORY
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Figure 5.4: Average Prediction Performance Comparison for PROMISE Repository 

 

5.4 Summary 

The result of different experiments on NASA and Promise repository has been 

conducted to evaluate the model accuracy along with other software metrics like 

precision, recall and F1 score. The experimental result reveals that RF works best on 

the proposed model both as individual classifier and also for ensemble methods of 

bagging, boosting and stacking. The recall of buggy class also calculated to evaluate 

the model performance.  

69
77 71 70 64

76 74 79

PREDICTION PERFORMANCE 
COMPARISON FOR PROMISE 

REPOSITORY
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CHAPTER 6 

2. Conclusion 

 

6.1 Introduction 

In this chapter the conclusion of the proposed study will be discussed in detail. The 

results and future work will be discussed.  

 

6.2 Conclusion 

Software defect prediction is critical for detecting flaws early in the software 

development life cycle. This early detection and eradication of software flaws is 

critical for producing a cost-effective and high-quality software product. Though 

prior research has effectively used machine learning approaches for software defect 

prediction, when applied to imbalanced data sets, these techniques provide biased 

results. An imbalanced data collection has a non-uniform class distribution, with 

very few instances of one class compared to the other. The use of skewed datasets 

results in off-target predictions of the minority class, which is often thought to be 

more important than the majority class. Thus, efficiently handling unbalanced data 

is critical for the successful creation of a competent defect prediction model.  

This work is based on design of an efficient model for software bug prediction in 

cross project software’s by handling class imbalance issue. The random 

oversampling strategy was used to mitigate the data imbalance issues. The 

proposed designed model is implemented in Python. 2 individual and 3 ensemble 

classifiers are used to evaluate the model prediction accuracy across projects.  The 

datasets of two data repositories i.e., NASA and PROMISE are used. The 

performance of different classifiers is evaluated using classification accuracy, 

Precision, Recall and F1-measure metrics. The outcomes of the conducted 

experiment showed that Random Forest (RF) performed well both as in individual 

classifier and also in ensemble methods. RF have an average accuracy of 84% for 
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NASA and 77% for PROMISE repository. For ensemble methods AdaBoostRF has 

highest accuracy of 84% on NASA datasets and 79% with StackedRF on PROMISE 

datasets. One other statics highlights that recall of a buggy class with imbalance 

methods is high as compared with non-imbalance handling. 

 

6.3 Future Work 

The proposed work can be used to study the impact of different sampling strategies 

like SMOTE, and under sampling. Similarly, an intriguing future addition could 

include investigating the influence of various feature selection methodologies in 

order to select the best set of features for software defect prediction. One future 

direction is to investigate and compare the performance of ensemble classifiers with 

alternative resampling strategies, as data imbalance continues to be a problem that 

degrades the effectiveness of existing software defect prediction systems. Similarly, 

the proposed model can also be employed for other datasets to study the model 

prediction accuracy on them.  

  

6.4 Summary 

The conclusion of the proposed model has been discussed in detail The results 

reveals that model works best with RF classifier for both datasets. RF classification 

in ensemble methods is also outperforming DT. In the last the future direction of the 

proposed model has been proposed.  
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