Design and Implementation of a Software Bug
Prediction Model Using Machine Learning Technique

Author

Hamza Khizar
Registration Number
00000320415

Supervisor

Assoc Prof Dr. Fahim Arif

A thesis submitted to the faculty of Department of Computer Software Engineering, Military
College of Signals, National University of Sciences and Technology (NUST), Rawalpindi
in partial fulfillment of the requirements for the degree of MS in Computer Software Engineering

(September 2023)






Declaration

I, Hamza Khizar declare that this thesis titled "Design and Implementation of a Software
Bug Prediction Model Using Machine Learning Technique” and the work presented in

it are my own and has been generated by me as a result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a Master of
Science degree at NUST

2. Where any part of this thesis has previously been submitted for a degree or any

other qualification at NUST or any other institution, this has been clearly stated

3. Where I have consulted the published work of others, this is always clearly
attributed

4. Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work
5. Thave acknowledged all main sources of help

6. Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed myself

Hamza Khizar,
NUST00000320415 MSSE26

ii



Dedication

I thank Almighty Allah, The Most Gracious and The Most Merciful.
This thesis is dedicated to my loving family, whose unwavering support and
encouragement have been the cornerstone of my success. Their love and sacrifices

have inspired me to strive for excellence in my studies and in all aspects of my life.

iii



Abstract

Software Bug Prediction is an active research area and is being widely explored
with the help of Machine Learning technique. The goal of bug prediction models
is to identify potential software defects or bugs early in the development process,
enabling developers to take preventive actions and improve software quality.
Since bug prediction is now considered as an important measure of SDLC, there
is need to have an efficient bug prediction model. Presently transfer learning,
class imbalance and ensemble learning approaches are being researched much.
In this research work an efficient model design is proposed and implemented.
The proposed design caters the class imbalance issue of datasets as this is not
much touched in the past. Class imbalance can affect the model accuracy by
overfitting the model prediction results. The proposed design employ feature
engineering technique which is used to add more domain information in the
dataset for accurate prediction. Transfer learning is used to train and test the
model on different datasets to analyze how much of the learning is passed to
other dataset for cross project defect prediction; and ensemble method is utilized
to explore the increase in performance upon combining multiple classifiers in a
model. So, a model design is proposed which involve employing feature
engineering, class imbalance and ensemble methods using machine learning
technique for cross project defect prediction. Five NASA and four Promise
datasets are used in the study for experimental analysis. Decision Tree (DT) and
Random Forest (RF) are used as an individual base classifier. Three ensemble
methods of bagging, boosting and stacking are used. The results shown that

model attain the best accuracy with RF classifiers both as an individual and in
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ensemble methods. The model has highest accuracy of 84% with RF as an
individual classifier and also 84% with adaBoost in ensemble methods on NASA
dataset. Whereas in PROMISE dataset, again RF have highest accuracy of 77% as
an individual classifier and 79% with stacked ensemble method. Some other
experiments are also conducted to evaluate buggy class recall score and it reveals
that by using class imbalance, the recall of buggy class is high which indicates the

model accuracy for prediction bugs in datasets.
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Chapter 1

Introduction

1.1 Introduction

This chapter gives a general overview of the research work. It starts with an outline,
purpose and background review of the proposed research work. Then it describes
the motivation/ justification to carry out this work. The proposed methodology of
the dissertation is discussed. The objectives, scope and national needs of the research

work is also discussed. Finally, the sections of further chapters are defined.

1.2 Purpose

The goal of this research work is to use machine learning technique to design and
implement an effective software bug prediction model. The focus is on to design a
model by employing different parameters like feature engineering and class
imbalance issue. Class imbalance affects the model’s performance by over fitting
the model and neglecting prediction of a buggy class. The designed model is
implemented in Python. Two data repositories are used to access the accuracy of

the proposed designed model using different software metrics.

1.3 Background

Each day brings new change in technology, especially in the world of Information
Technology (IT). New software releases, new versions of old applications or
languages come up, or entirely new techniques and programs innate. With such a
rapid increase in software-based products, it has become a need to make these

products successful and avoid any sort of failure. Defective software modules have



a significant impact on the quality of software, causing cost overruns, delays in
delivery, and much higher maintenance expenses. Software Bug Prediction (SBP),
which can directly affect the quality and has gained substantial popularity in recent
years, is therefore the most crucial part of software.

A new dimension of mitigating the errors in software is being explored by the
researchers and practitioners of industry. SBP methods are implemented to
increase the efficiency, reduce failures, minimize resource loss and boost the
performance. Machine learning approaches have shown to be quite successful in
getting the desired outcomes for this purpose. Utilizing resources effectively for
evaluating and testing programming modules is one of the key goals of defect
prediction models. This helps in efficient allocation of resources in testing and
tixing of error prone modules and hence producing high quality products at lower
cost. Technically bug/defect predictor is a machine learning model applied on
historical software metrics data to predict defects in software modules. The
efficiency of model depends on quality of training data provided in addition to the

machine learning classification technique used.

1.4 Software Bug Prediction

Software bug prediction refers to the process of identifying and predicting potential
bugs or defects in software applications before they occur. This proactive approach
allows developers and testers to focus their efforts on specific areas of the code that
are more likely to have bugs, ultimately improving software quality and reducing
the number of defects that make it to production.

There are various techniques and methods used for software bug prediction,
including statistical analysis, machine learning, and data mining. These techniques
often make use of historical data, such as previous bug reports, system logs, and
code metrics, to identify patterns and indicators that can help predict the occurrence
of bugs.

One common approach in bug prediction is through the use of metrics or code



complexity measures. By analyzing certain code metrics, such as lines of code,
cyclomatic complexity, and code churn, developers can identify areas of the code
that are more prone to defects. For example, if a specific module has a high
cyclomatic complexity or has recently undergone many code changes, it may
indicate a higher likelihood of bugs.

Machine learning algorithms are also widely used in bug prediction. These
algorithms learn from historical bug data, code metrics, and other relevant
information to build models that can predict the likelihood of bugs in different parts
of the software. These models can then be used to prioritize testing efforts or allocate
resources more efficiently.

Bug prediction can bring several benefits to software development. By identifying
potential bugs early in the development process, developers can take preventive
measures to address them, reducing the cost and effort required for bug fixing. It
also helps in improving software reliability, reducing customer complaints, and
enhancing user satisfaction. However, it is important to note that software bug
prediction is not a foolproof solution. Predictive models are based on historical data
and patterns, and they may not account for unforeseen factors or changes in the
software development process. Therefore, bug prediction should be used as a
complementary technique to traditional testing and not as a replacement.

In conclusion, software bug prediction is a proactive approach to identify and
predict potential bugs in software applications. It leverages techniques like
statistical analysis and machine learning to analyze historical data and code metrics
to predict areas prone to defects. Bug prediction can help improve software quality,
reduce bug fixing efforts, and enhance user satisfaction, but it should be used in

conjunction with other testing methods.

1.5 Scope

The scope of software bug prediction is to identify and predict potential defects or

bugs in software systems before they occur. This can include various aspects such



as code quality, design issues, configuration errors, or vulnerabilities. It aims to
improve software quality and reduce the number of defects that occur in the
production environment. By predicting bugs in advance, developers can take
preventive measures to rectify the issues and avoid the negative consequences of
bugs, such as system failures, security breaches, or customer dissatisfaction.

The scope of software bug prediction includes both static and dynamic analysis
techniques. Static analysis involves examining the source code, design, or other
artifacts without executing the program, whereas dynamic analysis involves
monitoring the program during execution to identify issues.

Bug prediction can be applied throughout the software development life cycle,
starting from the initial design phase to the testing and maintenance phases. It can
also be used across different types of software projects, ranging from small-scale
applications to complex, large-scale systems. Its scope can vary depending on the
specific techniques and tools used. For example, some bug prediction approaches
focus on code-level defects, while others may consider higher-level architectural
issues or system-level vulnerabilities.

Overall, the scope of software bug prediction is to proactively identify and prevent
defects in software systems, thereby improving software quality and reducing the

potential negative impacts of bugs.

1.6 Problem Statement

The idea behind this research work is to develop a model or algorithm that can
accurately predict the occurrence and location of bugs or defects in software
applications. The goal is to identify potential issues early on in the development
process, enabling developers to proactively address them and improve the overall
software quality. This problem involves analyzing historical data, such as source
code metrics, bug reports, and version control information, to detect patterns or
indicators that can be used to predict the likelihood of future bugs. The challenge

lies in finding the right set of features and developing a predictive model that can



generalize well to new software projects.

1.7 Reason /Justification for the Selection of the Topic

The literature review and industrial needs evidently show that an efficient model
on this aspect of software development is warmly welcomed in market. Since the
world is rapidly shifting towards software-based products, therefore our reliance of
software has drastically increased. This gives rise to the idea of error-free software.
A lot of models, principles and techniques are followed to achieve this notion such
as small iterations, documentation, user interaction and well-organized process; still
some inevitable defects occur causing a great distress to the software users and
owners. Therefore, in order to mitigate these defects an efficient model for
predicting them before they are born is necessary. This will give a boost in the

performance of the final product and save much time and resources.

1.8 Methodology

The research aims to design an efficient model for software bug prediction and it
involves 3 major steps: design of a model, implementation of a model and analysis
of a model using different metrics. The design of a model involves data
preprocessing, feature engineering, handling class imbalance and employing
different machine learning classifiers for prediction. The process followed by
implementing the same model in Python with individual classifiers and with
ensemble methods also. The analysis includes prediction model accuracy, Precision,
Recall and Fl-score on two data repositories. The model detailed design and

implementation details will be covered in Chapter 3 and 4 respectively.

1.9 Obijectives

The main objectives of the study include

(i) Design of an efficient model for software bug prediction using machine

learning techniques



(ii) Implementation of the same model in python language using datasets

obtained from popular open-source software

(iii) Analysis of the implemented model using different performance measures for

different databases

1.10 Relevance to National Needs

During the last decade, Pakistan has seen significant improvement in the software
development with the sudden increase observed in software product usage globally.
However, due to increased complexity, short time to market and high customer
demands, often a software crisis or failure occurs which consume time and budget.
This research will provide insights to predict the defects that become a critical
challenge for system efficiency. The early defect prediction will help improve the
software reliability and performance. This, in return, will give a major push to the

national prosperity in IT world globally.
1.11 Advantages

It is necessary to discover the faults at early phase of software development to
reduce the development cost and increase the success rate. This research will help
to achieve this task in a well-structured way. Software testing, at the last stage of
development cycle becomes painful with so many bugs coming up but with optimal

prediction techniques, it will be made convenient and quicker.

1.12 Area of Application

This research will be utilized in the software industry, in detecting the bugs and
their probable causes with the most efficient technique or model. All the software-
based products will see a great spike in their performance and efficiency, be it
medical software, safety critical software, e-commerce websites, home-based

software products etc.



1.13 Thesis Outline

In the following chapters of thesis, different sections of research work are discussed

at length.

Chapter 1 Introduction: An Overview of proposed research topic that includes

introduction, motivation, scope, objectives and problem statement

Chapter 2 Related Work: Discussion and highlighting of work already carried out

on this topic by other researchers.

Chapter 3 Proposed Design and Methodology: The design and methodology of the

proposed Model is discussed in detail.

Chapter 4 Implementation: Explanation of the proposed model implementation in

Python

Chapter 5 Results and Discussion: Model results on two data repositories are

discussed using different software metrics

Chapter 6 Conclusion and Future Work: Final remarks about proposed model and

future expansion is elaborated

1.14 Summary

In this chapter, introduction of research work is provided by giving background of
the problem discussed. The scope and reason for choosing this research work is
discussed. The proposed methodology, objectives, national needs, and advantages
provide a bit more understanding about research work. At the end, area of

application and organization of thesis is provided.



Chapter 2
Related Work

2.1 Introduction

In this chapter the already published work with relevance to software bug
prediction, feature engineering and class imbalance is reviewed. It provides a

general overview of the previous research work in this field.

2.2 Software Bug Prediction (SBP)

There are various approaches to create software bug prediction models mainly
depending on factors like the required output, availability of datasets, features in a
dataset, class imbalance handling and ML classifiers etc. The previous models often
ignored some of the above-mentioned factors, which made them less effective. Later
on, with the rapid growth of complexity of a software, the domain of software bug
prediction became a popular research area in the field of software engineering.
Many researchers are attracted towards this field proposing a variety of
frameworks, models and techniques for bug prediction.

There are additional researchers who have concentrated on enhancing the currently
utilized methods and models. Despite several efforts, there are still significant
uncertainties in the field of software bug prediction research. Although numerous
models and frameworks have been put forth, every method has its own drawbacks.
To find bugs, several machine learning techniques are utilized, and datasets are
made freely accessible so that practitioners can simply run their experiments
without worrying about data. [1]

It is necessary to review the experimental data obtained on these techniques through
the current studies in order to make machine learning techniques practicable in the
context of bug prediction. [1] The figure 2.1 shows the elements what normally is

8



included in literature review in the area of SBP. Often, there are surveys or reviews
conducted, discussions of previously used techniques, their pros and cons, the latest
trends and famous topics as all this is very much required for a researcher to conduct

a relevant and fruitful research project.

Highlights new
Svstematic Literature

and widely used
Reviews / trends

Literature Review in
the Domain of SBP

Proposed technigue

improvements, Discussion of

new frameworks/ software and
methods. performance metrics

Figure 2.1: Literature Review in the domain of Software Bug Prediction

2.3 Machine Learning Techniques

From the literature review, it is found that various frameworks and techniques have
been proposed to perform software bug prediction by combining data
preprocessing, feature engineering, class imbalance and ensemble methods in a
systematic manner to build models. Machine learning techniques, such as decision
trees, random forests, and support vector machines, can be applied to predict
software bugs. These algorithms learn from labeled datasets and develop models to
classify whether a code segment is likely to contain a bug or not. Researchers have
preferred them in order to ease the evaluation of the performance of their work.
Apart from the mentioned approaches, different kinds of preprocessing methods

are used in the cleaning of data and feature selection or feature ranking methods

9



are also utilized to reduce the dimensionality of dataset. After data cleaning,
different classifiers are applied on the dataset, either individual classifiers or

ensemble methods, to train the model.

2.3.1 Class Imbalance Handling

The problem of class imbalance has not been studied extensively in the last years.
However, it impacts the model performance and an important factor which needs
to be consider when designing a potential model. The following table 2.1 shows a
list of related works using class imbalance for SBP. It shows the aim of study,

ensemble method, dataset, performance measure and results.

10
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2.3.2 Cross Project Defect Prediction:

Cross-project defect prediction refers to predicting defects in a target project based
on data from other projects. This approach is used when the target project has
limited or no historical defect data available, but there is sufficient data from other
similar projects. The idea is to transfer the knowledge and patterns learned from the

source projects to the target project.

Cross-project defect prediction uses machine learning techniques to build a
predictive model using data from multiple projects. It involves identifying relevant
features (e.g., code complexity, developer experience, etc.) and training a model on
historical defect data from different projects. This model is then applied to the target

project to predict the likelihood of defects in the code.

There are various challenges in cross-project defect prediction, including the
differences in software characteristics, coding practices, and development
environments across projects. These differences can affect the accuracy and
effectiveness of the predictive model. Therefore, it is important to carefully select
appropriate source projects that have similarities with the target project and

consider the transferability of the learned models.

Cross-project defect prediction can be beneficial for projects that have limited defect
data, especially for early defect detection and prioritizing limited testing resources.
However, it should be used as a supplementary approach and not solely rely on the
predictions, as the transferability and generalizability of the models may vary across
projects. The following table 2.2 shows a list of related works performing SBP for

cross-project.
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2.3.3 SBP Using Ensemble Methods

Ensemble methods in software bug prediction refer to the combination of multiple
prediction models or algorithms to improve the accuracy and reliability of defect
prediction. These methods combine the predictions from different models in
various ways, such as bagging, boosting, stacking, averaging, voting, or weighting,
to make a final prediction. These methods have been shown to improve prediction
performance compared to single models. They benefit from the diversity of the
individual models and leverage their strengths to make more accurate and robust

predictions. The following table 2.3 shows a list of related works using ensemble

methods for SBP.
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Table 2.3: SBP Using Ensemble Methods
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2.4 Summary

This chapter sheds light on the previous work done in the domain of software bug
prediction, the approaches, methods, advantages and limitations of their work is
shown. The widely used dataset, tools and approaches for creating a prediction

model has also been considered.

19



CHAPTER 3

PROPOSED DESIGN & METHDOLOGY

3.1 Introduction

This chapter gives details overview of proposed design, its theoretical concept and
methodology. The design of the proposed research project is discussed in detail and
the methodology is also described. The analysis of the used data set, their features,
relevancy of features and metrics are also discussed. The machine learning classifier,
tools, and performance metrics used in this work are also explained. This chapter
concludes with design and methodology of efficient bug prediction model using
machine learning technique that will help to predict software bugs with greater

accuracy.

3.2 Theoretical Concept of Proposed Design / Methodology

The proposed research project involves a design and implementation of an efficient
model for software bug prediction. It requires clean dataset with relevant features,
efficient classifier and valid training and testing of model for efficient bug
prediction. For this purpose, distinct methods are used to build the model more
robust and novel among the previously built models discussed in the literature
survey. These methods are discussed as follows:

e Transfer Learning

e Ensemble Method

e Class Imbalance

e Feature Engineering

3.2.1 Transfer Learning

Software bug prediction can be performed within the same project or on cross-
20



projects. Transfer learning is used in cross-project software bug prediction and it
refers to the use of pre-trained models on one project and predicts bugs in another
project. This approach recognizes that software projects often share common
characteristics and patterns, even across different domains or applications. The
typical process of transfer learning in cross-project bug prediction involves the

following steps:

e Pre-training: A model is trained on a source project(s) that contains
labeled bug data. The model learns to understand the underlying patterns
and features associated with bug-prone code.

* Knowledge Transfer: After pre-training, the trained model's knowledge
is transferred to a different target project that has limited labeled bug data.
This step involves adapting the pre-trained model to the target project by
fine-tuning or retraining it on the available labeled bug data in the target
project.

¢ Prediction: Once the transfer learning process is complete, the adapted
model is used to predict bugs in the target project. The model leverages
the knowledge gained from the source project to make accurate

predictions on the bug-proneness of the target project's code.

3.2.1.1 Benefits of using transfer learning in cross-project bug prediction
Limited labeled data requirement: Using knowledge transferred from a source
project, the target project can benefit from the pre-trained model's understanding

of bugs without requiring a massive amount of labeled bug data.

Improved bug prediction accuracy: The pre-trained model has already learned
general patterns and features associated with bugs, making it more likely to make

accurate predictions on the target project's code.

Time and resource efficiency: Transfer learning allows for the reuse of pre-trained

models, reducing the time and resources needed to train a model from scratch for

21



each project. This approach can speed up the bug prediction process for new

projects.

While transfer learning offers promising advantages, it is crucial to consider the
differences between the source and target projects such as codebase, programming
language, or domain. The transferability of knowledge depends on the similarity
and level of commonality between the projects. Therefore, careful analysis and
adaptation of the pre-trained model to the target project are necessary to ensure
effective bug prediction.

In this research work, the cross-project defect prediction is performed where source
and target data are from different projects. The model is built using one project
considered as source project and employed for prediction on another project called
as target project. The features in both the projects are kept same but feature

engineering technique is employed for model efficient training and prediction.

3.2.2 Ensemble Method

Machine learning techniques called ensemble methods combine several models or
algorithms to increase overall performance and prediction accuracy. The underlying
idea is that by combining weak models, a stronger and more accurate model is
obtained. There are several popular ensemble methods, including:

Bagging: This method involves training multiple models on different subsets of the
training data and combining their predictions through majority voting or averaging.
The most commonly used algorithm for bagging is the Random Forest, which
combines multiple decision trees.

Boosting: In boosting, models are trained sequentially, where each subsequent
model focuses on the instances that the previous models struggled to predict
accurately. The final prediction is made by combining the outputs of all models.
Gradient Boosting (XG) and Adaptive Boosting (AdaBoost) are popular boosting
algorithms.

Stacking: In stacking, multiple models are trained and their forecasts are combined
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using a meta-learner or meta-model, a different model.

The meta-learner learns to combine the predictions of the base models, potentially
achieving better performance.

Voting: Voting methods combine the predictions of multiple models by majority
voting or weighted averaging. There are different types of voting, such as hard
voting (majority voting) and soft voting (weighted averaging based on predicted
probabilities).

Ensemble methods provide better predictive performance than using a single model
alone in many cases. They help in reducing overfitting, improving generalization,
and handling bias-variance trade-off. Ensemble approaches, however, could need
more training data than a single model and can be computationally expensive. In
this research work Bagging, Ada boosting and stacking are employed for bug

prediction.

3.2.3 Class Imbalance

Class imbalance occurs when the number of instances in one class is much lower
than the number of instances in another. In the context of software bug prediction,
this means that the number of instances representing bugs (the minority class) is
much smaller than the number of instances representing non-bugs (the majority
class).

Class imbalance can pose challenges in software bug prediction because traditional
machine learning algorithms tend to favor the majority class, leading to biased and
inaccurate predictions. This is because these algorithms are typically designed to
minimize overall error, which leads them to focus on the majority class and ignore
the minority class. As a result, the model may have poor performance in predicting
the minority class (bugs).

To address the issue of class imbalance in software bug predictions, several
techniques can be employed:

Oversampling the minority class: To boost the minority class's representation in
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the training data, this entails creating synthetic instances of the minority class.
Techniques like SMOTE (Synthetic Minority Over-sampling Technique) can be used
to create synthetic instances based on the existing minority class instances.
Undersampling the majority class: This involves lowering the number of instances
in the majority class to match the number of instances in the minority class. This can
be done by randomly removing instances or using more advanced techniques like
Tomek Links or Cluster Centroids.

Using ensemble methods: Ensemble methods combine multiple models to make
predictions. They can be effective in dealing with class imbalance by combining
models that are trained on different subsets of the data or using techniques like
boosting, where the focus is shifted towards the minority class.

Adjusting class weights: Many machine learning algorithms provide the option to
assign different weights to different classes. By assigning higher weights to the
minority class, the algorithm gives it more importance during training and
evaluation.

Changing the evaluation metric: Instead of using traditional metrics like accuracy,
precision, recall, or Fl-score, evaluation metrics specific to imbalanced datasets,
such as Area Under the Precision-Recall Curve (AUPRC) or Cohen's kappa
coefficient, can be used to assess the model's performance more accurately.

It is significant to remember that the technique selected relies on the particular
situation and dataset. Different techniques may work better in different scenarios,
so experimentation and evaluation are crucial to finding the most effective
approach. In this research work, oversampling technique is employed to handle the

class imbalance in the datasets.

3.2.4 Feature Engineering
Feature engineering is a crucial step in building software bug prediction models. It
involves selecting, transforming, and creating relevant features from raw data that

can effectively represent the characteristics of software systems and help improve
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the performance of bug prediction models. Some common feature engineering
techniques used in software bug prediction includes:

Metrics-based features: Software systems often generate various metrics, such as
code complexity, code churn, and code ownership. These metrics can be used as
features to capture important aspects of software systems that may impact bug
occurrence. For example, the number of code changes or the number of developers
modifying a particular module can be important indicators of bug-prone areas.
Textual features: Bug reports, source code comments, and documentation can be
valuable sources of information for feature engineering. Techniques like text
mining, natural language processing (NLP), and information retrieval can be used
to extract useful features from these textual data. For example, keywords related to
software modules, error messages, or specific bug-fixing activities can be important
indicators of bug-prone areas.

Temporal features: Considering the temporal aspect of software development can
be useful in bug prediction. Features such as the number of bugs reported in the
past, the time since the last bug fix, or the number of code changes over time can
provide insights into the dynamics of the software system and potentially help
identify bug-prone periods.

Social features: In collaborative software development environments, features
related to social interactions among developers can be informative. For example,
features like the number of code reviews, code ownership distribution, or developer
network centrality can capture the social dynamics of the development process and
potentially influence bug occurrence.

Code structure and dependencies: Features related to the software code structure
and dependencies can also be valuable. These features might include the size of code
modules, code coupling and cohesion measures, or architectural properties of the
system. Such features can provide insights into the structural complexity and
organization of the software, which can impact bug occurrence.

Domain-specific features: Depending on the specific software domain, additional
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features related to the application domain can be considered in feature engineering.
For example, if the software is dealing with financial data, features related to
financial metrics or risk indicators can be incorporated.

It is important to note that effective feature engineering requires domain knowledge
and a deep understanding of the software development process. Iterative
refinement and experimentation with different feature combinations are often

necessary to achieve optimal performance in bug prediction models.

3.3 Proposed Model

The model design is proposed to carry out efficient prediction of bugs in a software.
In the proposed design, transfer learning, feature engineering, class imbalance and
ensemble methods are used for efficient bug prediction. The block diagram of the
proposed design is shown in Figure 3.1 which has mainly five parts i.e., labeled data
availability, handling class imbalance, feature engineering, creating training set and

building prediction model. The detailed diagram of the same is shown in Figure 3.2.

Tast
Instances

» Clazsifiers

Feature Engineering/ Class Imbalance Handlng
1) Labeled Data 1) Featore Engineering  J3) Handling Clazz Imbalance  4) Creating Training Instances &) Model Building &

(Buggy/Clean) Prediction

Figure 3.1: Block Diagram of Proposed Model Design
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Figure 3.2: Detailed Diagram of Proposed Model Design

3.3.1 Data Set:

The effectiveness of the suggested model is assessed on five NASA benchmark
datasets and four datasets from Promise Repository. These datasets are publicly
available and consist of historical data of software modules. Many studies have
utilized these datasets in their research and this is the primary reason of our interest
in them as it will be easier to compare our results with them. The selected datasets
include several features and a known output class that determines the defectiveness
of an instance. Based on data available for other features, this output class is
predicted by the prediction model. The datasets have many projects with various

attributes, sizes, and defective rates that help to check the generality of research. [55]

3.3.1.1 NASA MDP Data Set
From the NASA MDP Dataset's CM1, MW1, PC1, PC3, and PC4 subsets are selected,

which are made available to the public on the PROMISE Software Engineering
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Repository. Table 3.1 shows the features present in NASA datasets. McCabe and
Halstead source code extractors provide data from software for storage
management for receiving and analyzing ground data. These characteristics were
defined in the 1970s in an attempt to objectively characterize code characteristics

related with software quality. [56]

Table 3.1: Features in NASA Datasets

ID FEATURE NAME ID FEATURE NAME

L. LOC_BLANK 20 HALSTEAD_EFFORT

2. BRANCH_COUNT 21. HALSTEAD_ERROR_EST
3. CALL_PAIRS 22, HALSTEAD_LENGTH

4. LOC_CODE_AND_COMMENT 23. HALSTEAD_LEVEL

5: LOC_COMMENTS 24. HALSTEAD_PROG_TIME
6. CONDITION_COUNT 25. HALSTEAD_VOLUME

7. CYCLOMATIC_COMPLEXITY 26. MAINTENANCE_SEVERITY

8. CYCLOMATIC_DENSITY 27 MODIFIED_CONDITION_COUNT

9. DECISION_COUNT 28. MULTIPLE _CONDITION_COUNT

10. DECISION_DENSITY 29. NODE_COUNT

11. DESIGN_COMPLEXITY 30. NORMAL_CYCLOMATIC COMPLEXITY
12. DESIGN_DENSITY 31 NUM_OPERANDS

13. EDGE_COUNT 32. NUM_OPERATORS

14. ESSENTIAL_COMPLEXITY 33. NUM__UNIQUE_OPERANDS

15. ESSENTIAL_DENSITY 34. NUM_UNIQUE_OPERATORS
16. LOC_EXECUTABLE 35. NUMBER_OF_LINES

17. PARAMETER_COUNT 36. PERCENT_COMMENTS

18. HALSTEAD_CONTENT 37. LOC_TOTAL

3.3.1.2 Promise Dataset

The data in Promise dataset refers to open-source Java systems and ant-1.7, camel-
1.6, ivy-2.0 and xalan-2.4 are selected for experiments in this research work. The
features present in them are shown in table 3.2. The table shows all of the twenty
features present in the dataset. The first column displays the feature ID while the
second and third column shows the feature name and detail respectively. These IDs

are used in another table to show the selected features which are used in this study.
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Table 3.2: Features in PROMISE Datasets

ID FEATURE NAME FEATURE DETAIL

1. wine Weighted methods per class

2. dit Depth of inheritance tree

3. noc Number of children

4. cbo Coupling between object classes

5. rfc Response for a class

6. lcom Lack of cohesion in methods

7. ca Afferent couplings

8. ce Efferent couplings

9. npm Number of public methods

10. lcom3 Lack of cohesion in methods, different from LCOM
11. loc Lines of code

12. dam Data access metric

13. moa Measure of aggregation

14. mfa Measure of functional abstraction

15. cam Cohesion among methods of class

16. ic Inheritance coupling

17. c¢bm Coupling between methods

18. amc Average method complexity

19. max_cc Maximum McCabe’s cyclomatic complexity
20. avg cc Average McCabe’s cyclomatic complexity

3.3.2 Data Preprocessing

First step in the proposed design after dataset selection is data preprocessing. Two
version of NASA datasets are provided by [57]. DS’ refers to version of dataset that
includes duplicate and inconsistent instances whereas DS” refers to dataset that
does not include redundant and inconsistent instances. Originally, these datasets
were available at NASA website; however, they are removed from this source.

Backup of 12 cleaned NASA datasets is available at [58]. 5 cleaned and widely used
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datasets are selected from the available datasets available at [58] which include
CM1, MW]1, PC1, PC3, PC4. Previous studies have already discussed and used these
cleaned versions of datasets in their experiments. The other four datasets have been
taken from PROMISE repository available at [59]. They contain 20 Object Oriented
metrics as independent features and defect-proneness of class as dependent

variable. The criteria of cleaning as stated in [57] is shown in Table 3.3.

Table 3.3: Cleaning Criteria of NASA Dataset

Sr. CATEGORY OF DATA QUALITY DESCRIPTION

No

1. Identical cases In this case multiple instances have same
values for all features including class label

2: Inconsistent cases This is the situation where two or more

instances have same values for all features

except for class label.

This case refers to instances that contain

one or more missing observations.

In this situation, an instance has two or
more metric values that violate some ref-
erential integrity constraint. For example,
LOC TOTAL is less than COMMENTED
LOC. However, COMMENTED LOC is a
subset of LOC TOTAL.

3. Cases with missing values
4. Cases with conflicting feature values
5. Cases with implausible values

This case refers to instances that violate
some integrity constraint. For example,

value of LOC=1.1

3.3.3 Feature Engineering

In the proposed design, Domain-specific features engineering is explored.
Depending on the existing five features of software domain which includes
BRANCH_COUNT, CONDITION_COUNT, CYCLOMATIC_COMPLEXITY,
DECISION_COUNT and NUMBER_OEF_LINES are used to create an additional
feature and added in the model training phase. This feature helps model to learn
more efficiently that at a particular threshold the features have specific value of

being buggy or not.
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3.3.4 Handling Data Class Imbalance

The literature review suggest that the problem of Class imbalance had not been
studied in detail. However, it has an important role in model prediction capability.
Keeping this in view, the class imbalance has been incorporated in the proposed
design. There are many techniques as discussed above to cater class imbalance, but
in the proposed design, Oversampling has been used which Oversample the
minority class. It involves generating instances of the minority class to increase its
representation in the training data. The notion of “Yes” indicates that there is a bug
in data instance and “No” indicates that there is no bug in the data instance. The

class information of all data sets before and after class imbalance have been shown

below in table 3.4.
Table 3.4: Class Imbalance Handling
Sr.No. Dataset Dataset Class Info Dataset Class Info After
before Class Imbalance Class Imbalance
Yes No Yes No
1 CM1 42 285 285 285
2 MW1 27 226 226 226
3 PC1 61 644 644 644
4 PC3 134 943 943 943
5 PC4 177 1110 1110 1110
6 Ant-1.7 166 579 579 579
7 Camel-1.6 188 77 77 777
8 Ivy-2.0 40 312 312 312
9 Xalan-2.4 110 613 613 613

3.3.5 Machine Learning Classifier

A model is the result of the classifier's machine learning, whereas a classifier is an
algorithm or collection of rules used to categorize or classify data. The model is
trained using the classifier, and the classifier is then used by the model to categorize

the data. In the scenario of this study, this step consists of choosing individual
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classifiers that were mostly used in artificial intelligence and the integration of well-
known algorithm to form an ensemble-learning model. In the first step, I chose two
individual classifiers i.e., Decision Tree and Random Forest. These are frequently
used classifiers and give good performance in defect prediction. [60,61] In the
second step, ensemble-learning method is proposed where the trained base classifier
in the first step, used ensemble classifiers to create a model. For ensemble methods
Bagging, AdaBoost and Stacking are used. The source dataset after passing through
preprocessing, feature selection and class imbalance phase was trained using these
individual classifiers and then with ensemble method. Trained model was then
tested on source dataset to see which classifier achieved better accuracy values. On
the other hand, target dataset is also preprocessed and then by using the same
trained and tested model, prediction is performed on target dataset. The Individual

and ensemble classifiers used in this study are descried below:

3.3.5.1 Decision Tree

A graphical representation of a series of decisions is called a decision tree, that lead
to a particular outcome. It is a way of visualizing and understanding the decision-
making process. Every node in the tree indicates a decision or a test on a particular
tfeature, and each branch represents an outcome or a possible result of that decision
or test. The tree starts with a root node and ends with leaf nodes, which represent
the final outcomes.

Decision trees are commonly used in various fields such as data mining, machine
learning, and business analytics. They are particularly useful when dealing with
classification or regression problems, where the objective is to forecast or estimate a
target variable based on a set of input variables or features.

Some advantages of using decision trees include their simplicity and
interpretability. Decision trees are easy to understand and visualize, making them
useful for explaining the logic and reasoning behind a particular decision. They can

also handle both categorical and numerical data, making them suitable for a wide
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range of problems.

3.3.5.2 Random Forest

An ensemble learning technique for classification and regression applications. It is
a type of supervised learning algorithm that combines multiple decision trees to
make predictions.

In Random Forest, multiple decision trees are created using a subset of the training
data and a random subset of the input features. Each decision tree is trained
independently on the different subsets of data to generate a prediction. During
prediction, the random forest algorithm takes the majority vote from all the decision
trees to make the final prediction.

Random Forests have several advantages over a single decision tree. They reduce
overfitting by creating multiple decision trees and combining their predictions. They
can handle a large number of input features and are able to capture non-linear
relationships between features and the output variable. Random Forests are also
capable of handling missing values and outliers in the data.

Random Forests have various applications and are commonly used in fields like
tinance, healthcare, and e-commerce. They can be used for predicting stock prices,

diagnosing diseases, and recommending products to users, among other tasks.

3.3.5.3 Bagging

Bagging, also known as bootstrap aggregating, is a technique used in machine
learning for improving the accuracy and stability of models. It involves creating
multiple subsets of the original dataset through random sampling with replacement,
training a separate model on each subset, and then combining their predictions
through averaging or voting.

Bagging is commonly used with decision trees, where each model in the ensemble
is trained on a different random sample of the training dataset. As each model may

have different strengths and weaknesses, the combination of their predictions can
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lead to better overall performance.

Bagging helps to reduce overfitting by inducing diversity among the models, as each
model is trained on a slightly different subset of the data. It also helps in reducing
bias by reducing the variance of the models' predictions.

Bagging can be used for both regression and classification tasks. In the case of
regression, the final prediction is usually the average of the predictions from each
model. In classification, the final prediction can be determined by majority voting
or by taking the class with the highest probability.

Overall, bagging is a powerful technique for improving the accuracy and robustness
of machine learning models, especially when dealing with complex and noisy

datasets.

3.3.5.4 AdaBoost

AdaBoost is an ensemble learning method that combines multiple weak classifiers to
create a strong classifier. It works by sequentially training weak classifiers on different
subsets of the training data. In each iteration, the algorithm gives more weight to
misclassified samples, so the subsequent weak classifiers focus on correctly
classifying these samples. The final classifier is a weighted combination of the weak
classifiers, where the weights are determined based on their individual performance.

Advantages of AdaBoost:
e AdaBoostis a versatile algorithm that can be used with various base classifiers.

e It is less prone to overfitting, as the algorithm focuses on misclassified

examples in each iteration.

e It performs well in practice and has been widely used in various domains of
machine learning,.
3.3.5.5 Stacking
Stacking is an ensemble learning method that combines multiple classifiers or
regression models to improve the overall performance. It involves training multiple
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models, also known as base models or learners, on a given dataset. These base
models can be of any type, such as decision trees, support vector machines, or neural
networks.

The stacking ensemble method consists of two stages:

1. Base Models Training: In this stage, various base models are trained using
the input data. Each base model is trained on a portion of the dataset, either
through random sampling or specific strategies such as k-fold cross-
validation. The predictions of these base models are then stored for further
use.

2. Meta-Model Training: In this stage, a meta-model, also called a blender or
stacking model, is trained using the predictions from the base models. The
meta-model learns to combine the base models' predictions and generate a
final prediction. This can be achieved through multiple approaches, such as
averaging the predictions, using a weighted sum, or training another model

on top of the base model predictions.

The stacking ensemble method can provide better predictive performance
compared to using individual models because it leverages the diversity of the base
models. Each base model may have different strengths, weaknesses, and biases, and
by combining their predictions, the stacking model can compensate for these
differences and make more accurate predictions.

One important consideration in stacking is avoiding overfitting. Since the base
models are trained on the same dataset, there is a risk of overfitting if the stacking
model simply memorizes the base models' predictions. To mitigate this, techniques
like cross-validation and regularization can be applied.

Overall, the stacking ensemble method is an effective methodology for combining

multiple models to generate a more robust and accurate prediction model.

3.3.6 Performance Metrics

The performance of prediction model is evaluated based on certain evaluation
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criteria and are generated through confusion matrix, which includes Accuracy,
Recall, Precision, and Area Under Receiver Operating Characteristics Curve (AUC-
ROC), F-measure etc. However, in this study Accuracy, one of the most widely used
performance metric is used. [61] These metrics help to quantify the performance of

machine learning models. [62]

3.3.6.1 Confusion Matrix

A specific table known as the confusion matrix is used to evaluate the effectiveness
of machine learning algorithms. Each column of the matrix depicts the instance
belonging to the predicted class whereas each row shows the actual class instance
or vice versa. This matrix briefly represents the result given by the testing algorithm
by providing a report of the number of True Positive (TP), False Positives (FP), True
Negatives (TN), and False Negatives (FN). [63]
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Figure 3.3: Confusion Matrix
3.3.6.2 Accuracy

The ratio of the correctly predicted instances to the total number of instances by the

classifier is called accuracy. It measures the hit and miss of the classifier.
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TP+TN+FP+FN (1)
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3.3.6.3 Precision
Precision is defined as the percentage of accurately predicted positive instances by

the classifier out of all positively classified instances.

Preciai TP
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3.3.6.4 Recall
The proportion of correctly classified positive examples to total positive instances

for a given class. It is also referred to as true positive rate or sensitivity and it counts

the number of hits of the classifier for the class.

TP
TP+ N 3)

Recall =
3.3.6.5 F1 Score Measure
It is the harmonic mean of recall and precision.

(2 + Recall # Precision) 4
| Recall + Precision) (4)
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3.4 Summary

This section concludes and briefly highlights the major parts of the proposed design.
It includes the theoretical approach used to make this model. The design of the
proposed model is discussed that involves preprocessing, feature engineering,
transfer learning, handling class imbalance and ensemble learning method. The data
sets, all of their features and then the feature engineering step is described.
Moreover, the classifiers used in this model and the performance metrics which will
be used to calculate the efficiency of model are also discussed. In short, the technical

approach to make the software defect prediction model is described.
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CHAPTER 4

Implementation

4.1 Introduction

In this chapter the implementation details of proposed design are discussed. It gives
details overview of used language, hardware, software requirements and other

information related to model implementation.
4.2 Environment (Hardware and Software)

Google Colab environment is used for the implementation of the proposed model.
Python 3.10.12 is used for implementation. 8 GB RAM with windows 10 on Core i7
PC is used in this research work. The libraries used in this model are sklearn,

imblearn, pandas and numpy. For plotting the graphs matplotlib library is used.

4.3 Implementation Details

The implementation details of all steps mentioned in the previous chapter are

discussed in detail as below:

4.3.1 Data Pre-Processing (Step 1)

To normalize the dataset, first the null values and Noise is checked and removed

from the dataset.
4.3.1.1 Null values and Noise

The repository has null values and noise in the form of missing and duplicated rows.
The null values are first identified and then removed by replacing with zero. Noise
is reduced from the dataset by reducing redundant data, allowing our trained
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algorithm to identify defects more correctly.
Implementation Steps:

To address the issue of Null, NAN, and noise in the dataset, the following steps are

performed:
1. Read CSV File
2. Remove all unnecessary columns, i.e., name and version
3. Use panda’s isnull (). sum () method on the data retrieved from CSV file
4. This method traverses all columns and sum number of null values in them
5. Use panda’s fillna () method to fill the null values with 0.
6. Use panda’s isna () method on the data retrieved from CSV file
7. This method traverses all rows in the dataset and highlight the NAN values.
8. Use panda’s fillna () method to fill the NAN values with 0
9. Use panda’s duplicated method on the data retrieved from CSV file

10. Duplicating method of panda’s library, traversing each row in the dataset one

by one across the file and picking the duplicated rows.
11. Use pandas’ method drop_duplicates on the data retrieved from the CSV file

12. Use drop_duplicates method to eliminate all the retrieved duplicated rows

from the dataset.
4.3.1.2 Dataset Scaling

The data distribution gap in the datasets is filled after removing the null values and

noise. Standard Scaler is a useful approach that is used as a preprocessing step to
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standardize the range of functionality of the input dataset. Some factors assessed at

different scales do not contribute equally to model fitting and model learned

function and may result in bias. To address this potential issue, feature-wise

standardized (u=0, o =1) is typically utilized prior to model fitting.

Implementation Steps:

1.

4.3.1.3

Read source CSV File

Split the dataset into independed variables features and depended target

variable.
Grouped the independed variables features set

Used the sklearn standardscaler feature and passed the independed variables

features set to it

Standard Scaler removes the mean and scales each feature/variable to unit

variance. This operation is performed feature-wise in an independent way.

The new scaled values of all independed features are saved in new data

frame.
The implementation code of the above procedure is as follows:

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()

X_scaled = scaler.fit_transform(X_res)

Handling Multiclass Nature of Promise Dataset:

After removing null values and noise, the Promise dataset is converted to 2 class

problem as this dataset is of multiclass nature. The multi-class nature of the dataset

is described visually in the Figure 4.1 below.
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The detailed analysis about classes in Promise Dataset reveals that most of the
classes have much less data. To get better results, we kept class 0 but combined the
classes with the bug labels 2,3,4,5,6,7 as 1. This indicated that Class 1 contained all
of the bugs found in Classes 2, 3, 4, 5, 6, and 7. This step is performed to collect as

much data as possible for training the model.

ant-16

250

Figure 4.1: Multiclass Data of Ant Dataset
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Implementation Steps:
To resolve the multiclass issue, following steps were performed:
1. Read CSV File of Promise dataset

2. Use NumPy’s, where () method to traverse the target variable and highlight
the values equal or greater than 1.

3. Replace all the highlighted values with lin the CSV File.

4.3.2 Feature Engineering (Step 2)

For the efficient prediction of bugs by the proposed model, the concept of feature

engineering has been incorporated.
Implementation Steps:

1. Read CSV File of dataset

2. Define a new variable named “eval”
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3. Define a condition combining 5 existing features of a dataset, set a threshold
value of each feature and used logical operator AND.

4. Insert a record in new feature when the condition of AND operator becomes
“TRUE”

5. Convert the new feature to data frame and add it in the CSV file.

6. Transverse the newly added feature values and replace the True values with 1

and False values with 0.
7. The implementation code of the above procedure is as follows:

eval = (data.BRANCH_COUNT < 200) & (data. CONDITION_COUNT < 250) &
(data. CYCLOMATIC_COMPLEXITY < 100) & (data.DECISION_COUNT < 150)
& (data.NUMBER_OF_LINES < 500)

data['eval'] = pd.DataFrame(eval)

data['eval'] =[1 if e == True else 0 for e in data['eval']]

4.3.3  Class Imbalance (Step 3)

The proposed model also addresses the issue of class imbalance. In the proposed
work, the issue of class imbalance is resolved both in terms of the overall number of
instances and the total number of output classes. Random Over Sampler is used to

tackle the class imbalance problem.

Implementation Steps:

The following steps are performed to resolve the class imbalance issue in the dataset:

1. Once the null and noise had been removed from the dataset,
RandomOverSampler is used. It randomly selecting examples from the

minority class, with replacement, and adding them to the training dataset.

2. The random state value is set to 26 and passed the dataset as independed

variables features and target feature variable.
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3. The dataset is passed and then, using this technique, all the minority

classes were oversampled to the majority class.

4. The implementation code is as follows:

from imblearn.over_sampling import RandomOverSampler

os = RandomOverSampler(random_state = 26)

X_res, y_res = os.fit_resample(X,y)

The dataset results after applying class imbalance on both data repositories are

shown below in table 4.1.

Table 4.1: Class Imbalance Results on Both Data Repositories

Sr.No. Dataset Dataset Class Info before Dataset Class Info After
Class Imbalance Class Imbalance
Yes No Yes No
1 CM1 42 285 285 285
2 MW1 27 226 226 226
3 PC1 61 644 644 644
4 PC3 134 943 943 943
5 PC4 177 1110 1110 1110
6 Ant-1.7 166 579 579 579
7 Camel-1.6 188 777 777 777
8 lvy-2.0 40 312 312 312
9 Xalan-2.4 110 613 613 613

4.3.4 Dataset Division (Step 4)

After features scaling and class imbalance, the dataset is divided into training and

testing dataset. The 75% portion of the dataset is used for training and 25% for

testing. Model is trained and tested on one project and then prediction is conducted

on another dataset. The python code for dataset division is as follows:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X_scaled , y_res, random_state =
1, test_size = 0.25)
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4.3.5 Classification (Step 5)

Data classification is performed to ensure the accuracy of the suggested design. To
accomplish this, various machine learning classifiers are used [15][56]. Decision tree,
random forest, bagging, boosting, and stacking are selected for the classification of
buggy data in datasets because the dataset is multi-class and proposed model will be
applied on the cross-project. The classifier predicts the output using the mapped
instances as training data. The data is classified into Class 0 and Class 1 using this
classifier. The performance of each project is examined as a source and target, i.e., first
picked CM1 as the source project and MW1 as the target project and performed
prediction on this dataset and calculate accuracy. Then this step is repeated by
changing all other datasets of NASA as target. The same process is repeated both data
repositories which includes NASA and PROMISE and for all 9 datasets i.e.,, one
dataset is source at a time and all others are target. But the datasets of NASA and
PROMISE are treated separately due to different nature of features in both

repositories.
The implementation details of one dataset are described below:

1. After data preprocessing, scaler transform, feature engineering and class
imbalance, the dataset i.e., CM1 is divided into training and test dataset. The
dataset is divided on the ratio of 75% for training and 25% for testing. By
using the sklearn library and train_ test split function, the dataset is split into

training and test dataset.

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X_scaled , y_res,

random_state = 1, test_size = 0.25)



. First Decision tree classifier is applied on training set of CM1 dataset to train
the model. Sklearn library tree function is used to implement decision tree on

training dataset.

dtree=DecisionTreeClassifier()

dtree.fit(X_train, y_train)

. Then test dataset is passed to the model to predict the values by using
decision tree predict property.

dtree.predict(X_test)

. Then the same trained and tested model is passed to the ensemble classifier

of bagging, AdaBoost and stacking.

. In bagging method, sklearn.ensemble property is used to call bagging

classifier. The base classifier is decision tree along with other parameters.

from sklearn.ensemble import BaggingClassifier
bag_model = BaggingClassifier(
estimator = DecisionTreeClassifier(),
n_estimators = 100,
max_samples = 0.8,
oob_score = True,
random_state =26

. After model definition, the train dataset is passed to the classifier.
bag_model.fit(X_train,y_train)

. Then the test dataset is passed to the model for prediction.

y_pred =bag_model.predict(X_test)

. The classification report is generated to check the accuracy of the model
within a project. Sklearn.metrics property is used to call accuracy score and

classification report.
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10.

11.

12.

# Evaluate the model

from sklearn.metrics import accuracy_score

from sklearn.metrics import classification_report
print (classification_report(y_test, y_pred))

print ("Accuracy: ",accuracy_score(y_pred ,y_test))

The prediction result is shown in figure 4.2, gives an insight into model
prediction accuracy.

precision recall fl-score support

Figure 4.2: Model Prediction Results Within Project

As the proposed model is for cross project defect prediction, so target project
is loaded and split into independed variables features and depended target

variable.

X1 = test_data.drop('Defective’,axis='"columns’)

y1 = test_data.Defective

The independed variable features are passed to previously trained model for
prediction.

y1_pred = bag_model.predict(X1)

The classification report is generated to check the accuracy of the model
within a project. Sklearn.metrics property is used to call accuracy score and

classification report.

# Evaluate the model

print (classification_report(y1l, y1_pred))
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print ("ACC: “, accuracy_score(yl_pred, y1))

13. The prediction results as shown in figure 4.3, gives an insight into model

prediction accuracy.

precision recall fl-score support

0 0.94 0.80 0.86 644

1 0.17 0.43 0.24 61

accuracy 0.77 705
macro avg 0.55 0.61 0.55 705
weighted avg 0.87 0.77 0.81 705

ACC: 0.7659574468085106
Figure 4.3: Model Prediction Results Across Projects

14. Steps as mentioned above from serial 5 to 13 are repeated for two others
below mentioned ensemble methods and a base classifier i.e., Random Forest
Classifier also.

15. For AdaBoost, the sklearn library is used to call Adaboost classifier.

ada=AdaBoostClassifier (base_estimator=dTree_clf, n_estimators =

500,)

16. For stacking classifier, different base classifiers are used which includes
LinearSVC, MLP classifier and final estimator as decision tree. Sklearn library

is used to call and define the classifier in python.

estimators = [
(‘svr', make_pipeline(StandardScaler(),
LinearSVC(random_state=1))),
(‘mlp’, make_pipeline(StandardScaler(), MLPClassifier(alpha=1,
max_iter=200)))
]
stack_model = StackingClassifier(
estimators=estimators,
# final_estimator = RandomForestClassifier(random_state=1),
final_estimator = DecisionTreeClassifier(random_state=1),
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cv=10
)

The same above procedure is followed for all classifiers on all datasets of both

repositories.

4.4 Summary

This section concludes and briefly highlights the implementation details of the
proposed design. It includes the tools used to implement this model. The
implementation details of proposed model are discussed that involves preprocessing,
feature engineering, transfer learning, handling class imbalance and ensemble
learning method. The classifiers used in this model and the performance metrics
which will be used to calculate the efficiency of model are described. In short, the
practical approach to proposed model is discussed to make the software defect

prediction model.
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CHAPTER 5

Results and Discussion

5.1 Introduction
In this chapter the model results will be discussed in detail. Different aspects of
model prediction accuracy will be discussed to highlight the efficiency of the

proposed model.

5.2 Implementation Details

Using the Random over sampling technique, the majority and minority classes in
each dataset are balanced using the experimental framework. As in previous studies
[55,59], the balanced representation of the classes was based on 50% defective and
50% non-defective classes. The goal is to ensure that the resulting models were
trained with each class label and to provide credibility to the proposed model in
predicting the proper class labels (defective or non-defective). Random

Oversampling technique is used as a sampling approach because of its performance.

5.3 Results

This section presents and discusses the results received after evaluating the various
classifiers. It is critical to demonstrate the significance of sampling technique on bug
prediction model development. Furthermore, the efficacy of the class imbalance and

ensemble approaches over the base-line classifier is a focus of this research.

5.3.1 Base Classifiers Results for NASA Dataset
At first the results will be presented to reflect the effects of each base-line classifier.

Table 5.1 presents the prediction performances of base classifiers Decision Tree (DT)
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and Random Forest (RF) on the datasets of NASA repository. The values shown the
accuracy of the proposed prediction model employing both classifiers. The DT
classifier, as seen in Table 5.1, yielded an average accuracy of 82% and RF have 84%.
The RF classifier had highest prediction performances with an average accuracy of

84% as a base classifier.

Table 5.1: Prediction Performance of DT and RF on the NASA dataset

Sr.No Dataset Decision Random Forest

Tree (DT) (RF)
1 PC1-PC3 0.83 0.86
2 PC1-PC4 0.86 0.84
3 PC1-CM1 0.78 0.85
4 PC1-MW1 0.81 0.87
5 PC3-PC1 0.90 0.84
6 PC3-PC4 0.87 0.83
7 PC3-CM1 0.78 0.81
8 PC3-MW1 0.84 0.83
9 PC4-PC1 0.90 0.84
10 PC4-PC3 0.83 0.81
11 PC4-CM1 0.80 0.81
12 PC4-MW1 0.83 0.87
13 CM1-PC1 0.81 0.87
14 CM1-PC3 0.82 0.86
15 CM1-PC4 0.68 0.82
16 CM1-MW1 0.68 0.85
17 MW1-PC1 0.90 0.87
18 MW1-PC3 0.86 0.85
19 MW1-PC4 0.85 0.84
20 MW1-CM1 0.80 0.82
Average Accuracy % 0.82 0.84
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5.3.2 Ensemble Methods along with Base Classifiers Results for NASA Dataset
Table 5.2 represents the proposed model prediction accuracy results on 2 individual
classifiers and 3 different ensemble methods. Accuracy is a statistic that describes
how the model performs in general across all classes. It is helpful when all classes
are equally important. It is determined by dividing the number of right guesses by
the total number of forecasts.

The method of bagging, boosting and stacking has been employed with base
classifiers as DT and RF. The results shown that among the ensemble methods,
boosting have the highest average accuracy with base classifier of RF. It has the
average accuracy of 84% with lowest accuracy of 81% on PC3 and CM1 dataset and
highest accuracy of 89% on PC1 dataset. CM1 dataset has less numbers of samples
which may contribute to low accuracy of model prediction.

In the comparison of all three ensemble methods, stacking with DT have better
average accuracy of 82%. Among bagging, BaggedDT has better results than
BaggedRF. Where as in boosting, Ada boosted method is employed and
AdaBoostRF yields better average prediction accuracy. The prediction results
reveals that RF works better with proposed model, whether it’s for individual
classifier or for ensemble-based methods. The overall results indicate the model

minimum accuracy up to 75%. The graph view of above results is shown in Figure

5.1.
Table 5.2: Prediction Performance of Ensemble Methods on NASA Dataset
Sr.No | Dataset Decision | Random Bagging Boosting Stacking
Tree Forest DT RF | AdaBoost| AdaBoost DT RF
(DT) (RF) DT RF
1 PC1-PC3 0.83 0.86 0.84 0.84 0.80 0.85 0.82 ] 0.84
2 PC1-PC4 0.86 0.84 0.81 0.81 0.80 0.83 0.82 | 0.87
3 PC1-CM1 0.78 0.85 0.83 0.79 0.81 0.85 0.81 ] 0.69
4 PC1-MW1 0.81 0.87 0.85 0.83 0.86 0.86 0.81 ] 0.87
5 PC3-PC1 0.90 0.84 0.82 0.78 0.73 0.84 0.87 | 0.81
6 PC3-PC4 0.87 0.83 0.78 0.77 0.70 0.83 0.83 ] 0.81
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7 PC3-CML1 0.78 0.81 0.80 .76 0.72 .82 0.81 .69
8 PC3-MW1 0.84 0.83 0.80 .76 0.79 .84 0.83 77
9 PC4-PC1 0.90 0.84 0.79 .73 0.54 .84 0.86 .84
10 PC4-PC3 0.83 0.81 0.73 .70 0.71 .81 0.79 77
11 PC4-CML1 0.80 0.81 0.73 .75 0.65 .81 0.75 .64
12 PC4-MW1 0.83 0.87 0.83 .78 0.60 .85 0.80 .86
13 CM1-PC1 0.81 0.87 0.77 .75 0.85 .87 0.86 .88
14 CM1-PC3 0.82 0.86 0.78 .78 0.62 .86 0.80 .85
15 CM1-PC4 0.68 0.82 0.65 .74 0.70 .83 0.80 .85
16 CM1-MW1 0.68 0.85 0.68 .76 0.65 .85 0.83 .85
17 MW1-PC1 0.90 0.87 0.84 .84 0.89 .89 0.87 .88
18 MW?1-PC3 0.86 0.85 0.83 .84 0.86 .86 0.81 .84
19 MW1-PC4 0.85 0.84 0.82 .81 0.84 .84 0.75 .84
20 MW1-CM1 0.8 .82 0.81 .80 0.81 .82 0.86 .81
Average Accuracy % | 0.82 .84 0.79 .78 0.75 .84 0.82 .81

The results for the precision score of the proposed model are shown in Table 5.3.

Model Prediction Results on

6

7

8

9 10 11 12 13 14 15 16 17 18 19 20

NASA Repository

—=@=DT
—®—RF
BaggedDT
e=@==BaggedRF
«=@==AdaBoostDT
AdaBoostRF
«=@==StackedDT
«=@==SatckedRF

Figure 5.1: Model Prediction Results on NASA Repository




The results highlights that an average precision of all classifiers is above 80% on all

datasets. The precision is computed as the ratio of Positive samples that were

correctly classified to all samples that were correctly or mistakenly identified as

Positive. The precision measures how well the model categorizes a sample as

positive.
Table 5.3: Precision Score of Proposed Model on NASA Dataset

Sr.No | Dataset Decisio | Random Bagging Boosting Stacking

n Tree | Forest DT RF AdaBoos| AdaBoost DT RF

(OT) | (RF) tDT RF
1 PC1-PC3 0.81 0.83 0.84 0.85 0.82 0.83 0.82 0.82
2 PC1-PC4 0.79 0.82 0.80 0.82 0.79 0.80 0.82 0.84
3 PC1-CM1 0.84 0.83 0.83 0.82 0.81 0.84 0.81 0.79
4 PC1-MW1 0.83 0.87 0.86 0.86 0.86 0.87 0.81 0.82
5 PC3-PC1 0.87 0.87 0.89 0.89 0.85 0.88 0.87 0.89
6 PC3-PC4 0.79 0.80 0.78 0.82 0.77 0.80 0.83 0.83
7 PC3-CM1 0.80 0.80 0.82 0.82 0.78 0.81 0.81 0.84
8 PC3-MW1 0.85 0.86 0.85 0.86 0.86 0.86 0.83 0.84
9 PC4-PC1 0.87 0.87 0.89 0.88 0.83 0.87 0.86 0.86
10 PC4-PC3 0.84 0.82 0.84 0.82 0.83 0.81 0.79 0.80
11 PC4-CM1 0.77 0.81 0.81 0.83 0.77 0.82 0.75 0.74
12 PC4-MW1 0.82 0.82 0.82 0.83 0.77 0.83 0.80 0.81
13 CM1-PC1 0.86 0.86 0.87 0.87 0.87 0.85 0.86 0.86
14 CM1-PC3 0.81 0.81 0.82 0.83 0.77 0.82 0.80 0.81
15 CM1-PC4 0.76 0.77 0.75 0.78 0.77 0.77 0.80 0.78
16 CM1-MW1 0.84 0.87 0.85 0.88 0.81 0.85 0.83 0.85
17 MW1-PC1 0.85 0.87 0.88 0.88 0.87 0.88 0.87 0.86
18 MW1-PC3 0.80 0.79 0.81 0.82 0.81 0.80 0.81 0.81
19 MW1-PC4 0.78 0.79 0.78 0.78 0.78 0.79 0.75 0.75
20 MW1-CM1 | 0.78 0.81 0.82 0.82 0.79 0.82 0.86 0.80
Average Precision % | 0.82 0.83 0.83 0.84 0.81 0.83 0.82 0.82

In the next table 5.4, the recall score for the model prediction results has been shown.
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The recall of the model assesses its ability to detect Positive samples. The more

positive samples identified, the larger the recall.

Table 5.4: Recall Score of Proposed Model on NASA Dataset

Sr.No | Dataset Decisio | Random Bagging Boosting Stacking

n Tree | Forest DT RF | AdaBoost| AdaBoost DT RF

(DT) | (RF) DT RF
1 PC1-PC3 0.80 0.85 0.84 0.84 0.80 0.85 0.81 0.81
2 PC1-PC4 0.81 0.84 0.81 0.81 0.80 0.83 0.84 0.86
3 PC1-CM1 0.84 0.84 0.83 0.79 0.81 0.85 0.67 0.63
4 PC1-MW1 0.82 0.86 0.85 0.83 0.86 0.86 0.80 0.83
5 PC3-PC1 0.78 0.82 0.82 0.77 0.73 0.84 0.77 0.76
6 PC3-PC4 0.76 0.83 0.78 0.77 0.70 0.83 0.81 0.81
7 PC3-CM1 0.78 0.82 0.80 0.76 0.72 0.82 0.58 0.56
8 PC3-MW1 0.83 0.84 0.80 0.76 0.79 0.84 0.67 0.68
9 PC4-PC1 0.83 0.84 0.79 0.73 0.54 0.84 0.82 0.82
10 PC4-PC3 0.78 0.78 0.84 0.70 0.71 0.81 0.75 0.75
11 PC4-CM1 0.76 0.79 0.73 0.75 0.65 0.81 0.63 0.62
12 PC4-MW1 0.85 0.85 0.83 0.78 0.60 0.85 0.79 0.77
13 CM1-PC1 0.77 0.85 0.77 0.75 0.85 0.87 0.84 0.87
14 CM1-PC3 0.74 0.84 0.73 0.78 0.62 0.86 0.81 0.85
15 CM1-PC4 0.67 0.81 0.65 0.74 0.70 0.83 0.85 0.85
16 CM1-MW1 | 0.68 0.85 0.66 0.76 0.65 0.85 0.84 0.88
17 MW1-PC1 0.89 0.87 0.84 0.84 0.89 0.89 0.88 0.89
18 MW1-PC3 0.86 0.84 0.83 0.84 0.86 0.86 0.84 0.86
19 MW1-PC4 0.85 0.84 0.82 0.81 0.84 0.84 0.83 0.85
20 MW1-CM1 | 0.82 0.82 0.81 0.80 0.81 0.82 0.84 0.83
Average Recall % 0.80 0.83 0.79 0.78 0.75 0.84 0.78 | 0.79

Ideally, both precision and recall metrics should be maximized to obtain the perfect

classifier. The average recall of model ranges from 0.75 to 0.84.

The F1 score combines precision and recall by using their harmonic mean, thus
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maximizing the F1 score implies maximizing both precision and recall at the same
time. As a result, researchers have chosen the F1 score to evaluate their models in
conjunction with accuracy. The F1 score of the proposed model has been shown in
Table 5.5. It ranges from 0-100%, and a higher F1 score denotes a better-quality
classifier. The results indicate that F1 score of a proposed model is greater than 75%

for all individual and ensemble classifiers.

Table 5.5: F1-Score of Proposed Model on NASA Dataset

Sr.No | Dataset Decisio | Random Bagging Boosting Stacking

n Tree | Forest DT RF | AdaBoost | AdaBoost DT RF

(DT) (RF) DT RF
1 PC1-PC3 0.81 0.84 0.84 0.84 0.81 0.84 0.81 0.82
2 PC1-PC4 0.80 0.82 0.81 0.81 0.80 0.81 0.83 0.85
3 PC1-CM1 0.84 0.83 0.83 0.80 0.81 0.84 0.72 0.69
4 PC1-MW1 0.83 0.86 0.86 0.85 0.86 0.86 0.81 0.83
5 PC3-PC1 0.82 0.84 0.85 0.81 0.78 0.86 0.81 0.81
6 PC3-PC4 0.77 0.81 0.78 0.79 0.73 0.81 0.82 0.82
7 PC3-CM1 0.79 0.81 0.81 0.78 0.75 0.81 0.65 0.63
8 PC3-MW1 0.84 0.85 0.82 0.80 0.82 0.85 0.73 0.74
9 PC4-PC1 0.85 0.85 0.83 0.79 0.64 0.85 0.84 0.84
10 PC4-PC3 0.80 0.80 0.77 0.74 0.76 0.81 0.77 0.77
11 PC4-CM1 0.77 0.80 0.77 0.78 0.70 0.82 0.68 0.67
12 PC4-MW1 0.83 0.83 0.82 0.80 0.67 0.84 0.80 0.79
13 CM1-PC1 0.81 0.85 0.81 0.79 0.85 0.86 0.85 0.87
14 CM1-PC3 0.77 0.83 0.77 0.80 0.68 0.83 0.81 0.83
15 CM1-PC4 0.71 0.79 0.69 0.76 0.73 0.79 0.81 0.80
16 CM1-MW1 0.74 0.86 0.72 0.80 0.71 0.85 0.83 0.86
17 MW1-PC1 0.87 0.87 0.86 0.86 0.88 0.89 0.88 0.87
18 MW1-PC3 0.82 0.81 0.82 0.83 0.83 0.82 0.82 0.83
19 MW1-PC4 0.80 0.81 0.80 0.79 0.80 0.81 0.79 0.79
20 MW1-CM1 | 0.80 0.81 0.81 0.81 0.80 0.82 0.85 0.81
Average F1-Score % | 0-80 0.83 0.80 0.80 0.77 0.83 0.80 0.80
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5.3.3 Base Classifiers Results for PROMISE Dataset

In the next step, the same proposed model is used for prediction on PROMISE
dataset to check the model accuracy. Table 5.6 represents the prediction results of
proposed model on PROMISE dataset for individual classifiers of DT and RF. The
prediction result reveals that RF works better than DT. RF have an average accuracy
of 77% with highest accuracy of 83% on ivy-2.0 dataset and lowest accuracy of 66%

on Camel -1.6 dataset.

Table 5.6: Prediction Performance of DT and RF on PROMISE dataset

Sr.No | Dataset Decision Tree | Random Forest
1 Ant-1.7-Camel-1.6 0.55 0.66
2 Ant-1.7-lvy-2.0 0.72 0.80
3 Ant-1.7-Xalan-2.4 0.69 0.80
4 Camel-1.6- Ant-1.7- 0.73 0.74
5 Camel-1.6- Ivy-2.0 0.76 0.83
6 Camel-1.6- Xalan-2.4 0.73 0.79
7 lvy-2.0- Ant-1.7 0.71 0.81
8 lvy-2.0- Camel-1.6 0.70 0.75
9 lvy-2.0- Xalan-2.4 0.72 0.82
10 Xalan-2.4- Ant-1.7 0.63 0.73
11 Xalan-2.4- Camel-1.6 0.64 0.69
12 Xalan-2.4- lvy-2.0 0.72 0.76
Average Accuracy % 0.69 0.77

5.3.4 Ensemble Methods along with Base Classifiers Results for PROMISE Dataset
After individual classifiers prediction, the model is tested using 3 ensemble methods
tor PROMISE Dataset. Table 5.7, shows the prediction results of a proposed model
for PROMISE datsets. The prediction results reveal that, model performance is
around 65% for all ensemble methods with both base classifiers. In Bagging,

BaggedDT have high average accuracy of 71% with highest accuracy of 79% on
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Xalan-2.4 dataset and lowest of 60% on Camel-1.6 dataset. BaggedRF have average

accuracy of 70% with highest on Ivy-2.0 dataset and lowest on Camel-1.6 dataset. In

Boosting, AdaBoostRF have high accuracy of 76% with highest accuracy of 83% on

Ivy-2.0 and Xalan-2.4 dataset. AdaboostDT have average accuracy of 64% with

highest on Xalan-2.4 dataset and lowest on Camel-1.6. Whereas for Stacking, again

SatckedRF have highest average accuracy of 79%. Both base classifiers have highest

accuracy for Ivy-2.0 Dataset.

Table 5.7: Prediction Performance of Ensemble Methods on PROMISE datasets

Sr.No| Dataset Decisi | Rando Bagging Boosting Stacking

on m DT RF | AdaBoost| AdaBoost| DT RF

Tree | Forest DT RF

(DT) | (RF)
1 Ant-1.7-Camel-1.6 0.55| 0.66 | 0.60 | 0.61 0.60 0.64 0.72] 0.74
2 Ant-1.7-1vy-2.0 0.72 | 0.80 | 0.72 ] 0.75 0.59 0.80 0.81] 0.86
3 Ant-1.7-Xalan-2.4 0.69 | 0.80 | 0.71 ] 0.75 0.58 0.77 0.74] 0.82
4 Camel-1.6- Ant-1.7- 0.73 | 0.74 | 0.70 ] 0.68 0.70 0.73 0.67] 0.75
5 Camel-1.6- lvy-2.0 0.76 | 0.83 | 0.74 | 0.79 0.69 0.83 0.75] 0.79
6 Camel-1.6- Xalan-2.4| 0.73 | 0.79 | 0.79 | 0.78 0.72 0.80 0.72] 0.81
7 Ivy-2.0- Ant-1.7 0.71 | 0.81 | 0.76 | 0.73 0.62 0.79 0.76 | 0.82
8 Ivy-2.0- Camel-1.6 0.70 | 0.75 | 0.63 ] 0.65 0.66 0.75 0.75] 0.73
9 Ivy-2.0- Xalan-2.4 0.72 | 0.82 | 0.72 ] 0.77 0.73 0.83 0.78 | 0.80
10 Xalan-2.4- Ant-1.7 0.63| 0.73 | 0.70 | 0.66 0.65 0.72 0.73] 0.76
11 Xalan-2.4- Camel-1.6| 0.64 | 0.69 | 0.65 | 0.60 0.53 0.66 0.69] 0.74
12 Xalan-2.4- lvy-2.0 0.72 | 0.76 | 0.74 | 0.67 0.62 0.75 0.79| 0.84
Average Accuracy % 0.60 | 0.77 [ 0.71 | 0.70 0.64 0.76 0.74 | 0.79

The model prediction results on PROMISE repository indicates the stable nature of

model prediction as there is no huge variation in the prediction results on different

datasets. The graph view of Table 5.7 is shown in Figure 5.2.
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Model Prediction Results on PROMISE
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Figure 5.2: Model Prediction Results on PROMISE Repository

The model prediction results for precision, recall and F1 score on the RPOMISE

repository has been shown in the Table 5.8, 5.9 and 5.10 respectively.

Table 5.8: Precision Score of Proposed Model on PROMISE Dataset

Sr.No| Dataset Decision | Random Bagging Boosting Stacking
Tree Forest DT | RF | AdaBoo| AdaBoost| DT | RF
(DT) (RF) stDT RF
1 Ant-1.7-Camel-1.6 0.68 0.72 | 0.71] 0.72] 0.72 0.72 0.71] 0.72
2 Ant-1.7-1vy-2.0 0.81 0.89 |[0.87]0.88] 0.84 0.89 0.86| 0.88
3 Ant-1.7-Xalan-2.4 0.84 0.82 | 0.87]0.84] 0.75 0.83 0.79| 0.82
4 Camel-1.6- Ant-1.7- 0.68 0.72 [ 0.72] 0.74] 0.69 0.72 0.67| 0.71
5 Camel-1.6- Ivy-2.0 0.81 0.85 | 0.81]0.85] 0.80 0.85 0.81| 0.83
6 Camel-1.6- Xalan-2.4| 0.77 0.78 | 0.78] 0.80] 0.77 0.79 0.76| 0.79
7 Ivy-2.0- Ant-1.7 0.72 0.81 | o0.80|0.81] 0.71 0.79 0.73| 0.80
8 Ivy-2.0- Camel-1.6 0.70 0.74 | o0.71]0.73] 0.71 0.73 0.72] 0.71
9 Ivy-2.0- Xalan-2.4 0.78 0.81 |[0.80] 0.83] 0.79 0.81 0.76| 0.81
10 Xalan-2.4- Ant-1.7 0.69 0.77 | 0.74] 0.78] 0.69 0.75 0.71| 0.73
11 Xalan-2.4- Camel-1.6 0.67 0.72 | 0.70[ 0.73] ©0.68 0.71 0.70] 0.71
12 Xalan-2.4- lvy-2.0 0.81 0.84 |[0.82]0.87] 0.82 0.86 0.83| 0.82
Average Precision % 0.75 0.79 [ 0.78] 0.80] 0.75 0.79 0.75| 0.78
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Table 5.9:

Recall Score of Proposed Model on PROMISE Dataset

Sr.No| Dataset Decisi | Rando Bagging Boosting Stacking
on m
DT RF | AdaBoost| AdaBoost| DT RF
Tree Forest
DT RF
(DT) | (RF)
1 Ant-1.7-Camel-1.6 0.55 | 0.66 | 0.60 | 0.61 0.60 0.64 0.72 | 0.74
2 Ant-1.7-1vy-2.0 0.52 | 0.80 | 0.72 | 0.75 0.59 0.80 0.81 | 0.86
3 Ant-1.7-Xalan-2.4 0.72 | 0.79 | 0.72 ] 0.75 0.58 0.77 0.74 | 0.82
4 Camel-1.6- Ant-1.7- 0.68 | 0.73 | 0.70 ] 0.68 0.70 0.73 0.67 | 0.75
5 Camel-1.6- Ivy-2.0 0.75 | 0.83 | 0.74 | 0.79 0.69 0.83 0.75 | 0.79
6 Camel-1.6- Xalan-2.4| 0.73 | 0.79 | 0.79 | 0.78 0.72 0.80 0.72 | 0.81
7 Ivy-2.0- Ant-1.7 0.71 | 0.81 ] 0.76 ] 0.73 0.62 0.79 0.76 | 0.82
8 Ivy-2.0- Camel-1.6 0.68 | 0.75 | 0.63 ] 0.65 0.66 0.75 0.75 | 0.73
9 Ivy-2.0- Xalan-2.4 0.72 | 0.82 | 0.72 ] 0.77 0.73 0.82 0.78 | 0.80
10 Xalan-2.4- Ant-1.7 0.63 | 0.73 | 0.70 ] 0.66 0.65 0.72 0.73 | 0.76
11 Xalan-2.4- Camel-1.6| 0.64 | 0.69 | 0.65 | 0.60 0.53 0.66 0.69 [ 0.74
12 Xalan-2.4- lvy-2.0 0.72 | 0.76 | 0.74 | 0.67 0.62 0.75 0.79 | 0.84
Average Recall % 0.67 | 0.76 | 0.71 | 0.70 0.64 0.76 0.74 | 0.79
Table 5.10: F1-Score of Proposed Model on PROMISE Dataset
Sr.No| Dataset Decisi | Rando Bagging Boosting Stacking
on m
DT RF | AdaBoost| AdaBoost| DT | RF
Tree Forest
DT RF
(DT) | (RF)
1 Ant-1.7-Camel-1.6 0.60 | 0.68 | 0.64 | 0.65 0.64 0.67 .71 0.73
2 Ant-1.7-1vy-2.0 0.61 | 0.82 | 0.77 | 0.79 0.66 0.83 .83] 0.87
3 Ant-1.7-Xalan-2.4 0.77 | 0.80 | 0.77 | 0.78 0.64 0.79 .76 0.82
4 Camel-1.6- Ant-1.7- 0.68 | 0.73 | 0.71 | 0.70 0.69 0.72 .67 0.72
5 Camel-1.6- lvy-2.0 0.78 | 0.84 | 0.77 ] 0.81 0.74 0.84 .77] 0.81
6 Camel-1.6- Xalan-2.4| 0.75 | 0.78 | 0.79 | 0.79 0.74 0.80 .74] 0.80
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7 lvy-2.0- Ant-1.7 0.71 | 0.81 | 0.77 | 0.75 0.65 0.79 0.74] 0.81
8 lvy-2.0- Camel-1.6 0.69 | 0.74 | 0.66 | 0.68 0.68 0.74 0.73]| 0.72
9 lvy-2.0- Xalan-2.4 0.75 | 0.82 | 0.75 | 0.79 0.76 0.82 0.77]| 0.80
10 Xalan-2.4- Ant-1.7 0.65 | 0.74 | 0.72 | 0.69 0.66 0.73 0.72| 0.74
11 Xalan-2.4- Camel-1.6| 0.65 | 0.71 | 0.67 | 0.63 0.58 0.68 0.70| 0.72
12 Xalan-2.4- Ivy-2.0 0.76 | 0.79 | 0.77 | 0.73 0.69 0.79 0.81| 0.83
Average F1-Score % 0.70 | 0.77 | 0.73 | 0.73 0.68 0.77 0.75| 0.78

0.27. The analysis of the same is shown in Table 5.11.

5.3.5 Recall Comparison with and without Class Imbalance

Another experimental results of model prediction shown that model average
accuracy without employing class imbalance is high i.e., 87% for random forest (RF)
for cross project defect prediction as compared to with class imbalance. But the
careful analysis of other performance metrics like precision, recall and F1 score
indicates that average recall of buggy class without handling class imbalance is 0.05
which indicates that model prediction for buggy class is not efficient and model is
overfitting the results by neglecting the buggy class instances. The class imbalance
resolves this issue by generating equal samples of minority class for efficient model

prediction. After employing the class imbalance, the recall of buggy class becomes

Table 5.11: Prediction Analysis with and Without Class Imbalance

Sr. Dataset Without Class Imbalance With Class Imbalance

No RF Precision| Recall F1 RF Precision | Recall off F1 Score
Accuracy | of Buggy| of | Scoreof| Accura| of Buggy | Buggy | of Buggy

Class | Buggy| Buggy cy Class Class Class

Class | Class

1 PC1-PC3 0.87 0.21 | 0.02 0.04 0.86 0.39 0.25 0.31

2 PC1-PC4 0.86 0.57 | 0.05 0.08 0.84 0.36 0.23 0.28

3 PC1-CM1 0.87 0.33 | 0.05 0.08 0.85 0.32 0.29 0.30

4 PC1-MW1 0.88 0.17 | 0.04 0.06 0.87 0.39 0.44 0.41
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5 PC3-PC1 0.91 0.43 | 0.15] 0.22 0.84 0.21 0.39 0.28
6 PC3-PC4 0.86 0.44 | 0.05| 0.08 0.83 0.28 0.19 0.23
7 PC3-CM1 0.86 0.25 | 0.05] 0.08 0.81 0.26 0.26 0.26
8 PC3-MW1 0.88 0.17 | 0.04 0.06 0.83 0.29 0.44 0.35
9 PC4-PC1 0.91 0.40 | 0.16| 0.23 0.84 0.2 0.31 0.24
10 PC4-PC3 0.86 0.28 | 0.07 0.11 0.81 0.22 0.29 0.25
11 PC4-CM1 0.85 0 0 0 0.81 0.26 0.26 0.26
12 PC4-MW1 0.89 0 0 0 0.87 0.35 0.22 0.27
13 CM1-PC1 0.91 0.3 0.05| 0.08 0.87 0.24 0.21 0.22
14 CM1-PC3 0.87 0.44 | 0.03 | 0.06 0.86 0.31 0.13 0.18
15 CM1-PC4 0.85 0.13 | 0.02 0.04 0.82 0.21 0.11 0.14
16 CM1-MW1 0.85 0.13 | 0.02 0.04 0.85 0.34 0.41 0.37
17 MW1-PC1 0.91 0.55 0.1 0.17 0.87 0.24 0.39 0.30
18 MW1-PC3 0.87 0.33 | 0.02 0.04 0.85 0.25 0.1 0.15
19 MW1-PC4 0.85 0.17 | 0.02 0.03 0.84 0.29 0.11 0.16
20 MW1-CM1 0.87 0.40 | 0.05| 0.09 0.82 0.29 0.29 0.29

Average 0.87 0.29 | 0.05| 0.08 0.84 0.29 0.27 0.26

5.3.6 Average Comparison Results on Both Repositories

The average comparison of all classifiers employed for model prediction is showed
in table 5.12 and 5.13 for NASA and PROMISE repository respectively. The
prediction results shown that RF have highest average accuracy on both data

repositories. The graph view of the same is shown in figure 5.3 and 5.4.

Table 5.12: Average Prediction Performance Comparison for NASA Repository

Prediction Models Average Accuracy %

Decision Tree (DT) 82

Random Forest (RF) 84
BaggedDT 79

61




BaggedRF 78
AdaBoostDT 75
AdaBoostRF 84

StackedDT 82

StackedRF 81

PREDICTION PERFORMANCE
COMPARISON FOR NASA REPOSITORY

84
82—

Figure 5.3: Average Prediction Performance Comparison for NASA Repository

Table 5.13: Average Prediction Performance Comparison for PROMISE Repository

Prediction Models Average Accuracy %
Decision Tree (DT) 69
Random Forest (RF) 77
BaggedDT 71
BaggedRF 70
AdaBoostDT 64
AdaBoostRF 76
StackedDT 74
StackedRF 79
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PREDICTION PERFORMANCE
COMPARISON FOR PROMISE
REPOSITORY

Figure 5.4: Average Prediction Performance Comparison for PROMISE Repository

5.4 Summary

The result of different experiments on NASA and Promise repository has been
conducted to evaluate the model accuracy along with other software metrics like
precision, recall and F1 score. The experimental result reveals that RF works best on
the proposed model both as individual classifier and also for ensemble methods of
bagging, boosting and stacking. The recall of buggy class also calculated to evaluate

the model performance.
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CHAPTER 6

Conclusion

6.1 Introduction

In this chapter the conclusion of the proposed study will be discussed in detail. The

results and future work will be discussed.

6.2 Conclusion

Software defect prediction is critical for detecting flaws early in the software
development life cycle. This early detection and eradication of software flaws is
critical for producing a cost-effective and high-quality software product. Though
prior research has effectively used machine learning approaches for software defect
prediction, when applied to imbalanced data sets, these techniques provide biased
results. An imbalanced data collection has a non-uniform class distribution, with
very few instances of one class compared to the other. The use of skewed datasets
results in off-target predictions of the minority class, which is often thought to be
more important than the majority class. Thus, efficiently handling unbalanced data
is critical for the successful creation of a competent defect prediction model.

This work is based on design of an efficient model for software bug prediction in
cross project software’s by handling class imbalance issue. The random
oversampling strategy was used to mitigate the data imbalance issues. The
proposed designed model is implemented in Python. 2 individual and 3 ensemble
classifiers are used to evaluate the model prediction accuracy across projects. The
datasets of two data repositories i.e., NASA and PROMISE are used. The
performance of different classifiers is evaluated using classification accuracy,
Precision, Recall and Fl-measure metrics. The outcomes of the conducted
experiment showed that Random Forest (RF) performed well both as in individual
classifier and also in ensemble methods. RF have an average accuracy of 84% for
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NASA and 77% for PROMISE repository. For ensemble methods AdaBoostRF has
highest accuracy of 84% on NASA datasets and 79% with StackedRF on PROMISE
datasets. One other statics highlights that recall of a buggy class with imbalance

methods is high as compared with non-imbalance handling.

6.3 Future Work

The proposed work can be used to study the impact of different sampling strategies
like SMOTE, and under sampling. Similarly, an intriguing future addition could
include investigating the influence of various feature selection methodologies in
order to select the best set of features for software defect prediction. One future
direction is to investigate and compare the performance of ensemble classifiers with
alternative resampling strategies, as data imbalance continues to be a problem that
degrades the effectiveness of existing software defect prediction systems. Similarly,
the proposed model can also be employed for other datasets to study the model

prediction accuracy on them.

6.4 Summary

The conclusion of the proposed model has been discussed in detail The results
reveals that model works best with RF classifier for both datasets. RF classification
in ensemble methods is also outperforming DT. In the last the future direction of the

proposed model has been proposed.
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