
Design and Implementation of a Software Bug

Prediction Model Using Machine Learning Technique

MCS

Author

Hamza Khizar

Registration Number

00000320415

Supervisor

Assoc Prof Dr. Fahim Arif

A thesis submitted to the faculty of Department of Computer Software Engineering, Military

College of Signals, National University of Sciences and Technology (NUST), Rawalpindi

in partial fulfillment of the requirements for the degree of MS in Computer Software Engineering

(September 2023)

i

ii

Declaration

I, Hamza Khizar declare that this thesis titled "Design and Implementation of a Software

Bug Prediction Model Using Machine Learning Technique” and the work presented in

it are my own and has been generated by me as a result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a Master of

Science degree at NUST

2. Where any part of this thesis has previously been submitted for a degree or any

other qualification at NUST or any other institution, this has been clearly stated

3. Where I have consulted the published work of others, this is always clearly

attributed

4. Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work

5. I have acknowledged all main sources of help

6. Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed myself

Hamza Khizar,

NUST00000320415 MSSE26

iii

Dedication

I thank Almighty Allah, The Most Gracious and The Most Merciful.

This thesis is dedicated to my loving family, whose unwavering support and

encouragement have been the cornerstone of my success. Their love and sacrifices

have inspired me to strive for excellence in my studies and in all aspects of my life.

iv

Abstract

Software Bug Prediction is an active research area and is being widely explored

with the help of Machine Learning technique. The goal of bug prediction models

is to identify potential software defects or bugs early in the development process,

enabling developers to take preventive actions and improve software quality.

Since bug prediction is now considered as an important measure of SDLC, there

is need to have an efficient bug prediction model. Presently transfer learning,

class imbalance and ensemble learning approaches are being researched much.

In this research work an efficient model design is proposed and implemented.

The proposed design caters the class imbalance issue of datasets as this is not

much touched in the past. Class imbalance can affect the model accuracy by

overfitting the model prediction results. The proposed design employ feature

engineering technique which is used to add more domain information in the

dataset for accurate prediction. Transfer learning is used to train and test the

model on different datasets to analyze how much of the learning is passed to

other dataset for cross project defect prediction; and ensemble method is utilized

to explore the increase in performance upon combining multiple classifiers in a

model. So, a model design is proposed which involve employing feature

engineering, class imbalance and ensemble methods using machine learning

technique for cross project defect prediction. Five NASA and four Promise

datasets are used in the study for experimental analysis. Decision Tree (DT) and

Random Forest (RF) are used as an individual base classifier. Three ensemble

methods of bagging, boosting and stacking are used. The results shown that

model attain the best accuracy with RF classifiers both as an individual and in

v

ensemble methods. The model has highest accuracy of 84% with RF as an

individual classifier and also 84% with adaBoost in ensemble methods on NASA

dataset. Whereas in PROMISE dataset, again RF have highest accuracy of 77% as

an individual classifier and 79% with stacked ensemble method. Some other

experiments are also conducted to evaluate buggy class recall score and it reveals

that by using class imbalance, the recall of buggy class is high which indicates the

model accuracy for prediction bugs in datasets.

vi

Acknowledgment

Quite some time has passed since I began my degree, numerous things happened,

various new places visited, survived a pandemic and life has changed altogether.

However, it is time I finally close this chapter. I would like to thank my parents

and my sisters for their constant support. A special thanks to my mother for keep

asking me the thesis progress updates every day. I am indebted to my supervisor

Dr. Fahim Arif for his politeness and firm belief in me and my committee

members, Asst. Prof Dr. Yawar Abbas and Lt Col Khawir Mahmood, for always

being there for guidance. Lastly, I want to thank my institution, MCS, for

providing me the opportunity to learn and grow.

Hamza Khizar

vii

Contents
Contents
Chapter 1 .. 1

 Introduction .. 1

1.1 Introduction .. 1

1.2 Purpose .. 1

1.3 Background ... 1

1.4 Software Bug Prediction.. 2

1.5 Scope .. 3

1.6 Problem Statement ... 4

1.7 Reason / Justification for the Selection of the Topic .. 5

1.8 Methodology ... 5

1.9 Objectives .. 5

1.10 Relevance to National Needs ... 6

1.11 Advantages ... 6

1.12 Area of Application ... 6

1.13 Thesis Outline ... 7

1.14 Summary ... 7

Chapter 2 .. 8

Related Work .. 8

2.1 Introduction .. 8

2.2 Software Bug Prediction (SBP) ... 8

2.3 Machine Learning Techniques ... 9

 2.3.1 Class Imbalance Handling ... 10

2.3.2 Cross Project Defect Prediction: .. 13

2.3.3 SBP Using Ensemble Methods .. 15

2.4 Summary ... 19

Chapter 3 .. 20

 PROPOSED DESIGN & METHDOLOGY .. 20

 3.1 Introduction .. 20

 3.2 Theoretical Concept of Proposed Design / Methodology .. 20

3.2.1 Transfer Learning .. 20

 3.2.1.1 Benefits of using transfer learning in cross-project bug prediction 21

3.2.2 Ensemble Method ... 22

3.2.3 Class Imbalance ... 23

3.2.4 Feature Engineering .. 24

 3.3 Proposed Model ... 26

3.3.1 Data Set: .. 27

 3.3.1.1 NASA MDP Data Set .. 27

 3.3.1.2 Promise Dataset .. 28

3.3.2 Data Preprocessing ... 29

3.3.3 Feature Engineering .. 30

3.3.4 Handling Data Class Imbalance .. 31

3.3.5 Machine Learning Classifier .. 31

 3.3.5.1 Decision Tree ... 32

 3.3.5.2 Random Forest .. 33

3.3.5.3 Bagging ... 33

viii

3.3.5.4 AdaBoost .. 34

3.3.5.5 Stacking .. 34

3.3.6 Performance Metrics ... 35

3.3.6.1 Confusion Matrix ... 36

3.3.6.2 Accuracy .. 36

3.3.6.3 Precision ... 37

3.3.6.4 Recall .. 37

 3.4 Summary ... 37

Chapter 4…………………………………………………………………………… 38

 Implementation .. 38

4.1 Introduction .. 38

4.2 Environment (Hardware and Software) ... 38

4.3 Implementation Details ... 38

4.3.1 Data Pre-Processing (Step 1) .. 38

4.3.1.1 Null values and Noise ... 38

Implementation Steps ... 39

4.3.1.2 Dataset Scaling .. 39

Implementation Steps: .. 40

4.3.1.3 Handling Multiclass Nature of Promise Dataset: .. 40

Implementation Steps: .. 41

4.3.2 Feature Engineering (Step 2) ... 41

Implementation Steps: .. 41

4.3.3 Class Imbalance (Step 3) .. 42

Implementation Steps: .. 42

4.3.4 Dataset Division (Step 4) .. 43

4.3.5 Classification (Step 5) ... 44

 4.4 Summary ... 48

Chapter 5…………………………………………………………………………… 49

 Results and Discussion ... 49

5.1 Introduction .. 49

 5.2 Implementation Details... 49

 5.3 Results ... 49

 5.3.1 Base Classifiers Results for NASA Dataset ... 49

 5.3.2 Ensemble Methods along with Base Classifiers Results for NASA Dataset............. 51

 5.3.3 Base Classifiers Results for PROMISE Dataset ... 56

 5.3.4 Ensemble Methods along with Base Classifiers Results for PROMISE Datas 56

 5.3.5 Recall Comparison with and without Class Imbalance .. 60

 5.3.6 Average Comparison Results on Both Repositories .. 61

5.4 Summary ... 63

Chapter 6…………………………………………………………………………… 63

 Conclusion ... 64

 6.1 Introduction ... 64

 6.2 Conclusion ... 64

 6.3 Future Work .. 65

 6.4 Summary .. 65

 References ... 66

ix

List of Figures

Figure 2.1: Literature Review in the domain of Software Bug Prediction………………….. 9

Figure 3.1: Block Diagram of Proposed Model Design………………………………………….. 26

Figure 3.2: Detailed Diagram of Proposed Model Design……………………………………….. 27

Figure 3.3: Confusion Matrix……………………………………………………………………… 36

Figure 4.1: Multiclass Data of Ant Dataset……………………………………………………….. 41

Figure 4.2: Model Prediction Results Within Project……………………………….……...… 46

Figure 4.3: Model Prediction Results Across Projects…………………………………...…… 47

Figure 5.1: Model Prediction Results on NASA Repository…………………………………….. 52

Figure 5.2: Model Prediction Results on PROMISE Repository………………………………... 58

Figure 5.3: Average Prediction Performance Comparison for NASA Repository……………... 62

Figure 5.4: Average Prediction Performance Comparison for PROMISE Repository………...63

x

List of Tables

Table 2.1: SBP Using Class Imbalance …………………………………………………...………11

Table 2.2: Cross-Project Bug Prediction………...…………………………………….….……....14

Table 2.3: SBP Using Ensemble Methods …………….……………………………….….……....16

Table 3.1: Features in NASA Datasets…………………………………………………………….28

Table 3.2: Features in PROMISE Datasets……………………………………………………….29

Table 3.3: Cleaning Criteria of NASA Dataset…………………………………………………...30

Table 3.4: Class Imbalance Handling……………………………………………………………..31

Table 4.1: Class Imbalance Results on Both Data Repositories…………………………………43

Table 5.1: Prediction Performance of DT and RF on the NASA dataset……………………….50

Table 5.2: Prediction Performance of Ensemble Methods on NASA Dataset …………………51

Table 5.3: Precision Score of Proposed Model on NASA Dataset………………………………53

Table 5.4: Recall Score of Proposed Model on NASA Dataset…………………………………..54

Table 5.5: F1-Score of Proposed Model on NASA Dataset………………………………………55

Table 5.6: Prediction Performance of DT and RF on PROMISE dataset………………………56

Table 5.7: Prediction Performance of Ensemble Methods on PROMISE datasets…………….57

Table 5.8: Precision Score of Proposed Model on PROMISE Dataset………………………….58

Table 5.9: Recall Score of Proposed Model on PROMISE Dataset…………………………….59

Table 5.10: F1-Score of Proposed Model on PROMISE Dataset………………………………..59

Table 5.11: Prediction Analysis With and Without Class Imbalance…………………………...60

Table 5.12: Average Prediction Performance Comparison for NASA Repository…………….61

Table 5.13: Average Prediction Performance Comparison for PROMISE Repository……….62

xi

List of Abbreviations and Symbols

Abbreviations

SBP Software Bug Prediction

SDP Software Defect Prediction

CPDP Cross-Project Defect Prediction

ML Machine Learning

RF Random Forest

KNN K-Nearest Neighbors

NB Naive Bayes

DT Decision Tree

IT Information Technology

1

Chapter 1

Introduction

1.1 Introduction

This chapter gives a general overview of the research work. It starts with an outline,

purpose and background review of the proposed research work. Then it describes

the motivation/ justification to carry out this work. The proposed methodology of

the dissertation is discussed. The objectives, scope and national needs of the research

work is also discussed. Finally, the sections of further chapters are defined.

1.2 Purpose

The goal of this research work is to use machine learning technique to design and

implement an effective software bug prediction model. The focus is on to design a

model by employing different parameters like feature engineering and class

imbalance issue. Class imbalance affects the model’s performance by over fitting

the model and neglecting prediction of a buggy class. The designed model is

implemented in Python. Two data repositories are used to access the accuracy of

the proposed designed model using different software metrics.

1.3 Background

Each day brings new change in technology, especially in the world of Information

Technology (IT). New software releases, new versions of old applications or

languages come up, or entirely new techniques and programs innate. With such a

rapid increase in software-based products, it has become a need to make these

products successful and avoid any sort of failure. Defective software modules have

2

a significant impact on the quality of software, causing cost overruns, delays in

delivery, and much higher maintenance expenses. Software Bug Prediction (SBP),

which can directly affect the quality and has gained substantial popularity in recent

years, is therefore the most crucial part of software.

A new dimension of mitigating the errors in software is being explored by the

researchers and practitioners of industry. SBP methods are implemented to

increase the efficiency, reduce failures, minimize resource loss and boost the

performance. Machine learning approaches have shown to be quite successful in

getting the desired outcomes for this purpose. Utilizing resources effectively for

evaluating and testing programming modules is one of the key goals of defect

prediction models. This helps in efficient allocation of resources in testing and

fixing of error prone modules and hence producing high quality products at lower

cost. Technically bug/defect predictor is a machine learning model applied on

historical software metrics data to predict defects in software modules. The

efficiency of model depends on quality of training data provided in addition to the

machine learning classification technique used.

1.4 Software Bug Prediction

Software bug prediction refers to the process of identifying and predicting potential

bugs or defects in software applications before they occur. This proactive approach

allows developers and testers to focus their efforts on specific areas of the code that

are more likely to have bugs, ultimately improving software quality and reducing

the number of defects that make it to production.

There are various techniques and methods used for software bug prediction,

including statistical analysis, machine learning, and data mining. These techniques

often make use of historical data, such as previous bug reports, system logs, and

code metrics, to identify patterns and indicators that can help predict the occurrence

of bugs.

One common approach in bug prediction is through the use of metrics or code

3

complexity measures. By analyzing certain code metrics, such as lines of code,

cyclomatic complexity, and code churn, developers can identify areas of the code

that are more prone to defects. For example, if a specific module has a high

cyclomatic complexity or has recently undergone many code changes, it may

indicate a higher likelihood of bugs.

Machine learning algorithms are also widely used in bug prediction. These

algorithms learn from historical bug data, code metrics, and other relevant

information to build models that can predict the likelihood of bugs in different parts

of the software. These models can then be used to prioritize testing efforts or allocate

resources more efficiently.

Bug prediction can bring several benefits to software development. By identifying

potential bugs early in the development process, developers can take preventive

measures to address them, reducing the cost and effort required for bug fixing. It

also helps in improving software reliability, reducing customer complaints, and

enhancing user satisfaction. However, it is important to note that software bug

prediction is not a foolproof solution. Predictive models are based on historical data

and patterns, and they may not account for unforeseen factors or changes in the

software development process. Therefore, bug prediction should be used as a

complementary technique to traditional testing and not as a replacement.

In conclusion, software bug prediction is a proactive approach to identify and

predict potential bugs in software applications. It leverages techniques like

statistical analysis and machine learning to analyze historical data and code metrics

to predict areas prone to defects. Bug prediction can help improve software quality,

reduce bug fixing efforts, and enhance user satisfaction, but it should be used in

conjunction with other testing methods.

1.5 Scope

The scope of software bug prediction is to identify and predict potential defects or

bugs in software systems before they occur. This can include various aspects such

4

as code quality, design issues, configuration errors, or vulnerabilities. It aims to

improve software quality and reduce the number of defects that occur in the

production environment. By predicting bugs in advance, developers can take

preventive measures to rectify the issues and avoid the negative consequences of

bugs, such as system failures, security breaches, or customer dissatisfaction.

The scope of software bug prediction includes both static and dynamic analysis

techniques. Static analysis involves examining the source code, design, or other

artifacts without executing the program, whereas dynamic analysis involves

monitoring the program during execution to identify issues.

Bug prediction can be applied throughout the software development life cycle,

starting from the initial design phase to the testing and maintenance phases. It can

also be used across different types of software projects, ranging from small-scale

applications to complex, large-scale systems. Its scope can vary depending on the

specific techniques and tools used. For example, some bug prediction approaches

focus on code-level defects, while others may consider higher-level architectural

issues or system-level vulnerabilities.

Overall, the scope of software bug prediction is to proactively identify and prevent

defects in software systems, thereby improving software quality and reducing the

potential negative impacts of bugs.

1.6 Problem Statement

The idea behind this research work is to develop a model or algorithm that can

accurately predict the occurrence and location of bugs or defects in software

applications. The goal is to identify potential issues early on in the development

process, enabling developers to proactively address them and improve the overall

software quality. This problem involves analyzing historical data, such as source

code metrics, bug reports, and version control information, to detect patterns or

indicators that can be used to predict the likelihood of future bugs. The challenge

lies in finding the right set of features and developing a predictive model that can

5

generalize well to new software projects.

1.7 Reason / Justification for the Selection of the Topic

The literature review and industrial needs evidently show that an efficient model

on this aspect of software development is warmly welcomed in market. Since the

world is rapidly shifting towards software-based products, therefore our reliance of

software has drastically increased. This gives rise to the idea of error-free software.

A lot of models, principles and techniques are followed to achieve this notion such

as small iterations, documentation, user interaction and well-organized process; still

some inevitable defects occur causing a great distress to the software users and

owners. Therefore, in order to mitigate these defects an efficient model for

predicting them before they are born is necessary. This will give a boost in the

performance of the final product and save much time and resources.

1.8 Methodology

The research aims to design an efficient model for software bug prediction and it

involves 3 major steps: design of a model, implementation of a model and analysis

of a model using different metrics. The design of a model involves data

preprocessing, feature engineering, handling class imbalance and employing

different machine learning classifiers for prediction. The process followed by

implementing the same model in Python with individual classifiers and with

ensemble methods also. The analysis includes prediction model accuracy, Precision,

Recall and F1-score on two data repositories. The model detailed design and

implementation details will be covered in Chapter 3 and 4 respectively.

1.9 Objectives

The main objectives of the study include

(i) Design of an efficient model for software bug prediction using machine

learning techniques

6

(ii) Implementation of the same model in python language using datasets

obtained from popular open-source software

(iii) Analysis of the implemented model using different performance measures for

different databases

1.10 Relevance to National Needs

During the last decade, Pakistan has seen significant improvement in the software

development with the sudden increase observed in software product usage globally.

However, due to increased complexity, short time to market and high customer

demands, often a software crisis or failure occurs which consume time and budget.

This research will provide insights to predict the defects that become a critical

challenge for system efficiency. The early defect prediction will help improve the

software reliability and performance. This, in return, will give a major push to the

national prosperity in IT world globally.

1.11 Advantages

It is necessary to discover the faults at early phase of software development to

reduce the development cost and increase the success rate. This research will help

to achieve this task in a well-structured way. Software testing, at the last stage of

development cycle becomes painful with so many bugs coming up but with optimal

prediction techniques, it will be made convenient and quicker.

1.12 Area of Application

This research will be utilized in the software industry, in detecting the bugs and

their probable causes with the most efficient technique or model. All the software-

based products will see a great spike in their performance and efficiency, be it

medical software, safety critical software, e-commerce websites, home-based

software products etc.

7

1.13 Thesis Outline

In the following chapters of thesis, different sections of research work are discussed

at length.

Chapter 1 Introduction: An Overview of proposed research topic that includes

introduction, motivation, scope, objectives and problem statement

Chapter 2 Related Work: Discussion and highlighting of work already carried out

on this topic by other researchers.

Chapter 3 Proposed Design and Methodology: The design and methodology of the

proposed Model is discussed in detail.

Chapter 4 Implementation: Explanation of the proposed model implementation in

Python

Chapter 5 Results and Discussion: Model results on two data repositories are

discussed using different software metrics

Chapter 6 Conclusion and Future Work: Final remarks about proposed model and

future expansion is elaborated

1.14 Summary

In this chapter, introduction of research work is provided by giving background of

the problem discussed. The scope and reason for choosing this research work is

discussed. The proposed methodology, objectives, national needs, and advantages

provide a bit more understanding about research work. At the end, area of

application and organization of thesis is provided.

8

Chapter 2

2 Related Work

2.1 Introduction

In this chapter the already published work with relevance to software bug

prediction, feature engineering and class imbalance is reviewed. It provides a

general overview of the previous research work in this field.

2.2 Software Bug Prediction (SBP)

There are various approaches to create software bug prediction models mainly

depending on factors like the required output, availability of datasets, features in a

dataset, class imbalance handling and ML classifiers etc. The previous models often

ignored some of the above-mentioned factors, which made them less effective. Later

on, with the rapid growth of complexity of a software, the domain of software bug

prediction became a popular research area in the field of software engineering.

Many researchers are attracted towards this field proposing a variety of

frameworks, models and techniques for bug prediction.

There are additional researchers who have concentrated on enhancing the currently

utilized methods and models. Despite several efforts, there are still significant

uncertainties in the field of software bug prediction research. Although numerous

models and frameworks have been put forth, every method has its own drawbacks.

To find bugs, several machine learning techniques are utilized, and datasets are

made freely accessible so that practitioners can simply run their experiments

without worrying about data. [1]

It is necessary to review the experimental data obtained on these techniques through

the current studies in order to make machine learning techniques practicable in the

context of bug prediction. [1] The figure 2.1 shows the elements what normally is

9

included in literature review in the area of SBP. Often, there are surveys or reviews

conducted, discussions of previously used techniques, their pros and cons, the latest

trends and famous topics as all this is very much required for a researcher to conduct

a relevant and fruitful research project.

Figure 2.1: Literature Review in the domain of Software Bug Prediction

2.3 Machine Learning Techniques

From the literature review, it is found that various frameworks and techniques have

been proposed to perform software bug prediction by combining data

preprocessing, feature engineering, class imbalance and ensemble methods in a

systematic manner to build models. Machine learning techniques, such as decision

trees, random forests, and support vector machines, can be applied to predict

software bugs. These algorithms learn from labeled datasets and develop models to

classify whether a code segment is likely to contain a bug or not. Researchers have

preferred them in order to ease the evaluation of the performance of their work.

Apart from the mentioned approaches, different kinds of preprocessing methods

are used in the cleaning of data and feature selection or feature ranking methods

10

are also utilized to reduce the dimensionality of dataset. After data cleaning,

different classifiers are applied on the dataset, either individual classifiers or

ensemble methods, to train the model.

2.3.1 Class Imbalance Handling

The problem of class imbalance has not been studied extensively in the last years.

However, it impacts the model performance and an important factor which needs

to be consider when designing a potential model. The following table 2.1 shows a

list of related works using class imbalance for SBP. It shows the aim of study,

ensemble method, dataset, performance measure and results.

11

Table 2.1: SBP Using Class Imbalance

12

13

2.3.2 Cross Project Defect Prediction:

Cross-project defect prediction refers to predicting defects in a target project based

on data from other projects. This approach is used when the target project has

limited or no historical defect data available, but there is sufficient data from other

similar projects. The idea is to transfer the knowledge and patterns learned from the

source projects to the target project.

Cross-project defect prediction uses machine learning techniques to build a

predictive model using data from multiple projects. It involves identifying relevant

features (e.g., code complexity, developer experience, etc.) and training a model on

historical defect data from different projects. This model is then applied to the target

project to predict the likelihood of defects in the code.

There are various challenges in cross-project defect prediction, including the

differences in software characteristics, coding practices, and development

environments across projects. These differences can affect the accuracy and

effectiveness of the predictive model. Therefore, it is important to carefully select

appropriate source projects that have similarities with the target project and

consider the transferability of the learned models.

Cross-project defect prediction can be beneficial for projects that have limited defect

data, especially for early defect detection and prioritizing limited testing resources.

However, it should be used as a supplementary approach and not solely rely on the

predictions, as the transferability and generalizability of the models may vary across

projects. The following table 2.2 shows a list of related works performing SBP for

cross-project.

14

Table 2.2: Cross-Project Bug Prediction

15

2.3.3 SBP Using Ensemble Methods

Ensemble methods in software bug prediction refer to the combination of multiple

prediction models or algorithms to improve the accuracy and reliability of defect

prediction. These methods combine the predictions from different models in

various ways, such as bagging, boosting, stacking, averaging, voting, or weighting,

to make a final prediction. These methods have been shown to improve prediction

performance compared to single models. They benefit from the diversity of the

individual models and leverage their strengths to make more accurate and robust

predictions. The following table 2.3 shows a list of related works using ensemble

methods for SBP.

16

Table 2.3: SBP Using Ensemble Methods

17

18

19

2.4 Summary

This chapter sheds light on the previous work done in the domain of software bug

prediction, the approaches, methods, advantages and limitations of their work is

shown. The widely used dataset, tools and approaches for creating a prediction

model has also been considered.

20

CHAPTER 3

3 PROPOSED DESIGN & METHDOLOGY

3.1 Introduction

This chapter gives details overview of proposed design, its theoretical concept and

methodology. The design of the proposed research project is discussed in detail and

the methodology is also described. The analysis of the used data set, their features,

relevancy of features and metrics are also discussed. The machine learning classifier,

tools, and performance metrics used in this work are also explained. This chapter

concludes with design and methodology of efficient bug prediction model using

machine learning technique that will help to predict software bugs with greater

accuracy.

3.2 Theoretical Concept of Proposed Design / Methodology

The proposed research project involves a design and implementation of an efficient

model for software bug prediction. It requires clean dataset with relevant features,

efficient classifier and valid training and testing of model for efficient bug

prediction. For this purpose, distinct methods are used to build the model more

robust and novel among the previously built models discussed in the literature

survey. These methods are discussed as follows:

 Transfer Learning

 Ensemble Method

 Class Imbalance

 Feature Engineering

3.2.1 Transfer Learning

Software bug prediction can be performed within the same project or on cross-

21

projects. Transfer learning is used in cross-project software bug prediction and it

refers to the use of pre-trained models on one project and predicts bugs in another

project. This approach recognizes that software projects often share common

characteristics and patterns, even across different domains or applications. The

typical process of transfer learning in cross-project bug prediction involves the

following steps:

• Pre-training: A model is trained on a source project(s) that contains

labeled bug data. The model learns to understand the underlying patterns

and features associated with bug-prone code.

• Knowledge Transfer: After pre-training, the trained model's knowledge

is transferred to a different target project that has limited labeled bug data.

This step involves adapting the pre-trained model to the target project by

fine-tuning or retraining it on the available labeled bug data in the target

project.

• Prediction: Once the transfer learning process is complete, the adapted

model is used to predict bugs in the target project. The model leverages

the knowledge gained from the source project to make accurate

predictions on the bug-proneness of the target project's code.

3.2.1.1 Benefits of using transfer learning in cross-project bug prediction

Limited labeled data requirement: Using knowledge transferred from a source

project, the target project can benefit from the pre-trained model's understanding

of bugs without requiring a massive amount of labeled bug data.

Improved bug prediction accuracy: The pre-trained model has already learned

general patterns and features associated with bugs, making it more likely to make

accurate predictions on the target project's code.

Time and resource efficiency: Transfer learning allows for the reuse of pre-trained

models, reducing the time and resources needed to train a model from scratch for

22

each project. This approach can speed up the bug prediction process for new

projects.

While transfer learning offers promising advantages, it is crucial to consider the

differences between the source and target projects such as codebase, programming

language, or domain. The transferability of knowledge depends on the similarity

and level of commonality between the projects. Therefore, careful analysis and

adaptation of the pre-trained model to the target project are necessary to ensure

effective bug prediction.

In this research work, the cross-project defect prediction is performed where source

and target data are from different projects. The model is built using one project

considered as source project and employed for prediction on another project called

as target project. The features in both the projects are kept same but feature

engineering technique is employed for model efficient training and prediction.

3.2.2 Ensemble Method

Machine learning techniques called ensemble methods combine several models or

algorithms to increase overall performance and prediction accuracy. The underlying

idea is that by combining weak models, a stronger and more accurate model is

obtained. There are several popular ensemble methods, including:

Bagging: This method involves training multiple models on different subsets of the

training data and combining their predictions through majority voting or averaging.

The most commonly used algorithm for bagging is the Random Forest, which

combines multiple decision trees.

Boosting: In boosting, models are trained sequentially, where each subsequent

model focuses on the instances that the previous models struggled to predict

accurately. The final prediction is made by combining the outputs of all models.

Gradient Boosting (XG) and Adaptive Boosting (AdaBoost) are popular boosting

algorithms.

Stacking: In stacking, multiple models are trained and their forecasts are combined

23

using a meta-learner or meta-model, a different model.

The meta-learner learns to combine the predictions of the base models, potentially

achieving better performance.

Voting: Voting methods combine the predictions of multiple models by majority

voting or weighted averaging. There are different types of voting, such as hard

voting (majority voting) and soft voting (weighted averaging based on predicted

probabilities).

Ensemble methods provide better predictive performance than using a single model

alone in many cases. They help in reducing overfitting, improving generalization,

and handling bias-variance trade-off. Ensemble approaches, however, could need

more training data than a single model and can be computationally expensive. In

this research work Bagging, Ada boosting and stacking are employed for bug

prediction.

3.2.3 Class Imbalance

Class imbalance occurs when the number of instances in one class is much lower

than the number of instances in another. In the context of software bug prediction,

this means that the number of instances representing bugs (the minority class) is

much smaller than the number of instances representing non-bugs (the majority

class).

Class imbalance can pose challenges in software bug prediction because traditional

machine learning algorithms tend to favor the majority class, leading to biased and

inaccurate predictions. This is because these algorithms are typically designed to

minimize overall error, which leads them to focus on the majority class and ignore

the minority class. As a result, the model may have poor performance in predicting

the minority class (bugs).

To address the issue of class imbalance in software bug predictions, several

techniques can be employed:

Oversampling the minority class: To boost the minority class's representation in

24

the training data, this entails creating synthetic instances of the minority class.

Techniques like SMOTE (Synthetic Minority Over-sampling Technique) can be used

to create synthetic instances based on the existing minority class instances.

Undersampling the majority class: This involves lowering the number of instances

in the majority class to match the number of instances in the minority class. This can

be done by randomly removing instances or using more advanced techniques like

Tomek Links or Cluster Centroids.

Using ensemble methods: Ensemble methods combine multiple models to make

predictions. They can be effective in dealing with class imbalance by combining

models that are trained on different subsets of the data or using techniques like

boosting, where the focus is shifted towards the minority class.

Adjusting class weights: Many machine learning algorithms provide the option to

assign different weights to different classes. By assigning higher weights to the

minority class, the algorithm gives it more importance during training and

evaluation.

Changing the evaluation metric: Instead of using traditional metrics like accuracy,

precision, recall, or F1-score, evaluation metrics specific to imbalanced datasets,

such as Area Under the Precision-Recall Curve (AUPRC) or Cohen's kappa

coefficient, can be used to assess the model's performance more accurately.

It is significant to remember that the technique selected relies on the particular

situation and dataset. Different techniques may work better in different scenarios,

so experimentation and evaluation are crucial to finding the most effective

approach. In this research work, oversampling technique is employed to handle the

class imbalance in the datasets.

3.2.4 Feature Engineering

Feature engineering is a crucial step in building software bug prediction models. It

involves selecting, transforming, and creating relevant features from raw data that

can effectively represent the characteristics of software systems and help improve

25

the performance of bug prediction models. Some common feature engineering

techniques used in software bug prediction includes:

Metrics-based features: Software systems often generate various metrics, such as

code complexity, code churn, and code ownership. These metrics can be used as

features to capture important aspects of software systems that may impact bug

occurrence. For example, the number of code changes or the number of developers

modifying a particular module can be important indicators of bug-prone areas.

Textual features: Bug reports, source code comments, and documentation can be

valuable sources of information for feature engineering. Techniques like text

mining, natural language processing (NLP), and information retrieval can be used

to extract useful features from these textual data. For example, keywords related to

software modules, error messages, or specific bug-fixing activities can be important

indicators of bug-prone areas.

Temporal features: Considering the temporal aspect of software development can

be useful in bug prediction. Features such as the number of bugs reported in the

past, the time since the last bug fix, or the number of code changes over time can

provide insights into the dynamics of the software system and potentially help

identify bug-prone periods.

Social features: In collaborative software development environments, features

related to social interactions among developers can be informative. For example,

features like the number of code reviews, code ownership distribution, or developer

network centrality can capture the social dynamics of the development process and

potentially influence bug occurrence.

Code structure and dependencies: Features related to the software code structure

and dependencies can also be valuable. These features might include the size of code

modules, code coupling and cohesion measures, or architectural properties of the

system. Such features can provide insights into the structural complexity and

organization of the software, which can impact bug occurrence.

Domain-specific features: Depending on the specific software domain, additional

26

features related to the application domain can be considered in feature engineering.

For example, if the software is dealing with financial data, features related to

financial metrics or risk indicators can be incorporated.

It is important to note that effective feature engineering requires domain knowledge

and a deep understanding of the software development process. Iterative

refinement and experimentation with different feature combinations are often

necessary to achieve optimal performance in bug prediction models.

3.3 Proposed Model

 The model design is proposed to carry out efficient prediction of bugs in a software.

In the proposed design, transfer learning, feature engineering, class imbalance and

ensemble methods are used for efficient bug prediction. The block diagram of the

proposed design is shown in Figure 3.1 which has mainly five parts i.e., labeled data

availability, handling class imbalance, feature engineering, creating training set and

building prediction model. The detailed diagram of the same is shown in Figure 3.2.

Figure 3.1: Block Diagram of Proposed Model Design

27

Figure 3.2: Detailed Diagram of Proposed Model Design

3.3.1 Data Set:

The effectiveness of the suggested model is assessed on five NASA benchmark

datasets and four datasets from Promise Repository. These datasets are publicly

available and consist of historical data of software modules. Many studies have

utilized these datasets in their research and this is the primary reason of our interest

in them as it will be easier to compare our results with them. The selected datasets

include several features and a known output class that determines the defectiveness

of an instance. Based on data available for other features, this output class is

predicted by the prediction model. The datasets have many projects with various

attributes, sizes, and defective rates that help to check the generality of research. [55]

3.3.1.1 NASA MDP Data Set

From the NASA MDP Dataset's CM1, MW1, PC1, PC3, and PC4 subsets are selected,

which are made available to the public on the PROMISE Software Engineering

28

Repository. Table 3.1 shows the features present in NASA datasets. McCabe and

Halstead source code extractors provide data from software for storage

management for receiving and analyzing ground data. These characteristics were

defined in the 1970s in an attempt to objectively characterize code characteristics

related with software quality. [56]

Table 3.1: Features in NASA Datasets

3.3.1.2 Promise Dataset

The data in Promise dataset refers to open-source Java systems and ant-1.7, camel-

1.6, ivy-2.0 and xalan-2.4 are selected for experiments in this research work. The

features present in them are shown in table 3.2. The table shows all of the twenty

features present in the dataset. The first column displays the feature ID while the

second and third column shows the feature name and detail respectively. These IDs

are used in another table to show the selected features which are used in this study.

29

Table 3.2: Features in PROMISE Datasets

3.3.2 Data Preprocessing

First step in the proposed design after dataset selection is data preprocessing. Two

version of NASA datasets are provided by [57]. DS’ refers to version of dataset that

includes duplicate and inconsistent instances whereas DS” refers to dataset that

does not include redundant and inconsistent instances. Originally, these datasets

were available at NASA website; however, they are removed from this source.

Backup of 12 cleaned NASA datasets is available at [58]. 5 cleaned and widely used

30

datasets are selected from the available datasets available at [58] which include

CM1, MW1, PC1, PC3, PC4. Previous studies have already discussed and used these

cleaned versions of datasets in their experiments. The other four datasets have been

taken from PROMISE repository available at [59]. They contain 20 Object Oriented

metrics as independent features and defect-proneness of class as dependent

variable. The criteria of cleaning as stated in [57] is shown in Table 3.3.

Table 3.3: Cleaning Criteria of NASA Dataset

3.3.3 Feature Engineering

In the proposed design, Domain-specific features engineering is explored.

Depending on the existing five features of software domain which includes

BRANCH_COUNT, CONDITION_COUNT, CYCLOMATIC_COMPLEXITY,

DECISION_COUNT and NUMBER_OF_LINES are used to create an additional

feature and added in the model training phase. This feature helps model to learn

more efficiently that at a particular threshold the features have specific value of

being buggy or not.

31

3.3.4 Handling Data Class Imbalance

The literature review suggest that the problem of Class imbalance had not been

studied in detail. However, it has an important role in model prediction capability.

Keeping this in view, the class imbalance has been incorporated in the proposed

design. There are many techniques as discussed above to cater class imbalance, but

in the proposed design, Oversampling has been used which Oversample the

minority class. It involves generating instances of the minority class to increase its

representation in the training data. The notion of “Yes” indicates that there is a bug

in data instance and “No” indicates that there is no bug in the data instance. The

class information of all data sets before and after class imbalance have been shown

below in table 3.4.

Table 3.4: Class Imbalance Handling

Sr.No. Dataset Dataset Class Info

before Class Imbalance

Dataset Class Info After

Class Imbalance

Yes No Yes No

1 CM1 42 285 285 285

2 MW1 27 226 226 226

3 PC1 61 644 644 644

4 PC3 134 943 943 943

5 PC4 177 1110 1110 1110

6 Ant-1.7 166 579 579 579

7 Camel-1.6 188 777 777 777

8 Ivy-2.0 40 312 312 312

9 Xalan-2.4 110 613 613 613

3.3.5 Machine Learning Classifier

A model is the result of the classifier's machine learning, whereas a classifier is an

algorithm or collection of rules used to categorize or classify data. The model is

trained using the classifier, and the classifier is then used by the model to categorize

the data. In the scenario of this study, this step consists of choosing individual

32

classifiers that were mostly used in artificial intelligence and the integration of well-

known algorithm to form an ensemble-learning model. In the first step, I chose two

individual classifiers i.e., Decision Tree and Random Forest. These are frequently

used classifiers and give good performance in defect prediction. [60,61] In the

second step, ensemble-learning method is proposed where the trained base classifier

in the first step, used ensemble classifiers to create a model. For ensemble methods

Bagging, AdaBoost and Stacking are used. The source dataset after passing through

preprocessing, feature selection and class imbalance phase was trained using these

individual classifiers and then with ensemble method. Trained model was then

tested on source dataset to see which classifier achieved better accuracy values. On

the other hand, target dataset is also preprocessed and then by using the same

trained and tested model, prediction is performed on target dataset. The Individual

and ensemble classifiers used in this study are descried below:

3.3.5.1 Decision Tree

A graphical representation of a series of decisions is called a decision tree, that lead

to a particular outcome. It is a way of visualizing and understanding the decision-

making process. Every node in the tree indicates a decision or a test on a particular

feature, and each branch represents an outcome or a possible result of that decision

or test. The tree starts with a root node and ends with leaf nodes, which represent

the final outcomes.

Decision trees are commonly used in various fields such as data mining, machine

learning, and business analytics. They are particularly useful when dealing with

classification or regression problems, where the objective is to forecast or estimate a

target variable based on a set of input variables or features.

Some advantages of using decision trees include their simplicity and

interpretability. Decision trees are easy to understand and visualize, making them

useful for explaining the logic and reasoning behind a particular decision. They can

also handle both categorical and numerical data, making them suitable for a wide

33

range of problems.

3.3.5.2 Random Forest

An ensemble learning technique for classification and regression applications. It is

a type of supervised learning algorithm that combines multiple decision trees to

make predictions.

In Random Forest, multiple decision trees are created using a subset of the training

data and a random subset of the input features. Each decision tree is trained

independently on the different subsets of data to generate a prediction. During

prediction, the random forest algorithm takes the majority vote from all the decision

trees to make the final prediction.

Random Forests have several advantages over a single decision tree. They reduce

overfitting by creating multiple decision trees and combining their predictions. They

can handle a large number of input features and are able to capture non-linear

relationships between features and the output variable. Random Forests are also

capable of handling missing values and outliers in the data.

Random Forests have various applications and are commonly used in fields like

finance, healthcare, and e-commerce. They can be used for predicting stock prices,

diagnosing diseases, and recommending products to users, among other tasks.

3.3.5.3 Bagging

Bagging, also known as bootstrap aggregating, is a technique used in machine

learning for improving the accuracy and stability of models. It involves creating

multiple subsets of the original dataset through random sampling with replacement,

training a separate model on each subset, and then combining their predictions

through averaging or voting.

Bagging is commonly used with decision trees, where each model in the ensemble

is trained on a different random sample of the training dataset. As each model may

have different strengths and weaknesses, the combination of their predictions can

34

lead to better overall performance.

Bagging helps to reduce overfitting by inducing diversity among the models, as each

model is trained on a slightly different subset of the data. It also helps in reducing

bias by reducing the variance of the models' predictions.

Bagging can be used for both regression and classification tasks. In the case of

regression, the final prediction is usually the average of the predictions from each

model. In classification, the final prediction can be determined by majority voting

or by taking the class with the highest probability.

Overall, bagging is a powerful technique for improving the accuracy and robustness

of machine learning models, especially when dealing with complex and noisy

datasets.

3.3.5.4 AdaBoost

AdaBoost is an ensemble learning method that combines multiple weak classifiers to

create a strong classifier. It works by sequentially training weak classifiers on different

subsets of the training data. In each iteration, the algorithm gives more weight to

misclassified samples, so the subsequent weak classifiers focus on correctly

classifying these samples. The final classifier is a weighted combination of the weak

classifiers, where the weights are determined based on their individual performance.

Advantages of AdaBoost:

 AdaBoost is a versatile algorithm that can be used with various base classifiers.

 It is less prone to overfitting, as the algorithm focuses on misclassified

examples in each iteration.

 It performs well in practice and has been widely used in various domains of

machine learning.

3.3.5.5 Stacking

Stacking is an ensemble learning method that combines multiple classifiers or

regression models to improve the overall performance. It involves training multiple

35

models, also known as base models or learners, on a given dataset. These base

models can be of any type, such as decision trees, support vector machines, or neural

networks.

The stacking ensemble method consists of two stages:

1. Base Models Training: In this stage, various base models are trained using

the input data. Each base model is trained on a portion of the dataset, either

through random sampling or specific strategies such as k-fold cross-

validation. The predictions of these base models are then stored for further

use.

2. Meta-Model Training: In this stage, a meta-model, also called a blender or

stacking model, is trained using the predictions from the base models. The

meta-model learns to combine the base models' predictions and generate a

final prediction. This can be achieved through multiple approaches, such as

averaging the predictions, using a weighted sum, or training another model

on top of the base model predictions.

The stacking ensemble method can provide better predictive performance

compared to using individual models because it leverages the diversity of the base

models. Each base model may have different strengths, weaknesses, and biases, and

by combining their predictions, the stacking model can compensate for these

differences and make more accurate predictions.

One important consideration in stacking is avoiding overfitting. Since the base

models are trained on the same dataset, there is a risk of overfitting if the stacking

model simply memorizes the base models' predictions. To mitigate this, techniques

like cross-validation and regularization can be applied.

Overall, the stacking ensemble method is an effective methodology for combining

multiple models to generate a more robust and accurate prediction model.

3.3.6 Performance Metrics

The performance of prediction model is evaluated based on certain evaluation

36

criteria and are generated through confusion matrix, which includes Accuracy,

Recall, Precision, and Area Under Receiver Operating Characteristics Curve (AUC-

ROC), F-measure etc. However, in this study Accuracy, one of the most widely used

performance metric is used. [61] These metrics help to quantify the performance of

machine learning models. [62]

3.3.6.1 Confusion Matrix

A specific table known as the confusion matrix is used to evaluate the effectiveness

of machine learning algorithms. Each column of the matrix depicts the instance

belonging to the predicted class whereas each row shows the actual class instance

or vice versa. This matrix briefly represents the result given by the testing algorithm

by providing a report of the number of True Positive (TP), False Positives (FP), True

Negatives (TN), and False Negatives (FN). [63]

Figure 3.3: Confusion Matrix

3.3.6.2 Accuracy

The ratio of the correctly predicted instances to the total number of instances by the

classifier is called accuracy. It measures the hit and miss of the classifier.

37

 (1)

3.3.6.3 Precision

Precision is defined as the percentage of accurately predicted positive instances by

the classifier out of all positively classified instances.

 (2)

3.3.6.4 Recall

The proportion of correctly classified positive examples to total positive instances

for a given class. It is also referred to as true positive rate or sensitivity and it counts

the number of hits of the classifier for the class.

 (3)

3.3.6.5 F1 Score Measure

 It is the harmonic mean of recall and precision.

 (4)

3.4 Summary

This section concludes and briefly highlights the major parts of the proposed design.

It includes the theoretical approach used to make this model. The design of the

proposed model is discussed that involves preprocessing, feature engineering,

transfer learning, handling class imbalance and ensemble learning method. The data

sets, all of their features and then the feature engineering step is described.

Moreover, the classifiers used in this model and the performance metrics which will

be used to calculate the efficiency of model are also discussed. In short, the technical

approach to make the software defect prediction model is described.

38

CHAPTER 4

4 Implementation

4.1 Introduction

In this chapter the implementation details of proposed design are discussed. It gives

details overview of used language, hardware, software requirements and other

information related to model implementation.

4.2 Environment (Hardware and Software)

Google Colab environment is used for the implementation of the proposed model.

Python 3.10.12 is used for implementation. 8 GB RAM with windows 10 on Core i7

PC is used in this research work. The libraries used in this model are sklearn,

imblearn, pandas and numpy. For plotting the graphs matplotlib library is used.

4.3 Implementation Details

The implementation details of all steps mentioned in the previous chapter are

discussed in detail as below:

4.3.1 Data Pre-Processing (Step 1)

To normalize the dataset, first the null values and Noise is checked and removed

from the dataset.

4.3.1.1 Null values and Noise

The repository has null values and noise in the form of missing and duplicated rows.

The null values are first identified and then removed by replacing with zero. Noise

is reduced from the dataset by reducing redundant data, allowing our trained

39

algorithm to identify defects more correctly.

Implementation Steps:

To address the issue of Null, NAN, and noise in the dataset, the following steps are

performed:

1. Read CSV File

2. Remove all unnecessary columns, i.e., name and version

3. Use panda’s isnull (). sum () method on the data retrieved from CSV file

4. This method traverses all columns and sum number of null values in them

5. Use panda’s fillna () method to fill the null values with 0.

6. Use panda’s isna () method on the data retrieved from CSV file

7. This method traverses all rows in the dataset and highlight the NAN values.

8. Use panda’s fillna () method to fill the NAN values with 0

9. Use panda’s duplicated method on the data retrieved from CSV file

10. Duplicating method of panda’s library, traversing each row in the dataset one

by one across the file and picking the duplicated rows.

11. Use pandas’ method drop_duplicates on the data retrieved from the CSV file

12. Use drop_duplicates method to eliminate all the retrieved duplicated rows

from the dataset.

4.3.1.2 Dataset Scaling

The data distribution gap in the datasets is filled after removing the null values and

noise. Standard Scaler is a useful approach that is used as a preprocessing step to

40

standardize the range of functionality of the input dataset. Some factors assessed at

different scales do not contribute equally to model fitting and model learned

function and may result in bias. To address this potential issue, feature-wise

standardized (μ=0, σ =1) is typically utilized prior to model fitting.

Implementation Steps:

1. Read source CSV File

2. Split the dataset into independed variables features and depended target

variable.

3. Grouped the independed variables features set

4. Used the sklearn standardscaler feature and passed the independed variables

features set to it

5. Standard Scaler removes the mean and scales each feature/variable to unit

variance. This operation is performed feature-wise in an independent way.

6. The new scaled values of all independed features are saved in new data

frame.

7. The implementation code of the above procedure is as follows:

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X_res)

4.3.1.3 Handling Multiclass Nature of Promise Dataset:

After removing null values and noise, the Promise dataset is converted to 2 class

problem as this dataset is of multiclass nature. The multi-class nature of the dataset

is described visually in the Figure 4.1 below.

https://www.mdpi.com/2076-3417/12/23/12167#fig_body_display_applsci-12-12167-f002

41

The detailed analysis about classes in Promise Dataset reveals that most of the

classes have much less data. To get better results, we kept class 0 but combined the

classes with the bug labels 2,3,4,5,6,7 as 1. This indicated that Class 1 contained all

of the bugs found in Classes 2, 3, 4, 5, 6, and 7. This step is performed to collect as

much data as possible for training the model.

Figure 4.1: Multiclass Data of Ant Dataset

Implementation Steps:

To resolve the multiclass issue, following steps were performed:

1. Read CSV File of Promise dataset

2. Use NumPy’s, where () method to traverse the target variable and highlight

the values equal or greater than 1.

3. Replace all the highlighted values with 1in the CSV File.

4.3.2 Feature Engineering (Step 2)

For the efficient prediction of bugs by the proposed model, the concept of feature

engineering has been incorporated.

Implementation Steps:

1. Read CSV File of dataset

2. Define a new variable named “eval”

42

3. Define a condition combining 5 existing features of a dataset, set a threshold

value of each feature and used logical operator AND.

4. Insert a record in new feature when the condition of AND operator becomes

“TRUE”

5. Convert the new feature to data frame and add it in the CSV file.

6. Transverse the newly added feature values and replace the True values with 1

and False values with 0.

7. The implementation code of the above procedure is as follows:

eval = (data.BRANCH_COUNT < 200) & (data.CONDITION_COUNT < 250) &

(data.CYCLOMATIC_COMPLEXITY < 100) & (data.DECISION_COUNT < 150)

& (data.NUMBER_OF_LINES < 500)

data['eval'] = pd.DataFrame(eval)

data['eval'] = [1 if e == True else 0 for e in data['eval']]

4.3.3 Class Imbalance (Step 3)

The proposed model also addresses the issue of class imbalance. In the proposed

work, the issue of class imbalance is resolved both in terms of the overall number of

instances and the total number of output classes. Random Over Sampler is used to

tackle the class imbalance problem.

Implementation Steps:

The following steps are performed to resolve the class imbalance issue in the dataset:

1. Once the null and noise had been removed from the dataset,

RandomOverSampler is used. It randomly selecting examples from the

minority class, with replacement, and adding them to the training dataset.

2. The random state value is set to 26 and passed the dataset as independed

variables features and target feature variable.

43

3. The dataset is passed and then, using this technique, all the minority

classes were oversampled to the majority class.

4. The implementation code is as follows:

from imblearn.over_sampling import RandomOverSampler

os = RandomOverSampler(random_state = 26)

X_res, y_res = os.fit_resample(X,y)

The dataset results after applying class imbalance on both data repositories are

shown below in table 4.1.

Table 4.1: Class Imbalance Results on Both Data Repositories

Sr.No. Dataset Dataset Class Info before

Class Imbalance

Dataset Class Info After

Class Imbalance

Yes No Yes No

1 CM1 42 285 285 285

2 MW1 27 226 226 226

3 PC1 61 644 644 644

4 PC3 134 943 943 943

5 PC4 177 1110 1110 1110

6 Ant-1.7 166 579 579 579

7 Camel-1.6 188 777 777 777

8 Ivy-2.0 40 312 312 312

9 Xalan-2.4 110 613 613 613

4.3.4 Dataset Division (Step 4)

After features scaling and class imbalance, the dataset is divided into training and

testing dataset. The 75% portion of the dataset is used for training and 25% for

testing. Model is trained and tested on one project and then prediction is conducted

on another dataset. The python code for dataset division is as follows:

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X_scaled , y_res, random_state =

1, test_size = 0.25)

44

4.3.5 Classification (Step 5)

Data classification is performed to ensure the accuracy of the suggested design. To

accomplish this, various machine learning classifiers are used [15][56]. Decision tree,

random forest, bagging, boosting, and stacking are selected for the classification of

buggy data in datasets because the dataset is multi-class and proposed model will be

applied on the cross-project. The classifier predicts the output using the mapped

instances as training data. The data is classified into Class 0 and Class 1 using this

classifier. The performance of each project is examined as a source and target, i.e., first

picked CM1 as the source project and MW1 as the target project and performed

prediction on this dataset and calculate accuracy. Then this step is repeated by

changing all other datasets of NASA as target. The same process is repeated both data

repositories which includes NASA and PROMISE and for all 9 datasets i.e., one

dataset is source at a time and all others are target. But the datasets of NASA and

PROMISE are treated separately due to different nature of features in both

repositories.

The implementation details of one dataset are described below:

1. After data preprocessing, scaler transform, feature engineering and class

imbalance, the dataset i.e., CM1 is divided into training and test dataset. The

dataset is divided on the ratio of 75% for training and 25% for testing. By

using the sklearn library and train_ test split function, the dataset is split into

training and test dataset.

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X_scaled , y_res,

random_state = 1, test_size = 0.25)

45

2. First Decision tree classifier is applied on training set of CM1 dataset to train

the model. Sklearn library tree function is used to implement decision tree on

training dataset.

dtree=DecisionTreeClassifier()

dtree.fit(X_train, y_train)

3. Then test dataset is passed to the model to predict the values by using

decision tree predict property.

dtree.predict(X_test)

4. Then the same trained and tested model is passed to the ensemble classifier

of bagging, AdaBoost and stacking.

5. In bagging method, sklearn.ensemble property is used to call bagging

classifier. The base classifier is decision tree along with other parameters.

from sklearn.ensemble import BaggingClassifier

bag_model = BaggingClassifier(

 estimator = DecisionTreeClassifier(),

 n_estimators = 100,

 max_samples = 0.8,

 oob_score = True,

 random_state = 26

)

6. After model definition, the train dataset is passed to the classifier.

bag_model.fit(X_train,y_train)

7. Then the test dataset is passed to the model for prediction.

y_pred = bag_model.predict(X_test)

8. The classification report is generated to check the accuracy of the model

within a project. Sklearn.metrics property is used to call accuracy score and

classification report.

46

Evaluate the model

from sklearn.metrics import accuracy_score

from sklearn.metrics import classification_report

print (classification_report(y_test, y_pred))

print ("Accuracy: ",accuracy_score(y_pred ,y_test))

9. The prediction result is shown in figure 4.2, gives an insight into model

prediction accuracy.

precision recall f1-score support

 0 1.00 0.86 0.92 57

 1 0.88 1.00 0.93 57

 accuracy 0.93 114

 macro avg 0.94 0.93 0.93 114

weighted avg 0.94 0.93 0.93 114

Accuracy: 0.9298245614035088

Figure 4.2: Model Prediction Results Within Project

10. As the proposed model is for cross project defect prediction, so target project

is loaded and split into independed variables features and depended target

variable.

X1 = test_data.drop('Defective',axis='columns')

y1 = test_data.Defective

11. The independed variable features are passed to previously trained model for

prediction.

y1_pred = bag_model.predict(X1)

12. The classification report is generated to check the accuracy of the model

within a project. Sklearn.metrics property is used to call accuracy score and

classification report.

Evaluate the model

print (classification_report(y1, y1_pred))

47

print ("ACC: “, accuracy_score(y1_pred, y1))

13. The prediction results as shown in figure 4.3, gives an insight into model

prediction accuracy.

precision recall f1-score support

 0 0.94 0.80 0.86 644

 1 0.17 0.43 0.24 61

 accuracy 0.77 705

 macro avg 0.55 0.61 0.55 705

weighted avg 0.87 0.77 0.81 705

ACC: 0.7659574468085106

Figure 4.3: Model Prediction Results Across Projects

14. Steps as mentioned above from serial 5 to 13 are repeated for two others

below mentioned ensemble methods and a base classifier i.e., Random Forest

Classifier also.

15. For AdaBoost, the sklearn library is used to call Adaboost classifier.

ada=AdaBoostClassifier (base_estimator=dTree_clf, n_estimators =

500,)

16. For stacking classifier, different base classifiers are used which includes

LinearSVC, MLP classifier and final estimator as decision tree. Sklearn library

is used to call and define the classifier in python.

estimators = [

 ('svr', make_pipeline(StandardScaler(),

 LinearSVC(random_state=1))),

 ('mlp’, make_pipeline(StandardScaler(), MLPClassifier(alpha=1,

max_iter=200)))

]

stack_model = StackingClassifier(

 estimators=estimators,

 # final_estimator = RandomForestClassifier(random_state=1),

 final_estimator = DecisionTreeClassifier(random_state=1),

48

 cv=10

)

The same above procedure is followed for all classifiers on all datasets of both

repositories.

4.4 Summary

This section concludes and briefly highlights the implementation details of the

proposed design. It includes the tools used to implement this model. The

implementation details of proposed model are discussed that involves preprocessing,

feature engineering, transfer learning, handling class imbalance and ensemble

learning method. The classifiers used in this model and the performance metrics

which will be used to calculate the efficiency of model are described. In short, the

practical approach to proposed model is discussed to make the software defect

prediction model.

49

CHAPTER 5

1. Results and Discussion

5.1 Introduction

In this chapter the model results will be discussed in detail. Different aspects of

model prediction accuracy will be discussed to highlight the efficiency of the

proposed model.

5.2 Implementation Details

Using the Random over sampling technique, the majority and minority classes in

each dataset are balanced using the experimental framework. As in previous studies

[55,59], the balanced representation of the classes was based on 50% defective and

50% non-defective classes. The goal is to ensure that the resulting models were

trained with each class label and to provide credibility to the proposed model in

predicting the proper class labels (defective or non-defective). Random

Oversampling technique is used as a sampling approach because of its performance.

5.3 Results

This section presents and discusses the results received after evaluating the various

classifiers. It is critical to demonstrate the significance of sampling technique on bug

prediction model development. Furthermore, the efficacy of the class imbalance and

ensemble approaches over the base-line classifier is a focus of this research.

5.3.1 Base Classifiers Results for NASA Dataset

At first the results will be presented to reflect the effects of each base-line classifier.

Table 5.1 presents the prediction performances of base classifiers Decision Tree (DT)

50

and Random Forest (RF) on the datasets of NASA repository. The values shown the

accuracy of the proposed prediction model employing both classifiers. The DT

classifier, as seen in Table 5.1, yielded an average accuracy of 82% and RF have 84%.

The RF classifier had highest prediction performances with an average accuracy of

84% as a base classifier.

Table 5.1: Prediction Performance of DT and RF on the NASA dataset

Sr.No Dataset Decision

Tree (DT)

Random Forest

(RF)

1 PC1-PC3 0.83 0.86

2 PC1-PC4 0.86 0.84

3 PC1-CM1 0.78 0.85

4 PC1-MW1 0.81 0.87

5 PC3-PC1 0.90 0.84

6 PC3-PC4 0.87 0.83

7 PC3-CM1 0.78 0.81

8 PC3-MW1 0.84 0.83

9 PC4-PC1 0.90 0.84

10 PC4-PC3 0.83 0.81

11 PC4-CM1 0.80 0.81

12 PC4-MW1 0.83 0.87

13 CM1-PC1 0.81 0.87

14 CM1-PC3 0.82 0.86

15 CM1-PC4 0.68 0.82

16 CM1-MW1 0.68 0.85

17 MW1-PC1 0.90 0.87

18 MW1-PC3 0.86 0.85

19 MW1-PC4 0.85 0.84

20 MW1-CM1 0.80 0.82

Average Accuracy % 0.82 0.84

51

5.3.2 Ensemble Methods along with Base Classifiers Results for NASA Dataset

Table 5.2 represents the proposed model prediction accuracy results on 2 individual

classifiers and 3 different ensemble methods. Accuracy is a statistic that describes

how the model performs in general across all classes. It is helpful when all classes

are equally important. It is determined by dividing the number of right guesses by

the total number of forecasts.

The method of bagging, boosting and stacking has been employed with base

classifiers as DT and RF. The results shown that among the ensemble methods,

boosting have the highest average accuracy with base classifier of RF. It has the

average accuracy of 84% with lowest accuracy of 81% on PC3 and CM1 dataset and

highest accuracy of 89% on PC1 dataset. CM1 dataset has less numbers of samples

which may contribute to low accuracy of model prediction.

In the comparison of all three ensemble methods, stacking with DT have better

average accuracy of 82%. Among bagging, BaggedDT has better results than

BaggedRF. Where as in boosting, Ada boosted method is employed and

AdaBoostRF yields better average prediction accuracy. The prediction results

reveals that RF works better with proposed model, whether it’s for individual

classifier or for ensemble-based methods. The overall results indicate the model

minimum accuracy up to 75%. The graph view of above results is shown in Figure

5.1.

Table 5.2: Prediction Performance of Ensemble Methods on NASA Dataset

Sr.No Dataset Decision

Tree

(DT)

Random

Forest

(RF)

Bagging Boosting Stacking

DT RF AdaBoost

DT

AdaBoost

RF

DT RF

1 PC1-PC3 0.83 0.86 0.84 0.84 0.80 0.85 0.82 0.84

2 PC1-PC4 0.86 0.84 0.81 0.81 0.80 0.83 0.82 0.87

3 PC1-CM1 0.78 0.85 0.83 0.79 0.81 0.85 0.81 0.69

4 PC1-MW1 0.81 0.87 0.85 0.83 0.86 0.86 0.81 0.87

5 PC3-PC1 0.90 0.84 0.82 0.78 0.73 0.84 0.87 0.81

6 PC3-PC4 0.87 0.83 0.78 0.77 0.70 0.83 0.83 0.81

52

Figure 5.1: Model Prediction Results on NASA Repository

The results for the precision score of the proposed model are shown in Table 5.3.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Model Prediction Results on NASA Repository

DT

RF

BaggedDT

BaggedRF

AdaBoostDT

AdaBoostRF

StackedDT

SatckedRF

7 PC3-CM1 0.78 0.81 0.80 0.76 0.72 0.82 0.81 0.69

8 PC3-MW1 0.84 0.83 0.80 0.76 0.79 0.84 0.83 0.77

9 PC4-PC1 0.90 0.84 0.79 0.73 0.54 0.84 0.86 0.84

10 PC4-PC3 0.83 0.81 0.73 0.70 0.71 0.81 0.79 0.77

11 PC4-CM1 0.80 0.81 0.73 0.75 0.65 0.81 0.75 0.64

12 PC4-MW1 0.83 0.87 0.83 0.78 0.60 0.85 0.80 0.86

13 CM1-PC1 0.81 0.87 0.77 0.75 0.85 0.87 0.86 0.88

14 CM1-PC3 0.82 0.86 0.78 0.78 0.62 0.86 0.80 0.85

15 CM1-PC4 0.68 0.82 0.65 0.74 0.70 0.83 0.80 0.85

16 CM1-MW1 0.68 0.85 0.68 0.76 0.65 0.85 0.83 0.85

17 MW1-PC1 0.90 0.87 0.84 0.84 0.89 0.89 0.87 0.88

18 MW1-PC3 0.86 0.85 0.83 0.84 0.86 0.86 0.81 0.84

19 MW1-PC4 0.85 0.84 0.82 0.81 0.84 0.84 0.75 0.84

20 MW1-CM1 0.8 0.82 0.81 0.80 0.81 0.82 0.86 0.81

Average Accuracy % 0.82 0.84 0.79 0.78 0.75 0.84 0.82 0.81

53

The results highlights that an average precision of all classifiers is above 80% on all

datasets. The precision is computed as the ratio of Positive samples that were

correctly classified to all samples that were correctly or mistakenly identified as

Positive. The precision measures how well the model categorizes a sample as

positive.

Table 5.3: Precision Score of Proposed Model on NASA Dataset

Sr.No Dataset Decisio

n Tree

(DT)

Random

Forest

(RF)

Bagging Boosting Stacking

DT RF AdaBoos

t DT

AdaBoost

RF

DT RF

1 PC1-PC3 0.81 0.83 0.84 0.85 0.82 0.83 0.82 0.82

2 PC1-PC4 0.79 0.82 0.80 0.82 0.79 0.80 0.82 0.84

3 PC1-CM1 0.84 0.83 0.83 0.82 0.81 0.84 0.81 0.79

4 PC1-MW1 0.83 0.87 0.86 0.86 0.86 0.87 0.81 0.82

5 PC3-PC1 0.87 0.87 0.89 0.89 0.85 0.88 0.87 0.89

6 PC3-PC4 0.79 0.80 0.78 0.82 0.77 0.80 0.83 0.83

7 PC3-CM1 0.80 0.80 0.82 0.82 0.78 0.81 0.81 0.84

8 PC3-MW1 0.85 0.86 0.85 0.86 0.86 0.86 0.83 0.84

9 PC4-PC1 0.87 0.87 0.89 0.88 0.83 0.87 0.86 0.86

10 PC4-PC3 0.84 0.82 0.84 0.82 0.83 0.81 0.79 0.80

11 PC4-CM1 0.77 0.81 0.81 0.83 0.77 0.82 0.75 0.74

12 PC4-MW1 0.82 0.82 0.82 0.83 0.77 0.83 0.80 0.81

13 CM1-PC1 0.86 0.86 0.87 0.87 0.87 0.85 0.86 0.86

14 CM1-PC3 0.81 0.81 0.82 0.83 0.77 0.82 0.80 0.81

15 CM1-PC4 0.76 0.77 0.75 0.78 0.77 0.77 0.80 0.78

16 CM1-MW1 0.84 0.87 0.85 0.88 0.81 0.85 0.83 0.85

17 MW1-PC1 0.85 0.87 0.88 0.88 0.87 0.88 0.87 0.86

18 MW1-PC3 0.80 0.79 0.81 0.82 0.81 0.80 0.81 0.81

19 MW1-PC4 0.78 0.79 0.78 0.78 0.78 0.79 0.75 0.75

20 MW1-CM1 0.78 0.81 0.82 0.82 0.79 0.82 0.86 0.80

Average Precision % 0.82 0.83 0.83 0.84 0.81 0.83 0.82 0.82

In the next table 5.4, the recall score for the model prediction results has been shown.

54

The recall of the model assesses its ability to detect Positive samples. The more

positive samples identified, the larger the recall.

Table 5.4: Recall Score of Proposed Model on NASA Dataset

Sr.No Dataset Decisio

n Tree

(DT)

Random

Forest

(RF)

Bagging Boosting Stacking

DT RF AdaBoost

DT

AdaBoost

RF

DT RF

1 PC1-PC3 0.80 0.85 0.84 0.84 0.80 0.85 0.81 0.81

2 PC1-PC4 0.81 0.84 0.81 0.81 0.80 0.83 0.84 0.86

3 PC1-CM1 0.84 0.84 0.83 0.79 0.81 0.85 0.67 0.63

4 PC1-MW1 0.82 0.86 0.85 0.83 0.86 0.86 0.80 0.83

5 PC3-PC1 0.78 0.82 0.82 0.77 0.73 0.84 0.77 0.76

6 PC3-PC4 0.76 0.83 0.78 0.77 0.70 0.83 0.81 0.81

7 PC3-CM1 0.78 0.82 0.80 0.76 0.72 0.82 0.58 0.56

8 PC3-MW1 0.83 0.84 0.80 0.76 0.79 0.84 0.67 0.68

9 PC4-PC1 0.83 0.84 0.79 0.73 0.54 0.84 0.82 0.82

10 PC4-PC3 0.78 0.78 0.84 0.70 0.71 0.81 0.75 0.75

11 PC4-CM1 0.76 0.79 0.73 0.75 0.65 0.81 0.63 0.62

12 PC4-MW1 0.85 0.85 0.83 0.78 0.60 0.85 0.79 0.77

13 CM1-PC1 0.77 0.85 0.77 0.75 0.85 0.87 0.84 0.87

14 CM1-PC3 0.74 0.84 0.73 0.78 0.62 0.86 0.81 0.85

15 CM1-PC4 0.67 0.81 0.65 0.74 0.70 0.83 0.85 0.85

16 CM1-MW1 0.68 0.85 0.66 0.76 0.65 0.85 0.84 0.88

17 MW1-PC1 0.89 0.87 0.84 0.84 0.89 0.89 0.88 0.89

18 MW1-PC3 0.86 0.84 0.83 0.84 0.86 0.86 0.84 0.86

19 MW1-PC4 0.85 0.84 0.82 0.81 0.84 0.84 0.83 0.85

20 MW1-CM1 0.82 0.82 0.81 0.80 0.81 0.82 0.84 0.83

Average Recall % 0.80 0.83 0.79 0.78 0.75 0.84 0.78 0.79

Ideally, both precision and recall metrics should be maximized to obtain the perfect

classifier. The average recall of model ranges from 0.75 to 0.84.

The F1 score combines precision and recall by using their harmonic mean, thus

55

maximizing the F1 score implies maximizing both precision and recall at the same

time. As a result, researchers have chosen the F1 score to evaluate their models in

conjunction with accuracy. The F1 score of the proposed model has been shown in

Table 5.5. It ranges from 0-100%, and a higher F1 score denotes a better-quality

classifier. The results indicate that F1 score of a proposed model is greater than 75%

for all individual and ensemble classifiers.

Table 5.5: F1-Score of Proposed Model on NASA Dataset

Sr.No Dataset Decisio

n Tree

(DT)

Random

Forest

(RF)

Bagging Boosting Stacking

DT RF AdaBoost

DT

AdaBoost

RF

DT RF

1 PC1-PC3 0.81 0.84 0.84 0.84 0.81 0.84 0.81 0.82

2 PC1-PC4 0.80 0.82 0.81 0.81 0.80 0.81 0.83 0.85

3 PC1-CM1 0.84 0.83 0.83 0.80 0.81 0.84 0.72 0.69

4 PC1-MW1 0.83 0.86 0.86 0.85 0.86 0.86 0.81 0.83

5 PC3-PC1 0.82 0.84 0.85 0.81 0.78 0.86 0.81 0.81

6 PC3-PC4 0.77 0.81 0.78 0.79 0.73 0.81 0.82 0.82

7 PC3-CM1 0.79 0.81 0.81 0.78 0.75 0.81 0.65 0.63

8 PC3-MW1 0.84 0.85 0.82 0.80 0.82 0.85 0.73 0.74

9 PC4-PC1 0.85 0.85 0.83 0.79 0.64 0.85 0.84 0.84

10 PC4-PC3 0.80 0.80 0.77 0.74 0.76 0.81 0.77 0.77

11 PC4-CM1 0.77 0.80 0.77 0.78 0.70 0.82 0.68 0.67

12 PC4-MW1 0.83 0.83 0.82 0.80 0.67 0.84 0.80 0.79

13 CM1-PC1 0.81 0.85 0.81 0.79 0.85 0.86 0.85 0.87

14 CM1-PC3 0.77 0.83 0.77 0.80 0.68 0.83 0.81 0.83

15 CM1-PC4 0.71 0.79 0.69 0.76 0.73 0.79 0.81 0.80

16 CM1-MW1 0.74 0.86 0.72 0.80 0.71 0.85 0.83 0.86

17 MW1-PC1 0.87 0.87 0.86 0.86 0.88 0.89 0.88 0.87

18 MW1-PC3 0.82 0.81 0.82 0.83 0.83 0.82 0.82 0.83

19 MW1-PC4 0.80 0.81 0.80 0.79 0.80 0.81 0.79 0.79

20 MW1-CM1 0.80 0.81 0.81 0.81 0.80 0.82 0.85 0.81

Average F1-Score % 0.80 0.83 0.80 0.80 0.77 0.83 0.80 0.80

56

5.3.3 Base Classifiers Results for PROMISE Dataset

In the next step, the same proposed model is used for prediction on PROMISE

dataset to check the model accuracy. Table 5.6 represents the prediction results of

proposed model on PROMISE dataset for individual classifiers of DT and RF. The

prediction result reveals that RF works better than DT. RF have an average accuracy

of 77% with highest accuracy of 83% on ivy-2.0 dataset and lowest accuracy of 66%

on Camel -1.6 dataset.

 Table 5.6: Prediction Performance of DT and RF on PROMISE dataset

5.3.4 Ensemble Methods along with Base Classifiers Results for PROMISE Dataset

After individual classifiers prediction, the model is tested using 3 ensemble methods

for PROMISE Dataset. Table 5.7, shows the prediction results of a proposed model

for PROMISE datsets. The prediction results reveal that, model performance is

around 65% for all ensemble methods with both base classifiers. In Bagging,

BaggedDT have high average accuracy of 71% with highest accuracy of 79% on

Sr.No Dataset Decision Tree Random Forest

1 Ant-1.7-Camel-1.6 0.55 0.66

2 Ant-1.7-Ivy-2.0 0.72 0.80

3 Ant-1.7-Xalan-2.4 0.69 0.80

4 Camel-1.6- Ant-1.7- 0.73 0.74

5 Camel-1.6- Ivy-2.0 0.76 0.83

6 Camel-1.6- Xalan-2.4 0.73 0.79

7 Ivy-2.0- Ant-1.7 0.71 0.81

8 Ivy-2.0- Camel-1.6 0.70 0.75

9 Ivy-2.0- Xalan-2.4 0.72 0.82

10 Xalan-2.4- Ant-1.7 0.63 0.73

11 Xalan-2.4- Camel-1.6 0.64 0.69

12 Xalan-2.4- Ivy-2.0 0.72 0.76

Average Accuracy % 0.69 0.77

57

Xalan-2.4 dataset and lowest of 60% on Camel-1.6 dataset. BaggedRF have average

accuracy of 70% with highest on Ivy-2.0 dataset and lowest on Camel-1.6 dataset. In

Boosting, AdaBoostRF have high accuracy of 76% with highest accuracy of 83% on

Ivy-2.0 and Xalan-2.4 dataset. AdaboostDT have average accuracy of 64% with

highest on Xalan-2.4 dataset and lowest on Camel-1.6. Whereas for Stacking, again

SatckedRF have highest average accuracy of 79%. Both base classifiers have highest

accuracy for Ivy-2.0 Dataset.

Table 5.7: Prediction Performance of Ensemble Methods on PROMISE datasets

Sr.No Dataset Decisi

on

Tree

(DT)

Rando

m

Forest

(RF)

Bagging Boosting Stacking

DT RF AdaBoost

DT

AdaBoost

RF

DT RF

1 Ant-1.7-Camel-1.6 0.55 0.66 0.60 0.61 0.60 0.64 0.72 0.74

2 Ant-1.7-Ivy-2.0 0.72 0.80 0.72 0.75 0.59 0.80 0.81 0.86

3 Ant-1.7-Xalan-2.4 0.69 0.80 0.71 0.75 0.58 0.77 0.74 0.82

4 Camel-1.6- Ant-1.7- 0.73 0.74 0.70 0.68 0.70 0.73 0.67 0.75

5 Camel-1.6- Ivy-2.0 0.76 0.83 0.74 0.79 0.69 0.83 0.75 0.79

6 Camel-1.6- Xalan-2.4 0.73 0.79 0.79 0.78 0.72 0.80 0.72 0.81

7 Ivy-2.0- Ant-1.7 0.71 0.81 0.76 0.73 0.62 0.79 0.76 0.82

8 Ivy-2.0- Camel-1.6 0.70 0.75 0.63 0.65 0.66 0.75 0.75 0.73

9 Ivy-2.0- Xalan-2.4 0.72 0.82 0.72 0.77 0.73 0.83 0.78 0.80

10 Xalan-2.4- Ant-1.7 0.63 0.73 0.70 0.66 0.65 0.72 0.73 0.76

11 Xalan-2.4- Camel-1.6 0.64 0.69 0.65 0.60 0.53 0.66 0.69 0.74

12 Xalan-2.4- Ivy-2.0 0.72 0.76 0.74 0.67 0.62 0.75 0.79 0.84

Average Accuracy % 0.60 0.77 0.71 0.70 0.64 0.76 0.74 0.79

The model prediction results on PROMISE repository indicates the stable nature of

model prediction as there is no huge variation in the prediction results on different

datasets. The graph view of Table 5.7 is shown in Figure 5.2.

58

Figure 5.2: Model Prediction Results on PROMISE Repository

The model prediction results for precision, recall and F1 score on the RPOMISE

repository has been shown in the Table 5.8, 5.9 and 5.10 respectively.

Table 5.8: Precision Score of Proposed Model on PROMISE Dataset

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1 2 3 4 5 6 7 8 9 10 11 12

Model Prediction Results on PROMISE
Repository

DT

RF

BaggedDT

BaggedRF

AdaBoostDT

AdaBoostRF

StackedDT

StackedRF

Sr.No Dataset Decision

Tree

(DT)

Random

Forest

(RF)

Bagging Boosting Stacking

DT RF AdaBoo

st DT

AdaBoost

RF

DT RF

1 Ant-1.7-Camel-1.6 0.68 0.72 0.71 0.72 0.72 0.72 0.71 0.72

2 Ant-1.7-Ivy-2.0 0.81 0.89 0.87 0.88 0.84 0.89 0.86 0.88

3 Ant-1.7-Xalan-2.4 0.84 0.82 0.87 0.84 0.75 0.83 0.79 0.82

4 Camel-1.6- Ant-1.7- 0.68 0.72 0.72 0.74 0.69 0.72 0.67 0.71

5 Camel-1.6- Ivy-2.0 0.81 0.85 0.81 0.85 0.80 0.85 0.81 0.83

6 Camel-1.6- Xalan-2.4 0.77 0.78 0.78 0.80 0.77 0.79 0.76 0.79

7 Ivy-2.0- Ant-1.7 0.72 0.81 0.80 0.81 0.71 0.79 0.73 0.80

8 Ivy-2.0- Camel-1.6 0.70 0.74 0.71 0.73 0.71 0.73 0.72 0.71

9 Ivy-2.0- Xalan-2.4 0.78 0.81 0.80 0.83 0.79 0.81 0.76 0.81

10 Xalan-2.4- Ant-1.7 0.69 0.77 0.74 0.78 0.69 0.75 0.71 0.73

11 Xalan-2.4- Camel-1.6 0.67 0.72 0.70 0.73 0.68 0.71 0.70 0.71

12 Xalan-2.4- Ivy-2.0 0.81 0.84 0.82 0.87 0.82 0.86 0.83 0.82

Average Precision % 0.75 0.79 0.78 0.80 0.75 0.79 0.75 0.78

59

Table 5.9: Recall Score of Proposed Model on PROMISE Dataset

Table 5.10: F1-Score of Proposed Model on PROMISE Dataset

Sr.No Dataset Decisi

on

Tree

(DT)

Rando

m

Forest

(RF)

Bagging Boosting Stacking

DT RF AdaBoost

DT

AdaBoost

RF

DT RF

1 Ant-1.7-Camel-1.6 0.55 0.66 0.60 0.61 0.60 0.64 0.72 0.74

2 Ant-1.7-Ivy-2.0 0.52 0.80 0.72 0.75 0.59 0.80 0.81 0.86

3 Ant-1.7-Xalan-2.4 0.72 0.79 0.72 0.75 0.58 0.77 0.74 0.82

4 Camel-1.6- Ant-1.7- 0.68 0.73 0.70 0.68 0.70 0.73 0.67 0.75

5 Camel-1.6- Ivy-2.0 0.75 0.83 0.74 0.79 0.69 0.83 0.75 0.79

6 Camel-1.6- Xalan-2.4 0.73 0.79 0.79 0.78 0.72 0.80 0.72 0.81

7 Ivy-2.0- Ant-1.7 0.71 0.81 0.76 0.73 0.62 0.79 0.76 0.82

8 Ivy-2.0- Camel-1.6 0.68 0.75 0.63 0.65 0.66 0.75 0.75 0.73

9 Ivy-2.0- Xalan-2.4 0.72 0.82 0.72 0.77 0.73 0.82 0.78 0.80

10 Xalan-2.4- Ant-1.7 0.63 0.73 0.70 0.66 0.65 0.72 0.73 0.76

11 Xalan-2.4- Camel-1.6 0.64 0.69 0.65 0.60 0.53 0.66 0.69 0.74

12 Xalan-2.4- Ivy-2.0 0.72 0.76 0.74 0.67 0.62 0.75 0.79 0.84

Average Recall % 0.67 0.76 0.71 0.70 0.64 0.76 0.74 0.79

Sr.No Dataset Decisi

on

Tree

(DT)

Rando

m

Forest

(RF)

Bagging Boosting Stacking

DT RF AdaBoost

DT

AdaBoost

RF

DT RF

1 Ant-1.7-Camel-1.6 0.60 0.68 0.64 0.65 0.64 0.67 0.71 0.73

2 Ant-1.7-Ivy-2.0 0.61 0.82 0.77 0.79 0.66 0.83 0.83 0.87

3 Ant-1.7-Xalan-2.4 0.77 0.80 0.77 0.78 0.64 0.79 0.76 0.82

4 Camel-1.6- Ant-1.7- 0.68 0.73 0.71 0.70 0.69 0.72 0.67 0.72

5 Camel-1.6- Ivy-2.0 0.78 0.84 0.77 0.81 0.74 0.84 0.77 0.81

6 Camel-1.6- Xalan-2.4 0.75 0.78 0.79 0.79 0.74 0.80 0.74 0.80

60

5.3.5 Recall Comparison with and without Class Imbalance

Another experimental results of model prediction shown that model average

accuracy without employing class imbalance is high i.e., 87% for random forest (RF)

for cross project defect prediction as compared to with class imbalance. But the

careful analysis of other performance metrics like precision, recall and F1 score

indicates that average recall of buggy class without handling class imbalance is 0.05

which indicates that model prediction for buggy class is not efficient and model is

overfitting the results by neglecting the buggy class instances. The class imbalance

resolves this issue by generating equal samples of minority class for efficient model

prediction. After employing the class imbalance, the recall of buggy class becomes

0.27. The analysis of the same is shown in Table 5.11.

Table 5.11: Prediction Analysis with and Without Class Imbalance

7 Ivy-2.0- Ant-1.7 0.71 0.81 0.77 0.75 0.65 0.79 0.74 0.81

8 Ivy-2.0- Camel-1.6 0.69 0.74 0.66 0.68 0.68 0.74 0.73 0.72

9 Ivy-2.0- Xalan-2.4 0.75 0.82 0.75 0.79 0.76 0.82 0.77 0.80

10 Xalan-2.4- Ant-1.7 0.65 0.74 0.72 0.69 0.66 0.73 0.72 0.74

11 Xalan-2.4- Camel-1.6 0.65 0.71 0.67 0.63 0.58 0.68 0.70 0.72

12 Xalan-2.4- Ivy-2.0 0.76 0.79 0.77 0.73 0.69 0.79 0.81 0.83

Average F1-Score % 0.70 0.77 0.73 0.73 0.68 0.77 0.75 0.78

Sr.

No

Dataset Without Class Imbalance With Class Imbalance

RF

Accuracy

Precision

of Buggy

Class

Recall

of

Buggy

Class

F1

Score of

Buggy

Class

RF

Accura

cy

Precision

of Buggy

Class

Recall of

Buggy

Class

F1 Score

of Buggy

Class

1 PC1-PC3 0.87 0.21 0.02 0.04 0.86 0.39 0.25 0.31

2 PC1-PC4 0.86 0.57 0.05 0.08 0.84 0.36 0.23 0.28

3 PC1-CM1 0.87 0.33 0.05 0.08 0.85 0.32 0.29 0.30

4 PC1-MW1 0.88 0.17 0.04 0.06 0.87 0.39 0.44 0.41

61

5.3.6 Average Comparison Results on Both Repositories

The average comparison of all classifiers employed for model prediction is showed

in table 5.12 and 5.13 for NASA and PROMISE repository respectively. The

prediction results shown that RF have highest average accuracy on both data

repositories. The graph view of the same is shown in figure 5.3 and 5.4.

Table 5.12: Average Prediction Performance Comparison for NASA Repository

Prediction Models Average Accuracy %

Decision Tree (DT) 82

Random Forest (RF) 84

BaggedDT 79

5 PC3-PC1 0.91 0.43 0.15 0.22 0.84 0.21 0.39 0.28

6 PC3-PC4 0.86 0.44 0.05 0.08 0.83 0.28 0.19 0.23

7 PC3-CM1 0.86 0.25 0.05 0.08 0.81 0.26 0.26 0.26

8 PC3-MW1 0.88 0.17 0.04 0.06 0.83 0.29 0.44 0.35

9 PC4-PC1 0.91 0.40 0.16 0.23 0.84 0.2 0.31 0.24

10 PC4-PC3 0.86 0.28 0.07 0.11 0.81 0.22 0.29 0.25

11 PC4-CM1 0.85 0 0 0 0.81 0.26 0.26 0.26

12 PC4-MW1 0.89 0 0 0 0.87 0.35 0.22 0.27

13 CM1-PC1 0.91 0.3 0.05 0.08 0.87 0.24 0.21 0.22

14 CM1-PC3 0.87 0.44 0.03 0.06 0.86 0.31 0.13 0.18

15 CM1-PC4 0.85 0.13 0.02 0.04 0.82 0.21 0.11 0.14

16 CM1-MW1 0.85 0.13 0.02 0.04 0.85 0.34 0.41 0.37

17 MW1-PC1 0.91 0.55 0.1 0.17 0.87 0.24 0.39 0.30

18 MW1-PC3 0.87 0.33 0.02 0.04 0.85 0.25 0.1 0.15

19 MW1-PC4 0.85 0.17 0.02 0.03 0.84 0.29 0.11 0.16

20 MW1-CM1 0.87 0.40 0.05 0.09 0.82 0.29 0.29 0.29

Average 0.87 0.29 0.05 0.08 0.84 0.29 0.27 0.26

62

BaggedRF 78

AdaBoostDT 75

AdaBoostRF 84

StackedDT 82

StackedRF 81

Figure 5.3: Average Prediction Performance Comparison for NASA Repository

Table 5.13: Average Prediction Performance Comparison for PROMISE Repository

Prediction Models Average Accuracy %

Decision Tree (DT) 69

Random Forest (RF) 77

BaggedDT 71

BaggedRF 70

AdaBoostDT 64

AdaBoostRF 76

StackedDT 74

StackedRF 79

82
84

79
78

75

84
82

81

PREDICTION PERFORMANCE
COMPARISON FOR NASA REPOSITORY

63

Figure 5.4: Average Prediction Performance Comparison for PROMISE Repository

5.4 Summary

The result of different experiments on NASA and Promise repository has been

conducted to evaluate the model accuracy along with other software metrics like

precision, recall and F1 score. The experimental result reveals that RF works best on

the proposed model both as individual classifier and also for ensemble methods of

bagging, boosting and stacking. The recall of buggy class also calculated to evaluate

the model performance.

69
77 71 70 64

76 74 79

PREDICTION PERFORMANCE
COMPARISON FOR PROMISE

REPOSITORY

64

CHAPTER 6

2. Conclusion

6.1 Introduction

In this chapter the conclusion of the proposed study will be discussed in detail. The

results and future work will be discussed.

6.2 Conclusion

Software defect prediction is critical for detecting flaws early in the software

development life cycle. This early detection and eradication of software flaws is

critical for producing a cost-effective and high-quality software product. Though

prior research has effectively used machine learning approaches for software defect

prediction, when applied to imbalanced data sets, these techniques provide biased

results. An imbalanced data collection has a non-uniform class distribution, with

very few instances of one class compared to the other. The use of skewed datasets

results in off-target predictions of the minority class, which is often thought to be

more important than the majority class. Thus, efficiently handling unbalanced data

is critical for the successful creation of a competent defect prediction model.

This work is based on design of an efficient model for software bug prediction in

cross project software’s by handling class imbalance issue. The random

oversampling strategy was used to mitigate the data imbalance issues. The

proposed designed model is implemented in Python. 2 individual and 3 ensemble

classifiers are used to evaluate the model prediction accuracy across projects. The

datasets of two data repositories i.e., NASA and PROMISE are used. The

performance of different classifiers is evaluated using classification accuracy,

Precision, Recall and F1-measure metrics. The outcomes of the conducted

experiment showed that Random Forest (RF) performed well both as in individual

classifier and also in ensemble methods. RF have an average accuracy of 84% for

65

NASA and 77% for PROMISE repository. For ensemble methods AdaBoostRF has

highest accuracy of 84% on NASA datasets and 79% with StackedRF on PROMISE

datasets. One other statics highlights that recall of a buggy class with imbalance

methods is high as compared with non-imbalance handling.

6.3 Future Work

The proposed work can be used to study the impact of different sampling strategies

like SMOTE, and under sampling. Similarly, an intriguing future addition could

include investigating the influence of various feature selection methodologies in

order to select the best set of features for software defect prediction. One future

direction is to investigate and compare the performance of ensemble classifiers with

alternative resampling strategies, as data imbalance continues to be a problem that

degrades the effectiveness of existing software defect prediction systems. Similarly,

the proposed model can also be employed for other datasets to study the model

prediction accuracy on them.

6.4 Summary

The conclusion of the proposed model has been discussed in detail The results

reveals that model works best with RF classifier for both datasets. RF classification

in ensemble methods is also outperforming DT. In the last the future direction of the

proposed model has been proposed.

66

References

[1] Syahana Nur’Ain Saharudin, Koh Tieng Wei, and Kew Si Na. Machine learning

techniques for software bug prediction: A systematic review. Journal of Computer

[2] Siers MJ, Md ZI (2015) Software defect prediction using a cost sensitive decision forest

and voting, and a potential solution to the class imbalance problem. Inf Syst 51:62–71

[3] Laradji IH, Alshayeb M, Ghouti L (2015) Software defect prediction using ensemble

learning on selected features. Inf Softw Technol 58:388–402

[4] Tong H, Liu B, Wang S (2018) Software defect prediction using stacked denoising

autoencoders and two-stage ensemble learning. Inf Softw Technol 96:94–111

[5] Yang X, Lo D, Xia X, Sun J (2017) Tlel: A two-layer ensemble learning approach for

just-in-time defect prediction. Inf Softw Technol 87:206–220

[6] Pandey SK, Mishra RB, Tripathi AK (2020) Bpdet: An effective software bug prediction

model using deep representation and ensemble learning techniques. Expert Syst Appl

144:113085

[7] Moustafa S, ElNainay MY, El Makky N, Abougabal MS (2018) Software bug prediction

using weighted majority voting techniques. Alexandria Eng J 57(4):2763–2774

[8] Shanthini A (2014) Effect of ensemble methods for software fault prediction at various

metrics level

[9] Hussain S, Keung J, Khan AA, Bennin KE (2015) Performance evaluation of ensemble

methods for software fault prediction: An experiment. In: Proceedings of the ASWEC

2015 24th Australasian software engineering conference, pp 91–95

[10] Petrić J, Bowes D, Hall T, Christianson B, Baddoo N (2016) Building an ensemble for

software defect prediction based on diversity selection. In: Proceedings of the 10th

ACM/IEEE International symposium on empirical software engineering and

measurement, pp 1–10

[11] Li R, Zhou L, Zhang S, Liu H, Huang X, Sun Z (2019) Software defect prediction based

on ensemble learning. In: Proceedings of the 2019 2nd International conference on data

science and information technology, pp 1–6

[12] Yohannese CW, Li T, Bashir K (2018) A three-stage based ensemble learning for

improved software fault prediction: an empirical comparative study. Int J Comput

Intell Sys 11(1):1229–1247

[13] Alsawalqah H, Hijazi N, Eshtay M, Faris H, Radaideh AA, Aljarah I, Alshamaileh Y

(2020) Software defect prediction using heterogeneous ensemble classification based

on segmented patterns. Appl Sci 10(5):1745

[14] Abdou AS, Darwish NR (2018) Early prediction of software defect using ensemble

learning: A comparative study. Int J Comput Appl 179(46)

67

[15] Khuat TT, Le MH (2020) Evaluation of sampling-based ensembles of classifiers on

imbalanced data for software defect prediction problems. SN Computer Science 1:1–

16

[16] Twala B (2011) Predicting software faults in large space systems using machine

learning techniques

[17] Ryu D, Jang Jong-In, Baik J (2017) A transfer cost-sensitive boosting approach for

cross-project defect prediction. Softw Qual J 25(1):235–272

[18] Saifudin A, Hendric SWHL, Soewito B, Gaol FL, Abdurachman E, Heryadi Y (2019)

Tackling imbalanced class on cross-project defect prediction using ensemble smote.

In: IOP conference series: Materials science and engineering, vol 662. IOP Publishing

[19] Wang T, Zhang Z, Jing X, Zhang L (2016) Multiple kernel ensemble learning for

software defect prediction. Autom Softw Eng 23(4):569–590

[20] Li N, Li Z, Nie Y, Sun X, Li X (2011) Predicting software black-box defects using

stacked generalization. In: 2011 Sixth International conference on digital information

management. IEEE, pp 294–299

[21] Sun Z, Song Q, Zhu X (2012) Using coding-based ensemble learning to improve

software defect prediction. IEEE Trans Sys Man Cybern Part C (Applications and

Reviews) 42(6):1806–1817

[22] Rathore SS, Kumar S (2016) Ensemble methods for the prediction of number of faults

A study on eclipse project. In: 2016 11th International Conference on Industrial and

Information Systems (ICIIS). IEEE, pp 540–545

[23] Yohannese CW, Li T, Simfukwe M, Khurshid F (2017) Ensembles based combined

learning for improved software fault prediction: A comparative study. In 2017 12th

International conference on intelligent systems and knowledge engineering (ISKE).

IEEE, pp 1–6

[24] Bal PR, Kumar S (2018) Extreme learning machine based linear homogeneous

ensemble for software fault prediction. In: ICSOFT, pp 103–112

[25] Mousavi R, Eftekhari M, Rahdari F (2018) Omni-ensemble learning (oel): Utilizing

over-bagging, static and dynamic ensemble selection approaches for software defect

prediction. Int J Artif Intell Tools 27 (06):1850024

[26] Campos JR, Costa E, Vieira M (2019) Improving failure prediction by ensembling the

decisions of machine learning models: A case study. IEEE Access 7:177661–177674

[27] He H, Zhang X, Wang Q, Ren J, Liu J, Zhao X, Cheng Y (2019) Ensemble multiboost

based on ripper classifier for prediction of imbalanced software defect data. IEEE

Access 7:110333–110343

[28] Malhotra R, Jain J (2020) Handling imbalanced data using ensemble learning in

software defect prediction. In: 2020 10th International Conference on Cloud

Computing, Data Science & Engineering (Confluence). IEEE, pp 300–304

68

[29] Zheng J (2010) Cost-sensitive boosting neural networks for software defect prediction.

Expert Syst Appl 37(6):4537–4543

[30] Kumar L, Rath S, Sureka A (2017) Using source code metrics and ensemble methods

for fault proneness prediction. arXiv:1704.04383

[31] Gao Y, Yang C (2016) Software defect prediction based on adaboost algorithm under

imbalance distribution. In: 2016 4th International Conference on Sensors,

Mechatronics and Automation (ICSMA 2016). Atlantis Press

[32] Coelho RA, dos RN Guimarães F, Esmin AAA (2014) Applying swarm ensemble

clustering technique for fault prediction using software metrics. In: 2014 13th

International conference on machine learning and applications. IEEE, pp 356–361

[33] Ryu D, Baik J (2018) Effective harmony search-based optimization of cost-sensitive

boosting for improving the performance of cross-project defect prediction. KIPS Trans

Softw Data Eng 7(3):77–90

[34] Jonsson L, Borg M, Broman D, Sandahl K, Eldh S, Runeson P (2016) Automated bug

assignment: Ensemble-based machine learning in large scale industrial contexts.

Empir Softw Eng 21(4):1533–1578

[35] Li Z, Jing X-Y, Zhu X, Zhang H, Xu B, Ying S (2019) Heterogeneous defect prediction

with two-stage ensemble learning. Autom Softw Eng 26(3):599–651

[36] Mısırlı AT, Bener A, Turhan B (2011) An industrial case study of classifier ensembles

for locating software defects. Softw Qual J 19(3):515–536

[37] Ryu D, Choi O, Baik J (2016) Value-cognitive boosting with a support vector machine

for cross-project defect prediction. Empir Softw Eng 21(1):43–71

[38] Ryu D, Jang J-I, Baik J (2017) A transfer cost-sensitive boosting approach for cross-

project defect prediction. Softw Qual J 25(1):235–272

[39] Yi P, Kou G, Wang G, Wu W, Shi Y (2011) Ensemble of software defect predictors: an

ahp-based evaluation method. International Journal of Information Technology &

Decision Making 10(01):187–206

[40] Zhang Y, Lo D, Xia X, Sun J (2018) Combined classifier for cross-project defect

prediction: an extended empirical study. Frontiers of Computer Science 12(2):280–296

[41] Wang H, Khoshgoftaar TM, Napolitano A (2010) A comparative study of ensemble

feature selection techniques for software defect prediction. In: 2010 Ninth

international conference on machine learning and applications. IEEE, pp 135–140

[42] Uchigaki S, Uchida S, Toda K, Monden A (2012) An ensemble approach of simple

regression models to cross-project fault prediction. In: 2012 13th ACIS International

conference on software engineering, artificial intelligence, networking and

parallel/distributed computing. IEEE, pp 476–481

[43] Coelho RA, dos RN Guimarães F, Esmin AAA (2014) Applying swarm ensemble

69

clustering technique for fault prediction using software metrics. In: 2014 13th

International conference on machine learning and applications. IEEE, pp 356–361

[44] Li Z, Jing Xiao-Yuan, Zhu X, Zhang H (2017) Heterogeneous defect prediction through

multiple kernel learning and ensemble learning. In: 2017 IEEE International

Conference on Software Maintenance and Evolution (ICSME). IEEE, pp 91–102

[45] Tong H, Liu B, Wang S (2019) Kernel spectral embedding transfer ensemble for

heterogeneous defect prediction. IEEE Transactions on Software Engineering

[46] Wang T, Li W, Shi H, Liu Z (2011) Software defect prediction based on classifiers

ensemble. J Info Comput Sci 8(16):4241–4254

[47] Aljamaan HI, Elish MO (2009) An empirical study of bagging and boosting ensembles

for identifying faulty classes in object-oriented software. In: 2009 IEEE Symposium on

computational intelligence and data mining. IEEE, pp 187–194

[48] Rathore SS, Kumar S (2017) Linear and non-linear heterogeneous ensemble methods

to predict the number of faults in software systems. Knowl.-Based Syst 119:232–256

[49] Ceran, A.A.; Ar, Y.; Tanrıöver, Ö.Ö.; Seyrek Ceran, S. Prediction of software quality

with Machine Learning-Based ensemble methods , 4th International Engineering

Research Symposium (INERS'22), Volume 81, Part 1, 2023, Pages 18-25,

https://doi.org/10.1016/j.matpr.2022.11.229

[50] Matloob, F. et al. Sotware defect prediction using ensemble learning: A systematic

literature review. IEEE. Access 9, 98754–98771. https:// doi. org/ 10. 1109/ ACCESS.

2021. 30955 59 (2021)

[51] PandeyS.K. et al. Machine learning based methods for software fault prediction: A

survey Expert Systems with Applications. Volume 172, 15 June 2021, 114595

[52] Mehta, S.; Patnaik, K.S. Improved prediction of software defects using ensemble

machine learning technique. Neural Comput. Appl. 2021,33, 10551–10562

[53] Balogun, A.O. et al. (2020). SMOTE-Based Homogeneous Ensemble Methods for

Software Defect Prediction. In: Gervasi, O., et al. Computational Science and Its

Applications – ICCSA 2020. ICCSA 2020. Lecture Notes in Computer Science, vol

12254. Springer, Cham. https://doi.org/10.1007/978-3-030-58817-5_45

[54] Johnson, F., Oluwatobi, O., Folorunso, O. et al. Optimized ensemble machine learning

model for software bugs prediction. Innovations Syst Softw Eng 19, 91–101 (2023).

https://doi.org/10.1007/s11334-022-00506-x

[55] Shaojian Qiu, Lu Lu, Siyu Jiang, and Yang Guo. An investigation of imbalanced

ensemble learning methods for cross-project defect prediction. International Journal

of Pattern Recognition and Artificial Intelligence, 33, 01 2019. doi:

10.1142/S0218001419590377.

[56] Manu Banga and Abhay Bansal. Proposed software faults detection using hybrid

approach. Security and Privacy, 01 2020. doi: 10.1002/spy2.103.

https://www.sciencedirect.com/journal/materials-today-proceedings/vol/81/part/P1
https://doi.org/10.1016/j.matpr.2022.11.229
https://www.sciencedirect.com/science/article/pii/S0957417421000361
https://www.sciencedirect.com/science/article/pii/S0957417421000361
https://www.sciencedirect.com/journal/expert-systems-with-applications/vol/172/suppl/C
https://doi.org/10.1007/978-3-030-58817-5_45
https://doi.org/10.1007/s11334-022-00506-x

70

[57] Martin Shepperd, Qinbao Song, Zhongbin Sun, and Carolyn Mair. Data quality: Some

comments on the nasa software defect datasets. Software Engineering, IEEE

Transactions on, 39:1208–1215, 09 2013. doi: 10.1109/TSE.2013.11.

[58] Martin Shepperd, Qinbao SOng, Zhongbin Sun, and Carolyn Mair. Nasa mdp

software defects data sets, Mar 2018. URL https://figshare.com/collections/

NASA_MDP_Software_Defects_Data_Sets/4054940/1.

[59] Deepti Aggarwal. Software Defect Prediction Dataset. 1 2021. doi: 10.

6084/m9.figshare. 13536506.v1. URL https://figshare.com/articles/dataset/

Software_Defect_Prediction_Dataset/13536506.

[60] Saiqa Aleem, Luiz Capretz, and Faheem Ahmed. Benchmarking machine learning

techniques for software defect detection. International Journal of Software

Engineering & Applications, 6:11–23, 05 2015. doi: 10.5121/ijsea.2015.6302.

[61] Md Fahimuzzman Sohan, Md Alamgir Kabir, Mostafijur Rahman, Touhid Bhuiyan,

M. Ismail Jabiullah, and Amarachukwu Felix. Prevalence of Machine Learning

Techniques in Software Defect Prediction, pages 257–269. 07 2020. ISBN 978-3- 030-

52855-3. doi: 10.1007/978-3-030-52856-0_20.

[62] Ernest Ampomah, Zhiguang Qin, and Gabriel Nyame. Evaluation of tree-based

ensemble machine learning models in predicting stock price direction of movement.

Information, 11:332, 06 2020. doi: 10.3390/info11060332.

[63] wni Hammouri, Mustafa Hammad, Mohammad Alnabhan, and Fatima Alsarayrah.

Software bug prediction using machine learning approach. International Journal of

Advanced Computer Science and Applications, 9, 01 2018. doi:

10.14569/IJACSA.2018.090212.

[64] Praman Deep Singh, Anuradha Chug, “Software Defect Prediction Analysis Using

Machine Learning Algorithms”, 2017, 7th International Conference on Cloud

Computing, Data Science & Engineering-Confluence, 775-781, 978-1-5090-3519-9/17 2.

[65] Alsaeedi, M. Z. Khan, “Software Defect Prediction Using Supervised Machine

Learning and Ensemble Techniques: A Comparative Study”, Journal of Software

Engineering and Applications, 2019, 12, 85-100, DOI: 10.4236/jsea.2019.125007

[66] Thota et al, “Survey on software defect prediction techniques”, International Journal

of Applied Science and Engineering, 17(4), 331–344,

https://doi.org/10.6703/IJASE.202012_17(4).331

[67] Shraban Kumar Apat, S V Achuta Rao, P. Santosh Kumar Patra, “Software Bug

Prediction Analysis Using Various Machine Learning Approaches”, International

Journal of Advanced Science and Technology Vol. 29, No. 8s, (2020), pp. 1508-1516

[68] Data Preprocessing in Machine Learning [Steps & Techniques] (v7labs.com)

[69] Rathore, S.S., Kumar, S. An empirical study of ensemble techniques for software fault

prediction. Appl Intell 51, 3615–3644 (2021). https://doi.org/10.1007/s10489-020-01935-

6

https://www.v7labs.com/blog/data-preprocessing-guide#:~:text=V7%20Dataset%20Manag

