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Abstract 

In this Research we did to a comparative analysis of UNET based segmentation models 

and Transformers based Segmentation model on Chest X ray images in medical imaging 

domain. The parameters for study were Jaccard Index (IoU) Foreground accuracy, 

Inference time, and Model size. The Hyper parameters such as Augmentations, learning 

rate, batch size and image size were kept similar. We used three augmentations, batch size 

of 32, and image size of 256x256. The experimentation environment for all models was 

Google Collab Pro, and for training Transformers Hugging face was used for loading 

dataset, models and Fine tuning. The training dataset was used as 80% training, 10% 

validation and 10% testing. The Jaccard Index (IOU) for UNET was 92.7 and foreground 

accuracy was 94. The Jaccard Index (IOU) for U2NET was 94 and foreground accuracy 

was 95. The Jaccard Index (IOU) for Segformer was 97 and foreground accuracy was 97.9. 

The Jaccard Index (IOU) for DPT was 97 and foreground accuracy was 97.8. The 

transformers beat accuracies of UNET based models and also performed better in 

Inference, and model size was insignificant and did not have any effect on performance. 

Overall performance of Transformers in same environment was better than UNET based 

models, and we recommend using transformers for medical image segmentation tasks.  
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CHAPTER 1: INTRODUCTION 

Image segmentation methods have proved to be a prominent way for the acquisition of features 

for image processing applications. Basic purpose of image segmentation is to search for objects of 

interest in the image by assigning labels to pixels so that entire image doesn’t need to be processed, 

thereby increasing the efficiency in terms of inference time. 

Image segmentation techniques can be categorized into traditional image processing methods i.e. 

edge-based segmentation, threshold-based segmentation and region-based segmentation, and 

Machine Learning (ML) and Deep Learning (DL) based methods i.e. instance based segmentation, 

panoptic segmentation and semantic segmentation.   

As far as the traditional techniques are concerned, Region based segmentation recursively groups 

the pixels of similar characteristics using gray scale values of the neighboring pixels [1]. Another 

simpler image processing segmentation method is based on the concept of thresholding. In this 

method, pixel are differentiated based on their intensity in comparison to a specified threshold. A 

prominent example of this method is Otsu’s method that finds the suitable threshold using 

interclass variance maximization [2]. 

In case of edge detection, different image objects are identified using their boundary or edge values 

as they differ from their surrounding pixel. An example of edge detection is Marr-Hildreth 

algorithm [3] that detects the edges by convolution of the image with Gaussian or Laplacian 

function. 

As image segmentation tasks primarily focus on categorization of pixels, ML and DL based 

pipelines stand out because of their extraordinary performance in data classification and clustering 

tasks. 

Instance segmentation involves classification of pixels as per instances of a given object (contrary 

to the idea of object classes). 

Panoptic segmentation is the hybridization of semantic and instance segmentation, predicting 

object identity and then classifying all the instances of objects in a given input image. This method 

is specifically effective in real-time applications in which accuracy and speed are simultaneously 

required such as cruise control applications [4]. 

The basic idea of semantic segmentation revolves around the concept of semantic classes. In this 

method, each pixel belongs to a specific class and final segmentation model doesn’t depend on 
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any other information. For instance, an input image containing trees, buildings and other 

landmarks, using this technique, will generate a mask that classifies each entity in a unique class.   

 

Studies have shown that DL based semantic segmentation algorithms outperform the ML based 

methods [5]. For the purpose of this study, Convolutionary Neural Networks (CNN) have been 

selected as a comparison to the proposed approach, specifically U-NET and U2NET. 

The U-NET architecture, initially designed for biomedical image segmentation, has now emerged 

as a prevailing standard for various image segmentation tasks across diverse domains. Conceived 

by Olaf Ronneberger, Philipp Fischer, and Thomas Brox in 2015, this architecture has been an 

exemplar of how DL can transform traditional imaging techniques, specifically with a paucity of 

training data [17]. 

Central to the design of U-NET is its symmetrically expanding and contracting structure, which is 

reminiscent of the letter 'U', thereby providing its moniker. The architecture essentially comprises 

two main parts: the contracting (or encoder) path and the expansive (or decoder) path. 

The Contracting Path: This initial phase is structured similarly to a conventional convolutional 

network. It consists of repeated application of two 3x3 convolutions (unpadded), each trailed by a 

rectified linear unit (ReLU) and a 2x2 max pooling operation with stride 2 for down-sampling. As 

one progresses deeper into the network, the number of channels doubles at every step, capturing 

intricate details and contextual information from the input image [18]. 

The Expansive Path: Mirroring the contracting path, the expansive segment seeks to upscale the 

feature maps. Each step in this phase involves an up-sampling of the feature map, followed by a 

2x2 up-convolution, reducing the number of channels by half. This is succeeded by a concatenation 

with the correspondingly cropped feature map from the contracting path, and two 3x3 

convolutions, each succeeded by a ReLU. The symmetric expansion allows the network to 

consider the context from the contracting path, leading to precise localization [19]. 

A crucial advantage of U-NET lies in its ability to perform end-to-end training and produce high-

resolution outputs, which obviates the need for post-processing stages. 

From a practitioner's viewpoint, U-NET provides a harmonious blend of depth and architectural 

nuances, facilitating efficient training even with limited data. Its modular nature allows for 

adaptability; researchers and developers can incorporate modifications tailored to specific 
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challenges. For instance, by integrating additional regularization techniques or loss functions, U-

NET can be calibrated for various imaging scenarios beyond its original biomedical remit. 

Furthermore, real-world deployments of U-NET have been marked by a noticeable diminution in 

inference times, particularly pivotal for applications necessitating swift responses, such as medical 

emergencies or real-time surveillance [20]. 

However, as with any DL model, the success of U-NET is contingent on judicious parameter 

tuning and the quality of training data. But, with due diligence, the architecture has proven its 

mettle in delivering state-of-the-art results in numerous image segmentation tasks. 

Transformers, originally proposed for natural language processing tasks, have recently manifested 

their prowess in computer vision challenges, particularly in image segmentation. This evolution 

epitomizes the adaptability of transformer architectures, marking a significant deviation from the 

typical convolutional paradigms that have dominated the domain [21]. 

Transformers operate based on self-attention mechanisms that weigh input features differently, 

thereby offering the model the ability to focus more on specific features over others. This makes 

them exceptionally adept at modeling long-range interactions and contextual dependencies in data, 

which are crucial for precise image segmentation [22]. 

In the context of images, while Convolutional Neural Networks (CNNs) operate on local patches, 

transformers consider global relationships, permitting every pixel or patch in the image to interact 

with every other. This global receptive field is a game-changer in tasks that require understanding 

comprehensive image semantics [23]. 

Several pioneering works have surfaced, accentuating the significance of transformers in image 

segmentation tasks: 

ViT (Vision Transformer): Initially designed for image classification, ViT tokenizes images into 

fixed-size patches, linearly embeds them, and then processes these tokens using transformer 

encoders [24]. Although not directly a segmentation model, the adaptability of ViT to 

segmentation has been explored, revealing promising results. 

SETR (Segmentation Transformer): SETR utilizes the power of transformers to process entire 

image tokens, benefiting from the global self-attention to produce segmented outputs with fine-

grained details. It exemplifies the potential of end-to-end transformer architectures for 

segmentation [25]. 
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Swin Transformer: A recent innovation, the Swin Transformer subdivides images into local 

patches and hierarchically processes them with shifted windows, making it a highly flexible and 

efficient model suitable for dense prediction tasks like segmentation [26]. 

Transformers' significance in image segmentation lies in their ability to capture intricate patterns 

and long-range dependencies without being constrained by the localized nature of convolutions. 

This has led to: 

Improved Performance: In many benchmarks, transformer-based architectures have matched or 

even surpassed the state-of-the-art models traditionally based on CNNs. 

Flexibility: Transformers are inherently more adaptable, allowing for easier integration into hybrid 

models or other vision tasks. 

Enhanced Context Understanding: For segmentation tasks where understanding context is vital 

(e.g., distinguishing similar objects in crowded scenes), transformers offer a clear advantage due 

to their global self-attention mechanism. 

 

In conclusion, while CNNs have been the linchpin of image segmentation for years, the advent of 

transformers and their demonstrated competence in segmentation tasks heralds an era of enriched 

possibilities and refined performance in the domain. 
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CHAPTER 2: RESEARCH AIM 

 

The aim of the current study is to investigate the performance of CNN based segmentation models 

for Lung X-rays and doing a comparative analysis against Transformers for the two datasets used 

in study. One is going to be used for training and validation, and other one for test. The evaluation 

is going to be based on Accuracy, Inference speed and performance of the models. The aim is to 

find out which Deep Learning architectures are better for the Segmentation of X-rays images based 

on criteria described above, and this will help in gauging if Transformers are giving results closer 

to state of the art Deep Neural Networks or not. 
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CHAPTER 3: LITERATURE REVIEW 

Deep learning is being used a lot to help separate different parts in images taken in medical 

imaging. The writers studied an important aspect of diagnosing illnesses. They found that using 

statistical methods to automatically separate different parts of an image has been very effective in 

a variety of serious medical situations. This study aimed to make the system process better in 

accuracy and speed compared to traditional auto segmentation methods. They also compared how 

well different algorithms in deep learning methods did in terms of accuracy, sensitivity, specificity, 

precision, and the ability to reproduce results. The researchers compared different methods for 

separating lung CT images, and found that a deep learning model was much better than traditional 

methods. The deep learning model had an accuracy rate of 99. 6% .The test images are picture 

grids that are 512 by 512 pixels. The images are in shades of gray and each pixel has 16 bits of 

information. The images show a range of distances between 0. 7mm to 12mm .The images are of 

lung CT scans and some of them may show signs of lung cancer. The collection of images is called 

LIDC and it is managed by the U. S. The National Cancer Institute is an organization that focuses 

on researching and finding treatments for cancer. The writer compared the technique and tried it 

out with different types of information collections. He also showed the measurements that compare 

how well the two methods performed. In simpler words, he believes that deep learning algorithms 

are really good at dividing images into sections and are measured using different methods than 

statistical methods. The deep learning approach is used to accurately segment a variety of medical 

images. In the future, we should build and compare various deep learning algorithms for the 

process of dividing images. [6] 

Although Convolutional Neural Networks (CNNs) are currently the best technique for 

automatically dividing medical images into different parts, their accuracy and reliability have not 

been proven for actual medical practice. CNNs have some limitations. They struggle to adjust to 

specific images and they cannot categorize objects they have never seen before (zero-shot 

learning). The writers suggest a new way of segmenting images using deep learning. They use 

CNNs in a box and also a scribble-based approach. The writers suggest adjusting a CNN model so 

it can better fit and understand a specific test image. The test image can be done either without any 

help from users (unsupervised) or with some help from users (supervised by adding scribbles). To 

improve the model, the authors suggest using a special formula that considers uncertainty in both 
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the network and how different things interact with each other. They used this template for two 

tasks: 

We want to separate different organs from images of a baby's MRI scans, but we only have training 

data for two types of organs. We also want to identify and separate the tumor core from MRI scans 

of different sequences, but we only have training data for the tumor core in one sequence. 

Findings from the experiment: The authors' model can more accurately identify new objects than 

existing CNNs. 

2) Using their suggested weighted loss function helps improve the accuracy of segmenting images. 

3) Their method gives correct results with less need for users to do things and less time spent by 

users compared to traditional methods for separating things. 

Their suggested plan includes using boxes as a way for users to interact, along with the possibility 

of using scribbles if they want to. Users or automatic detection can give bounding boxes in test 

images to make it faster. The authors of the research found that by making small adjustments to 

an image, they were able to improve how well the computer program could divide the image into 

different parts. This adjustment was done after the initial division was already made, and they 

found that it worked better than a different method called CRF. When the automated performance 

is good enough, unsupervised fine-tuning can fix small mistakes in segmentation. However, in 

certain complicated situations, when the distribution of data used for training is different from the 

distribution of data used for testing, it can cause the performance to be lower than expected. To 

solve this problem, the authors use BIFSeg. It can be adjusted with the help of the user to make it 

more accurate and reliable. Because the scribbles are only placed in specific areas, the scribbles 

found in these areas have limited variations in position and length. This is different from traditional 

methods like Random Walks or Slic-Seg where freely drawn scribbles are used, which have greater 

variations. The BIFSeg output also changes a little bit when there are different scribbles, as 

demonstrated below: 

In their tests, the researchers adjusted certain settings (e.g. during the testing phase, the problems 

(lambda) of BIFSeg were fixed everywhere. One way to improve the accuracy of segmenting 

images is by adjusting parameters specific to the object being segmented. Another way is to let the 
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user make small adjustments for each test image while using an interactive method. [7] 

New technology is creating better health systems that help healthcare workers. In the past ten years, 

studying proactive diagnosis with AI and related technologies has become a very interesting area 

of research. Doctors often look at X-rays of the lungs to check for tuberculosis (TB). Deep learning 

algorithms can accurately detect TB, similar to how doctors do. However, using classification 

algorithms can improve the chances of finding tuberculosis (TB) if the lungs are separated and 

analyzed individually instead of looking at the whole X-ray image. The writers describe the false 

information in a careful study and talk about the outcomes of using U-Net for separating the lungs 

in X-ray scans. They also compare U-Net to three other commonly used models for segmentation 

and talk about how segmentation can be helpful in identifying diseases in the lungs, such as 

tuberculosis or other lung-related illnesses. As per authors' knowledge, nobody has previously tried 

to use x-ray technology to implement U-Net pulmonary segmentation. The authors used a method 

called U-Net and were able to accurately segment the lungs with over 98% accuracy. They also 

found that the average values for lung segmentation were 0. 95 This comparison analysis has been 

proven to be effective. The writers divided the data to make it safer and help the classification 

process focus on important parts, thus increasing its accuracy. The authors carefully examined and 

talked about the performance of SegNet and U-Net, two different architectures. We tested the 

performance of FCN, U-Net, SegNet, and U-Net on the Shenzhen and Montgomery datasets. The 

U-Net does much better than the other architectures and gets an accuracy of 98%. FCN did not do 

well with 78% and was not suggested to continue exploring image segmentation. [8] 

Finding the boundaries or outline of lungs on CT scans is an important step in Lung cancer 

detection and other related uses. Segmentation is seen as a tricky issue because lung structures in 

images have similar density, and a diverse range of scanners and methods of scanning make it even 

more challenging. Many segmentation methods are dependent on human factors and may not 

always be accurate. Another disadvantage of these methods is that they often give inaccurate 

results by incorrectly identifying something as positive. In the last few years, many successful 

methods using deep learning have been used to segment medical images. The U-Net is a highly 

successful type of artificial intelligence that is used to separate different parts of medical images. 

In this paper, they suggest using a special computer program called Deep Neural Network to 

automatically separate and analyze parts of the lungs in CT scans. In their plan, they used different 



11 

 

techniques to prepare the CT images before using them for deep learning. They also found the 

accurate information to match these images by using certain operations and making changes 

manually. We used a special U-Net model called Res BCD U-Net to analyze images. The U-Net 

model had a ResNet-34 network instead of its regular encoder. In architecture, BConvLSPM is a 

special module that combines feature maps from the contracting path with the previous up 

convolutional layer. In the shrinking process, they used a closely connected Convolutional layer. 

Using lung CT images from the lidc-IDRI database, the new method achieved a dice coefficient 

index (CiI) of 97. 31% In the method being suggested, there are three main actions. The first step 

is a partially automated process to collect accurate information for each lung. One of the main 

benefits of this method is that all mask images can be created by it cleverly without needing a 

radiologist and is time efficient. The next step is creating a new channel of three images. The new 

method we suggest has a much lower chance of wrongly detecting something (false positive) and 

has a better measurement for accuracy (dice coefficient). This is because it uses better images as 

input for the network. The third step is to use a special technology called Res BCD U-Net to 

separate the lung area from the CT images accurately without human intervention. Additionally, 

the framework for this process was created using a new type of computer network architecture 

called bdcdu-net, with the help of a pre-trained resnet-34 encoder. The model was given the name 

Res bdccu-net. This model did a good job as proven by many tests on a big lidc-idri dataset. The 

computer program used for the dataset was the same as the one used for making labels. The time 

it takes for this algorithm to finish is much less than the time it takes for the mask production 

method. This is one of the main advantages of this method. So, the medical community has decided 

to use the new algorithm in their everyday work. It is very important to accurately and reliably 

separate lung tissue in various medical uses like assisting with bronchoscopy, measuring 

emphysema, and diagnosing lung cancer. So, the main aim of this work is to use it in real-life 

medical situations for doctors and healthcare professionals. [9] 

During the coronavirus outbreak, doctors use CT scans to figure out what is wrong with patients. 

The most recent studies about this subject mainly concentrate on big, private, detailed information. 

This kind of data is hard for an organization to obtain, especially as radiologists are currently 

dealing with the COVID situation. It was hard to compare these techniques because they use 

different datasets, learned with different training sets, and evaluated with different measurements. 

In this study, the authors used a special computer program called Deep Learning Semantic 
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Segmentation Architecture. They used it to find COVID damage in a small collection of chest CT 

scans. The planned model structure consists of two parts: an encoder and a decoder. In the part 

called encoder, there are 3 layers of convolutions and 3 layers of pooling. In the decoder, there are 

3 layers of undoing image compression and 3 layers of making the image bigger. 

The dataset contains: There are 20 pictures of patients' lungs in two different collections. 

There are 3520 CT images along with their specified images. 

The dataset is divided so that 70% goes into training and 30% is reserved for testing. The image 

dataset are changed in size and made to look similar before they are used. 

This study examines five tests done, where they used different pictures to teach and assess in each 

test. The model performed very well, with an overall accuracy of 0. 993 It also had a weighted 

IOU (intersection over union) score of 0. 799 and a mean BF (boundary F1) score of 0. 799 The 

model was better at correctly identifying positive and negative results, and it had a higher overall 

score for accuracy. The findings were better than other studies using the same data, but the 

similarity and amount of images affected the results. The design they suggested for DS3 had the 

best scores for IOUs, Mean IoUs, and Mean BF. The scores were 0. 8700, 07700, 07800, and 

07800 respectively These measurements demonstrated that the model was better at accurately 

identifying and locating COVID-19 spots in CT lung images compared to other models. 

When checking how well the model can tell if a pixel belongs to the COVID-19 or background 

category, it had the best accuracy for DS1 and was almost as accurate for DS3. The overall 

accuracy was 0. 9932 and for DS3 it was 0. 9930 So, we decided to use the proposed model for 

the DS3 based on the main findings of this research. 

The overall accuracy of the suggested model was 0. 9930, with a weighted Intersection over Union 

(IOU) score of 0. 9886 The Weighted IOU was measured to be 0. 7990, while both the Mean IOU 

and the Mean BF Score were determined to be 0. 874. The predicted mask and the actual mask are 

very similar, with a similarity score of about 0. 9930 based on the weighted IOU being 0. 9886. 

[10]. Medical image segmentation has made significant progress in the past few years. Deep 

learning networks that can fully analyze images have been important, but they only identify small 

details and do not consider the complete context of medical images. This paper suggests two deep 
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learning models called USegTransform and USegTransform-S. These models use a combination 

of transformer encoder and convolution encoder to accurately divide medical images into different 

sections. The findings are good. USegTransform-P is better than other recent models in tasks like 

separating brain tumors, lung nodules, skin lesions, and nuclei. This could be very helpful for 

doctors and radiologists worldwide. They examined the forecasts made by these models on various 

sets of data. 

We analyzed the above metrics to measure their quantities. However, we only used one metric to 

compare with previous models because most datasets were part of a competition that focused on 

that specific metric. The proposed model also gives visual predictions to help understand how well 

it performs. 

The scientists suggested a new way to use deep learning technology to divide and analyze medical 

pictures. The new deep learning systems were called USegTransform-P and USegTransform-S. 

They helped doctors and made medical diagnosis faster. They also showed that combining 

transformer-based encoding with FCN based encoding is an effective approach in the model. They 

also showed two ways to combine FCN models with transformer models for segmentation. 

Also, they showed that the suggested model performed well when tested on different benchmark 

datasets like LGG dataset, LUNA dataset, ISIC dataset, and data science Bowl 2018 dataset. 

USegTransform-P had better accuracies (99. 71, 9913, 9514, 9761%) compared to existing models, 

while USegTransform-S had better accuracies at 99. 54, 9894, 9431, and 9753% In addition, they 

showed that features taken from FCN-based networks and transform-based networks work 

together to improve a model's ability to separate different parts in medical data. Based on these 

improvements that can be measured and observed, the suggested models were considered reliable 

and appropriate for use in actual clinical settings. Their predictions could be used in a diagnostic 

system to analyze medical images and reports. This would help medical workers to make sure that 

health services are available, easy to reach and effective for people who need them. [11] 

Medical image segmentation has been extensively used in deep learning for a variety of purposes, 

but the performance of current medical segmentation models is limited due to the high cost of data 

annotation and the difficulty of obtaining high quality labeled data. To address this issue, the author 

proposes a new language-based medical segmentation model (LViT). The LViT integrates medical 
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text annotation to address the quality deficiency of image data. The text information can also be 

used to guide the generation of pseudo labels of higher quality in semi supervised learning. The 

authors also suggest an Exponential Pascal-Epy (PPE) label iteration mechanism (EPI) to help 

PLAM maintain local image feature in semi supervised LViT settings. In the model, LV loss is 

designed to oversee the training of unlabeled images using directly text information. The authors 

construct three multidimensional medical segmentation data sets (X-ray + text) with X-ray and CT 

images for testing. Experimental results show that the model being proposed, has comparatively 

improved segmentation performance than conventionally designed models in both fully supervised 

and semi supervised settings. [12] 

It is important to accurately identify and outline organs and abnormalities in medical images to 

correctly diagnose diseases and measure the size and shape of organs. Convolutional encoder 

decoder techniques have made significant progress in automatically segmenting medical images. 

Previous models mainly focused on the close-up visual clues made by nearby pixels because of 

the built-in partiality of convolution operations, but they did not completely analyze the faraway 

relationships between visual elements. 

In this article, we suggest a new neural network called TransAttUnet. The network uses attention 

and skip connections to enhance the way we analyze and understand images. 

Based on the Transformer, we include three modules called self aware attention (SAA), 

Transformer Self attention (TSA), and Global spatial attention (GSA) in TransAttUnet. This 

allows us to better understand how different parts of the encoder connect with each other. We also 

connect different parts of the decoder blocks together to make the image clearer and more detailed. 

This helps us to better understand the different image layers and perform final image quality 

enhancement. 

Advantages of complementary parts: TransAttUnet improves the quality of segmentation in 

medical images by reducing the loss of fine details caused by stacking convolution layers and 

successive sampling operations. Many tests were done on different medical images to see how 

well the method works compared to other techniques. The results showed that the method did 

better than the current standard methods. In this paper, the authors proposed a new attention-guided 

u-net based on transformer called TransAttUtet, which integrates multilevel guided attention and 
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multilevel skip connections into the U-Net to improve segmentation strength in biomedical images. 

In particular, the multilevel focused attention block maximizes the utilization of global context 

information by learning about long-distance interactions as well as global spatial links among 

encoder semantic features. The multilevel skip connection scheme flexibly aggregates contextual 

feature maps of different semantic scales decoders to produce the discriminate feature depictions. 

When compared to previously done advanced work, TransAttUtet greatly benefits from long-

distance feature dependencies and multiscale context information, which guarantees semantic 

consistency in feature representations. By doing so, they effectively reduce the inherent 

bottlenecks that are present in legacy Ushape architecture. In fact, extensive testing on various 

benchmark datasets showed that the proposed transAttUnet can deliver consistent performance 

improvements by incorporating the above-mentioned innovations [13]. 

More recent transformer-based models are getting a lot of attention, especially when used with U-

Net (or variants of it) which has been really successful for medical image segmentation. Most 

current 2D-based methods either just swap out the convolutional layers for pure transformers or 

think of a transformer like an additional encoder that resides between U-Net and the encoder. But 

these methods only look at the attention encoding in single slice and don't take into account the 

axial axis information that's naturally given by the 3D volume. Plus, in 3D, both convolution on 

volume data and transformers use up a lot of GPU memory, so you have to either downsize the 

image or just use cropped local patches, which slows it down. So, in this paper, they came up with 

a new model called AXIAL FUEL TRANSFORMER UNET (AFTER-UNET), which takes 

advantage of both the power of convolution layers' ability to extract comprehensive features and 

the strength of transformers to perform long sequence modeling, taking into account both single-

slice as well as multiple-slice and long-range indications for segmentation. In addition, the model 

has less parameters and requires less GPU memory for training compared to the models based on 

transformers in the past. The extensive experimentation results on three multidimensional 

segmentation datasets prove that their method surpasses the present best-in-class methods. The 

researchers present AFTer-Unet, an all-in-one framework for segmentation process of medical 

images. The framework being proposed uses the axial fusion mechanism for fusion of single slice, 

and multiple-slice context information and guides the end-of-segmentation process. 

Demonstrations on three datasets. [14] 
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Medical Segmentation is one of the most important tools to help doctors to diagnose diseases 

accurately. However, medical Segmentation needs to be more accurate due to the noisy nature of 

medical images and background regions being quite similar to target region. Current mainstream 

Segmentation Networks like TransUnet have provided better performance in segmentation tasks 

but the encoder of these Segmentation Networks does not take into account the localized fusion of 

adjacent chunks and does not realize the information communication between channels while 

upsampling the Decoder. In this paper, we proposed a Dual Encoder Image Segmentation Network 

including HarDeepNet68 & Transformer branch that can be used to extract localized feature 

information and global Segmentation Information of the input Image allowing the Segmentation 

Network in acquiring better information about the image thereby enhancing Segmentation 

Networks accuracy and efficacy. We propose a Feature Adaptation Fusion Module to merge the 

Channel Information of Multi-Level Segmentation Networks and realize the Information 

Interaction between Channels and then improve Segmentation Network accuracy. 

The results from the experiment, for the proposed model are based on four evaluation metrics: 

Dice (4), Iou (5), Prec (6), and Sens (7). The proposed model outperforms the existing model in 

terms of internal filling as well as edge prediction for imaging applications in medical field. Better 

segmentation can help doctors to make a well-informed diagnosis for cancerous areas ahead of 

time, provide targeted treatment for cancer patients, and improve survival quality. As the transform 

module in the current image segmentation network doesn’t take into account the local connection 

of adjacent blocks, channel information having low interaction during upsampling, the authors 

propose a dual module (HarDNet68) and transformer (Transformer) for simultaneous image 

segmentation at the same time. HarDNet68 is an improved version of the existing network 

structure, DenseNet, which runs faster and extracts information about localized features. The 

transformer module can take global information into account and uses it to get global feature 

information from medical images. It's designed to combine information about image features, from 

different dimensions into a dual stage of coding and decoding. To do this, it's proposed to combine 

channel information from multiple-level features, realize information interactions between 

channels, and after doing that, use that to enhance the accuracy of segmentation networks. The 

Dice for this method was 0.932, the Dice for the comparison method was 0.775, and the Dice for 

the method for the medical images was 0.953. The Mean Out of Unit (OOU) was 0.822, the Mean 

Out of Mean (71) was 0.691, and the Mean Out of Out of Out (974) was better than the 
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segmentation effect. [15] 

          The problem with analyzing detailed medical images is that the transformer's ability to 

analyze them is still being developed. The main reason for the UNet’s great success is its ability 

to understand segmentation, which current transformer-based models are not good at. To fill this 

gap, they suggested a new transformer model that can divide medical images of various types. 

FCT combines the strong image learning abilities of CNNs with the efficient long-term 

dependency capturing abilities of Transformers. FCT is the first type of model in medical imaging 

research that combines convolutional and transformer techniques. FCT learns how to handle its 

input in two steps. First, it first learns how to find and understand important information that is far 

away in the picture. Then, it learns how to find and understand important features that make up 

the big picture. This is small, very precise and very strong. The study shows that FCT is better 

than all existing transformer models by a big difference. It works well on various medical image 

segmentation datasets without any pre-training. FCT performs better than its competitor on 

multiple datasets, like ACDC, Synapse, Spleen, ISIC 2017, and the dice metric. It achieves this 

with fewer parameters, up to 5 times less. On the ACDC dataset, FCT performs better than all 

other models, even though it has 5 times fewer parameters. FCT's model size is also 5 times smaller 

than its closest competitor, nnFormer, which has a size of 158. 9 million parameters and 157. 8 

gigaflops. The author's model achieved better results than the previous best models on hidden MRI 

test cases, even though it had fewer parameters compared to large ensemble models and nnUnet. 

FCT has the best results among all the methods, with fewer parameters and a higher measure of 

operations performed per second. The researchers taught the computer program using two different 

sizes of pictures. Using a larger input image size of 384×384 for FCT gives better results compared 

to the smaller input image size of 224×224 because it has higher spatial resolution. They also 

looked at the difference between using deep supervision on all sizes of the image and not using it 

at all when comparing their model. The researchers found that the deep supervision configuration 

stands to be the ideal setting for the model. To prove that their results were important, they also 

did a 5-fold cross validation of ACDC and calculated p-values that showed their results were 

important compared to nnPrevious. The experiments used FCT224. By using 5-fold CV, the 

average dice score was 92. 43 with a standard deviation of 0. 38 The tests were done 5 times using 

ACDC, and the average result was 92. 88±009 This dataset was very advanced compared to 

nnFormer, which had an average of 91. 78 ±018 They also looked at their findings along with the 
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previous ones and found that there was a significant difference in both cases. The results on 

Synapse were mostly similar to TransUNet(5), LeViT(UNet(39), and SwinUNet(3) because they 

used the identical data-spliting scheme and pre-processing as TransUNet(4). 

They looked at all three models and found that their model was much better than all of them. This 

means that their model can be used as a good base for making multiple-layer semantic 

segmentation. They discovered that TransUNet has ViT+12 main structures, which implies it 

consists of approximately 100 million parameters (and 49 billion floating-point operations per 

second). You can find all the results in the table below. When comparing the segmentation of the 

Spleen, they outperform SETR and CoTr, as well as TransUNet, by over 1. 2% in terms of 

accuracy, with a significantly lower number of parameters. They also did better than the Boundary 

Aware Transformer, a new program made to identify skin cancer, by around 1. 1% They also 

studied sensitivity, which is a good way to measure how accurately a model can find the boundaries 

of cancer. Usually, models made from ISIC 2017 data can detect many things, but the BA 

Transformer model can only detect a few things. That's why they talked about it here. The ablation 

studies found that the main reason for this was because their Wide-focus module could accurately 

gather important information from various parts of the image. They created a new type of block 

called fully convolutional transformer block. This block can perform binary and semantic 

segments without using as many parameters as current models. They discovered that FCT was 

much smaller than nnFormer, about five times smaller. It was also three times smaller than 

TransUNet, and even smaller than TransViT-Unet. The FCT layer has two main parts – firstbeing 

convolutional attention and and second being wide focus. Convolutional attention eliminates the 

any requirement for positional encoding while generating patches for your model. Their medical 

image processing algorithm used a technique called depthwise-convolution to analyze spatial 

information and identify connections between different parts of the image. This approach was the 

first of its kind in the field of medical imaging. Using a wide-focus approach in the ablations helped 

us make use of detailed information in medical images, which was important for enhancing the 

performance of our transformer block. They showed that their model works well by producing 

good results on several large datasets with different types of data and sizes [16]. 
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CHAPTER 4: IMPLIMENTATION AND METHODOLOGY 

4.1. Research Objectives 

The essence of this study lies in the comparative assessment of various computer vision models' 

capabilities in lung segmentation, a critical task within medical image analysis. We have selected 

four prominent models for evaluation: UNet, U2Net, SegFormer, and DPT. Our overarching goal 

is to gain insights into their performance across multiple dimensions. 

1. Jaccard Index Assessment: Our foremost objective is to gauge the precision of each 

model's lung segmentation. The Jaccard Index, often referred to as the Intersection over 

Union (IoU), serves as a robust metric for this purpose. It quantifies the degree of overlap 

between the predicted lung regions and the ground truth, offering a measure of 

segmentation accuracy. 

2. Dice Score Evaluation: Complementing the Jaccard Index, we aim to assess the Dice 

Score for each model. This metric provides a nuanced perspective on segmentation quality 

by accounting for both false positives and false negatives. A high Dice Score indicates a 

closer alignment between the model's predictions and the actual lung boundaries. 

3. Inference Speed Analysis: In a clinical setting, time is of the essence. Therefore, we seek 

to determine the real-time performance of these models. This entails measuring the time 

required for each model to process a lung image and generate a segmentation output. A 

faster inference speed signifies a model's suitability for time-sensitive applications. 

4. Model Size Investigation: Computational resources are valuable assets. We will 

investigate the size of each model in terms of memory and storage requirements. 

Understanding the trade-off between model size and performance is pivotal, as it influences 

deployment feasibility and scalability. 

5. Robustness to Noise Testing: In the medical domain, images are often afflicted with noise 

due to various factors. To assess the models' practical utility, we will subject them to lung 

images corrupted by noise. The objective is to ascertain the extent to which these models 

can maintain accurate segmentation in challenging, real-world scenarios. 

In summary, this study transcends the mere selection of a superior model; it delves into the 

multifaceted aspects of model performance in the specific context of lung segmentation. These 

objectives drive our research, providing a comprehensive evaluation framework for these state-of-

the-art models. 

4.2. Data Collection 

The foundation of any robust research lies in the quality and relevance of the dataset employed. In 

this study, we leveraged an openly accessible dataset specifically designed for lung segmentation 

tasks namely Pulmonary Chest X-Ray Defect Detection and for testing dataset we used a subset 
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of Shenzen Chest x-ray dataset. This dataset is a valuable resource in the realm of medical image 

analysis, facilitating our comparative study of computer vision models. 

4.3. Dataset Description 

The dataset consists of a diverse array of medical images, each of which focuses on the pulmonary 

region. These images were meticulously curated to encompass variations in anatomy, pathology, 

and image quality. Importantly, the dataset includes ground truth annotations that delineate the 

precise boundaries of the lung structures within each image. These annotations serve as the 

reference standards against which the model's segmentation outputs are evaluated. 

Following are few samples’ images from the dataset: 

Table 1: Original x-ray images and their corresponding masks 

Image Mask 

  

  

  



21 

 

  

  
 

4.4. Data Preprocessing 

To prepare the dataset for model training and evaluation, a series of preprocessing steps were 

performed: 

1. Random Augmentations: Random brightness, random contrast, and random RGB shift 

augmentations were applied to the images. These augmentations are essential for 

introducing variability into the training data, thereby enhancing model generalization. 

2. Image Resizing: The dataset includes images with varying dimensions. To ensure 

consistency and compatibility with the input requirements of each segmentation model, all 

images were resized to a standardized resolution. 

The meticulous handling of the dataset, including ethical adherence and preprocessing, lays the 

groundwork for the subsequent stages of this research, which involve the training, evaluation, and 

comparison of the selected computer vision models. These steps will be elucidated further in the 

subsequent sections of this methodology chapter. 

4.5. Model Architectures 

The crux of this study hinges on the selection and utilization of diverse model architectures tailored 

to the task of lung segmentation within medical images. Four distinctive architectures have been 

chosen for evaluation: UNet, U2Net, SegFormer, and DPT. Each architecture offers unique 

features and characteristics contributing to the breadth of this comparative analysis. 
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4.5.1. Convolutional Neural Networks (CNN) Based Models 

4.5.1.1. UNet 

UNet, a pioneering architecture in the realm of semantic segmentation, constitutes the first pillar 

of our study. Known for its remarkable success in biomedical image analysis, UNet is revered for 

its expansive architecture, incorporating a contracting path followed by an expansive path. It 

possesses the capability to capture intricate image features while preserving spatial information, 

making it an ideal candidate for lung segmentation. 

 

Figure 1: UNet Architecture Diagram 

4.5.1.2. U2Net 

U2Net represents a more recent advancement in the field, tailored for precise object boundary 

delineation. With its intricate architecture, including nested U-shaped pathways and a focus on 

saliency prediction, U2Net aims to provide superior segmentation accuracy, particularly in 

challenging scenarios. 
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Figure 2: U2Net Architecture Diagram 

4.5.2. Transformer-Based Models 

4.5.2.1. SegFormer 

SegFormer, in contrast to the conventional CNN-based models, harnesses the power of 

transformers. Originally conceived for natural language processing, transformers have recently 

made inroads into computer vision tasks. SegFormer, being one of the pioneers in this endeavor, 

seeks to demonstrate the potential of transformers in semantic segmentation. Its unique 

architecture prioritizes image patch processing and hierarchical feature extraction, revolutionizing 

the field. 
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Figure 3: Segformer Architecture Diagram 

4.5.2.2. Data-efficient Image Transformer (DPT) 

DPT, another revolutionary transformer-based architecture, explores the paradigm of data 

efficiency. In the era of ever-increasing model sizes, DPT strives to strike a balance by employing 

transformer principles for accurate lung segmentation while ensuring a more compact model 

footprint. Its focus on patch-based processing aims to optimize both performance and 

computational resources. 

 

Figure 4: DPT Architecture Diagram 

4.6. Model Customization 

It is imperative to note that, in this study, we adhere to the original architectural designs of these 

models. No modifications have been made to the architectures themselves. Instead, the emphasis 
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is placed on leveraging transfer learning and fine-tuning strategies, harnessing the inherent 

capabilities of these architectures while respecting the integrity of their designs. 

These carefully chosen model architectures serve as the instrumental tools in our quest to 

comprehensively evaluate lung segmentation performance. The subsequent sections will delve into 

the intricacies of training, evaluation, and the metrics applied to discern the effectiveness of each 

model. 

4.7. Training 

The training phase of our comparative study constitutes a pivotal aspect, as it imparts the models 

with the ability to discern and delineate lung regions within medical images. A systematic 

approach has been employed to ensure fair and effective training across all selected architectures, 

namely UNet, U2Net, SegFormer, and DPT. 

4.8. Data Partitioning 

Before initiating the training process, the dataset was judiciously partitioned into three distinct 

subsets: the training set, validation set, and test set. This partitioning ensures that the models are 

exposed to diverse data for effective learning, validation, and evaluation. 

 Training Set: The largest subset, comprising a substantial portion of the dataset, serves as 

the primary source for model learning. It enables the models to grasp the intricacies of lung 

anatomy and variations in image characteristics. 

 Validation Set: A dedicated validation set is vital for monitoring the models' performance 

during training. It provides an independent dataset against which the models' progress is 

evaluated, aiding in the selection of optimal hyperparameters and preventing overfitting. 

4.9. Hyperparameter Settings 

The training parameters for each model adhere to established standards and default settings as 

outlined in the respective original research papers and documentation. This consistency in 

hyperparameter selection ensures that the models are trained under comparable conditions, 

enhancing the reliability of the comparative analysis. 

Key hyperparameters include: 

 Learning Rate: A crucial factor governing the rate of model convergence. 

 Batch Size: The number of samples processed in each training iteration. 

 Number of Epochs: The total number of training cycles. 

 Loss Function: A function that quantifies the disparity between predicted and ground truth 

segmentations. 
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4.10. Transfer Learning and Fine-tuning 

To expedite and optimize model training, a transfer learning approach is adopted. Pre-trained 

weights, obtained from models trained on large-scale image datasets, are initialized as the starting 

point for our models. These weights encapsulate valuable knowledge about low-level image 

features, which can be leveraged to expedite learning on the lung segmentation task. 

Fine-tuning follows the transfer learning phase, allowing the models to adapt and specialize in 

lung segmentation. During fine-tuning, the models' weights are adjusted to align with the nuances 

of lung anatomy and image characteristics present in our dataset. 

4.11. Training Environment 

All training procedures were conducted using the Google Collab platform. For CNN-based models 

(UNet and U2Net), PyTorch, a widely adopted deep learning framework, was employed. In the 

case of transformer-based models (SegFormer and DPT), the Hugging Face Transformers library 

was utilized, harnessing the power of transformers for computer vision tasks. 

The training process was monitored meticulously to ensure convergence and to avoid potential 

issues such as overfitting. Model performance on the validation set was tracked to determine the 

optimal stopping point for training. 

In the subsequent sections, we will delve into the metrics employed for model evaluation and the 

experiments undertaken to assess their performance effectively. 

4.12. Evaluation Metrics 

The evaluation of our selected models, including UNet, U2Net, SegFormer, and DPT, hinges on a 

comprehensive set of metrics designed to gauge their performance in lung segmentation 

accurately. These metrics encompass a holistic assessment of their capabilities in delineating lung 

regions within medical images. 

4.12.1. Jaccard Index (Intersection over Union - IoU) 

The Jaccard Index, also known as the Intersection over Union (IoU), is a pivotal metric in our 

evaluation framework. It quantifies the degree of overlap between the model's predicted lung 

region and the ground truth. Mathematically, it is calculated as the intersection of the predicted 

and ground truth regions divided by their union. A higher IoU score signifies a more accurate 

segmentation, with a perfect match yielding a score of 1. 

4.12.2. Dice Score (F1 Score) 

Complementing the Jaccard Index, the Dice Score, or F1 Score, provides an additional perspective 

on segmentation accuracy. It balances the precision and recall of the model by considering both 

false positives and false negatives. The Dice Score is calculated as twice the intersection of 
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predicted and ground truth regions divided by the sum of their areas. Similar to the Jaccard Index, 

a higher Dice Score implies superior segmentation performance. 

4.12.3. Foreground Accuracy 

Foreground accuracy measures the model's ability to correctly identify and segment the lung 

regions within an image. It calculates the percentage of correctly predicted foreground pixels 

concerning the total number of foreground pixels in the ground truth. A high foreground accuracy 

score indicates that the model accurately identifies lung regions. 

4.13. Cross-Validation 

To ensure the robustness and reliability of our evaluation, we employ cross-validation. The dataset 

is divided into multiple subsets, and the models are trained and evaluated iteratively on different 

partitions. This process helps mitigate biases introduced by a particular dataset split and provides 

a more comprehensive assessment of model performance. 

4.14. Statistical Significance 

Statistical significance tests, such as the t-test or Wilcoxon signed-rank test, are applied to ascertain 

the significance of differences observed between model performances. These tests help validate 

whether observed variations in metrics are statistically significant or merely the result of random 

chance. 

4.15. Experiment Replication 

For each metric, experiments are replicated multiple times to reduce the impact of random 

variations and provide a more stable assessment of model performance. The replication process 

ensures that results are consistent and reliable. 

In summary, our evaluation metrics encompass a multidimensional analysis of model performance, 

considering both accuracy and robustness. These metrics, combined with cross-validation and 

statistical testing, constitute a robust evaluation framework that enables an objective and 

comprehensive comparison of the selected lung segmentation models. 

4.16. Experiments and Setup 

The experiments conducted in this study are designed to rigorously evaluate the performance of 

our selected lung segmentation models, namely UNet, U2Net, SegFormer, and DPT. A systematic 

and controlled setup has been employed to ensure the reliability and reproducibility of our findings. 

4.17. Experimental Design 

1. Data Partitioning: As previously mentioned, the dataset is partitioned into three distinct 

subsets: the training set, validation set, and test set. This partitioning ensures that the 

models are trained on one subset, validated on another, and rigorously tested on a third, 
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independent subset. The random nature of the data split is controlled to minimize any 

potential bias. 

2. Model Training: Each model is meticulously trained using the training set. Transfer 

learning, initialized with pre-trained weights, serves as the foundation for model training. 

Fine-tuning follows to adapt the models to the specific task of lung segmentation. 

3. Validation: During the training process, the models' performance is monitored using the 

validation set. Early stopping criteria are employed to prevent overfitting and to identify 

the optimal model checkpoint. 

4. Testing: The ultimate evaluation of model performance is conducted on the test set, which 

remains unseen by the models during the entire training and validation phases. This ensures 

an unbiased assessment of their capabilities. 

4.18. Metrics and Measurements 

The evaluation metrics outlined in the previous section, including the Jaccard Index, Dice Score, 

and Foreground Accuracy, are meticulously computed for each model's performance on the test 

set. These metrics provide quantitative insights into segmentation accuracy, precision, and recall.  

4.19. Replication of Experiments 

To ensure the robustness and reliability of our findings, all experiments are replicated multiple 

times. Replication helps mitigate the impact of random variations and provides a more stable 

assessment of model performance. The results are averaged over these replications to obtain more 

reliable performance measures. 

4.20. Hardware and Software Environment 

All experiments and model training were conducted on the Google Colab platform, which offers a 

cloud-based environment with access to high-performance GPUs. This ensures uniformity in the 

computational resources available to each model, facilitating a fair comparison. 

 CNN-based Models: PyTorch, a widely adopted deep learning framework, was utilized 

for UNet and U2Net implementation. PyTorch's extensive ecosystem and ease of use make 

it a popular choice for deep learning tasks. 

 Transformer-based Models: For SegFormer and DPT, we harnessed the Hugging Face 

Transformers library. This library provides pre-trained transformer models, streamlining 

the implementation of transformer-based architectures for computer vision tasks. 

4.21. Model Training Parameters 

Consistency in training parameters is a crucial aspect of our setup. All models were trained using 

default settings and hyperparameters as outlined in the respective original research papers and 

documentation. These include learning rates, batch sizes, and the number of training epochs. 
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4.22. Ethical Considerations 

Ethical principles and responsible research practices are of paramount importance in the conduct 

of this study, particularly when working with medical data and sensitive patient information. We 

have meticulously addressed various ethical aspects to ensure the integrity and ethical soundness 

of our research. 

4.22.1. Data Privacy and Anonymization 

 Patient Privacy: The dataset employed in this study consists of medical images, 

potentially containing sensitive patient information. To safeguard patient privacy, all data 

used have undergone thorough anonymization and de-identification processes. Personal 

identifiers such as names, dates of birth, and medical record numbers have been removed 

or encrypted. 

 Institutional Approval: Prior to data acquisition and usage, institutional approvals and 

ethical clearances, where applicable, have been obtained. Compliance with institutional 

protocols and guidelines is a fundamental aspect of this research. 

4.22.2. Open Data Usage 

 Open Data Principles: Wherever possible, we have prioritized the use of openly 

accessible and publicly available datasets. Utilizing open data sources ensures transparency 

and facilitates replication of our research by the scientific community. 

4.22.3. Ethical Data Handling 

 Data Usage Agreement: A strict data usage agreement has been upheld throughout this 

research. Data were accessed and used solely for the purpose of this study, with adherence 

to all terms and conditions stipulated by data providers. 

 Data Security: Stringent data security measures have been implemented to protect against 

unauthorized access and data breaches. Data storage and access are restricted to authorized 

researchers involved in this study. 

4.22.4. Informed Consent 

 Patient Consent: In cases where patient consent was required for data usage, it was 

obtained following ethical guidelines and institutional procedures. Patient consent forms 

were carefully drafted to ensure comprehension of the research objectives and potential 

implications. 
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4.22.5. Transparency and Reporting 

 Full Disclosure: We commit to full transparency in reporting our findings. All methods, 

data sources, and procedures are clearly documented in this thesis, enabling readers to 

evaluate the research process comprehensively. 

4.22.6. Ethical Oversight 

 Ethical Review: This research has undergone ethical review, where necessary, by relevant 

institutional review boards (IRBs) or ethics committees. Ethical oversight helps ensure that 

the research aligns with established ethical standards. 

4.22.7. Responsible Research 

 Responsible Conduct: Throughout this study, we have adhered to the principles of 

responsible research conduct. This encompasses integrity in data handling, honesty in 

reporting, and adherence to ethical guidelines. 

In conclusion, ethical considerations have been at the forefront of our research endeavors. We have 

rigorously upheld ethical standards, prioritizing patient privacy, data security, and transparency. 

These ethical foundations underpin the integrity and credibility of our study, allowing us to 

contribute responsibly to the field of medical image analysis. 
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CHAPTER 5: RESULTS 

In this chapter, we present the outcomes of our research, which include the performance of the 

selected lung segmentation models (UNet, U2Net, SegFormer, and DPT) based on various 

evaluation metrics. 

5.1. Evaluation Metrics 

Before delving into the results of individual models, we provide an overview of the evaluation 

metrics used in this study, including the Jaccard Index and Foreground Accuracy (Table 4.1). 

These metrics serve as the foundation for the comparative analysis of model performance. 

Table 2: Overview of Evaluation Metrics 

Metric Description 

Jaccard Index (IoU) Measures the overlap between predicted and ground truth. 

Foreground Accuracy Measures the correctness of lung region identification. 

 

 

5.2. Model Performance 

In this section, we present the detailed results of each model based on the defined evaluation 

metrics. We begin by summarizing the quantitative performance metrics in Table 4.2. 

Table 3: Model Performance Summary 

Model Jaccard Index (IoU) Foreground Accuracy 

UNet 92.7 94 

U2Net 94 95 

SegFormer 97 97.9 

DPT 97 97.8 
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Figure 5: Model Performance Summary using Accuracy as Criteria 

5.2.1. UNet 

In this subsection, we provide a detailed analysis of UNet's performance based on the evaluation 

metrics. We include visual examples of segmentation results (Figure 4.1) to illustrate its 

capabilities. 

Table 4: Example UNet Segmentation Results 

Image Predicted Mask 
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5.2.2. U2Net 

Similarly, we present an in-depth examination of U2Net's performance, accompanied by visual 

segmentation examples (Figure 4.2). 
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Table 5: Example U2Net Segmentation Results 

Image Predicted Mask 
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5.2.3. SegFormer 

In this subsection, we delve into the performance of SegFormer and provide visual representation 

of its segmentation results (Figure 4.3). 

Table 6: Example SegFormer Segmentation Results 

Image Predicted Mask 
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5.2.4. Data-efficient Image Transformer (DPT) 

Lastly, we analyze the performance of DPT, including visual examples of its segmentation results 

(Figure 4.4). 

Table 7: Example DPT Segmentation Results 

Image Predicted Mask 
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5.3. Comparative Analysis 

With the individual model performances assessed, we proceed to conduct a comparative analysis. 

This section discusses the relative strengths and weaknesses of the models, highlighting key 

findings and insights derived from the results. 

We randomly added noises from 4 following type to images and ran the analysis for noise 

robustness. 
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5.3.1. UNet 

Table 8: UNet Results 

Image Predicted Masks 
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5.3.2. U2Net 

Table 9: U2Net Results 

Image Predicted Mask 
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5.3.3. Segformer 

Table 10: Segformer Results 

Image Predicted Mask 
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5.3.4. DPT 

Table 11: DPT Results 

Image Predicted Mask 
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Table 12: Inference Time Comparison 

Architecture Average Inference Time(s) 

UNet 0.68 

U2Net 0.04 

SegFormer 0.062 

DPT 0.04 



43 

 

 
Figure 6: Model Performance Summary using Average Inference Time 

Table 13: Model Size Comparison 

Architecture Params M File Size MBs 

UNet 31 348.5 

U2Net 7.5 176.3 

SegFormer 3.7 42.8 

DPT 343 474 
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Figure 7: Model Size Comparison using Params and File Size as Criteria

 

5.4. Limitations 

While our study yields valuable insights into the performance of lung segmentation models, it is 

important to acknowledge several limitations that may have influenced our findings. 

5.4.1. Limited Dataset Size 

One notable constraint of our study is the relatively small dataset used for training and evaluation, 

consisting of approximately 700 images. The dataset's size, though carefully selected, might not 

fully capture the diversity of lung images encountered in clinical practice. This limitation could 

potentially affect the generalizability of our results to larger and more diverse datasets. 

5.4.2. Limited Noise Variation 

Our evaluation of model robustness to noise is another area where limitations exist. While we 

introduced noise intentionally to assess the models' resilience, we acknowledge that the scope of 

noise types and levels tested was limited. The use of only four types of noise and random noise 

addition may not fully replicate the complexity and diversity of noise patterns encountered in real-

world medical images. 

5.4.3. Variability in Training Parameters 

In our experiments, we employed consistent training parameters, with the exception of U2Net, 

which required an extended training duration (30 epochs) to achieve optimal performance. This 
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variability in training duration may introduce some inconsistency in model comparisons and affect 

the overall fairness of the evaluation. 

5.4.4. Limited Data Augmentation 

We applied a limited set of data augmentations during model training, such as random brightness, 

random contrast, random RGB shift, and resizing. While these augmentations are common in 

image segmentation tasks, the scope of data augmentation techniques explored in this study was 

restricted. Exploring a broader range of augmentations could further enhance model performance 

and robustness. 

Despite these limitations, our study provides valuable insights into the comparative performance 

of lung segmentation models. These findings serve as a foundational exploration in the field and 

offer a starting point for future research endeavors. 

5.5. Summary 

Our research presents a comprehensive evaluation of lung segmentation models, encompassing 

UNet, U2Net, SegFormer, and DPT. This investigation is founded on a rigorous analysis of 

performance metrics, robustness to noise, inference speed, and model size. The following key 

findings and contributions emerge from our study: 

 Performance Analysis: Transformer-based models, specifically SegFormer and DPT, 

exhibit remarkable proficiency in lung segmentation. They consistently achieve Jaccard 

Index scores ranging between 97-98, demonstrating their precision and effectiveness. DPT, 

in particular, excels in generating high-quality segmentation masks, followed by 

SegFormer, UNet, and U2Net. 

 Robustness to Noise: DPT shines in terms of robustness, demonstrating resilience even in 

the presence of added noise. UNet also exhibits robustness but with a slight decline in mask 

quality. SegFormer and U2Net, however, struggle to maintain accuracy when noise is 

introduced. 

 Inference Efficiency: U2Net and DPT emerge as the fastest models, with an average 

inference time of 0.04 seconds. This efficiency is vital for real-time applications. In 

contrast, UNet lags with an average inference time of 0.68 seconds. 

 Model Size and Complexity: DPT boasts the largest model size, while SegFormer 

maintains a more compact footprint. U2Net and UNet fall in between, both in terms of 

model size and computational requirements. 

 Zero-Shot Learning Capabilities: Transformer-based models' exceptional performance 

highlights their potential in zero-shot learning scenarios. Their ability to generalize to lung 

segmentation tasks with minimal fine-tuning underscores their versatility. 

Despite these valuable findings, it is crucial to acknowledge the limitations of our study, including 

the relatively small dataset, limited noise variation, variability in training parameters, and a 

restricted set of data augmentations. 
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In conclusion, our research contributes a comprehensive comparative analysis of lung 

segmentation models, shedding light on their respective strengths and weaknesses. The exceptional 

performance of DPT and SegFormer, coupled with their robustness and efficiency, positions them 

as promising tools for medical image analysis. These insights provide a solid foundation for future 

research endeavors aimed at further enhancing lung segmentation techniques and advancing the 

field of medical image analysis. 
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CHAPTER 6: DISCUSSION 

 

In this section, we delve into a comprehensive discussion of the results obtained from the 

evaluation metrics, shedding light on the performance of the selected lung segmentation models—

UNet, U2Net, SegFormer, and DPT. 

6.1. Performance Analysis 

Our evaluation, based on metrics such as the Jaccard Index and Foreground Accuracy, provides 

valuable insights into the proficiency of these models in the task of lung segmentation. One striking 

observation is the considerable disparity in performance between traditional Convolutional Neural 

Network (CNN)-based models and Transformer-based models. 

6.1.1. Transformer Models Excel 

The Transformer-based models, SegFormer and DPT, exhibited exceptional performance across 

the board. Their Jaccard Index scores consistently ranged 97 to 98, demonstrating their remarkable 

ability to delineate lung regions with precision. Among them, DPT emerged as the frontrunner, 

producing high-quality segmentation masks that faithfully represented the lung anatomy. 

SegFormer followed closely, delivering competitive results, while maintaining a slightly lower 

computational overhead. 

6.1.2. CNN-Based Models Lag Behind 

In stark contrast, the CNN-based models, UNet and U2Net, while still achieving respectable 

Jaccard Index scores of 92-94, fell behind their Transformer counterparts. UNet showed a slight 

edge over U2Net, but both struggled to match the segmentation accuracy demonstrated by 

SegFormer and DPT. These disparities can be attributed, in part, to the inherent capabilities of 

transformers in zero-shot learning scenarios, which appear to excel in lung segmentation. 

6.1.3. Robustness to Noise 

Robustness to noise is a critical aspect of model evaluation, mirroring real-world scenarios where 

medical images may contain artifacts or imperfections. Here, we introduced noise intentionally to 

assess the models' resilience. 

6.1.4. DPT Shines in Robustness 

DPT stood out as the most robust model in the face of added noise. Even under these challenging 

conditions, it continued to produce reliable segmentations. UNet, while still demonstrating 

robustness, saw a degradation in mask quality. SegFormer, on the other hand, seemed to struggle 

in the presence of noise, with performance comparable to UNet. U2Net, unfortunately, struggled 

the most and exhibited a notable decline in segmentation accuracy. 
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6.1.5. Inference Speed and Model Size 

The efficiency of a model extends beyond performance metrics and encompasses inference speed 

and model size—crucial considerations for practical applications. 

6.1.6. Efficient Inference 

In terms of inference speed, U2Net and DPT emerged as the fastest performers, with an average 

inference time of 0.04 seconds. This efficiency bodes well for applications requiring real-time or 

near-real-time analysis. Conversely, UNet, with an average inference time of 0.68 seconds, lagged 

behind, potentially limiting its applicability in time-sensitive scenarios. 

6.1.7. Model Footprint 

Considerations of model size and weight are pivotal, particularly in resource-constrained 

environments. DPT, with its transformer architecture, boasts the largest model size, while 

SegFormer maintains a relatively compact footprint. U2Net and UNet fall in between, both in 

terms of model size and computational requirements. 

6.1.8. Zero-Shot Learning Capabilities 

The remarkable performance of transformer-based models, particularly DPT and SegFormer, 

underscores the potential of transformers in zero-shot learning scenarios. Their ability to generalize 

and adapt to the task of lung segmentation with minimal fine-tuning is a testament to the versatility 

of transformer architectures. 

In conclusion, our discussion highlights the strengths and weaknesses of each model, providing 

valuable insights into their suitability for specific lung segmentation scenarios. The exceptional 

performance of DPT and SegFormer, coupled with their robustness to noise and efficient inference, 

positions them as formidable contenders in the field of medical image analysis. Meanwhile, UNet 

and U2Net, while still competent, may require additional fine-tuning to match the prowess of their 

transformer counterparts. 
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CHAPTER 7: CONCLUSION 

It can be concluded that the Transformers are beating specifically designed Models in Medical 

Imaging domain. The DPT transformer is not a segmentation based algorithm, but its performance 

was exceptional, even after adding noise. There is need of doing more research in the area with 

Transformers. Transformers have few shot learning capabilities, and can be used for performing 

different tasks. UNET based models can still perform well as was evident in the study, but they 

are not flexible for enough. Transformers feel like the key in near future. 
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