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Abstract

The main purpose of this thesis is to integrate custom cores as peripher-
als as Co-Processors (CPs) to a processor. For this purpose, a 32-bit open
source processor was be tested on an FPGA. For proof of concept, a sim-
ple open source 8-bit processor was selected to run on FPGA using custom
instructions written in C. Thereafter, we tried to change specifications and
peripherals of the peripherals like timers, UART, SPI etc. For 32-bit pro-
cessor, starting with an open source processor design for Leon 3, the study
involved synthesis of code, compilation of program, and test of pre-configured
peripherals on an FPGA. Once a decent level of understanding was achieved,
a new peripheral was integrated into the processor to enhance the processor’s
capabilities, and to adapt them for better performance in a given domain of
applications. Using study of processor architecture of Leon 3, we tried to de-
sign our own processor with peripherals, memory management module and
custom compiler.
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Chapter 1

Introduction

1.1 Background and Motivation

Since the introduction of System-on-Chips (SoCs) architecture separate chips
for High Performance Hardware Accelerators were integrated into a single
chip. Their ability to integrate multiple coporocessors and processor cores
on a single with low power consumption and high performance made them
an integral part of everyday electronics. Coprocessor integration is done us-
ing Memory-Mapped Interface or Coprocessor Interface. Usually, former is
preferred for better maintainability and plug-and-play configuration.
General purpose processors are designed for general purpose tasks with se-
quential logic but there are certain scenarios where this may not suffice. 6]
For this purpose, specialized hardware or coprocessor is designed to handle
these tasks efficiently. For example, modern processors use floating-point
unit as a coprocessor to handle floating point operations efficiently where
Leon3 FPU is a prime example.

1.2 Problem Statement

Coprocessor designs normally concentrate on being used as a single indepen-
dent unit rather than its interface with processors or bus architectures. [37].
Nowadays many powerful public domain IP cores are available for compli-
cated component like 32 bit processor i.e. LEON3. It needs some exper-
tise, work and experimentation to implement a hardware/software co-design
project. We take an effort to present step-by-step description for implement-
ing desired coprocessor or peripheral on LEON3 processor.
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1.3 Proposed Approach

The main purpose of this thesis is to develop and extend simple RISC (Re-
duced Instruction Set Computer) based GPP (General Purpose Processor).
In this academic project, a simple 32-bit RISC processor will be designed
and tested on an FPGA. For proof of concept, a simple open source 8-bit
processor will be selected to run on FPGA using custom instructions written
in C. Thereafter, we shall try to change specifications and peripherals of the
timer like timers, UART, SPT etc.

For 32-bit processor, starting with an open source processor design for Leon
3, the study will involve synthesis of code, compilation of program, and test of
pre-configured peripherals on an FPGA. Once a decent level of understand-
ing has been achieved, a new peripheral will be integrated into the processor
to enhance the processor’s capabilities, and to adapt them for better perfor-
mance in a given domain of applications.

For integration Memory-Mapped Integration will be used as it preferred way
of integration since the introduction of AMBA Bus Architecture. Also, Co-
processor Integration will be studied so that proper distinction can be drawn
between two types of techniques. For this purpose, we need benchmark tools
to draw the difference.
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Literature Review

2.1 Introduction

A processor is a device capable of manipulating information in a way speci-
fied by sequence of instructions. This sequence of instructions (constituting
an instruction set) may be altered to suit the application. A sequence of
instructions is a machine controlled program. Each type of processor has a
different instruction set meaning functionality of instructions varies. 38|

2.2 Instruction Set and RISC

Instruction set is processor’s vocabulary for understanding instructions. Com-
plex programs are broken down into instructions and again encoded in 1s and
Os (machine language) by the compiler. Processors read and execute these
instructions [5]. There are two major approaches in instruction set architec-
ture:

e Complex Instruction Set Architecture (CISC)
e Reduced Instruction Set Architecture (RISC)

CISC Architecture include processors like Intel x86, Motorola 68 series and
National Semiconductor 32 series. RISC processors include Sun’s SPARC,
ARM, Microchip PIC and Atmel’s AVR. Computer architecture types are
devided into von Neumann and Harvard architecure. In von Neumann Ar-
chitecure, memory (may be internal or external) of a processor contains in-
structions (with program counter) to be executed and data on which instruc-
tions are executed. Instructions are fetched (read) from the memory while
data is both read and written to memory. von Neumann Architecture used
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Figure 2.2: Harvard Architecture

by most CISC processors.

On the other side, in Harvard Architecture, instructions and data have differ-
ent memory spaces with separate address, data and control buses. Separate
memory spaces causes instructions and data fetch be executed independently.

In our current study, we will stick with RISC Processor conforming Harvard
Architecture.

2.3 Peripheral Integration to Processor

Coprocessors are being increasingly used for their higher throughput as com-
pared to software based solutions. Their introduction is to add specific en-
hancements for variety of applications to General-Purpose Processors (GPPs).
They are designed for specialized and resource intensive applications such
as encryption/decryption [9], object tracking, complex signal processing,
floating-point operations (Leon3 FPU), audio/video processing |24], CORDIC
processor |34] etc. In SoCs, power consumption is lower as compared to sep-
arate chip for Coprocessors. For this, system-on-chips are designed with
required coprocessors for reconfiguration to save power and bus architecture
Memory.
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8-bit Processor (8051
Microcontroller)

3.1 Introduction

For understanding of how a processor works and how it can be synthesized
into FPGA, we chose open source that was compatible to Intel 8051 archi-
tecture [39]. There are many open source and commercial IP Core avail-
able. Open source 8051 IP Cores include Oregano Systems mc8051 [32],
OpenCores’ T51 and 8051 [36] while commercial IP Cores include Evatronix
R8051XC2, 8051 and Digital Core Design DP8051CPU.

Of all the above mentioned 8051 cores, R8051XC2 is claimed to be fastest
and fully-configurable 8051 achieving speed of 350 MHz. However, its code
was not open source and meant for commercial purposes. For education,
cores from Open Cores and Oregano Systems were to be used. Cores from
Open Cores had one disadvantage that they were not easy to synthesize and
documentation provided was not helpful. Thus, core for 8051 Microcontroller
written in VHDL from Oregano Systems was chosen.

3.2 Oregano Systems mc8051

Its main features due to which it was chosen are as under:

e Open source VHDL code
e Instruction set compatible to 8051 microcontroller (Intel Architecture)

e Technology Independent (FPGA and ASIC)
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e Extra Timer/counter and serial interface with addition of special func-
tion registers

e Parameterizeable via VHDL constants
e 256 bytes internal RAM

e 64 Kbytes ROM

e 64 Kbytes External RAM

e Its target IP Core was available in ARM Keil compiler for software
programming

Its core can divided into:
1. Control Unit
2. ALU
3. Timer / Counter (Parameterizable)
4. Serial Interface (Parameterizable)

Control Unit is further divided into memory controller and Finite State Ma-
chine (FSM). Note that core does not contain any memory unit such as RAM
or ROM to store instructions. This will be done during creation of top mod-
ule in synthesis and simulation using selected target technology. Tts list of

variables is shown in Table [3.1] and Top Module [3.1] [33]

3.3 Tools Required for Synthesis and Simula-
tion
1. For synthesis and simulation Xilinx ISE 14.5 was installed in Window

10 x64 bit computer and was configured for x64 XST Simulator (nt64).

2. For compilation of C Program for 8051, Keil ¢51 was installed which
has built in target specification for Oregano 8051 Core Here, after
building C file (for example, BLINKY'c or Fibonacci.c), corresponding
.hex file was created.

3. Hex to Bin converter

4. Bin to COE Converter (we will discuss it later on their purposes)



CHAPTER 3. 8-BIT PROCESSOR (8051 MICROCONTROLLER)

Table 3.1: Description of Variables of 8051 Core

Signal Name | Description
clk System Clock
reset Asynchronous reset for all Flip Flops
all _tx0 i Timer 0 interrupt
all tx1 i Timer 1 interrupt
all _rxd i Receive data input for serial interface units
int0_ 1 Interrupt 0 input
intl 1 Interrupt 1 input
p0 i Port 0 Input
pl i Port 1 Input
p2 i Port 2 Input
p3_1i Port 3 Input
all_rxdwr_0 | Data direction signal for bidirectional RXD input / output
all _txd o Transmit Data output for serial interface
all_ rxd o Receive data output mode 0 operation for serial interface
p0_o Port 0 output
pl o Port 1 output
p2_o Port 2 output
p3_o Port 3 output
clk >
L e N VS
2llll_t3ﬁ mc8051_siu
all_rxdwr_o
alexd j| | | | peeeecceeeeccaaaaaaaad 4l txd Nol
M me8051_alu meB051_tmretl Em
int1_in
P o | p0_0s
SIUSEN plos,
P2 s [ P208,
M) mc8051_control Mb
mc8051_core

Figure 3.1: Oregano 8051 Core Top
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Vendor: Oregano Systems
Device: 8051 IP Core
Toolset: C51

™ Use Extended Linker (LX51) instead of BL51
-

(%0 2051 IP Core | 18051 compatible IP core, fully synchronous circuit design single clock

PalmChip 1-4 clock cycles instructions, parametrizeable number of timer and UA
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Search: |

O 3 [ [ R 3 [ RN [ 3 B 3
L ONE SRR SRR CEE CBE URE VR SRR <

3.4

Figure 3.2: Target 8051 Microcontroller in Keil ¢51

mc8051 Top Module (Synthesis)

Two projects for 8051 were created in Xilinx ISE for synthesis and simula-
tion. Spartan 3E (XC3S500E) was chosen for both simulation and synthesis.
However, due to low TOBs (about 200 percent) in Spartan 3E during synthe-
sis, we had to chose Vertex 5 (XC5VFX70T) Evaluation Board to work on.
Top module for 8051 was written in VHDL, which used components of 8051
Core as well as memories such as 128 x 8 RAM [3.3] 64k x 8 ROM and
64k x 8 External RAM [B.5l Memories were created from Core Generator in
Xilinx ISE. Configuration for 128 x 8 bit RAM is as follows:

Single Port RAM
Minimum Area

Read / Write Width: 8
Write / Read Depth: 128
Enable (ENA) Pin

Write First

Reset (RSTA)

Configuration for ROM is as follows:
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Figure 3.3: RAM Configuration in Xilinx

Single Port ROM

Minimum Area

Read Width: 8

Read Depth: 65536

Always Enabled

Load Init File (COE File)
e Use Reset (RSTA) pin

Configuration for XRAM (External RAM) is as follows:
e Single Port RAM

e Minimum Area

Write / Read Width: 8

Write / Read Depth: 65536

Write First

Always Enabled
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ADDRA[15:0] DOUTA[7:0]
ENA
REGCEA » SEITERR
3 DBITERR
RSTA RDADDRECC
CLKA

INJECTSBITERR

INJECTDEITERR

Figure 3.4: ROM Configuration in Xilinx

REGCEA 3 SBITERR

2 DEBITERR

RDADDRECC[15:0]

INJECTSBITERR

INJECTDBITERR

Figure 3.5: XRAM Configuration in Xilinx
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Figure 3.6: 8051 Top Module (Plan Ahead Pre-Synthesis)

e Use Reset (RSTA) Pin

Also, Phase Locked Loop (PLL) from Xilinx Core Generator was used to
downgrade the speed from FPGA system clock of 100 MHz to desired fre-
quency (11.675, 25 or 40 MHz). Its component was also called in top module.
Architecture of Top Module generated from Plan Ahead (Pre-Synthesis) is
shown in Figure We can see Control Unit,ALU, Timer/Counter and
Serial Interface in the system.

3.5 Work on Keil C51 (Microcontoller)

For 8051 Core to work on FPGA, we had to create HEX file from C file
written for Oregano mc8051. It should be noted before compilation, the
frequency of target core should be same as in PLL. The code used was for
BLINKY an example from Keil C51 after installation. After successful
compilation and build, HEX file was created.

3.6 Conversion from HEX to COE

Normally, HEX file created is loaded into microcontroller ROM as instruc-
tions to execute a particular function. On FPGA, however, ROM created
from Xilinx Core does not use HEX file. It rather loads Coefficient (COE)
File. To convert HEX to COE file, there are some open source tools available
but most are not compatible with 64 bit Windows. [10] [25] For this purpose,
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Project L | _] BLINKY.C ] REGS1.H
$ Project: BLINKY 10 char code reserve [3] _at  0x23;
= 5% MCBX51: 8xC51Rx 1 ch ve [3]
12

= [ Source Group ‘
=] BLINKY.C i: Jvoid wait (void) {
] REGS1 i |,

=17 Documentatit 16
_] ABSTRAC 17 Hvo

Figure 3.7: BLINKY.c in Keil ¢51 IDE

an alternative set to tools (Hex2bin and bin2COE) were introduced which
convert HEX to bin file and then, bin to COE. These tools used and their
working in Command Prompt are shown in Fig [3.8

The resulting COE File is referenced by ROM Core before Core Synthesis
These are instructions for FPGA to perform once it is programmed into
FPGA.

3.7 Synthesis and Implementation on FPGA

Before implementation, User Constraints (UCF) file was created in project.
On board clock for FPGA is 100 MHz. Program loaded from HEX file run-
ning on default 12 MHz clock. Change in clock domains caused wrong results
in LEDs shown as PO of 8051 Core.

To deal with this problem, a PLL Core was introduced in between FPGA
Clock and 8051 Core Clock. The resultant clock was matched for PLL and
HEX file at: 11.675 MHz. Synthesized core is shown Fig Once all prob-
lems were catered, programming file was generated and loaded into FPGA
and was working smoothly. We tried with different clock speeds to check
Timing and Power Utilization of Synthesis Process. 40MHz was highest
clock speed possible achieved by 8051 Core. Comparison for 25 MHz and 40
MHz using different design strategies is given in Fig [3.11]
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i Administrator: Command Prompt

Microsoft Windows [Version 10.8.15863]
(c) 2017 Microsoft Corporation. All rights reserved.

C: \WINDOWS\system32>E:
E:\>cd MS\4th Semester\Thesis\Tools

E:\MS\4th Semester\Thesis\Tools>hex2bin BLINKY.hex
hex2bin v2.4, Copyright (C) 2017 Jacques Pelletier & contributors

Allocate Memory_and_Rewind:

jLowest address: 00000000
Highest address: ©©00084E
Starting address: ©06000080
Max Length: 2127

Binary file start = ©oo0o000
Records start 00006600
Highest address ©800084E
Pad Byte = FF

E:\MS\4th Semester\Thesis\Tools>bin2coe BLINKY

E:\MS\4th Semester\Thesis\Tools>

Figure 3.8: HEX to COE Conversion in Command Prompt

Memory Initialization
¥ Load Init File

Coe File |E:\MS\4th Semester\Thesis\Xilinx Work\Oregano_8051\Keil\BLINKY Browse Show

[ Fill Remaining Memory Locations

Figure 3.9: COE file load in Xilinx Generated ROM Core
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Figure 3.10: 8051 Core RTL Schematic in Xilinx

11.765 MHz 25 MHz 40 MHz
Timing Performance Balanced Power Timing Performance Balanced Power Timing Performance Balanced Power
Synthesis Max Freq (MHz) 47.082 46.777 33.248 47.082 46.777 33.248 47.082 46.777 33.248]
‘P&R Derived Freq (MHz) 20.15 26.348 18.504 25.043 26.51 25.061|36.085™ 40.107 31.144~
Chip Power (mW) 30C 1189.44 1173 1163.49 1205.27 1208.67 1200.14
‘Chip Power (mW) 50C 1562.98 1546.34  1536.73 1577.78 1565.45 1555.63 1578.94 1582.42 1573.78|

Figure 3.11: Comparison on different design strategies
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Figure 3.12: Fibonacci Code simulation on 8051 Core

3.8 Simulation

A local testbench was created for Fibonacci.c file which was loaded into a
ROM similar to synthesis process. It was then simulated using Xilinx ISim.
The output integer values were used in Port 0 (p0_o) [3.12

3.9 Configuration of mc8051 for extra periph-
erals

The original microcontroller design offered only 2 timers, one serial and 2
external interrupt units. These can be changed in VHDL Core using some
constants to increase or decrease the said peripherals. However, to decode
registers of added peripherals (if any) without changing the address space of
8051 only two 8 bit registers are inferred as additional special function reg-
isters (SFRs). [33] These are TSEL (address 0x8Eh for timer/counter units)
and SSEL (address 0x9Ah for serial interface units). If these registers point
to a non existent device number, the default unit number 1 is selected. Ef-
forts were made to be able to infer SFRs in Keil. REG51.H is referenced by
C File in Keil. SFRs inferred is shown below:

As an example, 25 MHz synthesizable core was chosen. In this core, file
named mc8051 p.vhd there is parameter named ’C_IMPL N TMR’. It
can take values from 1 to 256. Its default value to set to 1. We changed its
value to 2 which generated 2 extra timer units, 1 additional serial port and 1
additional external interrupt sources. Initial and custom (C_IMPL N TMR
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Figure 3.13: REGbH1 Special Function Registers

] BUNKY.C ] REGS51.H

9 H#ifndef REGS51 H
10 #define REGS1 H
11

12 | /* BYTE Register
13 sfr PO = 0Ox80;
14 | sfr P1 = 0x90;
15 | sfr P2 = 0OxA0;
le | sfxr P3 = 0xBO;
17 | sfr PSW = 0xDO;
18 sfr ACC = OxEO;
19 | sfr B = 0xFO0;
20 | sfr SP = 0x81;
21 | sfr DPL = 0x82;
22 | sfr DPH = 0x83;
23 | sfr PCON = 0x87;
24 sfr TCON = 0Ox88
25 | sfr TMOD = 0x89
26 | sfr TLO = Ox8A
27 | sfr TL1 = 0Ox8B
28 | sfr THO = 0=x8C;
29 | sfr TH1 = 0x8D;
30 | sfr IE = 0OxASB;
31 | sfr IP = 0xBEg;
3Z | sfr SCON = 0x9

33 | sfr SBUF = 0x99%;
34

16

= 2 has 82 I/Os) peripheral diagram (pre-synthesized) is shown in Fig [3.14

and Fig respectively:
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Figure 3.14: Default 1/Os:74 and C_IMPL N TMR=1
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Chapter 4

Leon3 Introduction

4.1 Introduction

The complexity of designing processors has increased overtime. Designing
each and every hardware component of the system from scratch soon be-
came impractical and expensive for most designers. Therefore, the idea of
using pre-designed and pre-tested IP Cores in designs became an attractive
alternative. Softcore processors are processors whose architecture and behav-
ior are fully described using synthesizable Hardware Desciption Languages
(HDL) like Verilog or VHDL. They can be easily synthesized to FPGA or
ASIC. [22|Use of these processors has advantages like:

e Customizable
e Technology Independent
e Basily understandable

We will look for different open source and commercial IP Cores like in 8051
to come up with the best one for 32-bit RISC Processor which can be easily
customized to our needs.

4.2 Evaluation of Processors(SoC)

There are many 32-bit processors available such as Altera Nios II, Xilinx
MicroBlaze, Tensilica Xtensa, OpenCores OpenRISC 1200 and Gaisler Leon
3. Overall comparison has been drawn between them in Table [£.1] [23] [30]

From above table [4.1] we can easily access that each processor has its ad-
vantages and disadvantages. Xtensa offers unlimited ISA customization but

18
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Table 4.1: Comparison of Different 32-bit RISC Processors

Category Nios IT MicroBlaze Xtensa Leon3
Max Frequency (MHz) 200 (FPGA) 200 (FPGA) 350 (ASIC) 400 (ASIC)
Cache Upto 64 KB Upto 64 KB  Upto 32 KB  Upto 256 KB
Pipeline Stages 6 3 d 7
Custom Instructions Upto 256 None Unlimited None
Implementation FPGA FPGA FPGA, ASIC FPGA, ASIC
Open Source No No No Yes

Table 4.2: Evaluation of Bus Architectures

Feature WishBone AMBA Avalon CoreConnect
Open Architecture Yes Yes Partial Yes
Hierarchical No Yes No Yes
Pipelined No Yes Yes Yes
Arbitration Yes Yes Yes No
Data Transfer Hand Shaking Yes Yes No Yes
Data Transfer Pipelined No Yes Yes Yes
Split Transfer N/A Yes No Yes
Clocking Yes Yes Yes Yes
Frequency User Defined User Defined User Defined User Defined

it is also not open source and expensive. Similarly, OpenRISC has open
source code but difficult to use to use with given technology. Leon 3, despite
its ISA customization it excels all other departments. However, there are
other problems to be explored also like bus architecture, software tools and
compliant ISA.

4.3 Evaluation of Bus Architectures
There are namely four different bus architectures:

1. WishBone (OpenCores)

2. AMBA (ARM)

3. Avalon (Altera)

4. CoreConnect (IBM)

Their comparison is drawn below:
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From here also, we can see that AMBA from ARM has quite a lot of advan-
tages However, WishBone has an edge of being adopted as primary bus
for most open source designs. AMBA is the bus architecture used by Leon
3. We will check more details about it afterwards.

4.4 SPARC Version 8 ISA

If you choose a custom ISA, we have to create everything yourself:

e the chip architecture
e compiler
e OS and Appication Programmable Interfaces(APIs)

e cross-compilation

SPARC is an instruction set architecture (ISA), derived from a RISC lin-
eage. As an architecture, SPARC allows for a spectrum of chip and system
implemenetations at a variety of price/performance points for a range of
applications, including scientific/engineering, programming, real-time, and
commercial. SPARC was designed as a target for optimizing compilers and
easily pipelined hardware implementations. SPARC implementations pro-
vide exceptionally high execution rates and short time-to-market develop-
ment schedules. Its advantages are: [1§]

e Open architecture without patent or license fees unlike Intel, MIPS and
ARM

Well designed

Well documented

Easy to implement

Established software standard

4.5 Leon3 Introduction and Pipeline

The LEONS is a synthesizable VHDL model of a 32-bit processor compliant
with the SPARC v8 architecture. The model is highly configurable, and
particularly suitable for system-on-a-chip (SOC) designs. The full source
code is available, allowing free and unlimited use for research and education.
The LEON3 processor has the following features: [15]
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Compliant with SPARC V8 ISA

7-stage Pipeline

Hardware Multiply, Divide and MAC units

Floating Point Unit (FPU)

Harvard Architecture (Separate Instruction and Data Cache)
AMBA 2.0 AHB Bus Interface

On-Chip Debug Support

Multiprocessor Support

Power Down and Clock Gating

Fault tolerant version available for High Performance space applications
Extensively configurable

Tools available like simulators, compilers, debuggers and kernels

Leon 3 consists of following subsystems: |12]

1.
2.

6.
7.

Integer Unit (based on 7-Stage Pipeline Harvard Architecture)
Cache (Data and Instruction)

Floating Point Unit Coprocessor

Hardware Multiplier and Divider

Memory Management Unit

Debug Support Unit

Interrupt Controller

Integer Unit which is based on Harvard Architecture, implements the full
SPARC V8 standard, including hardware multiply and divide instructions.
The implementation is focused on high performance and low complexity.
Register windows are set to 8 as default but are configurable as per SPARC
standard (2-32). Integer Unit pipeline consists 7-stages which separate exe-
cution of data and instruction cache interface. Its 7-stage pipeline is shown
in Fig[4.2l These can be summarized as:
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3-Fort Reqgister File

IEEE-754 FPU Trace Buffer

7-Stage

Co-Processor A .
Integer pipeline

Debug port  |¢—— Dehug support unit

HW MuLDIv Interrupt port [«—— Inferrupt controller

b

Local IRAM | |-Cache ‘ D-Cache | Local DRAM

ITLB SRMMU DTLB

AHB I/F

!

AMBA AHB Master (32-bit)

Figure 4.1: Leon3 Integer Unit

e FE (Instruction Fetch): If the instruction cache is enabled, the in-
struction is fetched from the instruction cache. Otherwise, the fetch
is forwarded to the memory controller. The instruction is valid at the
end of this stage and is latched inside the IU (Integer Unit).

e DE (Decode): The instruction is decoded and the CALL and Branch
target addresses are generated.

e RA (Register access): Operands are read from the register file or from
internal data bypasses.

e EX (Execute): ALU (Arithmetic Logic Unit), logical, and shift op-
erations are performed. For memory operations (e.g. LD) and for
JMPL/RETT, the address is generated.

e ME (Memory): Data cache is accessed. Store data read out in the
execution stage is written to the data cache at this time.

e XC (Exception) Traps and interrupts are resolved. For cache reads,
the data is aligned as appropriate.

e WR (Write): The result of any ALU, logical, shift, or cache operations
are written back to the register file.
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Decode
____________ £t e e oo - -
Register Access
____________ E
Execute
———————————— [mms - -------- [mE} - -
Memory
———————————— FEmEt---------EE@E ] - -
Exception
------------ mﬁu-—----—--T---
Writeback

psr

— 0 jmpl address

Figure 4.2: Leon3 7 Stage Pipeline
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High-performance High-bandwidth

ARM processor on-chip RAM
| usrt || Timer |
High-bandwidth AHB orASB APB
Extemal Memory
Interface
| Keypad | | P10 |

DMA bus
master AHB to APB Bridge
! or
ASB to APB Bridge

Figure 4.3: AMBA Shared Single Bus

4.6 AMBA Bus Architecture

Bus architecture is based on Advanced Microcontroller Bus Architecture
(AMBA) introduced by ARM for RISC based processors. Its specification
is used in the design of high performance processor SoC architectures. The
typical AMBA bus system is shown in the figure here there are two bus
systems, one requiring high performance for the high speed components like,
the internal memory, Direct Memory Access (DMA) and processor. On the
other hand, peripherals, coprocessors or cores that do not need such high
bandwidth are connected through to the low power bus via High-to-Low per-
formance bridge. The former is called AHB (Advanced High Performance
Bus) while latter is called APB (Advanced Peripheral Bus). They are dis-
cussed in detail in Chapters [7][9]

4.7 Example Template Design

Leon3 SoC architecture is based on AMBA Advanced High-Speed bus (AHB)
as its bus architecture. All the components, memory and coprocessors includ-
ing Leon3 is conncted to this bus. External memory is accessed through a
combined PROM /IO /SRAM/SDRAM memory controller. Default template
design of SoC includes peripherals like Ethernet, Serial and JTAG debug
interface, UART, Interrupt Controller, CAN 2.0 and General Purpose 1/0
Ports. The design is be highly configurable as desired by use. Leon3 SoC is

shown in Fig [12]
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Figure 4.4: Leon 3 in Spartan 3E Template

4.7.1 Library (Source Code) and Toolchain

25

The complete design environment for LEON3 including all the IP cores can
be downloaded from its website. Leon 3 design is integrated with template
designs and other IP Cores in a single library file known as GRLIB. It is
distributed as a zipped file and can be installed in any location on the host

system. This library includes:

1. Make Files and script generators for shell commands (like bash or Cyg-

win)

2. Target FPGA Board designs from different companies like Altera, Xil-

inx etc
3. IP Cores including Leon 3
4. Example software files

5. FPGA and ASIC Technologies

6. Example template designs for Configuration and Synthesis

After installation of library, toolchain is required to use Leon 3. It is com-
patible in both Windows and Linux. However, Windows is preferred due to

ease in installation. [22] It includes:

e Bare-C Compiler (BCC)
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e Boot-Prom Builder (mkprom?2)
e RTEMS Leon Cross Compiler (RTEMS)
e GRMON Debug Tool (GRMON2 Evaluation version)

e TSIM Simulator (Evaluation Version)

In windows environment, these tools are installed through a single installer
file known as GRTOOLS where in Linux every file has to be installed sepa-
rately. Also, during installation, environment variables in windows are set au-
tomatically. For Bare-C Compiler [13], Eclipse Kepler version 1.6 is installed
during installation. Besides ease at installation, we preferred Windows be-
cause tools for Synthesis and Simulation (Xilinx and ModelSim) were already
installed and their environment variables were set. For Linux, all these tools
had to be installed from scratch.

However, for shell commands, Cygwin for windows was installed [17]. It em-
ulates Linux Terminal in Windows. Cygwin has a major disadvantage that
it is unable to launch ModelSim GUI. Also, it should be note to simulate the
design using ModelSim, its professional edition should be installed. Student
edition is not supported by Leon toolchain. Detailed work with each tool
discussed above will be presented afterwards.

4.7.2 Example Template Configuration and Implemen-
tation

Leon3 system is usually implemented using example template designs in-
cluded in design directory. We implement and try to LEON3 template design
for the Xilinx ML50x (ML507) board which was also used when we were
using 8051. Implementation is done in five steps:

e Configuration of Leon design in xconfig
e Simulation of design
e Synthesis and Place Route
e Generate Bitstream
e Configure FPGA on board
Template design is based on mainly three files found in ML50x folder:

e config.vhd - a VHDL package containing design configuration parame-
ters. Its is created and modified when using xconfig GUI tool.
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/cygdrive/e/w
$ export DISPLAY=:0.0

Figure 4.6: Export Display to XWin Server

e leon3mp.vhd - top module of Leon3 SoC with instances of all compo-
nents including Leon3 processor. It uses config.vhd to instantiate and
use IP cores.

e testbench.vhd - testbench to simulate the desired SoC Architecture

In windows, we install Cygwin to replicate the Linux environment in Win-
dows. During installation, make sure to install Tcl/Tk which is important
for GUI launch. With cygwin installed, it is time to configure Leon using
xconfig tool. Cygwin can be launched from Desktop and also XWIN server
is required also for display. After XWin is successfully launched, following
command is written in Cygwin to export Display to XWin server [4.6] Here
we can see that we are in target design ML50x. Here by writing xconfig in
cygwin shell calls for xconfig GUI as shown in Fig[4.7] Leon3 Configuration
is broken down into:
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(X LEON3MP Design Configuration — [] X
Synthesis AMBA configuration
Board selection Debug Link Save and Exit
Clock generation Peripherals Quit Without Saving
Processor VHDL Debugging Load Configuration from File
L2 Cache Store Cenfiguration to File

Figure 4.7: Leon3 Design Configuration GUI(xconfig)
Synthesis: Target technology for FPGA and other technology related
configurations. In this case, it is Xilinx.
Board Selection: FPGA Board (Xilinx ML507) or ASIC Technology

Clock Generation: PLL Generated for FPGA Board. Default is 60
MHz for 100 MHz Board.

Processor: Main Processor configuration like number of processors, In-
teger Unit, FPU, MMU Configuration

L2 Cache
AMBA Bus Configuration
Debug Link

Peripherals: Memory Controller, On-Chip RAM/ROM, Ethernet, UART,
Timer, VGA and Keyboard Interface, PCI Express

VHDL Debugging

This default configuration is known as Minimal Processor. First we will try
to simulate and synthesize the Minimal Processor and then, go for more high
performance configurations.

4.7.3 Configuration for Minimal, General Purpose and

High Performance Processor

Following table describes the VHDL Generics to changed for Minimal
(MP), General Purpose (GPP) and High Performance Processor (HPP) and
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Table 4.3: Configuration of MP, GPP and HPP Processors

VHDL Generic MP GPP HP Description

dsu 0 1 1 Debug Support Unit

fpu 0 1 1 Floating Point Unit

v8 0 2 164324  Support for SPARC v8 MUL/DIV
nwp 0 2 4 Hardware Watchpoints

icen/ dcen 1 1 1 Processor Caches

irepl / drepl 2 2 2 Random replacement policy
dnsoop 0 6 6 Data Cache Snooping
mmuen 0 1 1 Memory Management Unit
tbuf 0 4 4 Trace Buffer

pwd 1 2 2 Power Down Mode

smp 0 0 1 SMP Support

bp 0 1 1 Branch Prediction

tlb_type 1 2 2 Look-a-side TLB Buffers

1ddel 1 1 1 1-cycle load delay

itlbnum / dtlbnum - 8 16 MMU look-a side buffers

Minimal General Purpose High Performance

Slice Registers (%) 18 22, 23
Slice LUTs (%) 31 39 39
LUT-FF Pairs (%) 41 40 41
Bonded 10Bs (%) 47 47 47
Block RAM/FIFO (%) 13 14 14
BUFG (%) 50 50 50
DCM_ADV (%) 50 50 50
DSP_48 (%) 0 0 0
Synth Frequency (MHz) 98.586 85.981 90.853

Figure 4.8: Processor Comparison on Area Utilized and Timing

then, synthesized on FPGA. These generics (or global variables) are updated
in config.vhd file. [14] Area utilized on Vertex-5 ML507 and timing analysis
for each processor in Fig [4.8

4.8 Software Development (BCC)

To simulate (or emulate) the desired system or hardware performance for
Leon3, we use embedded C program. It is also a good test of the software
development environment. We use Bare-C Compiler (BCC) installed in the
system. [13] BCC is a cross-compiler for LEON3 processors. It is based one
the GNU compiler tools and the Newlib standalone C-library. The cross-
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compiler system allows compilation of both tasking and non-tasking C and
C+-+ applications. It supports hard and soft floating-point operations, as
well as SPARC V8 multiply and divide instructions. We use example program
"Hello World’. BCC takes hello.c file and compiles it to output hello.exe. This
executable file can be loaded into FPGA program using two methods:

e GRMON Debugger
e MKPROM2 PROM Programmer

4.8.1 Software Development (GRMON Debugger)

GRMON debug monitor uses debug interface to control the loading and run-
ning of compiled C program. It can also be launch using Windows Command
Prompt. [7] GRMON has the follwing features:

e Read/Write all Registers and Memory

e Built-in disassembler and trace buffer management

e Loading and execution of GP applications

e Modern IDE Tools Management

e Remote connection to GNU debugger (GDB) (e.g. TSIM)

We use JTAG link which is also used for bit file programming of FPGA.
However, for GRMON, compatible driver must be installed to use it. After
successful link is established in JTAG, GRMON shell is launched in Com-
mand Prompt.

hello.exe compiled with Bare-C Compiler can be loaded into Leon 3 FPGA
using GRMON debug link and its output is wrote back in the GRMON shell.

4.8.2 Software Development (PROM Programmer)

This method is used to program PROM of Leon 3 as boot loader before
it is synthesized on FPGA same way as ROM was loaded with coefficient
file in 8051. [11] Here, we use mkprom to output PROM file with loaded
hello.exe file. First, it compiles and create PROM.out file. After successful
PROM.out, file is loaded in PROM.srec bootloader file of Leon 3 which can
be run as ModelSim testbench 1.9l
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# LEON3 MP Demonstration design

# GRLIB Version 1.5.0, build 4164

# Target technology: inferred , memory library: inferred

# ahbctrl: AHB arbiter/multiplexer rev 1

# ahbctrl: Common I/0 area disabled

# ahbctrl: AHB masters: 2, AHB slaves: 8

# ahbctrl: Configuration area at Oxfffff000, 4 kbyte

# ahbctrl: mstO: Cobham Gaisler LEON3 SPARC V8 Processor

# ahbctrl: mstl: Cobham Gaisler AHB Debug UART

# ahbctrl: s1v0: European Space Agency LEON2 Memory Controller

# ahbctrl: memory at 0x00000000, size 512 Mbyte, cacheable, prefetch
# ahbctrl: memory at 0x20000000, size 512 Mbyte

# ahbctrl: memory at 0x40000000, size 1024 Mbyte, cacheable, prefetch
# ahbctrl: slvl: Cobham Gaisler AHB/APB Bridge

# ahbctrl: memory at 0x80000000, size 1 Mbyte

# apbctrl: APB Bridge at Ox80000000 rev 1

# apbctrl: s1v0: European Space Agency LEON2 Memory Controller

# apbctril: I/0 ports at Ox80000000, size 256 byte

# apbctrl: slvl: Cobham Gaisler Generic UART

# apbctrl: I/0 ports at 0x80000100, size 256 byte

# apbctrl: slv2: Cobham Gaisler Multi-processor Interrupt Ctrl.
# apbctril: I/0 ports at Ox80000200, size 256 byte

# apbctrl: slv3: Cobham Gaisler Modular Timer Unit

# apbctrl: I/0 ports at Ox80000300, size 256 byte

# apbctrl: slv7: Cobham Gaisler AHB Debug UART

# apbctrl: I/0 ports at Ox80000700, size 256 byte

# apbctrl: slvll: Cobham Gaisler General Purpose I/O port

# apbctril: I/0 ports at Ox80000b00, size 256 byte

# grgpioll: 8-bit GPIO Unit rev 3

# gptimer3: Timer Unit rev 1, 8-bit scaler, 2 32-bit timers, irqg 8

# irgmp: Multi-processor Interrupt Controller rev 4, #cpu 1, eirq O

# apbuartl: Generic UART rev 1, fifo 4, irq 2, scaler bits 12

# ahbuart7: AHB Debug UART rev 0

# 1eon3 0: 1 FON3 _SPARC VR nrocessor rev 3: Guft: 0 foft: 0, cacheft: 0
it Teon3_0: 1icache 1*4 kbyte, dcache 1%4 kbyte

¢ moving .text from 0x00001620 to 0x40000000

* moving .data from 0x00007000 to 0x400059e0

it Hello world

Figure 4.9: PROM hello.exe loaded and run
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tsim> load E:\Work\Leon3\designs\leon3-xilinx-ml5@x\hello.exe
section: .text, addr: ©x40000000, size 42864 bytes

section: .data, addr: ©x4000a770, size 2960 bytes

read 450 symbols

tsim> run

starting at ex40000060
Hello World

Program exited normally.

Figure 4.10: TSIM running hello.exe on Leon3 environment

4.8.3 Software Development (TSIM Simulator)

TSIM is a unique Leon 3 simulator which emulate its environment without
the use of FPGA. ERC32 or LEON applications can be loaded and simulated
using a Windows Command Prompt. A number of commands are available
to examine data, insert breakpoints and advance simulation. |1

Leon 3 can be loaded like GRMON System Information. This informa-
tion can be changed to custom needs to emulate the required environment
hello.exe and any other program can be compiled using Bare-C Compiler
again can be loaded and run [1.10]



Chapter 5

Leon3 Extension and
Customization

5.1 Introduction

Using the knowledge of Leon 3 processor, we need to extend our work in cus-
tomizing this processor. We will to study the factors and variables essential
in the designing of this processor. There is different form of understanding
required to achieve each form of customization [27].To add a peripheral or
Co-Processor, we need:

e Library Structure
e Understanding and working of AMBA bus
e VHDL Generics and link with Leon3mp.vhd (Top Module)

e xconfig GUI Customization

5.2 Library Structure

Scripts generated search for VHDL libraries in libraries files source or lib/lib.txt.
These contain paths to directories of IP Cores and Leon3 compiled as VHDL
library. Their mapping is always as appear in compile order in libs.txt.
[12].

Each directory specified in the libs.txt contains the file dirs.txt, which con-
tains paths to sub-directories containing the actual VHDL code. The sub-
directories contains compile order of VHDL files to be synthesized or simu-
lated in order or preference. [5.2]
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/cygdrive/e/Work/Leon3-ext/11ib

$ cat Tibs.txt

actel/corel553bbc
actel/corel553brt
actel/corel553brm
actel/corePCIF

Figure 5.1: Library showing scripts for different vendors

/cygdrive/e/Work /Leon3-ext/1ib/gr1ib/amba
$ cat vhdlsyn.txt

Figure 5.2: Library showing scripts for different files in AMBA folder
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/cygdrive/e/Work/Leon3-Ext/1ib/grl1ib/amba

amba.in amba.in.help amba.vhd apbctrl.vhd
amba.in.h amba.in.vhd amba_tp.vhd apbctrldp.vhd

</Leon3-Ext/Tib/grlib/amba

xamp'l e_'.i pl_-;hb .vhd
xample_ip_apb.vhd
Figure 5.3: New files in AMBA folder

Why is this important? When scripts are generated during synthesis or sim-
ulation, the library is loaded with each file required for the processor and
assembly system. When we create or add new peripheral, we update these
scripts accordingly. It is done by updating target vhdlsyn.txt file with new
peripheral file

5.3 Understanding and Working of AMBA Bus

Detail understanding and working of AMBA bus and addition of Peripherals
and Co-Processors to AHB and APB Bus is discussed it detail in Chapters
9] and [7] respectively.

5.4 VHDL Generics and Link with Top Module

VHDL Generics are global variables used as parameters saved in config.in. It
creates a new variable which is used in config.vhd as parameter to generate
component in leon3mp.vhd. To understand this, we first look config.in where
it loads variables from different libraries containing .in files.
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grace: if CFG_GRACECTRL = generate
gracel : gracectrl generic map (hindex => 4, hirg => 3,
haddr => ;, hmask => , split => CFG_SPLIT)

port map (rstn, clkm, clkace, ahbsi, ahbso(4), acei, aceo);
end generate;
nograce: if CFG GRACECTRL /= generate
aceo <= gracectrl_nocne;
end generate;

sysace mpa pads : outpadv generic map (width => 7, tech => padtech)
port map (sysace mpa, aceo.addr);
sysace_mpce_pad : outpad generie map (tech => padtech)
port map (sysace_mpce, aceo.cen);
sysace_d pads : lopadv generic map (tech => padtech, width => )
port map (sysace_d, aceo.do, aceo.doen, acei.di);
sysace_mpoe pad : outpad generic map (tech => padtech)
port map (sysace mpoe, aceo.oen);
sysace_mpwe_pad : outpad generie map (tech => padtech)
port map (sysace_mpwe, aceo.wen):;
sysace_mpirg pad : inpad generic map (tech => padtech)
port map (sysace mpirqg, acei.irqg);

Figure 5.4: Generation of components in Top Module

e/e/Work/Leon3-ext/1ib/gaisler/misc
$ 1s apb_example.i

apb_example.in apb_example.in.h apb_example.in.help apb_example.in.vhd

Figure 5.5: apb__example.in files

5.5 xconfig extension

This module is the last but it uses information of all previous work which
leads to customization of GUI shown. Each core has VHDL generics and
header constants which are used in generation and configuration of its xcon-
fig menu entries. As an example we will look at the apb _example. In figure
b.0| first line creates a boolean value for the variable CONFIG 12CAHB
which can be modified in GUIL If it is set to yes (‘y’) then the user can select
select two more configuration options. One is width defined as integer and
second is mask defined by hexadecimal value.

bool 'Enable I2C to AHB bridge ' CONFIG I2C2AHB

if [ "SCONFIG I2C2BHB" = "y" ]; then
bool 'Enable APB interface ' CONFIG I2C2RHB APB
hex 'AHB protection address (high) ' CONFIG I2C2AHB_ADDRH 0000
hex 'AHB protection address (low) ' CONFIG I2C2AHB ADDRL 0000
hex 'AHB protection mask (high) ' CONFIG I2C2AHB_MASKH 0000
hex 'AHB protection mask (low) ' CONFIG I2C2AHB_MASKL 0000
bool 'Enable after reset ' CONFIG_T2C2AHB APB
hex 'I2C memory address ' CONFIG I2C2AHB_SADDR 50
hex '"I2C configuration address ' CONFIG_I2CZAHB CADDR 51

Figure 5.6: apb_example.in
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CONFIG_I2C2AHB
Say Y here to enable I2C2ZAHB

CONFIG_I2C2AHB_APB
Say Y here to configure the core's APB interface

CONFIG_I2C2AHB_ADDRH
Defines address bits 31:16 of the core's AHB protection area

CONFIG_I2C2AHB_ADDRL
CONFIG_IZ2C2AHB_MASKH
CONFIG_I2C2AHB_MASKL
CONFIG_I2C2AHB_SADDR

CONFIG_I2C2AHB_CADDR

Figure 5.7: apb_example.in.help

GUI also provides the help option for user assistance. The contents of
the help box is defined in the file *.in.help. [5.7] apb_example.in.h and
apb__example.in.vhd are used generation of VHDL generics as constants in
config.vhd file for a design. config.vhd consists of options linked with core in
sub menu entries and its integration with main SoC. After configuration is
finished in GUI and xconfig is closed, variables the .in.vhd files for all cores
are concatenated into one file. The contents of apb example.in.h is: The
menu entries to include in xconfig is defined for each template design in the
file config.in. As an example we will look at the config.in file for the design
leon3-xilinx-ml50x. In config.in we find the entry for the apb example port
(described in the previous section) as part of one of the submenus: These
variables can be used to generate cores for apb__example in the same way as
shown in Fig. The modified xconfig is shown below:
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#ifndef
#define

#endif|

CONFIG_IZCZAHB
CONFIG_IZCZAHB 0

CONFIG_IZCZAHB_APB
CONFIG_I2CZ2AHB_APB 0

CONFIG I2CZAHB_ADDRH
CONFIG_IZCZAHB_ADDRH 0

CONFIG_IZ2CZAHB_ADDRL
CONFIG_IZCZAHB_ADDRL 0

CONFIG I2CZAHB MASKH
CONFIG_IZCZAHB MASKH 0

CONFIG_IZCZAHB_MASKL
CONFIG_IZCZAHB MASKL 0

CONFIG I2CZAHB_RESEN
CONFIG_IZCZAHB_RESEN 0

CONFIG I2CZAHB_SADDR
CONFIG_IZCZAHB_SADDR 50

CONFIG IZCZAHB_CADDR
CONFIG_IZCZAHB_CADDR 51

CONFIG_I2CZAHB_FILTER
CONFIG_IZCZAHB_FILTER 2

Figure 5.8: apb_example.in.h

mainmenu_option next_comment
comment 'Ethernet

source lib/gaisler/greth/greth.in
endmenu

mainmenu_option next_comment

comment 'UART, timer, I2C, SysMon, I/O port and interrupt controller'

source lib/gaisler/uart/uartl.in
source lib/gaisler/irqmp/irqmp.in
source lib/gaisler/misc/gptimer.in
source lib/gaisler/misc/grgpic.in
source lib/gaisler/i2c/i2c.in
source lib/gaisler/misc/grsysmon.in
source lib/gaisler/misc/apb_examplel.in
endmenu

Figure 5.9: apb_example.in included in config.in (Folder:ML50x)

X X UART, timer, I2C, SysMon, 1. — X
Synthesis e < UART, timer, 12C, Syshon, 110 port and nterrupt controller
Board selection Debug Link ‘Save and Exit “y| Cn| Enable generic G710 port Help
i Peripharals ‘Quit Without Saving 5 GPIO width wep | M
Processor VHDL Debugging Load Configuration from File orre RO intertupt mask e |
12 cache Store Configuratin to il “y| ~n| enableracmaster e |l
“y| = n| enable system wonitor Help "
X 5 e o |
rerphras | on| cnavenvo merace e |
e e——— A [0000 AHB protection address (high) Help
on-chip RAMROM o000 A¥HB protection address (low) Help
cthemet 0000 AHB protection mask (high) Help
UARL, timer. 12, SysMon, 1/0 port and interrupt controller jooco SR AT LA e
T y| @ n| Enable ater reset Help
System ACE Interface Controller 30 e ETLE TR LR
o ExoRess st 12C configuration address Help
Main Menu Next bev | oK Next prev

Figure 5.10: Modified xconfig

38



Chapter 6

Peripheral Interface
(Introduction)

6.1 Introduction

For integration of custom peripheral or Coprocessor, hardware /software in-
terface is used to enable communication between them. The software runs
on a Leon3 which uses available resources on Processor and AMBA, while
peripheral is linked to Leon3 through Memory Mapped Interface or Co-
Processor Interface which shall be discussed shortly. In the former, local
bus architecture (AMBA) is used for communication, interface and synchro-
nization between Leon3, Peripheral and Shared Memory (if any) [6.1 A
coprocessor interface u. The peripheral or coprocessor module is controlled
with wrapper or interface using specialized software (with access of local
registers on wrapper) on Leon3 [6.2] [31]

6.2 Memory-Mapped Interface

A memory-mapped interface infer memory address (as shared memory) of
Leon3 for interface between peripheral and software. It is generally more
reliable and easy-to-use interface to be used for added hardware or peripheral.
[19] In software, for addressing of shared memory pointers are declared. Its
main advantages are:

e [t is more general and easy-to-use.

e [t’s design cannot be locked to particular processor i.e. it can be used
with any processor that supports AMBA.
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Leon3

Software

Shared Memory

AHB

Coprocessor (AHB

Peripheral)

Hardware

Wrapper

Coprocessor (APB

Peripheral)

Hardware

AHB/
APB
Bridge

Slave

ady

Wrapper E >

Figure 6.1: Memory-Mapped Interface (AHB and APB)

Leon3 Coprocessor
Software
Hardware
Coprocessor ﬂ
Coprocessor | Interface [ ‘
Interface Port | | | | Wrapper
AHB

Figure 6.2: Coprocessor Interface
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Table 6.1: Coprocessor Interface vs Memory-Mapped Interface

Factor Coprocessor Interface Memory-Mapped Interface
Addressing  Processor Specific Bus Address

Connection  Point-to-Point Shared

Latency Fixed Variable

Throughput Higher Lower

e Direct addressing of software to shared memory creates reliable software
design.

6.3 Coprocessor Interface

In cases where high-throughput between the software and the custom hard-
ware is needed, it makes sense to have a dedicated interface between Leon3
and peripheral. As illustrated in Fig Coprocessor Interface uses a dedi-
cated port on the processor which uses special instructions sometimes embed-
ded in the processor pipeline. The coprocessor instruction set is different for
each type of processor, since it depends on the processor. Its main advantages
are:

e [t has higher throughput
e [t has fixed latency

Sadly not all processors have coprocessor interface. As an example, it was
provided with Leon2 documentation but was removed from the Leon3 release,
making the development of coprocessor much more difficult. There are only
a few examples of coprocessor interface cores with Leon3. A classic example
of a coprocessor is a floating-point calculation unit, which is interfaced with
Leon3 Integer Unit pipeline. Brief difference between them is shown in table

Bl



Chapter 7

Memory-Mapped Interface
(AMBA APB)

7.1 Introduction

The Advanced Peripheral Bus (APB) is part of the AMBA hierarchy of buses
and is optimized for minimal power consumption and reduced interface com-
plexity. APB provides a low-power extension to the system bus which builds
on AHB signals directly. [8]

The Advanced High Performance Bus (AHB) is a high speed bus suitable
to connect units with high data rate. But, the problem is that IP Core (or
Co-Processor) will be a Master on AHB bus and could overload the bus and
lower the performance of LEON3. APB is slower than AHB but has following
advantages:

1. Low Complexity
2. Low Power

3. Do not disturb the communication between Leon3 and Memory Con-
troller

7.2 Advanced Peripheral Bus (APB) Architec-
ture

APB bus is interface with AHB by AHB/APB bridge which works as AHB
Slave. The AHB/APB bridge is the only APB master on one specific APB
bus. More than one APB bus can be connected to one AHB bus, by means

42



CHAPTER 7. MEMORY-MAPPED INTERFACE (AMBA APB) 43

AHB MASTER 1 AHB MASTER 2 AHE MASTER 3

F 3 F Y Fy

F Y Fo

AHB SLAVE 2
APB MASTER

h 4 APB BUS

Figure 7.1: AHB and APB Bus Control

Table 7.1: APB Signals

Sr # Name Description
1 PCLK Bus clock
2 PRESETn APB reset
3 PADDRJ31:0] APB Address Bus
4 PSELx APB Select
5  PENABLE APB Strobe
6 PWRITE APB Transfer Function
7  PRDATA [31:0] APB Read Data bus
8  PWDATA [31:0] APB Write Data bus

of multiple AHB/APB bridges. It is shown in figure The access to the
AHB slave input (AHBSI) is decoded and an access is made on APB bus.
The APB master drives a set of signals grouped into a VHDL record called
APBI which is sent to all APB slaves. The combined address decoder and
bus multiplexer controls which slave is currently selected (‘PINDEX’ in case
of APBI). The output record (APBO) of the active APB slave is selected by
the bus multiplexer and forwarded to AHB slave output (AHBSO). [12]

7.3 IP Core (Co-Processor) APB Interface

Signals used APB interface (APBI and APBO) 3] are shown in table
APB interface can be as simple as a register which can be read and written
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AHBI J—
8RB ol g s APBO(1

A A

slave2  |APBOR)

AHB SLAVE
APB MASTER

AHBO

Figure 7.2: AHB to APB Master Slave Interface

through bus transfers on an on-chip bus. The register will be accessed when a
given address address(‘PADDR’), or an address within a given range, appears
on the bus. The memory address, and the related bus command, is analyzed
by an address decoder [31]. APB address bus (‘PADDR’) works as a shared
resource between software and hardware [7.3l

It works in three states which are |3]:

1. IDLE: Default State

2. SETUP: When a transfer is required the bus moves into the SETUP
state, where the appropriate select signal PSELx, where Peripheral or
Co-Processor is chosen, is asserted. It remains in this state for one

clock cycle and move to the ENABLE state on the next rising edge of
the PCLK.

3. ENABLE: In the ENABLE state the enable signal, PENABLE is as-
serted. The address, write and select signals all remain stable during
the transition from the SETUP to ENABLE state. The ENABLE state
also only lasts for a single clock cycle and after this state the bus will
return to the IDLE state if no further transfers are required.

Timing diagram for write transfer is given

Timing diagram for read transfer is given

APB slaves have a simple, yet flexible, interface. It allows interface to be
designed as per IP Core or Co-Processor requirements For a write
transfer the data can be latched at the following points:

e on either rising edge of PCLK, when PSEL is HIGH
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32 32

PWDATA nmmimm— PROATA
32

PADDR + )

PSELECT —— 88 X

rencee—————  APB Slave

Start
PCLK
PRESETn

Figure 7.3: APB Slave

T1 T2 T3 T4 T5

PADDR A‘édd' 1
PWRITE ;
PSEL U._
PENABLE _ . |
PWDATA XX Dla‘a 1 XX

Figure 7.4: APB Data Write
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T T2 T3 T4 T5

PADDR

PWRITE

PSEL

PENABLE

PRDATA

AMBA AHB BUS

—— Leon3 Processor

F

) pata 1

Figure 7.5: APB Data Read

AHB/APB Bridge

AMBA APB BUS

APB Slave (Wrapper)

IP Core (Co-Processor)

Figure 7.6:

APB Slave (Wrapper) and Leon Interface
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Int *MMRegister = (int*) 0x8000000; //Base Address of Co-Processor Wrapper
// write the value ‘0OxFF’ into the register

*MMRegister = OxFF;

// read the register

int value = *MMRegister;

Co-Processor

Leon3 Processor Wrapper

Memory

0x4000000 0x8000000

AMBA APB BUS

Figure 7.7: Software Memory Addressing

e on the rising edge of PENABLE, when PSEL is HIGH.

The select signal PSELx, the address PADDR and the write signal PWRITE
can be combined to determine which register should be updated by the write
operation. For read transfers the data can be driven on to the data bus when
PWRITE is LOW and both PSELx and PENABLE are HIGH while PADDR
is used to determine which register should be read.

7.4 Software Interface

In software, the representation of a register is easy to do using an initialized
pointer. The base address of this pointer is determined by Slave bus index
of the APB Peripheral or Co-Processor. For example, bus index for Slave
(PINDEX=8) will be 0x80000800 with 256-bytes memory. Following diagram
gives us example how to architect software interface code.

7.5 Register Example

The IP core has one memory mapped 32-bit register that will be reset to zero.
The register can be read or written from default PADDR. The core’s bus
index, base address and mask settings are configurable via VHDL generics
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PCLK

PRDATA[31:0]

PRESETn Clock Data Out [31:0] {

PENABLE Reset

Write Enable
PSELECT

PWRITE APB 32 bit Register

Data In [31:0]

PWDATA[31:UI

PADDR[5:2]
[ PADDR [5:2]

Figure 7.8: RTL of APB Register Wrapper

(PINDEX, PADDR, PMASK). The PADDR and PMASK VHDL generics
are propagated to the APB bridge via the APBO.PCONFIG signal and the
index is propagated via the APBO.PINDEX signal. These values are then
used by the APB bridge to generate the APB address decode and slave select
logic [11]. It is shown in Fig [7.§

Synthesized RTL of Register is shown in Fig [7.9

Synthesized RTL of Register Wrapper is shown

Its software interface defined in figure [7.11]can be written as:

For Hardware / Software Verification, we use MKPROM which simulates
testbench in ModelSim and runs compiled programs. It is a utility program
which converts a LEON RAM application image into a bootable ROM image.
The resulting bootable ROM image contains system initialization code, an
application loader and the RAM application itself. [11]

Its main advantage is that we can simulate and verify our IP Core before
implementing it on FPGA. Result of compiled code is shown in figure
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Figure 7.9: 32-bit Register Synthesized RTL

apbi_paddr{3L0

T
L

apbi_pirg(3

Figure 7.10: 32-bit Register Synthesized RTL APB Wrapper
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int *baseaddr p = (int *)

printf("Register Test\n

// Write multiplier inputs
* (baseaddr_p+ =
printf("Wrote: 0x%08x

//*(baseaddr_p+1) = 0x00067

printf ("

printf ("W
printf ("v
printf ("W
printf ("7
printf ("7

to register 0

", *(baseaddr p+0)):;

611;

v

printf("End of test\n\n\r");

Figure 7.11: Register Test Program

*(baseaddr p+0));
*(baseaddr p+1));

(baseaddr_p+2));

*(baseaddr p+2)):;

(baseaddr_p+4));
(baseaddr p+9));

#
#
=
=
=
=
#
#
#
#
#
#
#
=
=
=
=
#
#
#
#
#
#
#
=
=

Figure 7.12: Test Verification

Wrote:

Wrote:

Wrote:

Wrote:

Wrote:

Wrote:

Wrote:

Register Test

0x00020003

0x00020003

0x00000000

0x80000808

0x00000000

0x80000810

0x80000820

End of test
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Chapter 8

Multiplier and its APB
Integration

8.1 Introduction

Multiplier is the main arithmetic unit of a processor. When we form the
product A * B, the first operand (A) is called the multiplicand, and the second
operand (B) is called the multiplier. As illustrated here, binary multiplication
requires only shifting and adding. In the following example, we multiply 13
(1101 - 4 bit) by 11 (1011 — 4 bit) to give output of 143 (10001111 — 8 bit).

8.2 Shift and Add Multiplier

Shift-and-Add Multiplier forms the simplest multiplier (paper and pencil
multiplication) to multiply two numbers. This method adds the multiplicand
A to itself B times, where B denotes the multiplier. To multiply two numbers
by paper and pencil, the algorithm is to take the digits of the multiplier one
at a time from right to left, multiplying the multiplicand by a single digit
of the multiplier and placing the intermediate product in the appropriate
positions to the left of the earlier results.

Considering figure [8.2] partial product is either the multiplicand (1101)
shifted over by the appropriate number of places or zero. Instead of forming
all the partial products first and then adding, each new partial product is
added in as soon as it is formed, which eliminates the need for adding more
than two binary numbers at a time. |21]

Multiplication of two 4-bit numbers requires a 4-bit multiplicand register,
a 4-bit multiplier register, a 4-bit full adder, and an 8-bit register for the

o1
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Multiplicand ——— 1 1 0 1 (13)
Mutliplier =1 0 1 1 (11)
»1 101
1101
Partial | — 1 0 111
[ T— 0
111

0

products | « — =0 0 0
\ 100

1101

10001

Figure 8.1: General Paper and Pencil Multiplication

11 1 (143)

Product
AL
7 AcC N
Load | £} T &l 51 4 S Y R S
c |Sh | i i i i | i
i £ A— Lo I
. f LT
Clk . /
t Y
. Multiplier
Cm  4-Bit adder
o |Done
————
1 I’
[T 17
et
A /
M M
Multiplicand

Figure 8.2: 4 by 4 multiplication with accumulator

product. The product register serves as an accumulator to accumulate the
sum of the partial products.

This type of multiplier is sometimes referred to as a serial-parallel multiplier,
since the multiplier bits are processed serially, but the addition takes place
in parallel. As indicated by the arrows on the diagram, 4 bits from the
accumulator (ACC) and 4 bits from the multiplicand register are connected
to the adder inputs. The 4 sum bits and the carry output from the adder are
connected back to the accumulator. When an add signal (Ad) occurs, the
adder outputs are transferred to the accumulator by the next clock pulse,
thus causing the multiplicand to be added to the accumulator. An extra bit
at the left end of the product register temporarily stores any carry that is
generated when the multiplicand is added to the accumulator. When a shift
signal (Sh) occurs, all 9 bits of ACC are shifted right by the next clock pulse.



CHAPTER 8. MULTIPLIER AND ITS APB INTEGRATION 53

initial contents of product register 00000101 14— A (11)
(add multiplicand since M=1) 1101] (13)
after addition 011011011

after shift 0011011101 =4—M
(add multiplicand since M= 1) 1101 |

after addition 100111101

after shift 0100111j10%— M
(skip addition since M= 0) L

after shift 0010011110
(add multiplicand since M= 1) 1101 '

after addition 100011111

after shift (final answer) 010001111 (143)

dividing line between product and multiplier

Figure 8.3: Shift and Add Multiplication Example

B.3l

8.3 System Design and Behavioral Model with
N Parametrization

Multiplier System is composed of:
1. Adder
2. Accumulator
3. Register
4. Controller

The original algorithm shifts the multiplicand left with zeros inserted in the
new positions, so the least significant bits of the product cannot change af-
ter they are formed. Instead of shifting the multiplicand left, we can shift
the product to the right. Therefore, the multiplicand is fixed relative to the
product, and since we are adding only 4 bits, the adder needs to be only 4
bits wide. Only the left half of the 8-bit product register is changed during
the addition.

Another observation is that the product register has an empty space with
the size equal to that of the multiplier. As the empty space in the product
register disappears, so do the bits of the multiplier. In consequence, the final
version of the multiplier circuit combines the Accumulator with the multi-
plier. Since, n = 4, a 2-bit counter is needed to count the four shifts, and K
= 1 when the counter is in state 3 (112). Figure 5 shows the operation of
the multiplier when 1101 is multiplied by 1011. S0, S1, S2, and S3 represent,



CHAPTER 8. MULTIPLIER AND ITS APB INTEGRATION o4

Multiplicand Multiplier

LoadM —— o
multiplicand (M) Start Clock
adder (ADR) Qo |controller (C)

I’ Done
LoadA
ShiftA accumulator (A)|——| multiplier (Q) [~ LoadQ
ClearA l——ShiftQ

]
Product Controller outputs in red

Figure 8.4: System Level Design

states of the control circuit.

At time t0, the control is reset and waiting for a start signal. At time t1,
the start signal St is 1, and a Load signal is generated. At time t2, M = 1,
so an Ad signal is generated. When the next clock occurs, the output of the
adder is loaded into the accumulator and the control goes to S2. At t3, Shift
signal is generated, so at the next clock shifting occurs and the counter is
incremented. At t4, M= 1, so Adder = 1, and the adder output is loaded
into the accumulator at the next clock. At t5 and t6, shifting and counting
occur. At t7, three shifts have occurred and the counter state is 11, so K =
1. Since M = 1, addition occurs and control goes to S2. At t8, Sh = K =
1, so at the next clock the final shift occurs and the counter is incremented
back to state 00.

At t9, a Done signal is generated. The multiplier design given here can eas-
ily be expanded to 8, 16, or more bits simply by increasing the register size
and the number of bits in the counter. The add shift control would remain
unchanged.

We start with 8-bit (N) Multiplier which takes 8-bit (N) Multiplier and Mul-
tiplicand. Start signal starts the counter (multiplication process) and done
signal is generated when multiplication is finished with 16-bit (2N) Product.
Top level RTL design on which we design and simulate this multiplier is

shown in Fig
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Time State Counter Product Register St M K | Load Ad Sh Done
t, Sy 0o 000000000 0 0 0 0 0 0 0
t, S, 00 000000000 1T 0 0 1 0 0 0
t, 5 00 000001011 o 1 0 0 1 0 0
t, S, 00 0110110M o 1 0 0 0 1 0
t, s, 01 001101101 o 1 0 0 1 0 0
t, S, 01 100111101 o 1 0 0 0 1 0
t, s, 10 010011110 0 0 0 0 0 1 0
t; 5, 11 001001111 0 1 1 0 1 0 0
t, S, 1 100011111 o 1 1 0 0 1 0
t, S, 00 010001111 o 1 0 0 0 0 1

Figure 8.5: Operation using States Counter

MultTop

y
MultTop

Figure 8.6: Top Level Design (RTL)



CHAPTER 8. MULTIPLIER AND ITS APB INTEGRATION 56

Figure 8.7: Synthesized Model (Xilinx)

8.4 Synthesis and Simulation in Xilinx

Multiplier core is written in VHDL, compiled and simulated in both Xilinx
ISE and ModelSim. Top Level RTL in Xilinx ISE after synthesis for N=8 is
shown in Fig [B.7 Since, the multiplier needs to be parametrized for N=4,
8, 16 and 32, a generic parameter was introduced. For N=8, the simulation
results are shown as in Fig

Here, Multiplier is 255 (11111111) and multiplicand is 127 (01111111) to
produce 16-bits result 32385 (111111010000001). Delay calculated between
Start and Done pulse with 10 ns clock is 500 ns. It is then tested for different
number of bits and output delay (time it takes for Start = ‘1’ to Done = ‘17)
is recorded in following table

8.5 APB Integration

APB Integration of Multiplier is inspired from OpenCores’ Theora Hardware
APB Integration in Fig [8.9] [8]
The APB is part of the AMBA hierarchy of buses and is optimized for mini-
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11111111
» W bl:0 01111110 01111111
» B pl15:0

Lge st

J—f done_loop

J—f clock

le n 1000
e clock_period] 20000 p: 20000 ps

Figure 8.8: Simulation of 8-bit Multiplier

Table 8.1: 4,8,16 and 32-bit Multiplier Variables and Their Latency

N bits  Multiplier Multiplicand Product Delay (ns)
4 4 F 3C 260
8 FF 7F 7E81 500
16 03E8 2710 989680 760

32 00002714  000186A1 000000003BA10B94 780

mal power consumption and reduced interface complexity. The AMBA APB
appears as a local secondary bus that is encapsulated as a single AHB slave
device. APB provides a low-power extension to the system bus which builds
on AHB signals directly.

In order to fit communication protocol of AMBA APB, a wrapper for pe-
ripheral (APB Integration) is designed for N-bit Multiplier. APB takes two
buses name APBI and APBO, Clock and Reset. [3] APBI and APBO are
further distributed into different signals and vectors. Except the wrapping
function, it also contains the configuration register. It is ‘packaged’ and re-
used as a component in wrapper. Brief diagram of how APB Peripheral will
communicate with Leon3 System-on-Chip is shown in Fig

8.6 Multiplier APB Integration

To include the IP Core (N bit Multiplier or ‘mult’) in Leon3, we need to copy
it to known library (opencores in this case) and modify ‘dir.txt’ in Fig

In ‘mult’ folder, we include its basic core files, APB interface and package.
They are then synthesized accordingly in ‘vhdlsyn.txt’. ‘mult.vhd’ includes
the package for interface ‘mult _amba_interface’ shown in Fig[8.12]

Finally, we include it in ‘devices.vhd’ in AMBA Core. For its instantiation
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Figure 8.9: APB Integration (Theora Hardware)

Mult (APB Package)

Multiplier APB Interface

APBI

\ 4

Clk

\ 4

RST

A 4

%
=}
@
o
o
<
<
I
=
<

APBO

Figure 8.10: Multiplier Integration on AMBA APB Bus

Ql dirs.txt - Notepad

File Edit Format View Help
|can i2c ge_1@000baseX mult

Figure 8.11: mult dir

o8
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mult.vhd
mult_amba_interface.vhd
Components.vhd
Mul_Top.vhd
Multiplier_Controller.vhd
Nbit_Adder.vhd
Nbit_Register.vhd|

Figure 8.12: vhdlsyn.txt

multiplierl : mult amba interface —-— NBitCSMultiplier
generic map (pindex => o, paddr => ¢, pmask => ) —-
port map (rst => rstn, clk => clkm, apbi => apbi, apbo => apbo(Z)):;

Figure 8.13: Multiplier Component Leon3 Top

in Top Module, we include it in ‘leon3mp.vhd’ as shown in Fig [8.13]

APB slave vector given for ‘pindex’, ‘paddr’ and ‘apbo’ is unique for every
peripheral associated. Here, value is 8 which gives us the starting address
for this peripheral as 0x80000800.

As a start, we used 16-bit multiplier core as a base line to design multiplier
interface. Top module of multiplier takes 16 bits of both multiplier and multi-
plicand. This value is given by 32-bit input bus ‘pwdata’. Multiplier outputs
32-bit Product which is given by 32-bit output bus ‘prdata’. Problem arises
for control logic signals such as ‘Start’ and ‘Done’. We need proper address-
ing (paddr) to integrate it with software. Integration system was designed
initially for 16-bit system which can also be used for 8 and 4 bits with minor
changes. Tt is given in Fig

However, for N=32 (32-bit Multiplier and Multiplicand), situation is differ-
ent. PWDATA (32-bit bus) takes either Multiplier or Multiplicand at a time.
Also, Product is 64-bit while PRDATA is 32 causing splitting of Product and
introduction of bit decoder before output at PRDATA as in Fig

8.7 Software Integration

Addressing protocol for communication between APB Interface and Soft-
ware is a bit tricky process. We know base pointer for Multiplier Peripheral
is 0x80000800. [§] [20] Taking in view PADDR in Interface module, we define
variables as [R16k

Pointer at 0x80000800 is 32-bit Integer which takes 16-bit multiplier and
multiplicand concatenated together. Software takes a while till Done is ‘1’
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Multiplier APB Interface

PWDATA
. Register Register PRDATA
N - 2N i (31:0)
b—(310) ) Multiplier Product 31:0)
PINDEX WE .
Multiplicand Done
[3“ L L | Multiplier i
PENABLE J Start p
PADDR Start
(5:2)
Clk
PCLK
PRESET
Figure 8.14: Multiplier APB Interface
Multiplier APB Interface
PWDATA Register PRDATA
JUEES Vo) | Register . " . 310
(310) el Multiplier Product e r—
PINDEX WE 32
Multiplicand Done —
Ldj 4 Itipl -
- Multiplier
PENABLE J Sta P
PADDR Start
(52)
Clk

Figure 8.16: Address Pointer Declaration for Variables

Figure 8.15: 32-bit Multiplier APB Interface

0x80000800

0x80000804

0x80000808

*Done

*Product

*Multiplier / *Multiplicand

60
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Table 8.2: Pointer Variables for Multiplier in C

PADDR(5:2) Pointer Addr Variable Name

0 0x80000800  Done
1 0x80000804 Multiplier / Multiplicand
10 0x80000808  Product

0x80000800 *Done

0x80000804 *Multiplier

0x80000808 *Multiplicand

0x8000080C *Productl

0x80000810 *Product2

Figure 8.17: Address Pointer Declaration for Variables (32-bit)

to get product value in 32-bit. Link between PADDR and pointer values can
be easily shown in table (which can be extended for N—=4 and N=8 as
well).

Again, for 32-bit Multiplier, system is different. We have to create sepa-
rate variables for multiplier and multiplicand. Also, product is 64-bit which
needs to be declared as two integers concatenated or double (in embedded
c)

Pointer at 0x80000800 is 32-bit multiplier. 0x80000804 takes 32-bit multipli-
cand. Software takes a while till Done is ‘1’ to get product value in two 32

bit integers. Link between PADDR and pointer values can be easily shown
in table [8.3
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Table 8.3: Pointer Variables for Multiplier in C (32-bit)

PADDR(5:2) Pointer Addr Variable Name

0 0x80000800 Done
1 0x80000804 Multiplier
10 0x80000808 Multiplicand
11 0x8000080C  Productl
100 0x80000810 Product2
#include <stdio.h>
main()
R
int *Done = (int #*)
int *Data = (int *)
int *Product = (int *)
printf("Multiplier Test\n\xr");
* (Data) =

while (Done)

EI
printf("Done: 0x%08xz \n\r", *(Done)):;
printf(ﬂE::i;::: 0x%08x \n\r", *(Product)):
break;
-}
printf("End of test\n"):

Figure 8.18: Example C Compiler Code of 16-bit

8.8 Hardware / Software Verification:

Taking in view variables declared in tables above, we create C file which is
compiled for SPARC V8 Processor (Leon3). As an example multiplier code
for 16-bit is shown in Fig [8.1§

For Hardware / Software Verification, we use MKPROM which simulates
testbench in ModelSim and runs compiled programs. It is a utility program
which converts a LEON RAM application image into a bootable ROM image.
The resulting bootable ROM image contains system initialization code, an
application loader and the RAM application itself. [11]

[ts main advantage is that we can simulate and verify our IP Core before
implementing it on FPGA. Result of compiled code is shown in figure [8.19
Red mark shows that Multiplier is ported at Slave 8 of APB Bus with starting
address of 0x80000800. Yellow mark shows test results of multiplier: 03ES8
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# LEON3 MP Demonstration design

# GRLIB Version 1.5.0, build 4164

# Target technology: inferred , memory Tibrary: inferred

# ahbctrl: AHB arbiter/multiplexer rev 1

# ahbctr1: Common I/O area disabled

# ahbctrl: AHB master 2, AHB slaves: 8

# ahbctrl: configurati area at Oxfffff000, 4 kbyte

# ahbctr1: mst0: Cobham Gaisler LEON3 SPARC V8 Processor

# ahbctrl: mstl: Cobham Gaisler AHB Debug UART

# ahbctrl1: s1v0: European Space Agency LEON2 Memory Controller

# ahbctrl: memory at 0x00000000, size 512 Mbyte, cacheable, prefetch
# ahbectrl: memory at 0x20000000, size 512 Mbyte

# ahbctrl: memory at 0x40000000, size 1024 Mbyte, cacheable, prefetch
# ahbctrl: slvl: Cobham Gaisler AHB/APB Bridge

# ahbctrl: memory at 0x80000000, size 1 Mbyte

# apbctr1: APB Bridge at 0x80000000 rev 1

# apbctrl: s1v0: European Space Agency LEON2 Memory Controller

# apbctrl: I/0 ports at Ox80000000, size 256 byte

# apbctrl: slvl: Cobham Gaisler Generic UART

# apbctrl: I/0 ports at 0x80000100, size 256 byte

# apbctrl: slv2: Cobham Gaisler Multi-processor Interrupt Ctrl.
# apbectrl: I/0 ports at 0x80000200, size 256 byte

# apbctrl: slv3: Cobham Gaisler Modular Timer Unit

# apbctrl: I/0 ports at 0x80000300, size 256 byte

# apbctrl: slv7: Cobham Gaisler AHB Debug UART
# apbctrl: I/0 ports at Ox80000700, size 256 byte
apbctri: slv8: Opencores N Bit Multiplier

+ apbctrl: I/0 ports at Ox80000800, size 256 byte

¢ ApUC LT T T S TVILT ConiTam GaisTer GEMerd’ PUTPOSE L/0 port

# apbctrl: I/0 ports at 0x80000b00, size 256 byte

# MULTIPLIER VO8: APB MULTIPLIER SLAVE module rev 0

# grgpioll: 8-bit GPIO Unit rev 3

# gptimer3: Timer Unit rev 1, 8-bit scaler, 2 32-bit timers, irq 8

# irgmp: Multi-processor Interrupt Controller rev 4, #cpu 1, eirq O

# apbuartl: Generic UART rev 1, fifo 4, irq 2, scaler bits 12

# ahbuart7: AHB Debug UART rev O

# leon3_0: LEON3 SPARC V8 processor rev 3: ijuft: 0, fpft: 0, cacheft: 0O
cop3 0: 1 he 1#4 kbvte. dcache 1% ,te

moving .text from 0x00001620 to 0x40000000

moving .data from 0x0000c760 to 0x4000b140

Multiplier Test

Done: 0x00000000

¢ Product: 0x00989680

Figure 8.19: Compiler Code Verification 16-bit

multiplierl : mult amba interface u
generic map (N => o, pindex => ¢, paddr => ¢, pmask => ) —
port map (rst => rstn, clk => clkm, apbi => apbi, apbo => apbo (%)) ;

Figure 8.20: N bit in Leon3 Top

and multiplicand: 2710. Similarly, we can create separate compiler codes for
4, 8 and 32-bits.

8.9 N bit Parametrization for APB Interface

For each N value, we had to create separate Interface file for a given IP Core.
To parameterize N value, we had to create introduce N generic value for
interface file, APB Package and Leon3 Top Module. Example for latter is

shown in Fig

8.10 GUI Control

Each design has a simple graphical configuration interface that can be started
by issuing ‘make xconfig’ in the template design directory. The tool presents
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= Components.vhd

=~ Mul_Top.vhd
| multin

| multin.h

| multin.help

w mult.in.vhd
= mult.vhd
wm - mult_amba_interface.vhd
=~ Multiplier_Controller.vhd
m Nbit_ Adder.vhd
= Nbit_Register.vhd

= vhdlsyn.txt

Figure 8.21: in files in Multiplier Core

—-- GPIO port
constant CFG_GRGPIO_ENABLE : integer := 1;
constant CFG GRGPIO IMASK : integer :=
constant CFG _GRGPIO WIDTH : integer := (2);
-- N Bit Multiplier
constant CFG MULT N : integer := (lL¢);
—- GRLIB debugging
constant CFG_DUART : integer 1= ;

Figure 8.22: mult.in.vhd and mult.in.h

the user with configuration options and generates the file ‘config.vhd’ that
contains configuration constants used in the design. [12]

Each core has a set of files that are used to generate the core’s xconfig menu
entries. The xconfig files are typically located in the same directory as the
Multiplier HDL files in [8.21} ‘mult.in’ file defines the menu structure and
options for the Multiplier core. ‘mult.in.help’ gives help function defined in
GUI Menu. The two remaining files ‘mult.in.h’ and ‘mult.in.vhd’ are used
when generating the ‘config.vhd’ file for a design which typically consists of
a set of lines for each core where the first line decides if the core should be in-
stantiated in the design and the following lines contain configuration options.
In GUI Sub Menu Entries, we add variables to ‘config.vhd’ defined in ‘mul.in.vhd’
and ‘mult.in.h’ as in Fig

And also ‘config.in’ as in Fig

These are then regenerate GUI to show added features and variables, we
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mainmenu option next comment
comment 'N Bit Multiplier'

source lib/opencores/mult/mult.in

endmenu

Figure 8.23: GUI Control config.in

Synthesis Debug Link Save and Exit
Clock generation Peripherals Quit Without Saving
Processor 'VHDL Debugging Load Configuration from File
AMBA configuration Store Configuration to File
Penpherals
Memary contrallers i
On-chip RAM/ROM
Ethemet
CAN
FCI
Spacewire
UARTs, timers and ing contral
| N Bit Multiplier ‘ |
Main Menu | Next | Prev
ench.vhd
X N Bit Mult.. X
N Bit Multipher
| 19 | N Bit Multiplier | Help |E
7]
ok ‘ Next ‘ Pre

Figure 8.24: Multiplier Configuration in xconfig
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defined for Multiplier. Here, we can change its N value from GUI Control
without changing HDL files for Multiplier Core and Interface as in Fig



Chapter 9

Memory-Mapped Interface
(AMBA AHB)

9.1 Introduction

The Advanced High-Performance Bus (AHB) is part of the AMBA hierarchy
of buses and is intended for high performance designs with multiple bus mas-
ters and high bandwidth operations. [26] AHB-Lite implements the features
required for high-performance, high clock frequency systems including:

1. burst transfers

split transactions

single-cycle bus master handover
single-clock edge operation

non-tristate implementation

wider data bus configurations (64/128,/256/512/1024 bits).

A

9.2 Advanced High-Performance Bus (AHB)

The most common AHB devices (or cores) are internal memory devices,
external memory interfaces, and high bandwidth peripherals (AHB/APB
Bridge).

Although low-bandwidth peripherals can be included as AHB interface cores,
for better performance and less complexity, they are interface to AMBA
Advanced Peripheral Bus (APB). [4]

AHB System can be broken down to:

66



CHAPTER 9. MEMORY-MAPPED INTERFACE (AMBA AHB) 67

e HAD DR[3 1:0]mep-

Transfer —HREADY—» ——HWRITE—»
response HRESP—» e H S| Z [ 2 ()]

AHB.Lite —HBURST[2:0]—p Address
- and control
Global /7 ——HRESETn——>»  master [——=HPROT[3:0]=p
signals HCLK—» s HTRANS [1:0 ]
—HMASTLOCK—»
Data  ===HRDATA[31:0]=p pmHWDATA[31:0]=p Data

Figure 9.1: AHB Master

1. AHB Master
2. AHB Slave
3. AHB Decoder

4. AHB Multiplexor

9.2.1 AHB Master

It provides address and control information to initiate read and write oper-
ations. In our case, it Leon3 Processor and Memory Management Unit

9.2.2 AHB Slave

It processes and responds to the signals initiated by the master. It is nor-
mally the IP Core interface with Master (Leon3) to get desired results. It
uses ‘HSELx’ signal from decoder to control its response to bus transfer.
AHB interface can be as simple as a register which can be read and writ-
ten through bus transfers on an on-chip bus. The register will be accessed
when a given address address decoder (‘HADDR’), or an address within a
given range, appears on the bus. The memory address, and the related bus
command, is analyzed by an address decoder. It works as a shared resource
between software and hardware

9.2.3 AHB Decoder

This component decodes the address of each transfer and provides a
select signal for the slave that is involved in the transfer. It also provides the
control signal to the multiplexor.
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Select

Address
and control

Data

Global
signals

Address

HSELX—»

e HADDR[31: 0]
— HWRITE—»|
—HSIZE[2:0]=—p-
——HBURS T[2:0]—p
——HPROT[3:0]—p|
= HTRANS[1:0]==ps|
—HMASTLOCK—»|

\_——HREADY—»|
m—HWDATA[31:0] =

——HRESETn—»
HCLK——»|

AHB-Lite
slave

—HREADYOUT—» Transfer
HRESP——» response

r=—=HRDATA[31:0] =p Data

Figure 9.2: AHB Slave

AHB
decoder

HSELx1
HSELx2 Select

HSELx3 )

Figure 9.3: AHB Decoder
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Table 9.1: AHB Signals

Sr # Name Description
1 HCLK Bus clock
2 HRESETn AHB reset
3  HADDR [31:0] AHB Address Bus
4  HSELx AHB Select
5 HREADY AHB Strobe
6 HWRITE AHB Write Enable
7 HSIZE [2:0] Size of Transfer
8  HBURST [1:0]  Burst Type
9  HPROT [3:0] Protection Control

10 HTRANS [1:0]  Indicates transfer type

11 HMASTLOCK  Signal is Locked or Not

12 HRDATA [31:0] AHB Read Data bus

13 HWDATA [31:0] AHB Write Data bus

14 HRESP Transfer Acknowledgement

9.2.4 AHB Multiplexor

A slave-to-master multiplexor is required to read data bus and respond to
each slave data and signals.

9.3 Co-Processor AHB Slave Interface

Following table [9.1] shows the signals used AHB Slave interface (AHBSI and
AHBSO) [4].

9.3.1 AHB Slave Data Transfer with enhanced features

AHB Data Transfer works like APB bus for read and write with a few modi-
fications and enhancements. Simplest write transfer data with no wait states
are shown in Fig[0.4] [4].

Read transfer is shown in Fig [9.5

Simple write transfer in AHB Slave (wrapper for an IP Core) is enabled
when ‘HSELX’ and ‘HWRITE’ are high. It causes slave to write the data
from ‘HWDATA’ to its internal memory address location given by the mas-
ter or decoder at ‘HADDR’. Once the data is written, then it issues the
‘HREADY” and ‘HRESP’ for acknowledgment of data. In read operation, it
will fetch the data from its internal memory for the given address location
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4+———Address phase——»<+——Data phase———»

HewX | |
HADDR31:0] | ) A X B 0
HWRITE | |} If o
HRDATAB1:0] | )Y Y paaa) Y
HREADY |/ Y L

Figure 9.4: AHB Data Write

+———Address phase——»<———Data phase———»

Wew 1

HADDR[31:0] | [} A (X B 0
HWRITE | ff )\ (4
HWDATAB1:0] | ) K Data (A) 0C
HREADY | V L

Figure 9.5: AHB Data Read

in ‘HADDR’ and is given out through ‘HRDATA’ signal
Other enhancements include:

e Transfer Types HTRANS [1:0]: IDLE, BUSY, NONSEQ, SEQ
Master Transfer Lock: HMASTLOCK

Transfer Size HSIZE [2:0]: 8,16, 32, 64, 128, 256, 512, 1024

Burst Operation

Waited Transfers and Acknowledgement

9.4 Software Interface

In software, the representation of a register is easy to do using an initialized
pointer. The base address of this pointer is determined by Slave bus index of
the AHB Peripheral or Co-Processor. For example, bus index for Slave (HIN-
DEX=8) will be 0xFF000000 with 1-Mbytes memory and Address (HADDR)
at 16FF0. Following diagram gives us example how to architect software
interface code:
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AMBA AHB BUS

— Leon3 Processor

AHB Slave (Wrapper)

IP Core (Co-Processor)

1

Figure 9.6: AHB Slave and Leon Interface
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Int *MMRegister = (int*) OxFFO0000; //Base Address of Co-Processor Wrapper
// write the value '0xFF’ into the register

*MMRegister = OxFF;

// read the register

int value = *MMRegister;

Co-Processor
Leon3 Processor

Wrapper
PROM
Memory
0x4000000 OxFFO0000

AMBA APB BUS

Figure 9.7: Software Memory Interfacing

9.5 Register Example

The IP core has one memory mapped 32-bit register that will be reset to zero.
The register can be read or written from default HADDR. The core’s bus
index, base address and mask settings are configurable via VHDL generics
(HINDEX, HADDR, HMASK). The HADDR and HMASK VHDL generics
are propagated via the AHBSO.HCONFIG signal and the index is propagated
via the AHBSO.HINDEX signal. These values are then used by the AHB
bridge to generate the AHB address decode and slave select logic [12]. Its
RTL view as well as synthesized model is similar to APB Slave RTL in
section 7.5.

Its software interface code is written as same model as APB Interface in Fig
reffig: AHB _Software.

For Hardware / Software Verification we use MKPROM in similar pattern
to test and verify this model. In Fig we can see that 1 Mbyte Memory is
initialized as AHB Slave 8 (HINDEX=8). After initialization, our example
code is run to verify our IP Core, Interface and Software.
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int *baseaddr p = (int ¥) ;

printf (" ter Test ")

// Write multiplier inputs to register 0

* (baseaddr_p+0) = :

printf ("Wrote: 0x%08x \n\r", *(baseaddr p+0));

//*(ba

611;

ddr p+1) =

printf ( %5 * (baseaddr _p+0));
printf( ", *(baseaddr p+l));
printf( ", (baseaddr p+2)):
printf (" ", *(baseaddr _p+2));
printf (" ", (baseaddr p+4)):
printf (" ", (baseaddr p+%)):

printf ("End of testi\n\n\r");

Figure 9.8: Register Test Program

# LEON3 MP Demonstration design
# GRLIB Version 1.5.0, build 4164
f : inferred , memory library: inferred
: AHB arbiter/multiplexer rev 1
: Common I/0O area disabled
: AHB masters: 2, AHB slaves: 12
: Configuration area at Oxfffff000, 4 kbyte
: mst0: Cobham Gaisler LEON3 SPARC V8 Processor
: mstl: Cobham Gaisler AHB Debug UART
: sTv0: European Space Agency LEON2 Memory Controller
memory at Ox00000000, size 512 Mbyte, cacheable, prefetch
memory at Ox20000000, size 512 Mbyte
memory at 0x40000000, size 1024 Mbyte, cacheable, prefetch
: slvl: Cobham Gaisler AHB/APB Bridge
memory at 0x80000000, size 1 Mbvte
/ : s1v8: OpenCores AHB Register
¢ ahbctrl: memory at Oxff000000, size 1 Mbyte
# apbctrl: APB Bridge at 0x80000000 rev 1
# apbctrl: s1v0: European Space Agency LEONZ Memory Controller
# apbctrl: I/0 ports at Ox80000000, size 256 byte
# apbctrl: slvl: Cobham Gaisler Generic UART
# apbctrl: I/0 ports at 0x80000100, size 256 byte
# apbctrl: s1v2: Cobham Gaisler Multi-processor Interrupt Ctrl.
# apbctrl: I/0 ports at 0x80000200, size 256 byte
# apbctrl: slv3: cobham Gaisler Modular Timer Unit
# apbctrl: I/0 ports at Ox80000300, size 256 byte
# apbctrl: s1v7: Cobham Gaisler AHB Debug UART
# apbctrl: I/0 ports at 0x80000700, size 256 byte
# apbctrl: s1vll: Cobham Gaisler General Purpose I/O port
# apbctrl: I/0 ports at Ox80000b00, size 256 byte
# grgpioll: 8-bit GPIO Unit rev 3
# gptimer Timer Unit rev 1, 8-bit scaler, 2 32-bit timers, 1irq 8
# irgmp: Multi-processor Interrupt Controller rev 4, #cpu 1, eirg 0
# apbuartl: Generic UART rev 1, fifo 4, 1irqg 2, scaler bits 12
# ahb_register8: Example core rev 0
# ahbuart7: AHB Debug UART rev 0
# leon3_0: LEON3 SPARC V8 processor rev 3: juft: 0, fpft: 0, cacheft: 0
¢ leon3_0: +icache 1*4 kbyte, dcache 1%4 kbyte

Figure 9.9: Register initialization in Leon
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@ Register Test

; wrote: 0x00020003

; Wrote: 0x00020003
: 0x00020003
. OxFF000008
. 0x00020003

; wrote: OxFf000010

¢ wWrote: Oxff000020

# End of test

Figure 9.10: Test Verification
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AES-128 AHB Interface

10.1 Introduction

The Advanced Encryption Standard (AES) specifies a FIPS- approved cryp-
tographic algorithm that can be used to protect electronic data. AES-128
pipelined cipher core which is downloaded as open source project from Open-
Cores, uses AES algorithm which is a symmetric block cipher to encrypt
(encipher) information. Here the AES algorithm is capable of using crypto-
graphic keys of 128-bit to do this conversion. It takes 128-bit Unciphered
data and Key Data (symmetric block cipher) and outputs 128-bit ciphered
data. This core is designed in Verilog and needs to be packaged in VHDL to
interface it with AMBA bus and Leon Processor. [29]

10.2 AES-128 Synthesis and Simulation

Before interfacing the core with AHB and Leon Processor, we synthesize it in
Xilinx and simulate it in Modelsim with given testbench with 284 input and
output vectors for verification. Once 'Data Out Valid’ is high, it outs 128-bit
ciphertext every clock cycle which means its throughput is 1 clock cycle and
latency of 42 clock cycles. Its synthesized top module can be shown as in Fig
101

Similarly its simulation is shown as in Fig [10.2]

10.3 AHB Integration

In order to fit communication protocol of AMBA AHB, a wrapper for pe-
ripheral is designed for AES-128. APB takes two buses name AHBSI and
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Top_PipelinedCipher

A y
Top_PipelinedCipher

Figure 10.1: AES Top Module

| soooooooooooc

Figure 10.2: AES-128 Simulation in ModelSim
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AHB I'O address offset Register

0x00 Control Register

0x10 Data Input 0 Register
0x14 Data Input 1 Register
0x18 Data Input 2 Register
0x1C Data Input 3 Register
0x20 Data Output 0 Register
0x24 Data Qutput 1 Register
0x28 Data Output 2 Register
0x2C Data Output 3 Register
0x3C Debug Register

Figure 10.3: GRAES Registers

AHBSO, Clock and Reset. AHBST and AHBSO are further distributed into
different signals and vectors. Except the wrapping function, it also contains
the configuration register. Since, the core is written in Verilog, it has to be
‘packaged’ in VHDL and re-used as a component in wrapper (AES AMBA
Interface). Its communication with Leon3 Master using AHB bus is similar
to AHB Register interface shown in Fig [9.6]

AHB slave signals given for ‘HINDEX’, ‘HADDR’ and ‘AHBSO’ is unique for
every peripheral associated. We take HINDEX=8 and HADDR=16FF0 in
similar fashion as in 32-bit Register example [9] Here, the problem arises for
bus width. AHB Read and Write both take 32-bit data while AES-128 works
on 128-bit data for both input and output. Thus, a system needs to designed
i.e. taking four 32-bit data wires to be concatenated to 128-bit Key and
Data registers at input and split from 128-bit Read Data register at output
of Wrapper designed. to find a solution we moved to GRAES, an encryption
standard commercial IP Core designed by Gaisler (they also designed Leon3
Processor) [16]. Luckily, their signals and register configuration was available
as shown in Fig

Also, for integration of other signals used by the core such as 'Key Valid’,
'Data_Valid” and 'Data_Out_ Valid’, we designed hardware interface with
proper addressing with HADDR taking 4-bits multiplexor selection. Data
path RTL for AES Wrapper is shown in Fig

The synthesized model for AES AMBA Interface in Xilinx can be shown in

Fig [10.5
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32
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32
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AES-128
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Figure 10.4: AES Wrapper (Interface) RTL

aes_amba_interface

Figure 10.5: AES AHB Interface Synthesized Model
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Table 10.1: AES-128 Registers with Pointer Addressing

HADDR REG (INT*) Signal (Variable)

0000 00 Option (Key/Data)
0001 04 Start Operation
0010 08 Valid Data Out
0100 10 Write Register 0
0101 14 Write Register 1
0110 18 Write Register 2
0111 1C Write Register 3
1000 20 Read Register 0
1001 24 Read Register 1
1010 28 Read Register 2
1011 2C Read Register 3

10.4 Software Integration

In software, the representation of a 128-register is used using 32-bit (Integer)
pointer. The base address of this pointer is determined by Slave bus index of
the AES Wrapper i.e. bus index for Slave (HINDEX=8) will be 0xFF000000
with 1-Mbytes memory and Address (HADDR) at 16FF0. Using GRAES
Register example we architect pointer declaration for addressing as shown in
Table We use 4 32-bit Write and Read Registers. For Key and Plain
Text values, HADDR(6:2) is decoded at 0000 as '0’ and ’1’ respectively.
To interface software variables with pointer addressing decoded in HADDR,
we need to coincide Reg(int*) in table with 32-bit integer pointers de-
clared in software code in C. The declared variables to be used in C code are
shown in Fig .

10.5 Verification

For Hardware / Software Verification we use MKPROM in similar pattern
to test and verify this model. In Fig we can see that 1 Mbyte Memory
is initialized as AHB Slave 8 (HINDEX=S8).

Key data which is 128-bit is broken down into 4 32-bits as follows:

e Register 0 : [00000000|
e Register 1 : [00000000|

e Register 2 : [00000000]
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0xFFO00000 *Option
0xFFO00004 *Start
0xFFO00008 *aes done
OXFF000010 *Dataln0

0xFFO00014 *Datalnl

0xFFO00018 *Dataln2

0xFF00001C *Dataln3

0xFFO00020 *DataOut0

0xFF000024 *DataOutl

0xFFO00028 *DataOut2

0xFF00002C *DataOut3

Figure 10.6: AES Pointer Variables in C

Figure 10.7: AES Pointer Variables in C
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# moving .text from 0x00001620 to 0x40000000
# moving .data from 0x0000c8e0 to 0x4000b2cO
# AES128 Test

#

; Read Cipher Text

i Read Register 0: 0x0336763e
i Read Register 1: 0x966d9259
E Read Register 2: 0x5a567cc9

# Read Register 3: Oxce537fSe
#

# End of test
i

Figure 10.8: AES Pointer Variables in C

e Register 3 : |00000000|
Similarly, for Plain Text data (Data In) is shown as:
e Register 0 : [f34481ec|
e Register 1 : [3cc627bal
e Register 2 : [cd5de3fb]
e Register 3 : [08f273¢6]

The Cipher Text (Data Out) is verified with 4 32-bit Registers as shown in
Fig [10.8,
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Conclusion and Future Work

In this thesis a simple guidelines and workflow to infer the required procedure
for the integration of peripheral or coprocessor with complicated architecture
of Leon3 processor using AMBA bus architecture in Memory-Mapped inter-
face. Coprocessor interface can also be used but as told earlier it is not
included in Leon3 documentation nor it is recommended by Gaisler. The
proposed approach shows that bus architecture plays an important role in
integration. Although Memory-Mapped interface has drawbacks of variable
latency and throughput, its easy-to-use configuration and interface makes it
a valuable tool in time-constraint implementation environment.

11.1 Integration Examples

Apart from arithmetic cores, latest in on-chip coprocessor integration is large
graphic-processors being attached with general-purpose processors to form
Accelerated Processing Unit (APU) microprocessors which are being used by
AMD [35]. The Arm Machine Learning processor is another example of con-
figuraing GPPs and embedding hardware acclerators to optimize processor
for machine learning and data science tasks which has higher performance
and low power consumption [2].

11.2 Future Work

Similarly, in future it may be desired in the case of AES cipher and decipher,
if embedded with processor, in our case, entangled in pipeline of Leon3 to
create custom instruction set that is automatically encrypted or decrypted
per instruction so that we no longer Coprocessor for AES.
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