
A 32-Bit Parameterized Leon-3
Processor with Custom Peripheral

Integration

By
Talal Khaliq
00000118396

Supervisor
Dr. Awais M. Kamboh

Department of Electrical Engineering

A thesis submitted in partial ful�llment of the requirements for the degree
of Masters of Science in Electrical Engineering (MS EE)-7

In
School of Electrical Engineering and Computer Science,
National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(November 2018)

Approval

It is certi�ed that the contents and form of the thesis entitled �A 32-Bit Pa-
rameterized Leon-3 Processor with Custom Peripheral Integration"
submitted by Talal Khaliq have been found satisfactory for the requirement
of the degree.

Advisor: Dr. Awais M. Kamboh
Signature:

Date:

Committee Member 1: Dr. Khawar Khurshid

Signature:
Date:

Committee Member 2: Dr. Ahmad Salman

Signature:
Date:

Committee Member 3: Dr. Salman Abdul Ghafoor

Signature:
Date:

i

Abstract

The main purpose of this thesis is to integrate custom cores as peripher-
als as Co-Processors (CPs) to a processor. For this purpose, a 32-bit open
source processor was be tested on an FPGA. For proof of concept, a sim-
ple open source 8-bit processor was selected to run on FPGA using custom
instructions written in C. Thereafter, we tried to change speci�cations and
peripherals of the peripherals like timers, UART, SPI etc. For 32-bit pro-
cessor, starting with an open source processor design for Leon 3, the study
involved synthesis of code, compilation of program, and test of pre-con�gured
peripherals on an FPGA. Once a decent level of understanding was achieved,
a new peripheral was integrated into the processor to enhance the processor's
capabilities, and to adapt them for better performance in a given domain of
applications. Using study of processor architecture of Leon 3, we tried to de-
sign our own processor with peripherals, memory management module and
custom compiler.

ii

Dedication

I dedicate this thesis to parents, wife and daughter.

iii

Certi�cate of Originality

I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, nor material which to a substantial extent has been accepted for the
award of any degree or diploma at NUST SEECS or at any other educational
institute, except where due acknowledgement has been made in the thesis.
Any contribution made to the research by others, with whom I have worked
at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product
of my own work, except for the assistance from others in the project's de-
sign and conception or in style, presentation and linguistics which has been
acknowledged.

Author Name: Talal Khaliq
Signature:

iv

Acknowledgment

I would like to thank my advisor and colleagues for their constant support
in and research phase.

v

Table of Contents

1 Introduction 1
1.1 Background and Motivation 1
1.2 Problem Statement . 1
1.3 Proposed Approach . 2

2 Literature Review 3
2.1 Introduction . 3
2.2 Instruction Set and RISC . 3
2.3 Peripheral Integration to Processor 4

3 8-bit Processor (8051 Microcontroller) 5
3.1 Introduction . 5
3.2 Oregano Systems mc8051 . 5
3.3 Tools Required for Synthesis and Simulation 6
3.4 mc8051 Top Module (Synthesis) 8
3.5 Work on Keil C51 (Microcontoller) 11
3.6 Conversion from HEX to COE 11
3.7 Synthesis and Implementation on FPGA 12
3.8 Simulation . 15
3.9 Con�guration of mc8051 for extra peripherals 15

4 Leon3 Introduction 18
4.1 Introduction . 18
4.2 Evaluation of Processors(SoC) 18
4.3 Evaluation of Bus Architectures 19
4.4 SPARC Version 8 ISA . 20
4.5 Leon3 Introduction and Pipeline 20
4.6 AMBA Bus Architecture . 24
4.7 Example Template Design . 24

4.7.1 Library (Source Code) and Toolchain 25
4.7.2 Example Template Con�guration and Implementation . 26

vi

TABLE OF CONTENTS vii

4.7.3 Con�guration for Minimal, General Purpose and High
Performance Processor 28

4.8 Software Development (BCC) 29
4.8.1 Software Development (GRMON Debugger) 30
4.8.2 Software Development (PROM Programmer) 30
4.8.3 Software Development (TSIM Simulator) 32

5 Leon3 Extension and Customization 33
5.1 Introduction . 33
5.2 Library Structure . 33
5.3 Understanding and Working of AMBA Bus 35
5.4 VHDL Generics and Link with Top Module 35
5.5 xcon�g extension . 36

6 Peripheral Interface (Introduction) 39
6.1 Introduction . 39
6.2 Memory-Mapped Interface . 39
6.3 Coprocessor Interface . 41

7 Memory-Mapped Interface (AMBA APB) 42
7.1 Introduction . 42
7.2 Advanced Peripheral Bus (APB) Architecture 42
7.3 IP Core (Co-Processor) APB Interface 43
7.4 Software Interface . 47
7.5 Register Example . 47

8 Multiplier and its APB Integration 51
8.1 Introduction . 51
8.2 Shift and Add Multiplier . 51
8.3 System Design and Behavioral Model with N Parametrization 53
8.4 Synthesis and Simulation in Xilinx 56
8.5 APB Integration . 56
8.6 Multiplier APB Integration 57
8.7 Software Integration . 59
8.8 Hardware / Software Veri�cation: 62
8.9 N bit Parametrization for APB Interface 63
8.10 GUI Control . 63

9 Memory-Mapped Interface (AMBA AHB) 66
9.1 Introduction . 66
9.2 Advanced High-Performance Bus (AHB) 66

TABLE OF CONTENTS viii

9.2.1 AHB Master . 67
9.2.2 AHB Slave . 67
9.2.3 AHB Decoder . 67
9.2.4 AHB Multiplexor . 69

9.3 Co-Processor AHB Slave Interface 69
9.3.1 AHB Slave Data Transfer with enhanced features . . . 69

9.4 Software Interface . 70
9.5 Register Example . 72

10 AES-128 AHB Interface 75
10.1 Introduction . 75
10.2 AES-128 Synthesis and Simulation 75
10.3 AHB Integration . 75
10.4 Software Integration . 79
10.5 Veri�cation . 79

11 Conclusion and Future Work 82
11.1 Integration Examples . 82
11.2 Future Work . 82

List of Figures

2.1 von Neumann Architecture . 4
2.2 Harvard Architecture . 4

3.1 Oregano 8051 Core Top . 7
3.2 Target 8051 Microcontroller in Keil c51 8
3.3 RAM Con�guration in Xilinx 9
3.4 ROM Con�guration in Xilinx 10
3.5 XRAM Con�guration in Xilinx 10
3.6 8051 Top Module (Plan Ahead Pre-Synthesis) 11
3.7 BLINKY.c in Keil c51 IDE . 12
3.8 HEX to COE Conversion in Command Prompt 13
3.9 COE �le load in Xilinx Generated ROM Core 13
3.10 8051 Core RTL Schematic in Xilinx 14
3.11 Comparison on di�erent design strategies 14
3.12 Fibonacci Code simulation on 8051 Core 15
3.13 REG51 Special Function Registers 16
3.14 Default I/Os:74 and C_IMPL_N_TMR=1 17
3.15 Default I/Os:82 and C_IMPL_N_TMR=2 17

4.1 Leon3 Integer Unit . 22
4.2 Leon3 7 Stage Pipeline . 23
4.3 AMBA Shared Single Bus . 24
4.4 Leon 3 in Spartan 3E Template 25
4.5 Xilinx Vertex-5 ML507 . 27
4.6 Export Display to XWin Server 27
4.7 Leon3 Design Con�guration GUI(xcon�g) 28
4.8 Processor Comparison on Area Utilized and Timing 29
4.9 PROM hello.exe loaded and run 31
4.10 TSIM running hello.exe on Leon3 environment 32

5.1 Library showing scripts for di�erent vendors 34

ix

LIST OF FIGURES x

5.2 Library showing scripts for di�erent �les in AMBA folder . . . 34
5.3 New �les in AMBA folder . 35
5.4 Generation of components in Top Module 36
5.5 apb_example.in �les . 36
5.6 apb_example.in . 36
5.7 apb_example.in.help . 37
5.8 apb_example.in.h . 38
5.9 apb_example.in included in con�g.in (Folder:ML50x) 38
5.10 Modi�ed xcon�g . 38

6.1 Memory-Mapped Interface (AHB and APB) 40
6.2 Coprocessor Interface . 40

7.1 AHB and APB Bus Control 43
7.2 AHB to APB Master Slave Interface 44
7.3 APB Slave . 45
7.4 APB Data Write . 45
7.5 APB Data Read . 46
7.6 APB Slave (Wrapper) and Leon Interface 46
7.7 Software Memory Addressing 47
7.8 RTL of APB Register Wrapper 48
7.9 32-bit Register Synthesized RTL 49
7.10 32-bit Register Synthesized RTL APB Wrapper 49
7.11 Register Test Program . 50
7.12 Test Veri�cation . 50

8.1 General Paper and Pencil Multiplication 52
8.2 4 by 4 multiplication with accumulator 52
8.3 Shift and Add Multiplication Example 53
8.4 System Level Design . 54
8.5 Operation using States Counter 55
8.6 Top Level Design (RTL) . 55
8.7 Synthesized Model (Xilinx) . 56
8.8 Simulation of 8-bit Multiplier 57
8.9 APB Integration (Theora Hardware) 58
8.10 Multiplier Integration on AMBA APB Bus 58
8.11 mult dir . 58
8.12 vhdlsyn.txt . 59
8.13 Multiplier Component Leon3 Top 59
8.14 Multiplier APB Interface . 60
8.15 32-bit Multiplier APB Interface 60

LIST OF FIGURES xi

8.16 Address Pointer Declaration for Variables 60
8.17 Address Pointer Declaration for Variables (32-bit) 61
8.18 Example C Compiler Code of 16-bit 62
8.19 Compiler Code Veri�cation 16-bit 63
8.20 N bit in Leon3 Top . 63
8.21 in �les in Multiplier Core . 64
8.22 mult.in.vhd and mult.in.h . 64
8.23 GUI Control con�g.in . 65
8.24 Multiplier Con�guration in xcon�g 65

9.1 AHB Master . 67
9.2 AHB Slave . 68
9.3 AHB Decoder . 68
9.4 AHB Data Write . 70
9.5 AHB Data Read . 70
9.6 AHB Slave and Leon Interface 71
9.7 Software Memory Interfacing 72
9.8 Register Test Program . 73
9.9 Register initialization in Leon 73
9.10 Test Veri�cation . 74

10.1 AES Top Module . 76
10.2 AES-128 Simulation in ModelSim 76
10.3 GRAES Registers . 77
10.4 AES Wrapper (Interface) RTL 78
10.5 AES AHB Interface Synthesized Model 78
10.6 AES Pointer Variables in C 80
10.7 AES Pointer Variables in C 80
10.8 AES Pointer Variables in C 81

List of Tables

3.1 Description of Variables of 8051 Core 7

4.1 Comparison of Di�erent 32-bit RISC Processors 19
4.2 Evaluation of Bus Architectures 19
4.3 Con�guration of MP, GPP and HPP Processors 29

6.1 Coprocessor Interface vs Memory-Mapped Interface 41

7.1 APB Signals . 43

8.1 4,8,16 and 32-bit Multiplier Variables and Their Latency . . . 57
8.2 Pointer Variables for Multiplier in C 61
8.3 Pointer Variables for Multiplier in C (32-bit) 62

9.1 AHB Signals . 69

10.1 AES-128 Registers with Pointer Addressing 79

xii

Chapter 1

Introduction

1.1 Background and Motivation

Since the introduction of System-on-Chips (SoCs) architecture separate chips
for High Performance Hardware Accelerators were integrated into a single
chip. Their ability to integrate multiple coporocessors and processor cores
on a single with low power consumption and high performance made them
an integral part of everyday electronics. Coprocessor integration is done us-
ing Memory-Mapped Interface or Coprocessor Interface. Usually, former is
preferred for better maintainability and plug-and-play con�guration.
General purpose processors are designed for general purpose tasks with se-
quential logic but there are certain scenarios where this may not su�ce. [6]
For this purpose, specialized hardware or coprocessor is designed to handle
these tasks e�ciently. For example, modern processors use �oating-point
unit as a coprocessor to handle �oating point operations e�ciently where
Leon3 FPU is a prime example.

1.2 Problem Statement

Coprocessor designs normally concentrate on being used as a single indepen-
dent unit rather than its interface with processors or bus architectures. [37].
Nowadays many powerful public domain IP cores are available for compli-
cated component like 32 bit processor i.e. LEON3. It needs some exper-
tise, work and experimentation to implement a hardware/software co-design
project. We take an e�ort to present step-by-step description for implement-
ing desired coprocessor or peripheral on LEON3 processor.

1

CHAPTER 1. INTRODUCTION 2

1.3 Proposed Approach

The main purpose of this thesis is to develop and extend simple RISC (Re-
duced Instruction Set Computer) based GPP (General Purpose Processor).
In this academic project, a simple 32-bit RISC processor will be designed
and tested on an FPGA. For proof of concept, a simple open source 8-bit
processor will be selected to run on FPGA using custom instructions written
in C. Thereafter, we shall try to change speci�cations and peripherals of the
timer like timers, UART, SPI etc.
For 32-bit processor, starting with an open source processor design for Leon
3, the study will involve synthesis of code, compilation of program, and test of
pre-con�gured peripherals on an FPGA. Once a decent level of understand-
ing has been achieved, a new peripheral will be integrated into the processor
to enhance the processor's capabilities, and to adapt them for better perfor-
mance in a given domain of applications.
For integration Memory-Mapped Integration will be used as it preferred way
of integration since the introduction of AMBA Bus Architecture. Also, Co-
processor Integration will be studied so that proper distinction can be drawn
between two types of techniques. For this purpose, we need benchmark tools
to draw the di�erence.

Chapter 2

Literature Review

2.1 Introduction

A processor is a device capable of manipulating information in a way speci-
�ed by sequence of instructions. This sequence of instructions (constituting
an instruction set) may be altered to suit the application. A sequence of
instructions is a machine controlled program. Each type of processor has a
di�erent instruction set meaning functionality of instructions varies. [38]

2.2 Instruction Set and RISC

Instruction set is processor's vocabulary for understanding instructions. Com-
plex programs are broken down into instructions and again encoded in 1s and
0s (machine language) by the compiler. Processors read and execute these
instructions [5]. There are two major approaches in instruction set architec-
ture:

• Complex Instruction Set Architecture (CISC)

• Reduced Instruction Set Architecture (RISC)

CISC Architecture include processors like Intel x86, Motorola 68 series and
National Semiconductor 32 series. RISC processors include Sun's SPARC,
ARM, Microchip PIC and Atmel's AVR. Computer architecture types are
devided into von Neumann and Harvard architecure. In von Neumann Ar-
chitecure, memory (may be internal or external) of a processor contains in-
structions (with program counter) to be executed and data on which instruc-
tions are executed. Instructions are fetched (read) from the memory while
data is both read and written to memory. von Neumann Architecture used

3

CHAPTER 2. LITERATURE REVIEW 4

Figure 2.1: von Neumann Architecture

Figure 2.2: Harvard Architecture

by most CISC processors. 2.1
On the other side, in Harvard Architecture, instructions and data have di�er-
ent memory spaces with separate address, data and control buses. Separate
memory spaces causes instructions and data fetch be executed independently.
In our current study, we will stick with RISC Processor conforming Harvard
Architecture. 2.2

2.3 Peripheral Integration to Processor

Coprocessors are being increasingly used for their higher throughput as com-
pared to software based solutions. Their introduction is to add speci�c en-
hancements for variety of applications to General-Purpose Processors (GPPs).
They are designed for specialized and resource intensive applications such
as encryption/decryption [9], object tracking, complex signal processing,
�oating-point operations (Leon3 FPU), audio/video processing [24], CORDIC
processor [34] etc. In SoCs, power consumption is lower as compared to sep-
arate chip for Coprocessors. For this, system-on-chips are designed with
required coprocessors for recon�guration to save power and bus architecture
memory.

Chapter 3

8-bit Processor (8051
Microcontroller)

3.1 Introduction

For understanding of how a processor works and how it can be synthesized
into FPGA, we chose open source that was compatible to Intel 8051 archi-
tecture [39]. There are many open source and commercial IP Core avail-
able. Open source 8051 IP Cores include Oregano Systems mc8051 [32],
OpenCores' T51 and 8051 [36] while commercial IP Cores include Evatronix
R8051XC2, e8051 and Digital Core Design DP8051CPU.
Of all the above mentioned 8051 cores, R8051XC2 is claimed to be fastest
and fully-con�gurable 8051 achieving speed of 350 MHz. However, its code
was not open source and meant for commercial purposes. For education,
cores from Open Cores and Oregano Systems were to be used. Cores from
Open Cores had one disadvantage that they were not easy to synthesize and
documentation provided was not helpful. Thus, core for 8051 Microcontroller
written in VHDL from Oregano Systems was chosen.

3.2 Oregano Systems mc8051

Its main features due to which it was chosen are as under:

• Open source VHDL code

• Instruction set compatible to 8051 microcontroller (Intel Architecture)

• Technology Independent (FPGA and ASIC)

5

CHAPTER 3. 8-BIT PROCESSOR (8051 MICROCONTROLLER) 6

• Extra Timer/counter and serial interface with addition of special func-
tion registers

• Parameterizeable via VHDL constants

• 256 bytes internal RAM

• 64 Kbytes ROM

• 64 Kbytes External RAM

• Its target IP Core was available in ARM Keil compiler for software
programming

Its core can divided into:

1. Control Unit

2. ALU

3. Timer / Counter (Parameterizable)

4. Serial Interface (Parameterizable)

Control Unit is further divided into memory controller and Finite State Ma-
chine (FSM). Note that core does not contain any memory unit such as RAM
or ROM to store instructions. This will be done during creation of top mod-
ule in synthesis and simulation using selected target technology. Its list of
variables is shown in Table 3.1 and Top Module 3.1. [33]

3.3 Tools Required for Synthesis and Simula-

tion

1. For synthesis and simulation Xilinx ISE 14.5 was installed in Window
10 x64 bit computer and was con�gured for x64 XST Simulator (nt64).

2. For compilation of C Program for 8051, Keil c51 was installed which
has built in target speci�cation for Oregano 8051 Core 3.2. Here, after
building C �le (for example, BLINKY.c or Fibonacci.c), corresponding
.hex �le was created.

3. Hex to Bin converter

4. Bin to COE Converter (we will discuss it later on their purposes)

CHAPTER 3. 8-BIT PROCESSOR (8051 MICROCONTROLLER) 7

Table 3.1: Description of Variables of 8051 Core

Signal Name Description
clk System Clock
reset Asynchronous reset for all Flip Flops
all_tx0_i Timer 0 interrupt
all_tx1_i Timer 1 interrupt
all_rxd_i Receive data input for serial interface units
int0_i Interrupt 0 input
int1_i Interrupt 1 input
p0_i Port 0 Input
p1_i Port 1 Input
p2_i Port 2 Input
p3_i Port 3 Input
all_rxdwr_0 Data direction signal for bidirectional RXD input / output
all_txd_o Transmit Data output for serial interface
all_rxd_o Receive data output mode 0 operation for serial interface
p0_o Port 0 output
p1_o Port 1 output
p2_o Port 2 output
p3_o Port 3 output

Figure 3.1: Oregano 8051 Core Top

CHAPTER 3. 8-BIT PROCESSOR (8051 MICROCONTROLLER) 8

Figure 3.2: Target 8051 Microcontroller in Keil c51

3.4 mc8051 Top Module (Synthesis)

Two projects for 8051 were created in Xilinx ISE for synthesis and simula-
tion. Spartan 3E (XC3S500E) was chosen for both simulation and synthesis.
However, due to low IOBs (about 200 percent) in Spartan 3E during synthe-
sis, we had to chose Vertex 5 (XC5VFX70T) Evaluation Board to work on.
Top module for 8051 was written in VHDL, which used components of 8051
Core as well as memories such as 128 x 8 RAM 3.3, 64k x 8 ROM 3.4 and
64k x 8 External RAM 3.5. Memories were created from Core Generator in
Xilinx ISE. Con�guration for 128 x 8 bit RAM is as follows:

• Single Port RAM

• Minimum Area

• Read / Write Width: 8

• Write / Read Depth: 128

• Enable (ENA) Pin

• Write First

• Reset (RSTA)

Con�guration for ROM is as follows:

CHAPTER 3. 8-BIT PROCESSOR (8051 MICROCONTROLLER) 9

Figure 3.3: RAM Con�guration in Xilinx

• Single Port ROM

• Minimum Area

• Read Width: 8

• Read Depth: 65536

• Always Enabled

• Load Init File (COE File)

• Use Reset (RSTA) pin

Con�guration for XRAM (External RAM) is as follows:

• Single Port RAM

• Minimum Area

• Write / Read Width: 8

• Write / Read Depth: 65536

• Write First

• Always Enabled

CHAPTER 3. 8-BIT PROCESSOR (8051 MICROCONTROLLER) 10

Figure 3.4: ROM Con�guration in Xilinx

Figure 3.5: XRAM Con�guration in Xilinx

CHAPTER 3. 8-BIT PROCESSOR (8051 MICROCONTROLLER) 11

Figure 3.6: 8051 Top Module (Plan Ahead Pre-Synthesis)

• Use Reset (RSTA) Pin

Also, Phase Locked Loop (PLL) from Xilinx Core Generator was used to
downgrade the speed from FPGA system clock of 100 MHz to desired fre-
quency (11.675, 25 or 40 MHz). Its component was also called in top module.
Architecture of Top Module generated from Plan Ahead (Pre-Synthesis) is
shown in Figure 3.6. We can see Control Unit,ALU, Timer/Counter and
Serial Interface in the system.

3.5 Work on Keil C51 (Microcontoller)

For 8051 Core to work on FPGA, we had to create HEX �le from C �le
written for Oregano mc8051. It should be noted before compilation, the
frequency of target core should be same as in PLL. The code used was for
BLINKY 3.7, an example from Keil C51 after installation. After successful
compilation and build, HEX �le was created.

3.6 Conversion from HEX to COE

Normally, HEX �le created is loaded into microcontroller ROM as instruc-
tions to execute a particular function. On FPGA, however, ROM created
from Xilinx Core does not use HEX �le. It rather loads Coe�cient (COE)
File. To convert HEX to COE �le, there are some open source tools available
but most are not compatible with 64 bit Windows. [10] [25] For this purpose,

CHAPTER 3. 8-BIT PROCESSOR (8051 MICROCONTROLLER) 12

Figure 3.7: BLINKY.c in Keil c51 IDE

an alternative set to tools (Hex2bin and bin2COE) were introduced which
convert HEX to bin �le and then, bin to COE. These tools used and their
working in Command Prompt are shown in Fig 3.8.
The resulting COE File is referenced by ROM Core before Core Synthesis
3.9. These are instructions for FPGA to perform once it is programmed into
FPGA.

3.7 Synthesis and Implementation on FPGA

Before implementation, User Constraints (UCF) �le was created in project.
On board clock for FPGA is 100 MHz. Program loaded from HEX �le run-
ning on default 12 MHz clock. Change in clock domains caused wrong results
in LEDs shown as P0 of 8051 Core.
To deal with this problem, a PLL Core was introduced in between FPGA
Clock and 8051 Core Clock. The resultant clock was matched for PLL and
HEX �le at: 11.675 MHz. Synthesized core is shown Fig 3.10. Once all prob-
lems were catered, programming �le was generated and loaded into FPGA
and was working smoothly. We tried with di�erent clock speeds to check
Timing and Power Utilization of Synthesis Process. 40MHz was highest
clock speed possible achieved by 8051 Core. Comparison for 25 MHz and 40
MHz using di�erent design strategies is given in Fig 3.11.

CHAPTER 3. 8-BIT PROCESSOR (8051 MICROCONTROLLER) 13

Figure 3.8: HEX to COE Conversion in Command Prompt

Figure 3.9: COE �le load in Xilinx Generated ROM Core

CHAPTER 3. 8-BIT PROCESSOR (8051 MICROCONTROLLER) 14

Figure 3.10: 8051 Core RTL Schematic in Xilinx

Figure 3.11: Comparison on di�erent design strategies

CHAPTER 3. 8-BIT PROCESSOR (8051 MICROCONTROLLER) 15

Figure 3.12: Fibonacci Code simulation on 8051 Core

3.8 Simulation

A local testbench was created for Fibonacci.c �le which was loaded into a
ROM similar to synthesis process. It was then simulated using Xilinx ISim.
The output integer values were used in Port 0 (p0_o) 3.12.

3.9 Con�guration of mc8051 for extra periph-

erals

The original microcontroller design o�ered only 2 timers, one serial and 2
external interrupt units. These can be changed in VHDL Core using some
constants to increase or decrease the said peripherals. However, to decode
registers of added peripherals (if any) without changing the address space of
8051 only two 8 bit registers are inferred as additional special function reg-
isters (SFRs). [33] These are TSEL (address 0x8Eh for timer/counter units)
and SSEL (address 0x9Ah for serial interface units). If these registers point
to a non existent device number, the default unit number 1 is selected. Ef-
forts were made to be able to infer SFRs in Keil. REG51.H is referenced by
C File in Keil. SFRs inferred is shown below:
As an example, 25 MHz synthesizable core was chosen. In this core, �le
named mc8051_p.vhd there is parameter named 'C_IMPL_N_TMR'. It
can take values from 1 to 256. Its default value to set to 1. We changed its
value to 2 which generated 2 extra timer units, 1 additional serial port and 1
additional external interrupt sources. Initial and custom (C_IMPL_N_TMR

CHAPTER 3. 8-BIT PROCESSOR (8051 MICROCONTROLLER) 16

Figure 3.13: REG51 Special Function Registers

= 2 has 82 I/Os) peripheral diagram (pre-synthesized) is shown in Fig 3.14
and Fig 3.15 respectively:

CHAPTER 3. 8-BIT PROCESSOR (8051 MICROCONTROLLER) 17

Figure 3.14: Default I/Os:74 and C_IMPL_N_TMR=1

Figure 3.15: Default I/Os:82 and C_IMPL_N_TMR=2

Chapter 4

Leon3 Introduction

4.1 Introduction

The complexity of designing processors has increased overtime. Designing
each and every hardware component of the system from scratch soon be-
came impractical and expensive for most designers. Therefore, the idea of
using pre-designed and pre-tested IP Cores in designs became an attractive
alternative. Softcore processors are processors whose architecture and behav-
ior are fully described using synthesizable Hardware Desciption Languages
(HDL) like Verilog or VHDL. They can be easily synthesized to FPGA or
ASIC. [22]Use of these processors has advantages like:

• Customizable

• Technology Independent

• Easily understandable

We will look for di�erent open source and commercial IP Cores like in 8051
to come up with the best one for 32-bit RISC Processor which can be easily
customized to our needs.

4.2 Evaluation of Processors(SoC)

There are many 32-bit processors available such as Altera Nios II, Xilinx
MicroBlaze, Tensilica Xtensa, OpenCores OpenRISC 1200 and Gaisler Leon
3. Overall comparison has been drawn between them in Table 4.1. [23] [30]
From above table 4.1, we can easily access that each processor has its ad-
vantages and disadvantages. Xtensa o�ers unlimited ISA customization but

18

CHAPTER 4. LEON3 INTRODUCTION 19

Table 4.1: Comparison of Di�erent 32-bit RISC Processors

Category Nios II MicroBlaze Xtensa Leon3
Max Frequency (MHz) 200 (FPGA) 200 (FPGA) 350 (ASIC) 400 (ASIC)
Cache Upto 64 KB Upto 64 KB Upto 32 KB Upto 256 KB
Pipeline Stages 6 3 5 7
Custom Instructions Upto 256 None Unlimited None
Implementation FPGA FPGA FPGA, ASIC FPGA, ASIC
Open Source No No No Yes

Table 4.2: Evaluation of Bus Architectures

Feature WishBone AMBA Avalon CoreConnect
Open Architecture Yes Yes Partial Yes
Hierarchical No Yes No Yes
Pipelined No Yes Yes Yes
Arbitration Yes Yes Yes No
Data Transfer Hand Shaking Yes Yes No Yes
Data Transfer Pipelined No Yes Yes Yes
Split Transfer N/A Yes No Yes
Clocking Yes Yes Yes Yes
Frequency User De�ned User De�ned User De�ned User De�ned

it is also not open source and expensive. Similarly, OpenRISC has open
source code but di�cult to use to use with given technology. Leon 3, despite
its ISA customization it excels all other departments. However, there are
other problems to be explored also like bus architecture, software tools and
compliant ISA.

4.3 Evaluation of Bus Architectures

There are namely four di�erent bus architectures:

1. WishBone (OpenCores)

2. AMBA (ARM)

3. Avalon (Altera)

4. CoreConnect (IBM)

Their comparison is drawn below:

CHAPTER 4. LEON3 INTRODUCTION 20

From here also, we can see that AMBA from ARM has quite a lot of advan-
tages 4.2. However, WishBone has an edge of being adopted as primary bus
for most open source designs. AMBA is the bus architecture used by Leon
3. We will check more details about it afterwards.

4.4 SPARC Version 8 ISA

If you choose a custom ISA, we have to create everything yourself:

• the chip architecture

• compiler

• OS and Appication Programmable Interfaces(APIs)

• cross-compilation

SPARC is an instruction set architecture (ISA), derived from a RISC lin-
eage. As an architecture, SPARC allows for a spectrum of chip and system
implemenetations at a variety of price/performance points for a range of
applications, including scienti�c/engineering, programming, real-time, and
commercial. SPARC was designed as a target for optimizing compilers and
easily pipelined hardware implementations. SPARC implementations pro-
vide exceptionally high execution rates and short time-to-market develop-
ment schedules. Its advantages are: [18]

• Open architecture without patent or license fees unlike Intel, MIPS and
ARM

• Well designed

• Well documented

• Easy to implement

• Established software standard

4.5 Leon3 Introduction and Pipeline

The LEON3 is a synthesizable VHDL model of a 32-bit processor compliant
with the SPARC v8 architecture. The model is highly con�gurable, and
particularly suitable for system-on-a-chip (SOC) designs. The full source
code is available, allowing free and unlimited use for research and education.
The LEON3 processor has the following features: [15]

CHAPTER 4. LEON3 INTRODUCTION 21

• Compliant with SPARC V8 ISA

• 7-stage Pipeline

• Hardware Multiply, Divide and MAC units

• Floating Point Unit (FPU)

• Harvard Architecture (Separate Instruction and Data Cache)

• AMBA 2.0 AHB Bus Interface

• On-Chip Debug Support

• Multiprocessor Support

• Power Down and Clock Gating

• Fault tolerant version available for High Performance space applications

• Extensively con�gurable

• Tools available like simulators, compilers, debuggers and kernels

Leon 3 consists of following subsystems: [12]

1. Integer Unit (based on 7-Stage Pipeline Harvard Architecture) 4.1

2. Cache (Data and Instruction)

3. Floating Point Unit Coprocessor

4. Hardware Multiplier and Divider

5. Memory Management Unit

6. Debug Support Unit

7. Interrupt Controller

Integer Unit which is based on Harvard Architecture, implements the full
SPARC V8 standard, including hardware multiply and divide instructions.
The implementation is focused on high performance and low complexity.
Register windows are set to 8 as default but are con�gurable as per SPARC
standard (2-32). Integer Unit pipeline consists 7-stages which separate exe-
cution of data and instruction cache interface. Its 7-stage pipeline is shown
in Fig 4.2. These can be summarized as:

CHAPTER 4. LEON3 INTRODUCTION 22

Figure 4.1: Leon3 Integer Unit

• FE (Instruction Fetch): If the instruction cache is enabled, the in-
struction is fetched from the instruction cache. Otherwise, the fetch
is forwarded to the memory controller. The instruction is valid at the
end of this stage and is latched inside the IU (Integer Unit).

• DE (Decode): The instruction is decoded and the CALL and Branch
target addresses are generated.

• RA (Register access): Operands are read from the register �le or from
internal data bypasses.

• EX (Execute): ALU (Arithmetic Logic Unit), logical, and shift op-
erations are performed. For memory operations (e.g. LD) and for
JMPL/RETT, the address is generated.

• ME (Memory): Data cache is accessed. Store data read out in the
execution stage is written to the data cache at this time.

• XC (Exception) Traps and interrupts are resolved. For cache reads,
the data is aligned as appropriate.

• WR (Write): The result of any ALU, logical, shift, or cache operations
are written back to the register �le.

CHAPTER 4. LEON3 INTRODUCTION 23

Figure 4.2: Leon3 7 Stage Pipeline

CHAPTER 4. LEON3 INTRODUCTION 24

Figure 4.3: AMBA Shared Single Bus

4.6 AMBA Bus Architecture

Bus architecture is based on Advanced Microcontroller Bus Architecture
(AMBA) introduced by ARM for RISC based processors. Its speci�cation
is used in the design of high performance processor SoC architectures. The
typical AMBA bus system is shown in the �gure 4.3, here there are two bus
systems, one requiring high performance for the high speed components like,
the internal memory, Direct Memory Access (DMA) and processor. On the
other hand, peripherals, coprocessors or cores that do not need such high
bandwidth are connected through to the low power bus via High-to-Low per-
formance bridge. The former is called AHB (Advanced High Performance
Bus) while latter is called APB (Advanced Peripheral Bus). They are dis-
cussed in detail in Chapters 7 9.

4.7 Example Template Design

Leon3 SoC architecture is based on AMBA Advanced High-Speed bus (AHB)
as its bus architecture. All the components, memory and coprocessors includ-
ing Leon3 is conncted to this bus. External memory is accessed through a
combined PROM/IO/SRAM/SDRAM memory controller. Default template
design of SoC includes peripherals like Ethernet, Serial and JTAG debug
interface, UART, Interrupt Controller, CAN 2.0 and General Purpose I/O
Ports. The design is be highly con�gurable as desired by use. Leon3 SoC is
shown in Fig 4.4. [12]

CHAPTER 4. LEON3 INTRODUCTION 25

Figure 4.4: Leon 3 in Spartan 3E Template

4.7.1 Library (Source Code) and Toolchain

The complete design environment for LEON3 including all the IP cores can
be downloaded from its website. Leon 3 design is integrated with template
designs and other IP Cores in a single library �le known as GRLIB. It is
distributed as a zipped �le and can be installed in any location on the host
system. This library includes:

1. Make Files and script generators for shell commands (like bash or Cyg-
win)

2. Target FPGA Board designs from di�erent companies like Altera, Xil-
inx etc

3. IP Cores including Leon 3

4. Example software �les

5. FPGA and ASIC Technologies

6. Example template designs for Con�guration and Synthesis

After installation of library, toolchain is required to use Leon 3. It is com-
patible in both Windows and Linux. However, Windows is preferred due to
ease in installation. [22] It includes:

• Bare-C Compiler (BCC)

CHAPTER 4. LEON3 INTRODUCTION 26

• Boot-Prom Builder (mkprom2)

• RTEMS Leon Cross Compiler (RTEMS)

• GRMON Debug Tool (GRMON2 Evaluation version)

• TSIM Simulator (Evaluation Version)

In windows environment, these tools are installed through a single installer
�le known as GRTOOLS where in Linux every �le has to be installed sepa-
rately. Also, during installation, environment variables in windows are set au-
tomatically. For Bare-C Compiler [13], Eclipse Kepler version 1.6 is installed
during installation. Besides ease at installation, we preferred Windows be-
cause tools for Synthesis and Simulation (Xilinx and ModelSim) were already
installed and their environment variables were set. For Linux, all these tools
had to be installed from scratch.
However, for shell commands, Cygwin for windows was installed [17]. It em-
ulates Linux Terminal in Windows. Cygwin has a major disadvantage that
it is unable to launch ModelSim GUI. Also, it should be note to simulate the
design using ModelSim, its professional edition should be installed. Student
edition is not supported by Leon toolchain. Detailed work with each tool
discussed above will be presented afterwards.

4.7.2 Example Template Con�guration and Implemen-
tation

Leon3 system is usually implemented using example template designs in-
cluded in design directory. We implement and try to LEON3 template design
for the Xilinx ML50x (ML507) board 4.5 which was also used when we were
using 8051. Implementation is done in �ve steps:

• Con�guration of Leon design in xcon�g

• Simulation of design

• Synthesis and Place Route

• Generate Bitstream

• Con�gure FPGA on board

Template design is based on mainly three �les found in ML50x folder:

• con�g.vhd - a VHDL package containing design con�guration parame-
ters. Its is created and modi�ed when using xcon�g GUI tool.

CHAPTER 4. LEON3 INTRODUCTION 27

Figure 4.5: Xilinx Vertex-5 ML507

Figure 4.6: Export Display to XWin Server

• leon3mp.vhd - top module of Leon3 SoC with instances of all compo-
nents including Leon3 processor. It uses con�g.vhd to instantiate and
use IP cores.

• testbench.vhd - testbench to simulate the desired SoC Architecture

In windows, we install Cygwin to replicate the Linux environment in Win-
dows. During installation, make sure to install Tcl/Tk which is important
for GUI launch. With cygwin installed, it is time to con�gure Leon using
xcon�g tool. Cygwin can be launched from Desktop and also XWIN server
is required also for display. After XWin is successfully launched, following
command is written in Cygwin to export Display to XWin server 4.6 Here
we can see that we are in target design ML50x. Here by writing xcon�g in
cygwin shell calls for xcon�g GUI as shown in Fig 4.7. Leon3 Con�guration
is broken down into:

CHAPTER 4. LEON3 INTRODUCTION 28

Figure 4.7: Leon3 Design Con�guration GUI(xcon�g)

• Synthesis: Target technology for FPGA and other technology related
con�gurations. In this case, it is Xilinx.

• Board Selection: FPGA Board (Xilinx ML507) or ASIC Technology

• Clock Generation: PLL Generated for FPGA Board. Default is 60
MHz for 100 MHz Board.

• Processor: Main Processor con�guration like number of processors, In-
teger Unit, FPU, MMU Con�guration

• L2 Cache

• AMBA Bus Con�guration

• Debug Link

• Peripherals: Memory Controller, On-Chip RAM/ROM, Ethernet, UART,
Timer, VGA and Keyboard Interface, PCI Express

• VHDL Debugging

This default con�guration is known as Minimal Processor. First we will try
to simulate and synthesize the Minimal Processor and then, go for more high
performance con�gurations.

4.7.3 Con�guration for Minimal, General Purpose and
High Performance Processor

Following table 4.3 describes the VHDL Generics to changed for Minimal
(MP), General Purpose (GPP) and High Performance Processor (HPP) and

CHAPTER 4. LEON3 INTRODUCTION 29

Table 4.3: Con�guration of MP, GPP and HPP Processors

VHDL Generic MP GPP HP Description
dsu 0 1 1 Debug Support Unit
fpu 0 1 1 Floating Point Unit
v8 0 2 16#32# Support for SPARC v8 MUL/DIV
nwp 0 2 4 Hardware Watchpoints
icen/ dcen 1 1 1 Processor Caches
irepl / drepl 2 2 2 Random replacement policy
dnsoop 0 6 6 Data Cache Snooping
mmuen 0 1 1 Memory Management Unit
tbuf 0 4 4 Trace Bu�er
pwd 1 2 2 Power Down Mode
smp 0 0 1 SMP Support
bp 0 1 1 Branch Prediction
tlb_type 1 2 2 Look-a-side TLB Bu�ers
1ddel 1 1 1 1-cycle load delay
itlbnum / dtlbnum - 8 16 MMU look-a side bu�ers

Figure 4.8: Processor Comparison on Area Utilized and Timing

then, synthesized on FPGA. These generics (or global variables) are updated
in con�g.vhd �le. [14] Area utilized on Vertex-5 ML507 and timing analysis
for each processor in Fig 4.8.

4.8 Software Development (BCC)

To simulate (or emulate) the desired system or hardware performance for
Leon3, we use embedded C program. It is also a good test of the software
development environment. We use Bare-C Compiler (BCC) installed in the
system. [13] BCC is a cross-compiler for LEON3 processors. It is based one
the GNU compiler tools and the Newlib standalone C-library. The cross-

CHAPTER 4. LEON3 INTRODUCTION 30

compiler system allows compilation of both tasking and non-tasking C and
C++ applications. It supports hard and soft �oating-point operations, as
well as SPARC V8 multiply and divide instructions. We use example program
'Hello World'. BCC takes hello.c �le and compiles it to output hello.exe. This
executable �le can be loaded into FPGA program using two methods:

• GRMON Debugger

• MKPROM2 PROM Programmer

4.8.1 Software Development (GRMON Debugger)

GRMON debug monitor uses debug interface to control the loading and run-
ning of compiled C program. It can also be launch using Windows Command
Prompt. [7] GRMON has the follwing features:

• Read/Write all Registers and Memory

• Built-in disassembler and trace bu�er management

• Loading and execution of GP applications

• Modern IDE Tools Management

• Remote connection to GNU debugger (GDB) (e.g. TSIM)

We use JTAG link which is also used for bit �le programming of FPGA.
However, for GRMON, compatible driver must be installed to use it. After
successful link is established in JTAG, GRMON shell is launched in Com-
mand Prompt.
hello.exe compiled with Bare-C Compiler can be loaded into Leon 3 FPGA
using GRMON debug link and its output is wrote back in the GRMON shell.

4.8.2 Software Development (PROM Programmer)

This method is used to program PROM of Leon 3 as boot loader before
it is synthesized on FPGA same way as ROM was loaded with coe�cient
�le in 8051. [11] Here, we use mkprom to output PROM �le with loaded
hello.exe �le. First, it compiles and create PROM.out �le. After successful
PROM.out, �le is loaded in PROM.srec bootloader �le of Leon 3 which can
be run as ModelSim testbench 4.9.

CHAPTER 4. LEON3 INTRODUCTION 31

Figure 4.9: PROM hello.exe loaded and run

CHAPTER 4. LEON3 INTRODUCTION 32

Figure 4.10: TSIM running hello.exe on Leon3 environment

4.8.3 Software Development (TSIM Simulator)

TSIM is a unique Leon 3 simulator which emulate its environment without
the use of FPGA. ERC32 or LEON applications can be loaded and simulated
using a Windows Command Prompt. A number of commands are available
to examine data, insert breakpoints and advance simulation. [1]
Leon 3 can be loaded like GRMON System Information. This informa-
tion can be changed to custom needs to emulate the required environment.
hello.exe and any other program can be compiled using Bare-C Compiler
again can be loaded and run 4.10.

Chapter 5

Leon3 Extension and
Customization

5.1 Introduction

Using the knowledge of Leon 3 processor, we need to extend our work in cus-
tomizing this processor. We will to study the factors and variables essential
in the designing of this processor. There is di�erent form of understanding
required to achieve each form of customization [27].To add a peripheral or
Co-Processor, we need:

• Library Structure

• Understanding and working of AMBA bus

• VHDL Generics and link with Leon3mp.vhd (Top Module)

• xcon�g GUI Customization

5.2 Library Structure

Scripts generated search for VHDL libraries in libraries �les source or lib/lib.txt.
These contain paths to directories of IP Cores and Leon3 compiled as VHDL
library. Their mapping is always as appear in compile order in libs.txt.
5.1 [12].
Each directory speci�ed in the libs.txt contains the �le dirs.txt, which con-
tains paths to sub-directories containing the actual VHDL code. The sub-
directories contains compile order of VHDL �les to be synthesized or simu-
lated in order or preference. 5.2.

33

CHAPTER 5. LEON3 EXTENSION AND CUSTOMIZATION 34

Figure 5.1: Library showing scripts for di�erent vendors

Figure 5.2: Library showing scripts for di�erent �les in AMBA folder

CHAPTER 5. LEON3 EXTENSION AND CUSTOMIZATION 35

Figure 5.3: New �les in AMBA folder

Why is this important? When scripts are generated during synthesis or sim-
ulation, the library is loaded with each �le required for the processor and
assembly system. When we create or add new peripheral, we update these
scripts accordingly. It is done by updating target vhdlsyn.txt �le with new
peripheral �le 5.3.

5.3 Understanding and Working of AMBA Bus

Detail understanding and working of AMBA bus and addition of Peripherals
and Co-Processors to AHB and APB Bus is discussed it detail in Chapters
9 and 7 respectively.

5.4 VHDL Generics and Link with Top Module

VHDL Generics are global variables used as parameters saved in con�g.in. It
creates a new variable which is used in con�g.vhd as parameter to generate
component in leon3mp.vhd. To understand this, we �rst look con�g.in where
it loads variables from di�erent libraries containing .in �les.

CHAPTER 5. LEON3 EXTENSION AND CUSTOMIZATION 36

Figure 5.4: Generation of components in Top Module

Figure 5.5: apb_example.in �les

5.5 xcon�g extension

This module is the last but it uses information of all previous work which
leads to customization of GUI shown. Each core has VHDL generics and
header constants which are used in generation and con�guration of its xcon-
�g menu entries. As an example we will look at the apb_example. In �gure
5.6 �rst line creates a boolean value for the variable CONFIG_I2CAHB
which can be modi�ed in GUI. If it is set to yes (`y') then the user can select
select two more con�guration options. One is width de�ned as integer and
second is mask de�ned by hexadecimal value.

Figure 5.6: apb_example.in

CHAPTER 5. LEON3 EXTENSION AND CUSTOMIZATION 37

Figure 5.7: apb_example.in.help

GUI also provides the help option for user assistance. The contents of
the help box is de�ned in the �le *.in.help. 5.7 apb_example.in.h and
apb_example.in.vhd are used generation of VHDL generics as constants in
con�g.vhd �le for a design. con�g.vhd consists of options linked with core in
sub menu entries and its integration with main SoC. After con�guration is
�nished in GUI and xcon�g is closed, variables the .in.vhd �les for all cores
are concatenated into one �le. The contents of apb_example.in.h is: The
menu entries to include in xcon�g is de�ned for each template design in the
�le con�g.in. As an example we will look at the con�g.in �le for the design
leon3-xilinx-ml50x. In con�g.in we �nd the entry for the apb_example port
(described in the previous section) as part of one of the submenus: These
variables can be used to generate cores for apb_example in the same way as
shown in Fig. The modi�ed xcon�g is shown below:

CHAPTER 5. LEON3 EXTENSION AND CUSTOMIZATION 38

Figure 5.8: apb_example.in.h

Figure 5.9: apb_example.in included in con�g.in (Folder:ML50x)

Figure 5.10: Modi�ed xcon�g

Chapter 6

Peripheral Interface
(Introduction)

6.1 Introduction

For integration of custom peripheral or Coprocessor, hardware/software in-
terface is used to enable communication between them. The software runs
on a Leon3 which uses available resources on Processor and AMBA, while
peripheral is linked to Leon3 through Memory Mapped Interface or Co-
Processor Interface which shall be discussed shortly. In the former, local
bus architecture (AMBA) is used for communication, interface and synchro-
nization between Leon3, Peripheral and Shared Memory (if any) 6.1. A
coprocessor interface u. The peripheral or coprocessor module is controlled
with wrapper or interface using specialized software (with access of local
registers on wrapper) on Leon3 6.2. [31]

6.2 Memory-Mapped Interface

A memory-mapped interface infer memory address (as shared memory) of
Leon3 for interface between peripheral and software. It is generally more
reliable and easy-to-use interface to be used for added hardware or peripheral.
[19] In software, for addressing of shared memory pointers are declared. Its
main advantages are:

• It is more general and easy-to-use.

• It's design cannot be locked to particular processor i.e. it can be used
with any processor that supports AMBA.

39

CHAPTER 6. PERIPHERAL INTERFACE (INTRODUCTION) 40

Figure 6.1: Memory-Mapped Interface (AHB and APB)

Figure 6.2: Coprocessor Interface

CHAPTER 6. PERIPHERAL INTERFACE (INTRODUCTION) 41

Table 6.1: Coprocessor Interface vs Memory-Mapped Interface

Factor Coprocessor Interface Memory-Mapped Interface
Addressing Processor Speci�c Bus Address
Connection Point-to-Point Shared
Latency Fixed Variable
Throughput Higher Lower

• Direct addressing of software to shared memory creates reliable software
design.

6.3 Coprocessor Interface

In cases where high-throughput between the software and the custom hard-
ware is needed, it makes sense to have a dedicated interface between Leon3
and peripheral. As illustrated in Fig 6.2 Coprocessor Interface uses a dedi-
cated port on the processor which uses special instructions sometimes embed-
ded in the processor pipeline. The coprocessor instruction set is di�erent for
each type of processor, since it depends on the processor. Its main advantages
are:

• It has higher throughput

• It has �xed latency

Sadly not all processors have coprocessor interface. As an example, it was
provided with Leon2 documentation but was removed from the Leon3 release,
making the development of coprocessor much more di�cult. There are only
a few examples of coprocessor interface cores with Leon3. A classic example
of a coprocessor is a �oating-point calculation unit, which is interfaced with
Leon3 Integer Unit pipeline. Brief di�erence between them is shown in table
6.1. [31]

Chapter 7

Memory-Mapped Interface
(AMBA APB)

7.1 Introduction

The Advanced Peripheral Bus (APB) is part of the AMBA hierarchy of buses
and is optimized for minimal power consumption and reduced interface com-
plexity. APB provides a low-power extension to the system bus which builds
on AHB signals directly. [8]
The Advanced High Performance Bus (AHB) is a high speed bus suitable
to connect units with high data rate. But, the problem is that IP Core (or
Co-Processor) will be a Master on AHB bus and could overload the bus and
lower the performance of LEON3. APB is slower than AHB but has following
advantages:

1. Low Complexity

2. Low Power

3. Do not disturb the communication between Leon3 and Memory Con-
troller

7.2 Advanced Peripheral Bus (APB) Architec-

ture

APB bus is interface with AHB by AHB/APB bridge which works as AHB
Slave. The AHB/APB bridge is the only APB master on one speci�c APB
bus. More than one APB bus can be connected to one AHB bus, by means

42

CHAPTER 7. MEMORY-MAPPED INTERFACE (AMBA APB) 43

Figure 7.1: AHB and APB Bus Control

Table 7.1: APB Signals

Sr # Name Description
1 PCLK Bus clock
2 PRESETn APB reset
3 PADDR[31:0] APB Address Bus
4 PSELx APB Select
5 PENABLE APB Strobe
6 PWRITE APB Transfer Function
7 PRDATA [31:0] APB Read Data bus
8 PWDATA [31:0] APB Write Data bus

of multiple AHB/APB bridges. It is shown in �gure 7.1. The access to the
AHB slave input (AHBSI) is decoded and an access is made on APB bus.
The APB master drives a set of signals grouped into a VHDL record called
APBI which is sent to all APB slaves. The combined address decoder and
bus multiplexer controls which slave is currently selected (`PINDEX' in case
of APBI). The output record (APBO) of the active APB slave is selected by
the bus multiplexer and forwarded to AHB slave output (AHBSO). [12] 7.2

7.3 IP Core (Co-Processor) APB Interface

Signals used APB interface (APBI and APBO) [3] are shown in table 7.1.
APB interface can be as simple as a register which can be read and written

CHAPTER 7. MEMORY-MAPPED INTERFACE (AMBA APB) 44

Figure 7.2: AHB to APB Master Slave Interface

through bus transfers on an on-chip bus. The register will be accessed when a
given address address(`PADDR'), or an address within a given range, appears
on the bus. The memory address, and the related bus command, is analyzed
by an address decoder [31]. APB address bus (`PADDR') works as a shared
resource between software and hardware 7.3.
It works in three states which are [3]:

1. IDLE: Default State

2. SETUP: When a transfer is required the bus moves into the SETUP
state, where the appropriate select signal PSELx, where Peripheral or
Co-Processor is chosen, is asserted. It remains in this state for one
clock cycle and move to the ENABLE state on the next rising edge of
the PCLK.

3. ENABLE: In the ENABLE state the enable signal, PENABLE is as-
serted. The address, write and select signals all remain stable during
the transition from the SETUP to ENABLE state. The ENABLE state
also only lasts for a single clock cycle and after this state the bus will
return to the IDLE state if no further transfers are required.

Timing diagram for write transfer is given 7.4.
Timing diagram for read transfer is given 7.5.
APB slaves have a simple, yet �exible, interface. It allows interface to be
designed as per IP Core or Co-Processor requirements 7.6. For a write
transfer the data can be latched at the following points:

• on either rising edge of PCLK, when PSEL is HIGH

CHAPTER 7. MEMORY-MAPPED INTERFACE (AMBA APB) 45

Figure 7.3: APB Slave

Figure 7.4: APB Data Write

CHAPTER 7. MEMORY-MAPPED INTERFACE (AMBA APB) 46

Figure 7.5: APB Data Read

Figure 7.6: APB Slave (Wrapper) and Leon Interface

CHAPTER 7. MEMORY-MAPPED INTERFACE (AMBA APB) 47

Figure 7.7: Software Memory Addressing

• on the rising edge of PENABLE, when PSEL is HIGH.

The select signal PSELx, the address PADDR and the write signal PWRITE
can be combined to determine which register should be updated by the write
operation. For read transfers the data can be driven on to the data bus when
PWRITE is LOW and both PSELx and PENABLE are HIGH while PADDR
is used to determine which register should be read.

7.4 Software Interface

In software, the representation of a register is easy to do using an initialized
pointer. The base address of this pointer is determined by Slave bus index
of the APB Peripheral or Co-Processor. For example, bus index for Slave
(PINDEX=8) will be 0x80000800 with 256-bytes memory. Following diagram
7.7 gives us example how to architect software interface code.

7.5 Register Example

The IP core has one memory mapped 32-bit register that will be reset to zero.
The register can be read or written from default PADDR. The core's bus
index, base address and mask settings are con�gurable via VHDL generics

CHAPTER 7. MEMORY-MAPPED INTERFACE (AMBA APB) 48

Figure 7.8: RTL of APB Register Wrapper

(PINDEX, PADDR, PMASK). The PADDR and PMASK VHDL generics
are propagated to the APB bridge via the APBO.PCONFIG signal and the
index is propagated via the APBO.PINDEX signal. These values are then
used by the APB bridge to generate the APB address decode and slave select
logic [11]. It is shown in Fig 7.8.
Synthesized RTL of Register is shown in Fig 7.9.
Synthesized RTL of Register Wrapper is shown 7.10.
Its software interface de�ned in �gure 7.11 can be written as:
For Hardware / Software Veri�cation, we use MKPROM which simulates
testbench in ModelSim and runs compiled programs. It is a utility program
which converts a LEON RAM application image into a bootable ROM image.
The resulting bootable ROM image contains system initialization code, an
application loader and the RAM application itself. [11]
Its main advantage is that we can simulate and verify our IP Core before
implementing it on FPGA. Result of compiled code is shown in �gure 7.12.

CHAPTER 7. MEMORY-MAPPED INTERFACE (AMBA APB) 49

Figure 7.9: 32-bit Register Synthesized RTL

Figure 7.10: 32-bit Register Synthesized RTL APB Wrapper

CHAPTER 7. MEMORY-MAPPED INTERFACE (AMBA APB) 50

Figure 7.11: Register Test Program

Figure 7.12: Test Veri�cation

Chapter 8

Multiplier and its APB
Integration

8.1 Introduction

Multiplier is the main arithmetic unit of a processor. When we form the
product A * B, the �rst operand (A) is called the multiplicand, and the second
operand (B) is called the multiplier. As illustrated here, binary multiplication
requires only shifting and adding. In the following example, we multiply 13
(1101 - 4 bit) by 11 (1011 � 4 bit) to give output of 143 (10001111 � 8 bit). 8.1

8.2 Shift and Add Multiplier

Shift-and-Add Multiplier forms the simplest multiplier (paper and pencil
multiplication) to multiply two numbers. This method adds the multiplicand
A to itself B times, where B denotes the multiplier. To multiply two numbers
by paper and pencil, the algorithm is to take the digits of the multiplier one
at a time from right to left, multiplying the multiplicand by a single digit
of the multiplier and placing the intermediate product in the appropriate
positions to the left of the earlier results.
Considering �gure 8.2, partial product is either the multiplicand (1101)
shifted over by the appropriate number of places or zero. Instead of forming
all the partial products �rst and then adding, each new partial product is
added in as soon as it is formed, which eliminates the need for adding more
than two binary numbers at a time. [21]
Multiplication of two 4-bit numbers requires a 4-bit multiplicand register,
a 4-bit multiplier register, a 4-bit full adder, and an 8-bit register for the

51

CHAPTER 8. MULTIPLIER AND ITS APB INTEGRATION 52

Figure 8.1: General Paper and Pencil Multiplication

Figure 8.2: 4 by 4 multiplication with accumulator

product. The product register serves as an accumulator to accumulate the
sum of the partial products.
This type of multiplier is sometimes referred to as a serial-parallel multiplier,
since the multiplier bits are processed serially, but the addition takes place
in parallel. As indicated by the arrows on the diagram, 4 bits from the
accumulator (ACC) and 4 bits from the multiplicand register are connected
to the adder inputs. The 4 sum bits and the carry output from the adder are
connected back to the accumulator. When an add signal (Ad) occurs, the
adder outputs are transferred to the accumulator by the next clock pulse,
thus causing the multiplicand to be added to the accumulator. An extra bit
at the left end of the product register temporarily stores any carry that is
generated when the multiplicand is added to the accumulator. When a shift
signal (Sh) occurs, all 9 bits of ACC are shifted right by the next clock pulse.

CHAPTER 8. MULTIPLIER AND ITS APB INTEGRATION 53

Figure 8.3: Shift and Add Multiplication Example

8.3

8.3 System Design and Behavioral Model with

N Parametrization

Multiplier System is composed of: 8.4

1. Adder

2. Accumulator

3. Register

4. Controller

The original algorithm shifts the multiplicand left with zeros inserted in the
new positions, so the least signi�cant bits of the product cannot change af-
ter they are formed. Instead of shifting the multiplicand left, we can shift
the product to the right. Therefore, the multiplicand is �xed relative to the
product, and since we are adding only 4 bits, the adder needs to be only 4
bits wide. Only the left half of the 8-bit product register is changed during
the addition.
Another observation is that the product register has an empty space with
the size equal to that of the multiplier. As the empty space in the product
register disappears, so do the bits of the multiplier. In consequence, the �nal
version of the multiplier circuit combines the Accumulator with the multi-
plier. Since, n = 4, a 2-bit counter is needed to count the four shifts, and K
= 1 when the counter is in state 3 (112). Figure 5 shows the operation of
the multiplier when 1101 is multiplied by 1011. S0, S1, S2, and S3 represent

CHAPTER 8. MULTIPLIER AND ITS APB INTEGRATION 54

Figure 8.4: System Level Design

states of the control circuit.
At time t0, the control is reset and waiting for a start signal. At time t1,
the start signal St is 1, and a Load signal is generated. At time t2, M = 1,
so an Ad signal is generated. When the next clock occurs, the output of the
adder is loaded into the accumulator and the control goes to S2. At t3, Shift
signal is generated, so at the next clock shifting occurs and the counter is
incremented. At t4, M= 1, so Adder = 1, and the adder output is loaded
into the accumulator at the next clock. At t5 and t6, shifting and counting
occur. At t7, three shifts have occurred and the counter state is 11, so K =
1. Since M = 1, addition occurs and control goes to S2. At t8, Sh = K =
1, so at the next clock the �nal shift occurs and the counter is incremented
back to state 00.
At t9, a Done signal is generated. The multiplier design given here can eas-
ily be expanded to 8, 16, or more bits simply by increasing the register size
and the number of bits in the counter. The add shift control would remain
unchanged. 8.5
We start with 8-bit (N) Multiplier which takes 8-bit (N) Multiplier and Mul-
tiplicand. Start signal starts the counter (multiplication process) and done
signal is generated when multiplication is �nished with 16-bit (2N) Product.
Top level RTL design on which we design and simulate this multiplier is
shown in Fig 8.6.

CHAPTER 8. MULTIPLIER AND ITS APB INTEGRATION 55

Figure 8.5: Operation using States Counter

Figure 8.6: Top Level Design (RTL)

CHAPTER 8. MULTIPLIER AND ITS APB INTEGRATION 56

Figure 8.7: Synthesized Model (Xilinx)

8.4 Synthesis and Simulation in Xilinx

Multiplier core is written in VHDL, compiled and simulated in both Xilinx
ISE and ModelSim. Top Level RTL in Xilinx ISE after synthesis for N=8 is
shown in Fig 8.7. Since, the multiplier needs to be parametrized for N=4,
8, 16 and 32, a generic parameter was introduced. For N=8, the simulation
results are shown as in Fig 8.8.
Here, Multiplier is 255 (11111111) and multiplicand is 127 (01111111) to
produce 16-bits result 32385 (111111010000001). Delay calculated between
Start and Done pulse with 10 ns clock is 500 ns. It is then tested for di�erent
number of bits and output delay (time it takes for Start = `1' to Done = `1')
is recorded in following table 8.1:

8.5 APB Integration

APB Integration of Multiplier is inspired from OpenCores' Theora Hardware
APB Integration in Fig 8.9. [8]
The APB is part of the AMBA hierarchy of buses and is optimized for mini-

CHAPTER 8. MULTIPLIER AND ITS APB INTEGRATION 57

Figure 8.8: Simulation of 8-bit Multiplier

Table 8.1: 4,8,16 and 32-bit Multiplier Variables and Their Latency

N bits Multiplier Multiplicand Product Delay (ns)
4 4 F 3C 260
8 FF 7F 7E81 500
16 03E8 2710 989680 760
32 00002714 000186A1 000000003BA10B94 780

mal power consumption and reduced interface complexity. The AMBA APB
appears as a local secondary bus that is encapsulated as a single AHB slave
device. APB provides a low-power extension to the system bus which builds
on AHB signals directly.
In order to �t communication protocol of AMBA APB, a wrapper for pe-
ripheral (APB Integration) is designed for N-bit Multiplier. APB takes two
buses name APBI and APBO, Clock and Reset. [3] APBI and APBO are
further distributed into di�erent signals and vectors. Except the wrapping
function, it also contains the con�guration register. It is `packaged' and re-
used as a component in wrapper. Brief diagram of how APB Peripheral will
communicate with Leon3 System-on-Chip is shown in Fig 8.10.

8.6 Multiplier APB Integration

To include the IP Core (N bit Multiplier or `mult') in Leon3, we need to copy
it to known library (opencores in this case) and modify `dir.txt' in Fig 8.11.

In `mult' folder, we include its basic core �les, APB interface and package.
They are then synthesized accordingly in `vhdlsyn.txt'. `mult.vhd' includes
the package for interface `mult_amba_interface' shown in Fig 8.12.
Finally, we include it in `devices.vhd' in AMBA Core. For its instantiation

CHAPTER 8. MULTIPLIER AND ITS APB INTEGRATION 58

Figure 8.9: APB Integration (Theora Hardware)

Figure 8.10: Multiplier Integration on AMBA APB Bus

Figure 8.11: mult dir

CHAPTER 8. MULTIPLIER AND ITS APB INTEGRATION 59

Figure 8.12: vhdlsyn.txt

Figure 8.13: Multiplier Component Leon3 Top

in Top Module, we include it in `leon3mp.vhd' as shown in Fig 8.13.
APB slave vector given for `pindex', `paddr' and `apbo' is unique for every
peripheral associated. Here, value is 8 which gives us the starting address
for this peripheral as 0x80000800.
As a start, we used 16-bit multiplier core as a base line to design multiplier
interface. Top module of multiplier takes 16 bits of both multiplier and multi-
plicand. This value is given by 32-bit input bus `pwdata'. Multiplier outputs
32-bit Product which is given by 32-bit output bus `prdata'. Problem arises
for control logic signals such as `Start' and `Done'. We need proper address-
ing (paddr) to integrate it with software. Integration system was designed
initially for 16-bit system which can also be used for 8 and 4 bits with minor
changes. It is given in Fig 8.14.
However, for N=32 (32-bit Multiplier and Multiplicand), situation is di�er-
ent. PWDATA (32-bit bus) takes either Multiplier or Multiplicand at a time.
Also, Product is 64-bit while PRDATA is 32 causing splitting of Product and
introduction of bit decoder before output at PRDATA as in Fig 8.15.

8.7 Software Integration

Addressing protocol for communication between APB Interface and Soft-
ware is a bit tricky process. We know base pointer for Multiplier Peripheral
is 0x80000800. [8] [20] Taking in view PADDR in Interface module, we de�ne
variables as 8.16:
Pointer at 0x80000800 is 32-bit Integer which takes 16-bit multiplier and
multiplicand concatenated together. Software takes a while till Done is `1'

CHAPTER 8. MULTIPLIER AND ITS APB INTEGRATION 60

Figure 8.14: Multiplier APB Interface

Figure 8.15: 32-bit Multiplier APB Interface

Figure 8.16: Address Pointer Declaration for Variables

CHAPTER 8. MULTIPLIER AND ITS APB INTEGRATION 61

Table 8.2: Pointer Variables for Multiplier in C

PADDR(5:2) Pointer Addr Variable Name
0 0x80000800 Done
1 0x80000804 Multiplier / Multiplicand
10 0x80000808 Product

Figure 8.17: Address Pointer Declaration for Variables (32-bit)

to get product value in 32-bit. Link between PADDR and pointer values can
be easily shown in table 8.2 (which can be extended for N=4 and N=8 as
well).
Again, for 32-bit Multiplier, system is di�erent. We have to create sepa-
rate variables for multiplier and multiplicand. Also, product is 64-bit which
needs to be declared as two integers concatenated or double (in embedded
C) 8.17. [28]
Pointer at 0x80000800 is 32-bit multiplier. 0x80000804 takes 32-bit multipli-
cand. Software takes a while till Done is `1' to get product value in two 32
bit integers. Link between PADDR and pointer values can be easily shown
in table 8.3.

CHAPTER 8. MULTIPLIER AND ITS APB INTEGRATION 62

Table 8.3: Pointer Variables for Multiplier in C (32-bit)

PADDR(5:2) Pointer Addr Variable Name
0 0x80000800 Done
1 0x80000804 Multiplier
10 0x80000808 Multiplicand
11 0x8000080C Product1
100 0x80000810 Product2

Figure 8.18: Example C Compiler Code of 16-bit

8.8 Hardware / Software Veri�cation:

Taking in view variables declared in tables above, we create C �le which is
compiled for SPARC V8 Processor (Leon3). As an example multiplier code
for 16-bit is shown in Fig 8.18.
For Hardware / Software Veri�cation, we use MKPROM which simulates
testbench in ModelSim and runs compiled programs. It is a utility program
which converts a LEON RAM application image into a bootable ROM image.
The resulting bootable ROM image contains system initialization code, an
application loader and the RAM application itself. [11]
Its main advantage is that we can simulate and verify our IP Core before
implementing it on FPGA. Result of compiled code is shown in �gure 8.19.
Red mark shows that Multiplier is ported at Slave 8 of APB Bus with starting
address of 0x80000800. Yellow mark shows test results of multiplier: 03E8

CHAPTER 8. MULTIPLIER AND ITS APB INTEGRATION 63

Figure 8.19: Compiler Code Veri�cation 16-bit

Figure 8.20: N bit in Leon3 Top

and multiplicand: 2710. Similarly, we can create separate compiler codes for
4, 8 and 32-bits.

8.9 N bit Parametrization for APB Interface

For each N value, we had to create separate Interface �le for a given IP Core.
To parameterize N value, we had to create introduce N generic value for
interface �le, APB Package and Leon3 Top Module. Example for latter is
shown in Fig 8.20.

8.10 GUI Control

Each design has a simple graphical con�guration interface that can be started
by issuing `make xcon�g' in the template design directory. The tool presents

CHAPTER 8. MULTIPLIER AND ITS APB INTEGRATION 64

Figure 8.21: in �les in Multiplier Core

Figure 8.22: mult.in.vhd and mult.in.h

the user with con�guration options and generates the �le `con�g.vhd' that
contains con�guration constants used in the design. [12]
Each core has a set of �les that are used to generate the core's xcon�g menu
entries. The xcon�g �les are typically located in the same directory as the
Multiplier HDL �les in 8.21. `mult.in' �le de�nes the menu structure and
options for the Multiplier core. `mult.in.help' gives help function de�ned in
GUI Menu. The two remaining �les `mult.in.h' and `mult.in.vhd' are used
when generating the `con�g.vhd' �le for a design which typically consists of
a set of lines for each core where the �rst line decides if the core should be in-
stantiated in the design and the following lines contain con�guration options.
In GUI Sub Menu Entries, we add variables to `con�g.vhd' de�ned in `mul.in.vhd'
and `mult.in.h' as in Fig 8.22.
And also `con�g.in' as in Fig 8.23.
These are then regenerate GUI to show added features and variables, we

CHAPTER 8. MULTIPLIER AND ITS APB INTEGRATION 65

Figure 8.23: GUI Control con�g.in

Figure 8.24: Multiplier Con�guration in xcon�g

de�ned for Multiplier. Here, we can change its N value from GUI Control
without changing HDL �les for Multiplier Core and Interface as in Fig 8.24.

Chapter 9

Memory-Mapped Interface
(AMBA AHB)

9.1 Introduction

The Advanced High-Performance Bus (AHB) is part of the AMBA hierarchy
of buses and is intended for high performance designs with multiple bus mas-
ters and high bandwidth operations. [26] AHB-Lite implements the features
required for high-performance, high clock frequency systems including:

1. burst transfers

2. split transactions

3. single-cycle bus master handover

4. single-clock edge operation

5. non-tristate implementation

6. wider data bus con�gurations (64/128/256/512/1024 bits).

9.2 Advanced High-Performance Bus (AHB)

The most common AHB devices (or cores) are internal memory devices,
external memory interfaces, and high bandwidth peripherals (AHB/APB
Bridge).
Although low-bandwidth peripherals can be included as AHB interface cores,
for better performance and less complexity, they are interface to AMBA
Advanced Peripheral Bus (APB). [4]
AHB System can be broken down to:

66

CHAPTER 9. MEMORY-MAPPED INTERFACE (AMBA AHB) 67

Figure 9.1: AHB Master

1. AHB Master

2. AHB Slave

3. AHB Decoder

4. AHB Multiplexor

9.2.1 AHB Master

It provides address and control information to initiate read and write oper-
ations. In our case, it Leon3 Processor and Memory Management Unit 9.1.

9.2.2 AHB Slave

It processes and responds to the signals initiated by the master. It is nor-
mally the IP Core interface with Master (Leon3) to get desired results. It
uses `HSELx' signal from decoder to control its response to bus transfer.
AHB interface can be as simple as a register which can be read and writ-
ten through bus transfers on an on-chip bus. The register will be accessed
when a given address address decoder (`HADDR'), or an address within a
given range, appears on the bus. The memory address, and the related bus
command, is analyzed by an address decoder. It works as a shared resource
between software and hardware 9.2.

9.2.3 AHB Decoder

This component 9.3 decodes the address of each transfer and provides a
select signal for the slave that is involved in the transfer. It also provides the
control signal to the multiplexor.

CHAPTER 9. MEMORY-MAPPED INTERFACE (AMBA AHB) 68

Figure 9.2: AHB Slave

Figure 9.3: AHB Decoder

CHAPTER 9. MEMORY-MAPPED INTERFACE (AMBA AHB) 69

Table 9.1: AHB Signals

Sr # Name Description
1 HCLK Bus clock
2 HRESETn AHB reset
3 HADDR [31:0] AHB Address Bus
4 HSELx AHB Select
5 HREADY AHB Strobe
6 HWRITE AHB Write Enable
7 HSIZE [2:0] Size of Transfer
8 HBURST [1:0] Burst Type
9 HPROT [3:0] Protection Control
10 HTRANS [1:0] Indicates transfer type
11 HMASTLOCK Signal is Locked or Not
12 HRDATA [31:0] AHB Read Data bus
13 HWDATA [31:0] AHB Write Data bus
14 HRESP Transfer Acknowledgement

9.2.4 AHB Multiplexor

A slave-to-master multiplexor is required to read data bus and respond to
each slave data and signals.

9.3 Co-Processor AHB Slave Interface

Following table 9.1 shows the signals used AHB Slave interface (AHBSI and
AHBSO) [4].

9.3.1 AHB Slave Data Transfer with enhanced features

AHB Data Transfer works like APB bus for read and write with a few modi-
�cations and enhancements. Simplest write transfer data with no wait states
are shown in Fig 9.4 [4].
Read transfer is shown in Fig 9.5.
Simple write transfer in AHB Slave (wrapper for an IP Core) is enabled
when `HSELX' and `HWRITE' are high. It causes slave to write the data
from `HWDATA' to its internal memory address location given by the mas-
ter or decoder at `HADDR'. Once the data is written, then it issues the
`HREADY' and `HRESP' for acknowledgment of data. In read operation, it
will fetch the data from its internal memory for the given address location

CHAPTER 9. MEMORY-MAPPED INTERFACE (AMBA AHB) 70

Figure 9.4: AHB Data Write

Figure 9.5: AHB Data Read

in `HADDR' and is given out through `HRDATA' signal 9.6.
Other enhancements include:

• Transfer Types HTRANS [1:0]: IDLE, BUSY, NONSEQ, SEQ

• Master Transfer Lock: HMASTLOCK

• Transfer Size HSIZE [2:0]: 8,16, 32, 64, 128, 256, 512, 1024

• Burst Operation

• Waited Transfers and Acknowledgement

9.4 Software Interface

In software, the representation of a register is easy to do using an initialized
pointer. The base address of this pointer is determined by Slave bus index of
the AHB Peripheral or Co-Processor. For example, bus index for Slave (HIN-
DEX=8) will be 0xFF000000 with 1-Mbytes memory and Address (HADDR)
at 16FF0. Following diagram 9.7 gives us example how to architect software
interface code:

CHAPTER 9. MEMORY-MAPPED INTERFACE (AMBA AHB) 71

Figure 9.6: AHB Slave and Leon Interface

CHAPTER 9. MEMORY-MAPPED INTERFACE (AMBA AHB) 72

Figure 9.7: Software Memory Interfacing

9.5 Register Example

The IP core has one memory mapped 32-bit register that will be reset to zero.
The register can be read or written from default HADDR. The core's bus
index, base address and mask settings are con�gurable via VHDL generics
(HINDEX, HADDR, HMASK). The HADDR and HMASK VHDL generics
are propagated via the AHBSO.HCONFIG signal and the index is propagated
via the AHBSO.HINDEX signal. These values are then used by the AHB
bridge to generate the AHB address decode and slave select logic [12]. Its
RTL view as well as synthesized model is similar to APB Slave RTL 7.8 in
section 7.5.
Its software interface code is written as same model as APB Interface in Fig
ref�g:AHB_Software.
For Hardware / Software Veri�cation we use MKPROM in similar pattern
to test and verify this model. In Fig 9.9 we can see that 1 Mbyte Memory is
initialized as AHB Slave 8 (HINDEX=8). After initialization, our example
code is run to verify our IP Core, Interface and Software. 9.10

CHAPTER 9. MEMORY-MAPPED INTERFACE (AMBA AHB) 73

Figure 9.8: Register Test Program

Figure 9.9: Register initialization in Leon

CHAPTER 9. MEMORY-MAPPED INTERFACE (AMBA AHB) 74

Figure 9.10: Test Veri�cation

Chapter 10

AES-128 AHB Interface

10.1 Introduction

The Advanced Encryption Standard (AES) speci�es a FIPS- approved cryp-
tographic algorithm that can be used to protect electronic data. AES-128
pipelined cipher core which is downloaded as open source project from Open-
Cores, uses AES algorithm which is a symmetric block cipher to encrypt
(encipher) information. Here the AES algorithm is capable of using crypto-
graphic keys of 128-bit to do this conversion. It takes 128-bit Unciphered
data and Key Data (symmetric block cipher) and outputs 128-bit ciphered
data. This core is designed in Verilog and needs to be packaged in VHDL to
interface it with AMBA bus and Leon Processor. [29]

10.2 AES-128 Synthesis and Simulation

Before interfacing the core with AHB and Leon Processor, we synthesize it in
Xilinx and simulate it in Modelsim with given testbench with 284 input and
output vectors for veri�cation. Once 'Data Out Valid' is high, it outs 128-bit
ciphertext every clock cycle which means its throughput is 1 clock cycle and
latency of 42 clock cycles. Its synthesized top module can be shown as in Fig
10.1.
Similarly its simulation is shown as in Fig 10.2.

10.3 AHB Integration

In order to �t communication protocol of AMBA AHB, a wrapper for pe-
ripheral is designed for AES-128. APB takes two buses name AHBSI and

75

CHAPTER 10. AES-128 AHB INTERFACE 76

Figure 10.1: AES Top Module

Figure 10.2: AES-128 Simulation in ModelSim

CHAPTER 10. AES-128 AHB INTERFACE 77

Figure 10.3: GRAES Registers

AHBSO, Clock and Reset. AHBSI and AHBSO are further distributed into
di�erent signals and vectors. Except the wrapping function, it also contains
the con�guration register. Since, the core is written in Verilog, it has to be
`packaged' in VHDL and re-used as a component in wrapper (AES AMBA
Interface). Its communication with Leon3 Master using AHB bus is similar
to AHB Register interface shown in Fig 9.6.
AHB slave signals given for `HINDEX', `HADDR' and `AHBSO' is unique for
every peripheral associated. We take HINDEX=8 and HADDR=16FF0 in
similar fashion as in 32-bit Register example 9. Here, the problem arises for
bus width. AHB Read and Write both take 32-bit data while AES-128 works
on 128-bit data for both input and output. Thus, a system needs to designed
i.e. taking four 32-bit data wires to be concatenated to 128-bit Key and
Data registers at input and split from 128-bit Read Data register at output
of Wrapper designed. to �nd a solution we moved to GRAES, an encryption
standard commercial IP Core designed by Gaisler (they also designed Leon3
Processor) [16]. Luckily, their signals and register con�guration was available
as shown in Fig 10.3.
Also, for integration of other signals used by the core such as 'Key_Valid',
'Data_Valid' and 'Data_Out_Valid', we designed hardware interface with
proper addressing with HADDR taking 4-bits multiplexor selection. Data
path RTL for AES Wrapper is shown in Fig 10.4.
The synthesized model for AES AMBA Interface in Xilinx can be shown in
Fig 10.5.

CHAPTER 10. AES-128 AHB INTERFACE 78

Figure 10.4: AES Wrapper (Interface) RTL

Figure 10.5: AES AHB Interface Synthesized Model

CHAPTER 10. AES-128 AHB INTERFACE 79

Table 10.1: AES-128 Registers with Pointer Addressing

HADDR REG (INT*) Signal (Variable)
0000 00 Option (Key/Data)
0001 04 Start Operation
0010 08 Valid Data Out
0100 10 Write Register 0
0101 14 Write Register 1
0110 18 Write Register 2
0111 1C Write Register 3
1000 20 Read Register 0
1001 24 Read Register 1
1010 28 Read Register 2
1011 2C Read Register 3

10.4 Software Integration

In software, the representation of a 128-register is used using 32-bit (Integer)
pointer. The base address of this pointer is determined by Slave bus index of
the AES Wrapper i.e. bus index for Slave (HINDEX=8) will be 0xFF000000
with 1-Mbytes memory and Address (HADDR) at 16FF0. Using GRAES
Register example we architect pointer declaration for addressing as shown in
Table 10.1. We use 4 32-bit Write and Read Registers. For Key and Plain
Text values, HADDR(6:2) is decoded at '0000' as '0' and '1' respectively.
To interface software variables with pointer addressing decoded in HADDR,
we need to coincide Reg(int*) in table 10.1 with 32-bit integer pointers de-
clared in software code in C. The declared variables to be used in C code are
shown in Fig .

10.5 Veri�cation

For Hardware / Software Veri�cation we use MKPROM in similar pattern
to test and verify this model. In Fig 10.7 we can see that 1 Mbyte Memory
is initialized as AHB Slave 8 (HINDEX=8).
Key data which is 128-bit is broken down into 4 32-bits as follows:

• Register 0 : [00000000]

• Register 1 : [00000000]

• Register 2 : [00000000]

CHAPTER 10. AES-128 AHB INTERFACE 80

Figure 10.6: AES Pointer Variables in C

Figure 10.7: AES Pointer Variables in C

CHAPTER 10. AES-128 AHB INTERFACE 81

Figure 10.8: AES Pointer Variables in C

• Register 3 : [00000000]

Similarly, for Plain Text data (Data In) is shown as:

• Register 0 : [f34481ec]

• Register 1 : [3cc627ba]

• Register 2 : [cd5dc3fb]

• Register 3 : [08f273e6]

The Cipher Text (Data Out) is veri�ed with 4 32-bit Registers as shown in
Fig 10.8.

Chapter 11

Conclusion and Future Work

In this thesis a simple guidelines and work�ow to infer the required procedure
for the integration of peripheral or coprocessor with complicated architecture
of Leon3 processor using AMBA bus architecture in Memory-Mapped inter-
face. Coprocessor interface can also be used but as told earlier it is not
included in Leon3 documentation nor it is recommended by Gaisler. The
proposed approach shows that bus architecture plays an important role in
integration. Although Memory-Mapped interface has drawbacks of variable
latency and throughput, its easy-to-use con�guration and interface makes it
a valuable tool in time-constraint implementation environment.

11.1 Integration Examples

Apart from arithmetic cores, latest in on-chip coprocessor integration is large
graphic-processors being attached with general-purpose processors to form
Accelerated Processing Unit (APU) microprocessors which are being used by
AMD [35]. The Arm Machine Learning processor is another example of con-
�guraing GPPs and embedding hardware acclerators to optimize processor
for machine learning and data science tasks which has higher performance
and low power consumption [2].

11.2 Future Work

Similarly, in future it may be desired in the case of AES cipher and decipher,
if embedded with processor, in our case, entangled in pipeline of Leon3 to
create custom instruction set that is automatically encrypted or decrypted
per instruction so that we no longer Coprocessor for AES.

82

Bibliography

[1] Aero�ex Gaisler. TSIM2 Simulator User's Manual, 2012.

[2] ARM. Arm machine learning processor.

[3] ARM. AMBA 3 APB Protocol. ARM Inc, 2004.

[4] ARM. Amba 3 ahb-lite protocol speci�cation v1.0, 2006.

[5] John Catsoulis. Designing Embedded Hardware. O'Rielly, 2005.

[6] Cauestr. Recon�gurable computing lab 04: Softcore processors and
hardware acceleration, 2012.

[7] COBHAM. GRMON User Manual. Cobham Gaisler, 2017.

[8] André Luiz Nazareth da Costa. Hardware implementation of theora
decoding.

[9] Paola Ceminari Ariel Arelovich Martín Di Federico. Aes block cipher
implementations with amba-ahb interface. In 2017 1st Conference on
IEEE PhD Research in Microelectronics and Electronics Latin America,
PRIME-LA 2017, 2017.

[10] franiodoro. Intel hex2bin. Sourceforge.net, 2013.

[11] Cabham Gaisler. Mkprom2.

[12] Cobham Gaisler. Grlib ip library user manual. Technical report, Gaisler,
2016.

[13] Cobham Gaisler. Bare-C Compiler. COBHAM, 2017.

[14] Cobham Gaisler. LEON/GRLIB Guide Con�guration and Development
Guide. Cobham, 2017.

[15] Cobham Gaisler. Leon3 processor, 2018.

83

BIBLIOGRAPHY 84

[16] Gasiler. GRLIB IP Core User's Manual. Gaisler, 2016.

[17] Cygwin Authors Grp. Cygwin for windows, 2018.

[18] Hobbes. Why did the esa choose sparc for leon? stackexchage.com,
2013.

[19] I. Hodjat, a. Verbauwhede. Interfacing a high speed crypto accelerator to
an embedded cpu. In Conference Record of the Thirty-Eighth Asilomar
Conference on Signals, Systems and Computers, 2004., volume 1, pages
488�492, 2004.

[20] Je� Johnson. Creating a custom ip block in vivado, 2014.

[21] Jr and Lizy Kurian John Charles H. Roth. Digital Systems Design using
VHDL. Thomson Learning, 2008.

[22] Sven Åke Andersson. Leon3 soft processor: Guide, 2012.

[23] Jason G. Tong Ian D. L. Anderson Mohammed A. S. Khalid. Soft-core
processors for embedded systems. 2006 International Conference on
Microelectronics, pages 170�173, 2006.

[24] Luis Azuara Pattara Kiatisevi. Design of an audio player as system-on-
a-chip. Master's thesis, University of Stuttgart, 2002.

[25] Pedro Martos. Bin2coe. sourceforge.net, 2013.

[26] Tadikonda Nagarjuna. Implementation of di�erent operations for data
transfer for amba-advanced high performance bus. International Journal
of Computer Science and Mobile Computing, 3:768�776, 2014.

[27] Shobana Padmanabhan. Automatic application-speci�c customization
of softcore processor microarchitecture. Master's thesis, Washington
University in St. Louis, 2006.

[28] Tutorials Point. C data types.

[29] Amr Salah. Aes-128 pipelined encryption, 2013.

[30] J. B. Nade Dr. R. V. Sarwadnya. The soft core processors: A review.
Ijireeice, 3:197�203, 2015.

[31] Patrick R. Schaumont. A Practical Introduction to HArdware/Software
Co-Design. Springer, 2010.

BIBLIOGRAPHY 85

[32] Oregano Systems. 8051 ip core, 2006.

[33] Oregano Systems. Oregano 8051 manual, 2006.

[34] Sven Keller Tanya Vladimirova, David Eamey and Prof Sir Martin
Sweeting. Floating-point mathematical co-processor for a single-chip
on-board computer. ResearchGate, 2015.

[35] Techterms. Apu de�nition.

[36] Simon Teran. 8051, 2009.

[37] X. Guo J. Fan P. Schaumont I. Verbauwhede. Programmable and Par-
allel ECC Coprocessor Architecture: Tradeo�s between Area, Speed and
Security. Springer, 2009.

[38] Wikipedia. Central processing unit. Wikipedia, 2018.

[39] Wikipedia. Intel mcs51, 2018.

	Introduction
	Background and Motivation
	Problem Statement
	Proposed Approach

	Literature Review
	Introduction
	Instruction Set and RISC
	Peripheral Integration to Processor

	8-bit Processor (8051 Microcontroller)
	Introduction
	Oregano Systems mc8051
	Tools Required for Synthesis and Simulation
	mc8051 Top Module (Synthesis)
	Work on Keil C51 (Microcontoller)
	Conversion from HEX to COE
	Synthesis and Implementation on FPGA
	Simulation
	Configuration of mc8051 for extra peripherals

	Leon3 Introduction
	Introduction
	Evaluation of Processors(SoC)
	Evaluation of Bus Architectures
	SPARC Version 8 ISA
	Leon3 Introduction and Pipeline
	AMBA Bus Architecture
	Example Template Design
	Library (Source Code) and Toolchain
	Example Template Configuration and Implementation
	Configuration for Minimal, General Purpose and High Performance Processor

	Software Development (BCC)
	Software Development (GRMON Debugger)
	Software Development (PROM Programmer)
	Software Development (TSIM Simulator)

	Leon3 Extension and Customization
	Introduction
	Library Structure
	Understanding and Working of AMBA Bus
	VHDL Generics and Link with Top Module
	xconfig extension

	Peripheral Interface (Introduction)
	Introduction
	Memory-Mapped Interface
	Coprocessor Interface

	Memory-Mapped Interface (AMBA APB)
	Introduction
	Advanced Peripheral Bus (APB) Architecture
	IP Core (Co-Processor) APB Interface
	Software Interface
	Register Example

	Multiplier and its APB Integration
	Introduction
	Shift and Add Multiplier
	System Design and Behavioral Model with N Parametrization
	Synthesis and Simulation in Xilinx
	APB Integration
	Multiplier APB Integration
	Software Integration
	Hardware / Software Verification:
	N bit Parametrization for APB Interface
	GUI Control

	Memory-Mapped Interface (AMBA AHB)
	Introduction
	Advanced High-Performance Bus (AHB)
	AHB Master
	AHB Slave
	AHB Decoder
	AHB Multiplexor

	Co-Processor AHB Slave Interface
	AHB Slave Data Transfer with enhanced features

	Software Interface
	Register Example

	AES-128 AHB Interface
	Introduction
	AES-128 Synthesis and Simulation
	AHB Integration
	Software Integration
	Verification

	Conclusion and Future Work
	Integration Examples
	Future Work

