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Abstract 

Human induced change in climate has already started affecting the ways ecosystems 

function and interact with each other. The major impact, and which in turn also becomes 

the driving factor in climate change is disruption of carbon cycle. Apart from other 

consequences, one of the major impacts disruption of carbon cycle is going to have is on 

the growth of vegetation. As with the changes in atmospheric CO2 concentrations, Net 

Primary Production (NPP) of plants and Net Environmental Exchange (NEE) also vary. 

South Asia like many other parts of the world is also undergoing climate change and is 

facing changes in land cover and land use. As, population in South Asia is growing at an 

extremely high rate, the resources required to cater the needs of growing population are 

also increasing. Consequently, the terrestrial ecosystems and their interaction with 

atmosphere is also undergoing a change. To measure and estimate these changes, several 

Dynamic Global Vegetation Model (DGVM) are used. Lund-Potsdam-Jena General 

Ecosystem Simulator (LPJ-GUESS) is also one of them. LPJ-GUESS is a process-based 

framework which models the dynamics and structure of the ecosystem. It is comprised of 

several sub-models, where each sub-model includes processing of associated ecological 

processes. Input data required for LPJ-GUESS is consisted of climate parameters 

(Temperature, Precipitation, Solar radiation) and concentration of carbon dioxide in 

atmosphere. This study intends to estimate and analyze the changes that vegetation growth 

in South Asia is experiencing and will continue to experience as a consequence of changing 

climate, by using LPJ-GUESS model. This study can be of great assistance to formulate 

climate mitigation and adaptation policies for South Asia. 
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Chapter 1 

Introduction 

1.1 Background 

Climate change has emerged as a pressing global concern, and its impact on terrestrial 

ecosystems, especially in the South Asian region, is profound and far-reaching. This 

phenomenon is primarily driven by human activities, including deforestation, land-use 

changes, and the combustion of fossil fuels. The consequences of climate change are 

primarily manifested through variations in global and regional climates over time, leading 

to significant environmental, social, and economic implications (AR5 Synthesis Report, 

n.d.). 

The greenhouse effect plays a crucial role in understanding the mechanisms behind climate 

change. Human activities, such as the burning of fossil fuels for energy production and 

transportation, release substantial amounts of carbon dioxide (CO2) and other greenhouse 

gases into the atmosphere. These gases act as a blanket, trapping heat from the sun and 

preventing it from escaping back into space. Consequently, the earth's surface and lower 

atmosphere experience a rise in temperature, resulting in global warming. 

South Asia is particularly vulnerable to the impacts of climate change due to its 

geographical location and socio-economic factors. The region is characterized by diverse 

ecosystems, including forests, grasslands, wetlands, and coastal areas, all of which face 

numerous challenges from climate change. 

One of the most significant consequences of climate change in South Asia is the alteration 

of rainfall patterns. Changes in precipitation levels and distribution have severe 

implications for agriculture, water availability, and food security in the region. Shifts in 

rainfall patterns can lead to prolonged droughts or intense rainfall events, both of which 

can disrupt crop cycles, impair soil fertility, and trigger water scarcity issues. 

Rising sea levels pose a significant threat to low-lying coastal areas in South Asia. As 

global temperatures increase, polar ice caps and glaciers melt, contributing to the rise in 

sea levels. Coastal communities in countries like Bangladesh and the Maldives are already 

experiencing the impacts, including increased coastal erosion, saltwater intrusion into 

freshwater sources, and the displacement of vulnerable populations. 
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Another critical concern is the loss of biodiversity in South Asian ecosystems due to 

climate change. The alteration of temperature and rainfall patterns can disrupt ecological 

balance, leading to changes in habitat suitability, species migration, and disruption of 

critical ecological processes. This loss of biodiversity not only affects the intrinsic value of 

ecosystems but also has adverse consequences for human well-being, as many 

communities in the region heavily rely on ecosystem services such as fisheries, timber, and 

medicinal plants. 

Furthermore, climate change exacerbates existing socio-economic inequalities in the South 

Asian region. Vulnerable communities, including marginalized groups, small-scale 

farmers, and coastal populations, are often the hardest hit by climate-related impacts. 

Limited access to resources, infrastructure, and information further compounds their 

vulnerability and hampers their ability to adapt to changing conditions. 

The productivity of ecosystems, as measured by Net Primary Productivity (NPP), and the 

carbon balance, as measured by Net Ecosystem Exchange (NEE), play crucial roles in 

understanding the impacts of climate change on these natural systems. 

Net Primary Productivity refers to the rate at which ecosystems convert solar energy into 

organic matter through photosynthesis, minus the amount of organic matter lost through 

respiration by plants. It is a fundamental measure of an ecosystem's productivity and its 

ability to capture and store carbon. Climate change can affect NPP in various ways. For 

instance, rising temperatures can accelerate plant metabolism, potentially increasing 

photosynthesis rates and NPP. However, in certain cases, extreme heat events or prolonged 

droughts can negatively impact plant growth and reduce NPP. 

Changes in NPP have cascading effects on the entire ecosystem. Reduced NPP can lead to 

decreased food availability for herbivores, impacting the overall structure of food webs. 

Additionally, shifts in NPP can alter the carbon balance of ecosystems, affecting their 

capacity to sequester carbon dioxide from the atmosphere. This is where Net Ecosystem 

Exchange becomes crucial. 

Net Ecosystem Exchange measures the net balance of carbon fluxes between an ecosystem 

and the atmosphere. It accounts for both carbon uptake through photosynthesis and carbon 

release through respiration. Positive NEE indicates that an ecosystem is absorbing more 
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carbon than it emits, acting as a carbon sink. Negative NEE, on the other hand, suggests 

that an ecosystem is releasing more carbon than it sequesters, acting as a carbon source. 

Climate change can impact NEE by altering the balance between carbon uptake and release 

within ecosystems. For example, rising temperatures and increased atmospheric carbon 

dioxide levels can stimulate plant growth and photosynthesis, potentially leading to higher 

carbon uptake and a more substantial carbon sink effect. However, other factors like 

changes in water availability, nutrient limitations, and disturbances such as wildfires or pest 

outbreaks can offset these positive effects and result in increased carbon emissions. 

Variations in NPP and NEE serve as important indicators of ecosystem health and carbon 

dynamics in the face of climate change. Monitoring and understanding these metrics can 

help researchers and policymakers assess the vulnerability of ecosystems, identify areas at 

risk, and develop appropriate mitigation and adaptation strategies. 

Furthermore, changes in NPP and NEE have implications beyond the boundaries of 

individual ecosystems. The carbon sequestration capacity of terrestrial ecosystems is 

crucial for mitigating climate change at a global scale. Healthy ecosystems with high NPP 

and negative NEE play a vital role in absorbing and storing carbon dioxide, thereby helping 

to reduce greenhouse gas concentrations in the atmosphere and mitigate global warming. 

However, if climate change leads to a decline in NPP or a shift towards positive NEE, it 

could result in a reduced capacity of ecosystems to sequester carbon. This would create a 

positive feedback loop, as increased carbon emissions from ecosystems contribute to 

further climate change, exacerbating its impacts.(Chapin et al., 2002). 

Furthermore, climate change influences agricultural productivity, a critical concern for 

South Asia, where agriculture is a vital part of the economy. Changes in temperature and 

precipitation patterns can affect crop yields, posing challenges for food security in the 

region (Lobell et al., 2008). Therefore, estimating total crop yield and comparing it with 

observed yield data is essential for assessing the impact of climate change on agriculture. 

To study these complex interactions and estimate these variations, Dynamic Global 

Vegetation Models (DGVMs) like LPJ-GUESS are employed. These models simulate 

vegetation dynamics and biogeochemical cycles, providing insights into ecosystem 

productivity and carbon balance under changing climatic conditions (Sitch et al., 2003). 
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1.2 Problem Statement 

Climate change is a pervasive global issue, significantly altering the terrestrial ecosystems, 

particularly with respect to their productivity, carbon balance, and overall ecological 

structure. These alterations have profound implications for the carbon cycle, which, in turn, 

impacts vegetation growth. South Asia, an area marked by rapid population expansion and 

consequential changes in land use and cover, is particularly vulnerable to these effects. The 

region's ability to meet the increasing demand for resources hinges on the health and 

productivity of its terrestrial ecosystems. Yet, there exists a significant gap in our 

understanding of the precise nature and extent of climate change impacts on these 

ecosystems. 

Specifically, comprehensive and data-driven estimation and analysis of variations in Net 

Primary Production (NPP) and Net Ecosystem Exchange (NEE) due to changing 

atmospheric CO2 concentrations in the South Asian context are lacking. Furthermore, an 

in-depth understanding of the implications of these variations on the carbon pool, carbon 

flux, and crop yield is missing, inhibiting the formulation of effective climate mitigation 

and adaptation strategies for the region. The deployment of Dynamic Global Vegetation 

Models (DGVM), such as the Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-

GUESS), provides an opportunity to bridge this knowledge gap. However, the use of such 

models for these specific applications remains under-explored. 

Therefore, this research aims to address the aforementioned gaps by using the LPJ-GUESS 

model to estimate and analyze changes in vegetation growth in South Asia due to climate 

change. It intends to offer critical insights into the regional carbon cycle disruption and its 

impacts on terrestrial ecosystems, thereby contributing to the development of well-

informed and region-specific climate mitigation and adaptation policies. 

1.3 Objectives of the Study 

The primary objectives of this study are as follows: 

1. To estimate the variation in Net Primary Productivity (NPP) and Net Ecosystem 

Exchange (NEE) in South Asia. 
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• These metrics will provide insights into the productivity and carbon balance of 

terrestrial ecosystems in the region. 

• The LPJ-GUESS DGVM model will be utilized to simulate and analyze NPP 

and NEE dynamics. 

2. To estimate the variation in Carbon Pool and Carbon Flux in South Asia. 

• This objective aims to assess the changes in carbon storage and exchange 

processes within South Asian terrestrial ecosystems. 

• The LPJ-GUESS DGVM model will be employed to quantify carbon pools and 

fluxes, considering factors such as vegetation growth, decomposition, and soil 

processes. 

3. To assess total crop yield and compare it with observed yield data for South Asia. 

• This objective focuses on evaluating the potential impacts of climate change on 

agricultural productivity in the region. 

• Observed yield data will be collected and analyzed, and the LPJ-GUESS 

DGVM model will be utilized to estimate crop yields under varying climate 

scenarios. 

The outcomes of these objectives will enhance our understanding of the productivity, 

carbon balance, and agricultural dynamics in South Asian terrestrial ecosystems under the 

influence of climate change. They will also contribute to the broader field of climate change 

research and support informed decision-making for ecosystem management and 

agricultural practices. 

1.4 Scope of the Study 

The scope of this study focuses primarily on terrestrial ecosystems within the South Asian 

region, with a special emphasis on Pakistan. South Asia, which includes countries such as 

India, Pakistan, Bangladesh, Nepal, Bhutan, Sri Lanka, and the Maldives, is home to 

diverse ecosystems ranging from tropical rainforests to arid deserts, grasslands, and 

montane ecosystems (DeFries et al., 2013). The ecological diversity of this region presents 

an excellent opportunity to understand the variations in productivity and carbon balance 

across different ecosystems. 
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Pakistan, in particular, is an intriguing case study due to its rich biodiversity and unique 

climatic and geographical features that include vast arid regions, fertile plains, coastal 

areas, and high-altitude ranges. However, the region is under considerable environmental 

stress due to climate change and anthropogenic activities, affecting ecosystem productivity 

and carbon balance (Ali et al., 2017). 

The study will utilize the Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) 

Dynamic Global Vegetation Model (DGVM) to estimate variations in Net Primary 

Productivity (NPP), Net Ecosystem Exchange (NEE), carbon pools, carbon flux, and crop 

yields across the region. The application of the LPJ-GUESS DGVM model will allow a 

systematic, data-driven analysis of ecosystem productivity and carbon balance in the 

region, contributing to our understanding of these critical ecological processes and their 

implications for sustainable ecosystem management. 

1.5 Significance of the Study 

Understanding the productivity of terrestrial ecosystems and their carbon balance is crucial 

for several reasons, particularly in the context of climate change and sustainable land 

management. This study, focusing on South Asia and particularly Pakistan, plays a pivotal 

role in providing insights into these aspects using the Lund-Potsdam-Jena General 

Ecosystem Simulator (LPJ-GUESS) Dynamic Global Vegetation Model (DGVM). 

Firstly, terrestrial ecosystems play a significant role in the global carbon cycle, acting as 

both sources and sinks of carbon dioxide (CO2) (Le Quéré et al., 2015). They absorb CO2 

from the atmosphere during photosynthesis and release it back during respiration and 

decomposition. Hence, any changes in the productivity of these ecosystems can have a 

substantial impact on the global carbon cycle and, consequently, on atmospheric CO2 

concentrations. By estimating variations in Net Primary Productivity (NPP) and Net 

Ecosystem Exchange (NEE) in South Asia, this study contributes to our understanding of 

how these ecosystems are responding to environmental changes and their potential impact 

on the global carbon cycle. 

Secondly, terrestrial ecosystems store a considerable amount of carbon in their biomass 

and soils. These carbon stocks play a crucial role in regulating the global climate by 

offsetting anthropogenic CO2 emissions. However, changes in land use and management 
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practices can alter these carbon stocks and influence carbon fluxes, affecting the 

ecosystems' role as carbon sinks. By estimating variations in carbon pools and carbon 

fluxes in South Asia, this study helps to understand how land use and management changes 

might be affecting the region's carbon balance. 

Additionally, the study's focus on crop yield estimation is particularly significant. 

Agriculture plays a vital role in South Asia's economy, and crop yield estimation is crucial 

for food security planning and agricultural policy-making (Ray et al., 2012). By assessing 

total crop yield and comparing it with observed yield data, this study provides valuable 

insights that can inform agricultural practices and policies in the region. 

The use of the LPJ-GUESS DGVM model adds another layer of significance to the study. 

This model has been extensively used in global vegetation and carbon cycle simulations, 

but its application in the context of South Asia, particularly Pakistan, is less explored 

(Smith et al., 2014). Therefore, this study not only contributes to the understanding of 

terrestrial ecosystems in South Asia but also expands the knowledge of the applicability 

and effectiveness of the LPJ-GUESS DGVM model in this context. 

In short, this study holds significant value for various stakeholders, including 

environmental scientists, climate change researchers, policymakers, and land managers. 

The findings of this study can inform sustainable land management practices, climate 

change mitigation strategies, and agricultural policies in South Asia. 
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Chapter 2 

Literature Review 

2.1 Dynamics of Carbon Dioxide (CO2) in the Atmosphere 

The greenhouse effect serves as a vital mechanism, maintaining the Earth's temperatures at 

levels that render it conducive to life. However, over the previous centuries, human-driven 

actions have contributed to a significant surge in greenhouse gas discharges. This upsurge 

in atmospheric concentrations of such gases has translated to a rise in the planet's average 

overall temperature. 

Predominantly, the emission of these environmentally harmful gases stems from two chief 

activities: the utilization of fossil fuels and extensive agricultural practices. Although the 

individual heat-retaining capacity of a Carbon Dioxide (CO2) molecule is comparatively 

lower than other greenhouse gases, the escalation in atmospheric CO2 concentration has 

critically disrupted the carbon equilibrium. 

According to a report by the US Environmental Protection Agency in 2016, the warming 

impact of CO2 is due to its extended atmospheric residence time, averaging around five 

years. This aspect sets it apart from other greenhouse gases and amplifies its contribution 

to global warming. 

Compared to the pre-industrial era conditions, the concentration of greenhouse gases has 

witnessed a staggering spike during the past century (Ainsworth et al. 2020). One 

significant observation in the recent trend of atmospheric CO2 concentration is a striking 

peak of almost 420 parts per million (ppm), a considerable rise from less than 320 ppm in 

1960, as per the data by the National Oceanic and Atmospheric Administration (NOAA, 
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2021).

 

Figure 1: Carbon Dioxide Concentration and Growth 

The above Figure illustrates the trend in Atmospheric CO2 Concentration from 1960 to 

2023 (NOAA, 2023). This graphically depicts the severity of the escalating levels of 

atmospheric CO2, underlining the urgent need for measures to combat this escalating 

environmental crisis. 

2.2 Agriculture's Role in the Carbon Cycle 

Agriculture and the carbon cycle are intertwined in a complex, multifaceted relationship, 

characterized by mutual influences that can be both advantageous and detrimental. 

Changes in land use, such as the transformation of forested areas into managed lands like 

grasslands or crop fields, have profound effects on the carbon cycle. 

These shifts can hasten soil erosion and deplete soil carbon reservoirs, a phenomenon 

examined in various studies (Tang et al., 2019). The severity of this depletion is closely 
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tied to climate variables; extreme weather patterns can throw off the balance of the 

terrestrial carbon cycle, disturbing the natural give-and-take system that typically exists. 

The manner in which carbon is distributed within vegetation presents a significant point of 

uncertainty within this terrestrial carbon cycle. 

As atmospheric carbon concentration rises, so does the rate of photosynthesis. This 

increase contributes to the replenishment of the terrestrial carbon sink, which subsequently 

decreases atmospheric carbon levels. This decrease is then counteracted by exchanges with 

terrestrial and marine carbon sinks, creating a continuous cycle of effects and counter-

effects. This dynamic feedback system evidence how atmospheric and terrestrial factors 

influence each other reciprocally. 

The economic landscapes of South Asian countries have been undergoing transformations 

since the 1980s, with a notable emphasis on agriculture. As these nations have honed their 

agricultural expertise, they have succeeded in boosting agricultural exports (Joshi et al., 

2004). 

Agriculture forms the backbone of South Asia's economy, ensuring livelihoods and food 

security for its vast population. However, this sector also stands as a significant contributor 

to greenhouse gas emissions (Kumara, 2020). With South Asia's susceptibility to the 

impacts of climate change, these emissions not only pose environmental concerns but also 

threaten the livelihoods of millions, further emphasizing the intricate links between 

agriculture, the carbon cycle, and human societies. 

 2.3 South Asia's Agricultural Landscape 

With global population numbers on the rise, we are experiencing a correlating increase in 

the demand for food. Elevating agricultural output in a sustainable way to meet this 

escalating demand is a critical challenge faced by the agricultural sector and food security 

initiatives alike (Liu et al., 2020). Considering the constraints of limited arable land and 

labour availability, one of the most viable solutions lies in augmenting agricultural 

productivity. Doing so would not only meet rising food requirements but also address 

issues like malnutrition, poverty alleviation, and environmental preservation. 



11 

However, the effects of climate change on agriculture cannot be ignored, especially when 

looking towards the future. Projections for South Asia indicate that, by the mid-21st 

century, crop productivity may plunge drastically. Wheat varieties might suffer as much as 

a 50% decrease in productivity compared to levels in 2000, while declines of about 17% 

for rice and 6% for maize are predicted. These changes are due to the direct and indirect 

impacts of our changing climate. (IFPRI, 2009). 

Looking at the potential impact on malnutrition, scenarios excluding climate change 

anticipate a drop from 76 million to 52 million malnourished children in South Asia from 

2000 to 2050. However, when climate change is factored in, this figure is expected to rise 

to 59 million (IFPRI, 2009). A study conducted on South Asia indicated a nonlinear trend 

in agricultural output, with productivity declining after reaching a peak. This decline is 

attributable to shifts in factors like agricultural land use, labour, and fertilizer use (Liu et 

al., 2020). 

In terms of research and focus on agricultural productivity, much of it has been 

concentrated on sub-Saharan Africa and China, leaving South Asia relatively under-

examined. While some South Asian countries witnessed growth in agricultural productivity 

in the past, a downturn became apparent around 2002. This decline was precipitated by 

unsustainable land use and development practices. 

A critical issue within this region's agricultural sector is the absence of social and 

environmental sustainability. Innovation and technology incorporation can potentially 

remedy these challenges. Technological advancements have been evident in the region, yet 

they have not halted the drop in agricultural productivity. The logical resolution appears to 

be the adoption of sustainable farming practices. 

Observations from individual South Asian countries illustrate the varying impact of these 

developments. Bangladesh, India, Nepal, Pakistan, and Sri Lanka have all witnessed 

marginal improvements in productivity due to technological enhancements. Conversely, 

Bhutan has experienced a productivity decline, likely attributable to weakened technology 

implementation (Liu et al., 2020). 
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2.4 Understanding Agricultural Dynamics with the LPJ-GUESS Model 

Crop Functional Types (CFTs) encapsulate broad agricultural characteristics of plant 

species, offering a level of generalization that facilitates their use in climate modeling. 

Aside from minor adaptations for yield-producing components, CFTs align well with Plant 

Functional Types (PFTs) used to depict Potential Natural Vegetation (PNV). CFTs 

effectively represent groupings of crops sharing similar traits. The model's scope is 

broadened by not replicating the behavior of specific plants. Instead, it considers the 

plasticity of crops through the identification of variety-dependent features under local 

conditions. For CFTs, a daily carbon allocation scheme is utilized to gauge the influence 

of environmental conditions and management practices on crop development and yield 

(Bondeau et al., 2007). 

The terrestrial ecosystem functions dually as a sink and a source for carbon emissions. 

According to the Intergovernmental Panel on Climate Change (IPCC), it can sequester 

approximately 2 GtC/year. Both vegetation and soil contribute to the absorption of 

atmospheric carbon. This leads researchers to a novel challenge in climate change 

mitigation: the optimization of land use management practices to preserve existing carbon 

stocks and augment them. Documenting these processes is a requirement stipulated by the 

IPCC. 

Land use practices can instigate shifts in land cover, which, in turn, affect the associated 

carbon stocks. The transition from one ecosystem to another could stem from natural 

processes or be the result of human activities. The carbon storage capacity of soil is 

influenced by factors such as vegetation type, rainfall, and temperature. Any disruption to 

the carbon stock equilibrium can prompt the soil to function as a source or sink for carbon 

until a new balance is reached (Guo and Gifford, 2002). 

Understanding these interactions between land use, vegetation, and carbon storage is 

crucial in our ongoing efforts to mitigate climate change impacts. The LPJ-GUESS model, 

with its incorporation of CFTs, provides a valuable tool for examining these dynamics and 

informing sustainable land management practices. 
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2.5 LPJ-GUESS Model Related Studies 

In a 2022 study, Ma et al. (2022) delved into the simulation of symbiotic nitrogen fixation 

in grain legumes using the LPJ-GUESS model. Their research simulated daily plant growth 

parameters based on the developing plant's heat requirements. The net primary productivity 

and CO2 emissions were modeled as components of autotrophic respiration. Once the 

development stage concluded, nitrogen consumption was halved. The resultant data was 

compared to the FAO data and a Pearson correlation was used for data analysis. The 

research concluded that modelled data closely aligns with observed data, particularly in 

site-specific simulations. An intriguing linear relationship between biological nitrogen 

fixation and legume yield was established, with a negative correlation discovered between 

the nitrogen fertilizer rate and nitrogen fixation. 

In another publication, Ma et al. (2022) explored the effects of varying agricultural 

management practices on carbon stocks, nitrogen, and crop productivity, again employing 

the LPJ-GUESS model. They examined seven different management strategies and their 

impact on the soil carbon pool, nitrogen loss, and yield. Most simulations indicated a 

decline in soil organic carbon (SOC) due to tillage and other management practices 

compared to regions with conservative agricultural strategies. They concluded that 

conservative agricultural practices could be the key to sustainable food security, 

particularly in regions with poor soil conditions. 

Emmet et al. (2021) assessed the ability of the LPJ-GUESS-LMfireCF model to simulate 

fire, regional biomass, and plant biogeography. They evaluated model performance by 

comparing historical simulations from LPJ-GUESS-LMfireCF with GlobFIRM historical 

simulations. Despite some discrepancies, the LPJ-GUESS-LMfireCF model proved to be 

quite capable in simulating plant regrowth post-fire events. 

Pongracz et al. (2021) probed the biogeochemistry of the Arctic and the sensitivity of the 

permafrost using LPJ-GUESS. They adopted a multi-layer snow scheme instead of a 

single-layer scheme, which led to a 5-10% reduction in the overestimation of permafrost 

decline. They discovered that the multi-level snow scheme more accurately simulated cold 

weather conditions than a static scheme, and that the carbon pool is generally low across 

the region. 
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Meanwhile, Herzfeld et al. (2021) examined the dynamics of soil organic content from 

agricultural management practices using the LPJml model. They projected a decline in 

SOC stock in future scenarios due to increased decomposition from managed agricultural 

cropland. They revealed that tillage practices and residue management could significantly 

influence future SOC stock. 

Similarly, Oberpriller et al. (2021) studied sensitivity in vegetation dynamics considering 

both modelling parameters and climatic drivers using LPJ-GUESS. They suggested that 

the uncertainty in predictions increases with a rise in temperature and that climatic 

variables significantly influence the model predictions. 

Moreover, Lindeskog et al. (2021) examined forest management to estimate forest carbon 

stocks using LPJ-GUESS. The study discovered an increase in the simulated carbon stock 

by 32% for the years 1991-2015. 

Usman et al. (2021) investigated the primary productivity of the Himalayan Hindu Kush 

(HKH) Forest under climate change using LPJ-GUESS. Their research reported that the 

HKH region would remain a significant carbon sink under both ideal and extreme climate 

scenarios. 

In a slightly different approach, Forest et al. (2020) integrated LPJ-GUESS with EMAC to 

induce vegetation dynamics in the general circulation model enabled by atmospheric 

chemistry. They coupled the eco-physiological framework of LPJ-GUESS with EMAC, 

yielding intriguing results. 

Earlier studies by Pugh et al. (2015) and Lindeskog et al. (2013) respectively simulated 

carbon emissions due to land-use changes and the impact of land-use change in the 

ecosystem carbon cycle using LPJ-GUESS. The authors concluded that management 

practices significantly influence food security but only marginally impact land-use change 

emissions. 

These studies have elucidated a wealth of information on the intricate interplay between 

agriculture, climate change, and carbon stocks. The LPJ-GUESS model, thanks to its 

ability to simulate intricate interactions, has proven a valuable tool in these analyses. These 
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findings underscore the importance of prudent land and agricultural management in 

mitigating climate change impacts and enhancing food security. 
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Chapter 3 

 Materials and Methods 

3.1 Study Area 

South Asia, a diverse and vibrant region located at 25.0376° N and 76.4563° E, is 

distinguished by its natural boundaries, the Himalayas to the north and the Indian Ocean to 

the south. This vast region comprises six countries: Bangladesh, Bhutan, India, Nepal, 

Pakistan, and Sri Lanka, each with its unique culture, traditions, and ecosystems. 

Remarkably, despite occupying only 3% of the world's land area, it is home to 

approximately 24% of the global population, marking it as one of the most densely 

populated regions on earth. 

The geography and climate of South Asia vary drastically from towering snow-capped 

mountains to tropical coastlines, fertile plains to arid deserts, fostering a wide array of 

terrestrial ecosystems. Himalayan alpine forests, the fertile Gangetic plains, the tropical 

rainforests of the Western Ghats and Sri Lanka, the mangroves of the Sundarbans, the Thar 

Desert in India and Pakistan, and the unique ecosystem of the northeastern states of India 

exemplify the ecological diversity of the region. These ecosystems not only house rich 

biodiversity but also provide invaluable ecosystem services, such as clean air, water, and 

rich soils that are fundamental to the livelihood of the local communities and the economy 

at large. 

The agricultural sector is a major component of the region's economy, with approximately 

57% of its land dedicated to farming activities. It is noteworthy that about 60% of South 

Asia's workforce is engaged in agricultural activities, signifying the sector's critical role in 

livelihood sustenance. The dominant crops in the region include wheat, rice, maize, and 

soybean, with rice being the most prevalent, and India and Pakistan are among the world's 

leading rice exporters. 

Despite its considerable agricultural output, South Asia confronts the paradox of being the 

hungriest region worldwide, with a Global Hunger Index score of 30.5. Issues related to 

food distribution, poverty, and the socio-economic divide contribute significantly to this 

conundrum. Furthermore, environmental challenges such as deforestation, soil 
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degradation, water scarcity, and climate change pose grave threats to the region's 

ecosystems and agriculture, exacerbating food security issues. 

The region is rich in cultural heritage, boasting centuries-old traditions, languages, 

religions, and philosophies. This cultural diversity adds another layer of complexity to the 

region's ecological dynamics as human-nature relationships are deeply embedded in these 

cultural matrices. The combination of ecological, agricultural, cultural, and socio-

economic factors makes South Asia a dynamic and challenging study area. 

South Asia's terrestrial ecosystems are continually evolving, influenced by both natural 

processes and anthropogenic activities. Investigating the estimation of variation in these 

ecosystems can yield valuable insights into their resilience, adaptability, and vulnerability 

to ongoing changes, thereby facilitating effective conservation and sustainable 

development strategies. This area of research is particularly pertinent in the context of 

escalating environmental challenges and their implications for sustainable livelihoods and 

regional food security. 

 

Figure 2: Map of South Asia 
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3.2 Data Sources and Description 

The study utilized various data sources to execute a comprehensive analysis of the 

terrestrial ecosystems in South Asia and their changes under the influence of climate 

variations. 

Crops Sowing Dates and Harvesting Dates 

The data for the sowing and harvesting dates of the crops were acquired from MIRCA2000. 

These data sets play a significant role in understanding the growing patterns and estimating 

the productivity of various crops across the regions of South Asia. 

Gridlist of South Asia 

The study employed the South Asia Gridlist as a primary geographic reference. It provided 

the geographical boundaries and grid structure for the region of study. 

Crops Growing Area 

The data for the areas under crop cultivation were also obtained from MIRCA2000. This 

data provided insights into the spatial distribution of different crop types, which is crucial 

for evaluating the impacts of climate change on agricultural yield. 

N-fertilization Data 

Provided by the model developers, N-fertilization data was utilized to assess the effects of 

nitrogen fertilization on crop productivity and the terrestrial carbon cycle. 

Soil Data 

Also provided by the model developers, this data set contained information on the soil's 

physical and chemical properties across the study region. This data was crucial in 

predicting how soil conditions might affect the region's vegetation growth and carbon 

sequestration. 

CRU and CRU Miscellaneous Data 

CRU data sets, which include climate data such as precipitation, temperature, and solar 

radiation, were used. These factors have a significant impact on ecosystem productivity 

and hence were crucial for the LPJ-GUESS model's calibration and execution. 
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CO2 Data 

Data on the atmospheric concentration of CO2 was used as it directly influences the 

photosynthetic rates and, consequently, the NPP and NEE of terrestrial ecosystems. 

Global Nitrogen Depositions 

Data provided by the model developers on global nitrogen depositions was used. Nitrogen 

deposition is a key factor influencing plant productivity and soil health, making it crucial 

to estimate changes in vegetation growth and carbon flux. 

These comprehensive and multi-source data facilitated a robust analysis and reliable 

outcomes in studying the variations in South Asian terrestrial ecosystems under climate 

change. 
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Chapter 4 

Results and Discussion 

4.1 Analysis of Crop Yields of Bangladesh 

4.1.1 Wheat 

The FAO data shows a general increasing trend in wheat yields over the period 1991-2015. 

While there are small variations, the trend is clearly upward, suggesting improvements in 

yield over time. The LPJ Guess model data also shows an overall increase in yield. The 

increase is not as smooth as in the FAO data, with more pronounced year-to-year variations, 

but the general trend is upward. 

Both the FAO data and the LPJ Guess model data show increasing yields over time, 

indicating some degree of consistency between the two datasets. 

 

Figure 3: Bangladesh Wheat Yield Scatter Plot 

However, The LPJ Guess model's yield estimates are consistently higher than the FAO's 

values. There is only one instance in 1999 when the LPJ Guess model's estimate is lower 

than the FAO's. The difference between the FAO and LPJ Guess model data seems to 

increase over time. 

Interestingly, the discrepancy between the LPJ Guess model and FAO data appears to be 

growing with time. While in the early 1990s, the LPJ Guess model estimates were around 

15-30% higher than the FAO's, by 2015 the model's estimates are almost 20% higher. 
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The results suggest an overall increase in wheat yields in Bangladesh over the period from 

1991 to 2015, as reported by both the FAO and the LPJ Guess model. 

 

Figure 4: Bangladesh Wheat Yield line Plot 

The consistently higher yield estimates from the LPJ Guess model compared to the FAO 

could indicate that the model might be using data on optimal farming practices or the best 

available wheat varieties, which could result in higher estimated yields than the actual 

yields recorded by the FAO. 

4.1.2 Maize 

The FAO data shows a clear and strong upward trend in maize yields over this time period. 

There's a particularly notable increase around the turn of the millennium, and the yield has 

more or less steadily increased since then. LPJ Guess Model data also shows an overall 

increasing trend over the years. While the increase is not as pronounced or consistent as in 

the FAO data, the overall pattern is of increasing yield. 
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Figure 5: Bangladesh Maize Yield Scatter Plot 

Both the FAO data and the LPJ Guess model data show increasing yields over the time 

period, indicating that both sources agree on the general trend of improving maize 

production in Bangladesh. 

The LPJ Guess model's yield estimates, however, are significantly higher than the FAO's 

values for every year in the dataset. The discrepancy between the two datasets seems to 

have remained fairly consistent over time, with the model consistently predicting a much 

higher yield. 

Moreover, the difference between the two datasets is substantial and consistent, with the 

LPJ Guess model always predicting much higher yields than the FAO. This is despite the 

fact that both sources show the same general trend of increasing yield. 

 

Figure 6: Bangladesh Maize Yield Line Plot 
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The results suggest an overall increase in maize yields in Bangladesh over the period from 

1991 to 2015, as reported by both the FAO and the LPJ Guess model. The consistently 

higher yield estimates from the LPJ Guess model could indicate that the model is based on 

optimal or ideal conditions that may not reflect the actual conditions in Bangladesh. 

4.1.3 Rice 

Both the FAO data and the LPJ GUESS model show an overall increasing trend in the yield 

of rice crop from 1991 to 2015. This suggests that the productivity of rice has been 

improving over the years in Bangladesh. 

The FAO data consistently shows higher yield values than the LPJ GUESS model for every 

year in the given period. This indicates that the model tends to underestimate the yield 

compared to the actual data. 

 

Figure 7: Bangladesh Rice Yield Scatter Plot 

The difference between the FAO data and the model data seems to be increasing over time. 

For instance, the difference in 1991 is about 0.11, while in 2015 it is about 0.23. This 

suggests that the model's underestimation of the yield is becoming more pronounced over 

time. Despite the differences in the absolute values, the general trend of increasing yield 

over time is similar in both the FAO data and the LPJ GUESS model. 
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Figure 8: Bangladesh Rice Yield Line Plot 

These results suggest that while the LPJ GUESS model is able to capture the overall trend 

of increasing rice yield in Bangladesh, it consistently underestimates the yield compared 

to the actual data. The increasing discrepancy over time indicates that the model may not 

be fully accounting for some factors that have contributed to the increase in yield. These 

could include improvements in farming practices, use of better-quality seeds, increased use 

of fertilizers, or changes in climate conditions. Further investigation would be needed to 

identify the specific factors that the model is not capturing. 

4.1.4 Soybean 

Both the FAO data and the model data show an overall increasing trend over the years. 

This suggests that the soybean crop yield in Bangladesh has been improving over the years. 

The most significant difference between the two datasets is the magnitude of the values. 

The FAO data consistently reports higher values than the model data. This could be due to 

a variety of factors, including differences in data collection methods, differences in the 

variables considered by the FAO and the model, or inaccuracies in one or both datasets. 
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Figure 9: Bangladesh Soybean Yield Scatter Plot 

The year-to-year variations in the two datasets also differ. The FAO data shows more 

fluctuation, with the yield decreasing in some years (e.g., 2007, 2009, 2013) and increasing 

in others. The model data, on the other hand, shows a more steady increase over the years, 

with only minor decreases in some years (e.g., 2006, 2009). 

Despite the differences in magnitude and variation, the two datasets show a similar pattern. 

Both datasets show an increase in yield over the years, suggesting that the model is 

capturing the overall trend accurately. 

 

Figure 10: Bangladesh Soybean Yield Scatter Plot 

These results suggest that while the LPJ GUESS model is able to capture the overall trend 

of soybean crop yield in Bangladesh, it consistently underestimates the yield compared to 

the FAO data. This could be due to the model not considering certain factors that influence 
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yield, or due to inaccuracies in the FAO data. Further investigation would be needed to 

determine the cause of this discrepancy. 

4.1.5 Millet 

A general downward trend can be observed in the FAO data from 1991 through 2012, 

followed by an uptick until 2015. The model data does not clearly reflect this trend. The 

model data remains relatively stable throughout this period, with a slight upward trend, 

particularly from 2012 onwards. 

 

Figure 11: Bangladesh Millet Yield Scatter Plot 

The most prominent observation is the persistent difference between the FAO data and the 

model data. For every year listed, the LPJ GUESS model data yields a higher value than 

the FAO data. This suggests that the model is consistently overestimating millet crop yields 

compared to FAO records. 

The variations or changes from year to year seem less pronounced in the model data than 

in the FAO data. The FAO data shows significant fluctuations over time, with a notable 

decrease observed in 2002 and from 2008 to 2012. Conversely, the model data stays within 

a much tighter range, with less variation from year to year. 

Both datasets show a broad agreement on the relative pattern of crop yield over the years, 

with ups and downs at similar timeframes. However, the magnitude of these fluctuations is 

quite different. 
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Figure 12: Bangladesh Millet Yield Line Plot 

It's noteworthy that the model seems to fail to capture the severe yield reductions seen in 

the FAO data in 2002 and 2008-2012. This suggests that there may be factors influencing 

crop yield in those years that the model is not adequately accounting for. 

These results suggest that the LPJ GUESS model may need refinement to more accurately 

represent millet crop yields in Bangladesh. The overestimation by the model across all 

years suggests that the model's parameters or underlying assumptions may need to be 

revisited to improve its accuracy. Therefore, further research and refinement of the model 

are recommended to enhance its predictive power and reliability. 
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4.2 Analysis of Crop Yields of Bhutan  

4.2.1 Wheat 

From the FAO data, we observe a general trend of increasing wheat yield over the years 

from 1991 to 2015. For the LPJ GUESS model, the yield appeared to be relatively stable 

throughout the years with minor fluctuations. 

The FAO data shows more year-on-year variability compared to the LPJ GUESS model. 

The model seems to underpredict the wheat yield, especially in the years after 2008 where 

the actual yield (FAO data) has significantly increased. The greatest difference in values is 

seen in the year 2011, where the FAO reported a yield of 0.26686 while the model predicted 

a considerably lower yield of 0.093333333. 

 

Figure 13: Bhutan Wheat Yield Scatter Plot 

Although the values differ, both data sources show some years of increase and decrease, 

implying that they both might be responding to similar influencing factors, albeit at 

different magnitudes. 

Moreover, a significant surge in the FAO data is noticed starting from 2008, which isn't 

mirrored in the model data. This could suggest that the model might not be accounting for 

certain factors that have contributed to the increased yield during these years. 

The consistent underestimation of the model suggests that it might be missing some key 

variables or dynamics that impact wheat yield. This could include factors like 
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advancements in agricultural technology, changes in agricultural practices, government 

policies, or changes in climate. 

 

Figure 14: Bhutan Wheat Yield Line Plot 

While the LPJ GUESS model provides a consistent yield estimate for wheat in Bhutan 

across the studied period, it fails to capture the rising trend and year-on-year variations in 

the actual yield as per FAO data. This could imply the need for further refinement of the 

model to better align with the ground realities of wheat production in Bhutan. 

4.2.2 Maize 

There is a general upward trend in the FAO data, with maize yields gradually increasing 

over the 25-year period from 1991 to 2015. While the model data also shows some 
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fluctuations, the overall trend is more stable, and does not reflect the increasing trend 

shown by the FAO data. 

 

Figure 15: Bhutan Maize Yield Scatter Plot 

The LPJ GUESS model generally underestimates the yield compared to the FAO data, with 

the discrepancy becoming particularly noticeable from 2004 onwards. The largest 

difference is seen in the year 2004, where the FAO data records a yield of 0.40495, while 

the model predicts a yield of just 0.174666667. 

Both data sets reflect a degree of year-on-year variability in maize yields, suggesting they 

are responsive to similar influencing factors, although at different magnitudes. 

A significant surge in maize yield is seen in the FAO data starting from 2004, which is not 

captured by the model data. This could imply that there were some changes or events 

influencing maize production around that time which the model is not accounting for. 
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Figure 16: Bhutan Maize Yield Line Plot 

The persistent underestimation by the model suggests it may be lacking some key variables 

or dynamics that influence maize yield. This could include factors like changes in farming 

practices, technological advancements in agriculture, weather patterns, or policy shifts. 

The LPJ GUESS model seems to provide a fairly stable estimate for maize yield in Bhutan 

across the period under study, but fails to capture the significant upward trend and inter-

annual variations in the actual yield as per FAO data. This suggests that the model might 

need refinement to accurately reflect the realities of maize production in Bhutan. 

4.2.3 Rice 

The FAO data shows a clear increasing trend in rice yields from 1991 to 2015. The LPJ 

GUESS model data, on the other hand, is much more stable with slight increase over the 

years. 

The model consistently underestimates the yield compared to the FAO data throughout all 

years. The discrepancy is especially pronounced from 2008 onwards, with the FAO data 

showing a significant increase in yield that is not mirrored in the model data. The greatest 

difference is observed in 2008, where the FAO reported a yield of 0.39983 while the model 

predicted only 0.050833333. 
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Figure 17: Bhutan Rice Yield Scatter Plot 

Both data sets show an upward trend over the years, indicating they may be influenced by 

similar factors such as climate, but the magnitude of the increase is much larger in the FAO 

data. 

The sharp increase in FAO data from 2008 onwards suggests there may have been factors 

at play that greatly increased rice yields in Bhutan. This could include advancements in 

rice cultivation techniques, introduction of higher yielding varieties, or policy changes. 

 

Figure 18: Bhutan Rice Yield Line Plot 

While the LPJ GUESS model provides a conservative, stable estimate for rice yield in 

Bhutan, it fails to capture the significant upward trend in actual yields recorded by the FAO. 

This indicates a need for refinement of the model, to include additional variables or 
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dynamics that have driven the increase in rice production in Bhutan. Such a refined model 

could provide a more accurate tool for predicting future rice yields under various scenarios. 

4.2.4 Millet 

The FAO data shows an upward trend in millet yields from 1991 to 2015, albeit with several 

fluctuations. On the other hand, the LPJ GUESS model data shows a more stable trend, 

with slight fluctuations but no clear increase. 

While the model consistently overestimates the yield compared to the FAO data from 1991 

to 2007, this trend shifts from 2008 onwards, with the FAO data generally reporting higher 

yields. The highest discrepancy occurs in 2014, where the FAO reported a yield of 0.28706 

while the model predicted a significantly lower yield of 0.200083333. 

 

Figure 19: Bhutan Millet Yield Scatter Plot 

Despite the different magnitudes, both data sets show year-on-year fluctuations, suggesting 

they respond to similar influencing factors. 

Moreover, the FAO data shows a sharp increase in yield from 2008 to 2014, which is not 

captured by the model. This could indicate that there were significant advancements or 

changes in millet farming practices during this period that are not accounted for in the 

model. 



34 

K
g
/m

2
/y

ea
r 

 

Figure 20: Bhutan Millet Yield Line Plot 

The divergence in trends from 2008 onwards indicates that the model may not accurately 

represent all factors influencing millet yield in Bhutan, especially any changes or 

improvements introduced around 2008. 

While the LPJ GUESS model provides a relatively consistent estimate for millet yield in 

Bhutan, it does not accurately reflect the upward trend and fluctuations in the FAO data, 

especially after 2008. This suggests the need for further refinement of the model to include 

any factors or dynamics that have influenced the increase in millet yields in Bhutan, which 

could improve the model's accuracy in future yield predictions. 
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4.3 Analysis of Crop Yields of India 

4.3.1 Wheat 

Both the FAO data and the LPJ GUESS model data show an overall upward trend in wheat 

yields from 1991 to 2015, indicating improving productivity over this period.  

The LPJ GUESS model consistently underestimates the wheat yield compared to the FAO 

data throughout the observed period. The difference between the two data sets gradually 

narrows down over time but remains significant, with the largest gap occurring in 1991 

(0.22814 FAO vs 0.108380953 Model) and the smallest in 2015 (0.27496 FAO vs 

0.179126685 Model). 

 

Figure 21: India Wheat Yield Line Plot 

Both data sets reflect a similar pattern of fluctuations, suggesting that they respond to the 

same influencing factors, such as seasonal variations, climate conditions, or changes in 

farming practices. 

Furthermore, from 2006 onwards, the model data shows a significant increase in yield, 

which is more in line with the upward trend observed in the FAO data. This may suggest 

improvements in the model's alignment with actual yield factors during this period. 

The consistent underestimation of the wheat yield by the model suggests that it may not 

fully account for certain influential factors contributing to wheat productivity in India, such 
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as advancements in agricultural technology, improved irrigation methods, or the use of 

high-yield varieties. 

 

Figure 22: India Wheat Yield Scatter Line Plot 

While the LPJ GUESS model provides a decent trend representation for wheat yield in 

India, it consistently underestimates the actual yield as per the FAO data. This indicates a 

need for further refinement of the model to include all potential factors influencing wheat 

productivity in India. Nonetheless, the model seems to be progressively improving, as seen 

by the narrowing gap between the model and FAO data in later years. 

4.3.2 Maize 

Both the FAO data and the LPJ GUESS model data show an upward trend in maize yields 

from 1991 to 2015, suggesting an increase in productivity over time. 

Unlike the previous analysis for wheat, the LPJ GUESS model consistently overestimates 

the maize yield compared to the FAO data throughout the observed period. The difference 

between the two datasets, while significant, does not seem to be decreasing or increasing 

consistently over time. 

Both data sets show similar fluctuation patterns, suggesting that they respond to the same 

influencing factors. Notably, both datasets show a dip in yield in 2002 and a peak in 2011. 
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Figure 23: India Maize Yield Line Plot 

Even though the model overestimates the yield, it accurately captures the relative ups and 

downs in the FAO data. This suggests that the model is likely capturing the correct factors 

influencing yield but perhaps not accurately capturing the magnitude of these factors. 

The consistent overestimation of the maize yield by the model indicates it may not fully 

account for some constraints on maize production in India.  

 

Figure 24: India Maize Yield Scatter Plot 
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While the LPJ GUESS model captures the trend and fluctuations in maize yield in India 

reasonably well, it consistently overestimates the yield as per the FAO data. This indicates 

that the model may need refinement to better account for factors that limit maize production 

in India. However, the model's ability to reflect the relative changes in yield over time 

suggests that it captures the primary influences on maize yield. 

4.3.3 Rice 

Both FAO and the LPJ GUESS model show an increasing trend in rice yield from 1991 to 

2015, which indicates that rice productivity in India has generally improved over the years. 

The LPJ GUESS model consistently underestimates the rice yield when compared with the 

FAO data for the entire period from 1991 to 2015. The gap between the model's output and 

the FAO data does not show a clear pattern of increase or decrease, and the underestimation 

remains consistent across the years. 

 

Figure 25: India Rice Yield Scatter Plot 

Despite the difference in the values, both the model output and the FAO data follow a 

similar pattern, showing rises and falls in the yield in the same years. This similarity 

suggests that the model captures the influencing factors impacting the rice yield well. 

Both the FAO data and the model's output depict a dip in the yield in 2002, followed by an 

increasing trend. This similarity further strengthens the observation that the model is able 

to capture significant changes in the yield, though it may not predict the actual yield values 

accurately. 
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The consistent underestimation of the rice yield by the LPJ GUESS model could indicate 

a limitation in the model's ability to fully capture the factors contributing to rice production 

in India.  

 

Figure 26: India Rice Yield Line Plot 

While the LPJ GUESS model effectively captures the general trend and fluctuations in rice 

yield in India, it consistently underestimates the yield compared to the FAO data. This 

might necessitate further calibration or refinement of the model to enhance its predictive 

accuracy. Despite this, the model's overall performance in reflecting changes in yield 

suggests it captures the primary influences on rice yield, which can be valuable in 

simulating future scenarios. 

4.3.4 Soybean 

The FAO data shows a somewhat variable, but overall increasing trend in soybean yield 

from 1991 to 2015, except for a decline in the last few years. The model data, in contrast, 

consistently increases over the years, without showing a clear decline towards the end. 

The LPJ GUESS model tends to underestimate the soybean yield when compared with 

FAO data across all years, with a constant gap that does not exhibit a clear trend of increase 

or decrease. 

Despite the differences in the values, both datasets show a general upward trend, with both 

indicating similar years of higher and lower yield, indicating that the model is able to 

capture some of the main influencing factors affecting soybean yield. 
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The FAO data shows a significant decline in soybean yield from 2012 to 2015, which is 

not reflected in the model's output. This could indicate that the model might not be 

capturing certain significant factors affecting soybean yield in recent years. 

 

Figure 27: India Soybean Yield Scatter Plot 

The constant underestimation of the yield by the model suggests it may not capture all 

relevant variables influencing soybean production in India. Although the LPJ GUESS 

model generally captures the trend in soybean yield in India, it systematically 

underestimates the yield when compared to the FAO data. This indicates a potential need 

for further refinement or calibration of the model.  

 

Figure 28: India Soybean Yield Line Plot 
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The divergence between FAO data and the model output towards the last few years further 

emphasizes this need. Despite these shortcomings, the overall trend captured by the model 

could still be useful for understanding the broad patterns in soybean yield over time. 

4.3.5 Millet 

Both the FAO data and the LPJ GUESS model output indicate a general upward trend in 

millet yield over the years. 

The LPJ GUESS model significantly overestimates the yield of millet as compared to the 

FAO data for all the years. The discrepancy between the two datasets seems to be increasing 

over time, suggesting that the model's assumptions might be increasingly divergent from 

actual conditions. 

Despite the differences in yield levels, the two datasets present similar fluctuation patterns, 

with both the FAO data and the model's output showing some years with dips followed by 

recovery. 

 

Figure 29: India Millet Yield Scatter Plot 

There are significant dips in the FAO data in 1993, 2002, and 2009, which the model does 

not capture. This suggests that the model might not be adequately considering some factors 

that can drastically reduce yield in some years. 

The constant overestimation of yield by the model suggests it might not be capturing some 

critical constraints in millet production in India. It could be missing some important factors, 

such as the effects of pests, diseases, or extreme weather events. 
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Figure 30: India Millet Yield Line Plot 

The LPJ GUESS model seems to capture the general trend in millet yield in India but 

consistently overestimates the yield compared to the FAO data. This indicates a need to 

refine the model to more accurately predict millet yield in India. The model's inability to 

capture significant yield reductions in certain years further emphasizes this need. Despite 

these limitations, the model's output could still provide valuable insights into the general 

patterns of millet yield over time. 
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4.4 Analysis of Crop Yields of Nepal 

4.4.1 Wheat 

The dataset presented compares the yield of wheat in Nepal as per the Food and Agriculture 

Organization (FAO) data and the LPJ GUESS model predictions from 1991 to 2015.  

Both the FAO data and the LPJ GUESS model output indicate an overall upward trend in 

wheat yield over the years. 

The LPJ GUESS model consistently underestimates the yield of wheat as compared to the 

FAO data for all the years. The gap between the FAO data and the model's estimates appears 

to be growing over time, suggesting that the model may not fully capture the factors 

contributing to wheat yield increases. 

 

 

 

 

 

 

 

Figure 31: Nepal Wheat Yield Scatter Plot 

Despite the differences in yield levels, both present similar patterns of fluctuations. Both 

the FAO data and the model's output show increases and decreases in yield from year to 

year, indicating that the model is able to capture the general trend in wheat yield, even if it 

underestimates the actual values. 

Moreover, there is a significant dip in FAO data in 2009, which the model does not capture 

as sharply. This suggests that the model might not be adequately considering some factors 

that can drastically reduce yield in some years. 
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The constant underestimation of yield by the model suggests it might not be capturing some 

key facilitators in wheat production in Nepal. It could be missing factors such as 

advancements in farming techniques, improved seed quality, better pest management, etc. 

 

Figure 32: Nepal Wheat Yield Line Plot 

While the LPJ GUESS model appears to capture the general trend in wheat yield in Nepal, 

it consistently underestimates the yield compared to FAO data. This suggests the need for 

refining the model to accurately predict wheat yield in Nepal. Despite these limitations, the 

model's output can still provide valuable insights into the general trends and fluctuations 

in wheat yield over time. 

4.4.2 Maize 

Both FAO data and the LPJ GUESS model show an upward trend in maize yield over the 

years, indicating improvements in production over time.  

The LPJ GUESS model tends to underestimate maize yield compared to FAO data, albeit 

the gap is narrower compared to some previous crops discussed. Particularly from the year 

2010 onward, the model's predictions get closer to the FAO figures. 
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Figure 33: Nepal Maize Yield Scatter Plot 

Despite differences in specific yield values, both datasets show similar patterns of year-to-

year fluctuations, indicating that the model generally follows the same trend as the FAO 

data. 

The gradually decreasing discrepancy between the model and FAO data suggests the model 

might be improving in capturing factors influencing maize production in Nepal. 

 

Figure 34: Nepal Maize Yield Line Plot 

The LPJ GUESS model for maize in Nepal seems to capture the general upward trend in 

yield over time and does a comparatively better job than for previous crops, particularly in 

later years. However, consistent underestimation suggests room for further refinement. 

These insights can guide future model adjustments to enhance their predictive accuracy for 

maize yield in Nepal.  
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4.4.3 Rice 

Both the FAO data and the LPJ GUESS model demonstrate an upward trend in rice yield 

over the years, indicating a general increase in productivity. 

Throughout the entire period, the LPJ GUESS model tends to underestimate the rice yield 

compared to the FAO data. While the model's predictions also show an increasing trend, 

they are consistently lower than the FAO figures. 

 

Figure 35: Nepal Rice Yield Scatter Plot 

However, despite discrepancies in actual yield values, both datasets show similar year-to-

year fluctuations, indicating that the model generally captures the same trends as the FAO 

data. Moreover, In the last five years of the dataset (2011-2015), the model's predictions 

seem to be getting closer to the FAO data, suggesting possible improvements in the model's 

predictive capabilities over time. 
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Despite the general underestimation, the convergence of the model's predictions to the FAO 

data in recent years might indicate a learning curve or an adjustment of the model's 

parameters that are more suitable for predicting rice yield in Nepal. 

The LPJ GUESS model for rice in Nepal appears to capture the overall upward trend in 

yield, despite its consistent underestimation. Particularly in the later years, the model seems 

to be improving, suggesting potential refinements in the model. However, the consistent 

underestimation throughout most of the observed period indicates a need for further 

improvement. Future adjustments to the model should take these insights into account to 

enhance its predictive accuracy for rice yield in Nepal. 

4.4.4 Millet 

The FAO data show a slight upward trend in millet yield over the years, while the LPJ 

GUESS model suggests a generally stable yield with minor fluctuations. 

The model consistently overestimates the millet yield compared to the FAO data. This 

disparity might be due to the model's parameters or underlying assumptions which could 

be overestimating the productivity of millet in Nepal. 

Figure 36: Nepal Rice Yield Line Plot 
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Figure 37: Nepal Millet Yield Scatter Plot 

While the LPJ GUESS model's yield predictions are consistently higher, they tend to move 

parallel to the FAO data, reflecting a similar year-to-year variation pattern. 

Despite the consistent overestimation, the relative stability in the model's predictions 

compared to the slight upward trend in the FAO data suggests that the model might not be 

fully capturing the factors contributing to the increase in yield observed in the FAO data. 

 

Figure 38: Nepal Millet Yield Line Plot 

While the LPJ GUESS model for millet in Nepal reflects the year-to-year fluctuations 

similar to the FAO data, it consistently overestimates the yield and fails to capture the slight 

upward trend shown in the FAO data. This suggests that the model might require further 

refinement to improve its predictive accuracy for millet yield in Nepal.  
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4.5 Analysis of Crop Yields of Pakistan 

4.5.1 Wheat 

Both FAO and Model data show an upward trend over time, which indicates that wheat 

production or yield in Pakistan is generally increasing. 

The LPJ GUESS model consistently predicts lower values than the FAO data. However, 

the discrepancy appears to be less pronounced, suggesting that the model might be more 

accurate for wheat crop in Pakistan. 

Both datasets show variations, and the patterns of fluctuation appear quite similar. An 

increase or decrease in FAO data is typically mirrored in the model data. 

 

Figure 39: Pakistan Wheat Yield Scatter Plot 

Both data series rise and fall in a similar pattern. The overall similarity in the patterns of 

fluctuation between the two sets indicates that the model is capturing the fundamental 

dynamics of wheat production in Pakistan, though it underestimates the values. 

Around the year 2008, the model data shows a significant increase that is close to 

the actual FAO data. This suggests that the model is becoming more accurate over time, or 

it might be more capable of capturing certain factors or conditions related to wheat 

production during these years. 
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Figure 40: Pakistan Wheat Yield Line Plot 

These results suggest that the LPJ GUESS model, while underestimating wheat yields in 

Pakistan, is capturing the general upward trend and fluctuation patterns well. The reduced 

discrepancy in later years indicates that the model might be improving in accuracy over 

time or is more suited to capturing the conditions of these particular years. 

4.5.2 Maize 

From a broad perspective, both FAO and Model data show an upward trend over time, 

implying that Maize production or yield in Pakistan is generally increasing. The LPJ 

GUESS model consistently predicts lower values than the actual FAO data. This implies 

that the model might be underestimating Maize yields for Pakistan. 

Both datasets show variations, but it's worth noting that the variance in the FAO data seems 

to be larger than in the model data, particularly in later years. The FAO data exhibits a more 

pronounced increase, especially notable from the 14th data point onward. 

Despite the model's consistent underestimation, the overall patterns in both datasets are 

quite similar. Both data series rise and seem to fluctuate in tandem. When the FAO data 

increases or decreases, the LPJ GUESS model data does too, though to a lesser extent. 



51 

K
g

/m
2
/y

ea
r 

M
o

d
el

 (
K

g
/m

2
/y

ea
r)

 

FAO (Kg/m2/year) 
 

Figure 41: Pakistan Maize Yield Scatter Plot 

Moreover, From the 2003 onward, there is a significant rise in the FAO data, which the 

model does not fully capture. This could be a point of interest for further investigation. 

Why is the model not capturing this increased yield? This might be indicative of the 

increased adoption/cultivation of spring maize during that period, especially due to the 

active involvement of multinationals in Pakistan (Tariq & Iqbal, 2010). 

 

Figure 42: Pakistan Maize Yield Line Plot 
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These results suggest that while the LPJ GUESS model captures the overall upward trend 

and some fluctuations in Maize yields in Pakistan, it consistently underestimates the yields. 

The model's inability to capture the more significant increases in yield suggests that there 

might be factors at play not currently incorporated in the model. 

4.5.3 Rice 

Both FAO and Model data show an overall increasing trend over time, implying that Rice 

yield in Pakistan is generally improving. 

Similar to the Maize data, the LPJ GUESS model consistently predicts lower values than 

the actual FAO data. This could indicate that the model systematically underestimates Rice 

yields in Pakistan. 

 

Figure 43: Pakistan Rice Yield Scatter Plot 

Both datasets show fluctuations, but the variance in the FAO data is larger than in the model 

data. Some of these variations do not appear to be fully captured by the model. 

Despite the model's consistent underestimation, it does reflect the overall patterns seen in 

the FAO data. When the FAO data increases or decreases, the LPJ GUESS model data 

follows a similar pattern, although to a lesser extent.  

The difference between the FAO and model data seems to widen in later years. The model's 

predictions do not increase at the same rate as the FAO data, indicating that the model 

might be missing some key factors affecting rice yields in these years. 
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Figure 44: Pakistan Rice Yield Line Plot 

The results suggest that while the LPJ GUESS model captures the general upward trend 

and certain fluctuations in Rice yields in Pakistan, it consistently underestimates the yields. 

The widening gap in later years suggests that the model is likely not accounting for certain 

factors that have positively impacted rice yields. 

4.5.4 Millet 

The FAO data shows a gradual increasing trend in millet yields over the years. The increase 

is not linear, with some years seeing a decline, but overall, the trend is upwards. The LPJ 

Guess model data also displays a general increasing trend. Although there are some minor 

fluctuations, the model shows an upward trend over the years. Both data sets show an 

overall increase in yield over time, although the rates and exact year-to-year values differ. 
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Figure 45: Pakistan Millet Yield Scatter Plot 

The results suggest that both the FAO and the LPJ Guess model have observed an increase 

in millet yield over the years, potentially due to improvements in farming practices, use of 

improved varieties, or other factors. 

 

Figure 46: Pakistan Millet Yield Line Plot 

However, the substantial difference in absolute yield values suggests that the LPJ Guess 

model might be overestimating millet yields in Pakistan or the FAO might be 

underreporting them. The reasons for this could include differences in underlying 



55 

M
o

d
el

 (
K

g
/m

2
/y

ea
r)

 

FAO (Kg/m2/year) 

assumptions, data collection and calculation methods, or inaccuracies in the input data used 

by the model or reported to the FAO. Further investigation would be needed to identify the 

reasons for the discrepancy and to improve the accuracy of both yield estimates and 

predictions. 

4.6 Analysis of Crop Yields of Siri Lanka 

4.6.1 Rice 

Both the FAO data and the LPJ GUESS model show an overall increase in rice yield during 

the observed period. However, the FAO data suggests a higher rate of increase compared 

to the model. 

The LPJ GUESS model consistently underestimates the rice yield in Sri Lanka compared 

to the FAO data. The discrepancy between the two datasets seems to be growing larger 

with time, suggesting that the model is not completely capturing the factors contributing to 

the increased yield over time. 

 

Figure 47: Sri Lanka Rice Yield Scatter Plot 

The model generally tracks the year-on-year fluctuations in yield as reported by the FAO. 

For example, the dip in yield in 1994 and the subsequent recovery are mirrored in both 

datasets. 

There is a significant difference in the overall yield values between the FAO data and the 

LPJ GUESS model. This could be a result of factors not accounted for in the model, such 
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as advancements in farming practices, changes in the use of fertilizers, or other local 

conditions affecting rice growth in Sri Lanka. 

 

Figure 48: Sri Lanka Rice Yield Line Plot 

While the LPJ GUESS model for rice in Sri Lanka reflects the year-to-year fluctuations in 

the FAO data, it consistently underestimates the yield and fails to match the upward trend 

in yield as seen in the FAO data. This indicates that the model might require calibration or 

inclusion of additional parameters to improve its predictive accuracy for rice yield in Sri 

Lanka. 
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4.7 Analysis of Net Primary Productivity (NPP) of South Asia 

Net Primary Productivity (NPP) refers to the rate at which photosynthetic organisms, 

primarily plants, produce organic matter in an ecosystem, subtracting the energy expended 

during respiration. It serves as a critical metric for understanding energy flow and biomass 

accumulation in ecological systems. NPP is commonly expressed in units of mass or energy 

per unit area over a specific time period. Variation in NPP estimated in this study are 

depicted in figure 49 and figure 50. 

4.7.1 Temporal Mean Plot 

Figure 49 presents the changes in temporal mean of Net Primary Productivity (NPP) for 

various crops—specifically, wheat (Tewwi), maize (TeCsi), soybean (TeSoi), rice (TrRii), 

and millet (TrMii)—across South Asia during the period from 1991 to 2015. 

 

Figure 49: NPP Temporal Mean Plot 
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Wheat 

The highest productivity (0.4-0.6 Kg C/m²/yr) is seen in Punjab and Sindh of Pakistan and 

parts of KP and Baluchistan, which could be attributed to the fertile soil and favorable 

climate conditions for wheat in these areas. In India, parts of Rajasthan, Gujarat, 

Maharashtra, Chhattisgarh, and Telangana have moderate productivity (0.2-0.4 Kg 

C/m²/yr). The Madhya Pradesh region, a major wheat-growing area in India, has a mix of 

moderate and higher productivity. Punjab and UP, known for their wheat production, show 

a mixture of lower to moderate productivity which may seem a bit off as these are major 

wheat-producing regions in India. The lower productivity in Southern India and countries 

like Sri Lanka, Nepal, Bhutan could be due to their hotter and more humid climates which 

are not as suitable for wheat cultivation. 

Maize 

Pakistan shows very low productivity for maize, which might be accurate as maize is not 

the major crop in Pakistan. For India, Rajasthan, UP, Bihar, Punjab, Haryana, and 

Uttarakhand show very low productivity as well. These areas are known more for their 

wheat and rice production than maize. However, seeing other regions of India with 

moderate to high productivity is a bit unexpected as maize is typically grown in cooler 

regions of India. Therefore, the model might be slightly off for India in the case of maize. 

Rice 

Punjab and Sindh of Pakistan show higher productivity for rice, which makes sense as these 

areas have extensive irrigation networks suitable for rice cultivation. Most of India shows 

lower to moderate productivity except for Madhya Pradesh, which appears as a major rice-

producing area according to the model. This is a bit surprising because traditionally, states 

like West Bengal, Punjab, UP, and Andhra Pradesh are the major rice-producing areas in 

India. These areas are not depicted as high productivity in the model, suggesting the model 

might not be entirely accurate for rice production. 

Soybean 

According to the model, soybean production across South Asia is very low. In India, 

moderate productivity is shown in Karnataka, Andhra Pradesh, Telangana, Maharashtra, 

and parts of Chhattisgarh and Gujarat. This seems accurate because Madhya Pradesh, 

Maharashtra, and Rajasthan are the major soybean-producing states in India. But the 
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absence of Madhya Pradesh and Rajasthan in moderate productivity could indicate that the 

model is not completely accurate for soybean production. 

Millet 

The model shows higher productivity for millet across most of India and Pakistan, which 

is accurate as millet is a hardy crop that can grow well in dry and high-temperature regions, 

common conditions in these countries. South India, Sri Lanka, and Nepal show very low 

productivity, which might be due to the higher rainfall and humidity in these regions not 

being suitable for millet cultivation. 

Spatial Mean Plot 

Figure 50 illustrates the variations in Spatial mean of Net Primary Productivity (NPP) for 

various crops—namely, wheat (Tewwi), maize (TeCsi), soybean (TeSoi), rice (TrRii), and 

millet (TrMii)—across South Asia during the period from 1991 to 2015. 

 

Figure 50: NPP Spatial Mean Plot 

Soybean 

Soybean shows the lowest NPP, starting from 0.02 and ending at 0.03 Kg C/m²/yr. There 

are minor fluctuations over the years, but overall, the NPP for soybean seems to be stable. 
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Given soybean's preference for specific climates and soil conditions, the lower NPP might 

be expected. However, one needs to take into account the expansion of soybean cultivation 

due to its increasing demand, which might not be reflected in the model. 

Rice 

Rice shows a slightly higher NPP than soybeans, starting from 0.12 and ending at 0.15 Kg 

C/m²/yr. The fluctuations indicate variations in annual productivity, which could be due to 

yearly changes in weather conditions, irrigation availability, and other factors. The overall 

increase could suggest improved farming practices, expanded irrigation, or climate changes 

favoring rice cultivation. 

Wheat 

The wheat line starts from 0.17 and ends at 0.25 Kg C/m²/yr, indicating an overall increase 

in NPP over the 25 years. The rise in NPP could be due to improved farming practices, the 

introduction of new high-yield varieties, increased use of fertilizers, and expansion of 

wheat cultivation areas. 

Maize 

Maize shows a higher NPP, starting from 0.26 and ending around 0.325 Kg C/m²/yr. The 

gradual increase over the years could be due to similar reasons as wheat - the adoption of 

modern farming practices, increased use of fertilizers, and possibly an expansion of 

cultivated areas. 

Millet 

Millet has the highest NPP, starting from 0.28 and ending around 0.33 Kg C/m²/yr. The 

overall increase in NPP could be due to the expansion of millet cultivation in arid and semi-

arid regions, and the increased use of hybrid varieties that are high yielding and more 

resistant to drought and pests. 
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4.8 Analysis of Net Ecosystem Exchange (NEE) of South Asia 

Net Ecosystem Exchange (NEE) is a measure of the net flux of carbon dioxide between an 

ecosystem and the atmosphere, accounting for both carbon assimilation through 

photosynthesis and carbon release via ecosystem respiration. It serves as an integral 

indicator for assessing an ecosystem's role as a carbon sink or source. NEE is usually 

quantified in units of mass of carbon per unit area per unit time. Variation in NEE estimated 

in this study are depicted in figure 51 and figure 52. 

4.8.1 Temporal Mean of NEE 

The Temporal Mean of NEE represents the average NEE values at each location over the 

time period from 1990 to 2015. The colors provide an indication of whether a region is, on 

average, a carbon sink or a source over that period. Regions in blue are carbon sinks (more 

carbon is absorbed than released), while yellow regions are carbon sources (more carbon 

is released than absorbed). Green regions are close to carbon neutral. 

 
Figure 51: NEE Temporal Mean Plot 

Most of South Asia is light or dark green, suggesting that these regions are close to carbon 

neutral on average, with their carbon uptake roughly equal to their carbon output. 
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Dark blue spots in the Punjab and Khyber Pakhtunkhwa regions of Pakistan, and in Uttar 

Pradesh, Himachal Pradesh, and some southern regions of India indicate stronger carbon 

sinks. These could be areas with significant vegetation cover, such as forests, that are 

absorbing and storing carbon at a higher rate. The presence of forests, healthy agricultural 

lands, and other ecosystems with high carbon sequestration capacity explain these 

observations. 

The yellow spots in Gujarat, Rajasthan, Madhya Pradesh, Andhra Pradesh, and Karnataka 

suggest these areas are carbon sources. These areas are releasing more carbon into the 

atmosphere than they are absorbing. This could be due to a variety of reasons: land 

degradation, deforestation, or intensive agriculture can all lead to the release of stored 

carbon. Also, these regions include arid and semi-arid regions (like Rajasthan and parts of 

Gujarat), where vegetation cover might be sparse leading to less carbon absorption. 

4.8.2 Spatial Mean of NEE 

The Spatial Mean plot represents the average NEE across all of South Asia for each year 

from 1990 to 2015. This plot shows how the carbon balance of the entire region has 

fluctuated over time. 

 

Figure 52: NEE Spatial Mean Plot 
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The pattern, with the line rising and falling, suggests that the net carbon balance of South 

Asia has been fluctuating significantly from year to year. When the line is above zero, 

South Asia as a whole is a net carbon source, and when it's below zero, it's a net carbon 

sink. 

The rapid fluctuations could be due to a variety of factors. Changes in land use, such as 

deforestation or the conversion of natural ecosystems to agriculture, can alter the carbon 

balance. For instance, wetter years could lead to more plant growth and hence more carbon 

absorption, whereas drought years could lead to increased respiration and less carbon 

absorption. 
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4.9 Analysis of Carbon Pool of South Asia 

A carbon pool refers to a reservoir within the Earth system that has the capacity to 

accumulate, store, and release carbon in various forms such as organic matter, inorganic 

carbonates, or carbon dioxide. These pools play a pivotal role in the global carbon cycle, 

influencing the concentration of atmospheric greenhouse gases. Common examples 

include forests, soils, oceans, and the atmosphere. 

4.9.1 Temporal Mean Analysis 

The figure 53 primarily dominated by light and dark blue suggests that much of South Asia 

had relatively low Cpool values, specifically between 0 to 0.05 KgC/m2, and 0.05 to 0.10 

KgC/m2. This could be due to a range of factors, including population density, agricultural 

practices, and the predominance of certain types of land use that might not contribute 

significantly to carbon sequestration. 

 

Figure 53: Cpool Temporal Mean Plot 

The greenish regions in the northern parts of Pakistan and India, as well as some parts of 

southern India, indicate Cpool values in the range of 0.10-0.15 KgC/m2. This could be 

attributed to the presence of dense forested areas, which are known to sequester more 

carbon due to high biomass. 
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The Tamil Nadu region of India and Sri Lanka, shaded orangish, signify even higher Cpool 

values of 0.15 to 0.2 KgC/m2. This could be a result of the presence of diverse vegetation 

types, including forests and mangroves, that store substantial amounts of carbon. 

Higher value of Cpool in Bhutan can be attributed to their extensive forest cover and 

vegetation. Whereas Nepal, and Bangladesh, being bluish in color, seem to have lower 

carbon pool values. For Nepal, despite their forest cover, the rugged mountainous terrain 

might limit vegetation growth, thereby resulting in a lower carbon pool. As for Bangladesh, 

rapid urbanization might be the contributing factor. 

4.9.2 Spatial Mean Analysis  

The fluctuating line plot representing spatial mean Cpool values from 1990 to 2015 

suggests variability in vegetation carbon sequestration over time. This could be due to 

continuous and spontaneous changes taking place in South Asia such as changes in land 

use, climatic variations, natural disasters, or human activities. 

 

Figure 54: Cpool Spatial Mean Plot 

The steep rise in the carbon pool in 2012 suggests a significant increase in carbon 

sequestration that year. This could be due to large-scale afforestation programs, an 
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unusually high growth period for vegetation due to favorable weather conditions, or a 

decrease in activities that release carbon, such as reduced deforestation. 

The fact that the line ends at around 0.027 Kg C/m²/yr in 2015 suggests that the carbon 

pool at the end of the period is larger than it was at the beginning. This would suggest an 

overall net increase in the carbon pool over the period. 

 

4.10 Analysis of Carbon Flux of South Asia 

4.10.1 Temporal Mean of Vegetative Cflux 

The different colors on the map represent different values of carbon flux in the regions of 

South Asia. Since most of the color shades are negative, this suggests that, on average, 

most regions were net absorbers of carbon over this time period - they were sequestering 

more carbon than they were emitting. 

 

Regions like most of Pakistan, major parts of India, Sri Lanka, and Bangladesh, which are 

shaded in shades of blue and green, are associated with higher carbon sequestration (lower 

values of Cflux between -0.5 and -0.2 KgC/m^2). This may suggest these regions had 

healthy vegetation growth, possibly due to favorable conditions for photosynthesis such as 

adequate rainfall and temperature, which in turn led to a greater intake of CO2 from the 

Figure 55: Cflux Temporal Mean Plot 
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atmosphere. In the context of the carbon cycle, these regions can be considered as "carbon 

sinks". 

Conversely, areas that are shaded orange, like most of Baluchistan, northern regions of 

Pakistan and India, and the countries of Nepal and Bhutan, have less negative Cflux values, 

approaching 0 KgC/m^2. This could suggest that these regions had lower rates of carbon 

sequestration, potentially due to factors like lower plant growth, greater amount of soil 

respiration, or human activities like deforestation, land-use changes, and burning of 

biomass. 

4.10.2 Spatial Mean of Vegetative Cflux 

The Spatial mean of Cflux across the South Asian region shows a generally declining trend 

from around -0.24 to -0.30 KgC/m²/yr from 1990 to 2015, albeit with fluctuations. The 

negative values suggest that overall, the region was a net absorber of carbon during this 

period. 

 

Figure 56: Cflux Spatial Mean Plot 

The trend of decreasing Cflux (more negative) indicates that the region's ability to sequester 

carbon may have increased over this period. This could be due to factors like increased 

forest growth or changes in land management practices that increased the carbon 

sequestration potential of the region. The fluctuations could reflect variability in factors 
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influencing carbon sequestration, such as changes in climate, land use, and human 

activities. 
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Chapter 5 

Conclusion and Recommendations 

5.1 Conclusion 

This Study has provided valuable insights into agricultural productivity, carbon 

dynamics, and crop yields in South Asia from 1990-2015. The analysis integrated 

multiple data sources including satellite observations, process-based models, and ground-

collected statistics. 

The NPP analysis revealed regional variations in productivity of key crops across South 

Asia. Wheat exhibited high productivity in parts of Pakistan and India, while rice thrived 

in irrigated areas of India and Pakistan. Maize showed overall low productivity except in 

limited Indian regions. Soybean productivity was bleak across most of South Asia, with 

pockets of moderate productivity in central and south India. Millet demonstrated 

resilience, with high productivity across arid parts of India and Pakistan. 

Temporal NPP trends indicated increasing crop productivity from 1990-2015 for most 

crops, although fluctuations occurred due to climate variability and other factors. Carbon 

dynamics were complex - some areas acted as carbon sinks while others were sources, 

depending on region and time period. Vegetation carbon pools showed increases over 

time in many regions. 

Comparisons between process-based model estimates (LPJ-GUESS) and FAO statistics 

for country-level crop yields revealed that while models could capture general trends, 

discrepancies existed between reported and modeled yields. This highlights the need for 

continual refinement and validation of models against ground data. However, models 

remain useful tools for yield projections and scenario analyses, if their limitations are 

considered. 

There is immense potential for further work to build on the approaches demonstrated in 

this study. Integrating ground data, satellite observations and process-based models 

provides a powerful methodology. Future studies could apply these methods to analyze 

agricultural sustainability, food security dynamics, and environmental impacts of 

agriculture in South Asia. The results could support evidence-based policies for 

sustainable development in the region. 
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The study has highlighted the value of using multiple data sources to gain nuanced 

insights into agricultural productivity, carbon cycling, and crop yields in South Asia. It 

has revealed spatial and temporal patterns that can inform policies. There is tremendous 

scope for extending these integrated approaches to provide robust evidence to tackle food 

security and sustainability challenges in the region. 

5.2 Recommendations 

This study underscores the importance of advancing research in several pivotal domains 

related to climate change and its impact on vegetation growth. 

Firstly, it is paramount not just to replicate but also to augment the scope of this research 

in diverse geographies. By conducting this research across varied regions, we can 

assimilate data on a macro level, painting a more holistic and global picture of climate 

change's influence on vegetation dynamics. Such extended studies will pave the way for 

intricate comparisons, allowing us to juxtapose results from divergent ecological settings 

and climatic backgrounds, thereby enhancing the robustness and universality of our 

findings. 

Secondly, the research community should venture into the utilization of an array of 

dynamic global vegetation models. While the LPJ-GUESS model has provided insightful 

data for this study, incorporating alternative models will invariably broaden our horizons. 

It will not only validate or challenge the findings from the LPJ-GUESS model but will also 

furnish a multifaceted view of how climate change could variably impact vegetation 

growth, pushing the envelope of our existing knowledge. 

Thirdly, to truly delve into the ramifications of shifting vegetation patterns, an integrative, 

interdisciplinary methodology is of the essence. Pooling expertise from various sectors – 

be it social scientists who can evaluate societal implications, agronomists who delve deep 

into agricultural dynamics, economists who can forecast economic repercussions, or urban 

planners who can provide insights into changing urban landscapes – will ensure a more 

rounded understanding. This interdisciplinary lens becomes increasingly crucial in 

discerning the nuanced effects on key sectors such as livelihoods, food accessibility, and 

urban evolution, especially considering the backdrop of soaring population metrics. 
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Lastly, there is a pressing need for institutionalizing a longitudinal monitoring mechanism, 

specifically targeting the vegetation dynamics in South Asia. By establishing a framework 

that continually assesses and reports on changes, we can garner a treasure trove of real-

time data. This, in turn, will significantly elevate our capacity to preempt, navigate, and 

adapt to the swift and often unpredictable alterations brought about by climate change, 

thereby fortifying our resilience and strategizing capacity in the face of these global 

challenges.  
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