
i

Assisted Requirements Selection by Clustering Using Analytical

Hierarchical Process

By

Shehzadi Nazeeha Saleem

00000363530

Supervisor

Dr. Wasi Haider Butt

Department of Computer and Software Engineering

College of Electrical and Mechanical Engineering

National University of Science and Technology (NUST)

Islamabad, Pakistan

September 2023

ii

Thesis Acceptance Certificate

iii

Dedicated to my beloved parents and cherished siblings, for

your unwavering support and endless love.

iv

Acknowledgements

First and foremost, I offer my deepest gratitude to Allah, the All-Knowing and All-Wise, for

granting me the strength, perseverance, and opportunities to complete this thesis. Verily, all

success comes from Him, and I pray that He continues to guide me in all my endeavors.

I would like to extend my sincere appreciation to my supervisor, Dr. Wasi haider Butt, for his

unwavering support, mentorship, and valuable insights. Your guidance has illuminated my path

and enriched my understanding in ways beyond measure.

To my beloved family, whose unwavering love, encouragement, and prayers have been a

constant source of strength, I am profoundly thankful. Your belief in me has been the foundation

upon which I have built my aspirations.

I also extend my gratitude to my friends who have walked beside me, offering their

encouragement and support. Your camaraderie has lightened the burdens and multiplied the joys

of this journey.

v

Abstract

The success of a project depends on the efficient prioritisation of its software requirements. The

application of clustering and related data mining techniques for requirements prioritisation

within the context of software engineering is still unexplored and frequently overshadowed by

established procedures. This study begins a thorough investigation of clustering's untapped

potential as a cutting-edge method to enhance requirements prioritisation and enhance project

outcomes. To improve the organisation of complicated requirements and determine their relative

importance, the study offers the novel idea of combining clustering techniques with the Analytic

Hierarchy Process (AHP). Two meticulously constructed quantitative datasets, each containing

20 and 100 software meticulously form the core of this research. Notably, the development of an

AHP dataset represents a fresh contribution and serves as a standard by which clustering

methods can be unbiasedly assessed. Five main clustering algorithms emerge as the investigation

progresses: K-means, Hierarchical, Partition Around Medoids (PAM), Gaussian Mixture Models

(GMM), and BIRCH. Each of these methods offers a wide range of analytical techniques for

examining the datasets. The Dunn Index, Silhouette Index, and Calinski Harabaz Index are used

to statistically measure the quality and cohesion of the created clusters to assess the effectiveness

of these approaches. The MoSCoW approach is then used to order the identified criteria into

clusters, guaranteeing that crucial requirements are met while allowing for flexibility for less

important features. This dual strategy combines strategic prioritisation with quantitative analysis,

allowing for an unbiased evaluation of clustering results and simplifying resource allocation

based on requirement priority. Overall, this research pioneers the innovative integration of

advanced data analysis methodologies into project management and emphasises the viability of

clustering techniques for requirement prioritisation in the software domain, with a focus on the

ground-breaking combination of AHP and clustering as a transformative approach to prioritise

requirements.

Key Words: Requirements Prioritisation, Software Product Planning, Decision Support,

MoSCoW, AHP, Clustering Algorithms, K-Menas, GMM, BIRCH, PAM, Hierarchical, Clusters

Evaluation

vi

Table of Contents

Contents
INTRODUCTION... 1

1.1 Motivation .. 2

1.2 Problem Statement ... 3

1.3 Aims and Objectives .. 3

1.4 Research Questions .. 3

1.5 Structure of Thesis ... 3

BACKGROUND... 5

2.1 SOFTWARE REQUIREMENTS PRIORITISATION ... 5

2.1.1 Requirements Prioritisation .. 6

2.1.2 Requirements Prioritisation Techniques ... 8

2.1.2.1 Ratio Scale... 9

2.1.2.1.1 Analytical Hierarchical Process .. 9

2.1.2.2 Nominal Scale ..11

2.1.2.2.1 MoSCoW ..11

2.1.3 Requirements Prioritisation Factors .. 13

2.1.3.1 Satisfaction .. 13

2.1.3.2 Effort ... 14

2.2 CLUSTERING ALGORITMS ... 15

2.2.1 Types of Clustering ... 16

2.2.1.1 Partitional Clustering... 16

2.2.1.1.1 K-Means .. 17

2.2.1.1.2 Partition Around Medoids ... 18

2.2.1.1.3 Gaussian Mixture Models ... 18

2.2.1.2 Hierarchical Clustering ... 20

2.2.1.2.1 Agglomerative Clustering ... 20

2.2.1.2.2 Balanced Iterative Reducing and Clustering Using Hierarchies 21

SYSTEMATIC LITERATURE REVIEW .. 23

3.1 Planning Review .. 23

3.1.1 Research Questions ... 24

3.1.2 Data Sources ... 24

3.1.3 Search Strings ... 24

vii

3.1.4 Inclusion Criteria .. 25

3.1.5 Exclusion Criteria ... 26

3.1.6 Study Quality Evaluation .. 26

3.2 Conducting the Review .. 27

3.2.1 Primary Study Selection ... 27

3.2.2 Data Extraction and Synthesis .. 27

3.3 Reporting the Review ... 28

3.3.1 Quality Attributes .. 28

3.3.2 Temporal Distribution of Selected Primary Studies ... 28

3.3.3 Used Research Methods in Selected Studies .. 29

3.4 Results and Discussion of SLR .. 29

3.4.1 State of Art for Requirements Prioritisation Techniques .. 30

3.4.1.1 Identified Requirements Prioritisation Techniques ... 34

3.4.2 State of Art for Clustering Algorithms .. 35

3.4.2.1 Identified Clustering Algorithms ... 40

3.5 Research Gap ... 41

3.6 Chapter Summary ... 41

METHODOLOGY .. 42

4.1 Requirements Prioritisation Methodology ... 42

4.1.1 Requirements Elicitation ... 43

4.1.2 Requirements Analysis.. 43

4.1.3 Stakeholders Input .. 44

4.1.3.1 Problem Formulation... 44

4.1.3.1.1 Quantitative Dataset .. 44

4.1.3.1.2 AHP Dataset .. 45

4.1.4 Elbow Method ... 45

4.1.5 Clustering of Requirements .. 46

4.1.6 Clusters Evaluation ... 47

4.1.6.1 Dunn Index .. 47

4.1.6.2 Silhouette Index... 47

4.1.6.3 Calinski-Harabasz Index ... 48

4.1.7 Requirements Prioritisation .. 48

4.1.7.1 MoSCoW ... 49

EXPERIMENTAL RESULTS ... 50

viii

5.1 Databases .. 50

5.1.1 20 Requirements Problem ... 50

5.1.1.1 20 Requirements Problem using Quantitative Approach 51

5.1.1.2 20 Requirements Problem using AHP ... 52

5.1.2 100 Requirements Problem ... 52

5.1.2.1 100 Requirements Problem using Quantitative Approach 56

5.1.2.2 100 Requirements Problem using AHP ... 58

5.2 Elbow Method .. 60

5.2.1 20 Requirements Problem ... 60

5.2.2 100 Requirements Problem ... 61

5.3 Clustering ... 61

5.3.1 K-Means .. 62

5.3.2 Partition Around Medoids ... 63

5.3.3 Agglomerative Hierarchical Clustering .. 64

5.3.4 Gaussian Mixture Models ... 65

5.3.5 BIRCH .. 66

5.4 Clusters Evaluation .. 66

5.4.1 K-Means .. 67

5.4.2 Partition Around Medoids ... 67

5.4.3 Agglomerative Hierarchical Clustering .. 68

5.4.4 Gaussian Mixture Models ... 69

5.4.5 BIRCH .. 69

5.5 Requirements Prioritisation .. 70

5.6 Results .. 70

CONCLUSION AND FUTURE WORK .. 72

6.1 Conclusion.. 72

6.2 Contribution ... 72

6.3 Future Work .. 72

REFERENCES .. 74

List of Figures

Figure 1 Software Development Life Cycle ... 5

Figure 2 Requirements Engineering Activities ... 7

Figure 3 Requirements Prioritisation Techniques ... 9

file:///C:/Users/shehz/Downloads/MS%20Thesis/Final/Thesis%20Report.docx%23_Toc145412344
file:///C:/Users/shehz/Downloads/MS%20Thesis/Final/Thesis%20Report.docx%23_Toc145412345
file:///C:/Users/shehz/Downloads/MS%20Thesis/Final/Thesis%20Report.docx%23_Toc145412346

ix

Figure 4 Requirements Prioritisation Factors ... 13

Figure 5 Formation of Clusters ... 15

Figure 6 Types of Clustering ... 16

Figure 7 Overview of SLR .. 23

Figure 8 Primary Study Selection ... 29

Figure 9 Workflow of Requirements Prioritisation ... 42

Figure 10 Optimum Number of Clusters for Quantitative Approach 60

Figure 11 Optimum Number of Clusters for AHP .. 60

Figure 12 Optimum Number of Clusters for Quantitative Approach 61

Figure 13 Optimum Number of Clusters for AHP .. 61

Figure 14 AHP-based clustering: 3 & 4 Clusters from 20 Req ... 62

Figure 15 AHP-based clustering: 3 & 4 Clusters from 100 Req ... 62

Figure 16 AHP-based clustering: 3 & 4 Clusters from 20 Req ... 63

Figure 17 AHP-based clustering: 3 & 4 Clusters from 100 Req ... 63

Figure 18 AHP-based clustering: 3 & 4 Clusters from 20 Req ... 64

Figure 19 AHP-based clustering: 3 & 4 Clusters from 100 Req ... 64

Figure 20 AHP-based clustering: 3 & 4 Clusters from 20 Req ... 65

Figure 21 AHP-based clustering: 3 & 4 Clusters from 100 Req ... 65

Figure 22 AHP-based clustering: 3 Clusters from 20 & 100 Req ... 66

List of Tables

Table 1 Sources of Data .. 24

Table 2 Search Strings and Alternatives.. 25

Table 3 Study Quality Score’s Criteria.. 26

Table 4 Study Quality Questions' Checklist .. 27

Table 5 Sources of Selected Study .. 27

Table 6 Literature Review of Req. Prioritisation Techniques ... 32

Table 7 Identified Requirements Prioritisation Techniques .. 35

Table 8 Literature Review of Clustering Algorithms .. 38

Table 9 Identified Clustering Algorithms .. 41

Table 10 Raw 20 Req. Problem... 50

Table 11 Customers' Weights for 20 Req. Problem ... 51

Table 12 Quantitative Data for 20 Req. Problem .. 51

Table 13 AHP Data for 20 Req. Problem .. 52

file:///C:/Users/shehz/Downloads/MS%20Thesis/Final/Thesis%20Report.docx%23_Toc145412347
file:///C:/Users/shehz/Downloads/MS%20Thesis/Final/Thesis%20Report.docx%23_Toc145412348
file:///C:/Users/shehz/Downloads/MS%20Thesis/Final/Thesis%20Report.docx%23_Toc145412349
file:///C:/Users/shehz/Downloads/MS%20Thesis/Final/Thesis%20Report.docx%23_Toc145412350
file:///C:/Users/shehz/Downloads/MS%20Thesis/Final/Thesis%20Report.docx%23_Toc145412352

x

Table 14 Raw Data for 100 Req. Problem .. 53

Table 15 Customers' Weight for 100 Req. Problem .. 56

Table 16 Quantitative Data for 100 Req. Problem .. 56

Table 17 AHP Data for 100 Req. Problem .. 58

Table 18 K-Means Clusters Evaluation: 20 Requests ... 67

Table 19 K-Means Clusters Evaluation: 100 Requests ... 67

Table 20 PAM Clusters Evaluation: 20 Requests .. 67

Table 21 PAM Clusters Evaluation: 100 Requests .. 68

Table 22 AHC Clusters Evaluation: 20 Requests .. 68

Table 23 AHC Clusters Evaluation: 100 Requests .. 68

Table 24 GMM Clusters Evaluation: 20 Requests .. 69

Table 25 GMM Clusters Evaluation: 100 Requests .. 69

Table 26 BIRCH Clusters Evaluation: 20 Requests .. 69

Table 27 BIRCH Clusters Evaluation: 100 Requests .. 70

1

CHAPTER 1 .

INTRODUCTION

Software engineering is not only about programming, rather it stands on multiple pillars. It

includes all supporting documentation, design tenets, or concepts needed to make these programs

work as intended. One of the design principles that enables software that is being considered for

development to work as planned is software requirements prioritisation (SRP)[1].

Requirements prioritisation is a branch of requirements engineering which aids in choosing

requirements depending on the interests of stakeholders. It is a procedure used in software

engineering that deals with giving individual requirements a priority to determine the sequence

in which they should be implemented. A requirement engineering decision process is used to

decide which features or requirements will be developed in the upcoming release while taking

into account technical, resource, risk, and budget constraints [2]. It is a critical phase in the

software development process which involves choosing the order in which requirements should

be addressed. This procedure helps in controlling the urgency and importance of software

requirements while taking stakeholder, cost, quality, resource, and time considerations into

account. Definitions for the prioritisation of software needs have been offered by numerous

academics. One definition of software requirements prioritisation is the procedure that chooses

the sequence in which the needs will be implemented [3]. According to Karlsson and Ryan, it is

the process of selecting the best set of requirements from several conflicting and competing

expectations gathered from various stakeholders participating in a software development project

[4].

Numerous requirements prioritisation strategies have been suggested as a solution to this

problem. These

 methods seek to shorten the time and expense of software development projects by assisting

developers in understanding which requirements are most crucial and urgent. Each technique has

drawbacks and both overt and covert assumptions about the project context in which requirement

prioritisation takes place [5]. When evaluating a requirement prioritisation approach

2

experimentally, whether for usefulness, utility, application, or effectiveness, these assumptions

must be considered.

In the past requirements prioritisation had been done manually but now that technology is

evolving like never before, researchers are working on automatic requirements prioritisation.

This will shed some load off stakeholders’ shoulders. Data driven method logies have been

incorporated in requirement engineering and they are generating some amazing results. Still, like

any other field of research, there is room for improvement in this area as well.

Clustering algorithms are one of the methods for prioritising software requirements. Clustering is

a mechanism using which similar observations, data points, or feature vectors can be grouped

together based on shared traits [6]. To group and categorise requirements based on similarity or

relatedness; clustering algorithms are used in the prioritisation process. This makes it possible to

efficiently prioritise requirements based on the traits of each cluster and to uncover patterns and

linkages among them. By grouping requirements into meaningful clusters that can subsequently

be prioritised more effectively, clustering algorithms can help in managing the complexity of

prioritising many requirements.

In this study we will be using two well-known prioritisation methods namely MoSCoW (Must,

Should, Could, Would) and AHP (Analytical Hierarchical Process) with clustering techniques

like K-means, Partition Around Medoids, Hierarchical clustering and Gaussian Mixture Models.

For the clustering purpose we will be using two of the main prioritisation factors i.e., ‘Effort’ and

‘Satisfaction’ which are provided by major stakeholders for each individual requirement. This

will help the stakeholders to take better decisions and eventually develop successful systems.

1.1 Motivation

Software Requirement Specification in general and Software Requirement Prioritisation in

particular plays the pivotal role in the success or failure of a project. As per the Standish Group,

every year almost 80% of software projects fail to meet their definitions of success based on

time, cost, and scope criteria [7]. As requirements are frequently published and infrequently

updated, it is mostly caused by shifting requirements. This argues that software initiatives fail

because they are unable to successfully adapt to changing requirements or make room for new

ones. This emphasises how crucial next release management is, as well as the necessity of

3

making informed decisions regarding the functionality of a software product's release. A well-

selected release will minimize problems with shifting requirements in future releases.

1.2 Problem Statement

The accurate and timely prioritization of requirements plays a pivotal role in the success of

software projects. The main goal of this study is to determine whether combining clustering

techniques with the Analytic Hierarchy Process (AHP) can lead to better classification of

software requirements, which in turn will affect and improve the overall trajectory of project

outcomes.

1.3 Aims and Objectives

The following are the study's primary goals:

• To assess the efficacy of integrating the Analytic Hierarchy Process (AHP) with

clustering techniques in enhancing the evaluation and prioritization of software

requirements.

• To explore the effectiveness of clustering techniques in enhancing the prioritization of

software requirements.

• To partially automate software requirements prioritization activity.

1.4 Research Questions

This thesis will try to find out the answer to the following questions.

• RQ1: Is a semi-automated approach to SRP processes possible with the incorporation of

clustering techniques?

• RQ2: Does the fusion of AHP and clustering generate better results?

1.5 Structure of Thesis

The structure of this work is as follows:

Chapter 2 covers the importance of requirements prioritization and discusses types of

requirements prioritisation techniques. It further discusses clustering and its different types.

Chapter 4 gives a review of the relevant literature and the important work produced by scholars

in recent years for the ranking of needs.

4

Chapter 5 includes an explanation of the suggested process.

Chapter 6 explains all the experimental findings in great depth and includes all necessary graphs

and tables.

Chapter 7 finishes the thesis and outlines the direction this study will take going forward.

5

CHAPTER 2 .

BACKGROUND

2.1 SOFTWARE REQUIREMENTS PRIORITISATION

The process of building or sustaining software systems in a systematic way is called the Software

Development Life Cycle

(SDLC). The Software

Development Life Cycle, a

structured process, enables

the production of high-

quality, low-cost software as

quickly as possible. The goal

of SDLC is to create top-

notch software that satisfies

and exceeds all client

requirements and

expectations. A thorough

plan with stages, or phases,

each with its own procedure

and results, is developed and

specified by the SDLC.

Following the SDLC

expedites development while

boosting production efficiency and lowers project risks and costs.

Any software development process is divided into a number of logical steps, which allows a

software development company to efficiently plan out its efforts in order to build a software

product with the needed capabilities within a specified time frame and budget. The phases of

requirement gathering, business analysis, system design, implementation, and quality assurance

Figure 1 Software Development Life Cycle

6

testing are completed in all software projects. A generic Software Development Life Cycle with

numerous phases was proposed by A. Mishra and D. Dubey [8].

System and feasibility study are crucial stages in Software Development Life Cycle (SDLC) that

involves senior team members, stakeholders, and industry experts. Planning quality assurance

requirements and identifying project-related risks are both involved. To acquire information

about the client's needs, the end user, and the product objectives, a meeting with the client is

scheduled. A core understanding of the product is essential before creating a product. The

analysis is completed with auditing the feasibility of growth and setting up a signal for further

discussion.

The SRS (Software Requirement Specification) document is created, which developers must

follow and review for future reference. The next stage is System Analysis, where software

requirements are represented and documented, gaining acceptance from project stakeholders.

This is accomplished by the creation of the SRS document, which contains all product

requirements to be constructed and developed throughout the project life cycle.

System Design is the next phase, bringing together the knowledge of requirements, analysis, and

design of the software project. This phase is the product of the last two stages, including

customer input and requirement gathering.

Coding is the actual development stage, where programming is built and implemented using

coding guidelines and programming tools. Testing is conducted against the requirements,

including unit, integration, system, and acceptance testing. Once certified, the software is

deployed, either as is or with suggested enhancements.

Maintenance begins after deployment, and once the client starts using the developed systems,

real issues arise, and requirements need to be solved. This process is known as maintenance,

where care is taken for the developed product.

2.1.1 Requirements Prioritisation

Requirements prioritisation is a key component of requirements engineering, which is a stage

that is extremely significant in the software development life cycle. The process for gathering

requirements include requirements elicitation, requirements analysis, requirements negotiation,

requirements documentation, and requirements validation according to the traditional Kotonya

and Sommerville requirements engineering approach [9].

7

Requirements elicitation, often known as requirements collecting or acquisition, is the initial

phase of requirements engineering. The system users, clients, and developers—who are referred

to as system stakeholders—are asked for their input regarding systems’ requirements. Finding the

appropriate set of requirements and setting system boundaries are the key goals of this approach.

However, by working with the stakeholders, it is possible to specify what requirements can be

created. Negotiations with stakeholders are conducted to determine which requirements to

execute because it is vital to analyze precise requirements at this stage. The chosen requirements

are then recorded and tracked. Then the requirements are checked to see if they are

comprehensive and consistent before implementation in the next stage, known as validation.

Testing is also required to determine whether the goals of the implemented requirements have

been met. Additionally, because of high competition in the market, businesses concentrate on

requirements prioritisation. This enables them to promptly deploy the system's most crucial

features to its clients [10].

How well a software program can satisfy user and customer needs determines its quality [11].

Therefore, gathering

requirements and determining

the correct requirements prior to

the release of the appropriate

requirements with good

functionality is the key to a

successful product.

Requirements prioritisation is a

crucial component of decision-

making. This prioritisation aids

in separating the key

requirements from the less

significant ones. The benefits of

requirements prioritisation

include estimating customer

satisfaction, reducing rework and plan instability, assigning relative significance to each demand,

Figure 2 Requirements Engineering Activities

8

which results in requirements with high value and cheap costs, among other benefits. These

activities highlight the significance of setting priorities and selecting the needs that should be

considered while developing a product [12]. To produce high-quality software products,

managing software requirements is a critical component of the requirements engineering process

[13]. On the other hand, requirements prioritisation is acknowledged as a crucial but difficult job

in software engineering. Requirements engineering flaws are cited as the main reason software

projects go wrong. Later, the prioritised final requirements may serve as the foundation for

product and marketing plans and even serve as a driving force for the project plan. The difficulty

lies in choosing the "right" requirements from a pool of potential candidates to satisfy the many

main interests, technological limitations, and preferences of the important stakeholders while

also maximising the product's overall commercial value. The ability to identify requirements

flaws such inaccurate, confusing, and poorly evaluated requirements is another advantage of

prioritising requirements. They are examined from a new angle, taking requirements into account

as part of the review. As a result, requirements start off being general and then get more specific

as knowledge about the product increases.

Requirements Prioritisation approaches involve subject-matter specialists, frequent

communication with stakeholders, and a close relationship to other criteria. This makes the task

of suggesting the best strategy more challenging and increases the need for improvements to

these strategies. Karlsson [14]suggests that a prioritising session might include the following

three steps in order:

• The Preparation Stage: The person organises the requirements at this stage in

accordance with the guiding concept of the prioritising strategy that may be employed.

Additionally, a team is selected for the session, along with a team leader, and they are

given all important information.

• The Execution Stage: Based on the knowledge gathered from the previous stage, the

decision-makers determine the real prioritising for the criteria in this step.

• The Presentation Stage: When the outcomes of the execution are made available to the

parties involved.

2.1.2 Requirements Prioritisation Techniques

9

 There are numerous methods for prioritising requirements, some of which are better suited to

small numbers of

requirements while others are

better suited to extremely

complex projects with

numerous considerations.

Prioritisation techniques let

decision-makers evaluate

requirements and assign

numbers or symbols that

accurately reflect their

priority [15]. Using these

methods, requirements are

prioritised using multiple

aspects.

Requirement prioritisation

techniques are divided into three major groups namely Ratio scale, Ordinal scale, and Nominal

scale. These groups have further subcategories as shown in the figure below.

In this study we will be using only two techniques Analytical Hierarchical Process and MoSCoW

and hence will be discussing these two as well.

2.1.2.1 Ratio Scale

Techniques for ratio scale prioritisation produce ranked lists of requirements. Results from ratio

scale approaches can show how different things are relative to one another.

2.1.2.1.1 Analytical Hierarchical Process

According to Saaty [16] the most common method for requirements prioritisation is called the

analytical hierarchy process. Analytic Hierarchy Process (AHP) is a systematic decision-making

technique [17]. It was developed for complex decision-making so that the decision-maker could

set priorities and get to the best option possible [18]. Thomas L. Saaty created AHP in the 1970s,

and since then it has found widespread use in a variety of industries, including business,

Figure 3 Requirements Prioritisation Techniques

10

engineering, project management, and decision analysis. AHP offers a systematic technique to

compare and order different criteria or factors, which is especially helpful when there are several

to consider.

To arrive at a prioritised ranking of alternatives based on a set of criteria, AHP involves several

processes and mathematical calculations. Here is a thorough breakdown of each stage of the

AHP procedure:

• Problem Definition: The decision problem is defined precisely, together with the choices

that need to be assessed. Other criteria or variables that will be taken into consideration

while deciding are listed and different ranking factors for a project are considered, as

examples of criteria.

• Pairwise Comparisons: Alternatives are compared in pairs for each criterion to

determine their relative weight. This is accomplished by employing a scale that displays

the relative weight or preference given to each criterion. Saaty's 1 to 9 scale is the most

often used scale, with 1 denoting equal importance, 3 denoting moderate importance, and

9 denoting exceptionally significant importance. Participants assign values from the scale

to each criterion and compare them to each other. For each criterion, a comparison matrix

is made using these data.

• Consistency Check: Calculations are used to determine whether the pairwise comparison

judgements are consistent. Biased outcomes can originate from inconsistent judgements.

To make sure the judgements are rational and not in conflict, a consistency ratio is

computed. The judgements are regarded as consistent if the consistency ratio is within a

reasonable range.

• Calculation of Weighted Values: The weighted values for each criterion are calculated

based on the pairwise comparison matrices. Each criterion's relative weight in respect to

the others is shown by these weights. The pairwise comparison judgements are

synthesised to determine the weights.

• Matrix Multiplication: A matrix is made to show how each alternative was rated in

relation to each criterion. To create a new matrix of weighted scores, this matrix is

multiplied by the matrix of criterion weights.

11

• Aggregation: To get a result, weighted scores are added for each possibility. This

aggregate rating represents how well or how desirable each choice is in relation to the

selected criteria.

• Sensitivity Analysis: A sensitivity study is conducted to determine how changes in the

assessments will affect the final ranking. This increases the results' reliability.

• Final Ranking: Based on their combined scores, alternatives are ordered. The option

with the highest overall score is regarded as the best option.

AHP offers a methodical, transparent technique to evaluate difficult choices and rank them

according to several factors. It aids in preventing the biases and contradictions that might

develop during subjective decision-making processes. AHP requires mathematical computations,

however software tools are available to help, making it possible for people without a background

in mathematics to use it.

2.1.2.2 Nominal Scale

Mechanisms for nominal scale prioritisation produce an array of classes into which objects can

be subdivided. Accordingly, requirements are categorised based on their significance. As a result,

the priority of all requirements that fall under the same category is the same [19]. Only the

Numeral Assignment Technique and the MoSCoW Technique are included in this kind.

2.1.2.2.1 MoSCoW

A common strategy for prioritising requirements in many projects, including software

development, product management, and business analysis, is the MoSCoW technique. As a

matter of fact, it is one of the easiest techniques [15]. The Dynamic Software Development

Method (DSDM) provides the foundation for the MoSCoW method [20]. It offers a methodical

manner to classify and rank requirements according to their significance and impact. The

abbreviation "MoSCoW" stands for "Must have, Should have, Could have, and Won't have," the

initial letter of each category of priorities.

Tudor and Walter [21] gave the following MoSCoW Technique model.

12

• Mo - Must Have: Must-

have needs are deemed non-

negotiable since they are

essential to the project's

success. They stand for the

fundamental capabilities or

features that are necessary

for the project to achieve its

main goals. The project

wouldn't be complete or

functional without these

prerequisites.

• S - Should Have: Although

necessary for the project's

success, should-have needs are not as crucial as must-have requirements. They

significantly enhance the project's value and increase its overall efficacy. Even though the

project may still run without them, it would fall short of its full potential and fail to

satisfy the expectations of all stakeholders.

• Co - Could Have: Could-have needs are preferable because they offer more benefits or

features. They stand for improvements or extras that would raise the standard of the

project as a whole or enhance the user experience. The decision to include could-have

needs depends on the resources and priorities that are available, but they are not essential

to the project's fundamental operation.

• W – Won’t Have: Won’t have criteria are purposefully left out of the project's current

stage. They are attributes or capabilities that cannot be implemented, are not in line with

the project's immediate objectives, or are postponed for later development. Recognising

won't-have requirements aids in establishing reasonable expectations and averts scope

creep.

Making judgements on which requirements to concentrate on and assign resources to can be

done using the MoSCoW technique, which offers a clear framework for doing so. It aids in

13

managing stakeholder expectations, directs development efforts, and makes sure that the most

important project components are properly addressed. Teams can streamline their efforts and

produce significant results by classifying requirements into must-have, should-have, could-have,

and won't-have categories.

2.1.3 Requirements

Prioritisation

Factors

Prioritising requirements is

an essential part of software

development since it enables

teams to deploy resources

wisely and satisfy

stakeholders. To make sure

that the most crucial features

and functionalities are

covered, several

considerations need to be

considered while prioritising

requirements. Factors are

considered when ranking

requirements. Cost, time, importance, risk, and others are some regularly considered factors [22].

Some of the major prioritisation factors are given in the figure below.

In this research we will be using two of these factors i.e., Satisfaction and Effort.

2.1.3.1 Satisfaction

The satisfaction factor for requirements prioritisation focuses on evaluating the level of

satisfaction and fulfilment that requirements offer to stakeholders. Here is further information:

The following factors must be considered for requirements prioritisation to be successful:

Figure 4 Requirements Prioritisation Factors

14

• Stakeholders Involvement: It entails determining the degree to which stakeholders,

including investors, regulatory agencies, and end users, are involved in the requirement.

Their wants and preferences are considered, which results in the prioritisation of

attributes that closely match their expectations.

• User Experience: The improvement of user experience is essential to stakeholder

satisfaction. Requirements that directly enhance the user experience, making the

programme more accessible, user-friendly, and in line with user expectations, are given

more priority.

• Market Trends: The software must be in line with developing market trends and

expectations to guarantee stakeholder satisfaction. To take advantage of new

opportunities and keep the software relevant and competitive, requirements must be

prioritised.

• Alignment with Business Goals: Addressing requirements that closely connect with the

main business goals is emphasised while setting priorities. Priority is given to features

that have a direct bearing on corporate success and strategic objectives.

2.1.3.2 Effort

The resources, time, and labour required to fulfil a particular demand are all considered in the

"Effort" factor of requirement prioritisation. It directs choices over which features to prioritise

based on their viability within the constraints of the project.

The following are some aspects of effort:

• Resource Allocation: Evaluates the infrastructure, knowledge, technologies, and human

resources that are available to meet the demand. This considers the team's skill level and

any necessary training or additional resources.

• Time and Schedule: Involves calculating the amount of time needed to complete the

requirement. It prioritises features that can be developed within the allotted time range

while taking project deadlines and timelines into consideration.

• Complexity and Technical Challenges: Some criteria could be more challenging

because of integration problems, technical challenges, or strange technologies. Technical

viability within the project's technology stack is considered while setting priorities.

15

• Developing and Testing Effort: Coding, testing, debugging, and quality assurance are all

part of implementation. To achieve extensive testing, effort estimation includes unit

testing, integration testing, and debugging needs.

• Documentation and Training: Creating user guides, documentation, and training

materials is a part of effort estimation. It guarantees thorough support for both current and

upcoming maintainers.

Effort estimation incorporates assumptions and uncertainty. Realistic estimations are made using

an experienced team, historical data, and estimating methodologies (expert judgement,

parametric estimation, analogical estimation). Prioritising based on effort guarantees that

attention is paid to realistic activities, which results in effective project outputs.

2.2 CLUSTERING ALGORITMS

The need to find knowledge in multidimensional data is growing since massive volumes of data

are being continuously collected today. One of the crucial steps in mining or extracting massive

information is data miming. It is intended to sift through enormous amounts of data in search of

enduring patterns and to verify the findings by comparing the discovered patterns to a fresh

selection of data. Clustering algorithms are applicable in this situation because its objective is to

identify chunks of related objects within a data collection. Clustering separates data into sets of

related things. Each group, or cluster, is made up of things that are dissimilar from those in other

groups yet like one another [23]. Clustering of objects is required for a variety of reasons in

various sectors of

engineering, science, and

technology, humanities,

medical science, and

everyday life [24].

Clusters are frequently

regarded as the most

important unsupervised

learning topic, which

addresses issues with data

collection of unlabeled information [25]. Clustering is the most intriguing area of data mining,

Figure 5 Formation of Clusters

16

which seeks to identify underlying patterns in data and identify some useful subgroups for

additional investigation. It is a typical method for statistical data analysis that is applied in a

variety of domains, such as bioinformatics, machine learning, data mining, pattern recognition,

and image analysis. Thus, the approach of grouping items into groups whose members share

some characteristics might also be described as a cluster [26]. A visual representation of cluster

formation is shown in figure 5 [27].

2.2.1 Types of Clustering

The primary technique of data mining is clustering. It includes assembling related data points

based on predetermined standards. Data mining employs a variety of clustering techniques, each

with a unique methodology and traits. Based on the characteristics of the created clusters,

partitioning and hierarchical clustering methods can be used to generalise all clustering

techniques [28]. A few of the

most popular clustering types

are as follows:

2.2.1.1 Partitional

Clustering

The iterative relocation

algorithm, commonly known as

partitional clustering, is thought

to belong to the most common

class of clustering algorithms.

These algorithms iteratively

move data points across clusters

until an ideal partition is

reached to minimise a specific

clustering criterion. The partition

clustering technique divides the data points into k partitions, each of which represents a cluster.

The data are partitioned using an objective function. A cluster's objects are "similar," but those of

other clusters are "dissimilar." The clusters are created to maximise a distance-based

dissimilarity function or another objective partitioning criterion. Partitioning clustering

Figure 6 Types of Clustering

17

techniques might be useful for applications that need a specific number of clusters. K-means,

PAM (Partition around mediods), and Clara are a few of the partitioning clustering algorithms.

2.2.1.1.1 K-Means

K-Means is a well-known and often used clustering algorithm in machine learning and data

mining [29]. Prior to the operation, it requires the number of clusters to be defined [30]. It seeks

to divide a given dataset into the specified number of clusters (K) according to how similar the

data points are to one another to maximise certain clustering criteria. K-Means is an iterative

method that produces results by minimising the sum of squared distances between the centroids

of each cluster and the data points. It is a popular clustering method that minimises clustering

error [31].

The K-Means algorithm is explained in depth below:

• Initialization: The initial cluster centroids are initialised at random using K data points.

K is the number of clusters we have decided to divide the data into. The cluster centroids

are created at random using K data points.

• Cluster Assignment: Each of the K centroids in the dataset and the distance between

each data point are determined. Two popular distance measurements are the Manhattan

distance and the Euclidean distance. Each data point is matched to the centroid of the

nearest cluster. K clusters are produced by doing this.

• Centroid Recalculation: The new centroid for each cluster is calculated by calculating

the mean of all the data points assigned to it. The centroid, which serves as a proxy for

the cluster's core, is used to calculate distances in the subsequent iteration.

• Iteration: Assignment and Update procedures are iteratively repeated until convergence

occurs. Either:

▪ The centroids stop fluctuating noticeably, or convergence occurs.

▪ There are no more iterations possible.

• Result: The centroids serve as the centers of each of the K clusters formed by the data

points in the algorithm's final solution.

18

2.2.1.1.2 Partition Around Medoids

K-Medoids, a K-Means version, and Partitioning Around Medoids (PAM), a clustering

algorithm, are closely connected. The PAM method partitions a distance matrix into a

predetermined number of clusters [32]. The goal of PAM is to divide a dataset into a

predetermined number of clusters by choosing actual data points, known as medoids, as

representatives of the clusters. PAM is meant to work with dissimilarity or distance matrices.

Like centroids, medoids are chosen from the actual data points, which makes PAM more

resistant to noise and outliers.

An in-depth description of the Partitioning Around Medoids (PAM) algorithm is provided below:

• Initialization: K is the number of clusters one wants to divide the data into. K can either

be chosen through data-adaptive selection or as a given [33]. It is chosen as the initial

medoids data points at random from the dataset.

• Cluster Assignment: The distance or dissimilarity to each of the K medoids is calculated

for each data point in the dataset. Then it is decided which nearby medoid each data point

belongs to. This action creates K clusters.

• Medoid Recalculation: The total distance or dissimilarity between each data point in a

cluster and all other data points in the cluster is calculated for each cluster. Data point for

that cluster's new medoid is chosen that has the lowest overall dissimilarity.

• Iteration: Iteratively repeat the Assignment and Update procedures until convergence

occurs. Either:

▪ The medoids stop changing considerably is when convergence begins.

▪ There are no more iterations possible.

• Result: The method groups the data points into K clusters, with the medoids acting as the

nodes of each cluster.

2.2.1.1.3 Gaussian Mixture Models

A probabilistic approach called a Gaussian Mixture approach (GMM) is utilised for density

estimation and grouping. Much research has been done on it due to its usefulness and efficiency

[34]. It is assumed that the data points are produced by combining several normal distributions

19

with Gaussian distributions. GMM is an effective tool for capturing intricate data distributions

and locating underlying patterns.

A thorough explanation of the Gaussian Mixture Model (GMM) is given below:

Model Representation:

A Gaussian mixture model (GMM) depicts the data as the weighted sum of many Gaussian

distributions, each of which has a mean and covariance matrix. The mathematical representation

of the probability density function (PDF) of a Gaussian mixture model (GMM) is a weighted

sum of Gaussian distributions:

where:

▪ x is a data point.

▪ K is the number of components (Gaussian distributions).

▪ πk is the weight of the kth component, satisfying ∑k=1Kπk=1.

N(x∣μk,Σk) is the Gaussian distribution with mean μk and covariance matrix Σk.

• Parameter Estimation: Finding the best values for the component means (μk),

covariance matrices (Σk), and weights (πk) given the observed data is necessary for

estimating the parameters of a GMM. The typical approach used for parameter estimation

in GMMs is expectation-maximization (EM).

• Expectation (E-step): Responsibilities, or posterior probabilities that show the likelihood

that each data point belongs to each Gaussian component are calculated.

• Maximization (M-step): By increasing the estimated log-likelihood of the data under the

existing model, given the responsibilities, parameters are updated.

• Number of Components: It's crucial to select the right number of components (K). Too

few or too many components may oversimplify the data or overfit the noise, respectively.

The ideal number of components can be calculated using a variety of methods, including

the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC).

20

2.2.1.2 Hierarchical Clustering

A dataset is split or combined using hierarchical clustering methods into a series of nested

divisions. The hierarchy of the nested partitions may be agglomerative (top-down) or divisive

(bottom-up). The clustering process used in the agglomerative approach starts with each object

being placed in its own cluster, then proceeds on to clustering the closest pairs of clusters until

each object is found in a single cluster. Divisive hierarchical clustering, on the other hand, starts

with all objects in a single cluster and keeps breaking larger clusters down into smaller ones until

all objects are grouped together into unit clusters [35]. Both hierarchical approaches display the

dendrogram, a type of naturally occurring cluster representation. Examples of these methods

include CURE (Cluster Using REpresentatives), BIRCH (Balance Iterative Reducing and

Clustering using Hierarchies), and ROCK.

2.2.1.2.1 Agglomerative Clustering

The process of clustering data points into a hierarchical structure of clusters is called

agglomerative hierarchical clustering. Due to the exponential rise of real-world data, hierarchical

clustering is crucial for data analytics [36]. Each item initially represents a different cluster in

this kind of clustering. After that, by repeatedly merging clusters until all of the data points are a

part of a single cluster or until a stopping condition is met, the suitable cluster structure is

produced. This process results in a tree-like structure called a dendrogram, which visualises the

clustering hierarchy.

Agglomerative algorithms are among the most frequently used algorithms. The technique is too

slow for huge data sets in the general case since its complexity is O(n3). Agglomerative

hierarchical clustering is superior to divisive clustering because divisive clustering is poorer

when combined with an exhaustive search, which results in the expression (n2).

The operation of agglomerative hierarchical clustering is described in the following steps:

• Initialization: Each data point is considered as its own cluster. A distance matrix by

computing the pairwise distances (e.g., Euclidean distance) between all the data points is

created.

• Merge Closest Clusters: The distance matrix is used to identify the two closest clusters.

To do this, several linkage criteria can be used, including:

21

▪ Single Linkage: The shortest path between any two sites in the two clusters is

used to compute the distance between two clusters.

▪ Complete Linkage: The maximum distance between any two locations in the two

clusters is used to define the distance between two clusters.

▪ Average Linkage: The average distance between each pair of points in the two

clusters is used to compute the distance between two clusters.

The two neighbouring clusters are combined to make a single cluster. The distance matrix

is updated to reflect the separations between the new cluster and the other clusters.

• Repeat: The process is repeated until all data points are in a single cluster or until the

necessary number of clusters is reached by repeatedly locating the closest clusters and

merging them.

• Dendrogram: A dendrogram is created to depict the hierarchy of clusters when they are

combined. The dendrogram's horizontal axis shows the data points or clusters, and the

vertical axis reflects the separation between clusters. The dendrogram's height of each

fusion shows how far apart the clusters were when they joined.

• Cutting the Dendrogram: One can trim the dendrogram at a specified height to get a

specific number of clusters. Based on the height threshold, this will produce the

necessary number of clusters.

2.2.1.2.2 Balanced Iterative Reducing and Clustering Using Hierarchies

In 1996, Tian Zhang, Raghu Ramakrishnan, and Miron Livny presented BIRCH. It is an effective

hierarchical clustering algorithm made for grouping huge datasets. BIRCH is a clustering

method whose key characteristic is to employ low memory resources for high-quality clustering

of large-scale data datasets and to only scan datasets once to reduce I/O overhead [37]. A

comparable B + tree structure known as a Clustering Feature Tree (CF Tree) is used by Birch to

perform clustering [38].

Clustering Feature Construction and Hierarchical Clustering are the two primary steps of

BIRCH's operation. Here is a thorough breakdown of each action:

• Clustering Feature Construction: The clustering information is represented by BIRCH

using a tree-like data structure known as the CF-tree (Clustering Feature tree). The

22

Clustering Feature (CF), a collection of summary data, is stored at each node in the CF-

tree and corresponds to a cluster or sub-cluster.

Three elements make up the Clustering Feature (CF):

▪ N: The cluster's total number of data points.

▪ LS: The linear summing of the data.

▪ SS: The sum of the squared data points.

The branching factor is a parameter used by BIRCH to limit the number of sub-clusters a

node can have. An algorithm that assures effective memory use inserts new data points into

the CF-tree when they come in, updating the Clustering Features in the process. BIRCH may

divide a node into two smaller sub-clusters and update the tree structure if a new data point

cannot fit in any of the CF-tree's current nodes.

• Hierarchical Clustering: A user-defined distance threshold parameter is used by BIRCH

to merge sub-clusters after the CF-tree has been built through the iterative insertion of

data points. The CF-tree's leaves are combined first, then its root, in a procedure known

as "bottom-up" merging. When deciding whether to merge two clusters, BIRCH applies a

distance criterion. Utilising their Clustering Features (N, LS, and SS), two clusters are

separated from one another. Until the entire dataset is clustered into one cluster or until a

predetermined number of clusters are produced, the merging process is carried out.

23

CHAPTER 3 .

SYSTEMATIC LITERATURE REVIEW

Systematic Literature Review is a

methodical approach to reviewing the

body of knowledge regarding a certain

issue. SLR is applied here to collect the

information about requirements

prioritisation techniques and clustering

algorithms. By using the SLR

approach, your work is objective, and

the literature review's conclusions may

be trusted. Many academics in the

fields of computer and software

engineering followed the SLR

technique that Kitchenham and

Charters [39] proposed and made

substantial contributions utilising this

approach. The planning, conducting,

and reporting of the literature review

are the phases of Systematic Literature

Review as shown in the figure below.

3.1 Planning Review

With our objectives in mind, we have articulated research queries that will steer our investigative

efforts. The responses we gather will play a pivotal role in sculpting a novel solution that

outperforms existing ones. To acquire these responses, we pinpointed pertinent repositories

depicted in Figure: Systematic Literature Review Phases. These repositories house relevant

literature, accessible for reading or downloading. Following this, we formulated tailored search

strings to unearth the most pertinent literature from digital archives. Well-defined inclusion and

Figure 7 Overview of SLR

24

exclusion criteria were subsequently outlined. The eventual selection of articles will undergo a

rigorous quality evaluation, ensuring that our final research comprises articles of the utmost

excellence. This methodical approach guarantees the integration of high-caliber information to

effectively address our research questions.

3.1.1 Research Questions

Using the state of art, this SLR will try to find out the answer to the following questions.

• RQ1: What are the commonly employed techniques for prioritising requirements?

• RQ2: Has any paper tried integrating AHP with clustering for prioritizing requirements?

• RQ3: What clustering algorithms are currently utilized within the software industry?

3.1.2 Data Sources

Electronic data repositories that are appropriate and closely related have been identified. The

repositories are sufficiently related to achieve research goals. Table 1 lists the electronic data

repository.

Table 1 Sources of Data

Electronic Data Repository Repository Link

IEEE Explorer https://ieeexplore.ieee.org/

Springer https://link.springer.com/

Elsevier https://www.elsevier.com

Google Scholar https://scholar.google.com/

Research Gate https://www.researchgate.net

3.1.3 Search Strings

The research questions guided the construction of search strings. We identified precise keywords

and their synonymous counterparts derived from the investigation of requirement prioritisation

and clustering literature. All identified terms and their alternatives were established on the

foundation of existing research. These terms were then integrated using logical AND and OR

operators to generate the ultimate search strings. The compiled search strings have been

documented as presented in the table below. This approach ensures that the eventual query is

https://ieeexplore.ieee.org/
https://link.springer.com/
https://www.elsevier.com/
https://www.researchgate.net/

25

highly effective in unearthing the most pertinent literature in the present field. The utilization of

logical operators has imbued the query with a notably optimistic quality.

Table 2 Search Strings and Alternatives

Keywords Alternatives

Requirement Prioritisation

Techniques (K1)

"Prioritisation of Requirements" OR "Requirements

Ranking"

Comparison of Requirement

Prioritisation Techniques (K2)

"Comparing Methods for Requirement Prioritisation"

OR "Contrast of Requirement Ranking Approaches"

Analytical Hierarchy Process

(K3)

“AHP” OR "Hierarchy Decision Making"

MoSCoW (K4) "MoSCoW Technique" OR "Must Should Could Won't

Technique" OR "Prioritisation using MoSCoW"

Clustering Algorithms (K5) "Grouping Methods" OR "Cluster Analysis" OR

"Contrasting Cluster Methods" OR "Comparative

Study of Clustering Approaches"

K-Means (K6) "K-Means Algorithm" OR "K-Means Clustering" OR

"K-Means Method"

PAM (K7) "PAM Algorithm" OR "Partitioning Around Medoids"

OR "Medoid Clustering"

BIRCH (K8) "BIRCH Algorithm" OR "Balanced Iterative Reducing

and Clustering using Hierarchies" OR "BIRCH

Clustering"

GMM (K9) "GMM Algorithm" OR "Gaussian Mixture Model" OR

"GMM Clustering"

AHC (K10) "AHC Algorithm" OR "Agglomerative Hierarchical

Clustering" OR "Hierarchical Cluster Analysis"

3.1.4 Inclusion Criteria

Before considering research papers in the current study, a suitable criterion was devised. The

following list of bullets contains a definition of all inclusion requirements.

• IQ1: The paper gives valuable information for research questions.

• IQ2: The study appears in a peer-reviewed publication, conference, or in a workshop.

• IQ3: The research paper is not older than 2015.

• IQ4: The research paper is written in English language.

26

• IQ5: The paper discusses or compares clustering algorithms.

• IQ6: The paper discusses or compares requirements prioritisation techniques.

3.1.5 Exclusion Criteria

The criteria for excluding irrelevant literature from research papers that were extracted is

described below.

• EQ1: Research paper is not available in PDF format.

• EQ2: Research paper does not add valuable information to the research.

• EQ3: Research paper does not answer research questions.

3.1.6 Study Quality Evaluation

After the paper extraction procedure, the final literature has been assessed using quality

evaluation criteria. As shown in the table below, a tick list has been developed to evaluate

selected papers. The five study quality questions on the study quality checklist are what the study

quality score is based on. If a study responds to all SQ questions (SQ1–SQ5), the study will

receive a quality score of 5, 2.5 for partial responses, and zero for no response. The final decision

will be based on the benchmark study quality score and will consider the studies that have

contributed the most to the SLR objectives.

Table 3 Study Quality Score’s Criteria

Study Quality Score Study Quality Score Criteria

SQS-1 The studies received a "5" for satisfactorily responding to all the

checklist's questions.

SQS-2 Studies that only partially addressed the checklist's questions

were given a "2.5" score.

SQS-3 Studies that failed to respond to any of the checklist's questions

received a score of "0."

The goal of the quality evaluation of our acquired literature is to comment on the quality of the

studies that were gathered, which will then be used to articulate the responses to our research

questions, "RQs". The following quality evaluation questions regarding RQs are developed and

used on each unique study to evaluate its level of quality.

27

Table 4 Study Quality Questions' Checklist

Study Quality Questions Study Quality Questions Checklist

SQ-1 Does the paper provide a comparison among different

prioritisation techniques?

SQ-2 Does the paper explicitly explain a clustering algorithm?

SQ-3 Is the paper able to conclude its results explicitly?

SQ-4 Does the paper provide a better prioritization mechanism?

3.2 Conducting the Review

The review's phases have been further broken down into subphases, as shown below.

3.2.1 Primary Study Selection

A total of twenty-three papers are included in this literature review from diverse sources. Out

of these, twelve discuss the requirements prioritisation techniques while the rest talk about

clustering algorithms.

Table 5 Sources of Selected Study

Electronic

Repositories

IEEE

Explorer

Springer Elsevier Google

Scholar

Research

Gate

Req.

Prioritisation

Techniques

3 3 1 4 1

Clustering

Algorithms

3 1 3 4 0

Total 6 4 4 8 1

3.2.2 Data Extraction and Synthesis

The deployed methodology, the accuracy and robustness of those methodologies, the evaluation

of models, and other significant data mining attributes specified for inclusion in the articles were

all subjected to thorough scrutiny. The integrity of the studies was thoroughly examined and

considered in the reference table used to evaluate the quality of the study.

28

3.3 Reporting the Review

This section provides the reporting of a review with results based on studies that have been

extracted.

3.3.1 Quality Attributes

To assess the quality of the research, study quality questions were created. Based on how well

the study participated in responding to the research questions, a study's quality score was

determined. The research questions should be targeted to those with a higher quality score

because they are more likely to be connected to our study objectives.

3.3.2 Temporal Distribution of Selected Primary Studies

All the chosen papers have been categorically split into two groups: those which are related to

Requirements prioritisation Techniques (RPT) and those related to Clustering Algorithms (CA).

The articles have then been further divided according to the year in which they were published.

Out of 23 articles, it has been determined that 12 are about Requirements prioritisation

Techniques and 11 are of Clustering Algorithms.

Graph 1 Yearly Distribution of Selected Studies

29

3.3.3 Used Research Methods in Selected Studies

Figure 8 Primary Study Selection

This study aimed to address questions related to requirements prioritisation techniques and

clustering algorithms. As a result, only papers that discussed these two were considered. This

criterion was also detailed in the inclusion and exclusion criteria. While selecting the papers, a

more focused selection was made to directly address the research questions. Out of the total 23

papers included in this study.

3.4 Results and Discussion of SLR

This section thoroughly presents the outcomes pertaining to the research inquiries. A

comprehensive evaluation of all 23 articles was conducted, involving the extraction and

thorough examination of their respective findings. The results expounded in this section are

entirely grounded in the context of the research questions.

30

3.4.1 State of Art for Requirements Prioritisation Techniques

Kassab et al [40] proposes the AHP technique to quantitatively rank design choices and software

requirement prioritisation process strategies considering how system quality requirements,

design principles, and design methods interact. The suggested method is examined using a

remote patient monitoring system and the strategy has been shown to be effective in removing

discrepancies between stakeholders and the business.

Khan et al [41] declares AHP as the most promising method while comparing demand

prioritisation approaches in software development, ranking them based on ease of use,

completion time, and outcome accuracy.

Khan et al [42] provides a thorough evaluation of seven strategies for requirements

prioritisation: priority groups, bubble sort, binary search tree, spanning tree matrix, analytic

hierarchy process (AHP), analytic network process (ANP), and hierarchical AHP. Each

prioritisation method is applied to the prioritised Mobilink Franchise system to understand it.

The effectiveness of these prioritisation strategies is then assessed in relation to pre-established

standards, such as ease of use, necessary completion time, dependability of results, and assessing

interdependency of needs. It is concluded that even though ANP requires more time to finish the

prioritisation process, it has been proven to be the most reliable and promising strategy among

all other prioritising techniques.

Khan et al [43] recommends using RePizer, a framework for ranking software needs based on

predetermined criteria like implementation cost, in conjunction with a chosen prioritisation

technique. RePizer helps requirements engineers make informed decisions and provides a bird's-

eye view of the project. Comparing RePizer with the planning game (PG) and analytical

hierarchy process (AHP) revealed better performance in terms of accuracy and usability.

Kouhdaragh et al [44] establishes a cost function to rank the various requirement nodes

according to their objectives. The evaluation process uses the numerical results approach. The

nodes and the communication technologies are arranged in a priority table according to their

weights. The numerical outcomes demonstrate that the suggested strategy enables the optimal

communication technologies to be chosen for each type of smart grid node.

Parthasarathy et al [45] provides a framework using AHP to rank requirements according to

costs and benefits. The multi-layered strategy is created specifically for enterprise resource

31

planning systems and the unique levels of needs they have, and the framework gives better

results.

Ahmad et al [46] suggests a fuzzy MoSCoW method for ranking the importance of software

needs. It is applied on the Library Management System (LMS). The research shows that the

Fuzzy-MoSCoW method incorporates uncertainty and vagueness in the prioritisation process and

allows effective allocation of resources.

Abbas et al [47] introduces a model-based approach for requirements prioritisation using the

PageRank algorithm, considering factors like risk, cost, business value, and dependencies. The

meta-model and visualization tool is discussed. The modified PageRank algorithm is evaluated

and found to be more accurate and efficient than other methods. The results are closer to human

prioritisation.

Madzik et al [48] presents a fresh way to evaluate the importance of client requirements called

the T4 technique. It combines the AHP, Kano model, and point direct scoring (PDS). The new

approach considers both the class of specific requirements and their influence on the

improvement ratio, as well as the impact of the fulfilment or non-fulfillment of a certain demand

on customer satisfaction or dissatisfaction. Survey-based research verifies the tactic. After

analysing the results, the study concludes that T4 is the best method out of the five considered

(PDS, AHP, TSM, BITAF, and T4).

Shah Jahan et al [49] proposes a revolutionary method for requirement prioritisation called

"MAHP" by incorporating the AHP ideas into the MOSCOW technique, which will decrease the

number of pairwise comparisons and therefore the complexity. Using a case study of the Library

Management System, MAHP is validated. Results indicate that the suggested strategy, MAHP, is

more effective because it has produced 45 comparisons, as opposed to AHP's ability to produce

more than 200 pairwise comparisons for only 21 functional requirements.

Yaseen et al [50] prioritises functional requirements using the Analytical Hierarchical Process

(AHP) strategy, focusing on spanning trees. This approach minimizes dependencies among

developer requirements and reduces waiting time, ensuring timely software project delivery

without relying on concurrent developers' demands.

Muhammad et al [51] introduces the Enhanced Analytical Hierarchical Process (E-AHP) to

improve scalability and minimize inconsistent results in large software projects. It compares E-

32

AHP with AHP and ReDCCahp, finding E-AHP suitable for large software projects due to its

efficient handling of large requirements numbers.

Table 6 Literature Review of Req. Prioritisation Techniques

Year

Of

Pub

Title Techniques

Used

Results Ref.

2015 Applying analytical

hierarchy process to

system quality

requirements

prioritisation

AHP The AHP technique effectively

removes discrepancies between

stakeholders and the business.

[40]

2015 Comparison of

Requirement

Prioritisation

Techniques to Find

Best Prioritisation

Technique

binary search

tree, AHP,

hierarchy

AHP,

spanning tree

matrix,

priority

group/Numer

ical

Analysis,

bubble sort,

MoSoW,

simple

ranking and

Planning

Game

AHP is the best requirements

prioritisation technique amongst

all the requirements

prioritisation techniques

[41]

2016 An Evaluation of

Requirement

Prioritisation

Techniques with

ANP

ANP, binary

search tree,

AHP,

hierarchy

AHP,

spanning tree

matrix,

priority

group and

bubble sort

ANP is the best technique among

the seven techniques, though it

consumes time

[42]

2016 Repizer: a framework Repizer Comparing RePizer with the [43]

33

for prioritisation of

software

requirements

planning game (PG) and

analytical hierarchy process

(AHP) revealed better

performance in terms of

accuracy and usability

2016 A Cost Function

Based Prioritisation

Method for Smart

Grid Communication

Network

Cost

Function

Cost Function optimizes

communication technologies for

smart grid nodes.

[44]

2016 An approach to

estimation of degree

of customization for

ERP projects using

prioritised

requirements

Framework

using AHP

AHP framework gave better

results

[45]

2017 Fuzzy_MoSCoW: A

fuzzy based

MoSCoW method for

the prioritisation of

software

requirements

Fuzzy

MoSCoW

This technique incorporates

uncertainty and allocates

resource effectively.

[46]

2019 MBRP: Model-Based

Requirements

Prioritisation Using

PageRank Algorithm

MBRP MBRP can produce outcomes

that are more like human

prioritisation.

[47]

2019 Determining the

Importance of

Customer

Requirements in

QFD – A New

Approach based on

Kano Model and its

Comparison with

Other Methods

PDS, AHP,

TSM,

BITAF, and

T4

"T4" can assist with achieving a

higher accuracy rate.

[48]

2020 A Novel Approach

for Software

Requirement

Prioritisation

MAHP, a

combination

of AHP and

MoSCoW

MAHP reduces the number of

comparisons and hence saves

time

[49]

34

2020 Prioritisation of

Software Functional

Requirements from

Developers

Perspective

Spanning

Tree and

AHP

There was less dependency

among requirements hence less

waiting time for developers

because of spanning tree

[50]

2022 E-AHP: An

Enhanced Analytical

Hierarchy Process

Algorithm for

Priotrizing Large

Software

Requirements

Numbers

Enhanced

AHP

E-AHP gives better results for

large projects

[51]

3.4.1.1 Identified Requirements Prioritisation Techniques

The following graph illustrates the prevalent prioritisation techniques obtained from the state of

the art. Most papers have primarily focused on foundational techniques, which were

subsequently refined to achieve improved outcomes. In the graph, we have exclusively depicted

the fundamental techniques.

35

Graph 2 Identified Requirements Prioritisation Techniques

Table 7 Identified Requirements Prioritisation Techniques

Requirements Prioritisation Techniques Usage Count

Binary Search Tree 2

Analytic Network Process 1

Spanning Tree 3

Numerical Analysis 1

Bubble Sort 2

MoSCoW 3

Analytical Heirarchical Process 7

Planning Game 1

Cost Function 1

3.4.2 State of Art for Clustering Algorithms

Bouguettaya et al [52] proposes centroids as a replacement for raw data points in agglomerative

hierarchical clustering techniques. The approach reduces computational cost without

compromising clustering performance, and remains consistent regardless of settings like

36

clustering methods, data distributions, and distance measures. A study also evaluates the

effectiveness of this approach.

Fouedjio et al [53] provides a method for agglomerative hierarchical clustering that takes the

spatial dependency of observations into account. To identify the best clusters and assess the

contributions of the variables, it merges existing techniques and makes use of a dissimilarity

matrix. In both simulated and real datasets, the approach produces compact, linked, and

insightful clusters, yielding satisfying results.

Li et al [54] introduces a PAM (Partitioning Around Medoid) based method for recognizing tool

wear state in milling. The LPP (locality preserving projections) method is used to increase

clustering accuracy by dimension reduction. The experiments of Ti-6Al-4V alloy showed PAM

to perform higher in accuracy and robustness compared to k-means and fuzzy c-means.

Pitolli et al [55] in his research, he compares two different ground truth datasets for malware

families, one with labels generated by AVclass and the other based on clusters found by Malheur.

It suggests a novel technique for using the BIRCH (Balanced Iterative Reducing and Clustering

using Hierarchies) clustering algorithm to find groups of related samples in an unlabeled dataset.

The experimental evaluation shows that BIRCH is effective for identifying malware families,

with an accuracy that is on par with or better than that of conventional clustering algorithms. The

performance comparison draws attention to BIRCH's quick clustering.

Sinaga et al [56] introduces a new schema and learning framework for the k-means clustering

algorithm, using entropy-type penalty terms for competition. The U-k-means algorithm uses

points as the initial number of clusters, discarding extra clusters during iterations. It is robust to

different data structures and cluster volumes and has been tested on synthetic and real data sets.

The results show the superiority of the U-k-means clustering algorithm while comparison with

R-EM, C-FS, k-means etc.

Faizan et al [57] explores the use of K-means clustering for analyzing customer purchase

behavior in a car manufacturer company. It aims to identify sales-generating products and

understand customer behavior, reducing time-consuming manual analysis. The paper presents a

car dealership example and demonstrates its usefulness in analyzing customer data and making

informed decisions.

37

Karthikeyan et al [58] analyses delivery fleet driver data sets and compares k-means clustering

and hierarchical clustering, which correspond to the centroid and connection models, based on

execution time and memory usage. The tests revealed that while agglomerative hierarchical

performed better for smaller datasets due to lower memory utilisation, k-means performed better

for larger datasets due to lower execution time requirements.

Zhang et al [59] offers a unified learning method that incorporates clustering using Gaussian

Mixture Models and imputation. While imputed data is utilised for GMM clustering, the results

of GMM clustering are used to fill in the missing data. The compromises made throughout these

processes allow imputed data to perform as well as possible for GMM clustering. The

optimisation problem is supposed to be solved by a two-step alternative algorithm with

established convergence. Numerous tests on eight benchmark datasets from UCI confirm the

efficiency of the suggested approach.

Weber et al [60] proposes the Penning trap mass spectrometry (PTMS) phase-imaging ion-

cyclotron resonance (PI-ICR) technology, which has increased experiment speed and accuracy.

To demonstrate how ions cluster into spots based on cyclotron frequency, PI-ICR generates data

sets of individual ion hits. Determining spot centres is challenging because data sets can include

several spots, non-spherical spots, or substantial noise. Improving precision and confidence in

PI-ICR studies requires a mechanism for designating groups of ions to their appropriate places.

The best method for accomplishing this has been shown to be the Gaussian mixture model

(GMM) clustering algorithms.

Pezoulas et al [61] presents BGMM-OCE, a technique which uses Gaussian Mixture Models

(GMMs) and optimal component estimation to generate synthetic data. It is a computationally

efficient and unbiased method for generating synthetic data for large-scale clinical trials. It

compares various approaches, highlighting their limitations in efficiency and bias. BGMM-OCE

has the lowest coefficient of variation and good fit at a small execution time.

Zhao et al [62] presents an improved K-Means clustering algorithm to tackle local optimal

solutions and slow clustering speed issues. It uses the elbow rule for optimum number of clusters

and variance and the "triangular inequality principle” to determine cluster centers and minimize

unnecessary distance calculations. Experimental results show the improved algorithm

38

outperforms traditional K-Means and Canopy-K Means algorithms in accuracy and speedup

ratio.

Table 8 Literature Review of Clustering Algorithms

Year

Of

Pub

Title Techniques

Used

Results Ref.

2015 Efficient

agglomerative

hierarchical

clustering

Efficient

agglomerative

hierarchical clustering

Experimental results show

consistent performance

across various settings,

proving efficient and

reliable.

[52]

2016 A hierarchical

clustering method

for multivariate

geostatistical data

agglomerative

hierarchical clustering

Proposed clustering

method yields satisfactory

results compared to other

geostatistical methods.

[53]

2017 Milling tool wear

state recognition

based on

partitioning around

medoids (PAM)

clustering

PAM PAM outperforms k-

means and fuzzy c-means

in Ti-6Al-4V alloy end

milling experiments.

[54]

2017 Malware family

identification with

BIRCH clustering

BIRCH BIRCH excels in malware

family identification with

high accuracy and low

clustering time.

[55]

39

2020 Unsupervised K-

Means Clustering

Algorithm

Unsupervised K-

Means

The U-k-means algorithm

is robust to data structure

and performs better than

existing algorithms.

[56]

2020 Applications of

Clustering

Techniques in Data

Mining: A

Comparative Study

K-Means, Hierarchical

Clustering, DB Scan,

OPTICS, Density-

Based Clustering, EM

Algorithm

The paper emphasises the

value of K-means

clustering in consumer

data analysis and business

decision-making

[57]

2020 A Comparative

Study on K-Means

Clustering and

Agglomerative

Hierarchical

Clustering

K-Means and

Agglomerative

Hierarchy

K-means faster for large

datasets, agglomerative

hierarchical better for

smaller ones.

[58]

2021 Gaussian Mixture

Model Clustering

with Incomplete

Data

GMM Experiments validate the

effectiveness of the

proposed algorithm.

[59]

2022 Gaussian mixture

model clustering

algorithms for the

analysis of high-

precision mass

measurements

GMM Results from GMMs were

closely congruent with

values that had previously

been published.

[60]

40

2022 Bayesian Inference-

Based Gaussian

Mixture Models

with Optimal

Components

Estimation

Towards Large-

Scale Synthetic

Data Generation for

In Silico Clinical

Trials

BGMM-OCE BGMM-OCE outperforms

other synthetic data

generators in terms of

computational efficiency

and unbiasedness

[61]

2022 Design and

Implementation of

an Improved K-

Means Clustering

Algorithm

Improved K-Means Enhanced algorithm

works better than

conventional K-Means.

[62]

3.4.2.1 Identified Clustering Algorithms

Graph 3 Identified Clustering Algorithms

The graph portrays the prevalent clustering algorithms derived from the state of the art. A

significant portion of the literature has centered around foundational algorithms, which have

been subsequently fine-tuned to yield enhanced results. The graph exclusively showcases the

core algorithms.

41

Table 9 Identified Clustering Algorithms

Clustering Algorithms Usage Count

Agglomerative Hierarchical Clustering 3

Partition Around Medoids 1

BIRCH 1

K-Means 4

GMM 3

3.5 Research Gap

The research gap in this thesis revolves around the limited exploration of the Analytical

Hierarchy Process (AHP) as a tool for clustering requirements in the context of planning for the

next release of a project. There is a conspicuous lack of research that explore AHP's potential

utility in grouping or clustering requirements to speed up the release planning process, even

though most of the existing literature focuses on the application of AHP in requirements

prioritisation and decision-making. AHP can be used to improve the organisation, categorization,

and prioritisation of requirements in the context of release planning, which will ultimately lead

to more effective and efficient project management.

3.6 Chapter Summary

This chapter meticulously examined 23 selected papers, with 12 focusing on requirements

prioritisation techniques and 11 on clustering algorithms. Notably, a diverse array of approaches,

such as Binary Search Tree, Analytic Network Process, Spanning Tree, Numerical Analysis,

Bubble Sort, MoSCoW, Analytical Hierarchical Process, Planning Game, and Cost Function,

were explored within the state of the art. Remarkably, the widely prevalent choice among

researchers was the Analytical Hierarchical Process (AHP), attributed to its consistent delivery

of superior results. Additionally, the chapter sheds light on various clustering algorithms,

including K-means, Gaussian Mixture Model (GMM), BIRCH, Agglomerative Hierarchical

Clustering, and Partition Around Medoids. This synthesis of literature sets the foundation for

subsequent research phases, offering insights into the landscape and paving the way for the

formulation of an innovative and effective framework.

42

CHAPTER 4 .

METHODOLOGY

In the dynamic landscape of software development and project management, prioritising

requirements has emerged as a crucial practice to ensure efficient resource allocation, timely

delivery, and customer satisfaction. Prioritising requirements is acknowledged as being a

challenging task in software product development, nevertheless [63]. Requirement prioritisation

involves the systematic process of determining the relative importance and urgency of various

features, functionalities, and tasks within a project. By establishing a structured framework for

evaluating and ranking requirements, organizations can make informed decisions about what to

focus on first, thereby optimizing development efforts and aligning them with strategic goals.

4.1 Requirements Prioritisation Methodology

This thesis presents a method

for prioritising requirements for

the next release using

requirements prioritisation

methods. The prioritisation

methods consider the effort

required for implementing a

requirement and the extent to

which a particular requirement

will be satisfying the

stakeholders. After that

clustering algorithms are

applied to cluster the

requirements. Finally, the

prioritisation technique is used

to extract the group of

requirements that will be

Figure 9 Workflow of Requirements Prioritisation

43

implemented for the next release. The evaluation of clusters is also done to check the validity of

clusters. The figure below shows a bird eye view of the whole process. We will be focusing on

the coloured part of the figure.

4.1.1 Requirements Elicitation

Requirement elicitation, a cornerstone of requirement engineering, is a critical step that involves

gathering stakeholders' needs and expectations for a software project. This process encompasses

discussions, interviews, workshops, and surveys to extract information about desired

functionalities, features, and constraints. Its outcomes include comprehensive documented

requirements that form the basis for subsequent project phases. By fostering shared

understanding and aligning project goals, effective requirement elicitation reduces

misunderstandings and enhances the likelihood of delivering a software solution that meets user

and business needs. We will initiate the process of the Requirements Elicitation phase,

employing systematic approaches like interviews, surveys, and workshops to comprehensively

gather insights from stakeholders. Through this method, we aim to establish a clear

understanding of project needs and aspirations, ensuring the identification and documentation of

all pertinent requirements, thereby laying a solid groundwork for the subsequent requirements

prioritisation process.

4.1.2 Requirements Analysis

Requirements analysis holds a pivotal role in software requirement engineering, entailing a

comprehensive understanding and detailed scrutiny of the gathered requirements. This phase

involves reviewing and clarifying requisites to eliminate ambiguity, addressing inconsistencies,

and evaluating feasibility for practical implementation. Activities such as breaking down

intricate requirements into manageable components, formulating detailed use cases, and

validating the analyzed requirements with stakeholders are integral. Non-functional requirements

are refined into quantifiable attributes, while dependencies, constraints, and potential risks are

identified. The establishment of traceability links, potential prototyping, and maintaining

iterative analysis further enriches the process. This step ensures that the requisites are well-

defined, align with stakeholder expectations, and paves the way for subsequent developmental

stages. In this thesis, our focus shifts to the following phase of Requirements Analysis. Building

on the requirements gathered in the Elicitation phase, Requirements Analysis involves

44

meticulous examination to ensure clarity, completeness, and precision within each requirement.

Scrutinizing inconsistencies, conflicts, and gaps, we aim to create a refined and faithful

representation of the software's functionalities and attributes. This phase serves as a vital link

connecting the initial requirements to subsequent stages like prioritisation and evaluation.

4.1.3 Stakeholders Input

Stakeholders play a crucial part in the collaborative decision-making process by contributing

their invaluable insight on both the work needed for implementation and the level of satisfaction

expected from a given project or feature. Their ideas on effort consider things like time

commitments, resource allocation, and potential problems that can occur throughout

development. Stakeholders simultaneously share their expectations for how well the project

would correspond with organisational goals, consumer wants, and market demands, contributing

their perspective on satisfaction. This two-way input offers a thorough comprehension of the

trade-offs involved in project planning and aids in directing decision-makers in choosing

initiatives that maximise stakeholder satisfaction while optimising resource utilisation.

4.1.3.1 Problem Formulation

4.1.3.1.1 Quantitative Dataset

Consider a scenario where we have a set of requirements, denoted as R = {R1, R2, …, Rn},

which represent the new features suggested by various customers for an upcoming software

release. These requirements are not of equal importance, as each customer's significance varies.

To capture this, each customer i is assigned a weight Wi, reflecting their importance to the

overall software project. This means that some customers' preferences carry more weight than

others in determining what should be addressed in the software release. The collection of

customer weights is represented as W = {W1, W2, …, Wn}.

Every requirement Rj within the set R comes with an associated development effort value Ej,

which estimates the cost or resources needed for its implementation. This set of effort values is

denoted as E = {E1, E2, …, En}. It's worth noting that a single requirement can be proposed by

multiple customers, each assigning it a distinct priority level. This is quantified through a value

Vij, indicating the importance of requirement Rj for customer i. Essentially, higher Vij values

correspond to higher priorities for customer i.

45

The cumulative value of incorporating a requirement Rj into the next software release, referred

to as its global satisfaction, Sj, is calculated by summing up its importance values across all

customers (Sj = ∑m i=1 Wi ⋅ Vij). In simpler terms, this reflects the combined satisfaction that

the inclusion of requirement rj would bring to all customers, considering their individual

priorities and weights. The resulting set of requirement satisfactions is represented as S = {S1,

S2, …, Sn}. This conceptually summarizes how the varying importance of customers, the

priority they assign to requirements, and the collective satisfaction from fulfilling these

requirements all interplay to guide the process of selecting what to include in the upcoming

software release [64].

4.1.3.1.2 AHP Dataset

Here in this study, will be we will be using the Quantitative data set for the pairwise comparisons

of each requirement. This will give us the relative weight of each requirement and hence we will

create the AHP data set for our requirements.

To calculate the relative weights of both criteria, Effort and Satisfaction, the eigenvector method

is employed after obtaining pairwise comparison judgments. Then, a square matrix is created,

known as the comparison matrix, where elements C_ij represent the importance of criterion

Effort (Ci) in relation to criterion Satisfaction (Cj). The matrix is normalized by dividing each

column by its sum, resulting in a matrix of normalized values. The average of the normalized

values in each row is calculated to derive the priority vector for each level. A consistency check

is carried out to ensure consistent pairwise comparisons, utilizing the consistency ratio (CR) to

determine if the judgments align coherently. If the CR exceeds a designated threshold, typically

set at 0.1, adjustments are made accordingly. Once the consistency check is successfully

completed, the priority vectors represent the relative weights of the requirements.

4.1.4 Elbow Method

The elbow method serves as a heuristic approach in data science and machine learning for

identifying the optimal number of clusters within a dataset for effective clustering. By employing

this method, a range of potential cluster numbers is initially considered. Utilizing a clustering

algorithm, often k-means, the sum of squared distances between data points and their

corresponding cluster centers is computed. A smaller sum of squared distances indicates more

cohesive clusters. The crucial step involves identifying the "elbow point" on a line plot depicting

46

the number of clusters against the sum of squared distances. This point signifies a balance

between minimizing the sum of squared distances and preventing excessive fragmentation of

data, thereby offering the optimal cluster count for the dataset.

In this study, we apply the elbow method to our requirements dataset. Through iterations, we

calculate the within-cluster sum of squares (WCSS) for varying cluster numbers and plot these

values. This method aids in finding the optimum number of clusters that best captures underlying

patterns and relationships within the requirements. By utilizing the elbow method, we enhance

the precision of our requirement clustering process, ensuring that the final cluster configuration

aligns effectively with the inherent structure of the requirements dataset.

4.1.5 Clustering of Requirements

Now, we will be advancing to the step of Clustering of Requirements. Recognizing the

complexity of managing a multitude of requirements, this phase focuses on organizing and

grouping similar requirements into clusters. Through techniques such as similarity analysis or

domain categorization, we aim to identify common themes, functionalities, or attributes among

the requirements. This process not only enhances the manageability of requirements but also

provides a structured approach for analysis. By clustering related requirements together, we can

streamline the subsequent prioritisation process and gain a holistic understanding of the

software's various aspects. This phase acts as a bridge between requirements analysis and

requirements prioritisation, facilitating a more organized and efficient workflow.

We will be employing a comprehensive selection of five distinct clustering algorithms, each

designed to partition requirements into coherent groups based on shared characteristics. These

algorithms encompass K-Means, which iteratively refines clusters by minimizing distances to

cluster centroids; Agglomerative Hierarchical Clustering, which creates a hierarchy of clusters

by iteratively merging or agglomerating data points; Partitioning Around Medoids (PAM), which

seeks representative points within clusters; Gaussian Mixture Model (GMM), which models data

as a mixture of Gaussian distributions; and BIRCH, a hierarchical algorithm that efficiently

clusters large datasets by first creating a compact summary of the data. The deployment of these

diverse algorithms enhances our ability to extract meaningful patterns and structures from the

requirements, providing a comprehensive understanding of their relationships and aiding in

informed decision-making during the subsequent prioritisation process.

47

4.1.6 Clusters Evaluation

The evaluation of clusters is a critical process in assessing the quality and validity of clustering

results obtained from data analysis or machine learning algorithms. It involves using various

metrics and techniques to determine how well the data points within each cluster are grouped

together and separated from other clusters. There are different mechanisms to evaluate clusters.

Here we will be using three mechanisms to assess the clusters. These are Dunn Index, Silhouette

Index and Caliński-Harabasz Index. These indices are calculated once the clusters are formed.

Their final values are used to rate the clusters.

4.1.6.1 Dunn Index

The Dunn Index is a clustering validation metric that quantifies the quality of clusters based on

their separation and compactness. By taking into account both the distance between data points

inside clusters and the distance between various clusters, it provides a measurement of how

clearly defined and distinct the clusters are. A higher Dunn Index value indicates better

clustering, as it signifies that clusters are well-separated and compact internally.

The formula for the Dunn Index is:

Dunn Index = Minimum Inter-Cluster Distance / Maximum Intra-Cluster Distance

Where:

• Minimum Inter-Cluster Distance: The smallest distance between any two centroids of

different clusters.

• Maximum Intra-Cluster Distance: The largest distance between any two data points

within the same cluster.

4.1.6.2 Silhouette Index

The Silhouette Index is a clustering evaluation measure that assesses the quality of clusters by

measuring both how close data points are to their own cluster and how far they are from other

clusters. It produces values between -1 and 1. A higher Silhouette Index suggests well-separated

clusters.

The formula for Silhouette Index is:

S(i) = {b(i) – a(i)} / max{(a(i), b(i))}

48

Where:

• a(i) is the average distance to other points in the same cluster as i,

• b(i) is the smallest average distance to points in a different cluster.

The overall Silhouette Index is the average of S(i) values across all data points.

4.1.6.3 Calinski-Harabasz Index

The Caliński-Harabasz Index is a clustering validation metric used to evaluate the quality of

clusters in a clustering solution. It calculates the difference between the variances within and

between clusters. A higher Caliski-Harabasz Index value denotes clusters that are more well

defined and well-separated.

The formula for Caliński-Harabasz Index is:

CH=(B/W)× (N−K) / (K−1)

Where:

• B is the between-cluster variance (the sum of squared distances between cluster centroids

and the overall mean).

• W is the within-cluster variance (the sum of squared distances between data points and

their respective cluster centroids).

• N is the total number of data points.

• K is the number of clusters.

4.1.7 Requirements Prioritisation

The Requirements Prioritisation phase in Software Requirement Engineering encompasses the

systematic evaluation and ranking of requirements, enabling the optimal allocation of resources

by focusing on critical software system aspects. Through thorough assessment of scope,

complexity, and stakeholder input, requirements are rigorously evaluated against criteria

including effort, business value, feasibility, and risk. This evaluation, informed by stakeholder

insights and organized clusters, guides priority assignment using frameworks like MoSCoW,

Kano Model, or AHP, ensuring that development efforts target high-impact areas. This process's

outcome directs resource allocation, aligning with project goals for maximum value delivery and

effective software system development.

49

In this study, we will be systematically assigning priorities to each requirement using MoSCoW

(Must Have, Should Have, Could Have, Won't Have). We will evaluate and rank requirements

based on factors ‘Effort required for implementing a requirement’ and ‘Satisfaction level it

provides to the stakeholders’. This process ensures that limited resources are allocated to address

the most critical and impactful aspects of the software system.

4.1.7.1 MoSCoW

MoSCoW is a project management and requirements analysis technique that categorizes tasks

into four groups: Must Have, Should Have, Could Have, and Will Not Have. After clustering the

requirements stakeholders will use MoSCoW to prioritise requirements. The project team and

stakeholders assess each requirement cluster and assign one of the labels of MoSCoW to it based

on its priority. This categorization helps in making informed decisions about resource allocation,

project scope, and timelines. By clearly defining what must be delivered versus what can be

deferred or omitted, the MoSCoW method aids in managing expectations and focusing efforts on

the most critical aspects of the project.

It ensures that the most essential requirements are addressed first while allowing flexibility for

less critical elements. The cluster with overall least Effort and most Satisfaction score is likely to

fall under ‘Must” label and the cluster with overall most Effort and least Satisfaction score is

likely is fall under ‘Won’t” label. This approach helps streamline the development process and

allocate resources efficiently to meet project objectives.

50

CHAPTER 5 .

EXPERIMENTAL RESULTS

5.1 Databases

Two cases were chosen to evaluate the effectiveness of our methodology. The first one is a (20-

Problem) drawn from [65] and the second data set is a (100-Problem) obtained from [66].

5.1.1 20 Requirements Problem

This dataset has five customers and twenty requirements. Table 10 displays the development

effort related to each requirement as well as the level of importance or value given by each

customer to each requirement. According to a uniform distribution, the customer weights are

provided in the range of 1 to 5. These values can be viewed as language labels such as: without

importance (1), less important (2), important (3), very important (4), and extremely important

(5). They also correspond to the level of priority of each demand. Each requirement has a

corresponding estimated effort score, which ranges from 1 to 10.

Table 10 Raw 20 Req. Problem

 C1 C2 C3 C4 C5 Effort

R1 4 4 5 4 5 1

R2 2 4 3 5 4 4

R3 1 2 3 2 2 2

R4 2 2 3 3 4 3

R5 5 4 4 3 5 4

R6 5 5 5 4 4 7

R7 2 1 2 2 2 10

R8 4 4 4 4 4 2

R9 4 4 4 2 5 1

R10 4 5 4 3 2 3

R11 2 2 2 5 4 2

R12 3 3 4 2 5 5

R13 4 2 1 3 3 8

51

R14 2 4 5 2 4 2

R15 4 4 4 4 4 1

R16 4 2 1 3 1 4

R17 4 3 2 5 1 10

R18 1 2 3 4 2 4

R19 3 3 3 3 4 8

R20 2 1 2 2 1 4

Table 11 Customers' Weights for 20 Req. Problem

Customers' Weights C1 C2 C3 C4 C5

 1 4 2 3 4

5.1.1.1 20 Requirements Problem using Quantitative Approach

To convert the data into two dimensions to apply clustering on it, we considered section

4.1.3.1.1. Here:

R = {R1, R2, ……., R20},

E = {1, 4, 2, …….,4},

W = {1, 4, 2, ……., 4}.

This is how ‘S’ (Satisfaction) was calculated for r1.

S = ∑ (Vij * Wi)

S= {(4*1) + (4*4) + (5*2) + (4*3) + (5*4)}

S= 62

So, satisfaction for r1 was calculated to be 62 whereas the effort is 1. The rest was also

calculated similarly, and this table was generated as a result.

Table 12 Quantitative Data for 20 Req. Problem

ID Effort Satisfaction
 ID Effort Satisfaction

R1 1 62 R11 2 45

R2 4 55 R12 5 49

R3 2 29 R13 8 35

52

R4 3 41 R14 2 50

R5 4 58 R15 1 56

R6 7 63 R16 4 27

R7 10 24 R17 10 39

R8 2 56 R18 4 35

R9 1 54 R19 4 46

R10 3 49 R20 4 20

5.1.1.2 20 Requirements Problem using AHP

The same data set was used to derive AHP values for Effort and satisfaction and this table was

generated as a result.

Table 13 AHP Data for 20 Req. Problem

ID Effort Satisfaction ID Effort Satisfaction

R1 12.7640176 3.24660865 R11 6.38200881 4.47310526

R2 3.19100441 3.65981339 R12 2.55280353 4.10795381

R3 6.38200881 6.9410254 R13 1.5955022 5.75113533

R4 4.25467254 4.90950577 R14 6.38200881 4.02579473

R5 3.19100441 3.4705127 R15 12.7640176 3.59445958

R6 1.82343109 3.19507518 R16 3.19100441 7.45517543

R7 1.27640176 8.38707236 R17 1.27640176 5.1612753

R8 6.38200881 3.59445958 R18 3.19100441 5.75113533

R9 12.7640176 3.72758771 R19 3.19100441 4.37586384

R10 4.25467254 4.10795381 R20 3.19100441 10.0644868

5.1.2 100 Requirements Problem

This data set also consists of 5 customers but this time the number of requirements is 100. This

dataset was chosen because of the challenge of choosing requirements from a larger set during

the early timeboxes of developing genuine agile software projects. This is the reason now we

have 100 requirements instead of just 20. Each requirement has a value for the development

effort that ranges from 1 to 20. Here 20 units (4 weeks) represent maximum development effort

53

which is basically the timeframe established by agile methodologies (e.g., Scrum's iteration

proposal 2 to 4 weeks (about). The importance of requirements is valued by the customers in the

range of 1 to 3. Here the numbers 1-3 are, (1) inessential, (2) desirable or (3) mandatory [67].

Table 14 Raw Data for 100 Req. Problem

 C1 C2 C3 C4 C5 Effort

R1 1 3 1 3 1 16

R2 2 2 1 2 2 19

R3 1 1 1 2 3 16

R4 1 2 2 1 1 7

R5 2 1 1 3 3 19

R6 3 2 1 1 1 15

R7 3 1 1 3 2 8

R8 1 2 3 2 3 10

R9 1 2 2 3 1 6

R10 3 1 2 2 1 18

R11 1 2 3 3 2 15

R12 1 3 3 2 2 12

R13 3 3 3 1 3 16

R14 2 2 1 3 1 20

R15 3 1 3 2 2 9

R16 2 3 1 3 1 4

R17 2 2 2 2 1 16

R18 3 3 2 1 1 2

R19 1 3 3 3 1 9

R20 3 1 3 3 3 3

R21 2 3 2 1 1 2

R22 1 3 1 1 1 10

R23 1 3 2 1 3 4

R24 1 2 3 2 3 2

R25 3 3 2 3 3 7

R26 3 1 3 3 2 15

54

R27 3 2 3 2 2 8

R28 3 2 1 1 3 20

R29 1 3 3 1 2 9

R30 2 3 3 1 3 11

R31 2 1 3 1 1 5

R32 3 3 2 2 1 1

R33 2 2 1 2 3 17

R34 1 2 2 2 3 6

R35 2 1 2 3 2 2

R36 2 2 1 2 2 16

R37 1 3 1 2 1 8

R38 3 2 3 3 1 12

R39 3 3 1 1 2 18

R40 2 3 2 1 1 5

R41 2 3 1 3 3 6

R42 2 3 3 1 1 14

R43 3 1 1 1 1 15

R44 1 1 3 3 2 20

R45 1 3 3 1 1 14

R46 1 2 3 2 2 9

R47 2 2 3 1 3 16

R48 2 2 1 1 3 6

R49 3 1 3 3 2 6

R50 3 3 2 2 2 6

R51 3 3 3 2 1 6

R52 3 3 1 1 3 2

R53 1 1 2 3 3 17

R54 3 2 3 2 2 18

R55 2 2 2 1 3 1

R56 1 3 3 3 1 3

R57 3 3 2 3 2 14

R58 1 2 1 1 1 16

55

R59 3 1 2 2 3 18

R60 1 1 3 3 2 7

R61 2 1 1 2 2 10

R62 2 3 1 2 2 7

R63 3 2 2 3 1 16

R64 3 3 3 3 2 19

R65 1 1 3 3 1 17

R66 3 2 1 1 3 15

R67 1 1 3 2 2 11

R68 3 2 3 1 1 8

R69 2 3 3 2 2 20

R70 3 1 1 1 1 1

R71 1 1 3 2 2 5

R72 3 3 1 3 2 8

R73 2 1 3 3 3 3

R74 3 3 1 2 2 15

R75 1 2 1 2 1 4

R76 1 1 2 2 3 20

R77 2 3 3 1 2 10

R78 3 3 3 3 3 20

R79 3 1 1 3 1 3

R80 1 2 2 1 3 20

R81 2 1 1 3 3 10

R82 1 2 2 1 2 16

R83 3 1 3 2 1 19

R84 1 2 2 2 2 3

R85 2 2 3 2 2 12

R86 2 1 1 1 2 16

R87 2 3 2 1 2 15

R88 1 2 2 1 1 1

R89 3 2 3 3 3 6

R90 2 3 3 1 3 7

56

R91 2 2 3 1 3 15

R92 3 2 3 3 1 18

R93 1 2 2 3 1 4

R94 1 3 1 1 3 7

R95 1 2 1 2 1 2

R96 2 2 2 1 3 7

R97 1 1 3 2 3 8

R98 3 3 3 3 3 7

R99 1 1 2 1 3 7

R100 1 1 3 3 3 3

Table 15 Customers' Weight for 100 Req. Problem

Customers' Weights C1 C2 C3 C4 C5

 1 5 3 3 1

5.1.2.1 100 Requirements Problem using Quantitative Approach

The Satisfaction for 100 Requirements Problem was also calculated using the same methodology

as 6.1.1.1. This is the resulting table.

Table 16 Quantitative Data for 100 Req. Problem

ID Effort Satisfaction ID Effort Satisfaction

R1 16 29 R51 6 34

R2 19 23 R52 2 27

R3 16 18 R53 17 24

R4 7 21 R54 18 30

R5 19 22 R55 1 24

R6 15 20 R56 3 35

R7 8 22 R57 14 35

R8 10 29 R58 16 18

R9 6 27 R59 18 23

R10 18 21 R60 7 26

57

R11 15 31 R61 10 18

R12 12 33 R62 7 28

R13 16 33 R63 16 29

R14 20 25 R64 19 38

R15 9 25 R65 17 25

R16 4 30 R66 15 22

R17 16 25 R67 11 23

R18 2 28 R68 8 26

R19 9 35

R69 20 34

R20 3 29 R70 1 15

R21 2 27 R71 5 23

R22 10 23 R72 8 32

R23 4 28 R73 3 28

R24 2 29 R74 15 29

R25 7 36 R75 4 21

R26 15 28 R76 20 21

R27 8 30 R77 10 31

R28 20 22 R78 20 39

R29 9 30 R79 3 21

R30 11 32 R80 20 23

R31 5 20 R81 10 22

R32 1 31 R82 16 22

R33 17 24 R83 19 24

R34 6 26 R84 3 25

R35 2 24 R85 12 29

R36 16 23 R86 16 15

R37 8 26 R87 15 28

R38 12 32 R88 1 21

R39 18 26 R89 6 34

R40 5 27 R90 7 32

R41 6 32 R91 15 27

R42 14 30 R92 18 32

58

R43 15 15 R93 4 27

R44 20 26 R94 7 25

R45 14 29 R95 2 21

R46 9 28 R96 7 24

R47 16 27 R97 8 24

R48 6 21 R98 7 39

R49 6 28 R99 7 18

R50 6 32 R100 3 27

5.1.2.2 100 Requirements Problem using AHP

Below is the AHP table for the 100-Problem data set.

Table 17 AHP Data for 100 Req. Problem

ID Effort Satisfaction ID Effort Satisfaction

R1 0.35245612 0.87906114 R51 0.93988298 0.74978744

R2 0.29680515 1.10838143 R52 2.81964894 0.94417678

R3 0.35245612 1.41626516 R53 0.3317234 1.06219887

R4 0.80561398 1.21394157 R54 0.31329433 0.8497591

R5 0.29680515 1.15876241 R55 5.63929788 1.06219887

R6 0.37595319 1.27463865 R56 1.87976596 0.72836494

R7 0.70491224 1.15876241 R57 0.40280699 0.72836494

R8 0.56392979 0.87906114 R58 0.35245612 1.41626516

R9 0.93988298 0.94417678 R59 0.31329433 1.10838143

R10 0.31329433 1.21394157 R60 0.80561398 0.98049127

R11 0.37595319 0.82234751 R61 0.56392979 1.41626516

R12 0.46994149 0.77250827 R62 0.80561398 0.91045618

R13 0.35245612 0.77250827 R63 0.35245612 0.87906114

R14 0.28196489 1.01971092 R64 0.29680515 0.67086245

R15 0.62658865 1.01971092 R65 0.3317234 1.01971092

R16 1.40982447 0.8497591 R66 0.37595319 1.15876241

R17 0.35245612 1.01971092 R67 0.51266344 1.10838143

R18 2.81964894 0.91045618 R68 0.70491224 0.98049127

59

R19 0.62658865 0.72836494 R69 0.28196489 0.74978744

R20 1.87976596 0.87906114 R70 5.63929788 1.6995182

R21 2.81964894 0.94417678 R71 1.12785958 1.10838143

R22 0.56392979 1.10838143 R72 0.70491224 0.79664915

R23 1.40982447 0.91045618 R73 1.87976596 0.91045618

R24 2.81964894 0.87906114 R74 0.37595319 0.87906114

R25 0.80561398 0.70813258 R75 1.40982447 1.21394157

R26 0.37595319 0.91045618 R76 0.28196489 1.21394157

R27 0.70491224 0.8497591

R77 0.56392979 0.82234751

R28 0.28196489 1.15876241 R78 0.28196489 0.65366084

R29 0.62658865 0.8497591 R79 1.87976596 1.21394157

R30 0.51266344 0.79664915 R80 0.28196489 1.10838143

R31 1.12785958 1.27463865 R81 0.56392979 1.15876241

R32 5.63929788 0.82234751 R82 0.35245612 1.15876241

R33 0.3317234 1.06219887 R83 0.29680515 1.06219887

R34 0.93988298 0.98049127 R84 1.87976596 1.01971092

R35 2.81964894 1.06219887 R85 0.46994149 0.87906114

R36 0.35245612 1.10838143 R86 0.35245612 1.6995182

R37 0.70491224 0.98049127 R87 0.37595319 0.91045618

R38 0.46994149 0.79664915 R88 5.63929788 1.21394157

R39 0.31329433 0.98049127 R89 0.93988298 0.74978744

R40 1.12785958 0.94417678 R90 0.80561398 0.79664915

R41 0.93988298 0.79664915 R91 0.37595319 0.94417678

R42 0.40280699 0.8497591 R92 0.31329433 0.79664915

R43 0.37595319 1.6995182 R93 1.40982447 0.94417678

R44 0.28196489 0.98049127 R94 0.80561398 1.01971092

R45 0.40280699 0.87906114 R95 2.81964894 1.21394157

R46 0.62658865 0.91045618 R96 0.80561398 1.06219887

R47 0.35245612 0.94417678 R97 0.70491224 1.06219887

R48 0.93988298 1.21394157 R98 0.80561398 0.65366084

R49 0.93988298 0.91045618 R99 0.80561398 1.41626516

R50 0.93988298 0.79664915 R100 1.87976596 0.94417678

60

5.2 Elbow Method

The elbow method was applied to both 20 and 100 Requirements Problem data sets to find the

optimum number of clusters. The graphs below show the optimum number of clusters.

5.2.1 20 Requirements Problem

Figure 10 Optimum Number of Clusters for Quantitative Approach

Figure 11 Optimum Number of Clusters for AHP

61

5.2.2 100 Requirements Problem

Figure 12 Optimum Number of Clusters for Quantitative Approach

Figure 13 Optimum Number of Clusters for AHP

5.3 Clustering

As per the results of elbow method the optimum number of clusters for both 20 and 100

Requirements Problem was 3. Since we are also using MoSCoW along with AHP for

requirements prioritisation, we created 3 as well as 4 clusters. The reason for this is MoSCoW

has four attributes.

This research utilized five clustering algorithms, including K-Means, Partition Around Medoids,

Agglomerative Hierarchical Clustering, Gaussian Mixture Models, and BIRCH, to group data

points in quantitative and AHP datasets. The analysis was conducted on two scales of problem

instances: 20 requirements and 100 requirements. Three and four clusters were generated for

62

each dataset, acting as cohesive groups of related data points. Below are clusters for AHP

datasets.

5.3.1 K-Means

Figure 14 AHP-based clustering: 3 & 4 Clusters from 20 Req

Figure 15 AHP-based clustering: 3 & 4 Clusters from 100 Req

63

5.3.2 Partition Around Medoids

Figure 16 AHP-based clustering: 3 & 4 Clusters from 20 Req

Figure 17 AHP-based clustering: 3 & 4 Clusters from 100 Req

64

5.3.3 Agglomerative Hierarchical Clustering

Figure 18 AHP-based clustering: 3 & 4 Clusters from 20 Req

Figure 19 AHP-based clustering: 3 & 4 Clusters from 100 Req

65

5.3.4 Gaussian Mixture Models

Figure 20 AHP-based clustering: 3 & 4 Clusters from 20 Req

Figure 21 AHP-based clustering: 3 & 4 Clusters from 100 Req

66

5.3.5 BIRCH

Figure 22 AHP-based clustering: 3 Clusters from 20 & 100 Req

5.4 Clusters Evaluation

To evaluate the quality of the clusters, three metrics were computed: the Dunn Index, the

Silhouette Index, and the Calinski-Harabasz Index. These metrics assess the effectiveness of

clustering in different ways, such as separation between clusters, well-separated clusters, and the

ratio of between-cluster variance to within-cluster variance.

The paper [64] has assessed the values of three clustering algorithms: K-means, Hierarchical

Clustering, and Partition Around Medoids (PAM) using quantitative computations. This thesis

aims to provide a comparative analysis between the computed index values from [64] and the

values obtained by the Analytic Hierarchy Process (AHP) approach. This analysis gauges the

level of concurrence or divergence between the established methodology and the innovative AHP

approach. Holistic comparison helps to understand the strengths and limitations of different

clustering strategies and contributes to the broader understanding of effective clustering

methodologies and their practical applications.

Furthermore, Gaussian Mixture Models (GMM) and BIRCH are also used to calculate the

evaluation indices for both types of data sets, i.e., Quantitative and AHP to get a broader

understanding of how proposed methodology acts with different clustering algorithms.

Given below are the results of all clustering algorithms for cluster evaluation metrics.

67

5.4.1 K-Means

Table 18 K-Means Clusters Evaluation: 20 Requests

20 Requirements Problem

 Clusters Quantitative AHP

Dunn 3 0.209 0.4336

Silhouette 3 0.4666 0.5690

CH 3 22.9273 33.7443

Dunn 4 0.2527 0.2417

Silhouette 4 0.4176 0.4863

CH 4 24.3832 34.1044

Table 19 K-Means Clusters Evaluation: 100 Requests

100 Requirements Problem

 Clusters Quantitative AHP

Dunn 3 0.0548 0.2364

Silhouette 3 0.4283 0.4632

CH 3 89.5132 89.7174

Dunn 4 0.0783 0.2377

Silhouette 4 0.3993 0.4766

CH 4 90.9959 96.8018

5.4.2 Partition Around Medoids

Table 20 PAM Clusters Evaluation: 20 Requests

20 Requirements Problem

 Clusters Quantitative AHP

Dunn 3 0.2607 2.7100

Silhouette 3 0.4843 0.5208

CH 3 22.6144 31.1727

Dunn 4 0.3151 1.5103

Silhouette 4 0.4116 0.4374

CH 4 24.0329 31.2174

68

Table 21 PAM Clusters Evaluation: 100 Requests

100 Requirements Problem

 Clusters Quantitative AHP

Dunn 3 0.0831 0.3396

Silhouette 3 0.4308 0.3943

CH 3 89.5132 46.9101

Dunn 4 0.0696 0.3024

Silhouette 4 0.3993 0.3998

CH 4 88.7641 64.6714

5.4.3 Agglomerative Hierarchical Clustering

Table 22 AHC Clusters Evaluation: 20 Requests

20 Requirements Problem

 Clusters Quantitative AHP

Dunn 3 0.2576 2.9804

Silhouette 3 0.4549 0.5690

CH 3 18.6832 33.7443

Dunn 4 0.2482 2.7427

Silhouette 4 0.3561 0.4863

CH 4 18.7909 34.1044

Table 23 AHC Clusters Evaluation: 100 Requests

100 Requirements Problem

 Clusters Quantitative AHP

Dunn 3 0.1096 0.3472

Silhouette 3 0.4278 0.4327

CH 3 88.0933 82.8722

Dunn 4 0.1096 0.2518

Silhouette 4 0.3964 0.4576

CH 4 82.5902 95.1834

69

5.4.4 Gaussian Mixture Models

Table 24 GMM Clusters Evaluation: 20 Requests

20 Requirements Problem

 Clusters Quantitative AHP

Dunn 3 0.2739 0.3723

Silhouette 3 0.4568 0.5690

CH 3 22.5821 33.744

Dunn 4 0.1796 0.310

Silhouette 4 0.3839 0.4905

CH 4 22.0866 33.633

Table 25 GMM Clusters Evaluation: 100 Requests

100 Requirements Problem

 Clusters Quantitative AHP

Dunn 3 0.7259 0.1706

Silhouette 3 0.4285 0.0743

CH 3 90.674 26.5032

Dunn 4 0.5557 0.077

Silhouette 4 0.3721 0.1082

CH 4 90.7001 36.2847

5.4.5 BIRCH

Table 26 BIRCH Clusters Evaluation: 20 Requests

20 Requirements Problem

 Clusters Quantitative AHP

Dunn 3 12.9526 7.249

Silhouette 3 0.4672 0.5690

CH 3 18.9442 33.744

70

Table 27 BIRCH Clusters Evaluation: 100 Requests

100 Requirements Problem

 Clusters Quantitative AHP

Dunn 3 8.9139 0.665

Silhouette 3 0.4384 0.4053

CH 3 96.1607 79.1779

5.5 Requirements Prioritisation

The prioritisation of requirements was meticulously carried out employing the MoSCoW

method, a proven technique in project management. Within this process, a unique approach was

taken by considering both overall satisfaction and the minimal effort required. Clusters

displaying higher overall satisfaction and demanding the least effort were accorded the highest

priority as "MUST" fulfillments. Conversely, as we moved to clusters that required slightly more

effort but still provided substantial satisfaction, these were designated as "SHOULD"

requirements, highlighting their significant yet negotiable nature. Similarly, clusters falling into

the "COULD" category presented opportunities for further enhancement, as they delivered

desirable satisfaction levels at a slightly higher effort cost. Lastly, clusters residing in the bottom

right quadrant of the effort versus satisfaction graph were designated as "WON'T" for this

iteration, indicating they were intentionally deferred due to higher effort requirements relative to

the satisfaction gained. This dynamic prioritisation methodology encapsulates a comprehensive

spectrum of considerations, offering a nuanced perspective for optimizing software requirements

in alignment with project goals.

5.6 Results

A total of 54 distinct comparisons were conducted between the Analytic Hierarchy Process

(AHP) and the quantitative datasets. These comparisons were aimed at evaluating the

performance and effectiveness of the AHP approach in contrast to the quantitative data

representation.

Among these 54 comparisons, it was observed that the AHP approach exhibited superior

performance in 39 instances. This means that, in majority of the cases, AHP yielded more

favorable outcomes or results compared to the quantitative data approach.

71

The significance of this finding lies in the consistent tendency of the AHP approach to

outperform the quantitative data representation across a significant portion of the comparisons.

This pattern of results underscores the potential benefits of using the AHP method for clustering

or analyzing the given dataset, suggesting that it might be a more effective and reliable approach

for generating meaningful insights or groupings.

Furthermore, for requirements prioritisation MoSCoW offers a framework with clear priority

levels for requirements: "Must Have," "Should Have," "Could Have," and "Won't Have." This

distinct classification minimises the possibility of forgetting important project components by

ensuring that significant and essential requirements are recognised and addressed. Additionally,

by offering a common language to discuss and comprehend demand priorities, MoSCoW

facilitates effective communication amongst stakeholders. Making informed judgements about

resource allocation and project scope is made easier because of the alignment of expectations.

The MoSCoW technique also permits project planning to be flexible and adaptable. By

reevaluating requirements and the categories, they fall under, the prioritisation can be changed as

the conditions of the project change. This adaptability is especially useful when limitations or

unforeseen circumstances have an impact on the project's course.

72

CHAPTER 6 .

CONCLUSION AND FUTURE WORK

6.1 Conclusion

This study emphasises the value of employing data mining techniques as an efficient way to

prioritise requirements in software engineering. It also highlights the Analytic Hierarchy Process'

(AHP) outstanding superiority in software requirement prioritisation within the context of

software engineering. Our results consistently show that AHP outperforms conventional

quantitative data representations in the majority of the 54 comparisons carried out, based on a

thorough evaluation of five clustering algorithms and three cluster evaluation indices. In addition

to producing superior results, the integration of AHP with the MoSCoW requirement

prioritisation framework also improved resource allocation, allowed for flexible planning, and

increased stakeholder satisfaction. This study promotes the use of data mining techniques and

AHP along with the MoSCoW framework as the recommended approach for upcoming projects

in this important area.

6.2 Contribution

The thesis makes contributions to the fields of project management and software engineering by:

• Introducing innovative software requirement prioritisation by merging clustering and

AHP.

• Integrating clustering methodologies with prioritisation techniques which enhances

software project management by bridging technical advancements and strategic practices.

• Enhancing stakeholder communication, resource allocation, flexible planning, and

decision-making in project management through structured framework, MoSCoW.

6.3 Future Work

In the current research, data sets were generated manually with the help of stakeholders. In the

future, we can use machine learning algorithms. These algorithms can be trained on historical

project data to learn the underlying patterns and characteristics of similar projects. By improving

73

the overall efficiency of requirements prioritisation techniques, this integration could pave the

way for more sophisticated and context-sensitive approaches to managing software

requirements.

74

REFERENCES

[1] P. Achimugu, A. Selamat, R. Ibrahim, and M. N. Mahrin, “A systematic literature review

of software requirements prioritization research,” Inf Softw Technol, vol. 56, no. 6, pp.

568–585, Jun. 2014, doi: 10.1016/j.infsof.2014.02.001.

[2] X. Franch and G. Ruhe, “Software release planning,” in Proceedings of the 38th

International Conference on Software Engineering Companion, New York, NY, USA:

ACM, May 2016, pp. 894–895. doi: 10.1145/2889160.2891051.

[3] M. Azzolini and L. I. Passoni, “Prioritization of Software Requirements: a Cognitive

Approach,” in Procedings of the Fourth International Workshop on Knowledge Discovery,

Knowledge Management and Decision Support, Paris, France: Atlantis Press, 2013. doi:

10.2991/.2013.13.

[4] I. Olaronke, I. Rhoda, and G. Ishaya, “An Appraisal of Software Requirement

Prioritization Techniques,” Asian Journal of Research in Computer Science, pp. 1–16,

Apr. 2018, doi: 10.9734/ajrcos/2018/v1i124717.

[5] A. Ahmad, M. Goransson, and A. Shahzad, “Limitations of the Analytic Hierarchy

Process Technique with Respect to Geographically Distributed Stakeholders ,” World

Acad Sci Eng Technol, pp. 111–116, 2010.

[6] P. Govender and V. Sivakumar, “Application of k-means and hierarchical clustering

techniques for analysis of air pollution: A review (1980–2019),” Atmos Pollut Res, vol. 11,

no. 1, pp. 40–56, Jan. 2020, doi: 10.1016/j.apr.2019.09.009.

[7] K. El Emam and A. G. Koru, “A Replicated Survey of IT Software Project Failures,”

IEEE Softw, vol. 25, no. 5, pp. 84–90, Sep. 2008, doi: 10.1109/MS.2008.107.

[8] Apoorva Mishra and Deepty Dubey, “A Comparative Study of Different Software

Development Life Cycle Models in Different Scenarios,” International Journal of

Advance Research in Computer Science and Management Studies , vol. 1, no. 5, pp. 64–

69, Oct. 2013.

[9] I. Sommerville, “Requirements Engineering Processes,” in Softw. Eng. , 7th ed.2004, pp.

1–52.

[10] C. Giardino, M. Unterkalmsteiner, N. Paternoster, T. Gorschek, and P. Abrahamsson,

“What Do We Know about Software Development in Startups?,” IEEE Softw, vol. 31, no.

5, pp. 28–32, Sep. 2014, doi: 10.1109/MS.2014.129.

[11] B. Bergman and B. Klefsjö, Quality from customer needs to customer satisfaction, 3rd ed.

Studentlitteratur AB, 2010.

[12] Lena Karlsson, Åsa G. Dahlstedt2, and Johan Natt och Dag, “Challenges in Market-

Driven Requirements Engineering - an Industrial Interview Study ,” in Proceedings of

Eighth International Workshop on Requirements Engineering: Foundation for Software

Quality, Sep. 2002, pp. 101–112.

[13] R. B. Svensson et al., “Prioritization of quality requirements: State of practice in eleven

companies,” in 2011 IEEE 19th International Requirements Engineering Conference,

IEEE, Aug. 2011, pp. 69–78. doi: 10.1109/RE.2011.6051652.

75

[14] J. Karlsson, C. Wohlin, and B. Regnell, “An evaluation of methods for prioritizing

software requirements,” Inf Softw Technol, vol. 39, no. 14–15, pp. 939–947, Jan. 1998,

doi: 10.1016/S0950-5849(97)00053-0.

[15] A. Hudaib, R. Masadeh, M. H. Qasem, and A. Alzaqebah, “Requirements Prioritization

Techniques Comparison,” Mod Appl Sci, vol. 12, no. 2, p. 62, Jan. 2018, doi:

10.5539/mas.v12n2p62.

[16] T. L. Saaty, “The Analytic Hierarchy Process Mcgraw Hill,” Agricultural Economics

Review, no. 70, p. 34, 1980.

[17] B. Regnell, M. Höst, J. N. och Dag, P. Beremark, and T. Hjelm, “An Industrial Case Study

on Distributed Prioritisation in Market-Driven Requirements Engineering for Packaged

Software,” Requir Eng, vol. 6, no. 1, pp. 51–62, Feb. 2001, doi: 10.1007/s007660170015.

[18] Bruce L. Golden, Edward A. Wasil, and Patrick T. Harker, Eds., “The analytic hierarchy

process.” Applications and Studies. Heidelberg, 1989.

[19] Sommerville, Iain, and Peter Sawyer, Requirements engineering: a good practice guide.

John Wiley & Sons, Inc.., 1997.

[20] S. Hatton, “Early Prioritisation of Goals,” in Advances in Conceptual Modeling –

Foundations and Applications, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 235–

244. doi: 10.1007/978-3-540-76292-8_29.

[21] D. Tudor and G. A. Walter, “Using an Agile Approach in a Large, Traditional

Organization,” in AGILE 2006 (AGILE’06), IEEE, pp. 367–373. doi:

10.1109/AGILE.2006.60.

[22] P. Berander and A. Andrews, “Requirements Prioritization,” in Engineering and

Managing Software Requirements, Berlin/Heidelberg: Springer-Verlag, pp. 69–94. doi:

10.1007/3-540-28244-0_4.

[23] Pradeep Rai and Shubha Singh, “A Survey of Clustering Techniques,” Int J Comput Appl,

vol. 7, Oct. 2010.

[24] A. Saxena et al., “A review of clustering techniques and developments,” Neurocomputing,

vol. 267, pp. 664–681, Dec. 2017, doi: 10.1016/j.neucom.2017.06.053.

[25] Prof. Neha Soni and Dr. Amit Ganatra, “Comparative study of several Clustering

Algorithms,” International Journal of Advanced Computer Research, vol. 2, no. 6, Dec.

2012.

[26] Shraddha K.Popat and Emmanuel M., “Review and Comparative Study of Clustering

Techniques,” International Journal of Computer Science and Information Technologies,

vol. 5, no. 1, pp. 805–812, 2014.

[27] R.Saranya and P.Krishnakumari, “Clustering with Multi view point-Based Similarity

Measure using NMF,” nternational Journal of scientific research and management, vol. 1,

no. 6, pp. 316–322, 2013.

[28] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering,” ACM Comput Surv, vol. 31,

no. 3, pp. 264–323, Sep. 1999, doi: 10.1145/331499.331504.

[29] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-Means Clustering Algorithm,”

Appl Stat, vol. 28, no. 1, p. 100, 1979, doi: 10.2307/2346830.

76

[30] K. P. Sinaga and M.-S. Yang, “Unsupervised K-Means Clustering Algorithm,” IEEE

Access, vol. 8, pp. 80716–80727, 2020, doi: 10.1109/ACCESS.2020.2988796.

[31] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering algorithm,”

Pattern Recognit, vol. 36, no. 2, pp. 451–461, Feb. 2003, doi: 10.1016/S0031-

3203(02)00060-2.

[32] L Kaufman and PJ Rousseeuw, Finding Groups in Data: An Introduction to Cluster

Analysis. John Wiley & Sons., 2009.

[33] M. Van der Laan, K. Pollard, and J. Bryan, “A new partitioning around medoids

algorithm,” J Stat Comput Simul, vol. 73, no. 8, pp. 575–584, Aug. 2003, doi:

10.1080/0094965031000136012.

[34] Y. Zhang et al., “Gaussian Mixture Model Clustering with Incomplete Data,” ACM

Transactions on Multimedia Computing, Communications, and Applications, vol. 17, no.

1s, pp. 1–14, Jan. 2021, doi: 10.1145/3408318.

[35] E. M. Voorhees, “Implementing agglomerative hierarchic clustering algorithms for use in

document retrieval,” Inf Process Manag, vol. 22, no. 6, pp. 465–476, Jan. 1986, doi:

10.1016/0306-4573(86)90097-X.

[36] A. Bouguettaya, Q. Yu, X. Liu, X. Zhou, and A. Song, “Efficient agglomerative

hierarchical clustering,” Expert Syst Appl, vol. 42, no. 5, pp. 2785–2797, Apr. 2015, doi:

10.1016/j.eswa.2014.09.054.

[37] K. Peng, L. Zheng, X. Xu, T. Lin, and V. C. M. Leung, “Balanced Iterative Reducing and

Clustering Using Hierarchies with Principal Component Analysis (PBirch) for Intrusion

Detection over Big Data in Mobile Cloud Environment,” 2018, pp. 166–177. doi:

10.1007/978-3-030-05345-1_14.

[38] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH,” ACM SIGMOD Record, vol. 25, no.

2, pp. 103–114, Jun. 1996, doi: 10.1145/235968.233324.

[39] “Guidelines for performing Systematic Literature Reviews in Software Engineering,”

Keele, Durham , Jul. 2007.

[40] M. Kassab and N. Kilicay-Ergin, “Applying analytical hierarchy process to system quality

requirements prioritization,” Innov Syst Softw Eng, vol. 11, no. 4, pp. 303–312, Dec. 2015,

doi: 10.1007/s11334-015-0260-8.

[41] J. Ali Khan, I. Ur Rehman, Y. Hayat Khan, I. Javed Khan, and S. Rashid, “Comparison of

Requirement Prioritization Techniques to Find Best Prioritization Technique,”

International Journal of Modern Education and Computer Science, vol. 7, no. 11, pp. 53–

59, Nov. 2015, doi: 10.5815/ijmecs.2015.11.06.

[42] J. A. Khan, Izaz-ur-Rehman, S. P. Khan, I. Qasim, and Y. H. Khan, “An Evaluation of

Requirement Prioritization Techniques with ANP,” International Journal of Advanced

Computer Science and Applications, vol. 7, no. 7, 2016.

[43] S. U. R. Khan, S. P. Lee, M. Dabbagh, M. Tahir, M. Khan, and M. Arif, “RePizer: a

framework for prioritization of software requirements,” Frontiers of Information

Technology & Electronic Engineering, vol. 17, no. 8, pp. 750–765, Aug. 2016, doi:

10.1631/FITEE.1500162.

77

[44] V. Kouhdaragh, D. Tarchi, A. Vanelli-Coralli, and G. E. Corazza, “A Cost Function Based

Prioritization Method for Smart Grid Communication Network,” 2017, pp. 16–24. doi:

10.1007/978-3-319-47729-9_2.

[45] S. Parthasarathy and M. Daneva, “An approach to estimation of degree of customization

for ERP projects using prioritized requirements,” Journal of Systems and Software, vol.

117, pp. 471–487, Jul. 2016, doi: 10.1016/j.jss.2016.04.006.

[46] K. S. Ahmad, N. Ahmad, H. Tahir, and S. Khan, “Fuzzy_MoSCoW: A fuzzy based

MoSCoW method for the prioritization of software requirements,” in 2017 International

Conference on Intelligent Computing, Instrumentation and Control Technologies

(ICICICT), IEEE, Jul. 2017, pp. 433–437. doi: 10.1109/ICICICT1.2017.8342602.

[47] M. Abbas, I. Inayat, N. Jan, M. Saadatmand, E. Paul Enoiu, and D. Sundmark, “MBRP:

Model-Based Requirements Prioritization Using PageRank Algorithm,” in 2019 26th

Asia-Pacific Software Engineering Conference (APSEC), IEEE, Dec. 2019, pp. 31–38.

doi: 10.1109/APSEC48747.2019.00014.

[48] P. MADZÍK, Ľ. LYSÁ, and P. BUDAJ, “Determining the Importance of Customer

Requirements in QFD – A New Approach based on Kano Model and its Comparison with

Other Methods,” vol. 20, no. 168, pp. 3–15, Feb. 2019.

[49] M. S. Jahan, F. Azam, M. W. Anwar, A. Amjad, and K. Ayub, “A Novel Approach for

Software Requirement Prioritization,” in 2019 7th International Conference in Software

Engineering Research and Innovation (CONISOFT), IEEE, Oct. 2019, pp. 1–7. doi:

10.1109/CONISOFT.2019.00012.

[50] M. Yaseen, A. Mustapha, and N. Ibrahim, “Prioritization of Software Functional

Requirements from Developers Perspective,” International Journal of Advanced

Computer Science and Applications, vol. 11, no. 9, 2020.

[51] N. Mohamed, S. Mazen, and W. Helmy, “E-AHP: An Enhanced Analytical Hierarchy

Process Algorithm for Priotrizing Large Software Requirements Numbers,” International

Journal of Advanced Computer Science and Applications, vol. 13, no. 7, 2022, doi:

10.14569/IJACSA.2022.0130725.

[52] A. Bouguettaya, Q. Yu, X. Liu, X. Zhou, and A. Song, “Efficient agglomerative

hierarchical clustering,” Expert Syst Appl, vol. 42, no. 5, pp. 2785–2797, Apr. 2015, doi:

10.1016/j.eswa.2014.09.054.

[53] F. Fouedjio, “A hierarchical clustering method for multivariate geostatistical data,” Spat

Stat, vol. 18, pp. 333–351, Nov. 2016, doi: 10.1016/j.spasta.2016.07.003.

[54] Z. Li, G. Wang, and G. He, “Milling tool wear state recognition based on partitioning

around medoids (PAM) clustering,” The International Journal of Advanced

Manufacturing Technology, vol. 88, no. 5–8, pp. 1203–1213, Feb. 2017, doi:

10.1007/s00170-016-8848-1.

[55] G. Pitolli, L. Aniello, G. Laurenza, L. Querzoni, and R. Baldoni, “Malware family

identification with BIRCH clustering,” in 2017 International Carnahan Conference on

Security Technology (ICCST), IEEE, Oct. 2017, pp. 1–6. doi:

10.1109/CCST.2017.8167802.

[56] K. P. Sinaga and M.-S. Yang, “Unsupervised K-Means Clustering Algorithm,” IEEE

Access, vol. 8, pp. 80716–80727, 2020, doi: 10.1109/ACCESS.2020.2988796.

78

[57] M. Faizan, M. F., S. Ismail, and S. Sultan, “Applications of Clustering Techniques in Data

Mining: A Comparative Study,” International Journal of Advanced Computer Science and

Applications, vol. 11, no. 12, 2020, doi: 10.14569/IJACSA.2020.0111218.

[58] K. B, “A Comparative Study on K-Means Clustering and Agglomerative Hierarchical

Clustering,” International Journal of Emerging Trends in Engineering Research, vol. 8,

no. 5, pp. 1600–1604, May 2020, doi: 10.30534/ijeter/2020/20852020.

[59] Y. Zhang et al., “Gaussian Mixture Model Clustering with Incomplete Data,” ACM

Transactions on Multimedia Computing, Communications, and Applications, vol. 17, no.

1s, pp. 1–14, Jan. 2021, doi: 10.1145/3408318.

[60] C. M. Weber, D. Ray, A. A. Valverde, J. A. Clark, and K. S. Sharma, “Gaussian mixture

model clustering algorithms for the analysis of high-precision mass measurements,” Nucl

Instrum Methods Phys Res A, vol. 1027, p. 166299, Mar. 2022, doi:

10.1016/j.nima.2021.166299.

[61] V. C. Pezoulas, N. S. Tachos, G. Gkois, I. Olivotto, F. Barlocco, and D. I. Fotiadis,

“Bayesian Inference-Based Gaussian Mixture Models With Optimal Components

Estimation Towards Large-Scale Synthetic Data Generation for In Silico Clinical Trials,”

IEEE Open J Eng Med Biol, vol. 3, pp. 108–114, 2022, doi:

10.1109/OJEMB.2022.3181796.

[62] H. Zhao, “Design and Implementation of an Improved K-Means Clustering Algorithm,”

Mobile Information Systems, vol. 2022, pp. 1–10, Sep. 2022, doi: 10.1155/2022/6041484.

[63] L. Lehtola and M. Kauppinen, “Suitability of requirements prioritization methods for

market-driven software product development,” Software Process: Improvement and

Practice, vol. 11, no. 1, pp. 7–19, Jan. 2006, doi: 10.1002/spip.249.

[64] J. del Sagrado and I. M. del Águila, “Assisted requirements selection by clustering,”

Requir Eng, vol. 26, no. 2, pp. 167–184, Jun. 2021, doi: 10.1007/s00766-020-00341-1.

[65] D. Greer and G. Ruhe, “Software release planning: an evolutionary and iterative

approach,” Inf Softw Technol, vol. 46, no. 4, pp. 243–253, Mar. 2004, doi:

10.1016/j.infsof.2003.07.002.

[66] J. del Sagrado, I. M. del Águila, and F. J. Orellana, “Multi-objective ant colony

optimization for requirements selection,” Empir Softw Eng, vol. 20, no. 3, pp. 577–610,

Jun. 2015, doi: 10.1007/s10664-013-9287-3.

[67] E. Simmons, “Requirements triage: what can we learn from a ‘medical’ approach?,” IEEE

Softw, vol. 21, no. 4, pp. 86–88, Jul. 2004, doi: 10.1109/MS.2004.25.

