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Abstract 

The success of a project depends on the efficient prioritisation of its software requirements. The 

application of clustering and related data mining techniques for requirements prioritisation 

within the context of software engineering is still unexplored and frequently overshadowed by 

established procedures. This study begins a thorough investigation of clustering's untapped 

potential as a cutting-edge method to enhance requirements prioritisation and enhance project 

outcomes. To improve the organisation of complicated requirements and determine their relative 

importance, the study offers the novel idea of combining clustering techniques with the Analytic 

Hierarchy Process (AHP). Two meticulously constructed quantitative datasets, each containing 

20 and 100 software meticulously form the core of this research. Notably, the development of an 

AHP dataset represents a fresh contribution and serves as a standard by which clustering 

methods can be unbiasedly assessed. Five main clustering algorithms emerge as the investigation 

progresses: K-means, Hierarchical, Partition Around Medoids (PAM), Gaussian Mixture Models 

(GMM), and BIRCH. Each of these methods offers a wide range of analytical techniques for 

examining the datasets. The Dunn Index, Silhouette Index, and Calinski Harabaz Index are used 

to statistically measure the quality and cohesion of the created clusters to assess the effectiveness 

of these approaches. The MoSCoW approach is then used to order the identified criteria into 

clusters, guaranteeing that crucial requirements are met while allowing for flexibility for less 

important features. This dual strategy combines strategic prioritisation with quantitative analysis, 

allowing for an unbiased evaluation of clustering results and simplifying resource allocation 

based on requirement priority. Overall, this research pioneers the innovative integration of 

advanced data analysis methodologies into project management and emphasises the viability of 

clustering techniques for requirement prioritisation in the software domain, with a focus on the 

ground-breaking combination of AHP and clustering as a transformative approach to prioritise 

requirements. 

Key Words: Requirements Prioritisation, Software Product Planning, Decision Support, 

MoSCoW, AHP, Clustering Algorithms, K-Menas, GMM, BIRCH, PAM, Hierarchical, Clusters 

Evaluation 
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CHAPTER 1 . 

INTRODUCTION 

Software engineering is not only about programming, rather it stands on multiple pillars. It 

includes all supporting documentation, design tenets, or concepts needed to make these programs 

work as intended. One of the design principles that enables software that is being considered for 

development to work as planned is software requirements prioritisation (SRP)[1].  

Requirements prioritisation is a branch of requirements engineering which aids in choosing 

requirements depending on the interests of stakeholders. It is a procedure used in software 

engineering that deals with giving individual requirements a priority to determine the sequence 

in which they should be implemented. A requirement engineering decision process is used to 

decide which features or requirements will be developed in the upcoming release while taking 

into account technical, resource, risk, and budget constraints [2]. It is a critical phase in the 

software development process which involves choosing the order in which requirements should 

be addressed. This procedure helps in controlling the urgency and importance of software 

requirements while taking stakeholder, cost, quality, resource, and time considerations into 

account. Definitions for the prioritisation of software needs have been offered by numerous 

academics. One definition of software requirements prioritisation is the procedure that chooses 

the sequence in which the needs will be implemented [3]. According to Karlsson and Ryan, it is 

the process of selecting the best set of requirements from several conflicting and competing 

expectations gathered from various stakeholders participating in a software development project 

[4]. 

Numerous requirements prioritisation strategies have been suggested as a solution to this 

problem. These 

 methods seek to shorten the time and expense of software development projects by assisting 

developers in understanding which requirements are most crucial and urgent. Each technique has 

drawbacks and both overt and covert assumptions about the project context in which requirement 

prioritisation takes place [5]. When evaluating a requirement prioritisation approach 
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experimentally, whether for usefulness, utility, application, or effectiveness, these assumptions 

must be considered.  

In the past requirements prioritisation had been done manually but now that technology is 

evolving like never before, researchers are working on automatic requirements prioritisation. 

This will shed some load off stakeholders’ shoulders. Data driven method logies have been 

incorporated in requirement engineering and they are generating some amazing results. Still, like 

any other field of research, there is room for improvement in this area as well. 

Clustering algorithms are one of the methods for prioritising software requirements. Clustering is 

a mechanism using which similar observations, data points, or feature vectors can be grouped 

together based on shared traits [6]. To group and categorise requirements based on similarity or 

relatedness; clustering algorithms are used in the prioritisation process. This makes it possible to 

efficiently prioritise requirements based on the traits of each cluster and to uncover patterns and 

linkages among them. By grouping requirements into meaningful clusters that can subsequently 

be prioritised more effectively, clustering algorithms can help in managing the complexity of 

prioritising many requirements. 

In this study we will be using two well-known prioritisation methods namely MoSCoW (Must, 

Should, Could, Would) and AHP (Analytical Hierarchical Process) with clustering techniques 

like K-means, Partition Around Medoids, Hierarchical clustering and Gaussian Mixture Models. 

For the clustering purpose we will be using two of the main prioritisation factors i.e., ‘Effort’ and 

‘Satisfaction’ which are provided by major stakeholders for each individual requirement. This 

will help the stakeholders to take better decisions and eventually develop successful systems.  

1.1 Motivation 

Software Requirement Specification in general and Software Requirement Prioritisation in 

particular plays the pivotal role in the success or failure of a project. As per the Standish Group, 

every year almost 80% of software projects fail to meet their definitions of success based on 

time, cost, and scope criteria [7]. As requirements are frequently published and infrequently 

updated, it is mostly caused by shifting requirements. This argues that software initiatives fail 

because they are unable to successfully adapt to changing requirements or make room for new 

ones. This emphasises how crucial next release management is, as well as the necessity of 
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making informed decisions regarding the functionality of a software product's release. A well-

selected release will minimize problems with shifting requirements in future releases. 

1.2 Problem Statement 

The accurate and timely prioritization of requirements plays a pivotal role in the success of 

software projects. The main goal of this study is to determine whether combining clustering 

techniques with the Analytic Hierarchy Process (AHP) can lead to better classification of 

software requirements, which in turn will affect and improve the overall trajectory of project 

outcomes. 

1.3 Aims and Objectives 

The following are the study's primary goals:  

• To assess the efficacy of integrating the Analytic Hierarchy Process (AHP) with 

clustering techniques in enhancing the evaluation and prioritization of software 

requirements. 

• To explore the effectiveness of clustering techniques in enhancing the prioritization of 

software requirements. 

• To partially automate software requirements prioritization activity. 

1.4 Research Questions 

This thesis will try to find out the answer to the following questions. 

• RQ1: Is a semi-automated approach to SRP processes possible with the incorporation of 

clustering techniques? 

• RQ2: Does the fusion of AHP and clustering generate better results? 

1.5 Structure of Thesis 

The structure of this work is as follows: 

Chapter 2 covers the importance of requirements prioritization and discusses types of 

requirements prioritisation techniques. It further discusses clustering and its different types. 

Chapter 4 gives a review of the relevant literature and the important work produced by scholars 

in recent years for the ranking of needs. 
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Chapter 5 includes an explanation of the suggested process. 

Chapter 6 explains all the experimental findings in great depth and includes all necessary graphs 

and tables. 

Chapter 7 finishes the thesis and outlines the direction this study will take going forward. 
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CHAPTER 2 . 

BACKGROUND 

2.1 SOFTWARE REQUIREMENTS PRIORITISATION 

The process of building or sustaining software systems in a systematic way is called the Software 

Development Life Cycle 

(SDLC). The Software 

Development Life Cycle, a 

structured process, enables 

the production of high-

quality, low-cost software as 

quickly as possible. The goal 

of SDLC is to create top-

notch software that satisfies 

and exceeds all client 

requirements and 

expectations. A thorough 

plan with stages, or phases, 

each with its own procedure 

and results, is developed and 

specified by the SDLC. 

Following the SDLC 

expedites development while 

boosting production efficiency and lowers project risks and costs.  

Any software development process is divided into a number of logical steps, which allows a 

software development company to efficiently plan out its efforts in order to build a software 

product with the needed capabilities within a specified time frame and budget. The phases of 

requirement gathering, business analysis, system design, implementation, and quality assurance 

Figure 1 Software Development Life Cycle 
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testing are completed in all software projects. A generic Software Development Life Cycle with 

numerous phases was proposed by A. Mishra and D. Dubey [8].   

System and feasibility study are crucial stages in Software Development Life Cycle (SDLC) that 

involves senior team members, stakeholders, and industry experts. Planning quality assurance 

requirements and identifying project-related risks are both involved. To acquire information 

about the client's needs, the end user, and the product objectives, a meeting with the client is 

scheduled. A core understanding of the product is essential before creating a product. The 

analysis is completed with auditing the feasibility of growth and setting up a signal for further 

discussion. 

The SRS (Software Requirement Specification) document is created, which developers must 

follow and review for future reference. The next stage is System Analysis, where software 

requirements are represented and documented, gaining acceptance from project stakeholders. 

This is accomplished by the creation of the SRS document, which contains all product 

requirements to be constructed and developed throughout the project life cycle. 

System Design is the next phase, bringing together the knowledge of requirements, analysis, and 

design of the software project. This phase is the product of the last two stages, including 

customer input and requirement gathering. 

Coding is the actual development stage, where programming is built and implemented using 

coding guidelines and programming tools. Testing is conducted against the requirements, 

including unit, integration, system, and acceptance testing. Once certified, the software is 

deployed, either as is or with suggested enhancements.  

Maintenance begins after deployment, and once the client starts using the developed systems, 

real issues arise, and requirements need to be solved. This process is known as maintenance, 

where care is taken for the developed product. 

2.1.1 Requirements Prioritisation 

Requirements prioritisation is a key component of requirements engineering, which is a stage 

that is extremely significant in the software development life cycle. The process for gathering 

requirements include requirements elicitation, requirements analysis, requirements negotiation, 

requirements documentation, and requirements validation according to the traditional Kotonya 

and Sommerville requirements engineering approach [9]. 
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Requirements elicitation, often known as requirements collecting or acquisition, is the initial 

phase of requirements engineering. The system users, clients, and developers—who are referred 

to as system stakeholders—are asked for their input regarding systems’ requirements. Finding the 

appropriate set of requirements and setting system boundaries are the key goals of this approach. 

However, by working with the stakeholders, it is possible to specify what requirements can be 

created. Negotiations with stakeholders are conducted to determine which requirements to 

execute because it is vital to analyze precise requirements at this stage. The chosen requirements 

are then recorded and tracked. Then the requirements are checked to see if they are 

comprehensive and consistent before implementation in the next stage, known as validation. 

Testing is also required to determine whether the goals of the implemented requirements have 

been met. Additionally, because of high competition in the market, businesses concentrate on 

requirements prioritisation. This enables them to promptly deploy the system's most crucial 

features to its clients [10]. 

How well a software program can satisfy user and customer needs determines its quality [11]. 

Therefore, gathering 

requirements and determining 

the correct requirements prior to 

the release of the appropriate 

requirements with good 

functionality is the key to a 

successful product. 

Requirements prioritisation is a 

crucial component of decision-

making. This prioritisation aids 

in separating the key 

requirements from the less 

significant ones. The benefits of 

requirements prioritisation 

include estimating customer 

satisfaction, reducing rework and plan instability, assigning relative significance to each demand, 

Figure 2 Requirements Engineering Activities 
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which results in requirements with high value and cheap costs, among other benefits. These 

activities highlight the significance of setting priorities and selecting the needs that should be 

considered while developing a product [12]. To produce high-quality software products, 

managing software requirements is a critical component of the requirements engineering process 

[13]. On the other hand, requirements prioritisation is acknowledged as a crucial but difficult job 

in software engineering. Requirements engineering flaws are cited as the main reason software 

projects go wrong. Later, the prioritised final requirements may serve as the foundation for 

product and marketing plans and even serve as a driving force for the project plan. The difficulty 

lies in choosing the "right" requirements from a pool of potential candidates to satisfy the many 

main interests, technological limitations, and preferences of the important stakeholders while 

also maximising the product's overall commercial value. The ability to identify requirements 

flaws such inaccurate, confusing, and poorly evaluated requirements is another advantage of 

prioritising requirements. They are examined from a new angle, taking requirements into account 

as part of the review. As a result, requirements start off being general and then get more specific 

as knowledge about the product increases. 

Requirements Prioritisation approaches involve subject-matter specialists, frequent 

communication with stakeholders, and a close relationship to other criteria. This makes the task 

of suggesting the best strategy more challenging and increases the need for improvements to 

these strategies. Karlsson [14]suggests that a prioritising session might include the following 

three steps in order: 

• The Preparation Stage: The person organises the requirements at this stage in 

accordance with the guiding concept of the prioritising strategy that may be employed. 

Additionally, a team is selected for the session, along with a team leader, and they are 

given all important information. 

• The Execution Stage: Based on the knowledge gathered from the previous stage, the 

decision-makers determine the real prioritising for the criteria in this step. 

• The Presentation Stage: When the outcomes of the execution are made available to the 

parties involved. 

2.1.2 Requirements Prioritisation Techniques 
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 There are numerous methods for prioritising requirements, some of which are better suited to 

small numbers of 

requirements while others are 

better suited to extremely 

complex projects with 

numerous considerations. 

Prioritisation techniques let 

decision-makers evaluate 

requirements and assign 

numbers or symbols that 

accurately reflect their 

priority [15]. Using these 

methods, requirements are 

prioritised using multiple 

aspects. 

Requirement prioritisation 

techniques are divided into three major groups namely Ratio scale, Ordinal scale, and Nominal 

scale. These groups have further subcategories as shown in the figure below.  

In this study we will be using only two techniques Analytical Hierarchical Process and MoSCoW 

and hence will be discussing these two as well. 

2.1.2.1 Ratio Scale 

Techniques for ratio scale prioritisation produce ranked lists of requirements. Results from ratio 

scale approaches can show how different things are relative to one another. 

2.1.2.1.1 Analytical Hierarchical Process 

According to Saaty [16] the most common method for requirements prioritisation is called the 

analytical hierarchy process. Analytic Hierarchy Process (AHP) is a systematic decision-making 

technique [17]. It was developed for complex decision-making so that the decision-maker could 

set priorities and get to the best option possible [18]. Thomas L. Saaty created AHP in the 1970s, 

and since then it has found widespread use in a variety of industries, including business, 

Figure 3 Requirements Prioritisation Techniques 
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engineering, project management, and decision analysis. AHP offers a systematic technique to 

compare and order different criteria or factors, which is especially helpful when there are several 

to consider. 

To arrive at a prioritised ranking of alternatives based on a set of criteria, AHP involves several 

processes and mathematical calculations. Here is a thorough breakdown of each stage of the 

AHP procedure: 

• Problem Definition: The decision problem is defined precisely, together with the choices 

that need to be assessed. Other criteria or variables that will be taken into consideration 

while deciding are listed and different ranking factors for a project are considered, as 

examples of criteria. 

• Pairwise Comparisons: Alternatives are compared in pairs for each criterion to 

determine their relative weight. This is accomplished by employing a scale that displays 

the relative weight or preference given to each criterion. Saaty's 1 to 9 scale is the most 

often used scale, with 1 denoting equal importance, 3 denoting moderate importance, and 

9 denoting exceptionally significant importance. Participants assign values from the scale 

to each criterion and compare them to each other. For each criterion, a comparison matrix 

is made using these data. 

• Consistency Check: Calculations are used to determine whether the pairwise comparison 

judgements are consistent. Biased outcomes can originate from inconsistent judgements. 

To make sure the judgements are rational and not in conflict, a consistency ratio is 

computed. The judgements are regarded as consistent if the consistency ratio is within a 

reasonable range. 

• Calculation of Weighted Values: The weighted values for each criterion are calculated 

based on the pairwise comparison matrices. Each criterion's relative weight in respect to 

the others is shown by these weights. The pairwise comparison judgements are 

synthesised to determine the weights. 

• Matrix Multiplication: A matrix is made to show how each alternative was rated in 

relation to each criterion. To create a new matrix of weighted scores, this matrix is 

multiplied by the matrix of criterion weights. 
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• Aggregation: To get a result, weighted scores are added for each possibility. This 

aggregate rating represents how well or how desirable each choice is in relation to the 

selected criteria. 

• Sensitivity Analysis: A sensitivity study is conducted to determine how changes in the 

assessments will affect the final ranking. This increases the results' reliability. 

• Final Ranking: Based on their combined scores, alternatives are ordered. The option 

with the highest overall score is regarded as the best option. 

AHP offers a methodical, transparent technique to evaluate difficult choices and rank them 

according to several factors. It aids in preventing the biases and contradictions that might 

develop during subjective decision-making processes. AHP requires mathematical computations, 

however software tools are available to help, making it possible for people without a background 

in mathematics to use it. 

2.1.2.2 Nominal Scale 

Mechanisms for nominal scale prioritisation produce an array of classes into which objects can 

be subdivided. Accordingly, requirements are categorised based on their significance. As a result, 

the priority of all requirements that fall under the same category is the same [19]. Only the 

Numeral Assignment Technique and the MoSCoW Technique are included in this kind. 

2.1.2.2.1 MoSCoW 

A common strategy for prioritising requirements in many projects, including software 

development, product management, and business analysis, is the MoSCoW technique. As a 

matter of fact, it is one of the easiest techniques [15]. The Dynamic Software Development 

Method (DSDM) provides the foundation for the MoSCoW method [20]. It offers a methodical 

manner to classify and rank requirements according to their significance and impact. The 

abbreviation "MoSCoW" stands for "Must have, Should have, Could have, and Won't have," the 

initial letter of each category of priorities. 

Tudor and Walter [21] gave the following MoSCoW Technique model. 
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• Mo - Must Have: Must-

have needs are deemed non-

negotiable since they are 

essential to the project's 

success. They stand for the 

fundamental capabilities or 

features that are necessary 

for the project to achieve its 

main goals. The project 

wouldn't be complete or 

functional without these 

prerequisites. 

• S - Should Have: Although 

necessary for the project's 

success, should-have needs are not as crucial as must-have requirements. They 

significantly enhance the project's value and increase its overall efficacy. Even though the 

project may still run without them, it would fall short of its full potential and fail to 

satisfy the expectations of all stakeholders. 

• Co - Could Have: Could-have needs are preferable because they offer more benefits or 

features. They stand for improvements or extras that would raise the standard of the 

project as a whole or enhance the user experience. The decision to include could-have 

needs depends on the resources and priorities that are available, but they are not essential 

to the project's fundamental operation. 

• W – Won’t Have: Won’t have criteria are purposefully left out of the project's current 

stage. They are attributes or capabilities that cannot be implemented, are not in line with 

the project's immediate objectives, or are postponed for later development. Recognising 

won't-have requirements aids in establishing reasonable expectations and averts scope 

creep. 

Making judgements on which requirements to concentrate on and assign resources to can be 

done using the MoSCoW technique, which offers a clear framework for doing so. It aids in 
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managing stakeholder expectations, directs development efforts, and makes sure that the most 

important project components are properly addressed. Teams can streamline their efforts and 

produce significant results by classifying requirements into must-have, should-have, could-have, 

and won't-have categories. 

2.1.3 Requirements 

Prioritisation 

Factors 

Prioritising requirements is 

an essential part of software 

development since it enables 

teams to deploy resources 

wisely and satisfy 

stakeholders. To make sure 

that the most crucial features 

and functionalities are 

covered, several 

considerations need to be 

considered while prioritising 

requirements. Factors are 

considered when ranking 

requirements. Cost, time, importance, risk, and others are some regularly considered factors [22]. 

Some of the major prioritisation factors are given in the figure below. 

In this research we will be using two of these factors i.e., Satisfaction and Effort. 

2.1.3.1 Satisfaction 

The satisfaction factor for requirements prioritisation focuses on evaluating the level of 

satisfaction and fulfilment that requirements offer to stakeholders. Here is further information: 

The following factors must be considered for requirements prioritisation to be successful: 

Figure 4 Requirements Prioritisation Factors 
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• Stakeholders Involvement: It entails determining the degree to which stakeholders, 

including investors, regulatory agencies, and end users, are involved in the requirement. 

Their wants and preferences are considered, which results in the prioritisation of 

attributes that closely match their expectations. 

• User Experience: The improvement of user experience is essential to stakeholder 

satisfaction. Requirements that directly enhance the user experience, making the 

programme more accessible, user-friendly, and in line with user expectations, are given 

more priority. 

• Market Trends: The software must be in line with developing market trends and 

expectations to guarantee stakeholder satisfaction. To take advantage of new 

opportunities and keep the software relevant and competitive, requirements must be 

prioritised. 

• Alignment with Business Goals: Addressing requirements that closely connect with the 

main business goals is emphasised while setting priorities. Priority is given to features 

that have a direct bearing on corporate success and strategic objectives. 

2.1.3.2 Effort 

The resources, time, and labour required to fulfil a particular demand are all considered in the 

"Effort" factor of requirement prioritisation. It directs choices over which features to prioritise 

based on their viability within the constraints of the project.  

The following are some aspects of effort: 

• Resource Allocation: Evaluates the infrastructure, knowledge, technologies, and human 

resources that are available to meet the demand. This considers the team's skill level and 

any necessary training or additional resources. 

• Time and Schedule: Involves calculating the amount of time needed to complete the 

requirement. It prioritises features that can be developed within the allotted time range 

while taking project deadlines and timelines into consideration. 

• Complexity and Technical Challenges: Some criteria could be more challenging 

because of integration problems, technical challenges, or strange technologies. Technical 

viability within the project's technology stack is considered while setting priorities. 
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• Developing and Testing Effort: Coding, testing, debugging, and quality assurance are all 

part of implementation. To achieve extensive testing, effort estimation includes unit 

testing, integration testing, and debugging needs. 

• Documentation and Training: Creating user guides, documentation, and training 

materials is a part of effort estimation. It guarantees thorough support for both current and 

upcoming maintainers. 

Effort estimation incorporates assumptions and uncertainty. Realistic estimations are made using 

an experienced team, historical data, and estimating methodologies (expert judgement, 

parametric estimation, analogical estimation). Prioritising based on effort guarantees that 

attention is paid to realistic activities, which results in effective project outputs. 

2.2 CLUSTERING ALGORITMS 

The need to find knowledge in multidimensional data is growing since massive volumes of data 

are being continuously collected today. One of the crucial steps in mining or extracting massive 

information is data miming. It is intended to sift through enormous amounts of data in search of 

enduring patterns and to verify the findings by comparing the discovered patterns to a fresh 

selection of data. Clustering algorithms are applicable in this situation because its objective is to 

identify chunks of related objects within a data collection. Clustering separates data into sets of 

related things. Each group, or cluster, is made up of things that are dissimilar from those in other 

groups yet like one another [23]. Clustering of objects is required for a variety of reasons in 

various sectors of 

engineering, science, and 

technology, humanities, 

medical science, and 

everyday life [24].  

Clusters are frequently 

regarded as the most 

important unsupervised 

learning topic, which 

addresses issues with data 

collection of unlabeled information [25]. Clustering is the most intriguing area of data mining, 

Figure 5 Formation of Clusters 
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which seeks to identify underlying patterns in data and identify some useful subgroups for 

additional investigation. It is a typical method for statistical data analysis that is applied in a 

variety of domains, such as bioinformatics, machine learning, data mining, pattern recognition, 

and image analysis. Thus, the approach of grouping items into groups whose members share 

some characteristics might also be described as a cluster [26]. A visual representation of cluster 

formation is shown in figure 5 [27]. 

2.2.1 Types of Clustering 

The primary technique of data mining is clustering. It includes assembling related data points 

based on predetermined standards. Data mining employs a variety of clustering techniques, each 

with a unique methodology and traits. Based on the characteristics of the created clusters, 

partitioning and hierarchical clustering methods can be used to generalise all clustering 

techniques [28]. A few of the 

most popular clustering types 

are as follows: 

2.2.1.1 Partitional 

Clustering 

The iterative relocation 

algorithm, commonly known as 

partitional clustering, is thought 

to belong to the most common 

class of clustering algorithms. 

These algorithms iteratively 

move data points across clusters 

until an ideal partition is 

reached to minimise a specific 

clustering criterion. The partition 

clustering technique divides the data points into k partitions, each of which represents a cluster. 

The data are partitioned using an objective function. A cluster's objects are "similar," but those of 

other clusters are "dissimilar." The clusters are created to maximise a distance-based 

dissimilarity function or another objective partitioning criterion. Partitioning clustering 

Figure 6 Types of Clustering 
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techniques might be useful for applications that need a specific number of clusters. K-means, 

PAM (Partition around mediods), and Clara are a few of the partitioning clustering algorithms.  

2.2.1.1.1 K-Means 

K-Means is a well-known and often used clustering algorithm in machine learning and data 

mining [29]. Prior to the operation, it requires the number of clusters to be defined [30]. It seeks 

to divide a given dataset into the specified number of clusters (K) according to how similar the 

data points are to one another to maximise certain clustering criteria. K-Means is an iterative 

method that produces results by minimising the sum of squared distances between the centroids 

of each cluster and the data points. It is a popular clustering method that minimises clustering 

error [31].  

The K-Means algorithm is explained in depth below: 

• Initialization: The initial cluster centroids are initialised at random using K data points. 

K is the number of clusters we have decided to divide the data into. The cluster centroids 

are created at random using K data points.  

• Cluster Assignment: Each of the K centroids in the dataset and the distance between 

each data point are determined. Two popular distance measurements are the Manhattan 

distance and the Euclidean distance. Each data point is matched to the centroid of the 

nearest cluster. K clusters are produced by doing this.  

• Centroid Recalculation: The new centroid for each cluster is calculated by calculating 

the mean of all the data points assigned to it. The centroid, which serves as a proxy for 

the cluster's core, is used to calculate distances in the subsequent iteration. 

• Iteration: Assignment and Update procedures are iteratively repeated until convergence 

occurs. Either:  

▪ The centroids stop fluctuating noticeably, or convergence occurs. 

▪ There are no more iterations possible.  

• Result: The centroids serve as the centers of each of the K clusters formed by the data 

points in the algorithm's final solution.  
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2.2.1.1.2 Partition Around Medoids 

K-Medoids, a K-Means version, and Partitioning Around Medoids (PAM), a clustering 

algorithm, are closely connected. The PAM method partitions a distance matrix into a 

predetermined number of clusters [32]. The goal of PAM is to divide a dataset into a 

predetermined number of clusters by choosing actual data points, known as medoids, as 

representatives of the clusters. PAM is meant to work with dissimilarity or distance matrices. 

Like centroids, medoids are chosen from the actual data points, which makes PAM more 

resistant to noise and outliers. 

An in-depth description of the Partitioning Around Medoids (PAM) algorithm is provided below: 

• Initialization: K is the number of clusters one wants to divide the data into. K can either 

be chosen through data-adaptive selection or as a given [33]. It is chosen as the initial 

medoids data points at random from the dataset. 

• Cluster Assignment: The distance or dissimilarity to each of the K medoids is calculated 

for each data point in the dataset. Then it is decided which nearby medoid each data point 

belongs to. This action creates K clusters. 

• Medoid Recalculation: The total distance or dissimilarity between each data point in a 

cluster and all other data points in the cluster is calculated for each cluster. Data point for 

that cluster's new medoid is chosen that has the lowest overall dissimilarity. 

• Iteration: Iteratively repeat the Assignment and Update procedures until convergence 

occurs. Either:  

▪ The medoids stop changing considerably is when convergence begins.  

▪ There are no more iterations possible. 

• Result: The method groups the data points into K clusters, with the medoids acting as the 

nodes of each cluster. 

2.2.1.1.3 Gaussian Mixture Models 

A probabilistic approach called a Gaussian Mixture approach (GMM) is utilised for density 

estimation and grouping. Much research has been done on it due to its usefulness and efficiency 

[34]. It is assumed that the data points are produced by combining several normal distributions 
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with Gaussian distributions. GMM is an effective tool for capturing intricate data distributions 

and locating underlying patterns. 

A thorough explanation of the Gaussian Mixture Model (GMM) is given below: 

Model Representation: 

A Gaussian mixture model (GMM) depicts the data as the weighted sum of many Gaussian 

distributions, each of which has a mean and covariance matrix. The mathematical representation 

of the probability density function (PDF) of a Gaussian mixture model (GMM) is a weighted 

sum of Gaussian distributions: 

 

where: 

▪ x is a data point. 

▪ K is the number of components (Gaussian distributions). 

▪ πk is the weight of the kth component, satisfying ∑k=1Kπk=1. 

N(x∣μk,Σk) is the Gaussian distribution with mean μk and covariance matrix Σk. 

• Parameter Estimation: Finding the best values for the component means (μk), 

covariance matrices (Σk), and weights (πk) given the observed data is necessary for 

estimating the parameters of a GMM. The typical approach used for parameter estimation 

in GMMs is expectation-maximization (EM). 

• Expectation (E-step): Responsibilities, or posterior probabilities that show the likelihood 

that each data point belongs to each Gaussian component are calculated. 

• Maximization (M-step): By increasing the estimated log-likelihood of the data under the 

existing model, given the responsibilities, parameters are updated. 

• Number of Components: It's crucial to select the right number of components (K). Too 

few or too many components may oversimplify the data or overfit the noise, respectively. 

The ideal number of components can be calculated using a variety of methods, including 

the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). 
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2.2.1.2 Hierarchical Clustering 

A dataset is split or combined using hierarchical clustering methods into a series of nested 

divisions. The hierarchy of the nested partitions may be agglomerative (top-down) or divisive 

(bottom-up). The clustering process used in the agglomerative approach starts with each object 

being placed in its own cluster, then proceeds on to clustering the closest pairs of clusters until 

each object is found in a single cluster. Divisive hierarchical clustering, on the other hand, starts 

with all objects in a single cluster and keeps breaking larger clusters down into smaller ones until 

all objects are grouped together into unit clusters [35]. Both hierarchical approaches display the 

dendrogram, a type of naturally occurring cluster representation. Examples of these methods 

include CURE (Cluster Using REpresentatives), BIRCH (Balance Iterative Reducing and 

Clustering using Hierarchies), and ROCK. 

2.2.1.2.1 Agglomerative Clustering 

The process of clustering data points into a hierarchical structure of clusters is called 

agglomerative hierarchical clustering. Due to the exponential rise of real-world data, hierarchical 

clustering is crucial for data analytics [36]. Each item initially represents a different cluster in 

this kind of clustering. After that, by repeatedly merging clusters until all of the data points are a 

part of a single cluster or until a stopping condition is met, the suitable cluster structure is 

produced. This process results in a tree-like structure called a dendrogram, which visualises the 

clustering hierarchy. 

Agglomerative algorithms are among the most frequently used algorithms. The technique is too 

slow for huge data sets in the general case since its complexity is O(n3). Agglomerative 

hierarchical clustering is superior to divisive clustering because divisive clustering is poorer 

when combined with an exhaustive search, which results in the expression (n2).  

The operation of agglomerative hierarchical clustering is described in the following steps: 

• Initialization: Each data point is considered as its own cluster. A distance matrix by 

computing the pairwise distances (e.g., Euclidean distance) between all the data points is 

created. 

• Merge Closest Clusters: The distance matrix is used to identify the two closest clusters. 

To do this, several linkage criteria can be used, including: 
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▪ Single Linkage: The shortest path between any two sites in the two clusters is 

used to compute the distance between two clusters. 

▪ Complete Linkage: The maximum distance between any two locations in the two 

clusters is used to define the distance between two clusters. 

▪ Average Linkage: The average distance between each pair of points in the two 

clusters is used to compute the distance between two clusters. 

The two neighbouring clusters are combined to make a single cluster. The distance matrix 

is updated to reflect the separations between the new cluster and the other clusters. 

• Repeat: The process is repeated until all data points are in a single cluster or until the 

necessary number of clusters is reached by repeatedly locating the closest clusters and 

merging them. 

• Dendrogram: A dendrogram is created to depict the hierarchy of clusters when they are 

combined. The dendrogram's horizontal axis shows the data points or clusters, and the 

vertical axis reflects the separation between clusters. The dendrogram's height of each 

fusion shows how far apart the clusters were when they joined. 

• Cutting the Dendrogram: One can trim the dendrogram at a specified height to get a 

specific number of clusters. Based on the height threshold, this will produce the 

necessary number of clusters. 

2.2.1.2.2 Balanced Iterative Reducing and Clustering Using Hierarchies 

In 1996, Tian Zhang, Raghu Ramakrishnan, and Miron Livny presented BIRCH. It is an effective 

hierarchical clustering algorithm made for grouping huge datasets. BIRCH is a clustering 

method whose key characteristic is to employ low memory resources for high-quality clustering 

of large-scale data datasets and to only scan datasets once to reduce I/O overhead [37]. A 

comparable B + tree structure known as a Clustering Feature Tree (CF Tree) is used by Birch to 

perform clustering [38]. 

Clustering Feature Construction and Hierarchical Clustering are the two primary steps of 

BIRCH's operation. Here is a thorough breakdown of each action: 

• Clustering Feature Construction: The clustering information is represented by BIRCH 

using a tree-like data structure known as the CF-tree (Clustering Feature tree). The 
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Clustering Feature (CF), a collection of summary data, is stored at each node in the CF-

tree and corresponds to a cluster or sub-cluster.  

Three elements make up the Clustering Feature (CF): 

▪ N: The cluster's total number of data points. 

▪ LS: The linear summing of the data. 

▪ SS: The sum of the squared data points. 

The branching factor is a parameter used by BIRCH to limit the number of sub-clusters a 

node can have. An algorithm that assures effective memory use inserts new data points into 

the CF-tree when they come in, updating the Clustering Features in the process. BIRCH may 

divide a node into two smaller sub-clusters and update the tree structure if a new data point 

cannot fit in any of the CF-tree's current nodes. 

• Hierarchical Clustering: A user-defined distance threshold parameter is used by BIRCH 

to merge sub-clusters after the CF-tree has been built through the iterative insertion of 

data points. The CF-tree's leaves are combined first, then its root, in a procedure known 

as "bottom-up" merging. When deciding whether to merge two clusters, BIRCH applies a 

distance criterion. Utilising their Clustering Features (N, LS, and SS), two clusters are 

separated from one another. Until the entire dataset is clustered into one cluster or until a 

predetermined number of clusters are produced, the merging process is carried out. 
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CHAPTER 3 . 

SYSTEMATIC LITERATURE REVIEW 

Systematic Literature Review is a 

methodical approach to reviewing the 

body of knowledge regarding a certain 

issue. SLR is applied here to collect the 

information about requirements 

prioritisation techniques and clustering 

algorithms. By using the SLR 

approach, your work is objective, and 

the literature review's conclusions may 

be trusted. Many academics in the 

fields of computer and software 

engineering followed the SLR 

technique that Kitchenham and 

Charters [39] proposed and made 

substantial contributions utilising this 

approach. The planning, conducting, 

and reporting of the literature review 

are the phases of Systematic Literature 

Review as shown in the figure below. 

3.1 Planning Review 

With our objectives in mind, we have articulated research queries that will steer our investigative 

efforts. The responses we gather will play a pivotal role in sculpting a novel solution that 

outperforms existing ones. To acquire these responses, we pinpointed pertinent repositories 

depicted in Figure: Systematic Literature Review Phases. These repositories house relevant 

literature, accessible for reading or downloading. Following this, we formulated tailored search 

strings to unearth the most pertinent literature from digital archives. Well-defined inclusion and 

Figure 7 Overview of SLR 
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exclusion criteria were subsequently outlined. The eventual selection of articles will undergo a 

rigorous quality evaluation, ensuring that our final research comprises articles of the utmost 

excellence. This methodical approach guarantees the integration of high-caliber information to 

effectively address our research questions. 

3.1.1 Research Questions 

Using the state of art, this SLR will try to find out the answer to the following questions. 

• RQ1: What are the commonly employed techniques for prioritising requirements? 

• RQ2: Has any paper tried integrating AHP with clustering for prioritizing requirements? 

• RQ3: What clustering algorithms are currently utilized within the software industry? 

3.1.2 Data Sources 

Electronic data repositories that are appropriate and closely related have been identified. The 

repositories are sufficiently related to achieve research goals. Table 1 lists the electronic data 

repository. 

Table 1 Sources of Data 

Electronic Data Repository Repository Link 

IEEE Explorer https://ieeexplore.ieee.org/ 

Springer https://link.springer.com/ 

Elsevier https://www.elsevier.com 

Google Scholar https://scholar.google.com/ 

Research Gate https://www.researchgate.net 

 

3.1.3 Search Strings 

The research questions guided the construction of search strings. We identified precise keywords 

and their synonymous counterparts derived from the investigation of requirement prioritisation 

and clustering literature. All identified terms and their alternatives were established on the 

foundation of existing research. These terms were then integrated using logical AND and OR 

operators to generate the ultimate search strings. The compiled search strings have been 

documented as presented in the table below. This approach ensures that the eventual query is 

https://ieeexplore.ieee.org/
https://link.springer.com/
https://www.elsevier.com/
https://www.researchgate.net/
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highly effective in unearthing the most pertinent literature in the present field. The utilization of 

logical operators has imbued the query with a notably optimistic quality. 

Table 2 Search Strings and Alternatives 

Keywords Alternatives 

Requirement Prioritisation 

Techniques (K1) 

"Prioritisation of Requirements" OR "Requirements 

Ranking" 

Comparison of Requirement 

Prioritisation Techniques (K2) 

"Comparing Methods for Requirement Prioritisation" 

OR "Contrast of Requirement Ranking Approaches" 

Analytical Hierarchy Process 

(K3) 

“AHP” OR "Hierarchy Decision Making" 

MoSCoW (K4) "MoSCoW Technique" OR "Must Should Could Won't 

Technique" OR "Prioritisation using MoSCoW" 

Clustering Algorithms (K5) "Grouping Methods" OR "Cluster Analysis" OR 

"Contrasting Cluster Methods" OR "Comparative 

Study of Clustering Approaches" 

K-Means (K6) "K-Means Algorithm" OR "K-Means Clustering" OR 

"K-Means Method" 

PAM (K7) "PAM Algorithm" OR "Partitioning Around Medoids" 

OR "Medoid Clustering" 

BIRCH (K8) "BIRCH Algorithm" OR "Balanced Iterative Reducing 

and Clustering using Hierarchies" OR "BIRCH 

Clustering" 

GMM (K9) "GMM Algorithm" OR "Gaussian Mixture Model" OR 

"GMM Clustering" 

AHC (K10) "AHC Algorithm" OR "Agglomerative Hierarchical 

Clustering" OR "Hierarchical Cluster Analysis" 

 

3.1.4 Inclusion Criteria 

Before considering research papers in the current study, a suitable criterion was devised. The 

following list of bullets contains a definition of all inclusion requirements. 

• IQ1: The paper gives valuable information for research questions. 

• IQ2: The study appears in a peer-reviewed publication, conference, or in a workshop. 

• IQ3: The research paper is not older than 2015. 

• IQ4: The research paper is written in English language. 
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• IQ5: The paper discusses or compares clustering algorithms. 

• IQ6: The paper discusses or compares requirements prioritisation techniques. 

3.1.5 Exclusion Criteria 

The criteria for excluding irrelevant literature from research papers that were extracted is 

described below. 

• EQ1: Research paper is not available in PDF format. 

• EQ2: Research paper does not add valuable information to the research. 

• EQ3: Research paper does not answer research questions. 

3.1.6 Study Quality Evaluation 

After the paper extraction procedure, the final literature has been assessed using quality 

evaluation criteria. As shown in the table below, a tick list has been developed to evaluate 

selected papers. The five study quality questions on the study quality checklist are what the study 

quality score is based on. If a study responds to all SQ questions (SQ1–SQ5), the study will 

receive a quality score of 5, 2.5 for partial responses, and zero for no response. The final decision 

will be based on the benchmark study quality score and will consider the studies that have 

contributed the most to the SLR objectives. 

 

Table 3 Study Quality Score’s Criteria 

Study Quality Score Study Quality Score Criteria 

SQS-1 The studies received a "5" for satisfactorily responding to all the 

checklist's questions. 

SQS-2 Studies that only partially addressed the checklist's questions 

were given a "2.5" score. 

SQS-3 Studies that failed to respond to any of the checklist's questions 

received a score of "0." 

 

The goal of the quality evaluation of our acquired literature is to comment on the quality of the 

studies that were gathered, which will then be used to articulate the responses to our research 

questions, "RQs". The following quality evaluation questions regarding RQs are developed and 

used on each unique study to evaluate its level of quality. 
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Table 4 Study Quality Questions' Checklist 

Study Quality Questions Study Quality Questions Checklist 

SQ-1 Does the paper provide a comparison among different 

prioritisation techniques? 

SQ-2 Does the paper explicitly explain a clustering algorithm? 

SQ-3 Is the paper able to conclude its results explicitly? 

SQ-4 Does the paper provide a better prioritization mechanism? 

 

3.2 Conducting the Review 

The review's phases have been further broken down into subphases, as shown below. 

3.2.1 Primary Study Selection 

A total of twenty-three papers are included in this literature review from diverse sources. Out 

of these, twelve discuss the requirements prioritisation techniques while the rest talk about 

clustering algorithms.  

Table 5 Sources of Selected Study 

Electronic 

Repositories 

IEEE 

Explorer 

Springer Elsevier Google 

Scholar 

Research 

Gate 

Req. 

Prioritisation 

Techniques 

3 3 1 4 1 

Clustering 

Algorithms 

3 1 3 4 0 

Total 6 4 4 8 1 

3.2.2 Data Extraction and Synthesis 

The deployed methodology, the accuracy and robustness of those methodologies, the evaluation 

of models, and other significant data mining attributes specified for inclusion in the articles were 

all subjected to thorough scrutiny. The integrity of the studies was thoroughly examined and 

considered in the reference table used to evaluate the quality of the study. 
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3.3 Reporting the Review 

This section provides the reporting of a review with results based on studies that have been 

extracted. 

3.3.1 Quality Attributes 

To assess the quality of the research, study quality questions were created. Based on how well 

the study participated in responding to the research questions, a study's quality score was 

determined. The research questions should be targeted to those with a higher quality score 

because they are more likely to be connected to our study objectives. 

3.3.2 Temporal Distribution of Selected Primary Studies 

All the chosen papers have been categorically split into two groups: those which are related to 

Requirements prioritisation Techniques (RPT) and those related to Clustering Algorithms (CA). 

The articles have then been further divided according to the year in which they were published. 

Out of 23 articles, it has been determined that 12 are about Requirements prioritisation 

Techniques and 11 are of Clustering Algorithms.  

 

Graph 1 Yearly Distribution of Selected Studies 
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3.3.3 Used Research Methods in Selected Studies 

 

Figure 8 Primary Study Selection 

This study aimed to address questions related to requirements prioritisation techniques and 

clustering algorithms. As a result, only papers that discussed these two were considered. This 

criterion was also detailed in the inclusion and exclusion criteria. While selecting the papers, a 

more focused selection was made to directly address the research questions. Out of the total 23 

papers included in this study. 

3.4 Results and Discussion of SLR 

This section thoroughly presents the outcomes pertaining to the research inquiries. A 

comprehensive evaluation of all 23 articles was conducted, involving the extraction and 

thorough examination of their respective findings. The results expounded in this section are 

entirely grounded in the context of the research questions. 
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3.4.1 State of Art for Requirements Prioritisation Techniques 

Kassab et al [40] proposes the AHP technique to quantitatively rank design choices and software 

requirement prioritisation process strategies considering how system quality requirements, 

design principles, and design methods interact. The suggested method is examined using a 

remote patient monitoring system and the strategy has been shown to be effective in removing 

discrepancies between stakeholders and the business. 

Khan et al [41] declares AHP as the most promising method while comparing demand 

prioritisation approaches in software development, ranking them based on ease of use, 

completion time, and outcome accuracy. 

Khan et al [42] provides a thorough evaluation of seven strategies for requirements 

prioritisation: priority groups, bubble sort, binary search tree, spanning tree matrix, analytic 

hierarchy process (AHP), analytic network process (ANP), and hierarchical AHP. Each 

prioritisation method is applied to the prioritised Mobilink Franchise system to understand it. 

The effectiveness of these prioritisation strategies is then assessed in relation to pre-established 

standards, such as ease of use, necessary completion time, dependability of results, and assessing 

interdependency of needs. It is concluded that even though ANP requires more time to finish the 

prioritisation process, it has been proven to be the most reliable and promising strategy among 

all other prioritising techniques. 

Khan et al [43] recommends using RePizer, a framework for ranking software needs based on 

predetermined criteria like implementation cost, in conjunction with a chosen prioritisation 

technique. RePizer helps requirements engineers make informed decisions and provides a bird's-

eye view of the project. Comparing RePizer with the planning game (PG) and analytical 

hierarchy process (AHP) revealed better performance in terms of accuracy and usability. 

Kouhdaragh et al [44]  establishes a cost function to rank the various requirement nodes 

according to their objectives. The evaluation process uses the numerical results approach. The 

nodes and the communication technologies are arranged in a priority table according to their 

weights. The numerical outcomes demonstrate that the suggested strategy enables the optimal 

communication technologies to be chosen for each type of smart grid node.  

Parthasarathy et al [45]  provides a framework using AHP to rank requirements according to 

costs and benefits. The multi-layered strategy is created specifically for enterprise resource 
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planning systems and the unique levels of needs they have, and the framework gives better 

results. 

Ahmad et al [46] suggests a fuzzy MoSCoW method for ranking the importance of software 

needs. It is applied on the Library Management System (LMS). The research shows that the 

Fuzzy-MoSCoW method incorporates uncertainty and vagueness in the prioritisation process and 

allows effective allocation of resources. 

Abbas et al [47]  introduces a model-based approach for requirements prioritisation using the 

PageRank algorithm, considering factors like risk, cost, business value, and dependencies. The 

meta-model and visualization tool is discussed. The modified PageRank algorithm is evaluated 

and found to be more accurate and efficient than other methods. The results are closer to human 

prioritisation. 

Madzik et al [48] presents a fresh way to evaluate the importance of client requirements called 

the T4 technique. It combines the AHP, Kano model, and point direct scoring (PDS). The new 

approach considers both the class of specific requirements and their influence on the 

improvement ratio, as well as the impact of the fulfilment or non-fulfillment of a certain demand 

on customer satisfaction or dissatisfaction. Survey-based research verifies the tactic. After 

analysing the results, the study concludes that T4 is the best method out of the five considered 

(PDS, AHP, TSM, BITAF, and T4).  

Shah Jahan et al [49] proposes a revolutionary method for requirement prioritisation called 

"MAHP" by incorporating the AHP ideas into the MOSCOW technique, which will decrease the 

number of pairwise comparisons and therefore the complexity. Using a case study of the Library 

Management System, MAHP is validated. Results indicate that the suggested strategy, MAHP, is 

more effective because it has produced 45 comparisons, as opposed to AHP's ability to produce 

more than 200 pairwise comparisons for only 21 functional requirements. 

Yaseen et al [50] prioritises functional requirements using the Analytical Hierarchical Process 

(AHP) strategy, focusing on spanning trees. This approach minimizes dependencies among 

developer requirements and reduces waiting time, ensuring timely software project delivery 

without relying on concurrent developers' demands. 

Muhammad et al [51] introduces the Enhanced Analytical Hierarchical Process (E-AHP) to 

improve scalability and minimize inconsistent results in large software projects. It compares E-
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AHP with AHP and ReDCCahp, finding E-AHP suitable for large software projects due to its 

efficient handling of large requirements numbers. 

Table 6 Literature Review of Req. Prioritisation Techniques 

Year 

Of 

Pub 

Title Techniques 

Used 

Results Ref. 

2015 Applying analytical 

hierarchy process to 

system quality 

requirements 

prioritisation 

 

AHP The AHP technique effectively 

removes discrepancies between 

stakeholders and the business. 

[40] 

2015 Comparison of 

Requirement 

Prioritisation 

Techniques to Find 

Best Prioritisation 

Technique 

binary search 

tree, AHP, 

hierarchy 

AHP, 

spanning tree 

matrix, 

priority 

group/Numer

ical 

Analysis, 

bubble sort, 

MoSoW, 

simple 

ranking and 

Planning 

Game 

AHP is the best requirements 

prioritisation technique amongst 

all the requirements 

prioritisation techniques 

[41] 

2016 An Evaluation of 

Requirement 

Prioritisation 

Techniques with 

ANP 

ANP, binary 

search tree, 

AHP, 

hierarchy 

AHP, 

spanning tree 

matrix, 

priority 

group and 

bubble sort 

ANP is the best technique among 

the seven techniques, though it 

consumes time 

[42] 

2016 Repizer: a framework Repizer Comparing RePizer with the [43] 
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for prioritisation of 

software 

requirements 

planning game (PG) and 

analytical hierarchy process 

(AHP) revealed better 

performance in terms of 

accuracy and usability 

2016 A Cost Function 

Based Prioritisation 

Method for Smart 

Grid Communication 

Network 

 

Cost 

Function 

Cost Function optimizes 

communication technologies for 

smart grid nodes. 

[44] 

2016 An approach to 

estimation of degree 

of customization for 

ERP projects using 

prioritised 

requirements 

Framework 

using AHP 

AHP framework gave better 

results 

[45] 

2017 Fuzzy_MoSCoW: A 

fuzzy based 

MoSCoW method for 

the prioritisation of 

software 

requirements 

 

Fuzzy 

MoSCoW 

This technique incorporates 

uncertainty and allocates 

resource effectively. 

[46] 

2019 MBRP: Model-Based 

Requirements 

Prioritisation Using 

PageRank Algorithm 

MBRP MBRP can produce outcomes 

that are more like human 

prioritisation. 

[47] 

2019 Determining the 

Importance of 

Customer 

Requirements in 

QFD – A New 

Approach based on 

Kano Model and its 

Comparison with 

Other Methods 

 

PDS, AHP, 

TSM, 

BITAF, and 

T4 

"T4" can assist with achieving a 

higher accuracy rate. 

[48] 

2020 A Novel Approach 

for Software 

Requirement 

Prioritisation 

MAHP, a 

combination 

of AHP and 

MoSCoW 

MAHP reduces the number of 

comparisons and hence saves 

time 

[49] 
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2020 Prioritisation of 

Software Functional 

Requirements from 

Developers 

Perspective 

 

Spanning 

Tree and 

AHP 

There was less dependency 

among requirements hence less 

waiting time for developers 

because of spanning tree 

[50] 

2022 E-AHP: An 

Enhanced Analytical 

Hierarchy Process 

Algorithm for 

Priotrizing Large 

Software 

Requirements 

Numbers 

Enhanced 

AHP 

E-AHP gives better results for 

large projects 

[51] 

 

3.4.1.1 Identified Requirements Prioritisation Techniques 

The following graph illustrates the prevalent prioritisation techniques obtained from the state of 

the art. Most papers have primarily focused on foundational techniques, which were 

subsequently refined to achieve improved outcomes. In the graph, we have exclusively depicted 

the fundamental techniques. 
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Graph 2 Identified Requirements Prioritisation Techniques 

 

Table 7 Identified Requirements Prioritisation Techniques 

Requirements Prioritisation Techniques Usage Count 

Binary Search Tree 2 

Analytic Network Process 1 

Spanning Tree 3 

Numerical Analysis 1 

Bubble Sort 2 

MoSCoW 3 

Analytical Heirarchical Process 7 

Planning Game 1 

Cost Function 1 

 

3.4.2 State of Art for Clustering Algorithms 

Bouguettaya et al [52] proposes centroids as a replacement for raw data points in agglomerative 

hierarchical clustering techniques. The approach reduces computational cost without 

compromising clustering performance, and remains consistent regardless of settings like 
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clustering methods, data distributions, and distance measures. A study also evaluates the 

effectiveness of this approach. 

Fouedjio et al [53] provides a method for agglomerative hierarchical clustering that takes the 

spatial dependency of observations into account. To identify the best clusters and assess the 

contributions of the variables, it merges existing techniques and makes use of a dissimilarity 

matrix. In both simulated and real datasets, the approach produces compact, linked, and 

insightful clusters, yielding satisfying results. 

Li et al [54] introduces a PAM (Partitioning Around Medoid) based method for recognizing tool 

wear state in milling. The LPP (locality preserving projections) method is used to increase 

clustering accuracy by dimension reduction. The experiments of Ti-6Al-4V alloy showed PAM 

to perform higher in accuracy and robustness compared to k-means and fuzzy c-means. 

Pitolli et al [55] in his research, he compares two different ground truth datasets for malware 

families, one with labels generated by AVclass and the other based on clusters found by Malheur. 

It suggests a novel technique for using the BIRCH (Balanced Iterative Reducing and Clustering 

using Hierarchies) clustering algorithm to find groups of related samples in an unlabeled dataset. 

The experimental evaluation shows that BIRCH is effective for identifying malware families, 

with an accuracy that is on par with or better than that of conventional clustering algorithms. The 

performance comparison draws attention to BIRCH's quick clustering. 

Sinaga et al [56] introduces a new schema and learning framework for the k-means clustering 

algorithm, using entropy-type penalty terms for competition. The U-k-means algorithm uses 

points as the initial number of clusters, discarding extra clusters during iterations. It is robust to 

different data structures and cluster volumes and has been tested on synthetic and real data sets. 

The results show the superiority of the U-k-means clustering algorithm while comparison with 

R-EM, C-FS, k-means etc. 

Faizan et al [57] explores the use of K-means clustering for analyzing customer purchase 

behavior in a car manufacturer company. It aims to identify sales-generating products and 

understand customer behavior, reducing time-consuming manual analysis. The paper presents a 

car dealership example and demonstrates its usefulness in analyzing customer data and making 

informed decisions. 
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Karthikeyan et al [58] analyses delivery fleet driver data sets and compares k-means clustering 

and hierarchical clustering, which correspond to the centroid and connection models, based on 

execution time and memory usage. The tests revealed that while agglomerative hierarchical 

performed better for smaller datasets due to lower memory utilisation, k-means performed better 

for larger datasets due to lower execution time requirements. 

Zhang et al [59] offers a unified learning method that incorporates clustering using Gaussian 

Mixture Models and imputation. While imputed data is utilised for GMM clustering, the results 

of GMM clustering are used to fill in the missing data. The compromises made throughout these 

processes allow imputed data to perform as well as possible for GMM clustering. The 

optimisation problem is supposed to be solved by a two-step alternative algorithm with 

established convergence. Numerous tests on eight benchmark datasets from UCI confirm the 

efficiency of the suggested approach. 

Weber et al [60] proposes the Penning trap mass spectrometry (PTMS) phase-imaging ion-

cyclotron resonance (PI-ICR) technology, which has increased experiment speed and accuracy. 

To demonstrate how ions cluster into spots based on cyclotron frequency, PI-ICR generates data 

sets of individual ion hits. Determining spot centres is challenging because data sets can include 

several spots, non-spherical spots, or substantial noise. Improving precision and confidence in 

PI-ICR studies requires a mechanism for designating groups of ions to their appropriate places. 

The best method for accomplishing this has been shown to be the Gaussian mixture model 

(GMM) clustering algorithms. 

Pezoulas et al [61] presents BGMM-OCE, a technique which uses Gaussian Mixture Models 

(GMMs) and optimal component estimation to generate synthetic data. It is a computationally 

efficient and unbiased method for generating synthetic data for large-scale clinical trials. It 

compares various approaches, highlighting their limitations in efficiency and bias. BGMM-OCE 

has the lowest coefficient of variation and good fit at a small execution time.  

Zhao et al [62] presents an improved K-Means clustering algorithm to tackle local optimal 

solutions and slow clustering speed issues. It uses the elbow rule for optimum number of clusters 

and variance and the "triangular inequality principle” to determine cluster centers and minimize 

unnecessary distance calculations. Experimental results show the improved algorithm 
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outperforms traditional K-Means and Canopy-K Means algorithms in accuracy and speedup 

ratio. 

Table 8 Literature Review of Clustering Algorithms 

Year 

Of 

Pub 

Title Techniques 

Used 

Results Ref. 

2015 Efficient 

agglomerative 

hierarchical 

clustering 

Efficient 

agglomerative 

hierarchical clustering 

Experimental results show 

consistent performance 

across various settings, 

proving efficient and 

reliable. 

[52] 

2016 A hierarchical 

clustering method 

for multivariate 

geostatistical data 

agglomerative 

hierarchical clustering 

Proposed clustering 

method yields satisfactory 

results compared to other 

geostatistical methods. 

[53] 

2017 Milling tool wear 

state recognition 

based on 

partitioning around 

medoids (PAM) 

clustering 

PAM PAM outperforms k-

means and fuzzy c-means 

in Ti-6Al-4V alloy end 

milling experiments. 

[54] 

2017 Malware family 

identification with 

BIRCH clustering 

BIRCH BIRCH excels in malware 

family identification with 

high accuracy and low 

clustering time. 

[55] 
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2020 Unsupervised K-

Means Clustering 

Algorithm 

Unsupervised K-

Means  

The U-k-means algorithm 

is robust to data structure 

and performs better than 

existing algorithms. 

[56] 

2020 Applications of 

Clustering 

Techniques in Data 

Mining: A 

Comparative Study 

K-Means, Hierarchical 

Clustering, DB Scan, 

OPTICS, Density-

Based Clustering, EM 

Algorithm 

The paper emphasises the 

value of K-means 

clustering in consumer 

data analysis and business 

decision-making 

[57] 

2020 A Comparative 

Study on K-Means 

Clustering and 

Agglomerative 

Hierarchical 

Clustering 

K-Means and 

Agglomerative 

Hierarchy  

K-means faster for large 

datasets, agglomerative 

hierarchical better for 

smaller ones. 

[58] 

2021 Gaussian Mixture 

Model Clustering 

with Incomplete 

Data 

 

GMM Experiments validate the 

effectiveness of the 

proposed algorithm. 

[59] 

2022 Gaussian mixture 

model clustering 

algorithms for the 

analysis of high-

precision mass 

measurements 

 

GMM Results from GMMs were 

closely congruent with 

values that had previously 

been published. 

[60] 
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2022 Bayesian Inference-

Based Gaussian 

Mixture Models 

with Optimal 

Components 

Estimation 

Towards Large-

Scale Synthetic 

Data Generation for 

In Silico Clinical 

Trials 

BGMM-OCE BGMM-OCE outperforms 

other synthetic data 

generators in terms of 

computational efficiency 

and unbiasedness 

[61] 

2022 Design and 

Implementation of 

an Improved K-

Means Clustering 

Algorithm 

Improved K-Means  Enhanced algorithm 

works better than 

conventional K-Means. 

[62] 

 

3.4.2.1 Identified Clustering Algorithms 

 

Graph 3 Identified Clustering Algorithms 

The graph portrays the prevalent clustering algorithms derived from the state of the art. A 

significant portion of the literature has centered around foundational algorithms, which have 

been subsequently fine-tuned to yield enhanced results. The graph exclusively showcases the 

core algorithms. 
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Table 9 Identified Clustering Algorithms 

Clustering Algorithms Usage Count 

Agglomerative Hierarchical Clustering 3 

Partition Around Medoids 1 

BIRCH 1 

K-Means 4 

GMM 3 

 

3.5 Research Gap 

The research gap in this thesis revolves around the limited exploration of the Analytical 

Hierarchy Process (AHP) as a tool for clustering requirements in the context of planning for the 

next release of a project. There is a conspicuous lack of research that explore AHP's potential 

utility in grouping or clustering requirements to speed up the release planning process, even 

though most of the existing literature focuses on the application of AHP in requirements 

prioritisation and decision-making. AHP can be used to improve the organisation, categorization, 

and prioritisation of requirements in the context of release planning, which will ultimately lead 

to more effective and efficient project management.  

3.6 Chapter Summary 

This chapter meticulously examined 23 selected papers, with 12 focusing on requirements 

prioritisation techniques and 11 on clustering algorithms. Notably, a diverse array of approaches, 

such as Binary Search Tree, Analytic Network Process, Spanning Tree, Numerical Analysis, 

Bubble Sort, MoSCoW, Analytical Hierarchical Process, Planning Game, and Cost Function, 

were explored within the state of the art. Remarkably, the widely prevalent choice among 

researchers was the Analytical Hierarchical Process (AHP), attributed to its consistent delivery 

of superior results. Additionally, the chapter sheds light on various clustering algorithms, 

including K-means, Gaussian Mixture Model (GMM), BIRCH, Agglomerative Hierarchical 

Clustering, and Partition Around Medoids. This synthesis of literature sets the foundation for 

subsequent research phases, offering insights into the landscape and paving the way for the 

formulation of an innovative and effective framework. 
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CHAPTER 4 . 

METHODOLOGY 

In the dynamic landscape of software development and project management, prioritising 

requirements has emerged as a crucial practice to ensure efficient resource allocation, timely 

delivery, and customer satisfaction. Prioritising requirements is acknowledged as being a 

challenging task in software product development, nevertheless [63]. Requirement prioritisation 

involves the systematic process of determining the relative importance and urgency of various 

features, functionalities, and tasks within a project. By establishing a structured framework for 

evaluating and ranking requirements, organizations can make informed decisions about what to 

focus on first, thereby optimizing development efforts and aligning them with strategic goals. 

4.1 Requirements Prioritisation Methodology 

This thesis presents a method 

for prioritising requirements for 

the next release using 

requirements prioritisation 

methods. The prioritisation 

methods consider the effort 

required for implementing a 

requirement and the extent to 

which a particular requirement 

will be satisfying the 

stakeholders. After that 

clustering algorithms are 

applied to cluster the 

requirements. Finally, the 

prioritisation technique is used 

to extract the group of 

requirements that will be 

Figure 9 Workflow of Requirements Prioritisation 
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implemented for the next release. The evaluation of clusters is also done to check the validity of 

clusters. The figure below shows a bird eye view of the whole process. We will be focusing on 

the coloured part of the figure. 

4.1.1 Requirements Elicitation 

Requirement elicitation, a cornerstone of requirement engineering, is a critical step that involves 

gathering stakeholders' needs and expectations for a software project. This process encompasses 

discussions, interviews, workshops, and surveys to extract information about desired 

functionalities, features, and constraints. Its outcomes include comprehensive documented 

requirements that form the basis for subsequent project phases. By fostering shared 

understanding and aligning project goals, effective requirement elicitation reduces 

misunderstandings and enhances the likelihood of delivering a software solution that meets user 

and business needs. We will initiate the process of the Requirements Elicitation phase, 

employing systematic approaches like interviews, surveys, and workshops to comprehensively 

gather insights from stakeholders. Through this method, we aim to establish a clear 

understanding of project needs and aspirations, ensuring the identification and documentation of 

all pertinent requirements, thereby laying a solid groundwork for the subsequent requirements 

prioritisation process. 

4.1.2 Requirements Analysis 

Requirements analysis holds a pivotal role in software requirement engineering, entailing a 

comprehensive understanding and detailed scrutiny of the gathered requirements. This phase 

involves reviewing and clarifying requisites to eliminate ambiguity, addressing inconsistencies, 

and evaluating feasibility for practical implementation. Activities such as breaking down 

intricate requirements into manageable components, formulating detailed use cases, and 

validating the analyzed requirements with stakeholders are integral. Non-functional requirements 

are refined into quantifiable attributes, while dependencies, constraints, and potential risks are 

identified. The establishment of traceability links, potential prototyping, and maintaining 

iterative analysis further enriches the process. This step ensures that the requisites are well-

defined, align with stakeholder expectations, and paves the way for subsequent developmental 

stages. In this thesis, our focus shifts to the following phase of Requirements Analysis. Building 

on the requirements gathered in the Elicitation phase, Requirements Analysis involves 
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meticulous examination to ensure clarity, completeness, and precision within each requirement. 

Scrutinizing inconsistencies, conflicts, and gaps, we aim to create a refined and faithful 

representation of the software's functionalities and attributes. This phase serves as a vital link 

connecting the initial requirements to subsequent stages like prioritisation and evaluation. 

4.1.3 Stakeholders Input 

Stakeholders play a crucial part in the collaborative decision-making process by contributing 

their invaluable insight on both the work needed for implementation and the level of satisfaction 

expected from a given project or feature. Their ideas on effort consider things like time 

commitments, resource allocation, and potential problems that can occur throughout 

development. Stakeholders simultaneously share their expectations for how well the project 

would correspond with organisational goals, consumer wants, and market demands, contributing 

their perspective on satisfaction. This two-way input offers a thorough comprehension of the 

trade-offs involved in project planning and aids in directing decision-makers in choosing 

initiatives that maximise stakeholder satisfaction while optimising resource utilisation. 

4.1.3.1 Problem Formulation 

4.1.3.1.1 Quantitative Dataset 

Consider a scenario where we have a set of requirements, denoted as R = {R1, R2, …, Rn}, 

which represent the new features suggested by various customers for an upcoming software 

release. These requirements are not of equal importance, as each customer's significance varies. 

To capture this, each customer i is assigned a weight Wi, reflecting their importance to the 

overall software project. This means that some customers' preferences carry more weight than 

others in determining what should be addressed in the software release. The collection of 

customer weights is represented as W = {W1, W2, …, Wn}. 

Every requirement Rj within the set R comes with an associated development effort value Ej, 

which estimates the cost or resources needed for its implementation. This set of effort values is 

denoted as E = {E1, E2, …, En}. It's worth noting that a single requirement can be proposed by 

multiple customers, each assigning it a distinct priority level. This is quantified through a value 

Vij, indicating the importance of requirement Rj for customer i. Essentially, higher Vij values 

correspond to higher priorities for customer i. 
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The cumulative value of incorporating a requirement Rj into the next software release, referred 

to as its global satisfaction, Sj, is calculated by summing up its importance values across all 

customers (Sj = ∑m i=1 Wi ⋅ Vij). In simpler terms, this reflects the combined satisfaction that 

the inclusion of requirement rj would bring to all customers, considering their individual 

priorities and weights. The resulting set of requirement satisfactions is represented as S = {S1, 

S2, …, Sn}. This conceptually summarizes how the varying importance of customers, the 

priority they assign to requirements, and the collective satisfaction from fulfilling these 

requirements all interplay to guide the process of selecting what to include in the upcoming 

software release [64].      

4.1.3.1.2 AHP Dataset 

Here in this study, will be we will be using the Quantitative data set for the pairwise comparisons 

of each requirement. This will give us the relative weight of each requirement and hence we will 

create the AHP data set for our requirements. 

To calculate the relative weights of both criteria, Effort and Satisfaction, the eigenvector method 

is employed after obtaining pairwise comparison judgments. Then, a square matrix is created, 

known as the comparison matrix, where elements C_ij represent the importance of criterion 

Effort (Ci) in relation to criterion Satisfaction (Cj). The matrix is normalized by dividing each 

column by its sum, resulting in a matrix of normalized values. The average of the normalized 

values in each row is calculated to derive the priority vector for each level. A consistency check 

is carried out to ensure consistent pairwise comparisons, utilizing the consistency ratio (CR) to 

determine if the judgments align coherently. If the CR exceeds a designated threshold, typically 

set at 0.1, adjustments are made accordingly. Once the consistency check is successfully 

completed, the priority vectors represent the relative weights of the requirements.  

4.1.4 Elbow Method 

The elbow method serves as a heuristic approach in data science and machine learning for 

identifying the optimal number of clusters within a dataset for effective clustering. By employing 

this method, a range of potential cluster numbers is initially considered. Utilizing a clustering 

algorithm, often k-means, the sum of squared distances between data points and their 

corresponding cluster centers is computed. A smaller sum of squared distances indicates more 

cohesive clusters. The crucial step involves identifying the "elbow point" on a line plot depicting 
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the number of clusters against the sum of squared distances. This point signifies a balance 

between minimizing the sum of squared distances and preventing excessive fragmentation of 

data, thereby offering the optimal cluster count for the dataset. 

In this study, we apply the elbow method to our requirements dataset. Through iterations, we 

calculate the within-cluster sum of squares (WCSS) for varying cluster numbers and plot these 

values. This method aids in finding the optimum number of clusters that best captures underlying 

patterns and relationships within the requirements. By utilizing the elbow method, we enhance 

the precision of our requirement clustering process, ensuring that the final cluster configuration 

aligns effectively with the inherent structure of the requirements dataset. 

4.1.5 Clustering of Requirements 

Now, we will be advancing to the step of Clustering of Requirements. Recognizing the 

complexity of managing a multitude of requirements, this phase focuses on organizing and 

grouping similar requirements into clusters. Through techniques such as similarity analysis or 

domain categorization, we aim to identify common themes, functionalities, or attributes among 

the requirements. This process not only enhances the manageability of requirements but also 

provides a structured approach for analysis. By clustering related requirements together, we can 

streamline the subsequent prioritisation process and gain a holistic understanding of the 

software's various aspects. This phase acts as a bridge between requirements analysis and 

requirements prioritisation, facilitating a more organized and efficient workflow. 

We will be employing a comprehensive selection of five distinct clustering algorithms, each 

designed to partition requirements into coherent groups based on shared characteristics. These 

algorithms encompass K-Means, which iteratively refines clusters by minimizing distances to 

cluster centroids; Agglomerative Hierarchical Clustering, which creates a hierarchy of clusters 

by iteratively merging or agglomerating data points; Partitioning Around Medoids (PAM), which 

seeks representative points within clusters; Gaussian Mixture Model (GMM), which models data 

as a mixture of Gaussian distributions; and BIRCH, a hierarchical algorithm that efficiently 

clusters large datasets by first creating a compact summary of the data. The deployment of these 

diverse algorithms enhances our ability to extract meaningful patterns and structures from the 

requirements, providing a comprehensive understanding of their relationships and aiding in 

informed decision-making during the subsequent prioritisation process. 
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4.1.6 Clusters Evaluation 

The evaluation of clusters is a critical process in assessing the quality and validity of clustering 

results obtained from data analysis or machine learning algorithms. It involves using various 

metrics and techniques to determine how well the data points within each cluster are grouped 

together and separated from other clusters. There are different mechanisms to evaluate clusters. 

Here we will be using three mechanisms to assess the clusters. These are Dunn Index, Silhouette 

Index and Caliński-Harabasz Index. These indices are calculated once the clusters are formed. 

Their final values are used to rate the clusters. 

4.1.6.1 Dunn Index 

The Dunn Index is a clustering validation metric that quantifies the quality of clusters based on 

their separation and compactness. By taking into account both the distance between data points 

inside clusters and the distance between various clusters, it provides a measurement of how 

clearly defined and distinct the clusters are. A higher Dunn Index value indicates better 

clustering, as it signifies that clusters are well-separated and compact internally. 

The formula for the Dunn Index is: 

Dunn Index = Minimum Inter-Cluster Distance / Maximum Intra-Cluster Distance 

Where: 

• Minimum Inter-Cluster Distance: The smallest distance between any two centroids of 

different clusters. 

• Maximum Intra-Cluster Distance: The largest distance between any two data points 

within the same cluster. 

4.1.6.2 Silhouette Index  

The Silhouette Index is a clustering evaluation measure that assesses the quality of clusters by 

measuring both how close data points are to their own cluster and how far they are from other 

clusters. It produces values between -1 and 1. A higher Silhouette Index suggests well-separated 

clusters. 

The formula for Silhouette Index is:  

S(i) = {b(i) – a(i)} / max{(a(i), b(i))} 
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Where: 

• a(i) is the average distance to other points in the same cluster as i,  

• b(i) is the smallest average distance to points in a different cluster. 

The overall Silhouette Index is the average of S(i) values across all data points. 

4.1.6.3 Calinski-Harabasz Index 

The Caliński-Harabasz Index is a clustering validation metric used to evaluate the quality of 

clusters in a clustering solution. It calculates the difference between the variances within and 

between clusters. A higher Caliski-Harabasz Index value denotes clusters that are more well 

defined and well-separated.  

The formula for Caliński-Harabasz Index is:  

CH=(B/W)× (N−K) / (K−1) 

Where: 

• B is the between-cluster variance (the sum of squared distances between cluster centroids 

and the overall mean). 

• W is the within-cluster variance (the sum of squared distances between data points and 

their respective cluster centroids). 

• N is the total number of data points. 

• K is the number of clusters. 

4.1.7 Requirements Prioritisation 

The Requirements Prioritisation phase in Software Requirement Engineering encompasses the 

systematic evaluation and ranking of requirements, enabling the optimal allocation of resources 

by focusing on critical software system aspects. Through thorough assessment of scope, 

complexity, and stakeholder input, requirements are rigorously evaluated against criteria 

including effort, business value, feasibility, and risk. This evaluation, informed by stakeholder 

insights and organized clusters, guides priority assignment using frameworks like MoSCoW, 

Kano Model, or AHP, ensuring that development efforts target high-impact areas. This process's 

outcome directs resource allocation, aligning with project goals for maximum value delivery and 

effective software system development. 
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In this study, we will be systematically assigning priorities to each requirement using MoSCoW 

(Must Have, Should Have, Could Have, Won't Have). We will evaluate and rank requirements 

based on factors ‘Effort required for implementing a requirement’ and ‘Satisfaction level it 

provides to the stakeholders’. This process ensures that limited resources are allocated to address 

the most critical and impactful aspects of the software system.  

4.1.7.1 MoSCoW 

MoSCoW is a project management and requirements analysis technique that categorizes tasks 

into four groups: Must Have, Should Have, Could Have, and Will Not Have. After clustering the 

requirements stakeholders will use MoSCoW to prioritise requirements. The project team and 

stakeholders assess each requirement cluster and assign one of the labels of MoSCoW to it based 

on its priority. This categorization helps in making informed decisions about resource allocation, 

project scope, and timelines. By clearly defining what must be delivered versus what can be 

deferred or omitted, the MoSCoW method aids in managing expectations and focusing efforts on 

the most critical aspects of the project. 

It ensures that the most essential requirements are addressed first while allowing flexibility for 

less critical elements. The cluster with overall least Effort and most Satisfaction score is likely to 

fall under ‘Must” label and the cluster with overall most Effort and least Satisfaction score is 

likely is fall under ‘Won’t” label. This approach helps streamline the development process and 

allocate resources efficiently to meet project objectives. 
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CHAPTER 5 . 

EXPERIMENTAL RESULTS 

5.1 Databases 

Two cases were chosen to evaluate the effectiveness of our methodology. The first one is a (20-

Problem) drawn from [65] and the second data set is a (100-Problem) obtained from [66]. 

5.1.1 20 Requirements Problem 

This dataset has five customers and twenty requirements. Table 10 displays the development 

effort related to each requirement as well as the level of importance or value given by each 

customer to each requirement. According to a uniform distribution, the customer weights are 

provided in the range of 1 to 5. These values can be viewed as language labels such as: without 

importance (1), less important (2), important (3), very important (4), and extremely important 

(5). They also correspond to the level of priority of each demand. Each requirement has a 

corresponding estimated effort score, which ranges from 1 to 10. 

Table 10 Raw 20 Req. Problem 

  C1 C2 C3 C4 C5 Effort 

R1 4 4 5 4 5 1 

R2 2 4 3 5 4 4 

R3 1 2 3 2 2 2 

R4 2 2 3 3 4 3 

R5 5 4 4 3 5 4 

R6 5 5 5 4 4 7 

R7 2 1 2 2 2 10 

R8 4 4 4 4 4 2 

R9 4 4 4 2 5 1 

R10 4 5 4 3 2 3 

R11 2 2 2 5 4 2 

R12 3 3 4 2 5 5 

R13 4 2 1 3 3 8 
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R14 2 4 5 2 4 2 

R15 4 4 4 4 4 1 

R16 4 2 1 3 1 4 

R17 4 3 2 5 1 10 

R18 1 2 3 4 2 4 

R19 3 3 3 3 4 8 

R20 2 1 2 2 1 4 

 

Table 11 Customers' Weights for 20 Req. Problem 

Customers' Weights C1 C2 C3 C4 C5 

 1 4 2 3 4 

 

5.1.1.1 20 Requirements Problem using Quantitative Approach 

To convert the data into two dimensions to apply clustering on it, we considered section 

4.1.3.1.1. Here: 

R = {R1, R2, ……., R20}, 

E = {1, 4, 2, …….,4}, 

W = {1, 4, 2, ……., 4}.  

This is how ‘S’ (Satisfaction) was calculated for r1. 

S = ∑ (Vij * Wi) 

S= {(4*1) + (4*4) + (5*2) + (4*3) + (5*4)} 

S= 62 

So, satisfaction for r1 was calculated to be 62 whereas the effort is 1. The rest was also 

calculated similarly, and this table was generated as a result. 

Table 12 Quantitative Data for 20 Req. Problem 

ID Effort Satisfaction 
 ID Effort Satisfaction 

R1 1 62  R11 2 45 

R2 4 55  R12 5 49 

R3 2 29  R13 8 35 
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R4 3 41  R14 2 50 

R5 4 58  R15 1 56 

R6 7 63  R16 4 27 

R7 10 24  R17 10 39 

R8 2 56  R18 4 35 

R9 1 54  R19 4 46 

R10 3 49  R20 4 20 

 

5.1.1.2 20 Requirements Problem using AHP 

The same data set was used to derive AHP values for Effort and satisfaction and this table was 

generated as a result. 

Table 13 AHP Data for 20 Req. Problem 

ID Effort Satisfaction  ID Effort Satisfaction 

R1 12.7640176 3.24660865  R11 6.38200881 4.47310526 

R2 3.19100441 3.65981339  R12 2.55280353 4.10795381 

R3 6.38200881 6.9410254  R13 1.5955022 5.75113533 

R4 4.25467254 4.90950577  R14 6.38200881 4.02579473 

R5 3.19100441 3.4705127  R15 12.7640176 3.59445958 

R6 1.82343109 3.19507518  R16 3.19100441 7.45517543 

R7 1.27640176 8.38707236  R17 1.27640176 5.1612753 

R8 6.38200881 3.59445958  R18 3.19100441 5.75113533 

R9 12.7640176 3.72758771  R19 3.19100441 4.37586384 

R10 4.25467254 4.10795381  R20 3.19100441 10.0644868 

 

5.1.2 100 Requirements Problem 

This data set also consists of 5 customers but this time the number of requirements is 100. This 

dataset was chosen because of the challenge of choosing requirements from a larger set during 

the early timeboxes of developing genuine agile software projects. This is the reason now we 

have 100 requirements instead of just 20. Each requirement has a value for the development 

effort that ranges from 1 to 20. Here 20 units (4 weeks) represent maximum development effort 
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which is basically the timeframe established by agile methodologies (e.g., Scrum's iteration 

proposal 2 to 4 weeks (about). The importance of requirements is valued by the customers in the 

range of 1 to 3. Here the numbers 1-3 are, (1) inessential, (2) desirable or (3) mandatory [67]. 

Table 14 Raw Data for 100 Req. Problem 

 C1 C2 C3 C4 C5 Effort 

R1 1 3 1 3 1 16 

R2 2 2 1 2 2 19 

R3 1 1 1 2 3 16 

R4 1 2 2 1 1 7 

R5 2 1 1 3 3 19 

R6 3 2 1 1 1 15 

R7 3 1 1 3 2 8 

R8 1 2 3 2 3 10 

R9 1 2 2 3 1 6 

R10 3 1 2 2 1 18 

R11 1 2 3 3 2 15 

R12 1 3 3 2 2 12 

R13 3 3 3 1 3 16 

R14 2 2 1 3 1 20 

R15 3 1 3 2 2 9 

R16 2 3 1 3 1 4 

R17 2 2 2 2 1 16 

R18 3 3 2 1 1 2 

R19 1 3 3 3 1 9 

R20 3 1 3 3 3 3 

R21 2 3 2 1 1 2 

R22 1 3 1 1 1 10 

R23 1 3 2 1 3 4 

R24 1 2 3 2 3 2 

R25 3 3 2 3 3 7 

R26 3 1 3 3 2 15 
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R27 3 2 3 2 2 8 

R28 3 2 1 1 3 20 

R29 1 3 3 1 2 9 

R30 2 3 3 1 3 11 

R31 2 1 3 1 1 5 

R32 3 3 2 2 1 1 

R33 2 2 1 2 3 17 

R34 1 2 2 2 3 6 

R35 2 1 2 3 2 2 

R36 2 2 1 2 2 16 

R37 1 3 1 2 1 8 

R38 3 2 3 3 1 12 

R39 3 3 1 1 2 18 

R40 2 3 2 1 1 5 

R41 2 3 1 3 3 6 

R42 2 3 3 1 1 14 

R43 3 1 1 1 1 15 

R44 1 1 3 3 2 20 

R45 1 3 3 1 1 14 

R46 1 2 3 2 2 9 

R47 2 2 3 1 3 16 

R48 2 2 1 1 3 6 

R49 3 1 3 3 2 6 

R50 3 3 2 2 2 6 

R51 3 3 3 2 1 6 

R52 3 3 1 1 3 2 

R53 1 1 2 3 3 17 

R54 3 2 3 2 2 18 

R55 2 2 2 1 3 1 

R56 1 3 3 3 1 3 

R57 3 3 2 3 2 14 

R58 1 2 1 1 1 16 
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R59 3 1 2 2 3 18 

R60 1 1 3 3 2 7 

R61 2 1 1 2 2 10 

R62 2 3 1 2 2 7 

R63 3 2 2 3 1 16 

R64 3 3 3 3 2 19 

R65 1 1 3 3 1 17 

R66 3 2 1 1 3 15 

R67 1 1 3 2 2 11 

R68 3 2 3 1 1 8 

R69 2 3 3 2 2 20 

R70 3 1 1 1 1 1 

R71 1 1 3 2 2 5 

R72 3 3 1 3 2 8 

R73 2 1 3 3 3 3 

R74 3 3 1 2 2 15 

R75 1 2 1 2 1 4 

R76 1 1 2 2 3 20 

R77 2 3 3 1 2 10 

R78 3 3 3 3 3 20 

R79 3 1 1 3 1 3 

R80 1 2 2 1 3 20 

R81 2 1 1 3 3 10 

R82 1 2 2 1 2 16 

R83 3 1 3 2 1 19 

R84 1 2 2 2 2 3 

R85 2 2 3 2 2 12 

R86 2 1 1 1 2 16 

R87 2 3 2 1 2 15 

R88 1 2 2 1 1 1 

R89 3 2 3 3 3 6 

R90 2 3 3 1 3 7 
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R91 2 2 3 1 3 15 

R92 3 2 3 3 1 18 

R93 1 2 2 3 1 4 

R94 1 3 1 1 3 7 

R95 1 2 1 2 1 2 

R96 2 2 2 1 3 7 

R97 1 1 3 2 3 8 

R98 3 3 3 3 3 7 

R99 1 1 2 1 3 7 

R100 1 1 3 3 3 3 

 

Table 15 Customers' Weight for 100 Req. Problem 

Customers' Weights C1 C2 C3 C4 C5 

 1 5 3 3 1 

 

5.1.2.1 100 Requirements Problem using Quantitative Approach 

The Satisfaction for 100 Requirements Problem was also calculated using the same methodology 

as 6.1.1.1. This is the resulting table. 

Table 16 Quantitative Data for 100 Req. Problem 

ID Effort Satisfaction  ID Effort Satisfaction 

R1 16 29  R51 6 34 

R2 19 23  R52 2 27 

R3 16 18  R53 17 24 

R4 7 21  R54 18 30 

R5 19 22  R55 1 24 

R6 15 20  R56 3 35 

R7 8 22  R57 14 35 

R8 10 29  R58 16 18 

R9 6 27  R59 18 23 

R10 18 21  R60 7 26 
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R11 15 31  R61 10 18 

R12 12 33  R62 7 28 

R13 16 33  R63 16 29 

R14 20 25  R64 19 38 

R15 9 25  R65 17 25 

R16 4 30  R66 15 22 

R17 16 25  R67 11 23 

R18 2 28  R68 8 26 

R19 9 35 
 

R69 20 34 

R20 3 29  R70 1 15 

R21 2 27  R71 5 23 

R22 10 23  R72 8 32 

R23 4 28  R73 3 28 

R24 2 29  R74 15 29 

R25 7 36  R75 4 21 

R26 15 28  R76 20 21 

R27 8 30  R77 10 31 

R28 20 22  R78 20 39 

R29 9 30  R79 3 21 

R30 11 32  R80 20 23 

R31 5 20  R81 10 22 

R32 1 31  R82 16 22 

R33 17 24  R83 19 24 

R34 6 26  R84 3 25 

R35 2 24  R85 12 29 

R36 16 23  R86 16 15 

R37 8 26  R87 15 28 

R38 12 32  R88 1 21 

R39 18 26  R89 6 34 

R40 5 27  R90 7 32 

R41 6 32  R91 15 27 

R42 14 30  R92 18 32 
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R43 15 15  R93 4 27 

R44 20 26  R94 7 25 

R45 14 29  R95 2 21 

R46 9 28  R96 7 24 

R47 16 27  R97 8 24 

R48 6 21  R98 7 39 

R49 6 28  R99 7 18 

R50 6 32  R100 3 27 

 

5.1.2.2 100 Requirements Problem using AHP 

Below is the AHP table for the 100-Problem data set. 

Table 17 AHP Data for 100 Req. Problem 

ID Effort Satisfaction  ID Effort Satisfaction 

R1 0.35245612 0.87906114  R51 0.93988298 0.74978744 

R2 0.29680515 1.10838143  R52 2.81964894 0.94417678 

R3 0.35245612 1.41626516  R53 0.3317234 1.06219887 

R4 0.80561398 1.21394157  R54 0.31329433 0.8497591 

R5 0.29680515 1.15876241  R55 5.63929788 1.06219887 

R6 0.37595319 1.27463865  R56 1.87976596 0.72836494 

R7 0.70491224 1.15876241  R57 0.40280699 0.72836494 

R8 0.56392979 0.87906114  R58 0.35245612 1.41626516 

R9 0.93988298 0.94417678  R59 0.31329433 1.10838143 

R10 0.31329433 1.21394157  R60 0.80561398 0.98049127 

R11 0.37595319 0.82234751  R61 0.56392979 1.41626516 

R12 0.46994149 0.77250827  R62 0.80561398 0.91045618 

R13 0.35245612 0.77250827  R63 0.35245612 0.87906114 

R14 0.28196489 1.01971092  R64 0.29680515 0.67086245 

R15 0.62658865 1.01971092  R65 0.3317234 1.01971092 

R16 1.40982447 0.8497591  R66 0.37595319 1.15876241 

R17 0.35245612 1.01971092  R67 0.51266344 1.10838143 

R18 2.81964894 0.91045618  R68 0.70491224 0.98049127 



 
59 

 

R19 0.62658865 0.72836494  R69 0.28196489 0.74978744 

R20 1.87976596 0.87906114  R70 5.63929788 1.6995182 

R21 2.81964894 0.94417678  R71 1.12785958 1.10838143 

R22 0.56392979 1.10838143  R72 0.70491224 0.79664915 

R23 1.40982447 0.91045618  R73 1.87976596 0.91045618 

R24 2.81964894 0.87906114  R74 0.37595319 0.87906114 

R25 0.80561398 0.70813258  R75 1.40982447 1.21394157 

R26 0.37595319 0.91045618  R76 0.28196489 1.21394157 

R27 0.70491224 0.8497591 
 

R77 0.56392979 0.82234751 

R28 0.28196489 1.15876241  R78 0.28196489 0.65366084 

R29 0.62658865 0.8497591  R79 1.87976596 1.21394157 

R30 0.51266344 0.79664915  R80 0.28196489 1.10838143 

R31 1.12785958 1.27463865  R81 0.56392979 1.15876241 

R32 5.63929788 0.82234751  R82 0.35245612 1.15876241 

R33 0.3317234 1.06219887  R83 0.29680515 1.06219887 

R34 0.93988298 0.98049127  R84 1.87976596 1.01971092 

R35 2.81964894 1.06219887  R85 0.46994149 0.87906114 

R36 0.35245612 1.10838143  R86 0.35245612 1.6995182 

R37 0.70491224 0.98049127  R87 0.37595319 0.91045618 

R38 0.46994149 0.79664915  R88 5.63929788 1.21394157 

R39 0.31329433 0.98049127  R89 0.93988298 0.74978744 

R40 1.12785958 0.94417678  R90 0.80561398 0.79664915 

R41 0.93988298 0.79664915  R91 0.37595319 0.94417678 

R42 0.40280699 0.8497591  R92 0.31329433 0.79664915 

R43 0.37595319 1.6995182  R93 1.40982447 0.94417678 

R44 0.28196489 0.98049127  R94 0.80561398 1.01971092 

R45 0.40280699 0.87906114  R95 2.81964894 1.21394157 

R46 0.62658865 0.91045618  R96 0.80561398 1.06219887 

R47 0.35245612 0.94417678  R97 0.70491224 1.06219887 

R48 0.93988298 1.21394157  R98 0.80561398 0.65366084 

R49 0.93988298 0.91045618  R99 0.80561398 1.41626516 

R50 0.93988298 0.79664915  R100 1.87976596 0.94417678 
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5.2 Elbow Method 

The elbow method was applied to both 20 and 100 Requirements Problem data sets to find the 

optimum number of clusters. The graphs below show the optimum number of clusters. 

5.2.1 20 Requirements Problem 

 

Figure 10 Optimum Number of Clusters for Quantitative Approach 

 

Figure 11 Optimum Number of Clusters for AHP 
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5.2.2 100 Requirements Problem 

 

Figure 12 Optimum Number of Clusters for Quantitative Approach 

 

Figure 13 Optimum Number of Clusters for AHP 

 

5.3 Clustering 

As per the results of elbow method the optimum number of clusters for both 20 and 100 

Requirements Problem was 3.  Since we are also using MoSCoW along with AHP for 

requirements prioritisation, we created 3 as well as 4 clusters. The reason for this is MoSCoW 

has four attributes. 

This research utilized five clustering algorithms, including K-Means, Partition Around Medoids, 

Agglomerative Hierarchical Clustering, Gaussian Mixture Models, and BIRCH, to group data 

points in quantitative and AHP datasets. The analysis was conducted on two scales of problem 

instances: 20 requirements and 100 requirements. Three and four clusters were generated for 
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each dataset, acting as cohesive groups of related data points. Below are clusters for AHP 

datasets. 

5.3.1 K-Means 

 

Figure 14 AHP-based clustering: 3 & 4 Clusters from 20 Req 

 

 

Figure 15 AHP-based clustering: 3 & 4 Clusters from 100 Req 
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5.3.2 Partition Around Medoids 

 

Figure 16 AHP-based clustering: 3 & 4 Clusters from 20 Req 

 

 

Figure 17 AHP-based clustering: 3 & 4 Clusters from 100 Req 
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5.3.3 Agglomerative Hierarchical Clustering 

 

Figure 18 AHP-based clustering: 3 & 4 Clusters from 20 Req 

 

 

Figure 19 AHP-based clustering: 3 & 4 Clusters from 100 Req 
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5.3.4 Gaussian Mixture Models 

 

Figure 20 AHP-based clustering: 3 & 4 Clusters from 20 Req 

 

 

Figure 21 AHP-based clustering: 3 & 4 Clusters from 100 Req 
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5.3.5 BIRCH 

 

Figure 22 AHP-based clustering: 3 Clusters from 20 & 100 Req 

 

5.4 Clusters Evaluation 

To evaluate the quality of the clusters, three metrics were computed: the Dunn Index, the 

Silhouette Index, and the Calinski-Harabasz Index. These metrics assess the effectiveness of 

clustering in different ways, such as separation between clusters, well-separated clusters, and the 

ratio of between-cluster variance to within-cluster variance. 

The paper [64] has assessed the values of three clustering algorithms: K-means, Hierarchical 

Clustering, and Partition Around Medoids (PAM) using quantitative computations. This thesis 

aims to provide a comparative analysis between the computed index values from [64] and the 

values obtained by the Analytic Hierarchy Process (AHP) approach. This analysis gauges the 

level of concurrence or divergence between the established methodology and the innovative AHP 

approach. Holistic comparison helps to understand the strengths and limitations of different 

clustering strategies and contributes to the broader understanding of effective clustering 

methodologies and their practical applications. 

Furthermore, Gaussian Mixture Models (GMM) and BIRCH are also used to calculate the 

evaluation indices for both types of data sets, i.e., Quantitative and AHP to get a broader 

understanding of how proposed methodology acts with different clustering algorithms. 

Given below are the results of all clustering algorithms for cluster evaluation metrics. 
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5.4.1 K-Means 

Table 18 K-Means Clusters Evaluation: 20 Requests 

20 Requirements Problem 

 Clusters Quantitative AHP 

Dunn 3 0.209 0.4336 

Silhouette 3 0.4666 0.5690 

CH 3 22.9273 33.7443 

    

Dunn 4 0.2527 0.2417 

Silhouette 4 0.4176 0.4863 

CH 4 24.3832 34.1044 

 

Table 19 K-Means Clusters Evaluation: 100 Requests 

100 Requirements Problem 

 Clusters Quantitative AHP 

Dunn 3 0.0548 0.2364 

Silhouette 3 0.4283 0.4632 

CH 3 89.5132 89.7174 

    

Dunn 4 0.0783 0.2377 

Silhouette 4 0.3993 0.4766 

CH 4 90.9959 96.8018 

 

5.4.2 Partition Around Medoids 

Table 20 PAM Clusters Evaluation: 20 Requests 

20 Requirements Problem 

 Clusters Quantitative AHP 

Dunn 3 0.2607 2.7100 

Silhouette 3 0.4843 0.5208 

CH 3 22.6144 31.1727 

    

Dunn 4 0.3151 1.5103 

Silhouette 4 0.4116 0.4374 

CH 4 24.0329 31.2174 
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Table 21 PAM Clusters Evaluation: 100 Requests 

100 Requirements Problem 

 Clusters Quantitative AHP 

Dunn 3 0.0831 0.3396 

Silhouette 3 0.4308 0.3943 

CH 3 89.5132 46.9101 

    

Dunn 4 0.0696 0.3024 

Silhouette 4 0.3993 0.3998 

CH 4 88.7641 64.6714 

 

5.4.3 Agglomerative Hierarchical Clustering 

Table 22 AHC Clusters Evaluation: 20 Requests 

20 Requirements Problem 

 Clusters Quantitative AHP 

Dunn 3 0.2576 2.9804 

Silhouette 3 0.4549 0.5690 

CH 3 18.6832 33.7443 

    

Dunn 4 0.2482 2.7427 

Silhouette 4 0.3561 0.4863 

CH 4 18.7909 34.1044 

 

Table 23 AHC Clusters Evaluation: 100 Requests 

100 Requirements Problem 

 Clusters Quantitative AHP 

Dunn 3 0.1096 0.3472 

Silhouette 3 0.4278 0.4327 

CH 3 88.0933 82.8722 

    

Dunn 4 0.1096 0.2518 

Silhouette 4 0.3964 0.4576 

CH 4 82.5902 95.1834 
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5.4.4 Gaussian Mixture Models 

Table 24 GMM Clusters Evaluation: 20 Requests 

20 Requirements Problem 

 Clusters Quantitative AHP 

Dunn 3 0.2739 0.3723 

Silhouette 3 0.4568 0.5690 

CH 3 22.5821 33.744 

    

Dunn 4 0.1796 0.310 

Silhouette 4 0.3839 0.4905 

CH 4 22.0866 33.633 

 

Table 25 GMM Clusters Evaluation: 100 Requests 

100 Requirements Problem 

 Clusters Quantitative AHP 

Dunn 3 0.7259 0.1706 

Silhouette 3 0.4285 0.0743 

CH 3 90.674 26.5032 

    

Dunn 4 0.5557 0.077 

Silhouette 4 0.3721 0.1082 

CH 4 90.7001 36.2847 

 

5.4.5 BIRCH 

Table 26 BIRCH Clusters Evaluation: 20 Requests 

20 Requirements Problem 

 Clusters Quantitative AHP 

Dunn 3 12.9526 7.249 

Silhouette 3 0.4672 0.5690 

CH 3 18.9442 33.744 
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Table 27 BIRCH Clusters Evaluation: 100 Requests 

100 Requirements Problem 

 Clusters Quantitative AHP 

Dunn 3 8.9139 0.665 

Silhouette 3 0.4384 0.4053 

CH 3 96.1607 79.1779 

 

5.5 Requirements Prioritisation 

The prioritisation of requirements was meticulously carried out employing the MoSCoW 

method, a proven technique in project management. Within this process, a unique approach was 

taken by considering both overall satisfaction and the minimal effort required. Clusters 

displaying higher overall satisfaction and demanding the least effort were accorded the highest 

priority as "MUST" fulfillments. Conversely, as we moved to clusters that required slightly more 

effort but still provided substantial satisfaction, these were designated as "SHOULD" 

requirements, highlighting their significant yet negotiable nature. Similarly, clusters falling into 

the "COULD" category presented opportunities for further enhancement, as they delivered 

desirable satisfaction levels at a slightly higher effort cost. Lastly, clusters residing in the bottom 

right quadrant of the effort versus satisfaction graph were designated as "WON'T" for this 

iteration, indicating they were intentionally deferred due to higher effort requirements relative to 

the satisfaction gained. This dynamic prioritisation methodology encapsulates a comprehensive 

spectrum of considerations, offering a nuanced perspective for optimizing software requirements 

in alignment with project goals. 

5.6 Results 

A total of 54 distinct comparisons were conducted between the Analytic Hierarchy Process 

(AHP) and the quantitative datasets. These comparisons were aimed at evaluating the 

performance and effectiveness of the AHP approach in contrast to the quantitative data 

representation. 

Among these 54 comparisons, it was observed that the AHP approach exhibited superior 

performance in 39 instances. This means that, in majority of the cases, AHP yielded more 

favorable outcomes or results compared to the quantitative data approach. 
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The significance of this finding lies in the consistent tendency of the AHP approach to 

outperform the quantitative data representation across a significant portion of the comparisons. 

This pattern of results underscores the potential benefits of using the AHP method for clustering 

or analyzing the given dataset, suggesting that it might be a more effective and reliable approach 

for generating meaningful insights or groupings. 

Furthermore, for requirements prioritisation MoSCoW offers a framework with clear priority 

levels for requirements: "Must Have," "Should Have," "Could Have," and "Won't Have." This 

distinct classification minimises the possibility of forgetting important project components by 

ensuring that significant and essential requirements are recognised and addressed. Additionally, 

by offering a common language to discuss and comprehend demand priorities, MoSCoW 

facilitates effective communication amongst stakeholders. Making informed judgements about 

resource allocation and project scope is made easier because of the alignment of expectations. 

The MoSCoW technique also permits project planning to be flexible and adaptable. By 

reevaluating requirements and the categories, they fall under, the prioritisation can be changed as 

the conditions of the project change. This adaptability is especially useful when limitations or 

unforeseen circumstances have an impact on the project's course. 
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CHAPTER 6 . 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

This study emphasises the value of employing data mining techniques as an efficient way to 

prioritise requirements in software engineering. It also highlights the Analytic Hierarchy Process' 

(AHP) outstanding superiority in software requirement prioritisation within the context of 

software engineering. Our results consistently show that AHP outperforms conventional 

quantitative data representations in the majority of the 54 comparisons carried out, based on a 

thorough evaluation of five clustering algorithms and three cluster evaluation indices. In addition 

to producing superior results, the integration of AHP with the MoSCoW requirement 

prioritisation framework also improved resource allocation, allowed for flexible planning, and 

increased stakeholder satisfaction. This study promotes the use of data mining techniques and 

AHP along with the MoSCoW framework as the recommended approach for upcoming projects 

in this important area. 

6.2 Contribution 

The thesis makes contributions to the fields of project management and software engineering by: 

• Introducing innovative software requirement prioritisation by merging clustering and 

AHP. 

• Integrating clustering methodologies with prioritisation techniques which enhances 

software project management by bridging technical advancements and strategic practices. 

• Enhancing stakeholder communication, resource allocation, flexible planning, and 

decision-making in project management through structured framework, MoSCoW. 

6.3 Future Work 

In the current research, data sets were generated manually with the help of stakeholders. In the 

future, we can use machine learning algorithms. These algorithms can be trained on historical 

project data to learn the underlying patterns and characteristics of similar projects. By improving 
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the overall efficiency of requirements prioritisation techniques, this integration could pave the 

way for more sophisticated and context-sensitive approaches to managing software 

requirements. 
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