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Abstract

Biometric data reveals characteristics of human traits that are helpful for identifica-

tion and verification purposes. A handwritten signature is a type of biometric data

that is widely used for online and offline verification purposes. Tasks utilizing this data

have been automated for various applications using Machine and Deep learning. Deep

learning systems learn to recognise a person’s original signature and forged signature

to ultimately be able to classify an image as an original or forged signature. To make

these systems stronger, more data is needed and better quality data is needed, i.e., the

forgeries have to be skilled enough so they are tougher to classify. This made researchers

turn to generative techniques to enable forgery generation to increase the amount of data

used for verification tasks and also make higher-quality forgeries in the process. Among

other generative techniques, Generative adversarial networks (GANs) learn from gen-

uine and forged signatures to generate forged signatures. This technique creates a strong

signature verifier which is basically the discriminator model of the GAN. However, work

in this area neglects the fact that a forgery can not be too similar or dissimilar to the

actual signature because that risks being rejected by real-life verification systems.

Our research focuses on creating a generator that produces such forged samples that

achieve a benchmark in spoofing signature verification systems. We use CycleGANs

infused with Inception model-like blocks with attention heads and the SigCNN model

as a base Discriminator. We train our model with a new paradigm shifting technique.

We evaluate the “goodness” of our forgeries by creating a generic evaluation metric that

utilizes influential points of the distributions of original samples and forged target sam-

ples to determine the closeness of generated forged images to both data domains. Our

model successfully surpasses state-of-the-art image generation architectures in spoofing

signature verification systems.
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Chapter 1

Introduction and Motivation

Biometrics are measurements of the body and computations of human traits. Machine

learning techniques commonly employ biometric authentication as a method of access

control and identification. It is also used to identify people or groups that have been un-

der observation, serving as a means of surveillance. In order to be made use of, biometric

data needs to be collectable for perusal and since it relates to human characteristics,

it also needs to be unique and ever-lasting, not subject to change. A behavioural trait

utilized in automatic user verification systems within the biometric structures is the sig-

nature. Signature is taken as a non-invasive and safer option by a number of users since

it is a common part of everyday life [8]. The unique characteristics of an individual’s

signature can be used for identification or verification purposes.

Signature biometric data is typically captured using a digitizing tablet or other electronic

device that records the pressure, speed, and trajectory of the signature. To collect hand-

written signatures, research groups conduct focus groups or crowdsourcing events. This

data is collected in the form of pairs, genuine and forged signatures [19]. This data is

then stored in a digital format and can be used to verify the identity of the signer in

the future. Signature biometrics and the collection of handwritten signatures are often

used for research by various study groups. Signature biometrics can be easily captured

and verified using electronic devices, making them a convenient and accessible form of

biometric identification. Other types of biometric verification include both biological

and behavioural, with biological encompassing face verification, fingerprint verification,

iris and veins etc. While the behavioural set can include keystroke dynamics, gait, sig-
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Chapter 1: Introduction and Motivation

nature, voice etc. In the present day, technology is making use of both biological and

behavioural data. The use of deep learning is rapidly increasing in areas where this kind

of data can be utilized.

Deep learning methods have the ability to learn high-level features from raw biometric

data, such as images or audio recordings. Deep learning usage allows the extraction

of relevant information from biometric data, without the need for manual feature en-

gineering. For this reason, it has become wildly popular to use deep learning based

verification systems, introducing more accuracy and robustness [41]. Even with these

strong verification systems, an attacker may be able to bypass the security check with

skilled replications. One of the ways an attacker might bypass a biometric identity ver-

ification system is signature spoofing.

Signature spoofing involves creating a valid signature using encryption flaws, potentially

leading to fraud. Signature forgery, a crime, includes various types like blind, unskilled

trace-overs, and skilled replicas. Precise forgeries might be detected due to advanced

verification algorithms analyzing subtle signature details. Such forgeries raise suspicion

as they lack the natural variation and imperfections found in genuine signatures. Veri-

fication systems use techniques like analyzing stroke features to detect skilled forgeries

attempting perfect replication.

Signature verification assesses whether a person’s signature is authentic. To use signa-

ture biometrics for identification or verification purposes, the signature data is compared

against a previously stored signature template. The comparison is typically done using

pattern recognition algorithms that analyze the unique features of the signature, such as

the shape of the letters, the spacing between the letters, and the overall rhythm and flow

of the signature. Signature verification encompasses a number of techniques. First is the

descriptive language which draws comparisons between the suspicious and a reference

signature using hieroglyphic elements that represent all different kinds of signatures.

Secondly, geometrical analysis is a common technique used in signature verification to

compare the geometric properties of a signature with a known reference signature. This

involves analyzing the shape, size, position, and orientation of various features of the

2



Chapter 1: Introduction and Motivation

signature, such as the stroke endpoints, intersections, and inflection points. Thirdly,

the analytical method is based on signature delineation and similarities between the

components in each variation, making this approach useful in more complex scenarios

[4]. This can include removing any noise or distortion from the signature image and to

standardize the size and orientation of the image to prepare it for comparison. Then

various features of the signature are extracted, such as the curvature. A classification

algorithm is applied to determine whether a signature is genuine or forged. Apart from

classification models, a generative model can also be used to distinguish between original

and forged signatures by identifying underlying patterns and structures of data to reach

the goal of generating similar data.

In generative modelling, the underlying distribution of a dataset is learned, and new

samples that are comparable to the original data are produced. Generative modelling is

probabilistic in nature because it involves modelling the probability distribution of the

data and generating new samples from this distribution. In probabilistic modelling, the

goal is to estimate the intrinsic probability distribution of the data, based on a set of

observed data samples [73]. The probability distribution can then be used to generate

new data samples that are similar to the observed data.

One of the most commonly used generative models is the Generative Adversarial Net-

work (GANs). Generative adversarial networks (GANs) are a type of deep neural net-

work that consists of two parts: a generator and a discriminator. The generator is

designed to generate new samples of the original data, while the discriminator distin-

guishes between the original data and the generated data, In this way, they perform

mutually adverse roles. The generator loss measures the efficiency of the generator,

penalizing it for failing to fool the discriminator. Similarly, discriminator loss is when

the discriminator fails to differentiate between the original and false data.

In the field of signature generation, Generative Adversarial Networks (GANs) have been

widely explored and have shown promising results. Several papers have proposed GAN-

based techniques for signature generation. One such study by Muhammed Mutlu Yapıcı

et al. [80] presents the use of CycleGAN architecture for offline handwritten signature

3



Chapter 1: Introduction and Motivation

generation with the goal of using it as a data augmentation technique. Chandra Sekhar

Vorugunti et al. [104] propose an architecture called OSVGAN for online signature gen-

eration. The OSVGAN model consists of a novel variation of Auxiliary Classifier GANs.

They switch the latent space to a set of Gaussian distributions. They also propose a

Depth Wise Separable Convolution based Neural Network Architecture to classify test

signatures. Jiajia Jiang et al. [91] introduce a stroke-aware cycle-consistent GAN ar-

chitecture for signature verification. The GAN is trained to generate authentic-looking

signatures while preserving the stroke-level details and characteristics. By incorporating

stroke-level information, this technique enhances the authenticity and fidelity of gener-

ated signatures for robust signature verification.

In the above-mentioned research studies, we observe that the focus is on making the

discriminator model a strong verifier rather than focusing on strong skilled forgeries.

We also observe that the quality of the forgery generated by the model is not considered

during evaluation. We introduce a generator-focused generative adversarial network that

uses an underlying Inception block concept along with attention heads to produce sig-

nature forgeries that can effectively spoof a signature verification system. Additionally,

we devise an evaluation metric based on influential data points to quantify the quality

of the forgery.

1.1 Problem Statement and Contribution

1.1.1 Problem Statements

• Work on signature data using GANs has been focused towards better discrimina-

tors or data augmentation. The need for generator-focused research is created to

focus on a better generation of forgeries.

• Since forgeries of a signature can not be too similar or dissimilar to the original

sample, the generated images have to be near a certain percentage of closeness

to the original image. This fact is not considered while using GANs for forgery

generation and hence creates a research gap.

• Research work focusing on generated signatures or data, in general, does not mea-
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Chapter 1: Introduction and Motivation

sure the “goodness” of a forgery which questions the importance or usefulness

of the generated data itself. This observation creates space for research towards

appropriate evaluation metrics for this area.

1.1.2 Solution Statement and Research Contributions

• Develop a generator-focused generative adversarial network that uses an under-

lying Inception block concept along with attention heads to produce signature

forgeries that can effectively spoof a signature verification system.

• The proposed model will be trained on a paradigm-shifting training theory that

thrives to achieve closeness to genuine samples by learning from adversarial sam-

ples.

• Develop an evaluation metric based on influential data points to quantify the

quality of the forgery.

1.1.3 Limitations

• The evaluation metric cannot be said to work on every type of generated data.

• The system would be assistive in signature verification and not act as one itself.

1.1.4 Thesis Layout

Chapter 2 lays down the foundation for the tools and techniques that have been deployed

in this thesis by looking at their history, significance and contributions. The next chapter

3 looks at the research that has been carried out in this domain. The next two sections

showcase the methodology that has been followed and the results obtained. Finally,

chapter 6 discusses and concludes the thesis, along with the future directions that could

be taken.

5



Chapter 2

Domain Concepts

In order to achieve the research contributions mentioned earlier, a number of technologies

would be utilized to achieve a harmonious solution.

2.1 Forgery Creation

Signature spoofing is when a malicious party creates a legitimate signature by taking

advantage of an encryption flaw in the setup of the signature verification mechanism. A

person who signs in another person’s name or modifies a document in order to conduct

fraud or deceive others is guilty of the crime of signature forgery [11]. Signature forg-

eries can be of various types. They can be blind forgeries with no access to the original

sign, or they can be trace-overs i.e. unskilled forgery, which is usually a trace over the

original and lastly skilled forgeries, which are often replicas of the original and hard

to tell apart from. However, if the forgeries are too accurate or near-perfect replicas

of the original signature, they may be detected and denied by the verification system.

This is because advanced signature verification algorithms can analyze minute details

and patterns within a signature to determine its authenticity. When a forgery closely

resembles the original signature, it raises suspicion due to the lack of natural variation

and the absence of imperfections that are typically present in genuine signatures. The

verification system may employ various techniques, such as analyzing the stroke end-

points, intersections, infliction points, and curvature, to detect subtle differences and

identify skilled forgeries that aim to replicate the original signature perfectly [92].

6



Chapter 2: Domain Concepts

2.2 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) [10] have been used for generating forged

signature images. This is typically done by training a GAN to generate images that

resemble real signature images. The generator network in the GAN takes a random

noise vector as input and generates a fake signature image as output. The discriminator

network in the GAN tries to distinguish between real signature images and fake signa-

ture images generated by the generator.

Different types of GANs have different specifications, shown in table 2.1. In the vanilla

GAN, also known as standard GAN, the generator records the distribution of data and

in the meantime, the discriminator seeks to determine the likelihood that the input

belongs to a particular class of data. A Conditional Generative Adversarial Network

(CGAN) [12] is designed to generate data based on a specific condition or context. In

a CGAN, both the generator and discriminator take in additional information as in-

put, which is used to control the generation process. The additional information, or

conditioning variable, could be any kind of auxiliary information such as class labels,

textual descriptions, or even other images. By conditioning the generator on this ad-

ditional information, the generator can be trained to generate data that is specific to

the input condition. Deep Convolutional GAN (DCGAN) [15] uses convolutional neural

networks (CNNs) as building blocks for both the generator and discriminator networks.

The generator typically consists of a series of deconvolutional layers that gradually in-

crease the spatial resolution of the generated image, followed by batch normalization

and ReLU activation. The output layer usually uses a Tanh activation to generate pixel

values between -1 and 1. The discriminator network in DCGAN is a CNN that takes

as input either a real or fake image and outputs a probability indicating whether the

input is real or fake. The discriminator typically consists of a series of convolutional

layers, followed by batch normalization and LeakyReLU activation, and a final dense

layer with sigmoid activation that outputs the probability. CycleGAN [26] is designed

for image-to-image translation tasks, where the goal is to learn a mapping between two

different image domains. StyleGAN [39] generates high-quality synthetic images that

are both diverse and highly realistic. Making use of the Generative Adversarial Text

Image Synthesis, GANs are able to identify a picture from the dataset that is most com-
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Chapter 2: Domain Concepts

parable to the text description and produce images that are comparable to it. Super

Resolution Generative Adversarial Network (SRGAN) [21] is designed for the task of

single-image super-resolution, which is the process of generating a high-resolution image

from a low-resolution image. The generator network takes a low-resolution image as

input and generates a high-resolution image as output, while the discriminator network

tries to distinguish between real high-resolution images and fake high-resolution images

generated by the generator. Wasserstein Generative Adversarial Networks (WGANs)

[18] are a variant of GANs designed to improve training stability by using the Wasser-

stein distance as a measure of generator performance, enabling more robust and effective

generation of high-quality data.

2.2.1 CycleGAN

CycleGAN is a groundbreaking deep learning model that has revolutionized the field of

image-to-image translation. Introduced by Jun-Yan Zhu et al. [26] in their seminal paper

"Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks" in

2017, CycleGAN has garnered widespread attention and acclaim for its ability to learn

mappings between two distinct image domains without the need for paired training data.

The model’s core idea lies in the incorporation of cycle consistency, which enforces that

the translation from one domain to another and back again should ideally yield the

original input image. This ingenious concept enables CycleGAN to achieve impressive

results in diverse applications, ranging from artistic style transfer to domain adaptation

and image synthesis.

CycleGAN has become a formidable tool in various areas due to its versatility and ro-

bustness. One of its common applications lies in style transfer, where it can convert

images from one artistic style to another, effectively turning landscapes into the style

of a famous painter or transforming real-world scenes into the appearance of a specific

artistic genre. Furthermore, CycleGAN has found extensive use in domain adapta-

tion tasks, enabling image translation between different domains, such as transforming

satellite images to the style of maps, thus assisting in understanding and interpreting

geographical data. Moreover, CycleGAN has been applied in the domain of medical

imaging, facilitating the generation of realistic images from different modalities and

supporting improved diagnosis and treatment planning. Its ability to perform unpaired

8



Chapter 2: Domain Concepts

image-to-image translation without requiring matched samples has made CycleGAN an

indispensable tool in various domains, empowering researchers and practitioners to ex-

plore creative possibilities in image manipulation and synthesis without the burden of

paired data [24].

2.3 Attention Head

The attention mechanism has emerged as a powerful concept in deep learning, enhancing

the capabilities of neural networks by enabling them to focus on relevant information

while processing vast amounts of data. Attention heads were first introduced in the sem-

inal paper "Attention is All You Need" by Vaswani et al. [24] in 2017, which presented

the Transformer model. Attention heads facilitate capturing long-range dependencies

and relationships between different parts of the input data, allowing the model to selec-

tively attend to specific regions and contextual information, thus significantly improving

the performance of various natural language processing tasks. The Transformer’s atten-

tion mechanism has since become a cornerstone in modern deep learning architectures,

being extensively adopted in various domains, including language translation, sentiment

analysis, question-answering systems, and text generation.

In recent years, attention heads have been increasingly applied in computer vision tasks

[87], witnessing notable success in image recognition, segmentation, and object detection.

By introducing self-attention mechanisms, models can effectively process images and

detect crucial features regardless of their spatial distance, which has proven beneficial in

handling complex and large-scale visual data. Attention heads have also made significant

contributions in multi-modal learning, enabling the seamless fusion of information from

different sources, such as images and text, leading to a more comprehensive and accurate

understanding of cross-modal data. As the attention mechanism continues to evolve and

find new applications, its adaptability and efficacy are driving advancements in artificial

intelligence and shaping the future of deep learning research.

1. Scaled Dot-Product Attention:

(a) This attention mechanism is widely used in Transformer models for natural

language processing tasks.

(b) It calculates the attention scores by taking the dot product between the query

9



Chapter 2: Domain Concepts

and key vectors, scaled by the square root of the dimension of the key vectors.

(c) It is computationally efficient and allows the model to focus on relevant in-

formation while attending to long-range dependencies in the input sequence.

2. Multi-Head Attention:

(a) Introduced in the Transformer model, multi-head attention employs multiple

sets of attention weights (heads) to learn diverse patterns and dependencies

in the input data.

(b) Each head operates independently, capturing different aspects of the data,

and the results are concatenated or linearly combined to obtain the final

attention representation.

(c) It allows the model to focus on different information at different positions

and enables a better representation of learning.

3. Self-Attention (or Intra-Attention):

(a) Self-attention mechanisms are used to model relationships between different

elements within the same input sequence.

(b) It enables the model to attend to all positions in the sequence simultaneously,

capturing both local and long-range dependencies effectively.

(c) Self-attention is particularly beneficial in natural language processing tasks,

where the relationships between words in a sentence are crucial for under-

standing and translation.

4. Cross-Modal Attention:

(a) Cross-modal attention [71] is employed in multi-modal learning tasks, where

information from different modalities, such as images and text, needs to be

fused effectively.

(b) It allows the model to attend to relevant regions in one modality based on

information from another modality, facilitating a better understanding and

representation of cross-modal data.

5. Additive Attention:

10
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(a) Additive attention [14] is an alternative form of attention mechanism that

uses a learned alignment vector to calculate attention scores.

(b) It allows the model to learn a more complex relationship between the query

and

These are just a few examples of attention mechanisms, and there are many other

variants and adaptations used in different deep learning models to suit specific tasks

and requirements. Attention mechanisms have become a crucial component in various

architectures, enhancing the performance and interpretability of deep learning models

across different domains.

11
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GAN Type Year Application Areas Advantages Disadvantages

CGAN 2014 Image generation, fea-

ture extraction, object

detection, image classi-

fication

Allows control over the type

and characteristics of the gen-

erated images by conditioning

on auxiliary information

Requires labelled data as input

and may suffer from mode col-

lapse or convergence issues

DCGAN 2015 Image-to-image trans-

lation, text-to-image

synthesis, semantic-

image-to-photo trans-

lation

Improves the stability and

quality of GAN training by us-

ing convolutional layers, batch

normalization, and specific ac-

tivation functions

May still produce unrealistic or

distorted images and lacks con-

trol over the output

StyleGAN 2018 Face generation, style

transfer, image editing,

image inpainting

Enables fine-grained control

over the style of the generated

images at different levels of de-

tail and introduces noise as a

source of variation

May produce artifacts or in-

consistencies in some cases and

requires large computational

resources

SRGAN 2016 Image super-

resolution, medical

image enhancement,

optical character

recognition

Produces photo-realistic im-

ages with finer textures and de-

tails by using a perceptual loss

function based on adversarial

and content losses

May introduce unwanted ar-

tifacts or noise and requires

high-quality training data

WGAN 2017 Image generation,

image-to-image trans-

lation, video pre-

diction, 3D object

generation

Solves the problem of mode

collapse and provides a mean-

ingful loss function that corre-

lates with the image quality

May require careful tuning of

the hyperparameters and clip-

ping of the weights

CycleGAN 2017 Unpaired image-to-

image translation,

season translation,

object transfiguration,

style transfer, gen-

erating photos from

paintings

Enables image translation

without paired examples by

using a cycle consistency loss

to preserve the content of the

input image

May not perform well on geo-

metric transformations or com-

plex scenes and may introduce

colour inconsistency or distor-

tion

Table 2.1: GAN types, their applications, advantages and disadvantages.
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Chapter 3

Literature Review

In this work, we aim to generate forgeries using a modified CycleGAN architecture that

succeeds in failing the verification system to assist the ethical generation of forgeries and

its research. To achieve this we study adversarial networks and GANs in biometrics,

specifically signature generation, and signature verification systems built using learning

techniques. We also extensively review datasets to select them for experimentation.

3.1 Adversarial Networks for Signature Generation

Handwritten signature verification is a challenging problem in the field of biometrics

and several studies have been conducted to improve its performance. To strengthen

verification systems, adversarial networks have been used to generate new forgeries to

adversarially attack the system. In the research work of Huan Li et al. [70], a novel

adversarial variation network (AVN) model is proposed that actively varies existing data

and generates new data to mine effective features for better signature verification per-

formance. The AVN model consists of three modules - extractor, discriminator, and

variator - that work together in an adversarial way with a min-max loss function. The

authors tested the proposed method on four challenging signature datasets of different

languages and compared its performance with previous methods.

In another paper, authors Haoyang Li et al. [69] propose a new method for attacking

a handwritten signature verification system using region-restricted adversarial pertur-

bations. The authors begin by noting that many signature verification systems are
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vulnerable to adversarial attacks, which can cause the system to misclassify genuine

signatures as forgeries. To address this issue, the authors propose a new attack strategy

that involves adding adversarial perturbations to specific regions of the signature while

leaving other regions unchanged. The proposed method is designed to be a black-box

attack meaning that it does not require knowledge of the inner workings of the target

signature verification system. The authors evaluate their method on several benchmark

datasets and show that it is effective in deceiving the signature verification system. The

article concludes by highlighting the potential of the proposed method in improving the

robustness of signature verification systems.

3.2 Generative Modeling in Biometrics

Adversarial attacks and defences are a major challenge in generative modelling, particu-

larly in biometrics where the ability to generate realistic synthetic data can be exploited

to create convincing forgeries or fool the verification systems. In the biometric domain,

various research works show the use of generic modelling, some of which we have dis-

cussed in this subsection.

Burlina et al. [37] investigated the use of deep generative models for generating synthetic

retinal images to aid in the diagnosis and management of age-related macular degenera-

tion (AMD). The authors trained a deep generative model called the deep convolutional

generative adversarial network (DCGAN) on a dataset of high-resolution retinal images.

They then evaluated the model’s ability to generate realistic synthetic images of AMD.

The study found that the DCGAN was able to generate high-quality synthetic images

of AMD that closely resembled real-world examples. The authors concluded that the

use of deep generative models holds great promise for the generation of high-quality

synthetic retinal images for clinical applications.

In recent years, privacy concerns surrounding biometric data have led to the develop-

ment of privacy-preserving techniques for biometric data. Generative adversarial net-

works (GANs) can generate synthetic data that preserves the statistical properties of

the original data while obscuring personally identifiable information. In the work of
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Oleszkiewicz et al. [45], the authors propose a novel privacy-preserving technique called

the Siamese Generative Adversarial Privatizer (SGAP) for biometric data. The pro-

posed SGAP model is evaluated on two publicly available datasets, demonstrating its

effectiveness in preserving the privacy of biometric data while maintaining the accuracy

of the original data. The authors conclude that the proposed SGAP model can poten-

tially be an effective privacy-preserving tool for biometric data.

In the domain of facial recognition, Bessinger et al. [36] proposed a generative model

of worldwide facial appearance by training a conditional GAN on a dataset consisting

of faces from over 100 countries. The authors used a multi-scale architecture and a

novel feature-matching loss to generate high-quality facial images with diverse charac-

teristics. The proposed model was shown to outperform state-of-the-art methods in

terms of both quantitative metrics and visual quality. The authors concluded that their

approach has the potential to be used in various applications such as virtual try-on

and face recognition. Similarly, Tinsley et al. [75] in "This Face Does Not Exist...But

It Might Be Yours" presented a method to generate realistic and unique face images

using a StyleGAN2 architecture and a facial landmark-based encoding approach. The

generated faces were evaluated through a user study and were found to have a high

level of realism and uniqueness. The authors also demonstrated the potential for using

the generated images for personalized visual content, such as virtual try-on applications.

In their study, Bamoriya et al. [84] propose a deep learning-based approach called DSB-

GAN for generating synthetic biometric data. The DSB-GAN model utilizes a deep

convolutional GAN architecture to generate realistic and diverse biometric data. The

authors evaluate the proposed method on the publicly available FVC2002 and FVC2004

fingerprint databases and demonstrate that the generated synthetic data can be used to

improve the performance of fingerprint recognition systems. Their results indicate that

the proposed DSB-GAN model can effectively generate high-quality synthetic biometric

data and has potential applications in various biometric recognition systems.

Given a little amount of training data, generative models excel at managing missing or

irregular data. When compared to generative models, discriminative models are quick
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to anticipate new data which leads to quicker categorization of new data. Ali et al.

[83] proposed a hybrid method for keystroke biometric user identification in their recent

paper. The proposed method combined the features of keystroke dynamics and physical

biometrics to enhance the accuracy and security of user identification. The method was

tested on a dataset consisting of 50 users typing the same five phrases three times each.

The results showed that the proposed method achieved an accuracy of 99.4%, outper-

forming other existing methods.

We can look at the study conducted by Ugot et al. [79] which proposed a novel method

for generating realistic fingerprint images using GANs. The authors demonstrated that

their proposed method can generate high-quality synthetic fingerprints that are visually

similar to real-world fingerprints and can be used for biometric verification with accu-

racy. The authors concluded that their proposed method has the potential to enhance

the security of biometric systems by generating synthetic fingerprints for training and

testing purposes. In another study, Wang et al. [35] proposed using a GAN for data

augmentation in palmprint recognition. They showed that the proposed GAN-based

approach significantly improves the performance of palmprint recognition systems, par-

ticularly in situations with limited training data. The study highlights the potential of

GANs for enhancing the accuracy and robustness of biometric recognition systems and

provides an effective solution for addressing the challenge of data scarcity in palmprint

recognition. Overall, the study highlights the importance of exploring innovative data

augmentation techniques in biometric recognition and the potential of GANs in this

domain.

3.3 Signature Verification Systems Based on Machine Learn-

ing

Signature verification systems have been using machine learning for a long time. This

saves the effort and time of the verification process and enables efficient results. Bibi

et al. [52] present a comprehensive review of the state-of-the-art machine-learning tech-

niques used for biometric signature authentication. They outline the different types of

signatures and their characteristics, such as static, dynamic, and online signatures. The
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authors discuss the challenges faced by the researchers in this area, such as intra-class

and inter-class variability, imbalanced data, and spoof attacks. They also highlight the

advancements in machine learning techniques, such as deep learning, transfer learning,

and ensemble learning, and their applications in signature authentication.

Another focus of extensive research has been machine learning-based offline signature

verification systems. In their systematic review, M. Muzaffar Hameed et al. [67] examine

the current state-of-the-art in this field. They provide a comprehensive survey of various

machine-learning techniques that have been employed for offline signature verification,

including artificial neural networks, support vector machines, and deep learning-based

methods. The authors analyze and compare the performance of different approaches on

various benchmark datasets, highlighting the strengths and limitations of each method.

The study by Zheng et al. [50] focused on utilizing RankSVM for offline signature verifi-

cation. The proposed method achieved state-of-the-art performance on two benchmark

datasets - GPDS-160 and GPDS-300. The results obtained by these studies demonstrate

the effectiveness of deep learning techniques in handwritten signature verification and

their potential to be used in real-world applications.

In their paper, Alghanam et al. [64] propose two models for online handwritten signature

verification to enhance prediction accuracy and decrease equal error rate (EER). The

first model is based on a neural network backpropagation classifier, which utilizes Hu

seven values for preprocessing and Hu moment invariants for feature extraction. Mersa

et al. [42] proposed a transfer learning method to extract features from Persian hand-

writing for offline signature verification. Their approach aimed to enhance the accuracy

of signature verification systems by leveraging pre-trained models and adapting them to

Persian script.

Some of the biometric techniques used for personal identification include signature iden-

tification and verification both. When analysing a person’s signature, which is prone

to intra- and inter-personal differences in handwriting style, it is possible to consider

the signature to represent their own authentication. A detailed, systematic overview of

methods for identifying and verifying offline and online signatures is provided in a study
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by Kaur and Kumar [101]. Surveys pertaining to the two approaches—writer-dependent

and writer-independent approaches—are provided in offline signature verification. Addi-

tionally, the collected research on feature extraction and classification methods applied

to the process of signature identification and verification has also been included. This

paper reports the findings of evaluating several signature identification and verification

procedures using many databases that have been introduced in the literature. Chandra

[54] proposed a machine learning-based approach for dynamic signature verification.

In recent years, signature verification competitions have been organized to evaluate the

performance of different methods. The SVC-onGoing is one such competition, and it

has been organized to evaluate the performance of signature verification algorithms on

a large-scale dataset. The paper by Ruben Tolosana et al. [99] provides a detailed

overview of the competition and its results. Offline and online datasets were evaluated

and the results show that the top-performing algorithms achieve a high level of accuracy,

and they outperform the state-of-the-art methods by a significant margin. The SVC-

onGoing competition has provided a valuable benchmark for evaluating the performance

of signature verification algorithms.

3.4 Signature Verification Systems Based on Statistical

Modeling

Other than machine learning, signature verification systems also resort to core statis-

tical concepts that evaluate different aspects of the signature verification process. In

dynamic signature verification, the time functions of the signature are analyzed in ad-

dition to the static appearance of signatures. A study by Yahyatabar and Ghasemi [25]

proposed a new method for signature verification using dynamic feature stability (DFS)

experiment, which focuses on the most stable signature partitions that are difficult to

forge. The authors used the radon transform to transform the rotation effect into a shift

effect, which reduced the shift effect in both axes of the image. By implementing the

DFS experiment on three Persian datasets, the authors discovered the most significant

part of the signature trajectory in signature verification systems. The results showed

that the proposed method achieved the least verification error. The authors structured

18



Chapter 3: Literature Review

three separate verification subsystems by the efficacy of SFAs on decision making, which

resulted from the DFS experiment. The performance of SFAs was evaluated, and the

results showed the minimum error rate by using their usage. The RT technique solved

the rotation problem, which is a known obstacle in signature verification systems. The

CNN network used in the proposed method can reduce the shift effect through its fea-

ture location-independent nature.

In their study, Maergner et al. [31] propose a novel approach for offline signature veri-

fication by combining graph edit distance and triplet networks. Graph edit distance is

utilized to measure the similarity between signature graphs which are constructed based

on the time series data of the signature. Triplet networks are used to learn a feature rep-

resentation that captures the unique characteristics of genuine signatures. The proposed

method achieves promising results on three publicly available datasets demonstrating its

effectiveness and potential for practical applications. The combination of graph edit dis-

tance and triplet networks provides a robust and accurate solution for offline signature

verification which can be further improved with additional data and fine-tuning of the

network parameters. Santos et al. [97] introduced a novel online handwritten signature

verification technique based on network analysis. Their method focused on analyzing

the dynamic characteristics of signatures to enhance the accuracy of verification sys-

tems. By employing network analysis, they aimed to capture the unique patterns and

behavioural aspects of online signatures for reliable verification.

Manabu Okawa [59] proposed a new online signature verification method that utilizes

single-template matching with time-series averaging and gradient boosting. The pro-

posed method aims to capture the temporal dynamics of the signature by averaging a

series of samples obtained from a single signature template. Additionally, the gradient

boosting classifier is used to improve the accuracy of the verification system. The pro-

posed method was tested on the SigComp 2011 dataset and achieved promising results

with an equal error rate of 0.91%. These results demonstrate the effectiveness of the

proposed method in online signature verification, which can potentially be used for var-

ious real-world applications such as e-commerce and security systems.
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3.5 Signature Verification Systems Based on Deep Learn-

ing

Over the years, deep learning techniques have been successfully applied to the field of of-

fline signature verification. In their study, Hafemann et al. [16] proposed a novel method

for analyzing the features learned by deep convolutional neural networks (DCNNs) in

offline signature verification tasks. The proposed method consists of a series of visual-

ization and analysis techniques to gain insight into the important features learned by

DCNNs. Experimental results on two publicly available datasets show that the proposed

method is effective in understanding the learned features and can be used to improve

the performance of the signature verification systems. In the context of handwritten

signature verification, D. Tsourounis et al. [34] proposed a new approach based on deep

sparse coding architecture. In this study, a novel method was introduced that exploited

the capability of deep neural networks to learn relevant representations of handwritten

signatures by minimizing a sparse coding objective function. The proposed method was

tested on two publicly available datasets, MCYT-75 and GPDS-960, and demonstrated

promising performance results, outperforming other state-of-the-art signature verifica-

tion methods. Another paper by Arenas et al. [46] presented the implementation of a

DAG-CNN for offline signature verification. By using this deep learning approach, the

network was capable of classifying and authenticating the signatures of 3 users, achiev-

ing overall accuracies of 99.4% and 99.3%, respectively. The DAG-CNN allowed the

network to learn different characteristics of the signatures and focus on certain sections

and details to differentiate genuine from forged signatures.

In their paper, Saffar et al. [32] propose a method for accurate online signature ver-

ification that deals with the challenges of lacking sufficient training samples and the

need for spatial change invariance. The proposed method builds a one-class classifier

for each user based on discriminative features learned by a pre-trained sparse auto-

encoder which is applied to represent the training and testing signatures. This ap-

proach leads to a self-taught learning method and a independent signature descriptor

that models and classifies users’ signatures using a one-class classifier. The experi-

mental results indicate significant error reduction and accuracy enhancement on the

SVC2004 and SUSIG datasets. In a study, Yilmaz and Ozturk [28] proposed a hybrid
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user-independent/dependent offline signature verification technique using a two-channel

convolutional neural network (CNN) for feature extraction and verification. The CNN

is used to extract features, and the proposed technique achieved an equal error rate

(EER) of 4.13% with a 200-dimensional representation. The sensitivity of the model to

gray-level and binary images was also investigated, and the authors demonstrated that

the availability of gray-level information in train and test data significantly reduced the

EER. Thakare and Deshmukh [33] proposed an end-to-end approach for offline signature

verification in 2018 which uses a combination of CNNs and Support Vector Machines

(SVMs) to extract features and classify signatures. Jahandad et al. [47] proposed using

GoogLeNet Inception-v1 and Inception-v3 CNN architectures to verify offline signatures.

They demonstrated that the Inception-v3 model outperformed Inception-v1, achieving

an accuracy of 99.07%. Calik et al. [38] proposed a large-scale signature recognition

system using deep neural networks and feature embedding. They used a large-scale

dataset and various deep neural networks to achieve high accuracy, with ResNet-50 out-

performing the other models, achieving accuracy of 99.6%. The study by Mohapatra et

al. [43] proposed an offline handwritten signature verification system based on a Con-

volutional Neural Network (CNN) architecture inspired by Inception V1. The proposed

model achieved an accuracy of 98.70% on the Brazilian PUC-PR dataset. The proposed

method achieved an accuracy of 96.7% on the IUST Persian Signature dataset. Hefny

and Moustafa [55] proposed a signature verification method using Legendre Polynomial

Coefficients to extract features which were then fed into a deep learning model. They

achieved a high accuracy rate of 98.32% on the GPDS-300 dataset. Shariatmadari et al.

[48] proposed a patch-based offline signature verification system using a one-class hier-

archical deep learning model. Their proposed method achieved a high accuracy rate of

97.29% on the Brazilian PUC-PR dataset. Navid et al. [44] proposed a signature verifi-

cation method using CNN and achieved an accuracy of 99.8% on the GPDS-300 dataset.

Lopes et al. [93] proposed a deep neural network-based model for offline handwritten

signature verification that achieved a high accuracy rate. Jiang et al. [90] introduced

the Deep soft-DTW (DsDTW) algorithm for local representation learning in dynamic

signature verification which outperformed several state-of-the-art models. Naz et al. [94]

fine-tuned a pre-trained deep neural network using transfer learning for signature veri-

fication. Hung et al. [89] used deep learning methods for offline handwritten signature
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forgery verification. Longjam et al. [102] developed a multi-scripted writer-independent

offline signature verification model based on convolutional neural networks. Gupta et al.

[88] used transfer learning and data augmentation for signature verification. Tsourou-

nis et al. [100] presented a knowledge transfer-based deep feature learning method for

offline signature verification.

Sharma et al. [98] propose an automatic signature recognition system based on a fine-

tuned inception V3 transfer learning (TL) model. The model was trained on the largest

publicly available synthetic signature dataset and tested against six pre-trained TL con-

volutional neural network models. The proposed model outperformed all pre-trained

models in terms of accuracy, precision, sensitivity, and F1-score, with accuracy reaching

88%. The study conducted by Rasheed and Alkababji [96] also proposes a CNN-based

approach for signature verification which analyzes the performance of various feature

detectors and descriptors. The CNN architecture was found to be effective in extracting

features from input data and robust to changes in signature placement and metrics. The

results showed that AGAST, FAST, and BRISK detection achieved the maximum num-

ber of detected key points, while STAR, AKAZE, and MSER achieved lesser numbers.

Ruiz et al. [61] developed an off-line signature verification method using compositional

synthetic generation of signatures and Siamese Neural Networks. This method gen-

erates synthetic signatures by dividing an original signature into several components

and recombining them to form new signatures. Espinosa-Leal et al. [65] utilized Ex-

treme Learning Machines (ELM) for signature verification and demonstrated that the

ELM model outperformed traditional machine learning algorithms. Bonde et al. [53]

proposed an offline signature verification method using Convolutional Neural Network

(CNN) which showed significant improvement over the traditional methods. Similarly,

Ebrahim Parcham [72] and colleagues developed a novel Capsule Neural Network (Cap-

sNet) based model named CBCapsNet for writer-independent offline signature verifica-

tion. The proposed model can capture local and global features of a signature image by

employing convolutional layers and capsule networks. On the other hand, R. Tolosana

[77] and colleagues proposed DeepSign, an online signature verification model based on

a deep neural network. The model can perform signature verification in real-time by

taking advantage of the speed and accuracy of deep learning models. In addition, Yi-
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wen Zhou [81] and colleagues proposed an improved combined feature-based method for

handwritten signature verification.

In recent years, air signature recognition has gained attention due to its advantages over

traditional signature recognition methods. In research, Behera et al. [27] propose a

deep convolutional neural network-based sequential model for air signature recognition.

The proposed model comprises three modules, namely signature segmentation, feature

extraction, and classification. The signature segmentation module is used to isolate the

signature from the background. The feature extraction module uses a deep CNN to

extract features from the segmented signature, and the classification module is used to

classify the signature. The proposed model was tested on a dataset of air signatures and

achieved recognition accuracy of 94.9%, demonstrating its effectiveness for air signature

recognition. In another study, Malik et al. [57] proposed a deep learning-based approach

for in-air signature verification.

Online signature verification (OSV) has become a popular technique in various appli-

cations such as medical, e-commerce, and m-commerce to legally bind the user. How-

ever, high-speed systems demand faster writer verification with limited information,

low training and storage costs. Vorugunti et al. [62] propose a DeepFuseOSV frame-

work that combines a hybrid architecture of depth-wise separable convolution neural

network (DWSCNN) and long short-term memory (LSTM) network for online signa-

ture verification (OSV). The proposed framework also uses a feature fusion technique

that fuses traditional statistical-based features with deep representations from a convo-

lutional auto-encoder. Alajrami et al. [51] proposed a deep learning-based model for

signature verification. Similarly, Jivesh Poddar et al. [60] proposed an offline signature

recognition and forgery detection method using deep learning. Moreover, Kao and Wen

[56] proposed an offline signature verification and forgery detection method based on

a single known sample and an explainable deep learning approach. Hanmandlu et al.

[29] proposed a deep learning-based offline signature verification system in 2018, which

employs a combination of Convolutional Neural Networks (CNNs) and Long Short-Term

Memory (LSTM) networks to learn signature features and classify genuine and forged

signatures.
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Biometric signature verification is also an important topic in the field of document anal-

ysis and recognition. In recent years, recurrent neural networks (RNNs) have emerged

as a powerful tool for modelling sequential data in capturing the temporal dynamics

of online signature data, making them an attractive option for signature verification.

In their paper, Tolosana et al. [23] propose a novel approach for signature verification

using RNNs which can capture the temporal dynamics of the signature. The proposed

method is evaluated on the SigComp2011 dataset and achieves state-of-the-art perfor-

mance. The results show that RNNs are a promising approach for signature verification

and can outperform traditional methods such as support vector machines and hidden

Markov models. The authors suggest that the use of RNNs in signature verification

could lead to new opportunities for developing more accurate and efficient signature

verification systems.

Lai et al. [20] proposed a novel method for online signature verification that combined

RNNs and Length-Normalized Path Signature Descriptors (LNPSDs). The proposed

method achieved a high accuracy rate of 97.5% on the GPDS dataset and outperformed

previous state-of-the-art methods. The results indicate the effectiveness of combining

RNNs and LNPSDs in online signature verification, demonstrating the potential of this

approach for practical applications. Nathwani [58] proposed an online signature verifi-

cation system using Bidirectional Recurrent Neural Network (BRNN), which achieved

high accuracy in real-time signature verification. C. Li et al. [40] presented a stroke-

based recurrent neural network (RNN) model for writer-independent online signature

verification, which takes into account the temporal evolution of signature strokes. The

model was evaluated on the GPDS-300 dataset, and achieved an accuracy of 94.29%,

outperforming several state-of-the-art methods. The authors also tested the model on a

cross-domain signature dataset and demonstrated its effectiveness in writer-independent

scenarios.

Rajib Ghosh [66] presented a Recurrent Neural Network (RNN) based model that can

handle varying-length signature inputs and produce reliable verification results. The

model utilizes a stacked RNN architecture that can extract temporal information and

learn complex signature features from the input image. Singh and Viriri [63] proposed

an online signature verification method using deep descriptors. Lai and Jin [30] pro-
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posed a Recurrent Adaptation Network (RAN) model for online signature verification

in 2019, which uses a sequence-to-sequence structure to learn the temporal information

of signatures.

These studies demonstrate the effectiveness of deep learning-based methods in signature

verification. However, there is still room for improvement in terms of accuracy, robust-

ness, and generalization. Future research could focus on developing more sophisticated

deep learning models and exploring new types of data augmentation techniques to fur-

ther enhance the performance of signature verification systems

3.6 Generative Adversarial Networks for Signature Spoof-

ing

Signature spoofing aims to fail verification systems in their task of classifying genuine

and forged signatures by passing high-quality skilled forgeries that get mistaken for orig-

inal signatures. Some work has been done to achieve this task using GANs.

Zhang et al. [17] proposed a multi-phase system for offline signature verification using

deep convolutional generative adversarial networks (DCGANs). The authors extracted

local and global features from signature images using a pre-trained convolutional neural

network (CNN) and used a DCGAN to generate multiple plausible variants of the signa-

ture. They combined the extracted features from the original signature image with the

features extracted from the generated variants and used them for signature verification

with an SVM classifier. The authors evaluated the proposed system on two publicly

available signature datasets and achieved state-of-the-art performance with an equal

error rate (EER) of 2.25% and 3.06% respectively. The proposed system generates di-

verse signature variants and improves the performance of signature verification systems,

demonstrating the effectiveness of the proposed multi-phase system in offline signature

verification using DCGANs and multi-phase feature extraction.

Traditional methods of image recognition face challenges such as feature selection, lack
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of standardization, and low accuracy. A study by Wang and Jia [49] proposes a special

network called SIGAN (Signature Identification GAN) based on the idea of dual learn-

ing. The trained discriminator of SIGAN is used to determine the authenticity of test

handwritten signatures with the loss value of the trained discriminator serving as the

identification threshold. The experimental dataset used in this study consists of five hard

pen-type signatures including both genuine and deliberate imitations. The experimen-

tal results show that the average accuracy of the SIGAN-based signature identification

model is 91.2%, which is 3.6% higher than that of traditional image classification meth-

ods. This study shows the effectiveness of the proposed approach in enhancing signature

verification performance and highlights the potential for GAN-based methods in improv-

ing the accuracy of biometric identification.

Online Signature Verification (OSV) is an important task in the field of biometrics,

which is challenging due to data scarcity and intra-writer variations. In their research

work, Vorugunti et al. [104] propose a novel OSV framework that addresses these chal-

lenges using two methods. Firstly, to address the issue of data scarcity, they generate

writer-specific synthetic signatures using Auxiliary Classifier GAN (AC-GAN), trained

with a maximum of 40 signature samples per user. Secondly, to achieve a one-shot

OSV with reduced parameters, they propose a Depth wise Separable Convolution-based

Neural Network. The authors evaluate their proposed framework on two widely used

datasets, SVC and MOBISIG, and demonstrate its state-of-the-art performance in al-

most all categories of experimentation. The proposed framework shows competence for

real-time deployment in limited data applications. This work is the first attempt to

generate virtually unlimited synthetic signature samples per user from a maximum of

40 signatures per user based on a modified version of AC-GAN. The authors’ future

work will focus on enhancing the generative skills of GANs and filling the missing and

noisy parts of the signatures.

Jiajia Jiang et al. [91] presented a novel signature verification approach using a stroke-

aware cycle-consistent generative adversarial network (SACGAN). This method syn-

thesizes fake signatures with different styles and variations to augment the training

data and improve the system’s generalization performance. The proposed SACGAN

model is stroke-aware, meaning that it generates fake signatures with similar strokes and
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structures as genuine ones. Experiments conducted on benchmark datasets, including

GPDS-960 and CEDAR-Signature, show that the proposed method outperforms state-

of-the-art approaches in terms of accuracy, robustness, and forgery detection. Similarly,

Yapıcı et al. [80] proposed a deep learning-based data augmentation method to generate

synthetic signatures for improving the offline handwritten signature verification system.

The proposed method uses a GAN-based data augmentation approach to create addi-

tional synthetic samples that are diverse, realistic, and representative of the signature

dataset. Experimental results show that the proposed method improves the verification

performance of the system, demonstrating the effectiveness of GAN-based data augmen-

tation in improving signature verification accuracy.

Since GANs have gained immense popularity in the field of computer vision for their

ability to generate realistic images, Fazle Rabbi et al. [95] investigated the applica-

tion of conditional GANs for generating fake images of handwritten signatures. They

implemented a GAN model that can generate fake signatures by taking in a condition

vector tailored by humans. The results showed that the proposed model is effective in

generating realistic fake signatures. Jordan Bird [85] explored how robots and gener-

ative approaches can be used for adversarial attacks on signature verification systems.

They trained a convolutional neural network for signature verification and then used

two robots to forge signatures to test the system’s security. The results showed that the

robots and conditional GAN were able to fool the system to a significant extent, but

fine-tuning the model and transfer learning with robotic and generative data reduced

the attack success rate to below the model threshold. These findings indicate that

while GANs and robots can be used for adversarial attacks on signature verification

systems, there is still scope for improving the model’s robustness and security against

such attacks.

3.7 Signature Dataset

There are many datasets that are used for signature verification. These datasets contain

a certain number of original signatures and a certain number of forgeries of the same

user, as shown in table 3.1. The total images in the dataset then amount to the number

of users into the sum of original and forged signatures. For the purpose of our research,
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we have considered only English-based signatures and datasets that had no or so little

portion of synthetic images that it can be ignored.

The CEDAR Signature dataset [6] consists of 2640 signatures comprising 24 genuine

signatures and 24 forged signatures. It involves a total of 55 individuals with each per-

son providing 48 signatures. The dataset was created in the year 2007 and is primarily

used for handwritten signature verification tasks.

The s ICDAR 2021, SVC2021, [78] contains a total of 2856 signatures. Among these

8 signatures are genuine while 16 signatures are forged for each of the 119 individuals

who participated in the data collection. It was released in the year 2021 and serves as

a valuable resource for research and development in the field of signature verification.

SUSIG [7] is another notable dataset specifically designed for signature analysis. It con-

sists of 3000 genuine signatures and 2000 forged signatures. The dataset involves 100

individuals, each with multiple sets of forged signatures. SUSIG was created in 2009 and

has been widely used for evaluating signature verification systems and studying forgery

detection techniques.

The MCYT-100 [103] dataset comprises a total of 2250 signatures, including 15 genuine

signatures and 15 forged signatures. It involves 75 individuals, with each person provid-

ing 30 signatures. The dataset was created in 2003 and has since served as a benchmark

for evaluating signature recognition algorithms and systems.

DeepSignDB [76] is a large-scale signature dataset containing 62244 signatures. It in-

volves 1526 users, making it a diverse and extensive resource for signature analysis and

verification tasks. DeepSignDB was introduced in 2021 and has contributed significantly

to the advancement of research in the field of signature recognition and verification.

The GPDS 960 [5] dataset encompasses a total of 47574 signatures. Out of these, 24

signatures are genuine, while 30 signatures are forged. The dataset involves 960 individ-

uals, with each person contributing 54 signatures. GPDS 960 was created in 2015 and
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has been widely used for benchmarking and evaluating signature verification algorithms

and systems.

After observing that the CEDAR signature dataset is more widely used than others, we

decided to select it for our work as well. This decision was also based on the availability

of limited computation resources.

Name Quantity Other Specifications Year

CEDAR

Signature

1320 =

24 (org) +

24 (forg)

55 individuals,

48 sigs each
2007

ICDAR 2021

(SVC2021)

2856 = 8 (org)

+ 16 (forg)

119

individuals
2021

SUSIG
3000 (org) +

2000 ( forg)

100 individuals,

multiple sets

of forgeries

2009

MCYT - 100
2250 = 15 (org)

+ 15 (forg)

75 individuals,

30 sigs each.
2003

DeepSignDB 62244 1526 users 2021

GPDS 960
47574 = 24 (org)

+ 30 (forg)

960 individuals,

54 sigs each.
2015

Table 3.1: Signature Datasets
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Design and Methodology

The literature described in 3 demonstrated the effectiveness of CycleGAN for image

translation and generation. Thus we aimed to modify the base architecture of Cyclegan

to generate forgeries that emphasize underlying human biometric traits with attention

mechanisms.

The walkthrough of this chapter is as follows. The first half of the section describes

the dataset, as well as the preprocessing that would be required. The remaining section

discusses the modelling that was carried out, along with relevant figures to ensure a

deeper understanding of the context.

4.1 Dataset and Preprocessing

4.1.1 The Dataset

As mentioned in the previous section, we have worked with CEDAR handwritten sig-

nature dataset. This decision was made due to the popular use of the dataset and our

limited GPU resources for this research. CEDAR handwritten signature dataset com-

prises a total of 2640 images where the total number of genuine signatures is 1320 and

the same number of skilled forgeries. For usage, the dataset is treated according to the

number of users which is 55. This means that during training or evaluation, the genuine

or forged signatures of each individual user is considered against themselves and not as

a whole.
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4.1.2 Data Preprocessing

Our preprocessing component takes inspiration from the work of Akhundjanov and

Starovoitov [82]. In their work, they have specifically designed a preprocessing pipeline

for the CEDAR signature dataset which we have translated into our work as shown

in figure 4.1. We achieve the preprocessing pipeline by using Python libraries Numpy,

Sklearn, Natsort, Scipy, Glob and CV2. The preprocessing component consists of 6

steps:

Stage 1: Digitize the Pixels Per Inch (PPI)

By determining the PPI, the resolution of the signature image is standardized, allowing

for consistent analysis and comparison across different signatures. This digitization

process ensures that signatures with varying image qualities and resolutions can be

handled uniformly, laying the foundation for subsequent pre-processing steps.

Stage 2: Convert original PPI to grayscale signature image

To facilitate further analysis and processing, the original PPI of the handwritten sig-

nature image is converted into a grayscale representation. This conversion eliminates

colour information while retaining the essential features of the signature. By converting

to grayscale, the subsequent pre-processing techniques can be applied more effectively,

enabling enhanced recognition accuracy and reducing the impact of colour variations on

the final result.

Stage 3: Convert signature into Band interleaved by pixel (BIP)

TThe BIP format reorganizes the signature data by interleaving the pixels, allowing for

efficient data manipulation and processing. This format simplifies subsequent analy-

sis steps, such as segmentation and feature extraction, enabling improved recognition

performance. By transforming the signature into BIP, the paper demonstrates the ad-

vantages of optimized data organization in the pre-processing stage.
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Figure 4.1: Plot of steps from our preprocessing component. 1) Grayscaling and PIP conver-

sion 2) BIP and Otsu binarization 3) Image Rotation (straightening with PCA) 4)

Binarization 5x5 cutting 5) Scaling
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Stage 4: Cut out a rectangle over BIP (Otsu binarization 5x5 over BIP)

In order to isolate the signature from the background and improve segmentation accu-

racy, a rectangle is cut out over the Band interleaved by pixel (BIP) representation. The

Otsu binarization technique [3] with a 5x5 kernel is employed to determine the optimal

threshold for binarizing the signature. By applying Otsu binarization, the signature is

separated from the background, creating a binary representation that facilitates sub-

sequent processing steps, such as feature extraction and recognition algorithms. This

step effectively removes unwanted information and noise, further enhancing the quality

of the pre-processed signature image.

Stage 5: PCA method for rotation

By applying PCA, the signature is analyzed in terms of its principal components, en-

abling the detection and correction of rotation. This technique ensures that the signa-

tures are aligned properly, contributing to more accurate recognition results.

Stage 6: Scale to 300x150 px

This scaling process ensures uniformity across different signatures and enables compati-

bility with recognition algorithms. By resizing the signatures to a consistent dimension,

potential variations in size and aspect ratio are minimized, thereby enhancing the overall

accuracy and reliability of the signature recognition system.

The new representation of signatures has proven to be well-suited for processing, es-

pecially considering our limited GPU capacity. Through effective preprocessing, the

model can now extract highly influential points and efficiently handle the data within

a feasible time frame. This optimization significantly elevates the overall performance

and capability of the system.

4.2 Generator

Our architecture is based on CycleGAN architecture, as shown in figure 4.2. One of the

primary advantages of CycleGAN is its ability to perform unsupervised image transla-

tion, meaning it can learn to convert images from one domain to another without the
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Figure 4.2: Architecture of BISGAN

need for paired training data. This flexibility makes CycleGAN particularly valuable

when paired datasets are scarce or difficult to obtain. This ability of CycleGAN makes

it suitable for our work. Moreover, CycleGAN can handle non-parallel data, allowing

it to learn mappings between domains with distinct characteristics. The inherent cyclic

consistency of CycleGAN enables the preservation of content and structure during image

translation, resulting in realistic and coherent output. Each CycleGAN model consists

of two generators: one for translating images from domain A to domain B and another

for the reverse translation from domain B to domain A. These domains become the

genuine and forged signatures in our case.

Both our generators have the same architecture as is usually the case with CycleGAN

architectures. In BISGAN, the generators are infused with inception blocks after each

convolution followed by an attention head, as shown in figure 4.3. The ResNet base

of the generator layers of 64 7x7 filters, 128 3x3 filters, 256 3x3 filters, 512 3x3 filters,

Six (6) transformer layers of 512 3x3 filters, which are followed by the layer blocks

from before the transformer in reverse order. After each of these convolution layers an

inception block with filters 1x1, 5x5, 3x3 and 3x3 max pool. After the inception block,

an attention layer is placed which is followed by concatenation that is embedded in

ResNet architecture.

We use inception blocks because they enable multi-scale feature extraction by performing

convolutions of different filter sizes in parallel, allowing the model to capture fine-grained
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Figure 4.3: Generator architecture of BISGAN

and high-level abstract features simultaneously. Inception blocks are stacked to increase

network depth, enabling the learning of hierarchical representations and capturing com-

plex relationships within the data, leading to improved performance in various tasks.

Attention layers allow the model to focus on the most relevant parts of the input data

by assigning different attention weights to spatial locations or feature channels. Due to

the above reasons, we have utilized both techniques in our architecture to achieve our

intended goal.

4.3 Discriminator

Our discriminator is inspired by the work done by Jiang et al [91]. In their work, they

introduced SigCNN for signature verification using Spatial Pyramid Pooling. We alter

this architecture with inception blocks similar to our generator architecture and use this

architecture for both of the discriminators in our model, as shown in figure 4.4. We

use convolution layers of 64 7x7 filters, 128 3x3 filters, 256 3x3 filters. Each layer is

followed by an inception block. Additionally, each inception block is followed by a max

pool layer and a convolution layer that it had before the inception block. At the end

of the model, we pass through a Spatial Pyramid Pooling layer followed by two parallel

512 Fully connected layers that are then concatenated for end result.
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Figure 4.4: Discriminator architecture of BISGAN

4.4 Training Paradigm Shift

During training, CycleGAN enforces the generators to produce images that can be trans-

lated back to the original domain without significant information loss. This constraint is

implemented through the cycle consistency loss, which calculates the difference between

the original input image and the image obtained by translating it to the target domain

and then back to the original domain. The generators optimize this loss to ensure that

the translations are consistent and coherent. Through an adversarial training process

and the cycle-consistency constraint, the generators in CycleGAN learn to capture the

underlying mappings between two domains and generate high-quality images in both

directions.

As discussed earlier in this work, generated forgeries should not be too similar or dissimi-

lar to the genuine signature as a verification system would identify it. When a generator

learns from the latent space of an image in a domain, it learns the significant data

points and aims to replicate them. Thus, a forged signature would contain the strong

feature or features of the original signature. If we learned from forged images instead

of genuine signatures, the model would learn from the most commonly focused strong

features replicated in forgeries and generate an image closer to the genuine signature, as

represented in 4.5. Applying this theory to our CycleGAN-based would imply making

the forged dataset domain A so that the focus is aimed in that direction. We test our

theory by training our model the traditional way and with our paradigm-shifting theory

as well. We compare and present the results of both in the evaluation section of this

paper.

36



Chapter 4: Design and Methodology

Figure 4.5: Abstract representation of achievement of new training technique.

Figure 4.6: WandB platform visualizations during training (epoch 200).

4.5 Visualization

To view our results and see real-time progress with learning, we use the Weight and

Bases (wandb) platform. We create a dashboard where the image generation steps are

visualized along with heat maps for identity loss, images generated by generator B using

fake domain A images and vice versa, as shown in figure 4.6.

4.6 Computational Resources

During the creation and experimentation of this architecture, we had limited resources.

Hence, we trained all GANs in turns of three with 200 epochs each. Each cycle would

resume from the hyperparameters of the last checkpoint extracted from checkpoints. We
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also used a total of three machines when we needed to run other GANs in the same time

frame. These machines had the following GPUs: NVIDIA GeForce GTX 1650 4GB,

NVIDIA GTX 1050ti 4GB and NVIDIA GTX 1060 3GB.
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Results

It is important to note that the success of our work can not be measured with traditional

measures as the goal of our generated images is to fail the verification systems. Hence,

the performance of the systems would be bad, indicating that the system is unable to

correctly identify the generated forgeries as forgeries, which is the goal. We perfect

other experiments to quantify the success of our model. Additionally, we propose an

evaluation technique that helps present the quality of the forgery generated and can be

used to define the quality of other domains of image generation.

5.1 Spoofing Verification Systems

Signature spoofing attempts at making a verification system unable to identify the forged

signatures. As that is the goal of our model, the verification systems should perform

poorly. We quantify this by analyzing the percentage of forged images that the veri-

fication system labels as genuine signatures. We brand this percentage as our success

rate.

For this experiment, we train three deep-learning models on the CEDAR signature

dataset to act as our verification systems. It is important to note that this dataset is

small for learning and may impact results. Regardless, we stick with this dataset because

the BISGAN model is trained on this dataset. Our verification systems are VGG-16 [13],

AlexNet [9] , and CapsNet [22] models. Oot of these three, AlexNet performs the best

during traditional training and testing that can be seen in table 5.1.

Next, we generate ten (10) forgeries from the BISGAN model. Additionally, we train
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Verification Model ACC Precision

VGG-16 0.933 0.917

AlexNet 0.982 0.947

CapsNet 0.887 0.813

Table 5.1: Performance of Verification Models on CEDAR Signature Dataset

seven (7) other image generation models on the CEDAR signature dataset and gen-

erate 10 forgeries from each of these. Two (2) of them are based on techniques other

than GANs to generate images, namely, RSAEG (perturbation-based) and the Diffusion

model [68]. Two (2) of them are GAN techniques that have not been used for signature

generation, namely, MaskGIT [86] and DCGAN. Three (3) of them are the latest GAN

techniques used to generate signatures; CycleGAN, OSVGAN and Stroke-cCycleGAN.

We pass the generated images of all the above architectures one by one as input to the

three (3) verification systems that we have trained. We extract the success rate of all

these architectures including our own, as shown in 5.2.

Model/Technique VGG-16 AlexNet CapsNet

RSAEG 60% 60% 80%

Diffusion Model 30% 20% 30%

CycleGAN 40% 50% 50%

OSVGAN 40% 40% 50%

Stroke-cCycleGAN 70% 70% 80%

MaskGIT 30% 20% 40%

DCGAN 20% 30% 50%

CEDAR 0% 0% 0%

BISGAN 90% 80% 90%

BISGAN (paradigm shift) 90% 90% 100%

Table 5.2: Results of different techniques on signature verification systems. The percentage

determines how successful the technique is in fooling the verification system. Ex-

ample: if a technique has obtained 60% success, it means that 6 out of 10 images

given to the system were incorrectly identified as original signatures when in truth

they were forgeries.

We observe that our BISGAN with paradigm shift training performs the best in our goal
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Figure 5.1: Comparison of generated forgeries of models.

Model/Technique VGG-16 AlexNet CapsNet

ICDAR 2021 Multi-script 80% 70% 90%

MCYT-100 90% 90% 100%

Table 5.3: Results of successful spoofing attempts using forgeries generated by BISGAN for

ICDAR 2021 Multi-script dataset and BISGAN trained on MCYT-100 using the

paradigm-shift technique.

of signature spoofing followed closely by our normally trained BISGAN. The second and

third successful techniques are Stroke-cCycleGAN and RSAEG respectively.

To establish the generalizability of our model, we train BISGAN on another dataset and

assess the success rate. We use the Roman script subscript from ICDAR 2021 Multi-

script Dataset on Roman and Devanagari [74]. The Dataset contains 3,929 Roman

signatures from 80 writers. We use BISGAN model to generate 10 images on this dataset

and assess the success rate of these generated forgeries on our selected verification system

models, that we train on this same dataset. We achieve benchmark results in successful

spoofing attempts. Additionally, we train the BISGAN model in the paradigm-shift

technique using the MCYT-100 dataset. We generate ten (10) forged images and pass

them to our three verification models, after training them on the same dataset. The

generated forgeries surpass the detection of the verification models. The results are

shown in table 5.3.

41



Chapter 5: Results

Figure 5.2: Forgeries generated by BISGAN compared with original samples.

5.2 Generated Quality Metric (GQM)

Our work utilizes the theory that a forged signature cannot be too similar or dissimilar

to a genuine signature. However, the data characteristics of a forgery should be similar

to a genuine signature if it is to spoof a verification system. This answers the question

of how good the generated forgery actually is. We propose the Generate Quality Metric

(GQM), a metric that utilizes the data distributions of the input domain and leverages

influential points of the dataset to compute the closeness of the generated image which

quantifies the goodness of the generated image.

Considering influential data points converts the similarity function into a metric for

goodness as it matches the important features in the data with the generated sample.

GANs use the concept of latent space to learn about the input data domain. This

primary concept has inspired our use of data distributions for a quality measure as

well. We find the influential points over the distribution of both, the original and forged

sample data using Mahalanobis distances [1]. P. C. Mahalanobis first introduced the

Mahalanobis distance as the separation between a point P and a distribution D. It takes

into account the covariance structure of the data to aid in locating significant deviations

from the predicted distribution. Next, we compare the influential point vectors of both

the original and forged samples with the influential points of the generated forged image

using Cook’s distance [2]. The scaled change in fitted values is known as Cook’s distance.

It measures how much removing a specific data point alters the model’s estimates which

is helpful as a distance measure in our case. Ultimately, we highlight which sample,

original or forged, is the generated image closer to, strictly in terms of influential factors.
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Figure 5.3: Mapping of GQM evaluation of generated samples of different architectures.

Mahalanobis distance is defined as:

dM (x⃗, Q) =
√

(x⃗ − µ⃗)T S−1(x⃗ − µ⃗) (5.2.1)

And Cook’s distance is defined as:

Di = r2
i

p · MSE
· hii

(1 − hii)2 , (5.2.2)

After constructing this metric, we evaluate the generated forgeries from the same archi-

tectures we used in our signature spoofing experiment. We randomly pick a generated

forgery from the set of ten (10) generated by each architecture and one from the test

forgery images of the CEDAR dataset. GQM shows BISGAN to be closest to the origi-

nal, followed closely by RSAEG and then later Stroke-cCycleGAN. We map our results

as shown in the figure.

5.3 Other Evaluations

As mentioned earlier in this section, traditional evaluation metrics are not useful in our

case as the purpose of our model is to fail verification models. Regardless, we include

the Equal Error Rate (EER) of our discriminator and compare it to the EER rate of

OSVGAN in this section for a full presentation of our research. For most signature
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Model/Technique ERR

OSVGAN 2.55

BISGAN 6.79

BISGAN (paradigm shift) 13.66

Table 5.4: Traditional performance measure scores of our discriminator against the evaluation

of other models as presented in their respective papers.

generation GANs, the EER rate is not presented in their research. We observe that

BISGAN’s discriminator on paradigm shift training performs worst as shown in table

5.4.

44



Chapter 6

Discussion and Conclusion

The results obtained from our ethical spoofing attempt could be better understood by

looking at the significance of the major components of the methodology.

6.1 Discussion

Understanding the purpose of generated images is very important to any generative AI

research. In our work, understanding that signature is a biometric trait and how to

replicate it to a certain threshold played an important role. We centre our work around

the concept of influential points of the input data distribution while both, creating

our GAN architecture and devising our evaluation metric. RSAEG proves to be an

efficient technique to achieve signature spoofing. However, it is not based on GANs

hence BISGAN proves to be more powerful. Given more powerful systems to handle

large amounts of data, BISGAN’s training can be improved and hence its performance.

6.2 Summary and Conclusions

Signature verification encompasses various techniques, including descriptive language,

geometrical analysis, and the analytical method. These methods utilize pattern recogni-

tion algorithms to compare and analyze unique features of signatures for authentication

purposes. In addition to classification models, generative models are also used to differ-

entiate between original and forged signatures by identifying underlying patterns and

structures.
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We identify a need for generator-focused research in signature data using GANs, as well

as the importance of considering the percentage of similarity between original, forged,

and generated samples. The lack of appropriate evaluation metrics for generated data

also poses a research gap in this area.

Our research utilizes CycleGANs with Inception model-like blocks and attention heads,

as well as the SigCNN model as a base Discriminator, to develop generators for signa-

ture forgery generation. The architecture of the generators is detailed, showcasing the

combination of convolution layers, inception blocks, attention layers, and concatenation

within a ResNet framework

The theory that generated forgeries should possess strong features of the original sig-

nature is explored in our work and the research presents results comparing traditional

training methods with a paradigm-shifting approach. We also construct a quality met-

ric that considers the influential data points and the use of Mahalanobis distances and

Cook’s distance as goodness measures for generated samples. We find that the BISGAN

with paradigm shift training performs the best in achieving the goal of signature spoof-

ing, followed closely by the normally trained BISGAN.

6.3 Future Work

For future research work, the transition of GQM to different domains and GAN archi-

tectures can be evaluated. Although we believe that GQM can be generalized for many

different GAN architectures since the concept of latent space is common among all, it

is important to test it for different domains. We have constructed BISGAN solely for

signature datasets but it could be experimented with in other domains of image trans-

lation but probably not image style transfer.

This work encourages the usage of GANs in ethical spoofing research. As generative

AI reaches a stage of uncontrollable use, such research can help protect future systems
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using biometric data. Innovation in generative AI research towards evaluation holds

significance in terms of control and verification of data.
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