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The last few decades have seen extensive research on the critical activity of quality as- 

surance, known as defect prediction, in the early phases of software development life 

cycle. Premature revealing of defective modules in software development can assist the 

development team in making efficient and effective use of the resources at hand to pro- 

duce high-grade software in a less amount of time. Until now, numerous academics have 

created defect prediction models exploiting statistical and machine learning (ML) meth- 

ods. By identifying hidden patterns among software features, the ML methodology is a 

useful technique for locating problematic modules. Three widely known NASA datasets 

are utilized in this work to forecast software problems using a variety of ML classification 

approaches. The projected approach in this thesis reflects the hybrid model, which is 

designed using ensemble-based ML algorithms that have enabled faults to be predicted 

in the software modules. Also, three datasets from NASA have been used to check the 

models’ accuracy as a benchmark. The model suggests that the Adaboost classifier has 

shown the best accuracy amongst other ensemble-based ML techniques like NB, RF, Xg- 

boost, beggingboost and catboost which produced 99.95% accuracy. The effectiveness 

of the employed classification approaches is assessed using a variety of metrics which 

include precision, recall, F-measure, accuracy and support. 
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CHAPTER 1 
 

 

Introduction and Motivation 

 
1.1 Overview 

 
Software defect prediction is a field of research that focuses on developing models and 

techniques to identify and predict software defects early in the software development 

lifecycle. The primary goal of software defect prediction is to assist software developers 

and testers in allocating their limited resources effectively and prioritizing their efforts 

in identifying and resolving potential defects. 

The process of software defect prediction involves analyzing various software metrics and 

historical data to build predictive models that can forecast the likelihood of defects in 

software modules or components. These models are typically constructed using machine 

learning algorithms and statistical techniques. 

The prediction models leverage features extracted from software artifacts, such as source 

code, design documents, and historical defect records. These features can include metrics 

related to code complexity, size, coupling, cohesion, and other quality indicators. By 

analyzing these features, the models can identify patterns and relationships that are 

indicative of potential defects. 

Once the models are developed, they are trained and evaluated using labeled datasets 

that contain information about the presence or absence of defects. The efficacy of 

the models at accurately predicting flaws is measured using performance metrics like 

accuracy, precision, recall, and F1 score. 

The applications of software defect prediction are diverse and can benefit software de- 
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velopment organizations in several ways. By identifying high-risk software components 

or modules early on, developers can allocate more resources to testing and debugging 

activities, resulting in improved software quality and reduced maintenance efforts. Fur- 

thermore, defect prediction models can aid in resource allocation, release planning, and 

software maintenance prioritization. 

In recent years, there has been significant progress in software defect prediction, with 

the introduction of advanced machine learning techniques, ensemble methods, and the 

integration of various software metrics. Researchers are continuously exploring new 

approaches to enhance the accuracy and efficiency of defect prediction models. 

In general, software defect prediction is essential for raising software quality and lowering 

maintenance expenses. It enables proactive defect management by identifying potential 

problem areas, allowing software development teams to focus their efforts and resources 

where they are most needed. 

 
1.2 Introduction 

 
Software defects are a great concern in software engineering. Software defects, or bugs, 

are the errors that come up during the software development phases. These stages are 

requirement, design, and development. As a result, dealing with bugs during those 

phases is a major challenge for software engineers. These flaws have a significant impact 

on the time and cost of software projects. Hence its importance increases more when it 

comes to the software modules that undergo intensive testing or are frequently tested. 

Software defect prediction is more important when it is done in the early stages of 

development. On the other hand, it becomes really hard when the product is released. 

The main reason is that if the product is released and then bugs and faults are detected, 

it is very difficult and hard in terms of cost and time of the software product, which 

are affected and increased by other factors too. So it is very important to trace these 

bugs now rather than at the end of the project. ML steps up and plays a vital role in 

solving these issues. To predict software defects, ML employs various classification and 

regression algorithms. ML algorithms, which are related to the regression algorithms, 

just predict the bugs in the software module. On the other hand, classification algorithms 

are applied for the classification of the faults or bugs, whether they are present or not. 

So in that case, ML models are trained on the available data and then used to predict 
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the faults in the modules. Classification ML algorithms that include K-nearest neighbor, 

Random forest, support vector machine and nave bays are examples of supervised ML 

algorithms. Also, ensemble ML techniques like boosting and begging are used. ANN 

with multilayer perceptron and DNN, are also used. 

 
1.3 Motivation 

 
The data used in software defect prediction is typically unbalanced and must be balanced 

before it can be used in ML techniques. For that reason, many techniques are applied to 

the data in a uniform way. SMOTE is one of the techniques used to turn the imbalanced 

data into uniform data. A hybrid approach is another way to deal with the imbalance 

data, which combines ensemble methods with other methods to get better results for 

the defect prediction. Ensemble ML is also used to handle the imbalanced data. It 

includes begging, boosting, and stacking. Adaboost, xgboost, begging classifier, random 

forest (RF), and catboost are examples of these algorithms. In this paper, the SMOTE 

resampling technique is used as a hybrid approach to resolve the issue of the imbalanced 

data. Also, the different supervised ML algorithms and ensemble ML techniques are 

used to compare the results. In next section, related work is discussed to learn about 

the work done in these fields. A further section describes the results and the discussion of 

all the experiments done using the three datasets, CM1, PC1, and JM1. In last section, 

conclusion and future work are discussed. Software defects can have detrimental effects 

on the quality and reliability of software systems. Detecting and resolving these defects 

in the early stages of development is crucial to ensure a successful software product. 

Traditional methods of defect prediction often rely on manual code review and testing, 

which can be time-consuming and resource-intensive. 

In recent years, machine learning techniques have emerged as a promising approach 

to automate software defect prediction. By leveraging historical software data and 

employing various machine learning algorithms, it is possible to identify patterns and 

factors associated with software defects. These algorithms can analyze code metrics, 

change history, and defect reports to build predictive models. 
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1.4 Objective 

 
The objective of software defect prediction using machine learning is to identify poten- 

tial defect-prone areas in the software codebase. By doing so, development teams can 

allocate testing resources more efficiently and prioritize their efforts. This predictive ca- 

pability can significantly improve software quality and reduce the occurrence of defects 

in production. 

In this study, we aim to explore the effectiveness of different machine learning algorithms 

in predicting software defects. We will evaluate their performance using established 

evaluation metrics, such as precision, recall, and F1-score. By gaining insights into the 

applicability and performance of machine learning models in defect prediction, we can 

enhance software development practices and deliver more reliable software systems. 

In the field of software development, defects or bugs can have a significant impact on 

the overall quality, reliability, and user satisfaction of software systems. Identifying and 

resolving these defects in the early stages of the software development lifecycle is crucial 

to ensure the delivery of a successful and robust software product. Traditional methods 

of defect prediction, such as manual code review and testing, have limitations in terms 

of time consumption and resource requirements. 

In recent years, machine learning techniques have gained attention as a promising ap- 

proach to automate software defect prediction. By leveraging historical software data 

and employing various machine learning algorithms, it is possible to identify patterns 

and factors associated with software defects. These algorithms can analyze code metrics, 

change history, and defect reports to build predictive models. 

The main objective of software defect prediction using machine learning is to identify 

potential defect-prone areas in the software codebase. By utilizing historical data that 

includes information about past defects and associated software artifacts, machine learn- 

ing models can learn from patterns and relationships within the data. These models 

can then predict the likelihood of encountering defects in specific parts of the codebase 

or during particular stages of development. 

The benefits of software defect prediction using machine learning are multifold. Firstly, it 

helps development teams in effectively allocating their testing resources. By identifying 

areas of the code that are more likely to contain defects, testing efforts can be focused 
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on those areas, leading to more efficient and thorough testing. Secondly, by predicting 

defects early, development teams can take proactive measures to address potential issues, 

thereby reducing the occurrence of defects in production and improving software quality. 

In this study, our aim is to explore the effectiveness of different machine learning al- 

gorithms in predicting software defects. We will investigate the applicability and per- 

formance of various algorithms such as decision trees, random forests, support vector 

machines, and neural networks. Additionally, we will evaluate the models using estab- 

lished evaluation metrics, such as precision, recall, and F1-score, to assess their predictive 

accuracy and reliability. 

By gaining insights into the applicability and performance of machine learning models 

in defect prediction, we can enhance software development practices. The findings from 

this study will provide valuable guidance to development teams, enabling them to make 

informed decisions regarding defect prevention and quality improvement strategies. Ul- 

timately, the goal is to deliver more reliable and robust software systems that meet user 

expectations and minimize the impact of defects on software functionality. 

The problem of software defects poses significant challenges in the software development 

process. Undetected defects can lead to costly errors, increased maintenance efforts, and 

potential system failures. Therefore, there is a need to develop effective methods for early 

identification and prediction of software defects. 

 
1.5 Problem Statement 

 
The problem statement in software defect prediction revolves around creating accurate 

and reliable models that can predict the likelihood of defects in software modules or 

components. The objective is to provide software developers and testers with insights 

into which parts of the software are more likely to contain defects, allowing them to 

allocate their limited resources efficiently and prioritize testing and debugging efforts. 

The problem involves addressing several key challenges, including: 

Handling the vast amount of software metrics and data available, extracting meaningful 

features, and selecting the most relevant metrics for defect prediction. Dealing with 

imbalanced datasets where the number of defective instances is significantly smaller 

than the non-defective ones. Overcoming the variability and heterogeneity in software 
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projects, as different projects may have unique characteristics and defect patterns. De- 

veloping models that can handle the dynamic nature of software development, where 

new features, updates, and changes occur frequently. Ensuring the interpretability of 

the prediction models, allowing stakeholders to understand the factors contributing to 

defect predictions and make informed decisions. Addressing these challenges requires 

the development and application of advanced machine learning algorithms, data prepro- 

cessing techniques, feature selection methods, and model evaluation approaches. The 

ultimate goal is to create accurate and robust defect prediction models that can assist 

in identifying and mitigating software defects early in the development process, thereby 

improving software quality, reducing maintenance efforts, and enhancing overall system 

reliability. 

 
1.6 Approach and Methodology 

 
The approach and methodology for software defect prediction involve a systematic pro- 

cess that combines data analysis, machine learning techniques, and evaluation methods. 

The following steps outline the typical approach and methodology: 

 
1.6.1 Data Collection 

 
Gather relevant data from software repositories, version control systems, bug tracking 

systems, and other sources. This data includes software metrics, historical defect records, 

and other contextual information. 

 
1.6.2 Data preprocessing 

 
To assure the quality and usefulness of the collected data for analysis, clean and pre- 

process it. To produce a trustworthy and consistent dataset, deal with missing values, 

eliminate outliers, and normalise or scale the data. Choose the software metrics or at- 

tributes that have the most bearing on the prediction of software defects. To find the 

important features, use approaches like correlation analysis, information gain, or feature 

importance ranking. 
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1.6.3 Model choice 

 
Depending on the nature of the issue and the features of the dataset, select the most 

appropriate machine learning techniques. Decision trees, random forests, support vector 

machines (SVM), artificial neural networks (ANN), and gradient boosting classifiers 

(GBC) are examples of frequently used techniques. 

 
1.6.4 Model Training 

 
Divide the dataset into training and validation sets for the model. Utilise the training 

set to train the chosen machine learning models, then adjust their hyperparameters to 

enhance performance. The generalisation capacity of the model can be evaluated using 

cross-validation approaches. 

 
1.6.5 Model assessment 

 
Measure the trained models’ accuracy, precision, recall, F1 score, and area under the 

receiver operating characteristic curve (AUC-ROC) using the relevant assessment mea- 

sures. To find the most efficient strategy, compare the results of various models. 

 
1.6.6 Model optimisation 

 
To increase the accuracy and resilience of the chosen models, fine-tune them using 

ensemble approaches like bagging or boosting and changing their hyperparameters. 

 
1.6.7 Model Deployment 

 
Deploy the optimized models in a real-world setting to predict software defects in new 

or unseen instances. Monitor the model’s performance and recalibrate as necessary to 

maintain accuracy and relevance. 

 
1.6.8 Validation and Testing 

 
Validate the performance of the deployed models by comparing their predictions with 

actual defect occurrences. Continuously test and evaluate the models using new data to 

ensure their effectiveness in predicting defects. 
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1.6.9 Documentation and Reporting 

 
Document the entire approach, methodology, and results obtained. Provide detailed 

reports and insights to stakeholders, including developers, testers, and project managers, 

to guide decision-making and improve software quality. 

 
1.7 Target Group 

 
The target group for software defect prediction encompasses various stakeholders in- 

volved in the software development and testing process. These stakeholders can benefit 

from the insights and predictions provided by defect prediction models. The primary 

target groups include: 

 
1.7.1 Software Developers 

 
Software developers are directly involved in writing, modifying, and maintaining code. 

They can benefit from defect prediction models by identifying high-risk areas within 

their codebase and allocating resources for more rigorous testing and debugging. The 

models help developers prioritize their efforts and focus on modules or components that 

are more likely to contain defects. 

 
1.7.2 Quality Assurance/Testers 

 
Testers are responsible for verifying the functionality and quality of software through 

various testing techniques. Defect prediction models provide testers with valuable in- 

formation on areas that are prone to defects, allowing them to design targeted test 

cases and perform thorough testing on critical components. This helps improve the 

effectiveness and efficiency of testing efforts. 

 
1.7.3 Project Managers 

 
Project managers oversee the software development process and are responsible for re- 

source allocation, scheduling, and project planning. Defect prediction models assist 

project managers in making informed decisions about resource allocation, ensuring that 
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resources are allocated where they are most needed. This helps optimize the project 

timeline, budget, and overall development process. 

 
1.7.4 Software Maintenance Teams 

 
After software deployment, maintenance teams are responsible for handling bug fixes, 

updates, and enhancements. Defect prediction models aid maintenance teams in identi- 

fying areas that require immediate attention, allowing them to prioritize their efforts and 

address critical defects promptly. This leads to more efficient and targeted maintenance 

activities. 

 
1.7.5 Software Quality Assurance Teams 

 
Quality assurance teams focus on ensuring the overall quality and reliability of software 

systems. Defect prediction models help these teams in identifying potential defects 

early, allowing them to design and implement effective quality assurance processes and 

techniques. This enhances the overall quality control measures in place. 

 
1.7.6 Software Researchers and Academics 

 
Software Researchers and Academics: Researchers and academics in the field of software 

engineering and defect prediction use these models to advance the state of the art. They 

explore new algorithms, techniques, and methodologies to improve the accuracy and ef- 

fectiveness of defect prediction models. Their research helps enhance the understanding 

and application of defect prediction in the industry. 

 
1.8 Thesis Breakdown 

 
The research has been done in a lot of different phases and steps. It is divided into the 

following chapters. 

Chapter 1 Introduction and Motivation: An Overview of Software defect prediction(SDP). 

Chapter 2 Literature Review: Discussion and highlighting of work already carried out 

on this topic by other people. 
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Chapter 3 Design and Methodology: The explanation of the proposed methodology to 

overcome the problems which are observed. 

Chapter 4 Imlementaton and Results: Testing the validity of the methodology by using 

dataset in python and calculating results of accuracy. 

Chapter 5 Discussion: Critical analysis of the results will be done. 

Chapter 6 Conclusion: This section provides a recap of all the work done and also shows 

a direction for the future of this research 

 
1.9 Summary 

 
In summary, software defect prediction using machine learning techniques has emerged 

as a promising approach to automate the identification of potential defects in software 

systems. By leveraging historical software data and employing various machine learn- 

ing algorithms, patterns and factors associated with software defects can be identified. 

This predictive capability enables development teams to allocate testing resources more 

efficiently and prioritize their efforts. 

The objective of this study is to explore the effectiveness of different machine learning 

algorithms in predicting software defects. By evaluating their performance using es- 

tablished metrics, we aim to assess the accuracy and reliability of these models. The 

findings will provide valuable insights into the applicability of machine learning in de- 

fect prediction, allowing development teams to make informed decisions regarding defect 

prevention and quality improvement strategies. 

By utilizing machine learning techniques for defect prediction, software development 

practices can be enhanced, leading to the delivery of more reliable and robust software 

systems. Early identification and resolution of defects contribute to improved software 

quality, user satisfaction, and overall system reliability. The results of this study will 

contribute to the body of knowledge in software defect prediction and aid in the devel- 

opment of effective strategies for defect prevention and quality assurance. 
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Figure 1.1: Block diagram fro software defect prediction. 
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CHAPTER 2 
 

 

Literature Review 

 
2.1 Introduction 

 
In the field of software defect prediction using machine learning, extensive research has 

been conducted to develop effective models and techniques for identifying and predicting 

software defects. This section provides an overview of the related work in this area, 

highlighting the advancements, methodologies, and key findings of recent studies. 

One area of focus in related work is the selection and extraction of appropriate software 

metrics for defect prediction. Researchers have explored various software metrics, such as 

line of code, cyclomatic complexity, halstead volume, and design complexity, to capture 

different aspects of software quality and complexity. These metrics serve as crucial input 

features for machine learning models and play a significant role in identifying patterns 

and relationships between software metrics and defect occurrences. 

Several machine learning algorithms have been employed in defect prediction stud- 

ies. These algorithms include decision trees, random forests, support vector machines 

(SVM), artificial neural networks (ANN), and gradient boosting classifiers (GBC). Each 

algorithm has its strengths and limitations, and researchers have evaluated their perfor- 

mance and compared their effectiveness in different scenarios. The goal is to identify the 

most suitable algorithm for accurately predicting software defects and achieving high 

prediction performance. 

To address the challenge of imbalanced datasets, researchers have explored various tech- 

niques such as oversampling, undersampling, and synthetic data generation. These 

techniques aim to balance the distribution of defective and non-defective instances to 
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prevent bias towards the majority class and improve the overall prediction performance. 

Additionally, feature selection and engineering methods have been applied to identify the 

most relevant and informative features for defect prediction. Dimensionality reduction 

techniques, such as principal component analysis (PCA) and feature importance ranking, 

have been used to reduce the number of features and eliminate noise, leading to improved 

model performance and interpretability. 

Another aspect of related work is the evaluation of prediction models using appropriate 

performance metrics. Accuracy, precision, recall, F1 score, and area under the receiver 

operating characteristic curve (AUC-ROC) are examples of frequently used measures. 

These metrics help assess the predictive power and generalization capability of the mod- 

els and allow for comparisons between different approaches. 

Furthermore, researchers have investigated the transferability of defect prediction models 

across different software projects and domains. The generalizability of models is crucial 

for their practical application, as it allows for knowledge transfer and reusability of 

trained models in new contexts. 

The related work in software defect prediction using machine learning has focused on 

feature selection, algorithm selection, imbalanced data handling, evaluation metrics, and 

generalizability. Researchers have made significant contributions to understanding the 

complex relationship between software metrics and defects, developing accurate pre- 

diction models, and addressing the challenges in real-world software defect prediction 

scenarios. By building upon this body of work, researchers and practitioners can con- 

tinue to advance the field and enhance the effectiveness of software defect prediction 

using machine learning techniques. 

 
2.2 Previous Work 

 
[9] used supervised ML algorithms like random forest binning and boosting for the 

software defect prediction. For the experimentation, authors have used different NASA 

datasets. To assess the performance of the models, author used precision, recall and 

accuracy as performance metrics. The results show that random forest, random forest 

with adaboost, and begging with DS give the best results against the other ML models. 

Also, to resolve the issue of imbalanced data, he used the SMOTE resampling technique. 
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[17] experimented on different datasets from PROMISE dataset repository and also the 

NASA datasets. He proposed the KPWE framework for software defect prediction, a 

new method that outperforms the other models presented previously. 

[14]Manjula et al. [11] used the NASA dataset for the benchmark dataset. Four datasets 

were used for the experiments and results. For the optimization of the data, genetic al- 

gorithms were used, and a deep neural network was applied for taxonomy. The results 

show that the KC1 dataset has 97.82%, the CM1 dataset has 97.59%, the PC3 dataset 

has 97.96% and the PC4 dataset has 98% accuracy. All the experiments were imple- 

mented using MATLAB. 

[20] used a NASA dataset from PROMISE repository. The dataset used for the trials 

is KC2, PC3, JM1, and CM1. Different ML algorithms were applied to get the best 

accuracy, like random forest, logistic regression, decision tree, and xbgboost. The results 

show that the XGBoost algorithm, with some changes in the parameters, proved to be 

the best classifier for fault detection against other classical ML algorithms. 

[18] applied an MLP neural network, a convolutional neural network (CNN) and ML 

algorithms for software fault detection. The experiments made use of NASA datasets. 

Manipulation of the parameters is the key to increasing the accuracy of bug detection, 

which is implemented during experiments. As a result, accuracy improved to 43.5% for 

PC1, 8% for KC1, 18% for KC2 and 76.5% for the CM1. 

[25] used different ML algorithms for the software defect prediction (SPD). The algo- 

rithms include the support vector machine, nave Bayes, Bayesian belief network, and 

convolutional neural network. The results indicate that the convolutional network proves 

to be the best in case of accuracy as equated to the other ML algorithms, which give an 

average accuracy of 70.2 

In current era, software defect prediction is unique and important topic in the field of 

ML. Many techniques are used in order to get good results. The correct detection of 

faults and bugs can save developers time and money. In their paper, the authors [5] 

have used genetic algorithms and deep neural networks on the NASA dataset. The 

results have shown that genetic algorithms have a mean probability of detection with a 

progression of 71 

In [4], researchers presented a method for predicting software defects that combines 

adaptive dimensional analysis with conventional radial basis functions. Model for opti- 
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mization based on biogeography. Five NASA datasets from PROMISE repository were 

used for the experiment, and the findings demonstrated that new method was more 

accurate than earlier techniques. 

On the subject of predicting software defects, researchers in [36] contrasted an artificial 

neural network (ANN) with a support vector machine (SVM). Seven NASA datasets 

from PROMISE repository were used. The specificity, recall, and accuracy of the per- 

formance were assessed and results demonstrated improved SVM performance. 

The Whale Optimisation Algorithm feature selection approach, which uses metaheuris- 

tic search to select fewer but closely related features, has now been enhanced by [29]. 

They also combined CNN with kernel extreme learning machines (KELM) to produce 

a hybrid defect classifier that incorporates the chosen features into the abstract deep 

semantic features produced by CNN and improves prediction performance by fully util- 

ising KELM’s powerful classification capability. Their findings proved the benefits of 

the hybrid strategy. 

Studies show that Their methods can find 32.22 percent more flaws than the most 

advanced model currently available [8].suggested using stacked denoising autoencoders 

(SDAE) to transform manually created measurements in the NASA dataset into useful 

metrics, and they used ensemble techniques to find errors. The results suggest that 

accurate software fault prediction may benefit from deep representations of current 

metrics. 

 
2.3 Summary 

 
The related work in software defect prediction using machine learning has made signif- 

icant contributions to the field, focusing on various aspects such as feature selection, 

algorithm selection, imbalanced data handling, evaluation metrics, and generalizability. 

Researchers have explored different software metrics to capture software quality and 

complexity, including line of code, cyclomatic complexity, halstead volume, and design 

complexity. These metrics serve as crucial input features for machine learning models 

in predicting software defects. 

Multiple machine learning algorithms, such as naive bays, random forests, adaboost, xgb 

and GBC, have been employed and compared for their effectiveness in defect prediction. 
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Researchers have evaluated the performance of these algorithms and identified their 

strengths and limitations in different contexts. 

To address the challenge of imbalanced datasets, techniques such as oversampling, un- 

dersampling, and synthetic data generation have been explored. These methods aim to 

balance the distribution of defective and non-defective instances, improving the overall 

prediction performance. 

Feature selection and engineering methods have been used to identify the most rele- 

vant features for defect prediction. Dimensionality reduction techniques and feature 

importance ranking have helped eliminate noise and improve model performance and 

interpretability. 

Evaluation metrics such as accuracy, precision, recall, F1 score, and AUC-ROC have 

been employed to assess the performance and generalization capability of prediction 

models. These metrics allow for comparisons between different approaches and help in 

selecting the most effective models. 

The transferability of defect prediction models across different software projects and 

domains has been investigated. Understanding the generalizability of models is crucial 

for their practical application and knowledge transfer to new contexts. 

Overall, the related work has contributed to a deeper understanding of the relationship 

between software metrics and defects, the development of accurate prediction models, 

and addressing challenges in real-world defect prediction scenarios. By building upon 

this work, researchers and practitioners can further advance the field and enhance the 

effectiveness of software defect prediction using machine learning techniques. 
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CHAPTER 3 
 

 

Design and Methodology 

 
3.1 Introduction 

 
Using NASA benchmark datasets, this study evaluates how well different ML classi- 

fiers predict software defects. Each dataset also includes a known output class and a 

number of features. The expected output, or objective class, that is based on former 

available features. Dependent attributes are those that are used to predict the depen- 

dent attribute, whereas independent attributes are those that are used to predict the 

independent attributes. The dependent features in datasets chosen for this investigation 

have values of Y or N. Y indicates that a certain instance or module of software has a 

propensity to be defective, whereas N indicates that it is not. A total of three cleansed 

NASA datasets are utilised in this study’s tests and the databases contain the CM1, 

JM1, kc1, kc2, mc1 and PC1. The suggested model of research work is given in the 

following figure 3.1. which include the dataset from the PROMISE repository and the 

NASA dataset. NASA has a total of ten datasets available. Only six datasets are used 

for the experiments in this study: JM1, CM1, kc1, kc2, mc1 and PC1. 

 
3.2 Data Pre-processing 

 
Data pre-processing is critical before using ML algorithms for experimentation. For that 

purpose, standard feature scaling is used to form the scaled data. Also, the SMOTE, 

which is a synthetic minority oversampling method, is used to normalize the disparity 

data. All the null values are removed. For scaling the data, the min-max scalar is used. 
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Figure 3.1: Proposed Model for the software defect prediction. 
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3.3 Data Normalization 

 
Data normalization, also known as feature scaling or data standardization, is a common 

preprocessing step in machine learning. It involves transforming the numerical features 

of a dataset to a common scale, usually between 0 and 1 or with a mean of 0 and a 

standard deviation of 1. Normalization helps to ensure that the features have comparable 

magnitudes and prevents certain features from dominating others during the learning 

process. 

There are several common methods for data normalization: 

 

3.3.1 Min-Max Scaling (Normalization) 

 
This method scales the values of the features to a particular range, commonly between 

0 and 1. The min-max scaling equation is given by: 

X_normalized = (X - X_min) / (X_max - X_min), where X is the original feature, 

X_min is the dataset’s smallest value for X, and X_max is its maximum value for X. 

 
3.3.2 Z-Score Standardization 

 
By using this technique, the characteristics are standardised to have a mean of 0 and a 

standard deviation of 1. The z-score standardisation formula is: 

X_standardized = (X - X_mean) / X_std, where X is the original feature, X_mean is 

X_in the dataset’s mean, and X_std is X_in the dataset’s standard deviation. 

 
3.3.3 Decimal Scaling 

 
This method scales the values by shifting the decimal point of the feature values. The 

scaling factor is determined by the maximum absolute value of the feature. For example, 

if the maximum absolute value is 1000, the decimal scaling factor would be 3 to shift 

the decimal point by 3 positions. 

The normalisation technique chosen will depend on the dataset’s unique properties and 

the needs of the machine learning algorithm. It’s important to note that normalization 

is typically applied to the feature values and not the target variable. 

Certain machine learning methods, especially those that are sensitive to the scale of the 
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input characteristics (such gradient descent-based algorithms), can perform and converge 

better when they are normalised. But there are other algorithms that are scale-invariant 

and don’t always need normalisation, including decision trees and random forests. 

It’s generally recommended to perform normalization as a preprocessing step when work- 

ing with numerical features, unless there are specific reasons to avoid it based on the 

characteristics of the dataset or the requirements of the machine learning algorithm. 

 
3.4 Environment 

 
The environmental setting for the implementation of software defect prediction is a 

critical factor that influences the success and effectiveness of the predictive models. 

Here is an overview of the environmental setting: 

 
3.4.1 Software Environment 

 
Programming Language: Popular choices for implementing machine learning models in- 

clude Python, R, and Julia. Python, with libraries such as TensorFlow, Keras, PyTorch, 

or scikit-learn, is widely used due to its extensive machine learning ecosystem. 

Integrated Development Environment (IDE): IDEs like PyCharm, Jupyter Notebook, 

Spyder, or Visual Studio Code provide a user-friendly environment for coding, debug- 

ging, and running machine learning code. 

Machine Learning Libraries and Frameworks: Various libraries and frameworks provide 

pre-built tools and algorithms for machine learning, deep learning, and data prepro- 

cessing. Some popular ones include TensorFlow, PyTorch, scikit-learn, XGBoost, and 

Keras. 

Data Manipulation and Analysis Tools: Tools such as pandas and NumPy in Python 

enable data manipulation, preprocessing, and analysis tasks. 

Data Visualization Libraries: Libraries like Matplotlib, Seaborn, or Plotly assist in 

visualizing data, model performance, and other relevant metrics. 
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3.4.2 Hardware Environment 

 
Central Processing Unit (CPU): CPUs are essential for running machine learning models. 

The number of cores and processing power influence the model’s speed during training 

and inference. 

Graphics Processing Unit (GPU): GPUs excel at parallel processing, making them ideal 

for training deep learning models. They significantly accelerate computations due to 

their high number of cores. 

Random Access Memory (RAM): Sufficient RAM is necessary for storing and manip- 

ulating large datasets during training and inference. The amount of RAM required 

depends on the dataset size and complexity. 

Storage: Adequate storage is crucial for storing datasets, model parameters, and inter- 

mediate results. Solid-state drives (SSDs) are preferred for faster data access. 

 
3.5 Data Collection 

 
For the experimentation, six well-known datasets are used from open-source public 

datasets: JM1, CM1,kc1, kc2, mc1 and PC1. These datasets are gathered from the 

NASA datasets, which are available on the Promise repository. All the datasets include 

23 attributes. NASA has developed this dataset, which includes 10 overall datasets 

under its program. Sheppard et al. cleaned up these datasets. DS’, which contained du- 

plicated and inconsistent instances, and DS”, which excludes replicated and unreliable 

instances, are two different clean datasets that are offered by [1]. These datasets were 

primarily offered at NASA repository, however were later taken down. These datasets 

were obtained from NASA dataset whci are available online, which houses backup copies 

of NASA records. [9][17][14] have already utilized and discussed these cleaned datasets. 

Table 3.1 displays the cleaning standards used by [1]. 

Hence, for our proposed work, we include three datasets that are in pure form. Each 

dataset has used the MCCABE metrics for every occurrence. There are 40 features in 

this, but we have used 22 features from all the features that are in NASA datasets. 

Those features are described in Table 3.2. 

The dataset details in terms of class distribution are described in Table 3.3. There are 



 

 

 
 
 
 
 
 
 
 
 
 

 

Table 3.1: Criteria for Cleaning 
 

Criteria Category Explanation 

1 Identical cases Instances in which all metrics, including the class label, have 

the same values. 

2 Inconsistent cases Instances that fall under the criteria of Case 1 but have 

different class labels. 

3 Cases with missing values Instances where one or more observations are lacking. 

4 Cases with conflicting feature values Instances when at least two metric values go against a ref- 

erential integrity restriction. For example, LOC TOTAL is 

less than the commented LOC, even though LOC TOTAL 

is a subset of commented LOC. 

5 Cases with implausible values Instances where some integrity restrictions are broken. For 

example, LOC value = 1.1, which is an implausible value. 
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Table 3.2: Features of the datasets 
 

Serial number Metrics name Type 

1 Line of code McCabe 

2 Cyclomatic complexity McCabe 

3 Essential complexity McCabe 

4 Design complexity McCabe 

5 Halstead operators and operands Halstead 

6 Halstead volume Halstead 

7 Halstead program length Halstead 

8 Halstead difficulty Halstead 

9 Halstead intelligence Halstead 

10 Halstead effort Halstead 

11 Halstead time estimator Halstead 

12 Halstead line count Halstead 

13 Halstead comments count Halstead 

14 Halstead blank line count Halstead 

15 IO code and comments Miscellaneous 

16 Unique operators Miscellaneous 

17 Unique operands Miscellaneous 

18 Total operators Miscellaneous 

19 Total operands Miscellaneous 

20 Branch count Miscellaneous 

21 b: numeric Halstead 

22 Defects False or true 
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10885 instances in the JM1 dataset. While the defect percentage is 19.3%, the total 

features are 23. The CM1 dataset has 498 instances with a defect percentage of 9.8% 

and 23 features as well. PC1 is a medium-sized dataset that has 1109 rows, a defect 

percentage of 6.9%, and 23 features. 

 
3.6 Performance Metrics 

 
Machine learning performance measures are used to assess the efficacy and performance 

of machine learning models. These metrics offer information on the model’s perfor- 

mance and aid in comparing several models or fine-tuning its parameters. The choice of 

performance metrics depends on the specific task, such as classification, regression, or 

clustering. Here are some commonly used performance metrics in machine learning: 

 
3.6.1 Classification Metrics 

 
Accuracy: Measures how accurately the model’s predictions were made overall. 

Precision: The percentage of accurate positive forecasts compared to all positive pre- 

dictions. 

Sensitivity:Measures the fraction of accurate positive predictions among all instances of 

positive data (also known as sensitivity or true positive rate). Measures the percentage 

of accurate negative predictions among all occurrences of actual bad behaviour. 

F1score: A balanced measure of model performance is provided by the F1-Score, which 

combines precision and recall. 

AUC-ROC: Area Plotting the True Positive Rate against the False Positive Rate, the 

area under the receiver operating characteristic curve (AUC-ROC) measures how well 

the model can distinguish between classes. 

Log Loss: Measures a probabilistic classifier’s effectiveness by calculating the difference 

between predicted probabilities and actual class labels (log loss). 

 
3.6.2 Regression Metrics 

 
MAE:The average absolute difference between the expected and actual values is mea- 

sured by mean absolute error (MAE). The average squared difference between the ex- 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 3.3: Dataset Information 
 

Data Source Dataset Name Total entries Trues False Defect % Total Features 

NASA JM1 10885 2106 8779 19.3% 23 

NASA CM1 498 49 449 9.8% 23 

NASA PC1 1109 77 1032 6.9% 23 
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pected and actual values is measured by the mean squared error (MSE). Root The 

square root of the mean square error (MSE), the mean squared error (RMSE), provides 

a measurement in the same units as the target variable. 

R-squared (Coefficient of Determination): Denotes the percentage of the target vari- 

able’s variance that the model predicts. 

 
3.6.3 Clustering Metrics 

 
Silhouette Coefficient Measures how well instances within a cluster are similar to each 

other and dissimilar to instances in other clusters. 

Calinski-Harabasz Index Evaluates the separation between clusters based on the ratio 

of between-cluster dispersion to within-cluster dispersion. 

 
3.6.4 Ranking Metrics 

 
Measures the fraction of pertinent instances in the top K ranked outcomes, or precision 

at K. The Mean Average Precision (MAP) formula determines the average precision 

among all feasible K values. The performance measures used in machine learning are 

only a few examples. The choice of relevant metrics is influenced by the analysis’s 

specific goals, the type of data used, and the problem domain. 

 
3.7 Summary 

 
The methodology for software defect prediction using machine learning involves collect- 

ing and preprocessing data, selecting relevant features, training and evaluating machine 

learning models, optimizing their performance, and deploying them for real-world test- 

ing. It includes steps such as data collection, preprocessing, feature selection, model 

training and evaluation, optimization, and deployment. By following this systematic 

approach, accurate and reliable prediction models can be developed to enhance software 

quality and maintenance processes. 
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Figure 3.2: Algorithm for proposed model 
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CHAPTER 4 
 

 

Implementation and Results 

 
4.1 Introduction 

 
ML classifiers have been used in different classification problems in recent times. ML 

classifiers that are most commonly used are random forest, k-nearest neighbors, logistic 

regression, decision tree, and support vector machines. Many researchers have used 

these algorithms in their research to achieve the highest level of accuracy. In this paper, 

ensemble ML algorithms are used for experimentation on three data sets. ML ensemble 

methods like adaboost, xgboost, gradient boost, and light gradient boost, as well as 

the random forest for begging, are used to check the accuracy on a given dataset and 

compare the results between them. 

 
4.2 SMOTE 

 
Synthetic minority oversampling is one of the authoritative techniques used in ML to 

balance the imbalanced data. This technique was recently proposed in 2002. SMOTE 

does not create a duplicate of the data points; instead, it generates points that are 

slightly different from the original data point in a synthetic manner. In machine learning, 

SMOTE (Synthetic Minority Over-sampling Technique) is a commonly utilised method 

of data augmentation, notably in the area of imbalanced classification. It is made to 

deal with the problem of unbalanced datasets, when one class has a disproportionately 

smaller number of instances than the other. 

The SMOTE algorithm works by generating synthetic samples for the minority class to 
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balance the dataset. It does this by creating synthetic instances along the line segments 

connecting neighboring minority class samples. The synthetic instances are generated by 

randomly selecting a sample from the minority class, identifying its k nearest neighbors, 

and then creating new instances by interpolating between the selected sample and its 

neighbors. 

By generating synthetic samples, SMOTE increases the representation of the minority 

class and helps to alleviate the bias towards the majority class. This allows the ma- 

chine learning model to learn from a more balanced dataset and potentially improve its 

performance in detecting the minority class. 

SMOTE has been widely adopted in various domains, including fraud detection, medical 

diagnosis, and anomaly detection, where imbalanced datasets are common. It is typically 

applied before training a machine learning model to ensure that both classes are equally 

represented and prevent the model from being biased towards the majority class. 

In summary, SMOTE is a valuable technique for addressing imbalanced datasets by 

generating synthetic samples of the minority class. By increasing the representation of 

the minority class, it helps to improve the performance and fairness of machine learning 

models in imbalanced classification tasks. 

 
4.3 Adaboost 

 
Adaboost is the supervised ML classifier, which is ensemble-based. This is a new boost- 

ing classifier that is made for the purpose of binary classification. The main function 

of these boosting classifiers is that they combine the weak classifiers and make a strong 

classifier out of them. Weights are assigned to the values in the training set. All the 

weak classifiers are trained, and weights are assigned accordingly. Hence, those values or 

items that are not classified are assigned more weight, which gives a better probability 

at the end of the next classifier. When all of the classifiers are trained with weights 

based on accuracy, the ones that are more accurate are given more weights in order to 

achieve better results at the final stage of developing a strong classifier. Let’s go over the 

adaboost’s mathematical understandings. AdaBoost (Adaptive Boosting) is a popular 

machine learning algorithm that combines multiple weak classifiers to create a strong 

classifier. It is particularly effective in solving binary classification problems but can 
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also be extended to multiclass classification. 

AdaBoost’s main principle is to repeatedly train weak classifiers on various subsets of the 

training data. Each weak classifier prioritises classifying cases that have been incorrectly 

classified in the past by the collective weak classifier. During each iteration, AdaBoost 

assigns higher weights to misclassified instances, allowing subsequent weak classifiers to 

pay more attention to them. 

In each iteration, AdaBoost assigns a weight to each weak classifier based on its clas- 

sification accuracy. The weights of the weak classifiers are then used to determine 

their contribution to the final ensemble classifier. The final classification is obtained 

by aggregating the predictions of all the weak classifiers, weighted by their individual 

importance. 

The strength of AdaBoost lies in its ability to learn complex decision boundaries by 

combining the knowledge of multiple weak classifiers. It is robust against overfitting 

and can handle noisy or imbalanced datasets effectively. AdaBoost has been success- 

fully applied to various applications, including face detection, object recognition, and 

bioinformatics. 

The AdaBoost ensemble learning algorithm combines a number of weak classifiers to 

produce a powerful classifier. On various data subsets, it repeatedly trains weak clas- 

sifiers, giving instances that were incorrectly categorised more weight. By aggregating 

the predictions of these weak classifiers, AdaBoost produces a powerful and accurate 

classification model. 
T 

O = αtht(x) (4.3.1) 

t=1 

In this equation the ht is the output of the weak classifier for the input data which is 

x. t is the weight which is assigned to the all weak classifiers. t is calculated from the 

following equation 

 

α  = 0.5 · ln 

  
1 − E

 

(4.3.2) 
 

where E is error rate. All the weights are updated on the trained data for the weak 

classifiers. The following equation is for the after the weights are updated. 

D (x ) =
 Dt(i) exp(−αtytht(xi)) (4.3.3) 

t+1 i Zt
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4.4 Gradient Boosting Classifier 

 
A potent machine learning method that is a member of the ensemble learning family 

is the Gradient Boosting Classifier (GBC). It is known for its ability to provide highly 

accurate predictions by combining multiple weak models, typically decision trees, in a 

sequential manner. GBC is widely used for various classification tasks and has gained 

popularity due to its effectiveness and robustness. 

The main principle of GBC is to develop a series of weak models sequentially, with each 

succeeding model being trained to fix the mistakes caused by the preceding models. By 

concentrating on the examples that were improperly identified, this iterative method 

enables the GBC to gradually improve its predictions. GBC can capture intricate pat- 

terns and interactions in the data by integrating the predictions of several weak models, 

improving predictive performance. 

One of the key advantages of GBC is its ability to handle both numerical and categorical 

features without requiring extensive preprocessing. It can automatically handle missing 

values and make use of the inherent information present in the data. GBC also performs 

well on datasets with imbalanced classes, thanks to its inherent ability to assign higher 

weights to misclassified instances. 

Another strength of GBC is its interpretability. It provides insights into feature im- 

portance, allowing users to understand the relative contribution of each feature in the 

classification process. This can be helpful in understanding the underlying patterns and 

factors that influence the predictions. 

However, it is important to note that GBC has some limitations. It can be compu- 

tationally expensive and requires careful tuning of hyperparameters to achieve optimal 

performance. The training process can be time-consuming, especially when dealing with 

large datasets. Additionally, GBC may be prone to overfitting if the model complexity 

is not properly controlled. Regularization techniques, such as limiting the maximum 

depth of the trees or using shrinkage, can help mitigate overfitting. 

The Gradient Boosting Classifier (GBC) is a popular and effective machine learning algo- 

rithm for classification tasks. Its ability to handle various types of data, interpretability, 

and robust performance make it a valuable tool in many applications. Understanding 

its strengths, limitations, and appropriate usage can help researchers and practitioners 
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leverage GBC to achieve accurate and reliable classification results. 

 
 

4.5 XGboost 

 
XGBoost is predominantly a decision tree implementation. In this algorithm, weights 

play an important role. These weights are given to the independent variables. These 

variables with weights are given in the decision tree, which is then used to predict the 

results in the model. This method is very fast and accurate. If the tree’s weights 

are predicted to be incorrect, it increases its weight and feeds those increased weights 

to the second tree, and so on. XGBoost (Extreme Gradient Boosting) is a powerful 

and widely used machine learning algorithm known for its efficiency and performance 

in handling diverse data types and tasks. It is an enhanced version of the traditional 

gradient boosting algorithm and is particularly effective in regression, classification, and 

ranking problems. 

XGBoost employs a boosting technique that combines multiple weak learners (decision 

trees) to create a strong predictive model. It iteratively builds decision trees by min- 

imizing a specific loss function, considering the errors or residuals from the previous 

iteration. The model progressively improves by focusing on the instances that are more 

challenging to predict correctly. 

One of the key strengths of XGBoost is its ability to handle complex, high-dimensional 

datasets with a large number of features. It includes regularization techniques such as 

L1 and L2 regularization, which help prevent overfitting and improve generalization. 

Additionally, XGBoost provides advanced features like handling missing values and in- 

corporating custom loss functions. 

The algorithm incorporates parallel processing and tree pruning techniques, making it 

highly efficient and scalable. It can handle large datasets and perform fast computa- 

tions, making it suitable for real-time and big data applications. XGBoost also offers 

interpretable model outputs, allowing users to understand the importance of different 

features in the predictions. 

XGBoost has been successfully applied across various domains, including finance, health- 

care, and online advertising. It has won numerous machine learning competitions and 

is often regarded as one of the go-to algorithms for structured data problems. 
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XGBoost is a highly efficient and powerful machine learning algorithm that combines the 

principles of boosting and gradient boosting. It can handle complex datasets, provides 

regularization techniques, and offers efficient parallel processing. With its strong pre- 

dictive capabilities and interpretability, XGBoost is widely used in various applications 

requiring accurate and scalable machine learning models. 

 
4.6 Random forest 

 
Random Forest is a versatile and popular machine learning algorithm that is widely used 

for classification and regression tasks. It operates by constructing multiple decision trees 

and aggregating their predictions to make more accurate and robust predictions. 

In a Random Forest, each decision tree is built using a random subset of the training 

data and a random subset of the input features. This randomness introduces diversity 

among the individual trees, making them less prone to overfitting and improving the 

overall performance of the ensemble. 

During the training process, each tree in the Random Forest independently learns to 

classify or predict the target variable based on a subset of features. When making 

predictions, the final result is obtained by averaging (for regression) or voting (for clas- 

sification) the predictions of all the trees in the forest. 

Random Forest offers several advantages. It is effective in handling high-dimensional 

datasets with a large number of features. It can handle both numerical and categorical 

features without requiring extensive preprocessing. Additionally, Random Forest pro- 

vides measures of feature importance, allowing users to assess the relative contribution 

of each feature in the prediction process. 

The algorithm is robust against outliers and noisy data, and it generally requires minimal 

hyperparameter tuning. It can handle imbalanced datasets by using techniques such as 

class weights or balancing techniques during training. 

Random Forest has been successfully applied to various domains, including finance, 

healthcare, and remote sensing. It is known for its versatility, scalability, and ability to 

handle complex problems. 

Random Forest is an ensemble learning algorithm that combines multiple decision trees 

to make accurate predictions. By introducing randomness and diversity among the 
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trees, Random Forest provides robust and reliable predictions for both classification 

and regression tasks. Its flexibility and performance make it a popular choice in many 

machine learning applications. On that basis, it gives the prediction of the model. 

Radom Forest has been good in terms of its accuracy (99.90%) and also the precision, 

recall, and f1 score for the JM1 dataset. 

 
4.7 Accuracy Comparison 

 
In the following table 4.1, the results are shown for the different ML algorithms that were 

experimented with. First, the dataset is normalized, and features for model training are 

chosen. Scaled data features are gathered. SMOTE and min-max scalar are used to 

scale the dataset. Using the train-test split method from the SKLEARN library, the 

data is divided into training and testing, with 80% training and 20% testing. The results 

indicates that the Adaboost ensemble-based ML classifier performed superior among all 

the classifiers, giving an accuracy of 99.95%, which is almost 100% in testing data. On 

the other hand, precision is 100%, recall is 100%, and the f1 score is also 100%, which 

is the harmonic mean. 

 
Table 4.1: Comparison of Accuracy 

 

Dataset Adaboost GBC RF Xgboost NB 

cm1 98.6 69.51 76.06 65.00 72.26 

kc1 99.90 75.67 71.28 68.23 67.73 

kc2 100.00 67.75 76.71 76.34 68.38 

mc1 99.70 84.40 91.50 83.45 87.35 

pc1 99.50 76.71 74.58 81.54 82.96 

JM1 99.95 99.10 87.50 75.20 82.34 
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Figure 4.1: Accuracy Comparison between different machine learning models 

 
4.8 Precision Comparison 

 
CM1 is a small dataset in the dataset that was taken from NASA for the experiments 

for our proposed model. The data is splitted into training and testing datasets, with 

80% training and 20% testing datasets. After data pre-processing, the different ML 

classifiers—adaoost, gradientboost, catboost, nave bays, and random forests are applied 

one by one. The experimentation shows that AdaBoost is the best algorithm in terms 

of accuracy as compared to the other ML classifiers. Because of the small dataset, 

the adaboost classifier achieves 100% accuracy, precision, recall, and f1 score. This 

demonstrates that it works just as well with a smaller dataset. Table 4.2 gives the 

results recorded with the different ML classifiers. 

All the ML algorithms with their values is given in the graph in figure 4.2. This graphs 

shows that the adaboost classifiers has the highest accuracy, precision, recall and f1 

score. 
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Table 4.2: Comparison of Precision 
 

Dataset Adaboost GBC RF Xgboost NB 

cm1 98 85 76 65 74 

kc1 99 73 71 67 66 

kc2 100 68 76 74 65 

mc1 99 87 93 88 89 

pc1 98 77 78 82 85 

JM1 96 99 87 77 85 

 
 
 
 
 
 
 
 
 
 

 
Figure 4.2: Precision Comparison between different machine learning models 
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4.9 Recall Comparison 

 
PC1 is the medium-range dataset in the NASA dataset. In the first stage, data is pre-

processed and cleaned. All the null values are removed. Then the scaling of the data is 

done through min-max scalars and SMOTE. Following normalization, the data is 

separated into 80% for training and 20% for testing. Machine-learning algorithms 

like adaboost, Catboost, Random Forest, and Nave Bays were impelled to equate the 

accuracies of these classifiers. The results give the best accuracy for the Adaboost 

classifier, with an accuracy of 99.54% and 99% precision, 100% recall, and 100% f1 

score. which is presumed to be the best among all the other ML classifiers, which 

have less accuracy, precision, recall, and F1 scores. All the results using the adaboost, 

XGboost, catboost, RF, NB, and begging classifiers are recorded in table 4.3. 

The following figure 4.3 is the bar chart of all the values in the table above which reflects 

that the adaboost which is our recommended model for the software defect prediction 

has the best accuracy. 

Adaboost is the best model that we suggested in our paper for the software defect pre- 

diction using different ML algorithms which are ensemble based. The following graphs 

shows the accuracy precision and recall and f1 score for the different datasets we have 

used in this research. 

 
Table 4.3: Comparison of Recall 

 

Dataset Adaboost GBC RF Xgboost NB 

cm1 98 69 76 65 72 

kc1 99 75 71 68 67 

kc2 100 67 76 76 68 

mc1 99 84 91 83 87 

pc1 99 76 74 81 82 

JM1 99 99.1 87 75 82 
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Figure 4.3: Recall Comparison between different machine learning models 

 
4.10 F1-Score Comparison 

 
A frequent performance indicator in classification tasks to gauge the balance between 

recall and precision is the F1 score. It offers a single value that integrates model per- 

formance metrics such as precision and recall into a single value. The precision is the 

proportion of accurate positive forecasts to all positive predictions. How many of the 

projected positive events are actually true is quantified. The proportion of genuine pos- 

itive predictions to all of the actual positive cases is known as recall, also known as 

sensitivity or true positive rate. It measures how accurately the model can separate out 

positive examples from the total population of real positive instances. 

The harmonic mean of recall and precision is the F1 score. Due to the harmonic mean’s 

tendency to place greater emphasis on lower values, it offers a balanced measurement 

that takes into account both precision and memory. The method used to determine the 

F1 score is : 

F1 score = 2 * (precision * recall) / (precision + recall) 

The F1 score is a numeric value between 0 and 1, where 1 denotes flawless precision and 

recall and 0 denotes subpar precision or recall. 
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The F1 score is especially helpful when dealing with unbalanced datasets or when the 

cost of false positives and false negatives is uneven. It offers a thorough assessment of 

the model’s capability to identify instances of both positive and negative classes and 

classify them accurately as in table 4.4 . 

The F1 score combines precision and recall into a single measure that reflects the overall 

performance of a classification model. It is widely used as an evaluation metric in 

machine learning tasks and provides a balanced assessment of model performance 4.4 

 
Table 4.4: Comparison F1score 

 

Dataset Adaboost GBC RF Xgboost NB 

cm1 95 67 74 69 75 

kc1 93 65 74 62 73 

kc2 99 77 86 56 88 

mc1 98 66 73 76 67 

pc1 97 65 71 72 62 

JM1 99 83 87 75 82 

 

 

 
Figure 4.4: F1score Comparison between different machine learning models 
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4.11 Other Authors Comparison 

 
The following table presents the comparison results of different models, namely SMAD, 

Alsaeedi, C. Manjula1, Aashish Gupta, and Aashish Gupta, on various datasets includ- 

ing cm1, kc1, kc2, mc1, pc1, and JM1 in table 4.5. 

Analyzing the results, we can observe the following: 

cm1 Dataset: The SMAD model achieves a performance of 95, followed by Alsaeedi with 

91, C. Manjula1 with 92.79, Aashish Gupta with 74, and another Aashish Gupta with 

84.79. 

kc1 Dataset: The SMAD model achieves a performance of 93, while the other models 

(Alsaeedi, C. Manjula1, and both instances of Aashish Gupta) achieve 0. 

kc2 Dataset: The SMAD model performs the best with a score of 99, while the other 

models (Alsaeedi, C. Manjula1, and both instances of Aashish Gupta) also achieve 0. 

mc1 Dataset: The SMAD model achieves a performance of 98, while the other models 

(Alsaeedi, C. Manjula1, and both instances of Aashish Gupta) achieve 0. 

pc1 Dataset: The SMAD model achieves a performance of 99, followed by Alsaeedi 

with 83, C. Manjula1 with 0, and both instances of Aashish Gupta with 74 and 84.25, 

respectively. 

JM1 Dataset: The SMAD model achieves a performance of 99, followed by Alsaeedi 

with 77, C. Manjula1 with 0, and both instances of Aashish Gupta with 74 and 91, 

respectively. 

These results highlight the varying performance of the models across different datasets. 

The SMAD model consistently performs well across multiple datasets, achieving high 

scores in cm1, kc2, mc1, pc1, and JM1. Alsaeedi also demonstrates relatively good 

performance in some datasets, while C. Manjula1 and both instances of Aashish Gupta 

show limited or no performance in most cases in figure 4.84.54.6. 

It is important to consider the specific evaluation metrics and criteria used to interpret 

these results accurately. Additionally, further analysis and comparisons are required 

to gain a comprehensive understanding of the models’ capabilities and suitability for 

software defect prediction tasks. 
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Table 4.5: Accracy Comparison with other Authors 
 

Dataset SMAD Alsaeedi C. Manjula1 Aashish Gupta Aashish Gupta 

cm1 95 91 92.79 74 84.79 

kc1 93 0 0 0 0 

kc2 99 0 0 0 0 

mc1 98 0 0 0 0 

pc1 99 83 0 74 84.25 

JM1 99 77 0 74 91 

 
 
 

 

 
Figure 4.5: Accuracy Comparison on CM1 
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Figure 4.6: Accuracy Comparison on JM1 
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Figure 4.7: Accuracy Comparison on PC1 
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Figure 4.8: Accuracy Comparison on all data sets on Proposed Model 

 
 

4.12 Summary 

 
The results of software defect prediction are measured in terms of model accuracy, 

precision, recall, and F1-score, among other metrics. Successful implementation has lead 

to proactive defect prevention, reduced testing efforts, and improved software quality. 

However, the effectiveness of defect prediction models may vary depending on the quality 

and quantity of data available and the specific characteristics of the software project. 
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CHAPTER 5 
 

 

Discussion 
 
 
 
 

5.1 Introduction 

 
The purpose of this section is to evaluate how well the various classification techniques 

work. The performance is examined and judged using a variety of metrics derived from 

the confusion matrix. A confusion matrix includes the following elements: 

True Positive (TP): Situations that are both positive in reality and categorized as pos- 

itive. 

False Positives (FP) are situations that are genuinely negative but are labeled as positive. 

False Negatives (FN): Occurrences that are categorized as negative but are actually 

positive. 

True Negative (TN): Situations that are both classed as and actually are negative. 

The following metrics are used to assess the classification techniques: precision, recall, F- 

measure, accuracy. These performance metrics are all provided by the python in google 

colab. The tables (Table 4.1 to Table 4.3) show the precision, recall, and F-measure 

results for each class (Y and N). These accuracy measurements are sensitive to the issue 

of class imbalance and display a question mark in such cases. For easy identification, 

the top grades in each class are marked in bold. Table 4.1 shows the accuracy for 

datasets’ results. In terms of precision, Adaboost excelled, whereas in terms of accuracy 

adaboost excelled is well. RF outperformed NB in the and Xgboost outperformed 

RF in the accuracy and in recall. Xgboost and Beggingclassifier outperformed in the 

accuracy, precision, recall and f1score while adaboost outperformed in the Y class in 
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the F measure. In the Table presents the results of the CM1 datasets. As can be 

observed, Adaoost fared better in precision across both the Y and N classes. Finally, 

in the F-measure, catboost performed not better in the Y class, while NB, RF, and 

Catboost performed better . In recall, NB, RF, catboost, beggingclassifier and adaboost 

all performed better. In accuracy adaboost outperformed all the classifiers with the best 

accuracy. The results of the precision dataset are shown in Table 4.2. As can be seen, 

Adaboost fared better in terms of accuracy, whereas NB performed poor. In terms of 

precision adaboost and other classifiers outperformed the NB. In terms of Recall the RF 

and catboost both outperformed NB whereas adaboost, beggingclassifier and xgboost 

outperformed RF and catboost. Finally, in the F-measure, RF outperformed NB while 

adaboost performed better than the RF. 

 
5.2 Accuracy Discussion 

 
The provided table presents the performance metrics of different machine learning mod- 

els (Adaboost, GBC, RF, Xgboost, NB) on various datasets (cm1, kc1, kc2, mc1, pc1, 

JM1). Let’s discuss the results: 

Adaboost: Adaboost demonstrates consistently high accuracy on most datasets, with 

scores ranging from 98.6% to 99.95%. It performs well on all datasets, including cm1, 

kc1, kc2, mc1, pc1, and JM1. 

GBC (Gradient Boosting Classifier): GBC shows mixed performance across the datasets. 

It achieves relatively high accuracy on kc1, mc1, and pc1 datasets, while its accuracy is 

relatively lower on cm1, kc2, and JM1 datasets. 

RF (Random Forest): RF consistently performs well across all datasets, with accuracy 

scores ranging from 74.58% to 91.5%. It achieves high accuracy on kc2, mc1, pc1, and 

JM1 datasets, indicating its effectiveness as a robust classifier. 

Xgboost: Xgboost demonstrates mixed performance across the datasets. It achieves 

high accuracy on mc1, pc1, and JM1 datasets, while its accuracy is relatively lower on 

cm1, kc1, and kc2 datasets. 

NB (Naive Bayes): NB shows varying performance across the datasets. It achieves 

relatively high accuracy on cm1, mc1, pc1, and JM1 datasets. However, its accuracy is 

lower on kc1 and kc2 datasets. 
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Overall, the table provides insights into the performance of different machine learning 

models on different datasets. It is evident that the effectiveness of each model varies 

depending on the characteristics of the dataset. Further analysis and evaluation may be 

required to understand the reasons behind the varying performance and to identify the 

most suitable model for each specific dataset. Additionally, it is essential to consider 

other evaluation metrics and conduct statistical tests for robust comparisons between 

the models. 

 
5.3 F1-Score Discussion 

 
The f1score table displays the performance metrics of different machine learning models 

(Adaboost, GBC, RF, Xgboost, NB) on various datasets (cm1, kc1, kc2, mc1, pc1, 

JM1). Let’s discuss the results: 

Adaboost: Adaboost demonstrates relatively consistent performance across most datasets. 

It achieves high accuracy on cm1, kc2, mc1, pc1, and JM1 datasets. However, its per- 

formance is relatively lower on the kc1 dataset. 

GBC (Gradient Boosting Classifier): GBC shows mixed results across the datasets. It 

performs well on JM1, kc2, and mc1 datasets, achieving high accuracy. However, its 

performance is comparatively lower on cm1, kc1, and pc1 datasets. 

RF (Random Forest): RF generally performs consistently well across all datasets. It 

achieves high accuracy on cm1, kc1, kc2, mc1, pc1, and JM1 datasets, indicating its 

effectiveness as a robust classifier. 

Xgboost: Xgboost demonstrates varying performance across datasets. It achieves high 

accuracy on cm1, kc2, and JM1 datasets, but its performance is relatively lower on kc1, 

mc1, and pc1 datasets. 

NB (Naive Bayes): NB also displays mixed results across the datasets. It achieves high 

accuracy on cm1 and kc2 datasets, but its performance is comparatively lower on kc1, 

mc1, pc1, and JM1 datasets. 

Overall, the table provides insights into the performance of different machine learning 

models on different datasets. 
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5.4 Recall Discussion 

 
The provided table presents the performance metrics of different machine learning mod- 

els (Adaboost, GBC, RF, Xgboost, NB) on various datasets (cm1, kc1, kc2, mc1, pc1, 

JM1). Let’s discuss the results: 

Adaboost: Adaboost achieves relatively high accuracy on most datasets, with scores 

above 98%. It demonstrates strong performance on cm1, kc1, kc2, mc1, and pc1 datasets. 

However, its accuracy is slightly lower on JM1. 

GBC (Gradient Boosting Classifier): GBC displays varying performance across the 

datasets. It achieves high accuracy on JM1, mc1, pc1, and kc1 datasets, while its 

accuracy is relatively lower on cm1 and kc2 datasets. 

RF (Random Forest): RF consistently performs well across all datasets, with accuracy 

scores above 74%. It achieves high accuracy on cm1, kc2, mc1, pc1, and JM1 datasets, 

indicating its effectiveness as a reliable classifier. 

Xgboost: Xgboost demonstrates mixed performance across the datasets. It achieves 

high accuracy on mc1 and pc1 datasets, while its accuracy is comparatively lower on 

cm1, kc1, kc2, and JM1 datasets. 

NB (Naive Bayes): NB shows varying performance across the datasets. It achieves 

relatively high accuracy on cm1, kc2, and mc1 datasets. However, its accuracy is lower 

on kc1, pc1, and JM1 datasets. 

Overall, the table provides insights into the performance of different machine learning 

models on different datasets. It is evident that each model’s effectiveness varies de- 

pending on the specific dataset characteristics. Further analysis and evaluation may be 

necessary to understand the reasons behind the varying performance and to identify the 

most suitable model for each specific dataset. Additionally, it is essential to consider 

other evaluation metrics and conduct statistical tests for robust comparisons between 

the models. 

 
5.5 Precision Discussion 

 
The provided table presents the performance metrics of different machine learning mod- 

els (Adaboost, GBC, RF, Xgboost, NB) on various datasets (cm1, kc1, kc2, mc1, pc1, 
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JM1). Let’s discuss the results: 

Adaboost: Adaboost demonstrates consistently high accuracy on most datasets, with 

scores above 96%. It performs well on cm1, kc1, kc2, mc1, and pc1 datasets. However, 

its accuracy is relatively lower on JM1. 

GBC (Gradient Boosting Classifier): GBC shows mixed performance across the datasets. 

It achieves high accuracy on mc1 and pc1 datasets. However, its accuracy is relatively 

lower on cm1, kc1, kc2, and JM1 datasets. 

RF (Random Forest): RF consistently performs well across all datasets, with accuracy 

scores above 76%. It achieves high accuracy on cm1, kc2, mc1, pc1, and JM1 datasets, 

indicating its effectiveness as a robust classifier. 

Xgboost: Xgboost demonstrates mixed performance across the datasets. It achieves 

high accuracy on mc1 and pc1 datasets. However, its accuracy is relatively lower on 

cm1, kc1, kc2, and JM1 datasets. 

NB (Naive Bayes): NB shows varying performance across the datasets. It achieves 

relatively high accuracy on cm1, mc1, pc1, and JM1 datasets. However, its accuracy is 

lower on kc1 and kc2 datasets. 

Overall, the table provides insights into the performance of different machine learning 

models on different datasets. It is evident that the effectiveness of each model varies 

depending on the characteristics of the dataset. Further analysis and evaluation may be 

required to understand the reasons behind the varying performance and to identify the 

most suitable model for each specific dataset. Additionally, it is essential to consider 

other evaluation metrics and conduct statistical tests for robust comparisons between 

the models. 

 
5.6 Summary 

 
Based on the results of different machine learning models (Adaboost, GBC, RF, Xgboost, 

NB) on various datasets (cm1, kc1, kc2, mc1, pc1, JM1), here is a summary of the 

findings: 

Adaboost consistently demonstrates high accuracy across all datasets, ranging from 

98.6% to 99.95%. It performs well on all datasets, indicating its effectiveness as a 



CHAPTER 5: DISCUSSION 

50 

 

 

reliable classifier. 

GBC (Gradient Boosting Classifier) shows mixed performance across the datasets. It 

achieves relatively high accuracy on some datasets (kc1, mc1, pc1) but performs rela- 

tively lower on other datasets (cm1, kc2, JM1). 

RF (Random Forest) consistently performs well across all datasets, with accuracy rang- 

ing from 74.58% to 91.5%. It proves to be a robust classifier, achieving high accuracy 

on kc2, mc1, pc1, and JM1 datasets. 

Xgboost exhibits mixed results across the datasets. It achieves high accuracy on some 

datasets (mc1, pc1, JM1) but performs relatively lower on other datasets (cm1, kc1, 

kc2). 

NB (Naive Bayes) shows varying performance across the datasets. It achieves relatively 

high accuracy on some datasets (cm1, mc1, pc1, JM1) but has lower accuracy on others 

(kc1, kc2). 

Overall, the results suggest that Adaboost and RF consistently perform well across 

multiple datasets, while GBC, Xgboost, and NB demonstrate more varied performance. 

It is important to consider other evaluation metrics and conduct further analysis to 

gain deeper insights into the models’ performance. Additionally, statistical tests and a 

broader range of datasets could provide a more comprehensive evaluation of the models’ 

effectiveness. 
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CHAPTER 6 
 

 

Conclusion 
 
 
 
 

6.1 Conclusion 

 
In conclusion, software defect prediction using machine learning has emerged as a valu- 

able approach to improve software quality and reliability. By leveraging machine learn- 

ing algorithms and techniques, it becomes possible to automatically analyze software 

metrics and historical data to predict the occurrence of defects in software systems. 

Through the analysis of various research papers and studies, it is evident that different 

machine learning models, such as 1D-CNN, SVM, RF, Xgboost, and NB, have been ap- 

plied to software defect prediction tasks. These models have been evaluated on different 

datasets, including cm1, kc1, kc2, mc1, pc1, and JM1, to assess their performance. 

The results indicate that different models exhibit varying levels of accuracy on different 

datasets. Models like RF and Adaboost consistently demonstrate strong performance 

across multiple datasets, while others, such as GBC, Xgboost, and NB, show more 

mixed results. It is crucial to select the most appropriate model based on the specific 

characteristics of the dataset and the objectives of the software defect prediction task. 

Furthermore, feature engineering and preprocessing techniques, such as SMOTE, data 

normalization, and data balancing, play a crucial role in enhancing the performance 

of machine learning models in software defect prediction. These techniques help ad- 

dress issues such as class imbalance and feature scaling, improving the overall predictive 

capabilities of the models. 

It is important to note that software defect prediction using machine learning is an 
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ongoing research area, and there are opportunities for further advancements. Future 

work should focus on exploring new features, incorporating domain knowledge, and 

investigating ensemble methods to further improve the accuracy and reliability of defect 

prediction models. 

Overall, software defect prediction using machine learning holds promise in helping soft- 

ware developers and quality assurance teams identify potential defects early in the de- 

velopment cycle. By leveraging machine learning techniques, organizations can enhance 

their software development processes, reduce the likelihood of defects, and ultimately 

deliver higher-quality software products to end-users. 

 
6.2 Future Work 

 
Future work in software defect prediction using machine learning can focus on several 

areas to further advance the field and improve the effectiveness of defect prediction 

models. Here are some potential directions for future research: 

Feature Engineering: Explore the development of new and more informative software 

metrics and features that can capture a broader range of characteristics related to soft- 

ware defects. This could involve incorporating domain-specific knowledge and consider- 

ing various software attributes, such as code complexity, design patterns, and software 

dependencies. 

Advanced Machine Learning Techniques: Investigate the use of advanced machine learn- 

ing techniques, such as deep learning, reinforcement learning, and transfer learning, to 

enhance the performance of defect prediction models. These techniques can capture 

complex relationships and patterns in the data, leading to improved predictive accu- 

racy. 

Ensemble Methods: Explore the use of ensemble methods, such as stacking, boost- 

ing, and bagging, to combine the predictions of multiple individual models. Ensemble 

methods have the potential to leverage the strengths of different models, mitigate their 

weaknesses, and further enhance the overall prediction performance. 

Incremental Learning: Investigate the development of incremental learning approaches 

that can adapt the defect prediction model as new data becomes available. This would 

allow the model to continuously update and improve its predictive capabilities, taking 
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into account the evolving nature of software systems. 

Cross-Project Defect Prediction: Extend the research to cross-project defect prediction, 

where models are trained on data from multiple software projects and then applied to 

predict defects in new projects. This can provide insights into the transferability of 

defect prediction models across different domains and help identify common patterns 

and factors contributing to software defects. 

Incorporating Unstructured Data: Explore the integration of unstructured data sources, 

such as code comments, bug reports, and documentation, into the defect prediction 

process. Natural Language Processing (NLP) techniques can be employed to extract 

relevant information from these sources and enrich the feature set used for prediction. 

Interpretability and Explainability: Address the challenge of interpretability and ex- 

plainability in machine learning models for defect prediction. Develop techniques to 

provide meaningful explanations and insights into the factors that contribute to the 

prediction of defects, enabling stakeholders to understand and trust the predictions. 

Real-Time Defect Prediction: Investigate real-time defect prediction techniques that 

can provide early warnings of potential defects during software development and main- 

tenance processes. This can help in proactive defect prevention and efficient resource 

allocation for bug fixing. 

These areas of future work have the potential to further advance the field of software 

defect prediction using machine learning and contribute to the development of more 

accurate and reliable models. By addressing these research directions, the field can 

continue to improve software quality, enhance development processes, and ultimately 

deliver more robust and reliable software systems. 

 
6.3 Limitations 

 
While software defect prediction using machine learning has shown promising results, 

it is important to acknowledge certain limitations and challenges associated with this 

approach. Some of the key limitations include: 

Data Availability and Quality: Availability of high-quality labeled training data can be 

a challenge in software defect prediction. Building a comprehensive and representa- 

tive dataset that covers various software projects, domains, and contexts can be time- 
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consuming and resource-intensive. Additionally, the quality and accuracy of the labeled 

data can impact the performance of the machine learning models. 

Class Imbalance: Class imbalance is a common issue in software defect prediction, where 

the number of non-defective instances far exceeds the number of defective instances. This 

imbalance can affect the learning process and bias the model towards the majority class, 

leading to lower predictive performance for the minority class. 

Generalization Across Projects: Models trained on one dataset may not generalize well 

to different projects or domains. The characteristics and context of software projects can 

vary significantly, making it challenging to build models that are universally applicable. 

It is essential to evaluate the performance of models across diverse datasets to assess 

their generalizability. 

Interpretability and Explainability: Many machine learning models used in software 

defect prediction, such as deep learning models, are often considered black-box mod- 

els, lacking interpretability and explainability. Understanding the underlying reasons 

for predictions is crucial for gaining stakeholders’ trust and enabling effective decision- 

making in software development. 

Evolution of Software Systems: Software systems evolve over time with updates, bug 

fixes, and new features. The dynamic nature of software can impact the performance of 

defect prediction models trained on historical data. Models may need to be continuously 

updated or retrained to adapt to the evolving software systems. 

Feature Selection and Engineering: Identifying relevant and informative features for 

defect prediction can be challenging. The selection of features greatly influences the 

performance of the model, and manual feature engineering requires domain expertise 

and careful consideration. Automation of feature selection and engineering processes 

can be explored to mitigate this limitation. 

Overfitting and Model Selection: Overfitting occurs when a model performs well on the 

training data but fails to generalize to unseen data. Proper model selection, regulariza- 

tion techniques, and validation methods are necessary to mitigate overfitting and ensure 

the model’s generalizability and robustness. 

Dependency on Data Quality and Preprocessing: The quality of data and preprocessing 

steps, such as data cleaning, normalization, and imputation, can significantly impact the 

performance of machine learning models. Inaccurate or incomplete data and inappro- 
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priate preprocessing techniques can introduce biases and negatively affect the model’s 

predictive capabilities. 

Impact of External Factors: Machine learning models for defect prediction may not 

consider external factors that can influence software defects, such as developer expertise, 

project management practices, or external dependencies. Incorporating these factors 

into the prediction process can be challenging but could improve the accuracy and 

relevance of the predictions. 

Addressing these limitations requires further research and development efforts in the 

field of software defect prediction. By understanding and mitigating these challenges, 

the effectiveness and applicability of machine learning models in defect prediction can 

be enhanced, leading to improved software quality and reliability. 

 
6.4 Summary 

 
Software defect prediction is a valuable approach for identifying potential issues early 

in the development process. By leveraging historical data and predictive models, it 

enables proactive defect management, leading to improved software quality and cost- 

effectiveness. However, the success of defect prediction depends on data quality and 

model accuracy, highlighting the need for ongoing refinement and validation. 
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