
A Framework for reviewing security related requirements in

requirements specification of Android Application

Development

By

ARSALAN ALI

MSCSE 19

(Registration No.:319528)

Supervisor: Dr. Taimoor Zahid

DEPARTMENT OF COMPUTER AND SOFTWARE ENGINEERING,

COLLEGE OF ELECTRICAL AND MECHANICAL ENGINEERING (E&ME),

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY (NUST),

ISLAMABAD

SEP, 2023

i

Thesis Acceptance Certificate

ii

Declaration

Dedicated to a hopeful couple, my mother and my father, and

my Teachers whose motivations, and endless prayers led me

to this achievement

iii

Acknowledgments

I am thankful to ALLAH Almighty for his blessings throughout this research work. It was quite

a challenging process that could not have been completed without the help of Allah Almighty

and the strength that he given to me.

I would like to thank my sincere supervisor ‘Dr. Taimoor Zahid’ and co-supervisor ‘Dr. Wasi

Haider Butt’ for their determined guidance and the entire faculty staff for their endless

support. I cannot thank them enough for their role in the completion of my thesis report. I also

thank my parents, siblings, and friends who encouraged me and kept me motivated during my

master’s program.

I am also eternally grateful to the Department of Computer and Software Engineering and the

management of College of Electrical and Mechanical Engineering, NUST, who helped me and

supported me throughout this journey.

iv

Abstract

In this technology-driven era, the demand for software application development, particularly

on the Android platform, is soaring. However, the rapid and agile nature of development often

leads to insufficient specification of security-related requirements, resulting in significant

security risks. Neglecting these crucial elements can have severe consequences for software

applications. This paper presents a systematic literature review of state-of-the-art requirements

specification methods and frameworks from 97 research articles, with a specific focus on their

treatment of security-related requirements. The aim is to gain insights into existing practices

and identify potential gaps in addressing security concerns during the early stages of

development. The study reveals that overlooking security-related elements in the early stages

of development exposes organizations to major security risks. Unauthorized access becomes a

critical concern, leaving sensitive data vulnerable to breaches. Inadequate data protection

measures, such as weak encryption or improper data storage, increase the risk of data

compromises, leading to reputational damage and potential legal repercussions. Moreover,

when security requirements fail to address safeguards against privileged insiders abusing their

access, insider threats become a significant concern. Additionally, lacking incident response

planning hinders effective detection and mitigation of security incidents, resulting in extended

downtime and increased damage. To address these risks and enhance the security of Android

applications, this paper proposes a novel framework that leverages natural language processing

(NLP) techniques in conjunction with the Naive Bayes model. The framework aims to extract

and prioritize security-related requirements from raw requirement documents effectively. The

Naive Bayes model is well-suited for this task due to its simplicity, efficiency, and ability to

handle large volumes of textual data. The model leverages probabilistic principles to classify

requirements as security-related or non-security-related based on the likelihood of occurrence

of specific security-related terms and patterns in the text. By incorporating the Naive Bayes

model within the proposed framework, security analysts can efficiently analyse and categorize

requirements, ensuring that security-related elements are adequately addressed from the outset

of the development process. Applying the proposed framework early in the development

lifecycle empowers organizations to streamline the development process and mitigate potential

security breaches and associated costs. By integrating security requirements seamlessly into

the development process, teams can identify and address security concerns proactively,

reducing the likelihood of vulnerabilities and ensuring robust protection of sensitive data. In

conclusion, this research highlights the criticality of considering security-related requirements

during Android application development. The proposed framework, powered by the Naive

Bayes model, presents a promising solution to tackle the challenges of security specification in

an agile development environment. By bridging the gap between security concerns and

development activities, the framework enables organizations to develop secure and reliable

Android applications, safeguarding both user data and the organization's reputation.

Keywords – Requirements Specification, Requirement Elicitation, Security Requirements,

Non-functional Requirements, Security Requirements identification, Tool Support for Security

related requirements specification, Security Requirements in mobile App Development

v

Table of Contents
Thesis Acceptance Certificate -- i

Declaration --- ii

Acknowledgments --- iii

Abstract --- iv

LIST OF FIGURES -- vii

LIST OF TABLES -- viii

INTRODUCTION-- 1

1.1 MOTIVATION -- 3

1.2 PROBLEM STATEMENT -- 4

1.3 AIMS AND OBJECTIVES --- 4

1.4 THESIS OUTLINE --- 5

SYSTEMATIC LITERATURE REVIEW -- 6

2.1 Research Questions --- 7

2.2 Study Selection -- 7

2.2.1 Study Search --- 7

2.2.2 Inclusion and Exclusion Criteria --- 9

2.2.3 Quality Assessment --- 9

2.2.4 Study Distribution and Categorisation --- 12

2.3 Results and Discussion -- 16

2.3.1 SR Backlog -- 17

2.3.2 Modified User Stories --- 17

2.3.3 Frameworks and Methodologies -- 18

2.3.4 Tool Support -- 23

2.3.5 Hybrid Software Process Cycle/Model -- 25

2.4 Answers to Research Questions --- 27

2.5 Findings and Limitations --- 33

2.6 Conclusion of SLR --- 35

2.7 Research Gap-- 36

2.8 Summary --- 36

PROPOSED APPROACH -- 38

3.1 Proposed Model -- 39

3.1.1 Naïve -- 39

3.1.2 Bayes Theorem --- 39

3.2 Data Pre-Processing --- 40

3.2.1 Dataset Creation -- 40

3.2.2 Data Normalization -- 41

vi

3.2.3 Feature Selection --- 41

3.3 Summary --- 42

IMPLEMENTATION AND EVALUATION --- 43

4.1 Experimental Setup -- 43

4.2 Implementation --- 44

4.3 Evaluation --- 45

4.4 Comparison -- 47

4.5 Summary --- 48

CONCLUSION AND FUTURE DIRECTIONS -- 49

5.1 Conclusion --- 49

5.2 Future Directions --- 50

References -- 51

vii

LIST OF FIGURES

Figure 1: Number of mobile app downloads worldwide from 2016-2022 1

Figure 2: Phase of Systematic Literature Review .. 6

Figure 3: Tollgate Approach for Article Searching ... 8

Figure 4: Research Studies Categorisation .. 13

Figure 5: Scopus Distribution .. 13

Figure 6: Derived Category of Types .. 16

Figure 7: Identified framework & Methodologies ... 18

Figure 8: Tool Support ... 23

Figure 9: Hybrid Process Model .. 25

Figure 10: Android OS Architecture.. 38

Figure 11: Dataset Snap ... 41

Figure 12: Importing Libraries... 44

Figure 13: Data Loading .. 44

Figure 14: Label Mapping and dataset Splitting .. 44

Figure 15: Feature Setting .. 45

Figure 16: Classifier Implementation .. 45

Figure 17: Model Performance Measuring .. 46

viii

LIST OF TABLES

Table 1: Search keywords and combinations ... 7

Table 2: Quality Assessment Checklist ... 9

Table 3: Quality Assessment Criteria .. 10

Table 4: Evaluation of Articles .. 10

Table 5: Research Articles Distribution ... 12

Table 6: Temporal Distribution of Research Papers .. 14

Table 7: Classification of Research Articles based on Existing Techniques and

Methodologies.. 14

Table 8: List of Existing Methodologies and Framework Techniques 28

Table 9: Existing Tools .. 29

Table 10: Confusion Matrix ... 46

Table 11: Comparison Between Proposed Approach and State of the Art Frameworks and

Techniques ... 47

1

CHAPTER 1

INTRODUCTION

In today's digital era, Android applications have become an integral part of our daily lives,

revolutionizing the way we communicate, work, and access information. Android, being the

most widely used mobile operating system worldwide, has a significant impact on the global

app ecosystem. As of 2023, there were over 3.48 million Android applications available on the

Google Play Store, catering to the diverse needs of users worldwide [1] The extensive range of

Android apps reflects their popularity and the growing demand for convenient, on-the-go

solutions. The exponential growth of Android app usage can be observed in the increasing

number of app downloads. According to Statista, the number of mobile app downloads

worldwide is projected to reach 300 billion in 2023, up from 255 billion in 2022 [2]. This

upward trend is illustrated in the graph below, showcasing the rise in global app downloads

over the years.

Figure 1: Number of mobile app downloads worldwide from 2016-2022

The significance of Android applications transcends personal use, with their impact extending

to various sectors such as e-commerce, entertainment, education, healthcare, and more. These

applications have transformed the way businesses operate and interact with customers, leading

to enhanced productivity, streamlined processes, and improved user experiences. Furthermore,

they have opened up new avenues for entrepreneurs and developers to innovate and bring their

ideas to a global audience. The pervasive use of smartphones and Android applications is

evident in a survey conducted by Pew Research Centre, which found that around 95% of the

world's population owns a cell phone, and 80% own a smartphone [3]. Moreover, 53% of

smartphone users reported using their devices to access online services and applications [3].

These statistics highlight the significant role Android applications play in facilitating seamless

connectivity and enabling users to access a wide range of services and information

conveniently. The immense popularity of Android applications can be attributed to their user-

140.68

192.45
204

218
230

255

0

50

100

150

200

250

300

2016 2017 2019 2020 2021 2022

No. of Mobile Apps

No. of Mobile Apps

2

friendly interfaces, extensive app offerings, and constant advancements in technology. As

smartphones become increasingly powerful and interconnected, Android applications continue

to evolve, providing users with innovative features and personalized experiences. The

continuous growth of the Android app ecosystem demonstrates the unwavering demand for

convenient, reliable, and efficient mobile solutions. In short, Android applications have become

a vital component of our modern lifestyle, offering countless benefits and transforming the way

we interact with technology. The sheer number of available Android applications, coupled with

the increasing app downloads and the widespread use of smartphones, signifies their

indispensability in our daily lives. As technology continues to advance, the significance of

Android applications is likely to grow, driving innovation, enhancing user experiences, and

shaping the future of mobile technology.

However, the importance of security in Android applications cannot be overstated, as it plays

a crucial role in protecting user data, maintaining privacy, and preventing potential cyber

threats. Incidents involving security breaches in Android applications have highlighted the dire

consequences of overlooking security requirements. One prominent example is the

"Stagefright" vulnerability discovered in 2015, which affected millions of Android devices

worldwide. This vulnerability allowed attackers to remotely execute malicious code through a

multimedia message, potentially compromising sensitive user information and raising

significant concerns about the overall security of the Android ecosystem [4]. Another notable

example is the "Joker" malware that targeted Android applications. In 2020, researchers

discovered multiple instances of malicious apps on the Google Play Store infected with the

Joker malware. This malware had the capability to silently subscribe users to premium

subscription services without their consent, resulting in financial losses and compromised

privacy for unsuspecting users [5]. Such incidents serve as a stark reminder of the potential

risks and damages that can arise from inadequate security measures in Android applications.

The widespread distribution of malware-infected apps through the Google Play Store is another

alarming incident that underscores the criticality of robust security measures. Such incidents

have led to substantial financial losses and reputational damage for both users and developers,

as unsuspecting users unknowingly downloaded and installed compromised applications [6].

Furthermore, the increasing use of Android applications for various activities, such as online

banking, e-commerce transactions, and accessing personal information, amplifies the need for

stringent security measures. A lack of proper security protocols exposes users to risks such as

data breaches, identity theft, and unauthorized access to sensitive information. These incidents

can have severe consequences, including financial losses, damage to personal and professional

reputations, and even potential legal ramifications. The impact of security breaches is not

limited to individual users; it also affects businesses and organizations that rely on secure

communication and data handling.

To address these security concerns, developers must adhere to industry best practices and

employ robust security measures throughout the development lifecycle of Android

applications. This includes implementing secure coding practices, utilizing encryption for data

transmission and storage, implementing user authentication mechanisms, and conducting

regular security assessments and audits. Additionally, staying updated with the latest security

patches and fixes provided by Android's security updates is crucial to address known

vulnerabilities and protect against emerging threats. The significance of security in Android

applications is also acknowledged by regulatory bodies and standards organizations. For

3

instance, the Payment Card Industry Data Security Standard (PCI DSS) sets specific security

requirements for applications handling credit card information, emphasizing the need for

secure coding practices, encryption, and vulnerability management. Compliance with such

standards not only ensures the security of user data but also helps establish trust and confidence

among users and stakeholders. Having said that it should be noted that the importance of

security in Android applications cannot be ignored in today's digital landscape. The incidents

of security breaches and vulnerabilities in Android applications highlight the urgent need for

robust security measures to safeguard user information, prevent unauthorized access, and

protect against potential cyber threats. By prioritizing security throughout the development

process and adhering to industry best practices and standards, developers can provide users

with a secure and trustworthy experience while mitigating risks and safeguarding sensitive

data. Mobile Security is a serious requirement and needs consideration as a vital part of

software development. However, developing secure application is not a trivial task as it

requires to address security from early development stages throughout the whole software

lifecycle. Yet, in the majority of software projects, security is often dealt with in retrospect

when the system has already been designed and put into operation [7]. Traditional, document-

intensive requirement engineering includes practices to elicit, analyse, specify, and validate

and verify requirements. In such practices, the communication of requirements is mostly based

on formal and extensive documentation. Although the usage of such traditional approaches is

widespread, especially in the software industries dealing with security and safety-critical

systems, the necessity of delivering projects in shorter periods has triggered the desire and need

to change towards gradually increasing the usage of other methods such as hybrid models and

agile methodology. As the number of mobile applications continues to increase, so does the

importance of ensuring their security. One critical step in the development process is the review

of security-related requirements in the requirement specification [7]. Moreover, Android

Application Development has different constraints as most often conventional methodologies

cannot be applied to it because of its rapid development period. The widespread use of

smartphones has led to an increase in the demand for mobile applications. As more and more

apps are developed, it becomes essential to ensure that these apps are secure. Unfortunately,

security is often overlooked in the app development process, which leaves users vulnerable to

a range of security risks.

This research aims to identify state-of-the-art technologies and frameworks that researchers

have developed over time to specify security-related requirements in application development.

The Systematic Literature Review begins with the identification of such frameworks and

methodologies that were being used in Web, Desktop, and even Mobile Application

Development. By analysing the current landscape of security requirement specification

methods, this research aims to contribute to the development of more secure Android

applications. The ultimate goal is to ensure that developers prioritize security from the outset,

effectively mitigating risks and safeguarding user data. With the continued growth and impact

of Android applications, this research is timely and relevant for creating a safer digital

environment for users worldwide.

1.1 MOTIVATION
 The demand for Android application development has reached

unprecedented heights. The vast array of Android apps available on the global stage has

4

revolutionized the way we communicate, work, and access information. However, the rapid

and agile nature of development often leads to the oversight of crucial security-related

requirements, exposing software applications to significant security risks. Neglecting these

elements can result in dire consequences, such as unauthorized access, data breaches, and

potential harm to an organization's reputation. To address this critical issue, this research is

driven by the need to thoroughly investigate the treatment of security-related requirements

during the early stages of Android app development. Through a systematic literature review of

cutting-edge requirements specification methods and frameworks, this study aims to identify

existing practices and potential gaps. The ultimate objective is to propose a novel framework

that harnesses the power of natural language processing (NLP) techniques and the Naive Bayes

model to effectively extract and prioritize security-related requirements from raw documents.

By integrating robust security measures early in the development process, this research

endeavours to empower organizations to build secure and reliable Android applications,

thereby safeguarding user data and fostering trust in the rapidly changing digital landscape.

1.2 PROBLEM STATEMENT
 The absence of an efficient and systematic framework

for identifying and prioritizing security-related requirements early in the development process

hinders organizations from proactively addressing security concerns and mitigating potential

security breaches and associated costs specially in mobile application development. The

objective is to empower software development teams to enhance the security and reliability of

Android applications while streamlining the development lifecycle.

1.3 AIMS AND OBJECTIVES
 The primary aim of this research is to investigate and

address the challenges posed by the insufficient specification of security-related requirements

in Android application development. By conducting a comprehensive analysis of existing

practices and proposing a novel framework, the study aims to enhance the security of Android

applications, mitigating potential security risks and ensuring the protection of user data.

The objectives of this research activity are provided below:

1 To conduct a systematic literature review, analysing the state-of-the-art requirements

specification methods and frameworks in Android application development, with a

specific focus on their treatment of security-related requirements.

2 To identify the common security risks associated with the lack of proper security

specification in the early stages of Android app development, including unauthorized

access, data breaches, and potential regulatory non-compliance.

3 To propose a novel framework that leverages natural language processing (NLP)

techniques and the Naive Bayes model for effectively extracting and prioritizing security-

related requirements from raw requirement documents.

4 To validate the proposed framework's effectiveness in identifying security-related

requirements through empirical analysis

5 To provide recommendations and best practices for developers and organizations to

integrate security-related requirements proactively into their Android application

development process, aiming for robust and reliable software solutions.

5

1.4 THESIS OUTLINE
 The rest of the thesis outlines as follow:

Chapter 2 consists of the Systematic Literature Review in detail and various key state-of-the-

art related work conducted by various researchers in previous years. Further in Chapter 3 the

proposed NLP based Approach with respect to Android has been discussed. Moreover,

Chapter 4 includes the Implementation and discussion on results. Whereas, Research Thesis

concludes with Chapter 5 that includes a summary of conducted work and some future

directions.

6

CHAPTER 2

SYSTEMATIC LITERATURE REVIEW

In Chapter 2 Systematic Literature Review (SLR) has been conducted for the mentioned area

of research. The guidelines of [8] has been followed in performing the literature review. The

phase wise flow of the literature review has been shown in the Figure 2 below.

Figure 2: Phase of Systematic Literature Review

The initial step of the Systematic Literature Review (SLR) involved the planning phase, which

encompassed several key activities. Firstly, the process involved crafting research questions to

guide the review. Additionally, during the study search, a collection of research databases was

chosen. This selection process included creating search strings and focusing on studies

published between 2010 and 2023. Furthermore, the first phase included establishing criteria

for including or excluding studies. This step helped ensure the relevance of the selected studies.

Additionally, a quality assessment was performed on the chosen studies to gauge their

reliability. Moving on to the second phase, which involved the actual review process, the

selected articles were sorted into different categories using various filters. These filters

included organizing the articles based on their distribution across different corpora and years.

Moreover, the chosen articles were classified according to the frameworks, methodologies, and

approaches they employed. These approaches were subsequently discussed in-depth during the

discussion phase. Finally, the third stage centred on drawing conclusions based on the

conducted review. The research questions formulated during the initial phase of the SLR were

addressed, and answers were provided based on the findings of the review process.

7

2.1 Research Questions
 Based on the research area the formulated research questions

are provide below:

RQ1: What are the existing Security Requirements Identification Methodologies and Tools

Techniques?

RQ2: How effective are the different methodologies for reviewing security-related

requirements in software requirement specifications?

RQ3: What are the available Tools and techniques or Framework for specification of security

related Requirements in mobile application development?

RQ4: What are the key challenges and limitations associated with the current methodologies

used for reviewing security-related requirements in software requirement specifications?

2.2 Study Selection
 After formulating research questions, the next portion in this phase

is the process to select the studies from various Research Directories that fulfil the needs of the

area of research under consideration.

2.2.1 Study Search
 To explore the current advancements and frameworks in technology,

an extensive literature search was conducted across various databases including IEEE, ACM,

SPRINGER, TAYLOR and FRANCIS, ELSEVIER, among others. The goal was to locate

relevant articles. Different keywords and search phrases were employed to optimize the search

results. Initially, the search began with a simple query such as "Security Related Requirements

Specification." However, this generated a large number of results, which proved impractical to

include entirely. To refine the outcomes, specific filters were applied. For instance, the

publication years were confined to fall between 2010 and 2023. Additionally, operators like

"AND" and "OR" were incorporated into the search strings, as illustrated in Table 1.

Furthermore, techniques were utilized to enhance the search process, including the use of

synonyms and phrase substitutions.

Table 1: Search keywords and combinations

No Search Keywords Alternatives

1 Security Requirements

(SK1)

“security requirements” OR “security related requirement”

OR “safety requirements”

2 Specification (SK2) “specification” OR “elicitation” OR “gathering” OR

“identification”

3 Methodology (SK3) “methodology” OR “framework” OR “technique” OR

“approach” OR “tool”

4

Software Development

(SK4)

“software development” OR “web application

development” OR “desktop application development” OR

“mobile application development”

8

As a result of this iterative process, a final search phrase was formulated: (SK1) AND (SK2)

AND (SK3) AND (SK4). This refined phrase aimed to capture the most relevant and pertinent

articles for the review. Furthermore, an additional search method known as Snowballing [9]

was employed to enhance the search results, aiming to gather even more valuable information

for the intended Systematic Literature Review (SLR). After implementing all these refining

filters in the search process, a total of 97 articles were carefully chosen. These selected articles

are expected to provide valuable insights and contribute to addressing the research questions

formulated earlier. Moreover, Figure 3 illustrates the application of the Tollgate Approach [8],

a method employed to refine the pool of selected studies. Initially, a total of 936 research

articles were collected from various research databases, including prominent sources such as

IEEE, SPRINGER, and ACM, as well as others like Elsevier, Taylor and Francis, among

others. The initial phase involved evaluating the relevancy of these studies based on their titles,

aligning with the predefined selection criteria.

Figure 3: Tollgate Approach for Article Searching

Subsequently, the abstracts of the remaining articles were carefully examined. This process

revealed that 95 research papers did not meet the inclusion criteria and were thus excluded.

Furthermore, a more comprehensive review was conducted on the papers that remained after

the initial filtering. These papers were subjected to a thorough assessment through skimming,

with the aim of validating their suitability for inclusion. As the refinement process continued,

a detailed examination was carried out on the remaining research articles. This meticulous

analysis led to the identification of a final set of 97 research articles that demonstrated strong

9

relevance and appeared promising in terms of offering insights to address the research

questions formulated earlier.

2.2.2 Inclusion and Exclusion Criteria
 Incorporation and disintegration are

primarily composed of a defined set of criteria and rules that serve as the foundation for

determining the inclusion or exclusion of specific research articles. These criteria encompass

several phases through which research papers are evaluated to ascertain their eligibility for

inclusion. Only those articles that align with these inclusion and exclusion criteria proceed for

further investigation [9]. The selection criteria encompass various aspects, including the

subject, publisher, publication year, and language. The process begins by identifying papers

that are directly pertinent to the domain of security requirements specification. Specifically,

research articles addressing security-related requirements are earmarked for more thorough

examination. Studies that fall outside the scope of subject relevance are excluded from

consideration. The second facet of the criteria focuses on sourcing studies from reputable

scientific repositories like IEEE, ACM, Springer, and other respected sources such as

Elsevier, Taylor & Francis, and Semantic Scholar etc. These repositories are recognized for

their credibility, ensuring that the selected articles are of high quality and well-crafted. The

third criterion considered in this Systematic Literature Review pertains to the publication year.

Articles published within the time frame of 2010 to 2023 are included, while those published

before 2010 are disregarded. Lastly, language is integrated into the inclusion and exclusion

criteria. Research studies written exclusively in English are incorporated into this SLR.

Conversely, articles composed in languages other than English, even if related to the subject,

are excluded from consideration.

2.2.3 Quality Assessment
 In this Systematic Literature Review (SLR), a deliberate

effort was made to source research studies from reputable and influential sources. The chosen

papers were carefully curated to ensure the credibility and robustness of the findings in the

SLR. The search for research articles was conducted across esteemed repositories including

IEEE, ACM, and Springer, etc. The ultimate quality assessment of the selected studies was

conducted using a specifically designed checklist and criteria [8]. The quality assessment

checklist, presented in Table 2, was devised to systematically evaluate the calibre of the

research articles. This checklist comprises five distinct questions, as outlined in Table 2.

Table 2: Quality Assessment Checklist

Quality

Assessment

Question No.

Quality Assessment Questions Checklist

QA1 Does the picked study answer the research questions?

QA2 Does the selected study discuss security requirement specification?

QA3 Does the selected study propose any tool or framework for security

requirements elicitation?

QA4 Does the study apply proper case study?

10

QA5 Can the proposed tool or methodology be applied in all domain of

software development such as mobile, web and desktop?

Each question on the checklist has been associated with quality evaluation criteria, as outlined

in Table 3 The assessment of the selected articles' quality is carried out utilizing the prescribed

checklist and criteria, adhering to the guidelines established in the referenced study [8].

Table 3: Quality Assessment Criteria

Quality

Assessment Score

No

Quality Assessment Criteria

QAS1 The studies were graded “1” that completely fulfilled Quality

Assessment checklist.

QAS2 The studies were graded “0.5” that partially fulfilled Quality

Assessment checklist.

QAS3 The studies were graded “0” that not fulfilled Quality Assessment

checklist.

A comprehensive compilation of the assessed research studies is provided in Table 4. Where

each research articles have been evaluated based on the above-mentioned checklist and criteria.

Table 4: Evaluation of Articles

Research

No.

Paper

Reference

QA1 QA2 QA3 QA4 QA5 TOTAL PRECENTAGE

(N=>5)

1 [7] 1 1 0.5 0.5 0.5 3.5 70

2 [10] 1 1 1 1 0 4 80

3 [11] 1 1 1 0.5 0 3.5 70

4 [12] 1 1 0.5 0.5 0 3 60

5 [13] 1 1 1 0.5 0.5 4 80

6 [14] 1 1 1 0 0 3 60

7 [15] 1 0.5 0.5 0.5 0 2.5 50

8 [16] 1 1 1 0.5 1 4.5 90

9 [17] 1 1 1 0 1 4 80

10 [18] 1 1 1 0 1 4 80

11 [19] 1 0.5 0.5 0.5 1 3.5 70

12 [20] 1 0.5 0.5 0.5 0.5 3 60

13 [21] 1 1 0.5 1 1 4.5 90

14 [22] 1 0.5 0.5 1 1 4 80

15 [23] 1 1 0.5 0.5 0 3 60

16 [24] 1 0.5 0 0 1 2.5 50

17 [25] 1 0.5 0.5 0.5 1 3.5 70

18 [26] 1 1 0.5 0 0 2.5 50

19 [27] 1 0.5 0.5 0.5 0.5 3 60

20 [28] 1 0.5 1 0.5 1 4 80

21 [29] 1 1 1 0.5 0 3 60

22 [30] 1 0.5 1 1 0 3.5 70

23 [31] 1 1 1 1 0 4 80

24 [32] 1 0.5 0.5 0 1 3 60

25 [33] 1 1 1 0.5 1 4.5 90

26 [34] 1 0.5 0.5 0.5 0 2.5 50

11

27 [35] 1 1 0.5 0.5 0 3 60

28 [36] 1 1 1 1 0 4 90

29 [37] 1 0.5 0.5 0.5 0 2.5 50

30 [38] 1 0.5 0.5 0.5 0 2.5 50

31 [39] 1 0.5 1 1 0 3.5 70

32 [40] 1 1 1 1 0 4 80

33 [41] 1 0.5 0.5 0.5 0 2.5 50

34 [42] 1 1 1 1 0.5 4.5 90

35 [43] 1 0.5 0.5 0.5 0 2.5 50

36 [44] 1 0.5 1 0.5 0 3 60

37 [45] 1 1 1 1 0 4 80

38 [46] 1 1 0.5 0 0 2.5 50

39 [47] 1 0.5 0.5 0.5 0 2.5 50

40 [48] 1 1 0.5 0.5 0 3 60

41 [49] 1 1 1 1 0 4 80

42 [50] 1 1 0.5 0.5 0 3 60

43 [51] 1 1 0.5 0 0 2.5 50

44 [52] 1 1 1 0.5 1 4.5 90

45 [53] 1 1 1 0.5 1 4.5 90

46 [54] 1 1 0.5 0.5 1 4 80

47 [55] 1 0.5 1 0.5 0 3 60

48 [56] 1 1 1 1 0 4 80

49 [57] 1 0.5 1 0.5 0 3 60

50 [58] 1 1 1 1 0 4 80

51 [59] 1 0.5 1 0.5 0 3 60

52 [60] 1 0.5 0.5 0.5 0 2.5 50

53 [61] 1 0.5 0.5 0 0.5 2.5 50

54 [62] 1 0.5 0.5 0.5 1 3.5 70

55 [63] 1 1 1 0 1 4 80

56 [64] 1 1 1 0.5 1 4.5 90

57 [65] 1 1 0.5 0.5 1 4 80

58 [66] 1 0.5 0.5 0.5 0.5 3 60

59 [67] 1 1 1 1 0 4 80

60 [68] 1 0.5 0.5 0.5 0 2.5 50

61 [69] 1 1 0.5 0 0 2.5 50

62 [70] 1 1 0.5 0 0 2.5 50

63 [71] 1 1 0.5 0 0 2.5 50

64 [72] 1 1 1 0 0.5 3.5 70

65 [73] 1 1 1 0.5 0 3.5 70

66 [74] 1 1 0.5 0 1 3.5 70

67 [75] 1 1 1 0 0 3 60

68 [76] 1 0.5 0.5 0 1 3 60

69 [77] 1 1 1 0 1 4 80

70 [78] 1 1 0.5 0.5 0 3 60

71 [79] 1 1 1 0 0.5 3.5 70

72 [80] 1 1 1 1 1 5 100

73 [81] 1 1 1 0 1 4 80

74 [82] 1 1 0.5 0 0.5 3 60

75 [83] 1 1 1 0.5 0 3.5 70

76 [84] 1 1 1 0 0 3 60

77 [85] 1 1 0.5 0.5 0 3 60

78 [86] 1 0.5 0.5 0.5 0 2.5 50

79 [87] 1 1 0.5 0 0 2.5 50

80 [88] 1 1 1 0.5 1 4.5 90

81 [89] 1 1 1 0.5 0 3.5 70

12

82 [90] 1 1 1 1 1 5 100

83 [91] 1 1 0.5 0.5 0 3 60

84 [92] 1 1 1 1 1 5 100

85 [93] 1 1 1 0.5 1 4.5 90

86 [94] 1 0.5 1 0.5 1 4 80

87 [95] 1 1 1 0.5 0 3.5 70

88 [96] 1 1 0.5 0.5 0 3 60

89 [97] 1 1 0.5 0 0.5 3 60

90 [98] 1 1 0 0 0.5 2.5 50

91 [99] 1 1 1 1 0 4 80

92 [100] 1 1 1 1 1 5 100

93 [101] 1 1 1 0.5 1 4.5 90

94 [102] 1 1 0 0.5 1 3.5 70

95 [103] 1 1 0 0.5 1 3.5 70

96 [104] 1 1 1 1 0 4 80

97 [105] 1 1 1 1 0 4 80

2.2.4 Study Distribution and Categorisation
 Presented in Table 5 is an overview of

the distribution of pertinent research articles across various databases. The table additionally

outlines the categorization of each research study according to its type and the respective

research database it originates from.

Table 5: Research Articles Distribution

Research Databases Type Selected Research Articles No. of Research

IEEE C [10] [11] [12] [13] [14] [15] [16]

[17] [18] [19] [20] [21] [22] [23]

[24] [25] [26] [27] [28] [29] [30]

[31] [32] [33] [34] [35] [36] [37]

[38] [39] [40] [41] [42] [7] [43]

[44] [45] [46] [47] [48] [49] [50]

42

J [51] [52] [53] [54] [55] [56] [57]

[58] [59]

9

ACM C [60] [61] [62] [63] [64] [65] [66] 7

J [67] [68] [69] [70] [71] [72] [73] 7

Springer C [74] [75] [76] [77] 4

J [78] [79] [80] [81] [82] [83] [84] 7

Others C [85] [86] [87] 3

J [88] [89] [90] [91] [92] [93] [94]

[95] [96] [97] [98] [99] [100] [101]

[102] [103] [104] [105]

18

The research articles were further categorized into two distinct types: Conference papers (C)

and Journal papers (J), as illustrated in Figure 4. Among the total of 97 chosen research articles,

56 were identified as Conference papers, while 41 were categorized as Journal articles.

13

Figure 4: Research Studies Categorisation

Furthermore, the graphical representation in Figure 5 illustrates the distribution of research

articles from each individual database. Notably, a substantial portion of the selected articles

originated from IEEE, comprising 42 Conference papers and 9 Journal articles. ACM the

subsequent prominent contributor was the second database, yielding 7 Conference papers and

7 Journal articles. Similarly, the Springer database yielded 4 Conference papers and 7 Journal

articles relevant to the subject matter. In the "Others" category, diverse repositories like

Elsevier, Taylor and Francis, among others, were explored. These repositories collectively

contributed 3 Conference papers and 18 Journal articles that aligned with the research topic.

Figure 5: Scopus Distribution

Furthermore, Table 6 furnishes data regarding the temporal distribution of selected research

studies based on the year of publication. Notably, the highest number of selected papers,

totalling 13, originated from the year 2019. Similarly, the years 2021, 2018, and 2014 each

contributed 11 papers. In contrast, the years 2023, 2022, and 2013 accounted for 3 papers each,

while the year 2011 had the lowest representation with only 2 papers.

Journal

42%

Conference

58%

NO. OF ARTICLES

Journal
Conference

42

7
4 3

9
7 7

18

0

5

10

15

20

25

30

35

40

45

IEEE ACM SPRINGER OTHERS

Scopus Distribution

Conference Journal

14

Table 6: Temporal Distribution of Research Papers

Year Number of Papers Research Papers Percentage %

2010 3 [29], [83], [85] 3.09

2011 2 [71], [74] 2.06

2012 8 [11], [12], [23], [50], [61], [76],

[88], [101]

8.24

2013 3 [57], [84], [97] 3.09

2014 11 [13], [14], [24], [31], [34], [49],

[51], [56], [62], [96], [100]

11.34

2015 7 [15], [19], [26], [29], [60], [86],

[103]

7.21

2016 10 [22], [32], [46], [47], [48], [77],

[81], [82] [87], [102]

10.30

2017 7 [16], [21], [45], [75], [79], [80],

[98]

7.21

2018 12 [7], [17], [18], [20], [33], [36],

[44], [52], [53], [66], [78], [91]

12.37

2019 12 [16], [27], [30], [35], [40], [41],

[42], [43], [63], [64], [65], [69],

12.37

2020 7 [37], [38], [39], [55], [72], [90],

[99]

7.21

2021 10 [25], [54], [58], [59], [68], [89],

[92], [93], [94] [104]

10.30

2022 3 [73], [81], [95] 3.09

2023 3 [67], [70], [105] 3.09

On the other hand, Table 7 presented below offers a detailed classification of research articles

based on Security Requirements Elicitation techniques and methodologies. This categorization

has been specifically developed within this research project following an extensive review of

the literature. It aims to provide a comprehensive understanding of the current state of

methodologies and frameworks. It's important to note that this list is not exhaustive and can be

expanded based on specific research needs.

Table 7: Classification of Research Articles based on Existing Techniques and

Methodologies

Security Requirements

Identification Techniques/

Frameworks

No. of Articles Articles

SR Backlogs 5 [10] [96] [86] [75] [87]

Modified User Stories

(Abuser Story Like User

Story)

12 [10] [17] [25] [31] [36] [37]

[7] [43] [47] [59] [64] [86]

Framework / Methodology 43 [11] [15] [16] [18] [19] [20]

[22] [23] [67] [88] [28] [33]

[34] [39] [42] [44] [46] [48]

[50] [55] [56] [57] [61] [62]

[63] [66] [70] [71] [72] [73]

[76] [78] [80] [83] [89] [90]

15

[91] [95] [98] [100] [101]

[102] [105]

Tool Support 21 [10] [12] [26] [27] [29] [30]

[32] [40] [41] [45] [49] [54]

[65] [68] [77] [79] [82] [93]

[99] [103] [104]

Hybrid Software Process

Life Cycle / Model

24 [13] [14] [21] [67] [24] [35]

[36] [37] [38] [51] [52] [53]

[58] [60] [69] [74] [81] [82]

[84] [85] [86] [94] [96] [97]

In the paper, our classification of the literature is based on five distinct groups that emerged

from our analysis. During the examination of the literature, a noticeable pattern emerged where

discussions about the subject predominantly fell into these five categories:

• Security Requirements Backlog (SR Backlog): This term pertains to a systematically

organized list of security-related requirements that demand attention within a software

development or IT project. It holds particular significance in Agile and DevOps

environments, functioning as a central repository to manage and monitor security

requirements throughout the project's lifecycle. This backlog streamlines the handling

of security concerns at various project stages [10].

• Modified User Stories: Often referred to as security-focused user stories or security-

driven user stories, this category represents a specialized kind of user story used in

software development. These stories, such as Abuser stories, inject a security dimension

into requirements, ensuring that security matters are explicitly integrated into the

development process [17].

• Conceptual Frameworks and Methodologies: This group encompasses systematic

and structured approaches utilized for specifying security-related requirements. These

frameworks and methodologies facilitate the identification, analysis, and resolution of

security issues in software development and IT projects. They aid in understanding the

security landscape, defining security objectives, and formulating precise security

requirements [11].

• Tools Supporting Security Requirements Specification: In this category, tools play

a crucial role in fortifying the security stance of software development endeavours.

These tools serve a diverse range of functions and assist security experts and

development teams in efficiently identifying, documenting, and managing security

requirements [12].

• Hybrid Software Process Lifecycle: This term denotes an approach that amalgamates

elements from various software development methodologies to craft a customized

process suited to the specific demands of a project. Instead of strictly adhering to a

single methodology, a hybrid approach integrates the strengths of different

methodologies to optimize development efficiency and cater to project requirements

[13].

These classifications serve as an insightful framework for understanding the landscape of

security requirements specification within software development and IT contexts. Figure 6

provides a visual representation of the distribution of articles across the aforementioned

16

categories. This graphical illustration offers a clear overview of the number of articles that

delve into each of the described categories.

Figure 6: Derived Category of Types

In this chapter a Systematic Literature Review (SLR) was conducted to investigate security

requirements specification methodologies. The study followed a well-defined process

involving research question formulation, database selection, search string creation, and

inclusion/exclusion criteria establishment. The review consisted of two phases: study selection

and data extraction, with resulting articles categorized by distribution, year, and identified

frameworks/methodologies. Quality assessment ensured reliable findings. The research

identified five key categories: Security Requirements Backlog, Modified User Stories,

Conceptual Frameworks and Methodologies, Tools Supporting Security Requirements

Specification, and Hybrid Software Process Lifecycle. Graphical representation further

visualized article distribution among these categories, contributing to a comprehensive

understanding of the subject's state-of-the-art methodologies.

2.3 Results and Discussion
 In this section, the identified techniques and frameworks

have been explained in detail. As Figure 6Error! Reference source not found. illustrates

through this SLR, 5 distinguish categories have been made that elaborates the outcome of

conducted literature. From selected articles 5 papers discussed Security Backlog, 12 and 43

studies discussed Modified user stories and frameworks & Technologies that are being used to

specify security related requirements respectively. Moreover, 21 articles proposed tools and

lastly there were 24 studies that presented a hybrid software development process. Each one of

them have their own strengths and limitations that are discussed lately in this section.

0

5

10

15

20

25

30

35

40

45

SR BACKLOG MODIFIED USER
STORIES

CONCEPTUAL
FRAMEWORKS

AND
TECHNOLOGIES

TOOL SUPPORT HYBRID SDLC

5

12

43

21
24

Categorization of Types

Categorization of Types

17

2.3.1 SR Backlog
 The most basic way of handling security requirements in Software

Application Development is by using Security Requirements (SR) Backlog. This traditional

way of gathering security requirement could help developer in maintaining the security level

by following the proper guidelines [7]. The security backlog act in accordance with the security

principle to ensure that there are not risks and vulnerabilities exists in software product. With

the help of Security requirement Backlog security related issues can be mitigated [75]. The SR

backlogs were initially being used in Agile Development in Scrums provided the fact that it

smooths the process of identification of security requirements and planning the methodology

based on backlogs much easier [86]. In the article [87] the authors critically analyse the hybrid

technique of security requirement backlogs for specifying security requirements. They

combined three techniques known as Common Criteria, Misuse Case and Attack trees.

2.3.2 Modified User Stories
 To address the security requirements in requirements

specifications another method used by several practitioners is the extended form of user stories

such as abuser stories and vulnerability analysis [10]. In the search article [86] the authors

conducted their research to incorporate security-oriented development in scrum framework,

they also discussed the standard maintained by France industry known as VAHTI. VAHTI

provides the set of instructions to implement in Scrum framework by introducing modified user

stories, sprint backlog and product backlog in development which are security centric. On the

other hand, the article [17] proposes a storyboard-based design methodology to enable the

specification and verification of security properties of an Android Application at design time.

The research study proposes a new approach to measure confidence and uncertainty in

assurance cases. Assurance cases are used to provide evidence that a system meets its intended

requirements and functions as expected. However, assurance cases often contain assumptions

and uncertainties that can affect the confidence in the system's performance and safety. The

paper proposes a new approach to quantify the confidence and uncertainty in assurance cases

by using a Bayesian network. The Bayesian network model is used to represent the

dependencies and relationships between the different components of the assurance case and to

calculate the probability of the system meeting its requirements. Similarly, in the paper [25]

the author studies on the privacy requirements pattern for mobile operating system which

consist of Android and IOS devices. The author of the article proposed 7 privacy patterns that

includes, Authorized use of sensors or portal, avoidance of privacy leakage in user behaviour

information collection, guard of personal mobile data, privacy protection over mobile cloud

services, authentication of mobile users, financial information protection, and mobile

communication secrecy. The authors in the article [64] put forward an extended secure

designing methodology for enhancing User Experience (UX) at design phase. The limitation

of the proposed solution was that it is only limited to UI Behaviour of Application and not able

to capture Non-UI behaviour. Moreover, the author also suggests that most of the issues can be

tackles with smart code technique like using HTTPS instead of HTTP when contact servers.

On the other hand, the article [31] analysed the effectiveness of the security requirements

templates in identification of security requirement in requirements specifications. While the

paper [32] presents and an approach to test security requirements Misuse case Programming

approach. The author of the paper suggested that such approach can be used for use case

specification to acquire malicious behaviour. Moreover, the authors of the research paper [38]

presented their approach for the elicitation of security requirements for web application using

18

Open Web Application Security Project (OWASP) that provides an industry standard security

indicator. The authors have merged OWASP in their User Stories to relate them with security

requirements. Similarly, the article [39, 43] also conducted research on User stories,

wireframes that how they can be beneficial of extracting security requirements. Research study

[55] conducted an experiment of user stories classifications and requirements extraction using

NLP.

2.3.3 Frameworks and Methodologies
 One of the main parts in this study is

induction of such articles that presented or discussed framework or methodology for the

identification of security requirements. Figure 7 illustrates various prominent identified

frameworks and techniques that are explained later in current section.

Figure 7: Identified framework & Methodologies

In this phase approximately 42 such studies were selected that proposed some methodology

and framework for security requirement elicitation. However, each one has some sort of

limitations and domain that will be discussed in this portion. In the article [4] the authors

propose a methodology named as Non-functional Requirements Modelling for Agile Process

(NORMAP) that uses Agile Use Cases, Agile Loose Cases and Agile Choose cases for

requirements gathering, modelling and linking. It’s a JAVA based tool having 87% accuracy.

This article follows risk driven approach but focuses on all non-functional requirements instead

of considering only security aspect. Non-Functional Requirements often get neglected in Agile

Process, therefore the authors of the paper [8] developed NERV Methodology: Non-functional

Requirements Elicitation, Reasoning, and Validation. In study [8, 92] the writers also

investigated the mentioned methodology that can effectively help in extracting non-functional

requirements. The methodology uses a combination of different artifacts of Quality models

such as Boehm, McCall and ISO standards and uses certain criteria to opt from theses artifacts.

The study [9] also conducted research on handling non-functional requirements for IOT and

big data projects using scrum process. The proposed approach helps to deal with security and

performance requirements individually as well as conflicts among them. The article [11]

19

provides a detailed description of the scenario-based reading method and how it can be used

for testing mobile applications. The authors also discuss the benefits of using this method

FIT4Apps, such as increased test coverage and early detection of defects. This article presents

a method for testing mobile applications using scenario-based reading with FIT4Apps, a tool

for generating and executing test scenarios. Whereas, the research studies [13, 94] present a

comprehensive review of the relevant literature and proposes a set of security requirements

measures that can be used to predict software project and product measures. The authors

conducted a preliminary study to validate their proposed security measures and evaluated their

effectiveness in predicting project and product measures for a set of Android mobile

applications.

In the research study [15] the authors propose a method for security requirement engineering

using a structured object-oriented formal language for mobile banking applications. Overall,

this article provides a valuable contribution to the field of security requirements engineering

for mobile applications. The proposed method is well-designed and effective. The article also

provides a comprehensive discussion of the limitations of existing methods and the need for

new approaches in the context of mobile banking applications. In article [16] authors present a

comparative study of the state-of-the-art End-to-End encryption (E2EE) techniques for mobile

messaging applications. Authors of the study provides a detailed review of the existing E2EE

techniques, including Symmetric and Asymmetric encryption, Hybrid encryption, and

Homomorphic encryption. The authors then compare these techniques based on various criteria

such as security, performance, and scalability. The paper [17] provides a novel approach

known as a two-level specification approach for developing mobile agent applications. The

authors argue that traditional software engineering approaches are not well-suited to mobile

agent applications, which require a more flexible and dynamic approach to development. The

two-level specification approach consists of a high-level specification and a low-level

specification. The high-level specification defines the overall behaviour of the mobile agent

application, while the low-level specification defines the specific actions and interactions of

the mobile agents. The two levels are connected through a set of mappings that relate high-

level specifications to low-level specifications.

The research report [18] discusses the challenges faced by the agency in selecting a biometric

system that meets their needs and requirements. The agency decided to use mobile biometric

testing and evaluation to assess the performance of different biometric systems in a real-world

environment. It provides a detailed description of the mobile biometric testing and evaluation

process, including the selection of test subjects, the data collection process, and the evaluation

criteria. The articles [28, 44, 53, 57, 89], provides an overview of the current state of software

engineering research for mobile apps and identifies several future trends in the field. The

authors of the study begin by describing the unique challenges of software engineering for

mobile apps, including issues related to platform diversity, limited resources, and user interface

design. They then review the current state of software engineering research for mobile apps,

discussing the most prominent research topics and approaches. The writers then identify several

future trends in software engineering research for mobile apps, including the use of artificial

intelligence and machine learning the development of new testing methodologies, and the

exploration of new design paradigms. They also discuss the importance of addressing emerging

issues, such as privacy and security concerns, and the need for interdisciplinary collaboration

to tackle complex problems.

20

The research paper [12, 29] bring forward a risk-based approach to developing secure Android

mobile software. The authors begin by describing the unique security challenges of Android

mobile software, including issues related to app permissions, data storage, and network

communication. They then introduce the OWASP Risk Analysis Framework, which provides

a systematic method for identifying and assessing security risks. The authors propose a

methodology for using the OWASP Risk Analysis Framework to develop security

requirements specifications for Android mobile software. This methodology involves

identifying the assets to be protected, identifying the potential threats and vulnerabilities, and

assessing the likelihood and impact of each threat. Based on this analysis, the authors develop

a set of security requirements that address the identified risks. Moreover, they also provide a

case study that demonstrates the application of their methodology in practice. The case study

involves the development of a secure Android mobile application for a financial institution,

and the authors show how their methodology can be used to identify and address security risks

specific to this context. Overall, this article provides a valuable contribution to the field of

mobile software security. The proposed methodology offers a practical and systematic

approach to developing security requirements that are tailored to the specific risks faced by

Android mobile software. The case study provides concrete examples of how this methodology

can be applied in practice, making it a valuable resource for developers and security

practitioners alike.

The papers [34, 42, 67, 68, 70] presented a computer-aided approach to analysing requirements

for software systems, with a focus on assessing their consistency, completeness, and

correctness. The authors begin by describing the challenges of managing requirements for

complex software systems, including issues related to ambiguity, inconsistency, and

incompleteness. They then introduce their proposed approach, which involves using automated

tools to analyse requirements specifications and identify potential issues related to consistency,

completeness, and correctness. The authors describe several techniques for analysing

requirements, including natural language processing [23, 44, 52], formal methods, and model-

based techniques [53, 73, 83, 105]. They also provide a case study that demonstrates the

application of their approach in practice, using a commercial aircraft control system as an

example. The academic paper [37, 95] presents a theoretical framework for understanding and

assessing data quality. The authors begin by defining data quality and describing its importance

in various domains, including business, science, and public policy. They then introduce their

proposed framework, which is based on four dimensions of data quality: intrinsic, contextual,

representational, and accessibility. The intrinsic dimension refers to the inherent characteristics

of data, such as accuracy, completeness, and consistency. The contextual dimension considers

the context in which data is collected and used, including factors such as data source, purpose,

and relevance. The representational dimension concerns the format and structure of data,

including issues related to data modelling, encoding, and storage. The accessibility dimension

focuses on the ease of access and use of data, including issues related to data security, privacy,

and usability. The authors then provide a detailed discussion of each dimension, including

specific sub-dimensions and metrics for assessing data quality. They also provide a case study

that demonstrates the application of their framework in practice, using data from a healthcare

system as an example. The authors of the article [40] begin by describing the challenges of

extracting metadata from legal documents, including issues related to inconsistent terminology,

ambiguous language, and complex syntax. They then introduce their proposed approach, which

involves using natural language processing techniques to automatically identify and extract

21

metadata from legal documents. The approach involves several stages, including pre-

processing of documents, identification of relevant sections, and extraction of metadata using

a combination of rule-based and machine learning approaches. The authors provide a detailed

discussion of each stage, including the specific techniques and tools used.

In a research paper [46, 84] the authors present a collection of security patterns to capture

regulatory security requirements early in the software development lifecycle. The authors argue

that existing security patterns focus on technical aspects of security, while regulatory

requirements are often overlooked or addressed only later in the development process. The

authors begin by describing the challenges of capturing regulatory security requirements early

in the development process, including issues related to ambiguity, complexity, and dynamic

nature of regulatory requirements. They then introduce their proposed approach, which

involves identifying patterns of constraints that capture common regulatory security

requirements. The approach involves several steps, including identification of relevant

regulatory requirements, identification of common themes across these requirements, and

formulation of constraints that capture these themes. The authors provide a detailed discussion

of each step, including the specific techniques and tools used. The authors then evaluate their

approach using a case study, comparing the results to existing security patterns. The results

show that their approach can capture regulatory security requirements effectively and

efficiently, and can help ensure that these requirements are addressed early in the development

process. This study [51] deduced an approach to automatically extract access control policies

from natural language documents. The authors argue that manually extracting access control

policies from these documents is time-consuming and error-prone, and that automated

approaches can help improve efficiency and accuracy. The proposed approach involves several

steps, including identification of relevant sections of the document, identification of access

control policy rules, and conversion of these rules into a formal representation. The authors

describe the specific techniques and tools used for each step, including natural language

processing, machine learning, and logic programming.

The research studies [58, 59, 65] presents an approach for identifying and distilling privacy

requirements for mobile applications. The authors argue that privacy is a critical concern for

mobile applications, and that many developers struggle to identify and address privacy risks in

their software. The provided approach involves several steps, including identifying potential

privacy risks, mapping risks to privacy requirements, and then distilling those requirements

into a concise and actionable set of guidelines. The authors describe the specific techniques

and tools used for each step, including privacy risk analysis, privacy goal modelling, and

privacy guideline generation.

The paper [66] discusses the impact of different vectorization methods on the classification of

non-functional requirements. The authors have explored various vectorization techniques such

as Word2Vec, Doc2Vec, and GloVe and evaluated their performance on a dataset of non-

functional requirements. The authors introduced the concept of non-functional requirements

and their importance in software engineering. The authors then describe the dataset used for

their experiments, which comprises of 3000 non-functional requirements labelled with seven

different categories such as usability, reliability, and performance. Moreover, they have used

various vectorization techniques to convert the textual data of non-functional requirements into

numerical vectors that can be used as input to machine learning algorithms. They have then

trained multiple classifiers such as Support Vector Machines (SVM), Random Forests, and

22

Multi-Layer Perceptron’s (MLP) on the vectorized data and evaluated their performance using

metrics such as accuracy, precision, recall, and F1-score. The paper [71, 96] provides an

overview of the quality factors that should be considered when developing mobile applications.

The authors discuss several best practices that can be used to ensure the quality of mobile

applications, including usability, performance, security, compatibility, and maintainability.

This article emphasizes the importance of designing mobile applications with the end-user in

mind, as usability is a key factor in the success of any mobile application. They also highlight

the importance of performance optimization, given the limited resources available on mobile

devices. In addition, the article provides a detailed discussion of security considerations for

mobile applications, including data encryption, secure data storage, and user authentication.

The authors also discuss the importance of compatibility with different devices and platforms,

as well as the need for maintainable code to ensure the longevity of the application.

The article [75] proposes a framework for ensuring the security of mobile applications adopted

by small and medium enterprises (SMEs). The authors argue that SMEs are at a greater risk of

cyber-attacks due to their limited resources and lack of technical expertise. The framework

consists of five main components: risk assessment, security policies and procedures, technical

controls, training and awareness, and incident response. Each component is designed to address

specific security risks associated with the adoption of mobile applications in SMEs. The risk

assessment component involves identifying potential threats and vulnerabilities associated with

the use of mobile applications and assessing their potential impact on the organization. The

security policies and procedures component involve establishing policies and procedures to

ensure the security of mobile applications and the data they handle. The technical controls

component involves implementing technical measures such as encryption, access controls, and

monitoring to protect mobile applications and data. The training and awareness component

involve providing training to employees on how to use mobile applications securely and raising

awareness about the risks associated with their use. Finally, the incident response component

involves developing a plan to respond to security incidents involving mobile applications. On

the other hand [78] proposes a framework for eliciting and tracing security requirements to the

design of a system. The framework is based on three key components: The Common Criteria,

heuristics, and UMLsec.

The Common Criteria is an internationally recognized standard for evaluating the security of

information technology products. It provides a set of security requirements that can be used as

a basis for developing security requirements for a specific system. The authors propose using

the Common Criteria as a starting point for eliciting security requirements.

Heuristics are guidelines or rules of thumb that can be used to identify potential security

vulnerabilities or weaknesses in a system. The authors propose using heuristics to supplement

the security requirements identified through the Common Criteria and to identify any additional

security requirements that may not be explicitly stated in the Common Criteria.

UMLsec is a security extension to the Unified Modelling Language (UML) that provides a set

of modelling constructs for specifying security requirements and mechanisms. The authors

propose using UMLsec to model the security requirements identified through the Common

Criteria and heuristics and to trace those requirements to the design of the system.

23

2.3.4 Tool Support
 Another derived category from the literature in tool support for

specification of non-functional requirements. In Figure 8 can be seen some of the famous tools

identified in the literature. They are being used in various organizations around the globe. The

research paper [5], presents an A visual tool for modelling non-functional requirements in agile

processes known as NORMATIC. That is a visual modelling tool designed to help agile teams

capture and manage non-functional requirements. It provides a graphical representation of the

requirements, which can be easily understood by both technical and non-technical stakeholders.

Figure 8: Tool Support

The research article [21] developed a model known as a forensic requirement specification

(FRS) for developing forensic models for mobile device malware. The authors discuss that the

increasing use of mobile devices has led to an increase in mobile malware, and there is a need

for effective forensic models to investigate and analyse mobile malware. The FRS approach

presented in the paper consists of a set of requirements that specify the functionality,

performance, and security requirements for a mobile device malware forensic model. The FRS

is based on the ISO/IEC 29110 standard for software engineering, and it provides a structured

and systematic way to develop and evaluate forensic models. Moreover, the author in the paper

[22, 35, 41] developed an NLP based tool to detect such privacy requirements that tends to

repurpose or over-collect personal data and decisional user requirements. In [41, 45, 98] the

author uses an NLP based machine learning algorithm to classify the identified requirements

into different security categories, such as confidentiality, integrity, and availability. [61, 63]

also conducted similar work and developed a tool that takes as input software requirements and

generates security test cases based on those requirements. The tool first identifies the security-

relevant requirements and then generates test cases that satisfy those requirements. [77]

discusses the similar with addition of reusable security requirement concept.

The authors presented a formal model to analyse the permission authorization and enforcement

mechanism in the Android operating system in the article [24]. According to paper Android's

24

permission system is complex and can lead to security vulnerabilities if not properly

implemented. The formal model presented in the paper is based on the Permission Control

Flow Graph (PCFG), which captures the permission authorization and enforcement mechanism

in the Android framework. The PCFG is used to model the permission flow in Android

applications and identify potential security vulnerabilities. The study [25] developed a tool for

visual specification and verification of secure process movements. The authors argue that

secure process movements are critical for ensuring the security of sensitive data and systems,

and that visual tools can help improve the accuracy and efficiency of the verification process.

The tool presented in the paper is called Secure Process Movement Diagram (SPMD), which

is a graphical tool that allows users to specify and visualize the movements of sensitive data

and processes within a system. The tool is based on a formal language called Secure Process

Movement Language (SPML), which allows users to specify the movement of data and

processes in a precise and unambiguous way.

The article [27] presents a new approach to scheduling FlexRay communications that considers

security considerations. FlexRay is a communication protocol used in safety-critical systems,

such as automotive applications. However, the traditional approaches to scheduling FlexRay

communications do not consider security, which can leave these systems vulnerable to attacks.

The authors propose a new scheduling engine, called SAFE, that considers security

considerations when scheduling FlexRay communications. The proposed approach involves

analysing the security properties of each communication message and using this information

to allocate time slots in the FlexRay schedule. The authors also conducted experiments to

evaluate the effectiveness of the proposed approach. The results demonstrate that the SAFE

scheduling engine is effective in reducing the vulnerability of FlexRay communications to

security threats. The article [1, 87] provides a systematic review of literature on developing

mobile applications using model-driven development (MDD). The review focuses on the

benefits and challenges of using MDD for developing mobile applications and the various

MDD approaches that have been proposed for developing mobile applications. The review also

discusses the current state of research on MDD for mobile applications and identifies areas for

future research.

The research paper [36] presented a tool for recovering traceability links between software

artifacts. Traceability links are important for software maintenance and evolution, as they help

developers understand the relationships between different artifacts and the impact of changes

on the system. The tool developed in the paper is called ATLaS (Automatic Traceability

Linking System), which combines information retrieval and semi-supervised learning

techniques to recover traceability links. The framework uses natural language processing

techniques to analyse the text of software artifacts and identify potential links based on the

similarity of the text.

The paper [50, 97] discusses about penetration frameworks and development issues in secure

mobile application development. The authors briefed that mobile applications are increasingly

being used for sensitive and confidential tasks, such as financial transactions and healthcare

data management, making security a critical issue for mobile app developers. The paper

reviews a range of literature related to penetration testing frameworks and development issues

in secure mobile application development. The authors identify several key themes, such as the

importance of threat modelling and risk assessment, the need for secure coding practices and

25

secure software development lifecycles, and the challenges of testing and assessing mobile app

security.

The article [72] describes an automated approach to capture and validate security requirements

for mobile apps. The authors address the challenge of capturing and validating security

requirements for mobile apps, which are often complex and require expertise in security and

mobile development. The approach involves a tool that automatically analyses the source code

and generates security requirements based on the identified security risks. The tool uses a set

of security rules to identify security risks in the code and generate corresponding security

requirements. The generated requirements are then validated using a set of predefined criteria

to ensure that they are complete and consistent. Whereas, in paper [74] the author presents a

formal Android permission model that is based on the B Method. Paper address the challenge

of designing a reliable and secure permission model for Android, which is a complex and

dynamic operating system with a large number of apps and users. The developed permission

model uses the B Method, which is a formal method for software development that is based on

mathematical notation. The model defines the Android permission architecture in terms of the

different types of permissions, their relationships, and the conditions under which permissions

are granted or denied.

The research [93] article presented a framework for security requirements engineering (SRE)

that uses the Business Process Model and Notation (BPMN) 2.0.2 extension model. The

authors aim to provide a structured approach for eliciting, analysing, specifying, and validating

security requirements in the development of information systems. The author put forward

framework consists of four phases: 1) context definition, 2) security requirements elicitation,

3) security requirements analysis and specification, and 4) security requirements validation.

The framework uses the BPMN 2.0.2 extension model to represent the security requirements

and their relationships with the business processes.

2.3.5 Hybrid Software Process Cycle/Model
 One of the most common categories used

to alter requirement specification in software development is by combining one or more process

together. Figure 9 demonstrate some notable process models that were discussed in the

literature.

Figure 9: Hybrid Process Model

26

The article [6,30] proposed a modified process for gathering of security requirements in

software development. The author brings forward an iterative process for developing security

features and security assurance techniques. Moreover, in [30] authors emphasized on malware

analysis to identify vulnerabilities. In the research study [7, 19] the authors provided the

information about DSDM (Dynamic Systems Development Method) and [80] propose a Secure

Software Development Model. They are an Agile project delivery framework that is designed

to be flexible and adaptable to changing requirements. On the other hand, the author in the

article [14] proposed an Agile Requirement Traceability Matrix (RTM) that is lightweight,

flexible, and integrated into the Agile development process. The Agile RTM is designed to be

updated continuously throughout the development process, allowing teams to track the status

of requirements in real-time and ensure that they are being addressed. The authors provide a

step-by-step guide for implementing an Agile RTM, including how to define requirements,

create the matrix, and update it throughout the development process. They also provide a case

study demonstrating the effectiveness of the Agile RTM in improving traceability in an Agile

development project.

The authors of the papers [17, 48, 49] argue that traditional specification methods are not well-

suited to mobile agent applications, which involve autonomous agents that are capable of

moving between different locations and interacting with different systems. [17] propose a two-

level specification approach that separates the functional and mobility aspects of the system.

The functional specification level defines the behaviour of the mobile agents, including their

actions and interactions with other agents and systems. The mobility specification level defines

the movement and interaction of the agents within the system, including their communication

protocols, network connections, and security requirements. Whereas, [48,49] discussed

interviews, surveys, and brainstorming sessions.

Other than that, in research papers [31,32, 54] the authors discussed the addition of Natural

Language Programming Approach for Security based Requirements Specification and testing.

In the research articles the authors implemented NLP model in hybrid Software Development

Process.

The articles [56, 81, 90, 91] briefed about a model for safe agile development (ScrumS) that

addresses the challenge of developing secure and reliable software using agile methodologies.

The authors discuss that while agile development has many benefits, it often lacks sufficient

guidance on how to address security concerns. ScrumS is designed to fill this gap by

incorporating a set of security-specific practices into the standard Scrum framework. The

authors outline a set of security practices that are incorporated into ScrumS. These practices

are grouped into three categories: secure development practices, security testing practices, and

security management practices. Examples of these practices include security requirements

elicitation and analysis, threat modelling, security testing, and security code reviews.

The research paper [76, 77, 88] discusses the challenges in developing secure and accessible

mobile applications. The authors argue that mobile research ecosystems, which involve various

stakeholders such as developers, users, and regulators, need to collaborate to address these

challenges effectively. The paper presents a review of related work on security and accessibility

in mobile applications, and then describes a case study of a mobile research ecosystem that

involves multiple stakeholders. The case study includes an analysis of the stakeholders'

perspectives on security and accessibility, as well as their views on the importance of

27

collaboration and communication in addressing these issues. The authors also propose a model

for integrating security and accessibility considerations into the mobile development process.

The model consists of three phases: requirements gathering, design and development, and

testing and evaluation.

The authors of the research studies [79, 33, 47, 64, 69] brings a comprehensive hybrid

framework for developing secure software. The authors argue that security should be integrated

into every phase of the software development lifecycle and that secure software development

should be viewed as a continuous process rather than a one-time event. The framework consists

of four main components: planning and requirements, design and implementation, testing and

verification, and deployment and maintenance. Each component is designed to address specific

security risks associated with the software development process. 1) The planning and

requirements component involve identifying security requirements for the software and

incorporating them into the development plan. This includes identifying potential threats and

vulnerabilities and determining how to address them through security controls and measures.

2) The design and implementation component involve designing and implementing security

controls and measures to address the security requirements identified in the planning and

requirements phase. This includes developing secure coding practices, using secure

development frameworks, and incorporating security testing into the development process. 3)

The testing and verification component involve testing the software to ensure that it meets the

security requirements identified in the planning and requirements phase. This includes testing

for vulnerabilities, conducting penetration testing, and verifying that security controls and

measures are functioning properly. 4) The deployment and maintenance component involve

deploying the software in a secure manner and maintaining it over time. This includes

configuring the software to be secure in its operating environment, monitoring the software for

security incidents, and applying patches and updates as needed.

2.4 Answers to Research Questions
 The primary objective of this extensive research

endeavour was to conduct a thorough exploration of the existing body of literature, aiming to

unveil insightful responses to the carefully formulated research inquiries. This pursuit led us to

precisely scrutinize a diverse array of articles carefully curated from prestigious Journals and

Conferences, yielding a wealth of pertinent and valuable data. To facilitate a deeper

comprehension of the landscape, a categorization of the chosen articles was undertaken,

resulting in the delineation of five distinctive and prominent Categories: 1) Security

Requirement Backlog, 2) Modified User Stories, 3) Frameworks & Methodologies, 4) Tool

Support, and 5) Hybrid Software Development Process. The rationale behind such a systematic

categorization stemmed from the prevalent adoption of these methodologies within industries,

substantiating their relevance and importance.

The meticulous and systematic review and analysis of the meticulously selected Research

Articles have yielded profound insights into the contours of the subject matter at hand.

Throughout this comprehensive review, it became evident that researchers have made

noteworthy strides in advancing the discourse within the domain under consideration. While

considerable strides have been made, it remains equally clear that there exists a vast expanse

of uncharted territory awaiting exploration. The cumulative efforts of these pioneering

28

researchers have undoubtedly paved a well-illuminated path, one that beckons subsequent

explorers to build upon these foundations and delve deeper into the nuances that continue to

shape security-related requirements in software development. As these insights ripple through

academia and industry, they not only enrich scholarly discourse but also provide tangible

assistance to practitioners seeking to fortify their own research or operational endeavours. The

convergence of research and practice, exemplified through these studies, stands as a testament

to the perpetual evolution of the field and the relentless pursuit of knowledge in service of

enhanced security and efficiency.

The following Research Questions were formulated. The scrutiny of the Literature provided us

with the appropriate answers that we extracted during the SLR.

RQ1: What are the existing Security Requirements Identification Methodologies and Tools

Techniques?

Based on the conducted Systematic Literature Review, it can infer that there are several existing

Methodologies & frameworks and Tool techniques for identifying security related

requirements in the context of software requirement engineering. Security Requirements

Backlog and Modified User Stories are among basic approach used for elicitation of security

requirements in software development. But there are other techniques and models also that

could be handy with much more accuracy and fast paced as compared to SR Backlogs and

Unified User Stories.

Table 8: List of Existing Methodologies and Framework Techniques

Methodologies &

Framework Techniques

Abbreviation Accuracy Research

Study

NORMAP Non-functional

Requirements Modeling for

Agile Process

87% [4]

NERV Nonfunctional Requirements

Elicitation, Reasoning, and

Validation

85.6% [8], [92]

FIT4APP - N/A [12]

CBSR Case Based Security

Reasoning

N/A [14], [94]

SRE - SOOFL Security Requirement

Engineering using a

Structured Object-Oriented

Formal Language

87% [16]

E2EE End-to-End encryption

techniques

N/A [16]

Two Level Security

Specification

- 88% [17]

OWASP Open Web Application

Security Project

94% [13], [29]

CAASR Computer Aided Approach

for Analyzing Security

Requirement

N/A [34], [42], [67],

[68]

29

Natural Language Process

Based Requirement

Specifications

- 80% [23], [44], [52]

RE Using Formal Methods

and Model Driven

Technique

- 82% [53], [73], [83]

4D Framework 4-Dimensional Framework

for Health-Related

Application

N/A [37]

Extraction of Meta Data - N/A [40]

Automatic Extraction of

Access Control Policies

- N/A [51]

Distilling Privacy Related

Requirements

 82% [62], [58], [59],

[65]

Vectorization Methods 91% [66]

Quality Factors for Mobile

App

- N/A [71], [96]

Secure Mobile App

Development for SME

Secure Mobile App

Development for Small and

Medium Enterprises

N/A [75]

UMLSec Secure Unified Modelling

Language

85% [78]

Above given Table 8Error! Reference source not found. provides an in site to the existing

methodologies which researchers have identified. The provided information regarding

frameworks and methodologies were initially grouped under title of Frameworks &

Methodologies in Section 3.3 in detail. Moreover, Table 9 provides the list of Identified tools

in Section 3.4.

Table 9: Existing Tools

Tools Support Description Papers

NORMATIC Modelling Tool for non-functional

Requirement

[5]

Forensic Requirements

Specification Tool

- [21]

NLP Based Tool - [22], [35], [41], [45], [61],

[63], [98]

PCFC Formal Model based Permission

Control Flow Graph

[24]

SPML Secure Process Movement Formal

Language

[25]

FlexRay Secure Communication Protocol

Tool

[27]

Model Driven

Development Tool

- [87], [105]

ATLaS Automatic Traceability Linking

System tool

[36]

30

Penetration Testing

Tool

- [50], [97]

B-Tool Automatic Capturing and

Validation Requirements tool

[72], [79]

BPMN 2.0 Business Process Model and

Notation

[99]

Apart from the state-of-the-art tools and techniques, this Paper also identified Hybrid Software

Development Process Cycle that could also be used to develop secure Software Applications.

The only drawback of such approach is its exhaustive nature that include a lot of manual work.

it should be noted that a lot of tools are domain specific and can’t be used as general. Mostly

these are limited for one domain because of the fact they each type of niche has its own time

frame and set of requirements. Especially Mobile Application Development that has the

quickest creation phase. It was also observed that researchers have separately worked for the

requirements specification methodologies and frameworks for Web, Desktop and Mobile

Applications. Most of the Mobile App related work were also focused on Health, Banking and

Defence related Applications. However, Development Models can be selected with little

modifications. Overall, these are good framework and methodologies that can be used to

specify security related requirements in Software Development.

The existing landscape of Security Requirements Identification Methodologies and Tools

Techniques within the context of mobile application development has been a subject of

profound exploration. This research endeavours to shed light on this crucial domain by

systematically reviewing relevant literature. The primary objective is to discern the

methodologies and techniques that have emerged from scholarly discourse and practical

applications. The systematic review and analysis of these selected research articles reveal a

substantial body of work by researchers. While much progress has been made in the field, it

becomes evident that there is an ongoing journey towards comprehensive solutions. The

methodologies and techniques put forth by these researchers serve as foundational building

blocks, guiding the way for further advancements and practical implementations.

RQ2: How effective are the different methodologies for reviewing security-related

requirements in software requirement specifications?

The evaluation of the effectiveness of various methodologies for reviewing security-related

requirements in software requirement specifications (SRS) stands as a pivotal aspect of this

research. By conducting a systematic literature review, we delve into this inquiry with the aim

of providing insights into the strengths and limitations of these methodologies. Based on

research conducted in this SLR study, several methodologies and tools have been identified for

reviewing security-related requirements in software requirement specifications. These

approaches vary in their effectiveness based on factors such as context-specific suitability,

coverage of security aspects, formality and rigor, automation support, and expertise and skill

of reviewers.

1 Context-Specific Suitability: The effectiveness of a methodology is closely tied to its

suitability for the specific context of the software development project. For instance, [43]

proposed an approach for reviewing security-related aspects in agile requirements

specifications of web applications, considering the agile development context. Research

31

Study [76] focused on quality factors in mobile application development. By considering

the specific context, these methodologies can align security requirements with the needs

and constraints of the project, leading to more effective security reviews.

2 Coverage of Security Aspects: The effectiveness of a methodology is also determined by

its ability to address various security aspects comprehensively. Some methodologies, such

as those proposed in [50] and [65], consider multiple dimensions of security requirements,

including confidentiality, integrity, and availability. By covering a wide range of security

concerns, these approaches enhance the overall security posture of the software.

3 Formality and Rigor: Formal methods can bring a higher level of rigor and precision to

the review process. For example, [100] presented an approach that uses formal modelling

to systematically analyse and specify security requirements for converged web-mobile

applications. Similarly, paper [80] proposed a rule-based multi-criteria framework for

sustainable-security assessment of web applications. Formal methods can help in ensuring

correctness and consistency in security requirements.

4 Automation Support: The effectiveness of a methodology can be augmented by

leveraging automation tools for security analysis. For instance, [65] introduced a security

testing tool, MCP, which is driven by requirements and automatically generates test cases

for security-related requirements. Automation tools like MCP can efficiently identify

security issues in requirements specifications, enabling early detection of vulnerabilities.

5 Expertise and Skill of Reviewers: Finally, the effectiveness of any review process

depends on the expertise and skill of the reviewers involved. Studies like [95] provide a

comprehensive survey of machine learning security attacks and defence approaches for

emerging cyber-physical applications. Such surveys help reviewers stay updated with the

latest security threats and mitigation techniques, thus improving the quality of security

reviews.

The selected research articles encompass a spectrum of methodologies, ranging from Security

Requirement Backlog to Modified User Stories, Frameworks & Methodologies, Tool Support,

and Hybrid Software Development Process. This diversity of approaches mirrors the

multifaceted nature of security concerns in software development. Through a comprehensive

analysis of these methodologies, we strive to delineate their effectiveness based on several

criteria, such as their ability to identify security vulnerabilities, streamline development

processes, and minimize the risk of breaches. Furthermore, we assess their adaptability to

different contexts and their scalability to various project sizes.

In conclusion, the effectiveness of different methodologies for reviewing security-related

requirements in software requirement specifications varies based on factors like context-

specific suitability, coverage of security aspects, formality and rigor, automation support, and

the expertise of reviewers. By considering these factors and adopting appropriate

methodologies and tools, organizations can enhance the effectiveness of their security reviews

and ultimately deliver more secure software products.

RQ3: What are the available Tools and techniques or Framework for specification of security

related Requirements in mobile application development?

During the investigation of the literature few tools, techniques, and frameworks have been

identified for specifying security-related requirements in mobile application development.

32

These tools aim to enhance the security of mobile apps by identifying and addressing potential

vulnerabilities and threats. Here are some of the notable ones:

1 SeMA (Secure Mobile App): SeMA is a design methodology for building secure Android

apps. It focuses on integrating security requirements into the development process to

ensure that security considerations are considered from the early stages of app

development [64].

2 OWASP Risk Analysis Driven Security Requirements Specification: This framework

is proposed for secure Android mobile software development. It is based on the Open Web

Application Security Project (OWASP) guidelines and emphasizes analysing risks to drive

the specification of security requirements in the development process [33] [57].

3 NERV (Non-functional Requirements in agile software development): NERV is a

lightweight process for addressing non-functional requirements, including security, in

agile software development. It aims to integrate the consideration of non-functional

requirements into agile practices [14].

4 SAFE (Security-Aware FlexRay Scheduling Engine): SAFE is a framework that

addresses security requirements for the FlexRay communication protocol used in

automotive systems, including mobile applications. It focuses on securing communication

protocols and ensuring safety in vehicular networks [31].

5 ATLaS (Traceability Links Recovery Combining Information Retrieval and Semi-

Supervised Techniques): ATLaS is a framework that helps recover traceability links

between security requirements and other artifacts. It uses information retrieval and semi-

supervised techniques to improve traceability and ensure that security requirements are

accurately linked to another project artifacts [40].

6 SeMSy (Secure Mobile System): SeMSy is a security modeling framework for mobile

systems that includes mobile applications. It aims to model security requirements and

analyze potential threats in mobile systems, including mobile apps [46].

7 MCP (A Security Testing Tool Driven by Requirements): MCP is a security testing

tool that leverages security requirements to automatically generate test cases and validate

the security of software applications, including mobile apps [65].

8 Non-Functional Requirements Elicitation Guideline for Agile Methods: This

guideline provides insights into eliciting non-functional requirements, including security

requirements, in agile development environments, helping to ensure that security

considerations are not overlooked [98].

RQ4: What are the key challenges and limitations associated with the current methodologies

used for reviewing security-related requirements in software requirement specifications?

Several key challenges and limitations associated with the current methodologies used for

reviewing security-related requirements in software requirement specifications have been

identified. These challenges can impact the effectiveness and reliability of the security review

process and may lead to potential security vulnerabilities in the final software product. Here

are the key challenges and limitations:

1 Ambiguity in Security Requirements: Security requirements can sometimes be vague or

ambiguous, making it difficult for reviewers to precisely understand and address them.

33

This ambiguity may result from poorly defined terminologies or lack of clarity in

expressing security needs [15].

2 Incomplete Requirements: Inadequate or incomplete security requirements can be a

significant challenge. When security requirements are not fully specified, the reviewers

may not have sufficient information to evaluate or implement the necessary security

measures [15].

3 Inconsistency and Conflicts: Inconsistencies can arise when different security

requirements or elements overlap or contradict each other. Resolving such conflicts is

crucial to ensuring that the security specifications are coherent and effective [25].

4 Lack of Integration with Development Process: If the security review process is not

well integrated into the overall software development process, security considerations may

be overlooked or addressed too late in the development lifecycle [25].

5 Human Error and Subjectivity: Security requirement reviews are often conducted by

human reviewers, and their effectiveness may be influenced by individual biases,

expertise, and experiences. Human error and subjectivity could lead to missed security

issues [25].

6 Complexity of Security Analysis: Analysing and validating security requirements can be

complex, especially in large and intricate software systems. This complexity may hinder a

comprehensive and accurate security review [32].

7 Lack of Tool Support: While there are some tools available to aid in security

requirements review, the current toolset may not be comprehensive enough to cover all

aspects of security analysis and verification [25].

8 Dynamic Nature of Security Threats: The threat landscape is constantly evolving, and

new security threats emerge regularly. Static review methodologies may not be sufficient

to address dynamic and emerging security concerns [34].

9 Trade-offs with Functional Requirements: In certain cases, security requirements may

conflict with functional requirements, and finding an optimal balance between security and

functionality can be challenging [34].

10 Resource and Time Constraints: Security reviews may require significant time and

resources, which can be a constraint in fast-paced development environments [41].

11 Lack of Domain-Specific Security Knowledge: Reviewers may not always possess in-

depth knowledge of the specific domain or technology, leading to potential oversights in

domain-specific security requirements [58].

Addressing these challenges requires a comprehensive approach that combines standardized

methodologies, automation through tools, integration with the development process, and

continuous monitoring of emerging security threats. Additionally, employing experienced

security professionals and domain experts in the review process can enhance the effectiveness

of identifying and addressing security-related requirements.

2.5 Findings and Limitations
 Our exhaustive examination encompassed an in-depth

analysis of 97 research articles that presented diverse frameworks and methodologies aimed at

the specification of security-related requirements within the context of software development,

particularly focusing on Android applications. This comprehensive review process unveiled

several noteworthy and thought-provoking findings:

34

• Lack of Emphasis on Security Requirements: A significant portion of the reviewed

literature highlighted a prevailing trend of neglecting security-related requirements in

the initial phases of Android application development. This observation underscores

the need for greater awareness and incorporation of security considerations during

requirement specification.

• Diverse Approaches: The identified research articles presented a range of

methodologies, techniques, and tools aimed at integrating security requirements into

the development process. These approaches exhibited variations in their scope, depth,

and effectiveness, reflecting the evolving landscape of security in software engineering.

However, majority were inclined towards Web and Desktop application development

and very few included android aspect but were not effective because of the fact that

Android Development process is very different as compared to desktop and website

development.

• Integration Challenges: Many of the proposed methodologies faced challenges in

effectively integrating security requirements without impeding the agile and rapid

nature of Android application development. Striking a balance between security and

development efficiency remains a key concern.

• Regulatory Compliance: While some frameworks acknowledged the significance of

adhering to industry standards and regulatory requirements, there were instances of

overlooking compliance-related security demands. This emphasizes the need for

thorough consideration of legal and regulatory aspects during requirement

specification.

• Emergence of Android: The integration of security into Android app development

process was observed in some frameworks, signifying a growing acknowledgment of

the need for security to align with their iterative and adaptive development processes.

• Non-functional Considerations: Security requirements were predominantly

categorized as non-functional requirements, often intertwined with other non-

functional aspects like performance and usability. This interdependency poses

challenges in effectively addressing security concerns.

• Variability in Terminology: The lack of standardized terminology for security-related

concepts led to inconsistencies in how security requirements were specified across

different frameworks. A uniform vocabulary could facilitate clearer communication.

The validity of this study rests on the rigor of the systematic literature review methodology

employed. The search process encompassed a wide array of reputable databases and a

systematic inclusion/exclusion criterion, ensuring comprehensive coverage of relevant

research articles. This comprehensive approach enhances the credibility of the findings and

their relevance to the broader context of Android application security. However, it's important

to discuss the limitations of the conducted systematic literature review:

• Publication Bias: The study is subject to potential publication bias, as it relies on the

availability and publication of research articles related to security requirements in

Android application development. Unpublished or inaccessible findings could impact

the comprehensiveness of the analysis.

• Framework Evaluation: The review did not extensively evaluate the effectiveness of

the proposed frameworks, methodologies in real-world scenarios due to limitations in

article scope and availability of empirical evidence.

35

• Scope Limitation: The focus on security requirements specification leaves out other

critical aspects of security such as implementation, testing, and deployment, which are

integral to a comprehensive security posture.

2.6 Conclusion of SLR
 The systematic literature review (SLR) embarked on a

comprehensive expedition, delving into a diverse array of research papers and resources

meticulously dedicated to the intricacies of security requirements identification methodologies

and tools/techniques within the realm of software development. The far-reaching investigation

unearthed a multitude of invaluable insights, spotlighting an assortment of preeminent

approaches adroitly harnessed by the industry to masterfully elicit, scrutinize, and precisely

stipulate security-oriented requirements. Among these, luminaries such as the Common

Criteria (ISO/IEC 15408), SQUARE, Misuse Case Technique, Abuse Case Technique, and

Security Patterns materialized as bedrock methodologies, celebrated for their efficacy in

orchestrating a harmonious integration of security concerns throughout the software

development lifecycle. These methods are like carefully designed plans that are put together

very precisely. They provide step-by-step frameworks and helpful rules that are extremely

important in dealing with security concerns as they change over time while the software keeps

improving. But the valuable information doesn't end with just these methods. It also includes a

wide range of tools and methods that are really useful in helping with the complex job of

finding out what security needs the software has.

Standing tall among these technological allies were the formidable entities of OWASP, NERV,

and NORMAP, each wielding the power to transcend mere tools and ascend to the echelons of

creative catalysts. These tools, akin to the artisan's chisel, were adeptly employed for the

purpose of sculpting ideas, shaping conceptual frameworks, and encouraging the emergence of

security-related concepts that stood resilient against potential threats and incursions. In this

expansive landscape, two particular treasures emerged - Security Requirement Patterns and

Security Patterns for Mobile Applications. These beacons of innovation unfurled as reusable

solutions, effectively illuminating pathways through the labyrinthine maze of common security

challenges. Their significance is akin to that of guiding stars, offering both solace and direction

to developers navigating the perilous seas of security concerns.

In short, the important findings from this detailed study strongly emphasize the deep

significance of creating well-designed methods for identifying security needs. These methods

are backed by a collection of helpful tools. They act as strong protectors in the constant battle

to reduce security dangers while navigating the complex pathways of software creation.

However, the spotlight shines brightest on the world of Android App Development. Here,

there's a clear call for modern, flexible methods that can quickly identify security needs right

from the start. This call isn't just about asking for something new, but it's a vital requirement

in our ever-changing world of technology. Keeping software safe is an ongoing effort, always

adapting to new innovations and the steady march of cyber threats. So, the determined quest to

improve the methods we already have and exploring new ways forward becomes the guiding

light for the software industry. The goal is to reach a point where security isn't an afterthought

but a fundamental and essential part of the process. In this ongoing story of technological

progress, the protection of software systems and user data takes top priority. As technology

continues to move forward, the software industry, armed with the wisdom gained from studies

36

like this, is ready to face new security challenges. This journey will leave a mark on the history

of a safer digital world.

2.7 Research Gap
 In this section the research gap has been discussed that was observed

in literature. Examination was conducted on around 97 research studies various techniques,

tools and methodologies were identified for security related requirements specifications.

However, there were some drawbacks in the existing studies that proves to be that research gap

on which further work can be done.

The gap found in the research studies was that no research was found that specifically provided

framework or methodology to specify security related requirements in android app

development automatically. While some of the articles such as [33], [46], [65] did include

security requirements specification in android app development but were focused in one

domain only either banking or defence related. Moreover, most of them required manual or

semi-automated arrangement of requirements.

Hence, after SLR findings efforts are made to address the discussed research gap by

implementing and Natural Language Processing Model to evaluate the Android Application

Requirements and fetch security related requirements out of them. The Goal is to achieve

maximum accuracy in lesser time so that it could be easily incorporated in rapid nature of

android application development.

2.8 Summary
 In this chapter, a Systematic Literature Review (SLR) was conducted

following guidelines [8]. The review process involved three phases: planning, review, and

conclusion. Research questions were formulated, databases selected, search strings created, and

studies published between 2010 and 2023 were focused on. Inclusion/exclusion criteria were

established, and quality assessment was performed on selected studies. The research questions

included topics like security requirements identification methodologies, effectiveness of

review methodologies, tools for security-related requirements in mobile app development, and

challenges in current review methodologies.

The study selection process involved a comprehensive literature search across various

databases. Initially, a broad search query was refined through filters, resulting in a final search

phrase. Snowballing was also used to enhance results. This process yielded 97 relevant articles.

A "Tollgate Approach" further refined these articles from an initial pool of 936. Articles were

categorized into conference papers and journal articles, originating from various databases.

Inclusion and exclusion criteria considered subject relevance, reputable sources, publication

years (2010-2023), and English language. Quality assessment was conducted using a checklist

with five questions, ensuring the credibility of selected studies. The distribution of articles

across databases, years, and identified frameworks/methodologies was analysed. Five main

categories emerged: Security Requirements Backlog, Modified User Stories, Frameworks and

Methodologies, Tools Supporting Security Requirements Specification, and Hybrid Software

Process Lifecycle. Among the findings, well-established methodologies like Common Criteria

37

and SQUARE were highlighted, along with tools like OWASP and NERV. The importance of

Security Requirement Patterns and Security Patterns for Mobile Applications was emphasized.

The study underscores the significance of well-designed methods and tools for identifying

security needs in software development. Android app development was identified as an area

needing more focus on automated security requirement specification.

A research gap was observed, as no existing studies provided a framework or methodology for

automatic security requirement specification in Android app development, especially across

different domains. Most existing studies required manual or semi-automated processes. the aim

is to address this gap by implementing a Natural Language Processing model to evaluate

Android application requirements and extract security-related requirements more efficiently.

Overall, the SLR provided insights into the state of security requirement identification

methodologies, tools, and challenges, paving the way for future research in the field.

38

CHAPTER 3

PROPOSED APPROACH

In this chapter, the proposed approach has been discussed for eliciting security-related

requirement from requirements document of android application. The approach consists of

several steps such as data collection, pre-processing of data, and setup of model.

The algorithm that is used in this approach is Naïve Bayes Model [106]. It is a powerful yet

simple and fast model based on Bayes theorem. It is primarily used for classification tasks such

as spam detection, sentiment analysis and text classification [106]. Given the nature of Android

Application Development which is quite rapid and often proper requirements specification are

ignored. Moreover, Android Operating System is based on Layered Architecture, consist of 5

layers known as Application layer, Application Framework Layer, Libraries & Runtime

Layer, Hardware Abstraction layer, and Linux layer [107].

Home ..BrowserSMS/MMS

Activity

Manager

Window

Manager

View

System

Notification

Manager

Resource

Manager

Location

Manager

Package

Manager
 .

Libc SQL

Media

Framework

Surface

Manager

SSL

 .

Core Libraries

Virtual Machine

Graphics Audio Wifi .

Keyboard

Driver

Power

Management
 .

Display

Driver

Figure 10: Android OS Architecture

Figure 10 represents the diagrammatic representation of Android Operating System

Architecture. The development team must take care of this architecture and its security while

39

creating the apps. As discussed earlier such openness and rapid development nature has severe

consequences such as the major one security breaches. Having said that the security threats

increase due to usage of multiple frameworks & Libraries, and APIs.

To mitigate these challenges Naïve Bayes Model has been Proposed which can be incorporated

in Android Development because of its quickness and flexibility to match rapid nature of

android app development.

3.1 Proposed Model
 A Naive Bayes model is a probabilistic machine learning algorithm based

on Bayes' theorem. It is commonly used for classification tasks, particularly in natural language

processing (NLP), text analysis, and spam email detection. The "naive" aspect of Naive Bayes

stems from its assumption of feature independence, which simplifies calculations and model

training. It is a probabilistic classification algorithm that leverages Bayes' theorem to predict

the probability of a specific class label for a given set of features. It assumes feature

independence, allowing efficient calculation of conditional probabilities, and is widely applied

in text classification, sentiment analysis, and spam detection [108].

The Naïve Bayes algorithm is comprised of two words Naïve and Bayes, which can be

described as:

3.1.1 Naïve
 It is termed "Naïve" due to its assumption that the presence of one specific

feature is unrelated to the presence of other features. For example, when identifying a fruit

based on attributes like colour, shape, and taste, a red, spherical, and sweet fruit is classified as

an apple. Therefore, each feature independently contributes to the identification of the fruit as

an apple, without relying on the presence of the others [108].

3.1.2 Bayes Theorem
 Bayes theorem describes as the probability of an event given that

another event has occurred. Mathematically it is written as

P(A|B) = (P(B|A) * P(A)) / P(B)

Where:

• P(A|B) represents the probability of hypothesis A being true given the evidence B.

• P(B|A) represents the probability of observing evidence B given that hypothesis A is true.

• P(A) is the prior probability of hypothesis A being true, before considering the evidence

B.

• P(B) is the probability of observing evidence B.

In simple terms, Bayes' theorem allows us to calculate the probability of a hypothesis being

true (the posterior probability) based on prior knowledge (prior probability) and the likelihood

of observing new evidence if the hypothesis were true. It provides a formal framework for

updating beliefs in light of new information.

Naïve Bayes Model consist of Multiple Algorithms, it is a group of 3 models.

Gaussian Model: The Gaussian model operates under the assumption that features within the

data follow a normal distribution. In practical terms, this means that when the predictors are

40

continuous values (as opposed to discrete), the model assumes that these values are drawn

from a Gaussian distribution.

Multinomial Model: The Multinomial Naïve Bayes classifier is employed when the data

exhibits a multinomial distribution. It finds extensive application in document classification

tasks, where the goal is to categorize a particular document into predefined categories such as

Sports, Politics, Education, and more. The classifier leverages the word frequencies as

predictors to make these category assignments.

Bernoulli Model: The Bernoulli classifier operates in a manner similar to the Multinomial

classifier, but it is specifically designed for predictor variables that are independent Boolean

(binary) variables. In other words, it focuses on whether a particular word is present or absent

in a document. The Bernoulli model is also well-known for its effectiveness in document

classification tasks, particularly when considering the presence or absence of specific terms.

These three variants of the Naïve Bayes classifier - Gaussian, Multinomial, and Bernoulli, each

have their unique strengths and are chosen based on the characteristics of the data and the

requirements of the classification problem at hand.

3.2 Data Pre-Processing
 Data Pre-processing is the crucial part of preparing data for

the model. In this section phases and their activities are discussed.

3.2.1 Dataset Creation

 The dataset used for this model encompasses a diverse set of

mobile application requirements. These requirements were compiled from multiple sources,

with a portion of them being sourced from Kaggle [109], a well-known platform for data

science and machine learning datasets. Additionally, the author of this project contributed a set

of requirements based on their past work, enriching the dataset's diversity. Upon the completion

of data collection, the dataset aggregated a substantial volume of requirements, totalling

approximately 1600 entries. To facilitate the model's understanding and classification of these

requirements, labels from the Kaggle dataset were assigned to the remaining entries as shown

in Figure 11. This labelling process helps categorize the requirements into specific classes or

categories, making it easier for the model to learn and make predictions.

Finally, for compatibility with the model's input requirements, the dataset was meticulously

prepared and converted into the CSV (Comma-Separated Values) file format. This format is

widely recognized and readable by machine learning models, enabling seamless integration

with the model's training and evaluation processes.

In summary, the dataset compilation involved merging requirements from various sources,

labelling to classify them, and ensuring data format compatibility to facilitate effective

utilization by the model. This comprehensive dataset forms the foundation for training and

testing the model's capabilities in understanding and categorizing mobile application

requirements.

41

Figure 11: Dataset Snap

3.2.2 Data Normalization

 In this phase data have been cleansed from noise such as:

• Typing mistakes were Corrected

• Missing data were added

• Special characters, extra spaces were removed

• Duplication and repetitions of words were corrected.

• Outliers were removed

• Lemmatizing applied

3.2.3 Feature Selection
 Another important portion of data pre-processing. For feature

selection a library [110] has been used which is known as Count Vectorizer. Count Vectorizer

is a feature extraction technique commonly used in natural language processing (NLP) and text

analysis tasks. It's particularly useful when working with text data for tasks like text

classification, sentiment analysis, and document categorization. Count Vectorizer converts a

collection of text documents into a matrix of token (word) counts, which can then be used as

input features for machine learning models

Here's how Count Vectorizer works and how it can be used in conjunction with a Naive Bayes

classifier:

Count Vectorizer Process:

• Tokenization: Count Vectorizer starts by tokenizing the input text, which means

breaking it down into individual words or terms. It also removes punctuation and

converts text to lowercase for consistency.

42

• Vocabulary Building: It builds a vocabulary of unique words (tokens) present in the

entire corpus (collection of text documents). Each word in the vocabulary is assigned a

unique index.

• Counting: For each document in the corpus, Count Vectorizer counts the frequency of

each word in the vocabulary. This results in a matrix where each row corresponds to a

document, and each column corresponds to a word in the vocabulary. The matrix

contains the word counts for each document.

3.3 Summary
 In this chapter, an approach for extracting security-related requirements from

Android application requirement documents is discussed. The approach involves multiple

steps, including data collection, data pre-processing, and model setup. The chosen model is the

Naïve Bayes Model, a probabilistic algorithm based on Bayes' theorem, commonly employed

for tasks like spam detection and sentiment analysis. The Android Operating System's layered

architecture is highlighted, emphasizing the importance of considering security in app

development. To address the challenges posed by the rapid development nature and the use of

multiple frameworks and APIs, the Naïve Bayes Model is proposed. Data pre-processing

involves dataset creation, data normalization, and feature selection using Count Vectorizer, a

technique for converting text into a matrix of token counts. These components collectively

form the foundation for the model's capability to understand and categorize mobile application

requirements.

43

CHAPTER 4

IMPLEMENTATION AND EVALUATION

This chapter focuses on the practical implementation of the proposed approach outlined in the

previous chapter. The implementation process encompasses several critical components,

including the setup of an Integrated Development Environment (IDE), the selection of libraries

and tools, and an overview of the essential aspects of the applied approach. Additionally, this

chapter delves into the preparation of results and the evaluation of the approach's performance.

4.1 Experimental Setup

 The composed methodology is conducted on online platform

known as Google Colab, short of “Google Co-laboratory” [111]. It is a free cloud-based

platform provided by Google that offers a hosted Jupyter notebook environment. It's primarily

designed for machine learning and data analysis tasks but can be used for various other

programming and research purposes as well. Here are some key features and aspects of Google

Colab:

• Jupyter Notebook Integration: Google Colab allows users to create and run Jupyter

notebooks directly in a web-based interface. Jupyter notebooks are popular in data

science and research because they enable users to combine code, documentation, and

visualizations in an interactive format.

• Free Access to GPU and TPU: One of the standout features of Google Colab is its

provision of free access to Graphics Processing Units (GPUs) and Tensor Processing

Units (TPUs). This is particularly beneficial for tasks that require significant

computational power, such as training deep learning models.

• Cloud-Based: Google Colab is entirely cloud-based, meaning that you don't need to

install any software or libraries on your local machine. All the computing resources are

provided by Google's infrastructure.

• Integration with Google Drive: Colab integrates seamlessly with Google Drive,

allowing you to store, access, and share your Jupyter notebooks and data files directly

from your Google Drive account.

• Pre-installed Libraries: Google Colab comes with many popular data science libraries

and tools pre-installed, including TensorFlow, PyTorch, scikit-learn, and more. This

eliminates the need for manual installations.

• Collaboration: As the name suggests, Colab is designed for collaboration. Multiple

users can work on the same notebook simultaneously, making it a useful tool for team

projects and educational purposes.

• Version Control: Colab integrates with Git for version control, enabling users to track

changes and collaborate with version control systems.

• Sharing and Publishing: You can easily share your Colab notebooks with others,

either by providing them with a link to your notebook or by publishing them to the web.

This is useful for sharing research findings, tutorials, and code with a broader audience.

• Python Support: Colab primarily supports Python, making it an excellent choice for

Python-based data science and machine learning tasks. You can write and execute

Python code within Colab notebooks.

44

Overall, Google Colab is a versatile and accessible platform that has gained popularity in the

data science and machine learning communities due to its combination of free GPU/TPU

access, Jupyter notebook integration, and collaborative features. It provides a convenient way

for individuals and teams to work on data analysis, research, and machine learning projects

without the need for extensive local computing resources.

4.2 Implementation

 To execute the proposed approach, Python Language has been used

in Google Colab. It uses the scikit-learn library for machine learning and pandas for data

manipulation. This part consists of various major steps. Below has been provided a detailed

explanation of each part of the code:

Figure 12: Importing Libraries

As Figure 12 shows Pandas and Sklearn libraries has been used. Pandas is imported for data

manipulation. Whereas, from Sklearn library multiple tasks has been accomplished.

“Train_test_split” has been used for splitting dataset into training and testing sets. Moreover,

“CountVectorizer” is for text classification and “MultinomiaNB” is the Multinomial Naïve

Bayes Classifier that is used to classify the requirements into Security-Related and Non-

Security-Related Requirements. Lastly, Various evaluations metrices are used to assess the

calibre of the model.

Figure 13: Data Loading

Data loading step that followed by Libraries Import. As shown in Figure 13, The requirements

dataset is composed in CSV file, that is loaded using pandas’ library. Further the dataset has

been divided into two columns into X and Y. The text column of dataset that contains

requirements statements are assigned to X and their respective Labels is assigned to Y variable.

Figure 14: Label Mapping and dataset Splitting

Moving further into the code, in Figure 14 labels are mapped to binary values. As by default

there are many labels such as F for Functional Requirement, SE for Security Requirement, A

45

for Availability, U for Usability etc. to make classifier performance better and fast it is

converted to binary only those requirements are assigned 1 that are Security related and for

other 0 is assigned. Additionally, dataset is split into train and test group by using

train_test_split library. Test size is taken 30% of the dataset the remaining 70% taken for

training the model. Including random_state as 42 which ensure that the dataset is

reproduceable.

Figure 15: Feature Setting

As Figure 15 illustrates CountVectorizer has been used to fit and transform the dataset, as

describe in earlier chapter that CounterVectorizer is used for feature selection based on number

of words in a document. “X_train_vec” is the result of fitting and transforming the vectorizer

on the training data, converting text documents into a matrix of token counts and “X_test_vec”

is the result of transforming the test data using the same vectorizer.

Figure 16: Classifier Implementation

Finally, Multinomial Naïve Bayes Classifier has been implemented as seen in Figure 16. An

Alpha parameter which is also know as smoothing technique has also been included, the best

alpha was extracted by using GridSearchCV Library. The best value came out to be 0.001 has

been kept so that underfitting could be mitigated. In Naïve Bayes model underfit occurs due to

those event that has zero probability [108]. Moreover, this model is trained on vectorized

training data. Lastly, after training the data set trained model is used to predict the test data.

4.3 Evaluation
 After Predictions Model has been evaluated using various measurements,

using Confusion Matrix. A confusion matrix, also known as an error matrix, is a fundamental

tool for evaluating the performance of a classification algorithm, such as the Naive Bayes

classifier. It provides a clear and detailed summary of how well a classification model is

performing by comparing its predictions to the actual or ground truth labels. A confusion matrix

is typically a square matrix with rows and columns as shown in Table 10 corresponding to the

classes in the classification problem [108].

46

Table 10: Confusion Matrix

 Predicted Positive Predicted Negative

Actual Positive TP (438) FN (1)

Actual Negative FP (12) TN (30)

Here's an explanation of the key components and terminology associated with a confusion

matrix:

• True Positives (TP): The number of instances that belong to the positive class (e.g.,

"Security Related Requirements") and were correctly classified as positive by the

model.

• True Negatives (TN): The number of instances that belong to the negative class (e.g.,

"Non-Security Related Requirements") and were correctly classified as negative by the

model.

• False Positives (FP): The number of instances that belong to the negative class but

were incorrectly classified as positive by the model. This is also known as a Type I

error.

• False Negatives (FN): The number of instances that belong to the positive class but

were incorrectly classified as negative by the model. This is also known as a Type II

error.

With these parameters, other various performance indicators can be computed, such as,

Accuracy, Precision, Recall and F1 score. At the end as Figure 17 illustrates the computation

of these performance measuring metrics were done in order to get results reliability.

Figure 17: Model Performance Measuring

• Accuracy: The overall correctness of the model's predictions, calculated as (TP + TN)

/ (TP + FP + TN + FN). It measures the proportion of correctly classified instances out

of all instances. In this model’s case it come out to be pretty well. It is 97.8%

• Precision: The precision measures how many of the predicted positive instances were

correctly predicted, calculated as TP / (TP + FP). It is a measure of the model's ability

to avoid false positives. Our Model’s Precision calculated to be around .97

• Recall (Sensitivity or True Positive Rate): Recall measures how many of the actual

positive instances were correctly predicted, calculated as TP / (TP + FN). It is a measure

47

of the model's ability to capture all positive instances. This proposed method scored

0.99

• F1-Score: The F1-score is the harmonic mean of precision and recall and provides a

balanced measure between precision and recall. It is calculated as 2 * (precision *

recall) / (precision + recall). The proposed algorithm reached to about 0.97 of F1 Score.

4.4 Comparison
 Lastly, comparison has been done between the proposed framework and

the identified existing frameworks and methodologies in order to get better insight about the

quality of newly developed novel framework. In Table 11 below the comparison has been done

between the proposed novel approach for specifying security related requirements in Android

Application Development and existing techniques and frameworks that were identified in the

Systematic Literature Review.

Table 11: Comparison Between Proposed Approach and State of the Art Frameworks and

Techniques

Framework Coverage Approach Customization

&

Adaptability

Cost and

Resource

Requirement

Scalability &

Applicability

Accuracy

SR Backlog All Manual Yes Very High Yes -

Modified

User Stories

All Manual Yes Very High Yes -

NORMAP Web Automatic Partially High No 87%

NERV Web Automatic Yes Very High No 85.6%

Secure

Formal

Methods

Android

(Banking)

Automatic Partially High Yes 82%

OWASP Web Semi Auto Yes High No 94%

Model

Driven

Web &

Android

Semi Auto

No Moderate Yes 85%

SVM, KNN Web &

Android

Automatic No Low Yes 80%

NORMATIC Web

Based

Automatic No Moderate No 82%

Naïve Bayes

(Proposed

Approach)

Android Automatic Yes Very Low Yes 97%

The Table 11 provides a comprehensive illustration of the comparative analysis conducted

between the proposed approach and the various state-of-the-art frameworks and methodologies

previously identified in our meticulously conducted systematic literature review. This

comparative analysis encompasses several crucial dimensions for evaluating the effectiveness

and suitability of these frameworks.

First and foremost, it delves into the concept of "Coverage," shedding light on the domains

within which each framework can be effectively employed. This dimension serves to elucidate

the breadth and applicability of each methodology. Following this, we delve into the aspect of

"Approach," discerning whether a given framework operates in a manual, semi-automatic, or

fully automatic mode. This differentiation highlights the level of human intervention required,

48

which can have significant implications for efficiency and ease of use. The third dimension,

"Customization and Adaptability," provides insights into the degree of flexibility inherent in

each methodology. This dimension evaluates whether these frameworks can be tailored to

accommodate diverse and evolving requirements, catering to a wide array of needs.

Furthermore, "Cost and Resource Requirements" offer valuable insights into the financial and

resource demands of each framework. This assessment provides a practical perspective on the

feasibility and sustainability of implementing these methodologies. Last but not least, we

explore the dimensions of "Scalability" and "Accuracy." "Scalability" gauges a framework's

ability to handle larger and more varied datasets, reflecting its potential for growth and

adaptation. "Accuracy" provides a critical evaluation of the precision and reliability of

predictions generated by these frameworks.

In summary, Table 11 serves as a comprehensive reference point for evaluating and comparing

the proposed approach against existing state-of-the-art methodologies across multiple key

dimensions, offering valuable insights for decision-making and further research in this domain.

4.5 Summary
 In conclusion to this chapter, this section composed of implementation of the

proposed model. Initially, the IDE setup has been discussed that online Google co lab has been

opted to implement the proposed methodology. Further, moving forward the libraries that were

used is briefed. Going to the next step in the chapter, the implementation of the logic has been

discussed in detail, important steps of the code was shared. Finally, this chapter concludes by

evaluating the implemented model by using performance evaluation metrics.

49

CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

This chapter consists of the conclusion remarks about this thesis report. Here whole thesis has

been summarized to provide the last insight. Moreover, few future path ways have been also

shared that could pay path for Industrialists and Researchers for further research and

discoveries.

5.1 Conclusion
 Initially a Systematic Literature Review (SLR) was conducted, following a

structured process involving planning, review, and conclusion phases. Research questions were

formulated, databases were selected, and studies published between 2010 and 2023 were

focused on. Inclusion and exclusion criteria were established, and quality assessment was

performed on selected studies. The study categories included security requirements

identification methodologies, review methodologies' effectiveness, tools for security-related

requirements in mobile app development, and challenges in current review methodologies. The

study selection process involved a comprehensive literature search, yielding 97 relevant articles

from an initial pool of 936. These articles were categorized into conference papers and journal

articles from various databases. Quality assessment was conducted to ensure study credibility.

The distribution of articles across databases, years, and identified frameworks/methodologies

was analysed, resulting in five main categories: Security Requirements Backlog, Modified User

Stories, Frameworks and Methodologies, Tools Supporting Security Requirements

Specification, and Hybrid Software Process Lifecycle. Among the findings, well-established

methodologies like Common Criteria and SQUARE were highlighted, along with tools like

OWASP and NERV. The importance of Security Requirement Patterns and Security Patterns

for Mobile Applications was emphasized. However, a research gap was observed, as no

existing studies provided a framework or methodology for automatic security requirement

specification in Android app development. Most existing studies required manual or semi-

automated processes.

To address this gap, an approach for extracting security-related requirements from Android

application requirement documents has be proposed. This approach involves multiple steps,

including data collection, data pre-processing, and model setup. The chosen model is the Naïve

Bayes Model, a probabilistic algorithm based on Bayes' theorem, commonly employed for

tasks like spam detection and sentiment analysis. The Android Operating System's layered

architecture is highlighted, emphasizing the importance of considering security in app

development. Data pre-processing involves dataset creation, data normalization, and feature

selection using Count Vectorizer, a technique for converting text into a matrix of token counts.

These components collectively form the foundation for the model's capability to understand

and categorize mobile application requirements.

Finally, the implementation of the proposed model is discussed, including IDE setup using

Google Colab and the libraries used. Important steps of the code implementation are shared,

and the chapter concludes by evaluating the implemented model using performance evaluation

metrics. This work provides valuable insights into security requirement identification in

Android Application Development, paving the way for future research in the field.

50

5.2 Future Directions
 As per Literature a lot of work has already been done for Web and

Desktop Applications Development however, as far as Android Application Development is

concerned there is a dire need for more research and development. Android Domain is yet to

mature and has various security threats which was discussed in this research study. It is believed

that this work will proof to be a stepping stone for further work and will help researchers and

practitioners.

Moreover, this research does not stop here and intend to grow further by improving the model’s

capability to train and predict on larger set of data. We also have a plan to implement other

feature selection tools and even evaluate non-supervised model on our dataset.

51

References

[1] Statista, "Statista," [Online]. Available: https://www.statista.com/statistics/271644/worldwide-

free-and-paid-mobile-app-store-downloads/. [Accessed 06 2023].

[2] Statista, "Statista," [Online]. Available: https://www.statista.com/statistics/266210/number-of-

available-applications-in-the-google-play-store/. [Accessed 06 2023].

[3] "Pewresearch," [Online]. Available: https://www.pewresearch.org/internet/fact-sheet/mobile/.

[Accessed 06 2023].

[4] "BBC News," [Online]. Available: https://www.bbc.com/news/technology-33653472.

[Accessed 06 2023].

[5] "ZDNet.," 2020. [Online]. Available: https://www.zdnet.com/article/google-removes-17-

android-apps-caught-engaging-in-wap-billing-fraud/. [Accessed 06 2023].

[6] Forbes, "Google Deletes 1 Million Android Apps,"

https://www.forbes.com/sites/zakdoffman/2019/10/20/google-deletes-1-million-android-apps-

why-you-should-be-worried/?sh=2915b4f36b59 , 2019.

[7] H. Villamizar, A. A. Neto, M. Kalinowski, A. Garcia and D. Méndez, "An Approach for

Reviewing Security-Related Aspects in Agile Requirements Specifications of Web

Applications," in IEEE 27th International Requirements Engineering Conference (RE), 2019.

[8] B. Kitchenham, O. Brereton, D. Budgen, M. Turner, J. Bailey and S. Linkman, "Systematic

literature reviews in software engineering – A systematic literature review," Information and

Software Technology, vol. 51, no. 1, pp. 7-15, 2009.

[9] E. Mendes, K. Felizardo, C. Wohlin and M. Kalinowski, "Search Strategy to Update

Systematic Literature Reviews in Software Engineering," in 45th Euromicro Conference on

Software Engineering and Advanced Applications (SEAA), 2019.

[10] H. Villamizar, M. Kalinowski, M. Viana and D. M. Fernández, "A Systematic Mapping Study

on Security in Agile Requirements Engineering," in 44th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA), 2018.

[11] W. M. Farid, "The Normap methodology: Lightweight engineering of non-functional

requirements for agile processes," in 2012 19th Asia-Pacific Software Engineering Conference

- IEEE, 2012.

[12] W. M. a. M. F. J. Farid, "NORMATIC: A visual tool for modeling non-functional

requirements in agile processes," in 2012 Proceedings of IEEE Southeastcon - IEEE, 2012.

[13] b. Othmane, L. a. Angin, P. a. Bhargava and Bharat, "Using assurance cases to develop

iteratively security features using scrum," in 2014 Ninth International Conference on

Availability, Reliability and Security, 2014.

[14] J. Jabeen, Y. H. Motla, R. B. Mateen Ahmed Abbasi Dur-e-Benish Batool, S. Nazir and S. A.

Anwer, "Incorporating artificial intelligence technique into DSDM," in Asia-Pacific World

Congress on Computer Science and Engineering, 2014.

52

[15] Domah, Darshan, Mitropoulos and F. J, "The NERV methodology: A lightweight process for

addressing non-functional requirements in agile software development," in SoutheastCon 2015

- IEEE, 2015.

[16] Sachdeva, Vaibhav, Chung and Lawrence, "Handling non-functional requirements for big data

and IOT projects in scrum," in 2017 7th International Conference on Cloud Computing, Data

Science \& Engineering-Confluence, 2017.

[17] J. Mitra, Ranganath and P. Venkatesh, "SeMA: A Design Methodology for Building Secure

Android Apps," 2019 34th IEEE/ACM International Conference on Automated Software

Engineering Workshop (ASEW), pp. 19-22, 2019.

[18] Holl, Konstantin, S. A. Scherr, Elberzhager and Frank, "2018 11th International Conference on

the Quality of Information and Communications Technology (QUATIC)," in Using Scenario-

Based Reading for Testing Mobile Applications with FIT4Apps, 2018.

[19] K. Qian, R. M. Parizi and Dan Lo, "OWASP Risk Analysis Driven Security Requirements

Specification for Secure Android Mobile Software Development," in 2018 IEEE Conference

on Dependable and Secure Computing (DSC), 2018.

[20] R. Francese, C. Gravino, M. Risi, G. Scanniello and G. Tortora, "On the Use of Requirements

Measures to Predict Software Project and Product Measures in the Context of Android Mobile

Apps: A Preliminary Study," in 2015 41st Euromicro Conference on Software Engineering

and Advanced Applications, 2015.

[21] S. Jeong, H. Cho and S. Lee, "Agile requirement traceability matrix," in 2018 IEEE/ACM 40th

International Conference on Software Engineering: Companion (ICSE-Companion), 2018, pp.

187-188.

[22] B. O. Emeka and S. Liu, "Security Requirement Engineering Using Structured Object-Oriented

Formal Language for M-Banking Applications," in 2017 IEEE International Conference on

Software Quality, Reliability and Security (QRS), 2017.

[23] M. Monshizadeh, V. Khatri and A. Gurtov, "NFV security considerations for cloud-based

mobile virtual network operators," in 24th International Conference on Software,

Telecommunications and Computer Networks (SoftCOM), 2016.

[24] V. Suma, B. Shubhamangala and L. M. Rao, "Impact analysis of volatility and security on

requirement defects during software development process," in International Conference on

Software Engineering and Mobile Application Modelling and Development (ICSEMA 2012),

2012.

[25] X. Xuan, Y. Wang and S. Li, "Privacy requirements patterns for mobile operating systems," in

IEEE 4th International Workshop on Requirements Patterns (RePa), 2014.

[26] A. M. Alashjaee and M. Haney, "Forensic Requirements Specification for Mobile Device

Malware Forensic Models," in IEEE 11th Annual Computing and Communication Workshop

and Conference (CCWC), 2021.

[27] T. D. Breaux, D. Smullen and H. Hibshi, "Detecting repurposing and over-collection in multi-

party privacy requirements specifications," in IEEE 23rd International Requirements

Engineering Conference (RE), 2015.

53

[28] N. A. Kilani, R. Tailakh and A. Hanani, "Automatic Classification of Apps Reviews for

Requirement Engineering: Exploring the Customers Need from Healthcare Applications," in

Sixth International Conference on Social Networks Analysis, Management and Security

(SNAMS), 2019.

[29] W. Shin, S. Kiyomoto, K. Fukushima and T. Tanaka, "A Formal Model to Analyze the

Permission Authorization and Enforcement in the Android Framework," in IEEE Second

International Conference on Social Computing, 2010.

[30] Y. Choe, W. Choi, G. Jeon and M. Lee, "A tool for visual specification and verification for

secure process movements," in eChallenges e-2015 Conference, 2015.

[31] A. B. Belle, T. C. Lethbridge, S. Kpodjedo, O. O. Adesina and M. A. Garzón, "A Novel

Approach to Measure Confidence and Uncertainty in Assurance Cases," in IEEE 27th

International Requirements Engineering Conference Workshops (REW), 2019.

[32] G. Han, H. Zeng, Y. Li and W. Dou, "SAFE: Security-Aware FlexRay Scheduling Engine," in

Design, Automation Test in Europe Conference Exhibition (DATE), 2014.

[33] M. Nagappan and E. Shihab, "Future Trends in Software Engineering Research for Mobile

Apps," in IEEE 23rd International Conference on Software Analysis, Evolution, and

Reengineering (SANER), 2016.

[34] K. Qian, R. M. Parizi and D. Lo, "OWASP Risk Analysis Driven Security Requirements

Specification for Secure Android Mobile Software Development," in IEEE Conference on

Dependable and Secure Computing (DSC), 2018.

[35] N. R. Mead and J. A. Morales, "Using malware analysis to improve security requirements on

future systems," in 2014 IEEE 1st International Workshop on Evolving Security and Privacy

Requirements Engineering (ESPRE), 2014.

[36] A. Martínez, M. Jenkins and C. Quesada-López, "Identifying implied security requirements

from functional requirements," in 14th Iberian Conference on Information Systems and

Technologies (CISTI), 2019.

[37] P. X. Mai, F. Pastore, A. Goknil and L. C. Briand, "A Natural Language Programming

Approach for Requirements-Based Security Testing," in IEEE 29th International Symposium

on Software Reliability Engineering (ISSRE), 2018.

[38] A. Sleimi, M. Ceci, M. Sabetzadeh, L. C. Briand and J. Dann, "Automated Recommendation

of Templates for Legal Requirements," in 2020 IEEE 28th International Requirements

Engineering Conference (RE), 2020.

[39] W. Meincke, "Requirements in the loop : A computer-aided analysis of consistency,

completeness, and correctness of requirements," in 2020 IEEE 28th International

Requirements Engineering Conference (RE), 2020.

[40] A. Alzahrani and J. Feki, "Toward a Natural Language-Based Approach for the Specification

of Decisional-Users Requirements," in 3rd International Conference on Computer

Applications & Information Security (ICCAIS), 2020.

54

[41] E. E. Bella, S. Creff, M.-P. Gervais and R. Bendraou, "ATLaS: A Framework for Traceability

Links Recovery Combining Information Retrieval and Semi-Supervised Techniques," in IEEE

23rd International Enterprise Distributed Object Computing Conference (EDOC), 2019.

[42] J. Bicevskis, A. Nikiforova, Z. Bicevska, I. Oditis and G. Karnitis, "A Step Towards a Data

Quality Theory," in Sixth International Conference on Social Networks Analysis, Management

and Security (SNAMS), 2019.

[43] F. Gilson, M. Galster and F. Georis, "Extracting Quality Attributes from User Stories for Early

Architecture Decision Making," in IEEE International Conference on Software Architecture

Companion (ICSA-C), 2019.

[44] A. Sleimi, N. Sannier, M. Sabetzadeh, L. Briand and J. Dann, "Automated Extraction of

Semantic Legal Metadata using Natural Language Processing," in IEEE 26th International

Requirements Engineering Conference (RE), 2018.

[45] T. Li, "Identifying Security Requirements Based on Linguistic Analysis and Machine

Learning," in 24th Asia-Pacific Software Engineering Conference (APSEC), 2017.

[46] R. Malhotra, A. Chug, A. Hayrapetian and R. Raje, "Analyzing and evaluating security

features in software requirements," in International Conference on Innovation and Challenges

in Cyber Security (ICICCS-INBUSH), 2016.

[47] D. C. d. Leon and S. Shrestha, "Requirements are the New Code," in IEEE 40th Annual

Computer Software and Applications Conference (COMPSAC), 2016.

[48] M. Ruchika, C. Anuradha, H. Allenoush and R. Rajeev, "Analyzing and evaluating security

features in software requirements," in International Conference on Innovation and Challenges

in Cyber Security (ICICCS-INBUSH), 2016.

[49] M. Riaz, J. King, J. Slankas and L. Williams, "Hidden in plain sight: Automatically identifying

security requirements from natural language artifacts," in IEEE 22nd International

Requirements Engineering Conference (RE), 2014.

[50] Robin, A., Gandhi, Mariam and Rahmani, "Early security patterns: A collection of constraints

to describe regulatory security requirements," in Second IEEE International Workshop on

Requirements Patterns (RePa), 2012.

[51] L. a. A. P. a. W. H. a. B. B. ben Othmane, "Extending the agile development process to

develop acceptably secure software," IEEE Transactions on dependable and secure computing,

vol. 11, no. 6, pp. 497-509, 2014.

[52] H. a. L. M. I. a. A. H. a. R. M. a. A. T. a. S. B. {Dar, "A Systematic Study on Software

Requirements Elicitation Techniques and its Challenges in Mobile Application Development,"

IEEE Access, vol. 6, pp. 63859-63867, 2018.

[53] H. a. L. Dar, M. I. a. Ashraf, H. a. Ramzan, M. a. Amjad, T. a. Shahzad and Basit, "A

Systematic Study on Software Requirements Elicitation Techniques and its Challenges in

Mobile Application Development," IEEE Access, vol. 6, pp. 63859-63867, 2018.

55

[54] I. U. Haq and T. A. Khan, "Penetration Frameworks and Development Issues in Secure Mobile

Application Development: A Systematic Literature Review," IEEE Access, vol. 9, pp. 87806-

87825, 2021.

[55] M. Narouei, H. Takabi and R. Nielsen, "Automatic Extraction of Access Control Policies from

Natural Language Documents," Transactions on Dependable and Secure Computing, vol. 17,

no. 3, pp. 506-517, 2020.

[56] M. Riaz, J. King, J. Slankas and L. Williams, "Hidden in plain sight: Automatically identifying

security requirements from natural language artifacts," IEEE 22nd International Requirements

Engineering (RE), 2014.

[57] J. Slankas and L. Williams, "Automated extraction of non-functional requirements in available

documentation," 1st International Workshop on Natural Language Analysis in Software

Engineering (NaturaLiSE), 2013.

[58] Hanan, Hibshi, Stephanie, Jones, Travis and Breaux, "A Systemic Approach for Natural

Language Scenario Elicitation of Security Requirements," IEEE Transactions on Dependable

and Secure Computing, 2021.

[59] I. K. Raharjana, D. Siahaan and C. Fatichah, "User Stories and Natural Language Processing:

A Systematic Literature Review," IEEE Access, vol. 9, pp. 53811 - 53826, 2021.

[60] Maria, R. Esteves, R. Jr, L. Antonio, Pinto and N. Alves, "ScrumS: a model for safe agile

development," in Proceedings of the 7th International Conference on Management of

computational and collective intElligence in Digital EcoSystems, 2015.

[61] R. Lutz, S. Schäfer and S. Diehl, "2012 Proceedings of the 27th IEEE/ACM International

Conference on Automated Software Engineering," in 298-301, 2012.

[62] K. Thomas, A. K. Bandra, B. A. Price and B. Nuseibah, "Distilling Privacy Requirements for

Mobile Applications," in Proceedings of the 36th International Conference on Software

Engineering ICSE, 2014.

[63] W. Guo, "Management system for secure mobile application development," in Proceedings of

the ACM Turing Celebration Conference, China, 2019.

[64] J. Mitra and V.-P. Ranganath, "SeMA: A Design Methodology for Building Secure Android

Apps," in 34th IEEE/ACM International Conference on Automated Software Engineering

Workshop (ASEW), 2019.

[65] P. X. Mai, F. Pastore, A. Goknil and L. C. Briand, "MCP: A Security Testing Tool Driven by

Requirements," in ACM 41st International Conference on Software Engineering: Companion

Proceedings (ICSE-Companion), 2019.

[66] S. Amasaki and P. Leelaprute, "The Effects of Vectorization Methods on Non-Functional

Requirements Classification," in 44th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA), 2018.

[67] A. C. J. Fox, G. Stockwell, S. Xiong, H. Becker, D. P. Mulligan, G. Petri and N. Chong, "A

Verification Methodology for the Arm® Confidential Computing Architecture: From a Secure

56

Specification to Safe Implementations," Proceedings of ACM on Programming Languages,

vol. 7, no. 88, pp. 376-405, 2023.

[68] L. Zhao, W. Alhoshan, A. Ferrari, K. J. Letsholo, M. A. Ajagbe, E. V. Chioaşcă and R. T.

Batista-Navarro, "Natural Language Processing for Requirements Engineering: A Systematic

Mapping Study," ACM Computing Surveys, vol. 54, no. 3, pp. 1-41, 2021.

[69] Wagner, S. Fern\'{a}ndez, D. M. Felderer, M. Vetr\`{o}, A. Kalinowski, M. Wieringa, R.

Pfahl, D. Conte, T. Christiansson, M.-T. Greer, D. Lassenius and etl, "Status Quo in

Requirements Engineering: A Theory and a Global Family of Surveys," ACM Transactions on

Software Engineering and Methodology, vol. 28, no. 2, pp. 1-48, 2019.

[70] T. Lopez, H. Sharp, A. Bandara, T. Tun, M. Levine and B. Nuseibeh, "Security Responses in

Software Development," ACM Transactions on Software Engineering and Methodology, vol.

32, no. 3, pp. 1-29, 2023.

[71] R. A. Gandhi and S. W. Lee, "Discovering Multidimensional Correlations among Regulatory

Requirements to Understand Risk," ACM Transactions on Software Engineering and

Methodology, vol. 20, no. 4, pp. 1-37, 2011.

[72] I. A. Tøndel and M. G. Jaatun, "Towards a Conceptual Framework for Security Requirements

Work in Agile Software Development," International Journal of Systems and Software

Security and Protection, vol. 11, no. 1, pp. 33-62, 2020.

[73] D. Angermeier, H. Wester, K. Beilke, G. Hansch and J. Eichler, "Security Risk Assessments:

Modeling and Risk Level Propagation," ACM Transactions on Cyber-Physical Systems, pp. 1-

25, 2022.

[74] A. Singhal and Sonia, "Development of agile security framework using a hybrid technique for

requirements elicitation," in International Conference on Advances in Computing,

Communication and Control, 2011.

[75] Behutiye, W. a. Karhap{\"a}{\"a}, Pertti, D. Costal, Oivo, Markku, Franch and Xavier, "Non-

functional requirements documentation in agile software development: challenges and solution

proposal," in International conference on product-focused software process improvement,

2017.

[76] E. H. Marinho and R. F. Resende, "Quality Factors in Development Best Practices for Mobile

Applications," in International Conference on Computational Science and Its Applications,

2012.

[77] N. Yusop, M. Kamalrudin, S. Sidek and J. Grundy, "Automated Support to Capture and

Validate Security Requirements for Mobile Apps," in Asia Pacific Requirements Engineering

Conference, 2016.

[78] V. H. Subburaj and J. E. Urban, "Specifying Security Requirements in Multi-agent Systems

Using the Descartes-Agent Specification Language and AUML," Information technology for

management: Emerging research and applications, pp. 93-111, 2018.

[79] L. Ren, R. Chang, Q. Yin and Y. Man, "A Formal Android Permission Model Based on the B

Method," Security, Privacy, and Anonymity in Compution, Communication and Storage, vol.

10656, pp. 381-394, 2017.

57

[80] B. Hasan and J. M. Gómez, "Security Framework for Adopting Mobile Applications in Small

and Medium Enterprises," ICETE. Communications in Computer and Information Science,

vol. 764, pp. 75-98, 2017.

[81] R. Nacheva, S. Sulova and B. Penchev, "Where Security Meets Accessibility: Mobile Research

Ecosystem," Communications in Computer and Information Science, vol. 15, no. 29, pp. 2016-

231, 2022.

[82] A. Souag, R. Mazo, C. Salinesi and I. Comyn-Wattiau, "Reusable knowledge in security

requirements engineering: a systematic mapping study," Requirements Engineering, vol. 21,

pp. 251-283, 2016.

[83] S. H. Houmb, S. Islam, E. Knauss, J. Jürjens and K. Schneider, "Eliciting security

requirements and tracing them to design: an integration of Common Criteria, heuristics, and

UMLsec," Security Requirements Engineering, vol. 15, no. 1, pp. 63-93, 2010.

[84] K. Chatterjee, D. Gupta and A. De, "A framework for development of secure software," CSI

Transactions on ICT, vol. 1, pp. 143-157, 2013.

[85] M. I. Daud, "Secure software development model: A guide for secure software life cycle," in

Proceedings of the international MultiConference of Engineers and Computer Scientists -

Citeseer, 2010.

[86] K. a. H. S. a. L. V. Rindell, "Securing Scrum for VAHTI.," in SPLST, 2015.

[87] M. H. Diallo, J. Romero-Mariona, S. E. Sim, T. A. Alspaugh and D. J. Richardson, "A

Comparative Evaluation of Three Approaches to Specifying Security Requirements," in 12th

Working Conference on Requirements Engineering: Foundation for Software Quality,

Luxembourg, 2016.

[88] E. P. Kukula, F. R. Shaw, R. Wallner, A. Breckenkamp, G. Kiebuzinski, L. Nadel and P.

Wolfhope, "Use case mobile biometric testing amp; evaluation: A framework to cross-

reference requirements and test methods," in IEEE Conference on Technologies for Homeland

Security (HST), 2012.

[89] R. Kumar, A. Baz, H. Alhakami, W. Alhakami, A. Agrawal and R. A. Khan, "A hybrid fuzzy

rule-based multi-criteria framework for sustainable-security assessment of web application,"

Ain Shams Engineering Journal, vol. 12, no. 2, pp. 2227-2240, 2021.

[90] M. Katarahweire, E. Bainomugisha and K. A.Mughal, "Data Classification for Secure Mobile

Health Data Collection Systems," Development Engineering, vol. 5, 2020.

[91] C. Cobb, S. Sudar, N. Reiter, R. Anderson, F. Roesner and T. Kohno, "Computer security for

data collection technologies," Development Engineering, vol. 3, pp. 1-11, 2018.

[92] Y. Hanif and H. S. Lallie, "Security factors on the intention to use mobile banking applications

in the UK older generation (55+). A mixed-method study using modified UTAUT and MTAM

- with perceived cyber security, risk, and trust," Technology in Society, vol. 67, pp. 10-16,

2021.

58

[93] M. Shamsujjoha, JohnGrundy, L. li, HouriehKhalajzadeh and QinghuaLu, "Developing Mobile

Applications Via Model Driven Development: A Systematic Literature Review," Information

and Software Technology, vol. 140, pp. 1-25, 2021.

[94] F. Ebrahimi, M. Tushev and A. Mahmoud, "Mobile app privacy in software engineering

research: A systematic mapping study," Information and Software Technology, vol. 133, pp. 1-

17, 2021.

[95] J. Singh, M. Wazid, A. K. Das, VinayChamola and M. Guizani, "Machine learning security

attacks and defense approaches for emerging cyber physical applications: A comprehensive

survey," Computer Communications, vol. 192, no. 10, pp. 316-331, 2022.

[96] I. a. A. Z. a. J. S. R. Ghani, "Integrating software security into agile-Scrum method," KSII

Transactions on Internet and Information Systems (TIIS) - Korean Society for Internet

Information, vol. 8, no. 2, pp. 646-663, 2014.

[97] D. a. M. S. N. F. a. M. A. M. Mougouei, "S-scrum: a secure methodology for agile

development of web services.," {World of Computer Science & Information Technology

Journal, vol. 3, no. 1, 2013.

[98] Younas, M. a. Jawawi, D. a. Ghani, I. a. Kazmi and R, "Non-functional requirements

elicitation guideline for agile methods," Journal of Telecommunication, Electronic and

Computer Engineering (JTEC), 2017.

[99] A. A. Saima Zareen and S. A. Kham, "Security Requirements Engineering Framework with

BPMN 2.0.2 Extension Model for Development of Information Systems," Multidisciplinary

Digital Publishing Institute (MDPI), vol. 10, no. 14, 2020.

[100] D. Nyambo, Z. Yonah and C. Tarimo, "An Approach for Systematically Analyzing and

Specifying Security Requirements for the Converged Web-Mobile Applications," International

Journal of Computing and Digital Systems, vol. 3, no. 3, p. 13, 2014.

[101] M. Ongtang, S. McLaughlin, W. Enck and P. McDaniel, "Semantically rich application-centric

security in Android," Security and Communications Networks - Willey Library, vol. 6, pp. 658-

673, 2012.

[102] N. Yusop, M. Kamalrudin, M. M. Yusof and S. Sidek, "Meeting Real Challenges in Eliciting

Security Attributes for Mobile Application Development," Journal of Internet Computing and

Services, vol. 17, no. 5, pp. 25-32, 2016.

[103] N. Yusop, M. Kamalrudin and S. Sidek, "SECURITY REQUIREMENTS VALIDATION

FOR MOBILE APPS: A SYSTEMATIC LITERATURE REVIEW," Journal Teknologi

(UMT) Science and Technogoly, vol. 77, no. 33, 2015.

[104] H. Shariff and M. Y. Said, "Non-Functional Requirement Detection Using Machine Learning

and Natural Language Processing," Turkish Journal of Computer and Mathematics Education,

vol. 12, no. 3, pp. 2224-2229, 2021.

[105] H. Kahtan, M. Abdulhak, A. S. Al-Ahmad and Y. I. Alzoubi, "A model for developing

dependable systems using a component-based software development approach (MDDS-

CBSD)," The Institution of Engineering and Technology, IET Software, vol. 17, no. 1, pp. 76-

92, 2023.

59

[106] G. f. Geeks, "Geeks for Geeks," [Online]. Available: https://www.geeksforgeeks.org/naive-

bayes-classifiers/. [Accessed July 2023].

[107] "Geeks for Geeks," [Online]. Available: www.geeksforgeeks.org/android-system-architecture.

[Accessed Jul 2023].

[108] [Online]. Available: https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/.

[Accessed July 2023].

[109] "Kaggle," [Online]. Available: https://www.kaggle.com/datasets/iamsouvik/software-

requirements-dataset. [Accessed June 2023].

[110] "Scikit Learn," [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html.

[Accessed July 2023].

[111] Google, "Google Colab," [Online]. Available: https://colab.research.google.com/. [Accessed

June 2023].

