
A Model-Driven Framework for Water Supply

Management System (MWS)

 BY

 Marukh Azhar

 (Registration No:MS-SE-20-327813)

 Supervisor

 Dr. Farooque Azam

DEPARTMENT OF COMPUTER AND SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

 OCTOBER 6, 2023

Model-Driven Framework for Water Supply Management

System (MWS)

BY

Marukh Azhar

 (Registration No:0000327813)

A thesis submitted to National University of Science and Technology

Islamabad

 in partial fulfillment of the requirements for the degree of

 Master of Sciences in Software Engineering

Thesis Supervisor:

Dr. Farooque Azam

DEPARTMENT OF COMPUTER AND SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

 OCTOBER 6, 2023

i

Dedicated to my beloved Parents, who have

motivated and inspired me with their love and

support.

ii

 ACKNOWLEDGEMENTS

All praise and glory to Almighty Allah (the most glorified, the highest) who gave me the courage,

patience, knowledge, and ability to carry out this work and to persevere and complete it

satisfactorily. Undoubtedly, HE eased my way and I can achieve nothing without HIS blessings.

I am profusely thankful to my beloved parents who raised me when I could not walk and

continued to support me throughout every department t of my life.

I would also like to express special thanks to my supervisor Dr. Farooque Azam for his help

throughout my thesis. Also, for Software Development and Architecture (SDA) and Model-

driven Software Engineering (MDSE) courses which he has taught me. I can safely say that I

haven't learned any other engineering subject in such depth as the ones that he has taught.

I would also like to pay special thanks to my Guidance Committee Members Dr. Wasi Haider

Butt, and Dr. Muhammad Umar Farooq their recommendations are very valuable for the

improvement of the work. I would like to pay special thanks to Muhammad Waseem Anwar for

his tremendous support and cooperation. Each time I got stuck in something; he came up with the

solution. Without his help, I wouldn’t have been able to complete my thesis. I appreciate his

patience and guidance throughout the whole thesis.

I would also like to thank my family for their support and cooperation. Finally, I would like to

express my gratitude to all the individuals who have rendered valuable assistance to my study.

iii

ABSTRACT

Water supply management is a difficult and crucial undertaking that demands effective methods

and equipment. Multiple models are necessary to address this difficulty. Model-Driven

Architecture (MDA) can be used to successfully construct and modify these models, with the

potential to dramatically enhance water supply management. This scientific idea has the potential

to completely alter how we manage our water supplies, which makes it very interesting. The

capacity to model complete water supply networks virtually is one of MDA's ground-breaking

features in this domain. We can test and evaluate a wide range of scenarios using these virtual

models without having to spend a lot of money or risk putting the real system at risk.

We propose a thorough model-driven framework that makes use of MDA principles in this

study. The first phase in our methodology's multi-step procedure is to convert the conceptual

model into a textual representation. A dedicated transformation engine created with the help of

the model-to-text transformation tool Acceleo® facilitates this transformation. As a result, timed

automata models replace abstract software models. In the complicated field of water supply

management, timed automata are a particularly useful tool for modeling and analyzing the timing

behavior of complex systems. We can comprehend and improve the temporal elements of water

supply processes by adding timed automata models. We carried out real-time case studies to show

how useful and successful our framework is. These case studies validate the efficacy of our

approach in simulating water supply management systems. With formal verification techniques,

we not only ensure standardization but also lessen the possibility of potential system defects.

Additionally, the addition of formal verification offers a mechanism for potential problems' early

detection. The total reliability of water supply management systems will significantly rise because

of our ability to spot issues early and fix them.

 Keywords: Model-Driven, Sirius, Acceleo, Water supply, UPPAAL, Liveness, Deadlock

iv

TABLE OF CONTENTS

DECLARATIONi

LANGUAGE CORRECTNESS CERTIFICATE.. ii

ACKNOWLEDGEMENTS ...iv

ABSTRACT ..vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES..ix

LIST OF TABLES...x

CHAPTER 1: INTRODUCTION...12

1.1. Background study ...12

1.2. Research Methodology..14

1.3. Problem Statement...15

1.4. Research Contribution...15

1.5. Thesis Organization ..16

CHAPTER 2: LITERATURE REVIEW ...18

 2.1. Model-based Water supply management system..18

 2.2. Formal Verification...21

 2.3. Research Gap..24

CHAPTER 3: PROPOSED METHODOLOGY..25

 3.1. Proposed Metamodel ...27

 3.2. Treeview of metamodel..28

 3.3. Transformation rules...28

CHAPTER 4: IMPLEMENTATION ..35

 4.1. Case study 1 (Mirpur City)..35

 4.2. Case study 2 (EME College) ..41

 4.3. Case study 3 (Ahmadpur Village) ...46

 4.3. Acceleo Transformation ...50

CHAPTER 5: VALIDATION ...54

 5.1. Validation case study 1..55

5.2. Validation case study 2...59

 5.3. Validation case study 3..63

 CHAPTER 6: Discussion ..67

 CHAPTER 7: Conclusion and Future Work..69

v

 LIST OF FIGURES

Figure 1: Metamodel mechanism..13

Figure 2: Flow of research..14

 Figure 3: Thesis outline...16

Figure 4: Traditional SDLC...26

Figure 5: MDA SDLC ..26

Figure 6: Overview of MDSE methodology..27

 Figure 7: Metamodel of water supply management system..28

Figure 8: Treeview of metamodel..30

Figure 9: Properties of main reservoir ...31

Figure 10: Properties of Arduino ..31

Figure 11: Aerial view of Mirpur city...36

Figure 12: Block diagram of water supply...37

Figure 13: Sirius design view ..38

Figure 14: Nodes properties in Designview..39

Figure 15: Edges properties in design view ...40

Figure 16: Graphical representation in Sirius (case study 2)...41

Figure 17: EME college view ...43

Figure 18: Treeview of case study 2...44

Figure 19:Properties of MainTank..44

Figure 20: Edges and Nodes in Design view ..45

Figure 21:Graphical Representation in Sirius...46

Figure 22: Ahmadpur Village View ..47

Figure 23: Treeview of case study 3 ..48

Figure 24: Design view of case study 3..49

Figure 25: Edge properties of Well..50

Figure 26: Graphical representation of case study 3...51

Figure 27: Architecture of Transformation Engine...52

Figure 28: Run Configuration of Acceleo...53

Figure 29: Global Declaration ...54

Figure 30: System Declaration ...54

Figure 31: Export Verification results of arbiter case study..71

Figure 32: Main supply model (case study 1)...56

vi

Figure 33: Motors Model (case study 1) ...57

Figure 34: Simulator ..58

Figure 35: Properties Verification (case study 1) ..60

Figure 36: Run Configuration of Case Study 2..61

Figure 37: Main supply model (case study 2)..62

Figure 38: Motors Model (case study 2)... 62

Figure 39: Properties Verification (case study 2)...63

Figure 40: Run Configuration of Case Study 3..64

Figure 41: Main supply model (case study 3)..65

Figure 42: Motors Model (case study 3)..66

Figure 43: Properties Verification (case study 3)...66

vii

LIST OF TABLES

Table 1: Transformation rules...32

Table 2: UPPAAL Properties...59

1

 CHAPTER 1

INTRODUCTION

This chapter provides an overview of the research work. This chapter emphasizes the background

study, research technique, problem definition, research contribution, and thesis organization.

1.1. Background study

Model-Driven Software Engineering:

Model-driven software engineering (MDSE) is a subset of software engineering in which models

are treated as first-class entities throughout the development process. Models are used in MDSE

to define the software system under development, and automatic model transformations are

utilized for various model manipulations such as code generation, model integration and

deconstruction, and so on[1]. Model-driven techniques are said to boost developer productivity,

reduce software building costs (both time and money), improve software reusability, and make

the software more maintainable. Similarly, model-driven methodologies promise to help in the

early discovery of faults such as design errors, omissions, and client-developer

misunderstandings. MDSE demands advanced technology and techniques for software

development to get better results. Platform Independent Models (PIM) are changed into Platform

Specific Models (PSM) in MDSE techniques by applying transformation rules. Platform

platform-independent model (PIM) captures domain-specific requirements but does not include

any platform-specific data. The Platform Specific Model (PSM) collects system specs as well as

all relevant platform data.

Metamodel M2 level: Meta models describe the higher-level ideas and connections that specify

a modeling language's structure and behavior at the M2 level. The types of elements that may be

used in models, the connections between these elements, and the constraints on their use are all

defined by meta-models at the M2 level. Typically, meta-models at the M2 level are generated

using meta-modeling languages like MOF (Meta Object Facility), UML (Unified Modelling

Language), or Ecore (used in Eclipse Modelling Framework). Software developers can construct

a domain-specific language that is suited to the requirements of a system by building meta-

models at the M2 level. These meta-models make it possible to build M1 models that represent

instances or instantiations of the ideas they specify.

 DSLs, or Domain Specific Languages, are used in modeling to define the specifics of the

project in a modeling environment. In contrast to mainstream programming languages like C++

or Java, their scope is narrower, but they are more precise. They are an ideal alternative for the

brilliant description of any model due to their quality. Using the DSL, business experts and

developers describe the needs and features of the new program, bringing both sides together in

the process. Additionally, this method makes it possible for domain experts to comprehend,

validate, or alter the system[2].

2

Model-driven development (MDD) is a methodology that emphasizes the use of models as the

main artifacts for creating software, with several degrees of abstraction known as M0, M1, M2,

and M3 layers as shown in Figure 1.

The M0 layer, which is the lowest level, contains the system's concrete instances, including its

data, procedures, and behavior. The M1 layer captures the system's structure and behavior at a

higher degree of abstraction. It leverages modeling languages like UML and is platform-

independent, focusing on the logical design of the system. The concepts, relationships, and rules

that control the M1 models' structure and behavior are defined by the M2 layer, a metamodel. It

gives the modeling language a formal representation and preserves the models' integrity and

consistency. The M3 layer is a metamodel that defines the M2 layer and permits the

development of unique modeling languages, additions to currently used modeling languages, and

transformations among various modeling languages. Code creation and complex model

transformations are also supported.

Model Transformation:

The process of changing one model into another based on some well-formulated criteria is known

as model transformation. The basic objective of model transformation is to close the gap between

various abstraction levels, such as turning high-level platform-independent models into low-level

platform-specific models or translating models between various modeling languages. Model-to-

model transformation and Model-to-text transformation are the two forms of transformation. A

model can be translated into a general-purpose programming language or a particular-purpose

programming language using a model transformation that uses a model-driven methodology.

Bidirectional model transformation requires a particular bidirectional model transformation

Figure 1. Meta-Model mechanism

3

language to guarantee consistency between two or more models, whereas special-purpose

transformation makes it simple to refer to model elements from syntax. Worldwide, several

transformation languages like Acceleo, ALT, GReAT, Epsilon family, F-Alloy, and JTL are in

use[3].

Verification: Mathematical entities are used to describe and test complicated systems using formal

approaches. The formal approaches may be divided into four categories: formal proofs, formal

specifications, model checking, and abstraction. Software experts utilize model checking to assure

the accuracy of their work, especially when developing large-scale software where it might be

difficult to integrate many components. Due to this problem, the software industry used formal

procedures, such as model checking, to guarantee the product's reliability. There are two processes

involved in model checking. First, a model is created. In the second stage, one or more properties,

such as reachability or deadlock, can be validated using property specification languages. Model

checking has the following benefits:

• Model checking eliminates manual inspection and investigates every possible model

state.

• Model checking improves the whole verification process by enabling thorough

evaluation of properties like safety, liveness, or reachability.

• Verification properties are expressed in well-defined property specification languages,

such as temporal logic.

Tools for model checking are becoming more and more common in the industry because of Model

Driven Engineering (MDE). It might be challenging to choose which tool to employ for a given

situation because there are many tools available with various capabilities to address various

difficulties. Model-checking techniques use a variety of formalizations, such as timed automata and

timed Petri nets. Real-time system verification is frequently done using timed automata, and tools

like UPPAAL, KRONOS, CMC, SAVE IDE, and PRISM have been created to assist with this

method. Different tools are used for design, analysis, and verification.

Tool Selection: The UPPAAL tool is found to be more suited and adaptable to enable the formal

verification of software models after comparison studies amongst model-checking tools. This allows

for the detection and correction of these issues during the design phase. As a result, it takes less time

and money for the software developer to fix these mistakes after development.

1.2. Proposed Methodology:

As shown in Figure 2, the research approach used in this study entails some successive phases. As

shown in Figure 2, this procedure starts with a vital initial step of conducting an extensive literature

study with an emphasis on formal verification and metamodel. This literature study provides a basis

for comprehending the amount of information that already exists in these fields. Then, a research gap

is seen in the literature, and a problem is identified.

The problem identified is subsequently resolved by putting up a model-driven software engineering-

based solution. This method makes use of metamodel as key artifacts for software development,

analysis, and verification. The proposed solution is fully explained, highlighting its essential

elements, and explaining the steps necessary to put it into practice.

4

The suggested approach is described, and then the specifics of its execution are given. This section

provides a thorough explanation of how the suggested solution will be implemented.

It includes all the technical elements, resources, and frameworks that will be applied throughout the

implementation procedure, ensuring transparency and stability. Through three case studies, the

planned research work is validated. The proposed solution is tested and applied in these case studies,

which act as real-world examples and experiments.

By using this methodology, the study seeks to close the known research gaps, increase knowledge of

model-driven software engineering methodologies, and contribute to the fields of formal verification

and metamodels.

1.3. Research contribution:

• The Eclipse Modelling Framework (EMF) features were used to build an M2-level metamodel

in Eclipse. The graphical editor was used to create the metamodel, allowing for the construction

of abstract syntax, semantics, and relationships.

• Transforming software models into timed automata required the development of a

transformation engine utilizing Acceleo®. This transition made it possible to study and analyze

the timing behavior of complex systems. For this use, timed automata are very appropriate.

• Utilizing the UPPAAL tool, verification properties are carried out during the design phase. At

the design level, UPPAAL enables the expression and verification of properties including

reachability, deadlock, safety, and liveness. Designers may evaluate and analyze the behavior of

their system models using UPPAAL to make sure it is accurate and adheres to the defined

specifications.

1.4. Thesis Organization:

The metamodel and the chosen research approach for formal verification are both briefly

described in Chapter 1, which introduces the thesis. As seen in Figure 3, it emphasizes the

research contribution and offers a clear organization of the thesis. In Chapter 2, a thorough

literature analysis is undertaken to look at the earlier work done by various scholars in the fields

of model-driven development and formal verification. Chapter 3 provides a thorough

justification of the methodology used in the research and discusses the suggested way to address

the identified problem. The implementation specifics are covered in Chapter 4 along with the

practical and technical components of the development process. In Chapter 5, which focuses on

Literature

review

Proposed

solution
 Problem

identification
 Implementation Validation

Figure 2. Flow of research

5

validation, three case studies that have been turned into timed automata and had their associated

properties verified are presented. The complete thesis, as well as any limitations encountered

throughout the study, are covered in detail in Chapter 6. The thesis is concluded in Chapter 7

with general conclusions based on the findings and suggestions for more research in the area.

Figure 3 provides a clear and straightforward picture of the thesis structure and flow by visually

representing the thesis organization.

Figure 3. Thesis outline

Chapter 1

Introduction

Chapter 2

Literature

Review

Chapter 3

Proposed

Methodology

Chapter 4

Implementation
Chapter 5

Validation

Chapter 6

Discussion
Chapter 7

Conclusion

6

 CHAPTER 2

 LITERATURE REVIEW

With two major sections, Chapter 2 conducts an extensive review of the literature. In the first

section, 2.1, we thoroughly explore the field of water supply modeling while critically evaluating

earlier studies' techniques, outcomes, and research methodologies. while model validation and

verification are discussed in section 2.2

2.1 Model-based water supply management:

Systems for distributing water are essential for providing a steady and effective flow of clean water

into communities. The use of model-driven frameworks has become increasingly popular for

improving these systems' performance, optimization, and decision-making processes. The

important research and developments in the subject of model-driven frameworks for water

distribution systems are summarized in this review of the literature, with an emphasis on the

application of models to enhance system conception, operation, and management.

To create hydraulic models that replicate water distribution networks, several modeling techniques

have been investigated, including network topology models, nodal demand models, and pipe flow

models. These models depict the physical properties and behavior of the system using

mathematical equations and algorithms. Authors [4] have concentrated on enhancing calibration

procedures, integrating real-time data, and taking uncertainties into account to improve the

accuracy and efficacy of hydraulic models. The administration of water distribution systems has

been transformed by the incorporation of real-time data and sensor technology. Researchers have

used sensors dispersed across the network to acquire information on water quality, pressure, and

flow rates[5]. Improved monitoring, control, and optimization are made possible by this

integration. Advanced data-driven methods have been used to analyze sensor data and improve

system performance, such as machine learning algorithms and artificial neural networks [6]. The

development of decision support systems (DSS) for managing water distribution has been aided by

model-driven frameworks. To aid in decision-making, these systems combine hydraulic models,

data analytics, and optimization algorithms. DSS products help users with activities including

demand forecasting, leak monitoring, and emergency response planning. According to [7], the use

of machine learning and optimization approaches offers more precise predictions, optimal resource

allocation, and enhanced system performance.

In this research, a systems-of-systems approach is used to examine the resilience of the water

sector. To assess present system resilience, suggest future designs, and improve water supply

resilience in the face of flooding issues, it uses model-based systems engineering [8]. This study

offers limit pressure measurements as a data-driven method for locating leaks in water distribution

7

networks. However, inaccurate interpolation and biased Kriging estimates reduce the suggested

approach's accuracy. For greater performance in real-world circumstances, more advancements in

interpolation methods and the inclusion of more data are required [9]. This study compares an

ensemble approach and conventional anomaly detection methods for detecting attacks in water

distribution networks. Comparisons between centrally trained algorithms and multi-stage detection

methods reveal that the ensemble methodology outperforms density-based approaches and yields

outcomes that are on the same scale as parametric algorithms. Future research will concentrate on

evaluating the suggested method in high-dimensional datasets [10].

The importance of water for socioeconomic development and environmental conservation is

highlighted in this research, which offers Adaptive Intelligent Dynamic Water Resource Planning

(AIDWRP) as a solution for sustainable water management in metropolitan settings. By merging

AI technologies with human expertise, AIDWRP uses AI modeling to improve water efficiency

and data-driven decision-making. By taking yearly consumption and geographic limits into

account, the Markov Decision Process (MDP) enables the optimization of environmental planning

and management programs. The goals of AIDWRP are to address problems with water resource

management, increase economic effectiveness, and guarantee future sustainable development but

the effectiveness of the suggested AIDWRP strategy has not been supported by empirical data or

real-world use [11]. To evaluate a water circulation system in a coal-fired power station, this

research suggests a RAM analysis methodology. RBD, FTA, and Markov models are used to

evaluate performance and pinpoint crucial pieces of equipment. One significant element impacting

system availability is the boiler feed pump. The suggested approach helps decision-makers allocate

resources and optimize maintenance plans for the water circulation systems in thermal power plants

to operate reliably [12]. Long short-term memory (LSTM) deep neural networks are used in this

study to suggest a model for predicting drinking water quality. The model uses cutting-edge deep

learning theory to handle complicated large data generated by IoT-based monitoring devices for

water quality.

The model is tested and trained using information from a Yangzhou water quality monitoring

station, showcasing how accurate it is at forecasting future changes in water quality. The study

validates the use of LSTM deep neural networks in predicting drinking-water quality it can be

improved by including multi-dimensional input datasets and expanding forecasts to numerous

monitoring stations while taking spatial dimensions into consideration [13]. This work used

random forest regression (RFR) to simulate the distribution of water quality in the Taihu Lake

basin, China, using the SHAP approach to determine the affecting factors. The produced maps

revealed recurrent patterns for CODMn, TP, and TN, with home and agricultural sources having an

influence on water quality. Unexpectedly, due to variations in sewage treatment, water quality in

metropolitan areas was positively correlated with population density [14]. This study employs

random forest regression to predict the geographic heterogeneity of water quality, with an emphasis

on analyzing the model's output. The paper shows how random forest regression may be used to

forecast water quality. The results assist efforts to regulate and restore water quality by offering

insights into the geographical distribution of water quality. Indicators use model interpretation

approaches to comprehend the factors that affect water quality fluctuations [15].The results assist

8

efforts to regulate and restore water quality by offering insights into the geographical distribution

of water quality [16].

This work suggests a better technique for quantitatively evaluating the carrying capacity of water

resources by system dynamics modeling and fuzzy comprehensive evaluation. The findings show

that strategic adjustments to the method of production and the distribution of water resources can

increase the carrying capacity for sustainable development [17].To identify leaks and regulate

water loss in urban water supply networks, this research offers a unique method employing

multiscale neural networks. Using several scales and resolutions of data analysis, the approach

increases accuracy. Results from experiments demonstrate notable advancements over

conventional approaches, resulting in greater accuracy rates. Future research may examine

additional enhancements for more effective leakage identification and water loss control while

verifying the technique using real-world information [18].

The paper focuses on the use of artificial intelligence techniques to model and forecast water

quality. It emphasizes the application of the feed-forward neural network (FFNN) for highly

accurate categorization of water quality and the adaptive neuro-fuzzy inference system (ANFIS)

for accurate prediction of the water quality index (WQI). The study shows how artificial

intelligence may be used to monitor water quality [19]. The geographical distribution of water

quality in the Taihu Lake basin, China, is modeled and interpreted in this work using a combination

of random forest regression (RFR) and Shapley additive explanations (SHAP). The SHAP analysis

identifies the driving causes, such as residential and agricultural sources, and emphasizes the

importance of urban vs rural regions, while the RFR model creates maps showing the distribution

of water quality for three criteria [20].AquaCrop is a model that calculates crop productivity

depending on water availability and agronomic control. To mimic processes like water infiltration,

drainage, evaporation, transpiration, biomass production, and yield, it includes meteorological,

crop, soil, and management data. A few factors in the model that describe how crops react to water

shortages provide clarity. AquaCrop is useful for creating deficit irrigation schemes and doing

scenario analysis since it has a user-friendly interface and real-time tracking [21].

In this paper, an algorithm is created by fusing a water quality simulation model with a multi-

objective genetic algorithm (GA) optimization model. A trade-off curve between goals for water

quantity and quality is established by the algorithm. The run-time of the GA-based model is

decreased by breaking the issue up into yearly and long-term optimization models. The suggested

model is used to generate reservoir operating strategies for a reservoir in Iran, proving its

usefulness while lowering the computational burden [22]. This work proposes a system for

producing risk maps of water supply shortfalls to customers and focuses on preventative water

supply management. The M3 main pipe was identified as providing the biggest risk following

simulations of main pipe failures using the EPANET program. It is advised to update the M3 main

pipe to reduce breakdowns and guarantee uninterrupted water delivery [23].In this study, a low-

cost wireless water pressure sensor is presented that may be used to monitor municipal drinking

water systems, provide accurate pressure data for system modeling, and pinpoint probable low-

pressure regions. In Benton Harbour, Michigan, the system's dependability, and simplicity of

deployment were verified [24].

9

In Khuzestan Province, Iran, the effects of socioeconomic development on water, food, and energy

resources were simulated using a water-food-energy system dynamics model. Sustainable

management practices were influenced by sensitivity analysis, which led to a mix of water demand

and food resource methods. For sustainable water resource management, this strategy increased

irrigation efficiency, altered agricultural patterns, decreased losses, and managed food demand

[25]. To meet the limited water supply and rising demand, this study offers a model framework for

optimizing agricultural water and land resources (AWLR) in a changing environment. The

framework allows for complete allocation, balancing competing objectives, and offering flexible

strategies for the long-term management of AWLR [26]. The InVEST water yield model is used in

this study to evaluate the Danjiang River Basin's role in water conservation. The research

demonstrates a declining trend in water conservation and identifies crucial protected zones for

ecological preservation and sustainable water management [27]

The stress on water resources brought on by population growth and competing economic sectors is

highlighted in this paper. It emphasizes the necessity for efficient management of water resources

and the depletion of subsurface water. The assessment focuses on how information technology, in

particular the Internet of Things (IoT), can promote sustainable water practices among individuals,

farms, and businesses [28]. This article illustrates how data analysis, autonomous decision-making,

and process optimization may be used by artificial intelligence (AI) to address problems in

drinking water treatment (DWT). It underlines the necessity for efficient contamination

characterization and thorough intelligence models for water treatment facilities while discussing

the uses and most recent findings of AI in various DWT sectors [29].

The automated evaluation of a water provisioning network's susceptibility to threats using a high-

level model and formal models is presented in this research. The method enables the identification

of the most probable source of pollution and the impact of threats on network nodes, enabling the

management of water resources for sustainable utilization [30]. To effectively use water resources,

this article emphasizes the necessity for more intelligent control systems in irrigation networks. It

includes a model-driven simulation infrastructure with case studies illustrating the efficiency of the

method in Pakistani irrigation networks, as well as a domain-specific modeling language and

automatic simulator production [31].

2.2 Formal verification

This section presents several studies on timed automata and formal verification. Complex systems

need approaches to validate their design to function correctly. This study has concentrated on the

difficult job of formal software model verification throughout the design process.

In research paper [32] activity diagrams to activity hypergraphs verified with CLKs , transforming

activity diagrams into Petri nets, and using temporal logic for verification [33], transforming UML

activity diagrams into Petri nets and using timed automata for verification [34], integrating formal

verification into CPS design using AADL models transformed into timed automata [35], and

formal verification using timed automata with synchro[36]. These techniques show enhanced

verification and problem identification and have the potential to be used in real-world systems.

10

In a research study [37], distributed networks are formal verified, with an emphasis on modeling

backup protection and handling faults in low-voltage distribution networks. This method varies

from others in that it absolves designers of the duty of model correctness testing and instead checks

a list of potential outcomes. Properties like liveness, reachability, and deadlock are verified using

UPPAAL. Like [38], state flow models translated from EAST-ADL are formal verified using

UPPAAL, ensuring timeliness and application requirements. A startup technique for distributed

systems is shown in research [39], which is validated using model checking on timed automata.

According to [40], formal analysis of EAST-ADL models is accomplished by transforming them

into UPPAAL PORT, improving the capabilities of behavioral description and verification. [41]

Improves quality through formal verification by extending Business Process Modelling Notation

(BPMN) and defining mapping rules for BPMN and timed automata.

[42] Presents a unique method that, for the first time, applies model checking to routing protocols,

including AODV, and enables error detection by converting AWN specifications to UPPAAL

models. The "Voodu" tool, which [43] presents, enables formal verification of UML sequence and

state chart diagrams, and ensures consistency and equivalence between inter-object communication

and intra-object behavior. To verify robustness and flexibility, [44] offers a case study on

decentralized self-adaptive systems that combines architectural modeling, model-based testing, and

UPPAAL. [45] Focuses on fault models and specification models for error handling and system

growth, and formal verification of real-time reactive systems using the TROMLAB formalism. The

approaches discussed here have potential uses in fault-tolerant frameworks since they can calculate

and evaluate new results depending on collected data. In this study area, more investigations and

reviews are being conducted.

The research projects provide insightful analysis of formal approaches' modeling and verification

methodologies. In [46], the authors focus on testing the safety property using TCTL in UPPAAL

and use action timed automata for modeling. [47] Describes DC implementable modeling strategies

and validates the reachability property. A modeling tool is suggested in [48], and AVATAR

modeling diagrams are used, with an emphasis on meeting liveness criteria utilizing the CTL

language in UPPAAL during the verification phase. Models constructed using SysML BDD, IBD,

and SMD are shown in [49], and Timed Computation Tree Logic (TCTL) is used for verification to

check for deadlock and safety features. Finally, SysML modeling is used in [50] to meet safety and

liveness verification criteria utilizing the CTL verification language in UPPAAL, together with

state machine and activity diagram models. Together, these papers present a variety of methods,

formalizations, and verification characteristics, advancing modeling and verification methodologies

in the field.

2.3 Research Gap:

Model-driven water supply management systems have progressed, but there are still gaps that

need to be addressed. Previous research studies have focused on specific monitoring problems.

Additionally, no suitable framework has been developed for comprehensive water supply

management. Therefore, there is a need for a complete methodology based on Model-Driven

Architecture (MDA) to facilitate Model Driven Framework for the water supply management

11

system (MWS). We suggest the Model-Driven Water Supply Management Framework (MWS), an

open-source system that gives a thorough approach to MWS to fill these gaps. The MWS

framework may be extended to include formal verification techniques, making it feasible to

rigorously check the accuracy and dependability of the models used in water supply management

systems. The focus on formal verification improves the integrity and efficacy of the suggested

framework by guaranteeing that the developed system designs satisfy the requirements and are

free from critical flaws or vulnerabilities.

12

 CHAPTER 3

 PROPOSED METHODOLOGY

Model Driven Development (MDD), which has become more popular in software engineering, is a

paradigm change that has made it possible to achieve higher degrees of abstraction and better

visualization for complicated systems. By reducing complexity, MDD promotes a better

comprehension of complicated circumstances through the development of system models that

operate at high levels of abstraction. As primary artifacts and priceless organizational assets, these

models and their transformations play crucial roles in automating the design, development,

implementation, testing, maintenance, and other software engineering tasks. The key to the model-

driven approach is its capacity to simplify difficult situations while delivering greater visualization

and comprehension. To do this, one must first define and create a formal model, sometimes

referred to as a domain model or a platform-independent model. These models can be built using

specialized Domain Specific Languages (DSLs) or general-purpose modeling languages like UML.

Notably, the model-driven method has applicability across many fields, including the creation of

information systems, small software companies, large-scale operational applications, and mixed

interactive systems.

Examining Figures 4 and 5 from [51] is important in understanding the key contrast between the

model-driven method and the traditional code-centric approach. Low-level design and coding are

the focal points of the conventional software development life cycle, as shown in Figure 4. In this

conventional method, as soon as coding begins, the importance of documentation and

architectural/design diagrams decreases. As a result, only the code is altered as the system evolves

over time, which widens the gap between the code and the accompanying documentation and

diagrams. The expense and difficulty of maintenance operations are considerably increased by this

shortcoming.

In sharp contrast, Figure 5 shows the MDD life cycle, where modeling efforts are what guide the

software development process. This method creates formal models that are understandable to

computers as artifacts. The following are the main models used in model-driven architecture

(MDA): There are three types of models: PIMs (Platform Independent Models), PSMs (Platform

Specific Models), and Java. Lang. Code. MDA transforms the software development process by

depending on this model-centric paradigm, providing improved maintenance, more agility, and

higher flexibility to changing needs.

13

The M2 level concept, which is used to define a Domain-Specific Language (DSL), Metamodel, or

Platform Independent Model (PIM) in EMF, lies at the foundation of this technique. The Object

Management Group (OMG) has established the Ecore Meta-Meta Model as the standard collection

of ideas used to describe the M2 level, and these files (with the extension *. ecore) are used to

represent M2 levels. DSLs are specified at the M2 level, which captures the concepts, relationships,

and constraints within a certain domain. It offers a greater degree of abstraction, enabling the

development of domain-specific modeling languages within EMF. To develop system models or

M1 level models that adhere to the specified Meta-Model or DSL, these DSLs serve as formal

specifications. The technique makes it easier to create system models at the M1 level that comply

with the DSL or Meta-Model after it has been specified at the M2 level. These M1-level models are

adapted to the needs of the system being modeled and reflect actual examples of the stated

concepts and connections. The methodology recommends using Model-to-Model (M2M) or

Model-to-Text (M2T) transformations to change the system models. ATL for M2M

transformations and Acceleo for M2T transformations are two examples of plugins that may be

used with the Eclipse IDE. Models can be transformed from one representation to another using

M2M transformations, whereas M2T transformations automate the creation of text-based artifacts

from the models.

This methodology aligns with the abstract discussion presented in Figure 6. It illustrates the

systematic flow of defining DSLs at the M2 level, developing system models at the M1 level, and

performing M2M or M2T transformations using Eclipse IDE plugins.

Figure 4. Traditional SDLC Figure 5. MDA SDLC

14

The methodology includes a systematic approach to developing and applying models using Sirius,

Acceleo, and Eclipse. Using Eclipse, a metamodel at the M2 level is first created. This entails

carefully identifying and describing the crucial concepts, things, and relationships that your system

must represent. The characteristics, affiliations, inheritance, and constraints of the metamodel

components are specified using the Eclipse Modelling Framework (EMF), guaranteeing a complete

representation of the system's structure and semantics[52].

A case study is carried out using Sirius, an Eclipse-based tooling platform after the metamodel has

been created. With Sirius, you may create specialized graphical modeling editors that are tailored

to the needs and scope of your project. By defining perspectives, diagrams, and representations that

are unique to your system, you may create a user interface that is both simple to use and well-suited

for generating and modifying instances of the metamodel elements. The visual and interactive

modeling experience made possible by the Sirius editor improves the efficiency and simplicity of

model development.The next phase in your process is to use Acceleo to convert the models into

text-based artifacts, especially to produce. Xta files when the case study in Sirius has been finished.

Acceleo automates the transition of your models into text by acting as a potent model-to-text

transformation language and generator. To do this, you create Acceleo templates and rules that get

the necessary data from the models and produce the required. Xta files.

The process includes the step of importing the generated. Xta files into UPPAAL for validation.

A well-liked tool for modeling, simulating, and validating real-time systems is called UPPAAL.

You may use UPPAAL's strong verification capabilities to validate the characteristics.

Figure 6. Overview of MDSE methodology

15

3.1. Proposed Metamodel:

In

our

proposed framework a generic meta-model for a water supply management system is shown in

Figure 7. Which incorporates knowledge from water supply system analysis and design [26]. The

model's central class is the 'watersupplysystem,' comprising all other classes, such as WaterStorage,

Figure 7. Metamodel of water supply management system

16

Controller, WifiModule, User, Device, Sensors, Actuators, Displayunit, valve, webpage, filter,

pipeline, Database, and Area Tank. Controller, Device, Buzzer, and Displayunit possess one-to-one

multiplicity with the primary class, while the remaining classes exhibit a one-to-many ('n')

multiplicity. The presented meta-model aims to achieve the desired objectives of the water supply

management system. Controller: The WifiModule, Actuators, Abstract class WaterStorage, and

Abstract class Sensors all reference the Controller class directly. Within the Controller class, there

is an Attribute of TypeController which references the webpage, Database, Displayunit, and

Buzzer.

WaterStorage is an abstract class and has generalized classes of Mainreservior and Secondary

Storage, and refers to Actuator, Sensors, Controller, filter, and Area Tank with attributes of

capacity and filtration date. And Secondary has some attributes to check water quality and quantity

of water. A Sensor is also an abstract class with attributes of status, type, and measuring unit and

has generalized classes of Temperature, float, and Pressure. The temperature sensor is used to

measure the temperature of the liquid. A float sensor is used to detect the level of liquid within a

tank whereas a pressure sensor is used to find the pressure of water.

User which refers to Device with (one-to-one) multiplicity is also an abstract class that has

generalized classes of Manager and Waterman. Waterman operates the whole water supply system

and detects the leakages in the pipeline. On the other hand, the manager is to supervise the whole

system to resolve water issues and update the information on maintenance. The Device class is

composed of the primary water supply system class and exhibits one-to-one multiplicity with the

wifiModule. The device is taken as an application through which wifiModule gets the command

and works accordingly. The AreaTank class is directly referred to by Abstract class WaterStorage,

Abstract class Sensor, Actuator class, and filter class and has attributes of several sensors attached,

number of motors attached, minimum level of water, and maximum level of water.

 As a result of the one-to-one multiplicity of the Controller class, one WifiModule can be

synchronized with only one Controller at any given time. Additionally, the Controller class refers

to the Actuator class with one-to-many multiplicities, indicating that multiple motors can be

connected to a single WifiModule. The AreaTank class represents various water supply areas and

possesses a one-to-many multiplicity with Actuators. This class also has a connection with

WaterStorage. A buzzer or beeper is an audio signaling device. It is a device that makes an alarm

when the current passes through its circuit. When water comes to its specified level, the buzzer

becomes active, and makes an alarming sound. The Liquid crystal display on Arduino is used to

get the latest updates about the water supply. It shows different commands. Figure 7 shows the

meta-model which was created using the modeling software Eclipse.

3.2. Treeview of Metamodel:

The TreeView feature in Obeo Eclipse offers a potent method for visualizing and interacting with a

metamodel. Users may traverse, study, and change the elements and connections of the metamodel

using TreeView, which displays its hierarchical structure. The TreeView in Obeo Eclipse shows a

tree-like depiction of the metamodel's ideas and associations when the metamodel has been loaded.

Each metamodel component is represented as a node in the tree, with its name and type clearly

17

visible for quick recognition. Users may browse around the metamodel's structure by expanding

and collapsing nodes, which reveals the hierarchical organization. Different forms of interaction are

supported by TreeView. Selecting a node allows users to access specific details about the

associated metamodel elements, including their attributes, operations, and references. Additionally,

they can operate on the elements by adding new instances, changing properties, or forming

connections between them. Working with metamodels is made simple and comprehensive by

TreeView in Obeo Eclipse. It offers visual cues and icons to denote the kind, visibility, and

connections of metamodel elements, facilitating comprehension and interpretation of the structure

and semantics. Users may better comprehend the metamodel's structure, construct instances that

correspond to its stated principles, and develop relationships by utilizing TreeView.

By instantiating relevant concepts from our proposed meta-model and setting relationships among

instances accordingly, this M1-level model maps the requirements of a given case study. In Figure

8, a tree view editor is developed to make the hierarchy of your case study before implementing it

in Sirius. The basic purpose of the tree view is to add or delete some attributes or classes in the

meta-model according to your case study [53].

Figure 8. Treeview of metamodel

18

Clicking on the "MainReservoir" node in Obeo Eclipse's TreeView opens an enlarged view that

shows all the attributes and information related to the "MainReservoir" concept as shown in Figure

9. This provides details about the "MainReservoir" an element of the metamodel, such as attributes,

operations, and references. TreeView makes it simple for users to explore and grasp the

complexities of the "MainReservoir" notion, providing a greater comprehension of its attributes

and behavior inside the metamodel.

Figure 9. Properties of main reservoir

Users may quickly view the various attributes related to Arduino by selecting the Arduino node in

the TreeView as shown in Figure 10. This illustration demonstrates how TreeView makes it

possible to show attributes consistently and completely for various elements across the metamodel.

Figure 10.Properties of Arduino

19

3.3. Transformation Rules:

In model transformation procedures, transformation rules are essential. The logic and procedures

necessary to transform input models into desired output models or textual artifacts are specified by

these rules. The components, properties, and relationships in the input model are mapped and

converted into equivalent elements, attributes, and relationships in the output model or text

according to transformation rules. To explain transformation logic, transformation rules are often

expressed using specialized transformation languages or tools like Acceleo, ATL, or QVT.

Developers may automate and expedite the model transformation process by utilizing

transformation rules, resulting in accurate and reliable conversions throughout the different phases

of the software development lifecycle[54].

Our approach uses transformation rules to automatically change the M2 level metamodel, acting as

the input, into UPPAAL models, the intended output. The elements, relationships, and constraints

described in the metamodel are mapped to their appropriate representations in UPPAAL according

to these transformation rules, which create a systematic method for doing so. In this study, the M1

level models are transformed into a .xta file format, which displays the model in textual form. The

MWS Framework uses the Acceleo transformation language to carry out the transformation

process.

While components in the metamodel are defined by classes, objects, and relationships, components

in UPPAAL are defined by templates, locations, and edges. The metamodel uses attributes and

methods to specify properties, whereas UPPAAL uses local and global variables to express them.

In UPPAAL, associations from the metamodel are converted to edges that connect the various

components. The UPPAAL process transforms constraints from the metamodel into guard

conditions for transitions. In contrast to UPPAAL, which allows automated verification through

model checking and simulation, verification in the metamodel is often carried out manually

through testing and debugging. Finally, UPPAAL exports the model as an XTA file suited for

simulation and formal verification, while the metamodel is stored as source code files in

programming languages like Java, C++, or Python [55].

Table 1. Transformation rules

 Class

Initial Location Class in metamodel is mapped

to Initial Location in UPPAAL

 Class

 Location

Class in metamodel is mapped

to Location in UPPAAL

 Associations Edge The connection between two

classes is defined as

Association in metamodel

20

whereas in UPPAAL it is

defined as Edge

Multiplicity

Edge

Multiplicity in a metamodel is

analogous to the edges in

UPPAAL

Constraints Guard

For each constraint in the M2

metamodel, create a guard

condition for the

corresponding transition in the

UPPAAL process.

Class

Committed Location

Class in metamodel is mapped

to the committed location in

timed automata.

Subclass

Location

Subclass in Metamodel is

mapped as Location in

UPPAAL

Attributes Global and Local Declaration In metamodel, Properties are

defined using attributes while

in UPPAAL it is defined in

local and global declaration.

Summary:

In summary, the technique entails utilizing Eclipse to create a metamodel at the M2 level, using

Sirius to perform a case study for customized graphical modeling, using Acceleo to convert the

models into Xta files, and then verifying these files in UPPAAL. This thorough and iterative

process makes sure that system models are created accurately, that they are converted into textual

representations, and that they are then validated utilizing UPPAAL's strong verification

capabilities. We guarantee a smooth and automated process of building UPPAAL models by

precisely specifying these rules, which capture the requirements and semantics inherent in the M2

level metamodel. To analyze and validate the system modeled at a higher degree of abstraction and

21

to close the gap between the abstract metamodel and the concrete UPPAAL representation, we may

leverage the rigorous verification capabilities of UPPAAL. To make the transition from the

metamodel to the UPPAAL process easier, transformation rules are required.

22

CHAPTER 4

IMPLEMENTATION

In this chapter, a thorough analysis of Sirius and its application, as well as an in-depth examination

of Acceleo transformation will be discussed. We will delve into Sirius' complexities to learn how it

permits the construction of domain-specific languages (DSLs) and the building of customized

graphical modeling editors. We will examine Sirius' capabilities and characteristics that enable

simple and attractive visual representations of complex structures. I will also focus on Acceleo’s

transformation features and how they help with model-to-text transformations. This knowledge will

empower readers to confidently employ these tools to produce expressive visual models and

generate customized textual artifacts that cater to their specific needs.

4.1. Case study 1 (Mirpur city):

Mirpur Azad Kashmir is situated in Pakistan's northern region. The city is renowned for its

picturesque beauty and vibrant culture, but it is currently dealing with a significant water

management issue. People are experiencing severe water shortages because of poor infrastructure

management and water resource mismanagement. The Mangla Dam, which supplies water to

Mirpur and other nearby towns and cities, is the primary source of water for the city, however,

several factors frequently cause the water supply to be interrupted.

The city's water distribution system is out-of-date and ineffective, and it cannot meet the demands

of the expanding population. People sometimes rely on private water tankers, which demand

excessive prices, because the infrastructure cannot supply water to the entire city. The improper use

of water resources is the second problem. The Mangla Dam's water supply is frequently interrupted

for a variety of reasons, including maintenance, power failures, and political upheaval. Wells and

tube wells have dried up because of the misuse of water resources, which has caused the water

table to be depleted. Mirpur residents are suffering from a severe water deficit, particularly during

the summer [56]. By putting in place appropriate water management procedures and keeping an

eye on the supply system, the water delivery system may be enhanced. By developing a more

effective and efficient approach, my research effort aims to enhance the city's water supply system.

23

For this purpose, we have determined to concentrate on four different sectors of the city. By

concentrating on these sectors, we hope to highlight the advantages of our new system and

illustrate how it might enhance the city's entire water supply. Our goal is to persuade the city to

adopt our system on a broader scale to address the city's present water supply problems.

A full water delivery system is modeled in this section to test our proposed framework. Fig.3

shows the complete model of the Water supply management system. The proposed meta-model

consists of a root-class Water supply management system that displays complete management of

the water system in a city or in an area where it seems difficult to implement a complete water

management system. The implementation involves water storage that consists of a secondary

storage system and the main reservoir that is responsible for delivering water to the end user. This

system is applied to an area where people are facing issues of water deficiency, which is developed

using an ARDUINO controller, Wi-Fi module, Buzzer, Display unit, and Actuator. In this scenario,

4 sectors of a city are shown. Water is supplied to all four sectors one by one. A Wi-Fi module and

Arduino are interlinked with each other through RX TX. A mobile app is also developed to manage

the whole system. The waterman can manage the system even if he is far away from the city. He

can turn the respective motor on/off from anywhere. Suppose we give a command through an

application to turn motor 1 ON, the transformer of that specific motor will come into a working

state and provide power to the motor. Following the same procedure, the rest of the motors will

work. We have connected pipes with these motors through which we can provide water to different

sectors of a city. If we press 1 through an application, then motor 1 will turn ON, and water is

supplied to sector 1 and vice versa. Sensors were also attached to the water tank to check the water

level and to ensure the equal distribution of water among different sectors. The sensors help the

Figure 11. Aerial view of Mirpur city

24

waterman to check the amount of water in a tank and when the water is successfully delivered to

the sector, the sensor will help to display the accurate amount of water delivered on an LED

attached to ARDUINO. Suppose the maximum level of the main water Tank is 1000ml, then water

supplied to all four sectors is at least 250mlSensors are attached that will display a message on the

display unit if the water level is equal to or more than 250ml, indicating that water is fully

delivered to Sector 1. This will assist us in identifying water loss. If there is a problem, such as not

enough water being provided to each sector or less than 250ml, no notification will be displayed. A

Buzzer is also attached to the controller. Once the water is successfully delivered to the sector the

Buzzer starts to beep and the display unit along with the controller shows a display message that

250ml of water has been successfully delivered to sector 1.

The process involves the following steps: -

Step a. Waterman accesses the mobile application.

Step b. Give a command to wifiModule through a mobile application.

Step c. WifiModule turns the motor ON or OFF accordingly.

Step d. WifiModule is connected to Arduino; it also passes information to Arduino.

Step e. LCD (Liquid crystal display) relates to Arduino, whenever the motor turns ON; a message

is displayed on LCD that water starts delivering to sector 1.

Step f. Sensors are attached, so when water reaches maximum level, again the message is displayed

that water is fully delivered to sector 1. In this way, the water supply is managed without wastage

and is fully delivered where required; this will help us in detecting water losses. If there is some

issue like water is not fully delivered to each sector, then no message will be shown.

The hardware is managed with the aid of a mobile application on a smartphone and by scheduling

the times, as shown in the diagram above Figure 12.

Figure 12. Block diagram of water supply

25

Sirius:

The open-source modeling tool Eclipse Sirius enables the development of unique graphical

modeling workbenches in the Eclipse environment. Because of its novel methodology, users may

create graphical editors and domain-specific languages (DSLs) that are customized to meet their

unique requirements. There are generally multiple phases involved in implementing a case study

with Eclipse Sirius. To identify the specific problem domain and the modeling ideas to be

represented, the case study's requirements and scope are first specified. Next, Sirius' easy graphical

modeling capabilities are used to develop the DSL for the case study. This entails establishing the

metamodel, creating graphical representations, and defining the layout and behavior of elements.

The case study's model instances are generated and modified using the custom graphical editor

when the DSL is specified.

Figure 13. Sirius Design view

26

In this Figure 13, a network of nodes and their connections are graphically displayed to show how

the system's interconnected components relate to one another. The graphic is purposefully made to

explain the underlying architecture in a simple and understandable way.

Each node in the Sirius diagram has specific properties that are accessible by clicking on the node.

For instance, when you click on the User node, a properties panel with important features is

displayed, allowing you to efficiently customize the node's depiction[57].

The following fields are present in the User node's properties panel:

1. ID: To distinguish the User node from other nodes in the diagram and to assist identify it,

you may give it a special identity using this field.

2. Domain Class: The domain class linked to the User node can be specified here. The domain

class establishes the node's fundamental data structure and behavior, guaranteeing the

node's proper interaction with other system elements.

3. Semantic Candidates Expression: You can specify the possible semantic candidates for the

User node using the robust expression language offered by this field. The data components

or entities that are allowed to be depicted in the diagram as User nodes can be managed by

specifying this expression.

You may guarantee that the final representation is coherent and functionally related by

precisely filling out these properties for each node as shown in Figure 14. To ensure that the

final representation appropriately depicts the underlying architecture and data exchanges,

each node develops into a well-defined and useful component of the system.

Figure 14. Nodes Properties in design view

27

Figure 15. Edges properties in design view

28

The process of representation in Sirius entails developing unique visual representations of models

within a customized modeling workbench. Designers create a user-friendly and engaging

environment using perspectives, diagrams, node and edge mappings, visual styles, tool extensions,

layouts, and expressive queries. Diagrams provide components of the model in accordance with

predefined rules, whereas viewpoints specify certain perspectives or elements of the model. For

users to build, edit, and visualize domain-specific models, Sirius's modeling environment offers a

simple and effective platform. The Diagram Area, Palette, and Attribute Assignment Area work

together to give users the ability to quickly instantiate ideas, define attributes, and create

relationships, resulting in a thorough and visually engaging representation of the modeled system.

A graphical representation of case study 1 is shown in Figure 16.

4.2. Case study 2(College of EME):

The campus of EME College is the subject of the case study. It has a variety of academic and

administrative buildings, including engineering departments like Electrical, Computer,

Mechatronics, and Mechanical as well as administrative buildings like the College Head Quarter,

Academic Studies Group (ASG), and Cadet Battalion. Boys' and girls' hostels, an Army Public

School, cafes, the central mosque, the college's central library, and an auditorium are additional

features.

Figure 16: Graphical Representation in Sirius

29

The college's main task is successfully controlling the water supply to prevent any water-related

problems on campus. A central overhead water reservoir serves as the primary water supply source.

Given the sizeable population of residents and users of facilities like hostels, schools, mosques,

libraries, and auditoriums, it is essential to optimize water management to satisfy the variety of

water demands and provide a constant water supply across the campus. A thorough water

management strategy should consider issues specific to the campus, such as rainwater collection,

distribution efficiency, and conservation measures. For quick leak identification and repair, usage

patterns in hostels, college, and auditoriums must be examined, as well as routine infrastructure

maintenance. EME College can guarantee a sustainable and dependable water supply for all its

facilities and people by putting into practice a well-designed and proactive water management plan.

This will also help with water conservation efforts and lessen the college's environmental impact.

Utilizing the Eclipse Modelling Framework (EMF) and Sirius to establish a robust and adaptable

modeling environment, we construct the college case study using the model-driven approach. In the

Figure 17. EME college view

30

beginning, we define the metamodel, encompassing the key ideas of academic and administrative

buildings, engineering departments, hostels, school, mosques, libraries, auditoriums, and the

primary overhead water reservoir. The interconnected elements of the actual college campus are

represented by instances of the metamodel that we create.

The college model's hierarchical structure will be represented by the tree view as shown in Figure

18. It is easy to examine and manage the many components of the college campus model because

Eclipse's tree view gives users a structured and organized perspective of the case study of college.

The main reservoir is shown as a prominent node in Figure 19. The main reservoir is surrounded by

interconnected components like actuators, sensors, filters, Arduino, and the area they serve. Each

element is shown as a separate and easily recognizable symbol, facilitating identification. Any

element may be selected by clicking it, and a brief properties window with all the necessary details

about it will then show.

Figure 18. Treeview of casestudy2

31

Figure 19.Properties of Main tank

The graphical representation in Case Study 2 Sirius editor clearly illustrates all the nodes and

edges, effectively visualizing the complete associated system. The aspects of the case study and

their relationships are shown in the diagram in a clear and comprehensive approach. These nodes

might be the main overhead water reservoir, the Army Public School, the Central Mosque, the

College Central Library, the Auditorium, and the academic and administrative buildings. Each

node has the proper label to enable quick identification of its identity.

Figure 20. Edges and Nodes in Designview

32

The water delivery system is clearly and precisely depicted in the graphical form of this case study

as shown in Figure 21. A command is seen being given by Waterman, who is represented by a

node, to the Wi-Fi module, which is another node, telling it to activate Sector 1's Motor 1. This

causes Sector 1 to get water from the main tank via the filtration facility because of this action.

Additionally, the graphical depiction illustrates the relationship between Motor 10 and the mosque,

showing how water is provided to the mosque when Motor 10 is turned on. The mosque tank is

connected to a sensor, which is shown as a node. The sensor keeps track of the water level and

interacts with an Arduino, which is represented as another node. The Arduino is linked to an LED,

which shows if water was successfully delivered to the mosque and how much was delivered. It

also acts as a warning sign for any possible water leaks. A message certifying the water's safe

delivery and the amount of water provided are displayed on the LED when water delivery is

accomplished. Additionally, when the water distribution procedure is successful, a buzzer is

engaged and makes a sound. If the LED does not display the message confirming a successful

water supply, there may be a leak in the pipes. This crucial feature of finding water leaks gives the

system an additional layer of monitoring and control, guaranteeing that any potential problems are

quickly found and resolved. By enabling users to monitor and maintain an effective and dependable

water supply system, this graphical representation ensures uninterrupted water delivery and reduces

loss from leaks.

33

Figure 21. Graphical Representation in Sirius (CASESTUDY2)

4.3 Case study 3(Ahmadpur village)

Based on variables including population, agricultural area, and water accessibility, the hamlet of

Chilka, which is situated in Ahmadpur Tehsil of Latur district, Maharashtra, was chosen for this

research. It has a population of 875 people, divided among 203 households, and a land area of 571

hectares (Indian Census of 2011).

34

The inhabitants' main source of income comes from agriculture, which includes livestock

husbandry, agricultural labor, and cultivation. Due to the consistently dry weather in the area, both

home and agricultural needs for groundwater are primarily reliant on boreholes and drilled wells.

Despite the existence of the nine drilled wells and four borewells seen in Figure 22, poor

management of water resources has caused a serious water crisis in Chilka. An effective water

management and distribution system is urgently needed to address the issue of water shortage.

Even though there is physical water available, poor management is the main source of the issue.

However, if water resources are handled well, they can produce noticeably better outcomes.

Designing such a system requires considering the estimated lifespan of the infrastructure and

estimating the village's future water needs. For the benefit of the Chilka villager community, a

sustainable and dependable water supply may be secured by taking these elements into

consideration and putting into practice good water management practices[58].

We may include the additional features of the main motor that moves water from the well or bore

to the main tank as shown in Figure 23. We include the main motor as a new node under the

"Water Supply System" category in this expanded tree view to show its function in moving water

from wells or borewells to the main tank. Water distribution to residential and agricultural regions

is the duty of the "Main Tank" node.

 Figure 22. Available water in Village

35

 Figure 23. Treeview of casestudy3

By adding additional nodes and edges in the Sirius editor, we can produce an enhanced

graphical representation that highlights the main motors, bore water sources, and wells, as well as

their connections. The association between the main motor and the water sources is shown

graphically by an edge joining the "Main Motor" node to the "Drilled Wells" and "Borewells"

nodes. An edge shows how the water flows from the "Main Motor" node to the "Main Tank,"

36

illustrating the water flow from the well to the tank as shown in Figure 24 and the connection

between the well and main motor is shown in Figure 25.

Figure 24. Design view of casestudy3

Figure 25. Edge properties of Well

37

The community of Chilka has a serious problem because of inadequate water management, despite

having access to plenty of water resources. This poor management has had a serious impact on the

region's agricultural activity by causing a severe problem with the provision of water to farms and

fields. The lives of the community members who significantly depend on farming as their main

source of income are hampered by the inability to efficiently harness and distribute the available

water resources, which has created a barrier to agricultural output.

We provide a comprehensive overview of the complete procedure, considering the additional

features of well and bore water, in the graphical representation of the Chilka Hamlet water supply

system using Sirius. The diagram illustrates the methodical steps that the waterman took to

efficiently manage the water supply. The water sources, which consist of borewells and drilled

wells, are the system's essential components. These resources are essential for supplying the village

with the water it requires. The water distribution system has main motors that move water from

wells and borewells to the main tank. The main tank acts as the village's central reservoir, holding

water for later distribution to homes, farms, and fields. The waterman communicates with the

system using a device that serves as an interface by sending commands to manage the water

supply. These commands are sent to the WiFi module, which then connects with the main motors

to start filling the main tank to capacity. When the main tank is full, the waterman sends further

instructions to turn on individual motors for farms and houses. These motors make sure that the

main tank's water supply is effectively delivered to the fields and residential areas. The sensors

systematically monitor the water levels in the local tanks. An Arduino system is integrated into the

design to monitor the water supply and identify any problems. The Arduino uses an LED display to

convey messages confirming effective water delivery to the fields or warning about potential leaks

or water theft after receiving signals from the sensor. The LED display is triggered by the Arduino

to show a message stating that the farms have received all the water they need. To further indicate

that the water supply was successful, the Arduino simultaneously turns on the buzzer, which emits

a unique beep sound as shown in Figure 26.

38

Figure 26. Graphical representation in Sirius of casestudy3

.3. Acceleo Transformation:

For a formal verification framework, we have developed a transformation engine. The Ecore

Metamodel diagram may be transformed into timed automata using this engine, simplifying formal

verification. With the help of this transformation, we may examine and verify the behavior of

complex systems under precise timing constraints, assuring the accuracy and dependability of those

systems. The architectural plan shown in Figure 27 is the foundation upon which the

Transformation Engine has been implemented. This engine's major objective is to automate the

whole verification and transformation process utilizing transformation mapping rules that preserve

the semantic parity of the two languages, namely the M2 level metamodel and timed automata. We

have selected the Acceleo tool, which serves as the foundation for carrying out these changes, for

the model-to-text transition[59]. The User Interface and the Model Generator are the two main

components of the Transformation Engine. Together, these elements make model changes quick

and smooth while maintaining semantic parity between the original metamodel and the timed

automata representation.

39

The Ecore metamodel is transformed by the Model Generator into Timed Automata for validation

and verification. There are two main components to the process:

Generate File (Generate.java): The logic for the Model-to-Text transformation is handled in this

file, which also creates the Timed Automata representation for the specified Ecore model from the

user interface.

Template File (Generate.mtl): The transformation's coding logic is contained in the template file.

It gives the rules for constructing the target model and describes how the Ecore elements are

transferred to Timed Automata constructs.

Two output files are produced after the Generate.java and related template file have been

successfully executed:

a. xta this file contains the modified Timed Automata model, which simulates the system behavior

shown in the ecore model.

b. q User requirements properties based on the ecore model are contained in this file. These

properties describe the system's desired properties and behaviors that need to be tested.

A model of the Water supply management system was used to create Acceleo code, which then

generates code. The Acceleo language, a template-based code generator that employs the Eclipse

Modelling Framework (EMF) to convert models into executable code, was used to create the

Acceleo code [60]. To provide flexibility and automation in the software development process,

Figure 27. The architecture of Transformation engine

40

Acceleo makes it possible to generate code, documentation, or any other textual artifacts from

models.

Once the code has been written in Acceleo, it is time to begin the run configurations by choosing

the model and case study, customizing it, and then executing to produce the output as shown in

Figure 28.

Figure 28. Run configuration of Acceleo

UPPAAL:

For formal verification and validation of the system, the generated. Xta and .q files can then be

utilized using the UPPAAL tool or utility. UPPAAL helps to guarantee that the system performs

appropriately regarding the modeled ecore design by determining whether the system meets the

defined properties. The system design and execution are made more dependable and accurate

through this procedure[61].

A strong tool for modeling and testing real-time systems with timed automata is UPPAAL. An xta

file containing a UPPAAL template can be divided into the following main components:

1. Global Declarations

2. Parameters

3. Local Declarations

 4. Locations

5. Edges

41

 6. System Definition

Figure 29. Global declaration

Figure 30. System declaration

42

CHAPTER 5

VALIDATION

In this formal validation chapter, UPPAAL will be used to thoroughly validate each case study. We

will make extensive evaluations of temporal dynamics, synchronization, and property adherence

using XTA files from Acceleo transformations.

5.1. Case Study 1 Validation:

A model checker for real-time systems that is popular in both research and business is called the

UPPAAL tool. UPPAAL is a very effective tool for studying the behavior of real-time systems

because it can model and test systems that contain both logical and temporal restrictions. In this

study, UPPAAL is used to convert a system's metamodel into a formal verification model, which

can be used to confirm that the behavior of the system is right. According to the transformation

rules in Table 1, the metamodel uses classes, objects, and relationships. While UPPAAL uses

templates, locations, and edges to represent components. In contrast to UPPAAL, which uses

global and local variables to create properties, the metamodel uses attributes and methods to define

properties.

In UPPAAL’s transitions, constraints from the metamodel are transformed into guard conditions.

While UPPAAL automates verification through model checking and simulation, the metamodel

requires manual testing and debugging. In contrast to UPPAAL, which employs the invariant

attribute to limit object relationships within a location, multiplicity constraints in the metamodel

specify object associations. The metamodel is eventually saved as source code files, and UPPAAL

outputs the model as a .xta file for formal verification and simulation. A .xta file is produced as the

output following the transformation of the MDA-created water supply management model using

Acceleo. This text-based file, which can be loaded into the UPPAAL model checker, represents the

model. We may import the .xta file into UPPAAL once we have it to see the Water Supply

Management System model as a graphical representation.

Five interconnected models make up the Water Supply Management System model, including a

primary model named WaterSupply and four models for each motor, referred to as Motor1,

Motor2, Motor3, and Motor4 as shown in Figure 32. The WaterSupply model, which starts at the

Waterman location, illustrates the system's primary control flow. Location motors represent the

four motors that supply water to different sectors of the city. The select_motor1! Sync condition at

the MotorOne location activates the Motor1 Model control logic and synchronizes the system with

the Motor1 model. Once the Motor1 model has arrived at its final location, it uses the application!

Sync condition to come back to the main WaterSupply model and the same for the rest of the

motor’s model. UPPAAL the! And? are used to send and receive messages. The main components

of the UPPAAL template for UPPAAL Properties (.q file) are mentioned below.

43

Figure 32. Main supply of case study1

Figure 33. Motors of casestudy1

44

A timed automaton model's execution route during a simulation run is referred to as a simulation

trace in UPPAAL. When you simulate a model in UPPAAL, the tool explores several execution

routes and creates a trace that displays the system's series of states and transitions in response to

events and time elapsed.

The word "urgent" is used in UPPAAL to describe transitions that are given a greater priority than

other transitions. When a transition is designated as "urgent," it signifies that it can take precedence

over any non-urgent transitions and that it will always be executed as soon as it is enabled.

Consider a real-time system where pressing the emergency stop button takes precedence over doing

other things. In this situation, you would represent the transition corresponding to hitting the

emergency stop button as "urgent." As a result, anytime the button is touched, it immediately takes

precedence over any other tasks that are already in progress, stopping the system instantly[62].

The word "committed" is used in UPPAAL to represent synchronization between several

transitions that need to occur atomically. When a transition is designated as "committed," it

signifies that for any of them to be carried out, they must all be enabled at once. Consider a system

where a vehicle must open both the left and right doors at the same time for passengers to board.

The transitions that correspond to opening the left and right doors in this scenario would be

Simulation Trace

Figure 34. Simulator of UPPAAL

45

represented as "committed." This prevents any inconsistent behavior by ensuring that both doors

are opened simultaneously or not at all.

Query: this portion of the template contains the UPPAAL properties. Properties should be defined

as per the following syntax as shown in Table 2 [63].

Table 2. UPPAAL Properties

Sr

no

Property Type Operator Query type

1 Possibly E<> Reachability

2 Invariantly A[] Safety

3 Potentially

always

E[] Safety

4 Eventually A<> Liveness

5 Leads to → Liveness

Queries types are classified as Reachability, Safety, Liveness, and deadlock. Reachability query

tests if a certain state or group of states can be reached from the initial state of the model. Safety

query determines if a specific attribute is always true for every conceivable system execution. It

guarantees that the system never reaches an undesired state. The Liveness query determines if a

certain attribute eventually holds for all possible system executions. It guarantees that the system

never reaches an undesired state. The Liveness query determines if a certain attribute eventually

holds for all possible system executions. It guarantees that the system eventually reaches a desired

state [64].

Verification and validation of system designs should be done early in the Software Development

Life Cycle (SDLC) since it removes mistakes and uncertainties with less cost, time, and resources.

The UPPAAL model checker is used in this work to validate properties such as deadlock, security,

liveness, and reachability as shown in Figure 35. The properties are validated after simulating the

system behavior with UPPAAL. If the model checker returns a green signal, it indicates that the

system is error-free and fits the requirements. The extensive validation procedure guarantees that

the system works as it should and satisfies the standards for a safe and effective water supply

management framework. The successful testing of qualities shows that the proposed water supply

management works as expected. UPPAAL and its extensive model-checking capabilities can detect

and correct any property violations, guaranteeing that the system operates predictably and

consistently in real-world circumstances.

46

Figure 35.Properties of case study 1

The property "A[] not deadlock" denotes that there won't be a deadlock in any of the system's

potential future states. In other words, in every circumstance, the system is guaranteed to be free of

deadlocks.

"A<>Waterman. Filter imply motorone.motor1 && motortwo.motor2 && motorthree.motor3 &&

motorfour.motor4 ".The expression on the left side implies the expression on the right, expressing a

conditional connection. It indicates that the expression on the right side should likewise be true in

this situation if "A>Waterman. Filter" is true. "A<>Waterman. Reset imply motorone.motor1"

"A[] motorone.max && motortwo.max && motorthree.max == 25". This property guarantees that

the maximum value of the "motorthree" component is always equal to 25, and that the

"motorone.max" and "motortwo.max" variables are always true (non-zero) in all states of the

system. A violation of the given criterion would be shown if any of these requirements were to be

violated at any point along any path of the system, rendering the property untrue.

"E<>Waterman.motor1 || Waterman.motor2".This property makes sure that at some point along at

least one feasible path of the system, "Waterman.motor1" or "Waterman.motor2" (or both) will be

true. The Boolean expression "Waterman.motor1" and "Waterman.motor2" describe an OR

operation (logical disjunction) between the two propositions. It says that for the statement to be

true, either "Waterman.motor1" or "Waterman.motor2" (or both) must be true.

"E<>Waterman. Filter &&! motorone. Buzzer".This property guarantees that the "Waterman.

Filter" will become true at some point during the system's execution and that the "motorone.

Buzzer" will also turn false at the same time. This may signify a certain desired behavior in which

the Waterman filter is turned on while the motor one's buzzer is off.

5.2. Validation of case study 2:

We chose the Case Study 2 model as the source in the run configuration for Case Study 2

validation, and we selected 'Tasks' as the target to display our results. The "target" is the place or

thing where the output or outcomes of the system will be seen or presented as shown in Figure 36.

47

Figure 36. Run configuration of case study 2

The water supply system in Case Study 2 runs efficiently and effectively, guaranteeing a steady

flow of water to different areas. The main control model, "Water Supply," and ten separate motor

models are the two crucial parts of this well-designed system as shown in Figure 37. The

Waterman control device starts the process by delivering instructions to the motors via a Wi-Fi

module as the system develops. The main supply model synchronizes with the appropriate motor

model via synchronization signals marked by "!". Once synchronized, the motor model takes

charge and effectively regulates water delivery to the target area. To maintain optimal performance,

sensors are used to monitor water levels. When the water distribution is successful, LCDs show it,

and a buzzer makes a beep sound.

The main supply model receives a synchronization signal (application!) from the motor model once

the motor model has successfully completed a task. The main supply model can go on to the next

motor and continue the procedure for continuous water delivery to all areas. The water supply

system effectively meets the water demands in different areas through this well-coordinated

synchronization and communication mechanism, offering a dependable and efficient water

distribution process. We also carefully customize water distribution based on the unique

requirements of each area; for example, hostels receive larger allocations than cafés or

headquarters, ensuring the maximum water level perfectly corresponds with their demands.

48

Figure 37. Main supply model of case study 2

Figure 38. Motors model of case study 2

49

Figure 38. Motors model of case study 2

The next step is to validate the system's behavior and characteristics after running the model in

accordance with the case study. Validation in the context of formal verification determines if the

system complies with given requirements. These characteristics may include performance

assurances, accuracy claims, safety criteria, and other system-specific specifications as shown in

Figure 39.

The property "A[] not deadlock" guarantees that under every conceivable future circumstance, the

water supply system will never experience a deadlock state. Processes become stuck in a deadlock

when they are dependent on one another for resources, which might make the system unresponsive.

The system's resilience is confirmed by validating this property, which also guarantees a constant

water supply free from any blockages.

"A[]Waterman. Filter imply motorone.motor1&&motortwo.motor2 "it explains that if the

'Waterman. Filter' condition is satisfied, then it is assumed that the 'motorone. motor1'

and'motortwo.motor2' conditions will also be true in all future states.

"A[] motorfive.max&&motorsix.max&&motoreight.max<=25".The maximum water level values

for "motorfive," "motorsix," and "motoreight" for all upcoming states should be less than or equal

to 25.

50

"E<>motorseven.Reset”. This property determines whether the "Reset" condition of "motorseven"

will occur at some point in the future. “A[]motorone.max&&motornine.max==15".The maximum

water level values for motor one and motor nine must be equal to 15

Figure 39. Properties validation of case study 2

5.3. Validation of case study 3:

We chose the Case Study 3 model as the source in the run configuration for Case Study 3

validation, and we selected 'Tasks' as the target to display our results. The "target" is the place or

thing where the output or outcomes of the system will be seen or presented as shown in Figure 40.

Figure 40.Run configuration of casestudy3

The water management system in the third case study includes additional features such as main

motors connected to both the well and the bore. The system consists of a main supply system and

four distinct motors for diverse areas, including fields, farms, and houses, as can be seen in the first

two case studies. Waterman initiates the process by sending commands to the Wi-Fi module,

instructing it to turn on the main motors linked to the well or bore that provides water to the main

51

tank. After the main tank is full, the Wi-Fi module transmits further instructions to turn on the

motors attached to the different areas while taking into consideration each one's particular water

needs. To optimize water distribution, the maximum water level is set higher for fields than for

farms and houses. Sensors are connected to an Arduino to ensure exact water distribution. The

Arduino then receives messages indicating when the water has been completely delivered to a

particular area. The Arduino turns on LED lights to show "Water Fully Delivered" once delivery is

accomplished and turns on a buzzer to make a unique beep sound as an extra assurance. This water

management system gives Waterman the ability to effectively manage water distribution, provide

priority to areas with high water demands, and offer real-time feedback, providing an ideal and

long-lasting water supply for residences, farms, and fields.

Figure 41. Main water supply model of case study 3

52

Figure 42. Motors model of case study 3

In this case study, we look at a comprehensive water supply system that consists of a main supply

model at the center and different individual motor models as shown in Figures 41 and 42. The

major source of water distribution is the main supply model. Through a synchronization command,

the main supply model synchronizes with the matching motor model when it gets close to a certain

motor location.

Figure 43.Properties of case study 3

53

In a model checking context, the property "A[] not deadlock" often denotes that there shouldn't be

any deadlock situations in the system. According to this UPPAAL property, "A[]

Waterman.Mainmotor1 imply Waterman.motor1," if the "Mainmotor1" of "Waterman" is active

(true), it implies that "motor1" of "Waterman" must likewise be active (true) for all feasible

execution pathways (A[]). According to the UPPAAL property "A[] Motorone.max==25," the

value of "Motorone. max" shall always be equal to 25 for all feasible execution pathways (A[]) and

the max value of motor three is 30 for all feasible execution pathways. As a "Reachability"

property, the UPPAAL property "E>Waterman.motor1 || Waterman.motor2" determines if a path in

the system exists where either "Waterman.motor1" or "Waterman.motor2" (or both) becomes true

at some point in time.

54

CHAPTER 6

DISCUSSION

I took a thorough approach to modeling and improving the Water Supply Management System for

my research. The first step involves collecting and carefully examining the system's requirements to

create an M2-level meta-model. I created a tree view representation to simplify and increase the

user's understanding of the complex system. This visual framework improved the modeling process

overall by enabling a more intuitive understanding of the system's complexity. In three separate case

studies of my research, I looked at different facets of the Water Supply Management System in

contexts from the real world. Through this research, I was able to properly evaluate and enhance the

system in a variety of real-world situations. These case study models were then transformed into

XTA files using the Acceleo model-to-text transformation framework.

Importantly, I imported these XTA files into the UPPAAL modeling environment where I produced

three distinct models, each in line with a different case study. This made it possible to design a

thorough investigation of the Water Supply Management System scenarios. The model is verified

using essential properties including deadlock, safety, reachability, and liveness verification to make

sure that these models are reliable and robust. In the context of my research, a deadlock is a

situation in which the system has stopped functioning and is trapped. Reachability analysis

determines if critical states can be accessed when required, whereas safety features make sure that

undesirable system states are avoided. In the context of managing water supply, liveness properties

guarantee that the system advances continuously.

Properties are satisfied by showing green signals which means that the model is validated. In

conclusion, my research is a thorough investigation that included rigorous UPPAAL-based

validation, model-to-text transformation, real-world case studies, and meta-modeling. This method

greatly enhanced the Water Supply Management System while guaranteeing industry compliance

and providing protection against potential problems like deadlock. It also ensured safety,

reachability, and system liveness.

55

CHAPTER 7

CONCLUSION AND FUTURE WORK

This study proposes a novel model-driven methodology intended to improve the effectiveness and

efficiency of managing water supply systems. The creation of the Model-Driven Water Supply

(MWS) Framework is key to this strategy. This framework is deeply based on the Eclipse

Modelling Framework and acts as a strong management and optimization framework for water

supply systems. The MWS Framework is made up of several integral components, each of which is

essential to its performance. The MWS Tree Editor, MWS Graphical Modelling Tool, and MWS

Transformation Engine stand out among these. These components cooperate to make it easier to

convert instance models into UPPAAL xta files, an essential step in the system validation and

verification process. The role of the UPPAAL model checker is essential to this study. It is used to

thoroughly validate several water supply system properties, such as reachability analysis, system

liveness, deadlock prevention, and security measures. Following the modeling of system behavior

using UPPAAL, these properties are examined to make sure the water supply system runs

effectively and safely. To confirm the efficacy of the suggested MWS Framework, extensive case

studies are conducted. The outcomes of these case studies show how useful the framework is in

modeling water supply systems. It enables users to manage water resources sustainably and

effectively by optimizing water allocation and identifying potential vulnerabilities like water leaks,

poor resource distribution, and poor infrastructure. The framework could potentially be improved

more in the future. Future upgrades could include the incorporation of a billing system, allowing for

more streamlined financial administration of the water supply system. Additionally, the addition of

a water-cooling system can improve the system's overall effectiveness and sustainability.

Researchers in this area might also consider combining UPPAAL with other formal verification

tools like SPIN and PRISM.

56

REFERENCES

[1] Franzago, M., Di Ruscio, D., Malavolta, I., & Muccini, H. (2017). Collaborative model-driven

software engineering: a classification framework and a research map. IEEE Transactions on

Software Engineering, 44(12), 1146-1175.

[2] Mohapi, L. J. (2017). A domain specific language for facilitating automatic parallelization and

placement of SDR patterns into heterogeneous computing architectures.

[3] Kim, W. Y., Son, H. S., Kim, J. S., & Kim, R. Y. C. (2011). Adapting model transformation

approach for android smartphone application. In Advanced Communication and Networking: Third

International Conference, ACN 2011, Brno, Czech Republic, August 15-17, 2011. Proceedings (pp.

421-429). Springer Berlin Heidelberg.

[4] Hutton, C. J., Kapelan, Z., Vamvakeridou-Lyroudia, L., & Savić, D. A. (2014). Dealing with

uncertainty in water distribution system models: A framework for real-time modeling and data

assimilation. Journal of Water Resources Planning and Management, 140(2), 169-183.

[5] Paul, M. J., Coffey, R., Stamp, J., & Johnson, T. (2019). A review of water quality responses to

air temperature and precipitation changes 1: Flow, water temperature, saltwater intrusion. JAWRA

Journal of the American Water Resources Association, 55(4), 824-843.

[6] Kisvari, A., Lin, Z., & Liu, X. (2021). Wind power forecasting–A data-driven method along

with gated recurrent neural network. Renewable Energy, 163, 1895-1909.

[7] Jonoski, A., & Seid, A. H. (2016). Decision support in water resources planning and

management: the Nile basin decision support system. Real-World Decision Support Systems: Case

Studies, 199-222.

[8] Cantelmi, R., Di Gravio, G., & Patriarca, R. (2021). Reviewing qualitative research approaches

in the context of critical infrastructure resilience. Environment Systems and Decisions, 41(3), 341-

376.

[9] Chwala, C., & Kunstmann, H. (2019). Commercial microwave link networks for rainfall

observation: Assessment of the current status and future challenges. Wiley Interdisciplinary

Reviews: Water, 6(2), e1337.

[10] Ramotsoela, D. T., Hancke, G. P., & Abu-Mahfouz, A. M. (2019). Attack detection in water

distribution systems using machine learning. Human-centric Computing and Information

Sciences, 9(1), 1-22.

[11] Krishnan, S. R., Nallakaruppan, M. K., Chengoden, R., Koppu, S., Iyapparaja, M.,

Sadhasivam, J., & Sethuraman, S. (2022). Smart water resource management using Artificial

Intelligence—A review. Sustainability, 14(20), 13384.

[12] Jagtap, H. P., Bewoor, A. K., Kumar, R., Ahmadi, M. H., Assad, M. E. H., & Sharifpur, M.

(2021). RAM analysis and availability optimization of thermal power plant water circulation

system using PSO. Energy Reports, 7, 1133-1153.

[13] Liu, P., Wang, J., Sangaiah, A. K., Xie, Y., & Yin, X. (2019). Analysis and prediction of water

quality using LSTM deep neural networks in IoT environment. Sustainability, 11(7), 2058.

57

[14] Wang, F., Wang, Y., Zhang, K., Hu, M., Weng, Q., & Zhang, H. (2021). Spatial heterogeneity

modeling of water quality based on random forest regression and model

interpretation. Environmental Research, 202, 111660.

[15]

[16] Nasir, N., Kansal, A., Alshaltone, O., Barneih, F., Sameer, M., Shanableh, A., & Al-

Shamma'a, A. (2022). Water quality classification using machine learning algorithms. Journal of

Water Process Engineering, 48, 102920.

[17] Simonovic, S. P. (2012). Managing water resources: methods and tools for a systems

approach. Routledge.

[18] . Fu, G., Jin, Y., Sun, S., Yuan, Z., & Butler, D. (2022). The role of deep learning in urban

water management: A critical review. Water Research, 118973.

[19]. Sahu, M., Mahapatra, S. S., Sahu, H. B., & Patel, R. K. (2011). Prediction of water quality

index using neuro fuzzy inference system. Water Quality, Exposure and Health, 3, 175-191.

[20]. Wang, F., Wang, Y., Zhang, K., Hu, M., Weng, Q., & Zhang, H. (2021). Spatial heterogeneity

modeling of water quality based on random forest regression and model

interpretation. Environmental Research, 202, 111660.

[21]. Rinaldi, M., & He, Z. (2014). Decision support systems to manage irrigation in

agriculture. Advances in agronomy, 123, 229-279.

[22]. Soleimani, R., Shoushtari, N. A., Mirza, B., & Salahi, A. (2013). Experimental investigation,

modeling and optimization of membrane separation using artificial neural network and multi-

objective optimization using genetic algorithm. Chemical engineering research and design, 91(5),

883-903.

[23]. Boryczko, K., & Tchórzewska-Cieślak, B. A. R. B. A. R. A. (2014). Analysis of risk of

failure in water main pipe network and of delivering poor quality water. Environment Protection

Engineering, 40(4), 77-92.

[24]. Wang, H., Zhang, D., & Shin, K. G. (2004). Change-point monitoring for the detection of

DoS attacks. IEEE Transactions on dependable and secure computing, 1(4), 193-208.

[25]. Keyhanpour, M. J., Jahromi, S. H. M., & Ebrahimi, H. (2021). System dynamics model of

sustainable water resources management using the Nexus Water-Food-Energy approach. Ain

Shams Engineering Journal, 12(2), 1267-1281.

[26]. Cao, X., Xu, Y., Li, M., Fu, Q., Xu, X., & Zhang, F. (2022). A modeling framework for the

dynamic correlation between agricultural sustainability and the water-land nexus under

uncertainty. Journal of Cleaner Production, 349, 131270.

[27]. Li, M., Liang, D., Xia, J., Song, J., Cheng, D., Wu, J., ... & Li, Q. (2021). Evaluation of water

conservation function of Danjiang River Basin in Qinling Mountains, China based on InVEST

model. Journal of environmental management, 286, 112212.

[28]. Dlodlo, N., & Kalezhi, J. (2015, May). The internet of things in agriculture for sustainable

rural development. In 2015 international conference on emerging trends in networks and computer

communications (ETNCC) (pp. 13-18). IEEE.

58

[29]. Li, L., Rong, S., Wang, R., & Yu, S. (2021). Recent advances in artificial intelligence and

machine learning for nonlinear relationship analysis and process control in drinking water

treatment: A review. Chemical Engineering Journal, 405, 126673.

[30]. Kang, E., Adepu, S., Jackson, D., & Mathur, A. P. (2016, May). Model-based security

analysis of a water treatment system. In Proceedings of the 2nd International Workshop on

Software Engineering for Smart Cyber-Physical Systems (pp. 22-28).

[31]. Tariq, M. U., Nasir, H. A., Muhammad, A., & Wolf, M. (2012, April). Model-driven

performance analysis of large scale irrigation networks. In 2012 IEEE/ACM Third International

Conference on Cyber-Physical Systems (pp. 151-160). IEEE.

[32]. Rahim, M., Hammad, A., & Ioualalen, M. (2017). A methodology for verifying SysML

requirements using activity diagrams. Innovations in Systems and Software Engineering, 13, 19-33.

[33]. Grobelna, I., Grobelny, M., & Adamski, M. (2010, June). Petri Nets and activity diagrams in

logic controller specification-transformation and verification. In Proceedings of the 17th

International Conference Mixed Design of Integrated Circuits and Systems-MIXDES 2010 (pp.

607-612). IEEE.

[34]. Spiteri Staines, T. (2013). Transforming UML Sequence Diagrams into Petri Nets.

[35]. Goncalves, F. S., Pereira, D., Tovar, E., & Becker, L. B. (2017, November). Formal

verification of AADL models using UPPAAL. In 2017 VII Brazilian Symposium on Computing

Systems Engineering (SBESC) (pp. 117-124). IEEE.

[36]. Waszniowski, L., & Hanzálek, Z. (2008). Formal verification of multitasking applications

based on timed automata model. Real-Time Systems, 38, 39-65.

[37]. Rushby, J. (2005). Test Suite Evaluation and Generation.

[38]. Kang, E. Y., Ke, L., Hua, M. Z., & Wang, Y. X. (2015, December). Verifying automotive

systems in EAST-ADL/Stateflow using UPPAAL. In 2015 Asia-Pacific Software Engineering

Conference (APSEC) (pp. 143-150). IEEE.

[39]. Chen, D., Johansson, R., Lönn, H., Blom, H., Walker, M., Papadopoulos, Y., ... & Sandberg,

A. (2011). Integrated safety and architecture modeling for automotive embedded

systems. Elektrotechnik und Informationstechnik, 128(6), 196.

[40]. Enoiu, E. P., Marinescu, R., Seceleanu, C., & Pettersson, P. (2012, July). Vital: A verification

tool for east-adl models using uppaal port. In 2012 IEEE 17th International Conference on

Engineering of Complex Computer Systems (pp. 328-337). IEEE.

[41]. Watahiki, K., Ishikawa, F., & Hiraishi, K. (2011, October). Formal verification of business

processes with temporal and resource constraints. In 2011 IEEE international conference on

systems, man, and cybernetics (pp. 1173-1180). IEEE.

[42]. Esfahani, F. G. (2018). Formal Modeling and Analysis of Mobile Ad hoc Networks.

[43]. Ogedebe, M. P., & Silas, F. A. Abuse of Unified Modeling Language Diagrams in Software

Development.

[44]. Iftikhar, M. U., & Weyns, D. (2012). A case study on formal verification of self-adaptive

behaviors in a decentralized system. arXiv preprint arXiv:1208.4635.

59

[45]. Zheng, M., Alagar, V., & Ormandjieva, O. (2008). Automated generation of test suites from

formal specifications of real-time reactive systems. Journal of Systems and Software, 81(2), 286-

304.

[46]. Halder, R., Proença, J., Macedo, N., & Santos, A. (2017, May). Formal verification of ROS-

based robotic applications using timed-automata. In 2017 IEEE/ACM 5th International FME

Workshop on Formal Methods in Software Engineering (FormaliSE) (pp. 44-50). IEEE.

[47]. de Saqui-Sannes, P., & Hugues, J. (2012, February). Combining SysML and AADL for the

design, validation and implementation of critical systems. In ERTS2 2012 (p. 117).

[48]. de Saqui-Sannes, P., Apvrille, L., & Vingerhoeds, R. (2021). Checking SysML models

against safety and security properties. Journal of Aerospace Information Systems, 18(12), 906-918.

[49]. David, A., Möller, M. O., & Yi, W. (2002, March). Formal verification of UML statecharts

with real-time extensions. In International Conference on Fundamental Approaches to Software

Engineering (pp. 218-232). Berlin, Heidelberg: Springer Berlin Heidelberg.

[50]. Aoki, Y., & Matsuura, S. (2014, August). Verifying security requirements using model

checking technique for UML-based requirements specification. In 2014 IEEE 1st International

Workshop on Requirements Engineering and Testing (RET) (pp. 18-25). IEEE.

[51]. Panach, J. I., España, S., Dieste, O., Pastor, Ó., & Juristo, N. (2015). In search of evidence for

model-driven development claims: An experiment on quality, effort, productivity and

satisfaction. Information and software technology, 62, 164-186.

[52]. Braghin, C., Cimato, S., Damiani, E., Frati, F., Mauri, L., & Riccobene, E. (2020). A model

driven approach for cyber security scenarios deployment. In Computer Security: ESORICS 2019

International Workshops, IOSec, MSTEC, and FINSEC, Luxembourg City, Luxembourg,

September 26–27, 2019, Revised Selected Papers 2 (pp. 107-122). Springer International

Publishing.

[53]. Shonle, M., Neddenriep, J., & Griswold, W. (2004, October). Aspectbrowser for eclipse: a

case study in plug-in retargeting. In Proceedings of the 2004 OOPSLA workshop on eclipse

technology eXchange (pp. 78-82).

[54]. Burgueno, L., Cabot, J., Li, S., & Gérard, S. (2022). A generic LSTM neural network

architecture to infer heterogeneous model transformations. Software and Systems Modeling, 21(1),

139-156.

[55]. Carvalho, A., Carvalho, J., Pinto, J. S., & De Sousa, S. M. (2010). Model-checking temporal

properties of real-time HTL programs. In Leveraging Applications of Formal Methods,

Verification, and Validation: 4th International Symposium on Leveraging Applications, ISoLA

2010, Heraklion, Crete, Greece, October 18-21, 2010, Proceedings, Part II 4 (pp. 191-205).

Springer Berlin Heidelberg.

[56]. Sial, S. (2008). Exploring the mindset of the British-Pakistani community: The sociocultural

and religious context. Conflict and peace studies, 1(1), 1-32.

[57]. Viyović, V., Maksimović, M., & Perisić, B. (2014, July). Sirius: A rapid development of

DSM graphical editor. In IEEE 18th International Conference on Intelligent Engineering Systems

INES 2014 (pp. 233-238). IEEE.

60

[58]. Ruidas, D., Pal, S. C., Saha, A., Chowdhuri, I., & Shit, M. (2022). Hydrogeochemical

characterization based water resources vulnerability assessment in India's first Ramsar site of

Chilka lake. Marine Pollution Bulletin, 184, 114107.

[59]. Sindico, A., Di Natale, M., & Panci, G. (2011, July). Integrating SysML with Simulink using

Open-source Model Transformations. In SIMULTECH (pp. 45-56).

[60]. Buchmann, T., Hammoudi, S., van Sinderen, M., & Cordeiro, J. (2012, July). Valkyrie: A

UML-based Model-driven Environment for Model-driven Software Engineering. In ICSOFT (pp.

147-157).

[61]. Mehdy, A. N., & Mehrpouyan, H. (2021, August). Modeling of personalized privacy

disclosure behavior: A formal method approach. In Proceedings of the 16th International

Conference on Availability, Reliability and Security (pp. 1-13).

[62]. Barbuti, R., & Tesei, L. (2004). Timed automata with urgent transitions. Acta Informatica, 40,

317-347.

[63]. Larsen, K. G., Pettersson, P., & Yi, W. (1995). Model-checking for real-time systems.

In Fundamentals of Computation Theory: 10th International Conference, FCT'95 Dresden,

Germany, August 22–25, 1995 Proceedings 10 (pp. 62-88). Springer Berlin Heidelberg.

[64]. Behrmann, G., David, A., & Larsen, K. G. (2004). A tutorial on uppaal. Formal methods for

the design of real-time systems, 200-236.

