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Abstract

Accurate skin temperature measurement can offer clinically useful data regarding car-

diovascular health, cognitive function, cancer risk, and many other aspects of human

physiology together with other measurements [36]. Skin thermometry has several uses

in medicine, athletics, and research. Subsequently understanding the skin structure and

its response to diverse sorts of signals is essential to design efficient and robust skin sen-

sors. There are various devices available for skin temperature measurement for example

contact thermometers, infrared cameras, surface probes and others but they offer limita-

tions like discomfort, thermal loading, limited accuracy, one-point measurement, longer

response time, are invasive and others. Epidermal sensors are a type of non-invasive

wearable sensors that are designed to be placed onto the skin’s surface, and are flexible,

thin, that are attached to the skin like a temporary tattoo or bandage without any ther-

mal and mechanical burden. They utilise temperature coefficient of resistance (TCR) to

monitor temperature of the human skin. The TCR sensor comprises gold elements en-

capsulated between two layers of polyimide thin films integrated onto a thin elastomeric

sheet. The design of a high performance TCR sensor requires modelling of temperature

distribution and the response time. Analytical solutions of partial differential equations

(PDEs) are only available for simple geometries while for complex structures like the

TCR sensor numerical approach (finite difference/finite element) for solving the gov-

erning equation is used. Though finite element method (FEM) simulations provide an

effective tool for modelling purposes, they are computationally complex, in particular,

for spatial mapping of temperature using sensor arrays. Therefore, for an effective and

time-efficient design of TCR sensors, model order reduction (MOR) of the heat equation

offers an alternative approach. Here, in order to circumvent the challenge, we propose

Iterative Rational Krylov Algorithm (IRKA) based MOR for modelling the temperature

distribution and the time response of the epidermal TCR sensors. The comparison with

xii



List of Tables

FEM simulations reveals that the IRKA based MOR offers similar accuracy with much

lower computational cost as it remarkably computes the temperature distribution in a

3 orders of magnitude lesser time than the FEM simulations. IRKA based modelling

of the temperature dynamics presents a promising approach for time efficient design of

epidermal TCR sensors for biomedical applications.
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Chapter 1

Introduction and motivation

THE application of order reduction of the mathematical model to automatically create

an accurate compact model of the epidermal temperature sensor named as TCR device is

presented in this research. The lower order model produces results that are comparable

to those of the original model and can be converted into a hardware description language

for use directly in system-level simulation.

1.1 Epidermal sensors

The small wearable devices are remotely utilized gadgets attached to any individual to

measure physiological parameters of interest. These devices can be classified in to two

following categories:

1. Wearable Devices as Accessories: e.g. smart watches, smart glasses, smart cloth-

ing, wearable cameras and more.

2. Wearable Devices as Implants: e.g. skin inspired sensors, smart tattoos, healing

chips, cyber pills and more.

These are externally near fitted sensors to an individual and work in both wired and

remote ways. A single wearable sensor measures more than one physiological parameter,

for example, the wrist monitor measures the heart rate, blood weight, and body tem-

perature of the individual wearing it. [36] One of the essential goals of utilizing these

wearable sensors is to minimize the unsettling influence confronted by the individual

wearing it. Distinctive wireless technologies work alongside these sensors for real-time
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Chapter 1: Introduction and motivation

data collection.

Skin is the biggest organ of human body which inherits the property to resist and secure

the body from the outside world. Subsequently understanding the skin structure and

its response to diverse sorts of sensing is essential to remove the scientific barriers that

are preventing our capacity to design more efficient and robust skin sensors. A class of

wearable, hair-thin, skin-soft, stretchable sensors and electronics having the capability of

continuous and long-term physiological sensing with minimal thermal loading is named

as ’Epidermal Sensors’. These sensors are integrated into adaptable and stretchable

films, patches or bandages which collect the information observing crucial parameters,

patient abnormalities needed for various types of treatments. Skin temperature is a

vital physiological parameter having several uses in medicine, athletics, and research

and its measurement can reveal important information about an individual’s well-being,

comfort, and performance [36]. Subsequently understanding the skin structure and its

response to diverse sorts of signals is essential to design more efficient and robust skin

sensors. There are various devices available for skin temperature measurement for ex-

ample contact thermometers, infrared cameras, surface probes and others but they offer

limitations like discomfort, thermal loading, limited accuracy, one-point measurement,

longer response time, are invasive and others [25][41]. The development of such sen-

sors has revolutionized the world of healthcare industry in many ways, for example,

the doctors can monitor their patients’ health and speed of recovery remotely making

healthcare predictable, safe and efficient.

1.2 Problem set-up

In this thesis a Temperature Coefficient Resistance (TCR) device consisting of 16 gold

elements which are used to measure human body temperature and other physical pa-

rameters i.e hydration level of skin is discussed. The primary benefit of these TCR

devices is that they offer mapping capabilities rather than a single point measurement

with more precision. To represent the heat transport in the skin and its impact on the

sensor, these interactions can be characterised using differential equations, such as the

heat conduction equation [34]. The Physical phenomenon gets the shape of the partial

differential equations (PDEs) when modelled, for complicated systems, numerical sim-

ulations are helpful because analytical solutions are only feasible for simple geometries.

2



Chapter 1: Introduction and motivation

Numerical techniques like finite difference method (FDM) or finite element (FEM) ap-

proaches are used to solve the heat equation for predicting sensor’s response time (The

amount of time it takes for the sensor to increase the temperature by 90%) that plays an

important role in optimising design strategy and characterisation. But the discretization

resulting from FDM/FEM is too large, consisting of thousands of degrees of freedom

(DoFs), hence making the computation expensive. When FEM was performed by util-

ising multi-physics software package COMSOL on the TCR sensor simulation took a

good amount of time to provide the sensor’s response (discussed in detail in section 3).

This can be exhausting for the designers and engineers to quickly prototype and iterate

on design in the development process. To decrease this computational work, reduction

of the full order model to the lower dimension can play a crucial role. There are many

physical domains including micro-electromechanical systems (MEMS) where it can be

used to generate reduced models by utilising less computational resources and giving

faster results [19][21][16]. Nevertheless, no efforts to apply MOR to the TCR sensor

have been made so far.

1.3 Model order reduction framework

In today‘s world, mathematical models are typically used to describe both natural and

artificial processes. These models can be used to simulate the behavior of the relevant

processes. They are generally used to monitor or manage the behavior of dynamic

processes since their present behavior indicates how they will behave in the future.

The demand for more precision in this framework is constantly growing and hence

resulting in models that are quite complicated. However, it is not always possible to

simulate the entire complex model, as a result, a suitable reduction of the model is

required. System approximation is mostly required in order to create simpler dynamical

systems models that capture the essential components of the original complicated model.

The requirement is driven by restricted computing, precision and issues like storage

capacity. The reduced model is used instead of the complicated model for system-

level simulation or control [28]. Model complexity can reach tens of thousands or even

hundreds of thousands of degrees of freedom, as measured by the quantity of associated

first order difference equations. Discretization can result in higher orders, especially in
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Chapter 1: Introduction and motivation

circumstances resulting from partial differential equations (PDEs) that occur in three

spatial dimensions. This complexity may cause three issues: storage, accuracy, and

computing speed. In these cases, smaller simulation models are crucial for forecasting

timeliness and quality. There are two more restrictions in our approach, firstly, in

addition to being efficient, the algorithm must deliver an answer in a limited amount of

time, and secondly, the solution must be difficult enough to be sufficiently accurate.

Model order reduction (MOR) was developed in the domain of systems and control

theory, which studies properties of dynamical systems in application for reducing their

complexity, while preserving input output behaviours as much as possible. MOR is an

automatic process which takes a dynamic model of high order 102 to 109 and simplifies

it within an acceptable amount of time and limited storage capacity but with reliable

outcome. MOR tries to quickly capture essential features of the system such that the

important basic properties of the original model must be present in the smaller approx-

imation with sufficient precision [26]. The entire reduced model can be swapped out

for the original model, and it can be used repeatedly throughout the design process to

further cut down on time. Figure 1.1 explains the idea in graphical easy-to-understand

Figure 1.1: Graphical illustration of model order reduction.

way, demonstrating that typically less data is required to explain a model. This illus-

tration using images of the Stanford Bunny demonstrates how the rabbit can still be

recognised despite having only a few facets and explains how model order reduction

works. (Graphics credits: Harvard University, Microsoft Research) [27].

There are numerical techniques such as finite element method (FEM) and finite dif-

ference method (FDM), which can convert continuous dynamic systems, linear and

non-linear, with infinite degrees of freedom to discrete finite dimensional models. But

still the resulting number of DoFs is too large, the reduction of original system size

can drastically reduce the computational work. The generic framework of MOR can be

represented by following flow diagram:
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Chapter 1: Introduction and motivation

&

Physical System

ODEs Discretization

Highly Expensive FOMsModel Reduction

PDEs

Reduced
Model

Simulation

Control
Less Expensive 

Figure 1.2: MOR Flowchart

The goals of MOR can briefly be stated as:

1. Good approximation with minimum error

2. Preservation of stability and system properties

3. Computationally stable and efficient

It is important to know that compact models, also known as lumped element models

or macro models, depict how devices or systems work using a limited number of set

variables. There are different approaches for creating such compact models, however,

this ’classical compact modelling’ is not automatic and the designer has to perform a

time-consuming parameter extraction. On the other hand, the governing PDE systems

are formally converted to low-dimensional standard equation systems by model order

reduction (MOR), which is formal, reliable, and automated [21].

Nevertheless, to yet, there have been no attempts to apply model order reduction to

TCR devices. Order reduction techniques were formerly restricted to electrical circuits

and structural mechanics issues.

1.4 Motivation and scope

To make the work of designers and engineers easier, several physical, chemical, and other

processes are frequently simulated on computers. Modern items can be designed in this
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Chapter 1: Introduction and motivation

fashion more quickly, more consistently, and without having to create pricey prototypes.

The rise in computer power is a key factor in enabling the sophisticated simulations run

today. As computers and processors become faster, the increase in processing capability

correlates with improvements in numerical algorithms. The main cause of this speedup

in algorithms is the use of iterative solutions for linear systems. The huge speedup made

possible by computer processors and algorithms has allowed computational science to

advance significantly.

Due to the high complexity, small size and weight of epidermal sensors, the modelling

and numerical simulation cannot be ignored for predicting device behaviour and opti-

mising its performance [34]. Such small models in structure are complex when analysed

numerically, the computational complexity increases and it becomes more expensive

when analysis performed is transient. However numerical treatment of PDEs of many

interconnected devices with each exhibiting a complex behaviour is expensive without

the reduction of the order of the unknowns to a lower dimensional system [19]. Since

these sensors frequently consist of linked components, like array structures, it is prefer-

able to minimize each component separately before coupling them all together. Model

order reduction has been the subject of extensive research in more recent years and

has been a great tool to provide us a digital twin for real-time and efficient design and

control. There are many physical domains like mechanical, electrical, thermal, fluid,

acoustics, electromagnetism etc where it can be used to generate ROMs by utilizing less

computational resources and giving faster results.

1.5 Structure of thesis

The remaining part of the thesis is structured as follows: Chapter 2 describes the Dy-

namic simulations of TCR device, the physical model is explained briefly and presents

the literature about model order reduction. Chapter 3 discusses different techniques

of reduction for LTI systems while in Chapter 4, our chosen algorithm IRKA is ap-

plied on TCR device and results comparison between Finite element (FEM) results and

MATLAB are explained in chapter 5. The conclusion is summarised in chapter 6.

6



Chapter 2

Literature review

Dynamic simulation of epidermal temperature sensor

Designing modern micro-electro-mechanical systems and components such as thermal

actuators, sensors and many others devices heavily relies on thermal control. We can

predict the performance, reliability, and output of these systems after a thorough in-

vestigation of temperature changes in those systems. This chapter’s major objective is

to provide a broad overview of methods for solving the partial differential equation for

heat transfer.

2.1 Physical model

Stretchable epidermal sensors developed by Webb et al. [31] act as a heating element at

the same time as it is composed of gold that has been lithographically defined into in-

tertwined serpentine traces that are 20mm long and 50nm thick. The ability to measure

temperature is based on changes in electrical resistance. A top layer of PI surrounds

this sensor, and another layer of PI is located underneath the sensor. A substrate made

of elastomeric solaris is attached to the sensor implanted in the film [35]. The prototype

of the said device as explained by [8] can be shown in Figure 2.1 with its expanded view

in Figure (2.1) :

This framework comprises of 16 such sensors (each 1 mm × 1 mm) in a 4×4 layout

that depend on temperature coefficient of resistance and are designed for external ad-

dressing for information acquisition, this sensor is also called as Temperature Coefficient

7



Chapter 2: Literature review

Figure 2.1: (a) Image of a 4x4 sensor array after application to the skin. (b) Similar device

but deformed. (c) Enlarged views of a single sensor integrated into optical images

of a 44 array sensor arrangement on a thin elastomeric substrate.

Resistance (TCR) device.[31] The two main features of TCR device are:

1. Measuring temperature through temperature coefficient of resistance α from the

gold traces.

2. External addressing for transmitting information.

The relation between temperature and electrical resistance can be represented by the

following expression.

Rt = Ro(1 + α∆T )

α = (Rt −Ro)/Ro∆T

Where α represents the coefficient of change in resistance per degree of temperature

change. They also experience some degree of resistance change with temperature, similar

to all materials that have a specified resistance (at 20°C).This factor is positive for pure

metals, indicating that resistance rises with rising temperature. When this coefficient is

negative, as it is for the elements germanium, silicon, and carbon, the resistance falls as

the temperature rises.

2.2 Thermal modelling of the epidermal TCR sensor

The TCR device is relatively thin and the heat flux is along thickness direction. Accord-

ing to [40], when the lateral sizes are much larger than thickness (1mm x 1mm x 50nm)

1D heat conduction can be adopted such that one-dimensional heat transfer model can

then represent the temperature increase T (from the ambient temperature) in the film

and substrate [36].
∂T

∂t
= α

∂2T

∂x2 (2.2.1)

8



Chapter 2: Literature review

where the origin is at the top of the polyimide film, x is a coordinate in the direction of

thickness, and α represents thermal diffusivity.

The Physical phenomenon get the shape of the partial differential equation when mod-

elled, numerical simulations are useful for investigating complicated systems because

analytical solutions are only available for simple geometries. Figure 2.2 exhibits a cross-

sectional view of the epidermal sensor.

In order to measure temperature change accurately, the response time must be as

Substrate [60µm]
Conduction

50nm PI [3.6µm]

T Skin 

Convection     Tamb

 [29 °C] 

 [25 °C] 

 Silicone  
Polyimide

 Gold 

Skin

Figure 2.2: Cross-section of the TCR sensor.

short as possible (below 1 Hz), depending on the material and geometric properties. A

numerical approach (FDM) for the thermal response is created (chapter 4) to help with

a better understanding of how the device operates as well as the identification of new

device designs and fabrication techniques.

The heat transfer equation is coupled with additional partial differential equations that

are already present at the device level in the general case. Since the device is frequently

surrounded by moving fluid (either gas or liquid), the Navier-Stokes equations frequently

take the heat transfer in the flowing fluid into account. Because they can be connected

with equation (2.2.1) to model the total heat transport, the final set of equations is

exceedingly complex. By using the convective boundary condition it can be decoupled

in some circumstances (as in our case) mentioned in [36].

9



Chapter 2: Literature review

2.3 Dynamic compact thermal modelling

Model complexity can reach tens of thousands or even hundreds of thousands of degrees

of freedom, as measured by the quantity of linked first-order differential or difference

equations. The complexity may lead to three problems: storage, accuracy, and process-

ing speed, particularly in scenarios involving dynamical PDEs. Smaller simulation mod-

els are essential in these situations for predicting quality and timeliness. Since (2.2.1)

is so large, as was already indicated, the simulation takes a while. The order of the re-

sulting thermal ODE system surpasses 100,000 for a range of micro-electro mechanical

systems. Because using these models during system-level simulation is impractical, accu-

rate dynamic compact thermal models (DCTM) must be used instead. Three categories

can be made out of the methods used to create DCTM: manual methods, semi-manual

methods, which include modal approaches, and fully automatic methods for model order

reduction. Our thesis’ major topic, the automatic approach, will be covered in detail in

chapter 3 using a variety of techniques. The only class of DCTM procedures that can

be totally automated, or with the least level of designer intervention, is mathematical

model order reduction (MOR) approaches. Hence, they are becoming more and more

popular among designers of microelectronic and MEMS devices [17].

2.3.1 Model order reduction structure

By taking into consideration the state space model of a system described in the Time-

Domain Approach, the idea of MOR may be comprehended as: [27].

Eẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(2.3.1)

where E, A ∈ Rn×n, B ∈ Rn×m, CT ∈ Rp×n and D ∈ Rp×m.

In the above equation x(t) ∈ Rn are the states and its elements are referred to as ’state

variables’, u(t) ∈ Rm is the input and y(t) ∈ Rp is the output vector. For the modelling

purposes of LTI system here it is assumed that E is non-singular (i.e identity matrix)

and there is no non-linearity i.e D = 0. After applying reduction this system will change

into following system with less number of states:

ẋr(t) = Arx(t) + Bru(t)

yr(t) = Crx(t)
(2.3.2)

10



Chapter 2: Literature review

where Ar ∈ Rr×r, Br ∈ Rr×m and CT
r ∈ Rp×r such that r ≪ n while the output of

the reduced model is approximation of the original model, i.e. y(t) ≈ yr(t).

This transformation can schematically shown by the figure below: [figure taken from

[21]]

Figure 2.3: Systematic structure of reducing the dimensions of a system.

But the output of the reduced system is different from that of (2.3.1) since we incor-

porated the truncation error. Minimizing this inaccuracy in either the time domain or

the Laplace domain is the aim of model order reduction. If we want to simulate the full

network of connected devices, it is frequently impractical or even prohibitive to solve

the heat transfer PDEs numerically using, for example, finite elements. Again, for a

single device, the number of derived ordinary differential equations (ODEs) is easily in

the 100,000 range. This enormous quantity of unknowns necessitates a lot of CPU and

memory resources, even when using a parallel computing strategy for domain decom-

position. Dynamic compact thermal modeling has become the industry standard for

microsystem simulation because it now provides a precise and efficient solution for ther-

mal modeling and allows for automatic system-level modeling. This is because it lowers

the number of unknowns to a lower-dimensional system. To accomplish this, we have

offered the well-known model order reduction techniques, which are fully automatable

but, regrettably, only consider one device. Since array structures and other intercon-

nected subsystems are common of microelectronic and MEMS devices, it is preferable,

especially for devices with several sub-systems, to decouple each component and then

extract a heat-transfer macro-model of it.

11



Chapter 2: Literature review

2.4 Linear model order reduction methods

The goal of this section is to explain a variety of relevant MOR methods for linear

systems. A number of publications that introduce various approaches to the issue are

presented in the literature. To get a reduced order model, most of these techniques

project into lower-dimensional subspaces. The following justification is provided for this

projection [28]:

• A state transformation by classifying a certain criteria, followed by a truncation

of redundant information to the selected criteria. i.e. Balanced truncation

• Interpolation and moment matching approximation using Krylov subspaces.

• The forward error norm, such as the Hankel norm and the H2 norm, should be

minimized as an optimization criterion.

Since it converts the higher order model to the lower order model while essentially

maintaining an assessment of all of the fundamental properties of the higher order model,

system reduction is significant in the field of control system engineering [39]. The idea

of reduction approach is used to generate a reduced order model by minimising the

integral square impulse response error between the transient regions of the original and

reduced order systems [6]. Following that, different strategies for reducing equation

error were proposed based on the same notion with trade-off among some important

factors including computing stability, accuracy and cost. While some of these methods,

like balanced truncation and Hankel norm approximation, give a priori error bounds

and guarantee stable approximations, they are computationally inefficient for large-scale

systems since they necessitate the solution of Lyapunov equations. For model reduction,

numerous iterative strategies based on Krylov subspaces have also been widely employed,

these methods use sparsity, which is prevalent in large scale systems, due to the fact

that they only require matrix-vector multiplications, they are computationally efficient

[28]. Krylov based approaches have emerged as one of the most potent tools for reduced-

order modelling of large-scale systems in recent years. We would like to draw the reader’s

attention to recent surveys on the subject [20, 13], which compliment this study.The first

model order reduction technique was presented by Davison in 1966 [3]. For single input

single output (SISO) systems as well as multi input multi output (MIMO) systems, a

number of strategies to approximate the higher order model into a reduced order model
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have been presented by researchers and are documented in the literature. The first

model order reduction technique was presented by Davison in 1966 [3]; modified by

Chidambara, 1967 [5, 7].

Starting from the stable linear state space form:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(2.4.1)

Where x(t) ∈ Rn is the state vector , u(t) ∈ Rm is the input signal and y(t) ∈ Rp is

the output measurement vector, n is the state space dimension while m and p are the

number of inputs and outputs respectively. The transfer function representation of

(2.4.1) is given by:

G(s) = C(sI −A)−1B (2.4.2)

and the rth order transfer function of reduced system (2.4.2) that gives the original

transfer function G(s) in some norm as an approximate form:

Gr(s) = Cr(sIr −Ar)−1Br (2.4.3)

The following characteristics should all be met as much as possible.

1. The forward error associated with reduced transfer function i.e. G(s) − Gr(s) is

small.

2. Important system properties, such as stability, are preserved.

3. The reduced system can be obtained by efficient computation.

Generally the reduced models are produced by following Galerkin methods. Let V ∈

Rnxr and W ∈ Rnxr such that W T V = I. Then V xr(t) will approximate x(t) by

implementing:

W T (V xr(t)−AV xr(t)−Bu(t) = 0 (2.4.4)

where Ar = W T AV , Br = W T B, and Cr = CT V and column spaces of V and W span

Krylov sub-spaces that minimizes the deviation of V xr(t) from x(t) uniformly over a

large set of inputs.

Before addressing different techniques, let’s first analyze two crucial features of the sys-

tem (2.4.4) called controllability and observability. The system is said to be controllable

13
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if an input u(t) travels from x0 to x1 in a finite amount of time for any beginning state

x(t0) = x0 and any final state x1. It is observable if, over a finite time interval, any

unknown initial state x(t0) = x0 can be uniquely inferred from the supplied input u(t)

and the observed output y(t). The system (2.4.1) is assumed to be a so-called minimum

realization in the following sections, meaning that there are no states that are neither

controllable nor observable.As in the case of the MEMS case study in this thesis, a

system produced by the spatial discretization of a computational domain is always a

minimum realisation [21]. Controllability and the observability grammians are defined

as:

P =
∫ ∞

0
eAtBBT eAT

dt (2.4.5)

Q =
∫ ∞

0
eAtCT CeAT

dt (2.4.6)

According to [21], the criterion for controllability and observability can be demonstrated

by the fact that P and Q must both are of full rank. The grammians can be calculated

as the singular and positive definite solutions of the following two Lyapunov equations

that are part of the system as long as all of the eigenvalues of the symmetric real matrix

A are positive definite and have negative real portions if xTAx > 0∀x ̸= 0 (2.4.1).

AP + PAT + BBT = 0

ATQ+QA + CT C = 0
(2.4.7)

In order to find controllability and observability grammians, Lyapunov equations can be

solved directly and in numerically stable ways [18]. Some of the well-known reduction

techniques are:

2.4.1 Balanced truncation approximation

The objective of model reduction by balanced truncation when modeling a linear system

is to provide a reduced order model by finding and removing/truncating those states that

are simultaneously least visible and controllable. Sometimes referred to as the model’s

McMillan degree, the length of the state vector related to the resulting reduced order

model, also known as the minimum realisation. When a model’s order is more than the

McMillan degree, the state vector contains one or more uncontrollable/unobservable

states [20]. These gramians can be used to classify a minimal state space model ac-

cording to the energy associated with each state of the system, the controllability and
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observability gramians must be equal and diagonal for this implementation, but this

involves a state change. A balanced realization is one that fits this description, B. C.

Moore [8] was able to suggest such a similarity transformation. Hankel singular val-

ues, which are arranged in a series of progressively smaller values, are represented by

the diagonal entries. This balances the system, that is, sets both gramians equal and

diagonal. i.e

P = Q = diag(s1, s2, s3, ..., sn) (2.4.8)

and si ≥ si+1 for i = 1, 2, ..., n − 1 where si is the ith Hankel singular value and are

system characteristics that merely depend on input-output behavior. The square root

of the eigenvalues of the product of grammians is used to calculate the Hankel singular

values.

si =
√

λi(PQ), i = 1, 2, ..., n. (2.4.9)

For any stable state space model, a non-singular transformation that yields balanced

minimization is sufficient. Suppose that G(s) is a stable model, It is sufficient to truncate

those state variables associated with smaller Hankel singular values, removing (truncat-

ing) them from the equation. Applying a projection, such as the square-root tech-

nique, on the original system allows for simultaneous balancing and truncation, [18]

discusses some other alternative algorithms which can be studied in detail. The con-

trollability and observability gramians of reduced system Gr(s) are diagonal and equal,

Pr = Qr = diag(s1, s2, s3, ..., sr). By design, this reduced model G(s) is assured to be

minimum and stable, and the forward error G(s) − Gr(s)’s H∞ norm is bounded by

twice the sum of the truncated Hankel singular values [28].

∥G(s)−Gr(s)∥H∞
≤ 2(sr+1, sr+2, ..., sn) (2.4.10)

where ∥.∥H∞
represents the transfer function difference between the original and reduced

models with the largest magnitude. The balanced truncation technique incorporates an

a priori error bound and guarantees stability, but numerically it is inefficient, especially

for large scale systems. The Lyapunov equation’s solution is often computationally

expensive, which is the primary reason of this.
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2.4.2 Hankel norm approximation

The Hankel norm ∥.∥H can be defined as maximum Hankel singular value:

∥G(s)∥H =
√

λmax(PQ) = smax (2.4.11)

Finding an approximate solution GHNA
r (s) of degree r < n is known as the optimal Han-

kel norm approximation problem such that the error ∥G(s)−GHNA
r (s)∥H is minimized,

[18] provides the lower bound for the above norm as:

sr+1 ≤ ∥G(s)−GHNA
r (s)∥H

The above relation only holds for any G(s) with r stable poles. Since is the infinity norm

is never smaller than the Hankel norm [32] so above relation can be restated as:

sr+1 ≤ ∥G(s)−GHNA
r (s)∥∞

an approach for constructing an optimal Hankel norm approximation. The following

upper bound is satisfied by GHNA
r (s) of the Hankel norm approximation of order r:

∥G(s)−GHNA
r (s)∥∞ ≤ (sr+1 + ... + sn)

which represents the bound balanced truncation technique by half.

In addition to the two methods above, a number of alternative reduction procedures

suitable for linear systems are also deduced from the control theory. None of them,

nevertheless, provide an estimation of the error. [11] provides an excellent overview of

the methods currently in practice.

2.4.3 Moment matching approximation

Reduction of (2.4.1) by moment matching involves the confinement of some moments

of G(s) in the reduced order system Gr(s) such that at expected interpolation points

(also known as shifts) sk in the complex plane, Gr(s) interpolates the values of G(s),

and possibly the derivative values as well. For our purposes, easy Hermite interpolation

serves the purpose, and the more moments matched the more accurate the reduced

model will be, so our the main issue is to find Ar, Br and Cr so that:

G(sk) = Gr(sk) and G′(sk) = G′
r(sk) for k = 1, 2, ..., r
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If the transfer function G(s) from (2.4.2) is expanded into its Taylor Series around an

expansion point s0 [21]:

G(s) = C[(s− s0)I −A]−1 −B

= C[(s− s0)I + (s0I −A)]−1 −B

= C[I + (s0I −A)−1(s− s0)]−1(s0I −A)−1B

=
∞∑

i=0
C[−(s0I −A)−1]i(s0I −A)−1B(s− s0)i

=
∞∑

i=0
mi(s0)

(2.4.12)

where C[−(s0I −A)−1]i(s0I −A)−1B(s− s0)i =: mi(s0)

For a SISO system the coefficients of mi(s0) are known as moments of the original

system’s transfer function G(s).

They are matrices and are referred to as block moments if the system is multiple-

input, multiple-output (MIMO), multiple-input, single-output (MISO), or single-input,

multiple-output (SIMO). These moment vectors are used to construct the projection

matrices, such as V and W. Moment matching properties for various scenarios are cal-

culated using the Tylor series expansion [28].

Case I: At s =∞

Let the transfer function G(s) is analytical around infinity then its Taylor series ex-

pansion: G(s) = m∞
1 + m∞

2 + m∞
3 + ... converges, where m∞

i , the ith moment eval-

uated at infinity are known as Markov Parameters. Let the reduced model Gr(s)

has convergent series expansion that matches first 2r Markov parameters of G(s) i.e.

m∞
i = mr

∞
i for i = 1, 2, ..., 2r and r < n, then the reduced order model is called

partial realisation of original FOM giving better approximation at t=0 i.e. s =∞.

Case II: At s=0

Tylor series expansion at s=0, can be simplified to mi(0) = C(A)−(1+i)B for i ≥ 0.

This expansion around s = 0 is called Pade Approximation [34] if its series expansion

has first 2r moments that satisfy m0
i = mr

0
i for i = 1, 2, ..., 2r

Case III: At s = s0

17



Chapter 2: Literature review

The series expansion at a shifted frequency s0 is given by

G(s) =
∞∑

i=0
ms0

i (s− s0)

involves shifted moments mi(s0) = C(s0I −A)−(1+i)B for i ≥ 0. This approximation is

called Shifted Pade Approximation where a G(s) and its 2r-1 derivatives are interpolated

by ROM at predefined interpolating frequencies. Interpolation at a set of predetermined

frequencies is an extension of the situation discussed above.

Case IV: At S = {s1, s2 . . . sk}

Using many expansion points and matching multiple moments for each expansion point

can improve the accuracy of the single-point expansion. This multi-point approximation

is called Multi-point Pade Approximation or Rational Interpolation [21][11]. Using set

of distinct k interpolation points {s1, s2 . . . sk} the ROM acquired, for instance,

range{V } = span{Br(s1), Br(s2), .., Br(sk)}

range{W} = span{Cr(s1), Cr(s2), .., Cr(sk)}

matches the first two moments m0(si) and m1(si) for i = 1,2,...,k.

There exist implicit and explicit implementation techniques for the above problems [22]

[12], but explicit moment matching techniques need to compute 2k moments for both

the original and reduced system due to which they are out of condition and expensive

to compute.On the other hand, Krylov-based methods achieve moment matching with-

out explicitly computing moments [23]. Considering Krylov-based projection methods,

particularly Arnoldi and Lanczos explained in [1] and [2] respectively. Because case IV

cannot be solved using the standard Lanczos method, Arnoldi formula, or Block Arnoldi

procedure, the subspace spanned by either W or V is no longer a Krylov subspace. The

rational Krylov methods (rational Lanczos algorithm and rational Arnoldi algorithm)

would be better choices.
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Krylov-based techniques

The Krylov-based projection algorithms only use matrix-vector multiplications, in con-

trast to balanced truncation and other reduction approaches. In many cases, Krylov

subspaces are excellent candidates for the desired low-order subspace of the equation,

and most popular model reduction techniques for large-scale systems are Krylov based

in one form or another. It should be emphasized that the Krylov subspace-based itera-

tive methods for solving a system of linear equations are among the top 10 algorithms

of the 20th century [15]. This section provides an overview of Krylov-based linear sys-

tem model reduction techniques. Arnoldi and the Lanczos, two significant conventional

Krylov-based algorithms that define the notion of Krylov projection in the context of

model reduction by computing orthogonal and bi-orthogonal bases to the Krylov sub-

space, respectively:

Definition:

A Krylov subspace of kth dimension of the matrix A ∈ Rn ×Rn and a vector b ∈ Rn is

a subspace spanned by vector b and the vectors produced by consecutive multiplication

of matrix A and vector b up to k − 1 times, [17]

Kk
r (A, b) = span{b, Ab, A2b, ..., Ak−1b} (3.0.1)

the derived vectors make a basis for k-dimensional subspace. However, if we tend to

compute them directly as described, then, due to rounding errors, they’d become com-

putationally linearly dependant even for sufficiently small k [17].
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Rational Krylov method

The rational Krylov method is an extension of the Arnoldi and Lanczos algorithms and

provides a satisfactory approximation at specified frequencies. The Krylov subspace

associated with the shifted frequencies s and A, B can be stated as:

Krs

(
(sI −A)−1, (sI −A)−1B

)
= colsp

[
(sI −A)−1B · · · (sI −A)−rsB

]
(3.0.2)

In [24] it is provided that if the reduced model Gr(s) interpolates the original system

G(s) at −λi(A) and −λi(Ar) then the error in H2 norm is small, however, −λi(Ar) is not

known a priori. But there exist an effective strategy provided by Meier and Luenberger

in [4] explaining that interpolation −λi(Ar) is more useful. A necessary condition for

H∈ optimality, which can be stated in the following Lemma:

Lemma 3.1: [4, 24] Given a stable system G(s) = C(sI−A)−1B, let Gr(s) = Cr(sIr−

Ar)−1Br be a local minimizer of the dimension m for the optimal H2 model reduction,

and suppose that Gr(s) has simple poles at −si, i = 1, ..., r. Then Gr(s) interpolates

both G(s) and its first derivative at si, i = 1, ..., r :

Gr(si) = G(si), G
′
r(si) = G

′(si); ∀si ∈ Sr := s1, s2, ..., sr (3.0.3)

Recently, it was demonstrated in [24] that, for continuous time SISO systems with

simple poles, the necessary optimality conditions are equal to the Meier-Luenberger

conditions[4, 6]. Similar results for MIMO system are also formulated which can be

found in [24, 33]. Furthermore, the rational Krylov method-based suggested iterative

algorithm accomplishes moment matching and meets the interpolation-based optimality

criterion upon convergence [24]. The algorithm uses rational Krylov steps to build Gr(s),

demonstrating its efficacy, without the need for expensive Lyapunov solvers, especially

for large-scale systems. The two approaches [4, 10] rely on interpolation-based necessary

conditions. The authors use the G(s) and Gr(s) transfer functions; iterate over the

denominator or the poles and residues of Gr(s); and explicitly compute G(s), Gr(s), and

their derivatives at specific locations in the complex plane [4, 10]. It is not preferred to

work directly with the transfer function, its values, and its derivative values in large-

scale contexts. Additionally, it might be extremely unsuitable to attempt to calculate the

transfer function’s coefficients. These methods are comparable to those in [10, 9], where

transfer functions are used explicitly to perform interpolation. However, our method
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is numerically stable and effective since it is based on the association between efficient

rational Krylov iteration and interpolation, which is covered in more detail below.

Let s represents the collection of interpolation points s1, ..., sr. Using these interpolation

points, create a reduced order model Gr(s), that interpolates both G(s) and G(s) at

s1, ..., sr. Assume λ(s) represents the resulting poles of Gr(s), Define a function g(s)

such that g(s) = λ(s) + s. Aside from problems with the reduced order poles’ ordering,

g(s) = 0 is equal to necessary condition for H2 optimality of the reduced order model

[9]. The rood finding problem of g(s) = 0 is solved by Newton’s method, which appears

as several feasible solutions to this issue, and can be stated as:

s(k+1) = s(k) − (Ir + J)−1
(
s(k) + λ

(
s(k)

))
(3.0.4)

where J represents the Jacobian of λ(s).

3.1 Iterative Rational Krylov Algorithm (IRKA)

Necessary optimality conditions mentioned in (3.0.3) are equivalent to root finding prob-

lem of sr = −λ(Ar), where λ represents eigenvalues and si are the required roots, this

equivalence is proved in [11], pg. 10. Using Lemma 3.1 Newton iterations are used to

compute the roots that successively keeps updating si+1
r = −λi(Ar) [28]. The Jacobian

matrix’s entries often grow small in the neighbourhood of an H2 optimal shifts that

makes it possible for setting J = 0 to act as a relaxed iteration strategy. A successive

substitution framework results from this i.e. si ← −λi (Ar). After convergence the nec-

essary optimality conditions are met. The stated algorithm has been used in multiple

large systems. The approach performed effectively in each of the numerical examples:

It consistently converged after a limited number of steps and produced stable reduced

systems. The question that emerges is whether or not this reduced order model is glob-

ally optimal in some sense, however A.C. Antoulas’ work provides the solution to this

problem in [24], p. 7, Theorem 3.4 and associated Corollary 3.5.

The resulting reduced model for the suggested algorithm may be influenced by the

initial shift choice. Yet, a random initial shift selection produced a suitable reduced

model in the majority of the cases. The method reached the global minimizer for small

order benchmark instances chosen from [9][14]. The results were comparable to balanced

truncation for larger problems. Consequently, we were able to get results that are on par
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with or even superior to those obtained through balanced truncation while preserving a

numerically effective Krylov projection framework. We offer a few initialization methods

that aim to enhance the results. Remember that the eigenvalues of Ar at convergence

are mirrored at the interpolation locations. Assuming convergence, interpolation points

will be in the mirror spectrum of A since one can expect that the eigenvalues of Ar will

be similar to those of A. As a result, one may choose initial shifts that are randomly

distributed throughout a region that has the opposite numerical range of A. The H2

expression serves as the beginning point for another initialization strategy, where it

is reasonable to begin the proposed approach with si = −λ(Ai), where λ(Ai) are the

poles with big residuals ϕi for i = 1, ..., r. This approach necessitates a state-space

decomposition for G(s), that will be intense to compute for complex issues. The original

state-space representation may, however, be in the modal form in some applications and

ϕi can be retrieved directly from B and CT .
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Implementation of IRKA on the

epidermal TCR sensor

Considering the detailed physical model of TCR device and the governing equation. To

find out the solution of PDEs, they are first converted into ODEs by implementing any

discretization scheme. There are many techniques of discretization in the literature, for

example in [30] finite volume method FVM is used for structural analysis of RF mems

devices, similarly in [37] the author uses finite difference method FDM for simulation

of heat transfer. Here we’ll discretize 1D transient heat transfer (2.3.1) using FDM

and observe that how meshing effects the accuracy and computational power. Various

schemes of FDM has been explored in the literature but we will be using FDM in the

case of TCR device. The heat transfer equation with the initial and boundary conditions

can be referred back to [36] and can be stated as follows:

∂T

∂t
− α

∂2T

∂x2 = 0, (4.0.1)

where the temperature rises steadily when in touch with human skin (x is the coordinate

in the direction of thickness with its origin at the top) T0:

T |x=0 = T0 (4.0.2)

The condition of temperature and heat flux continuity across the film/substrate contact

is provided as:
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Properties Value Descriptions

Hfilm 3.6µm Film Thickness

Hsub 60µm Substrate Thickness

HAu 50nm Thickness of Gold Element

wAu 1mm Width of Gold Element

wcs 2mm Width of Cross Section

αf 7.75× 10−8m2s−1 Thermal Diffusivity of Film

αs 1.08× 10−7m2s−1 Thermal Diffusivity of Substrate

kf 0.12× 10−8Wm−1K−1 Thermal Conductivity of Film

kf 0.21× 10−8Wm−1K−1 Thermal Conductivity of Substrate

h 10 Wm−2K−1 Heat Convection Coefficient

Table 4.1: List of Parameters

T |x=Hfim−0 = T |x=Hfilm +0 and − kfilm
∂T

∂x

∣∣∣∣
x=Hfilm −0

= − ksubstrate
∂T

∂x

∣∣∣∣
x=Hfilm+0

,
(4.0.3)

where k is the material’s thermal conductivity. The natural convection at the substrate’s

bottom surface is described as follows:

k
∂T

∂x

∣∣∣∣
x=Hfilm +Hsubstrate

= h (T − Tamb) . (4.0.4)

Initial condition of the system:

T |t=0 = 0. (4.0.5)

Below in table 4.1is the list of parameters [36] that shall be used while considering the

geometry and physical properties of the materials used in TCR device.

The energy balancing approach is an alternative method that may be utilized in many

cases to construct the finite-difference version of equation (4.0.1). We may also use the

central-difference approximations to the spatial derivatives to obtain the finite difference

form of the equation. With the aid of this technique, a broad variety of phenomena can

be studied, including those involving numerous materials, embedded heat sources, and

exposed surfaces that don’t coincide with the axes of a coordinate system.

Use of conservation of energy to a control volume surrounding the nodal region yields

the finite-difference equation for a node in the energy balance approach. Because it is
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frequently unknown whether heat flow is actually going into or out of the node, it is

simpler to create the energy balance by assuming that all heat flow is into the node. The

appropriate form of the finite-difference equation can be attained if the rate equations

are expressed in a way that is consistent with this assumption, despite the fact that such

a condition is obviously not conceivable. In [29] the first law of thermodynamic states

that " The increase in the amount of energy stored in a control volume must equal the

amount of energy that enters the control volume, minus the amount of energy that leaves

the control volume". However in the case of heat transfer we focus on thermal form of

energy. Because different types of energy can be transformed into thermal or mechanical

energy, it’s crucial to realize that the overall amount of thermal and mechanical energy

is not conserved. So, the following is a statement of the first law appropriate for heat

transfer analysis: "The rate of increase of thermal energy stored in the control volume

must equal the rate at which thermal energy enters the control volume, minus the rate at

which thermal energy leaves the control volume, plus the rate at which thermal energy is

generated within the control volume [29]". If we use the subscript st to indicate energy

stored in the control volume and let E stand for the sum of thermal energy, then Est will

represent the change in thermal energy stored throughout the time interval t. Energy

entering and leaving the control volume are indicated by the subscripts in and out.

Lastly, the symbol Eg is assigned to the energy generation. The balancing of energy can

expressed as follows:

Ėst ≡
dEst
dt

= Ėin − Ėout + Ėg (4.0.6)

Keeping in view the our case of heat transfer there is no internal energy generation and

no energy is leaving the system so (4.0.6) can be redefined as:

Ėst = Ėin (4.0.7)

Applying equation (4.0.7) on a control volume surrounding the interior node ’i’. Con-

duction between ’i’ and its two adjacent nodes affects energy exchange under one-

dimensional circumstances (see the Figures 4.1) [29].

25



Chapter 4: Implementation of IRKA on the epidermal TCR sensor

i-1
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Tamb

(a)

(b)

(c)

Figure 4.1: Discretization at (a)the contact surface with skin, (b) the interface between two

materials (polyimide and sillicone) and (c) the surface exposed in air.
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The overview of nodal finite difference equations for different cases i.e at interior nodes,

at the interface node, and at the convective boundary node is represented respectively

here:
∂Ti

∂t
= α

(∆x)2 (Ti+1 − 2Ti + Ti−1) (4.0.8)

∂Tk

∂t
= 1

(∆x)2 [kf (Tk−1 − Tk) + ks(Tk+1 − Tk)− kf + ks

2 Tk] (4.0.9)

∂Tn

∂t
= αs

(∆x)2 [2Tn−1 − 2
(

h∆x

4ks
+ 1

)
Tn + 2h∆x

ks
Tamb] (4.0.10)

Considering kth node at the interface. The set of equations for a single sensor gets the

shape of matrices after discretization in the form of state model as described by equation

(4.0.1). For more than one sensors i.e 16 in the TCR device, the representation remains

same but the matrices represent block matrices.

A =



−2αf

∆x2
αf

∆x2

αf

∆x2 −−2αf

∆x2
αf

∆x2

. . . . . . . . .

αf

∆x2
−2αf

∆x2
αf

∆x2

αf

∆x2 −( αf

∆x2 + αf

∆x2 ) αs
∆x2

αs
∆x2

−2αs
∆x2

αs
∆x2

. . . . . . . . .

0 2αs
∆x2 (1 + h∆x

ks
)



and

B =



αf

∆x2 0

0 0

...
...

0 0

0 2hαs
∆xks



; while u =

 Tskin

Tamb
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Where C can be chosen according to the requirement of output. Selection of ∆x and

time step i.e ∆t impact the accuracy and simulation time. By lowering the values of

∆x and ∆t, accuracy of the finite difference solution can be increased. Naturally, as ∆x

decreases, more interior nodal points must be taken into account, and as ∆t decreases,

to bring the response to a predetermined final time, further time intervals are required.

Therefore, as ∆x and ∆t decrease, computation time increases. The selection of ∆x is

frequently depending on a compromise between accuracy and processing requirements.

However, once this decision is made, ∆t cannot be made on its own. Instead, the

requirements for stability dictate it. In a dynamic problem, the nodal temperature

solution should continue increase over time as it approaches the eventual steady-state

values. The required value of ∆t must be kept below a predetermined limit, which

depends on ∆x and other system factors, to prevent the solution from deviating from

the real steady-state conditions when using the explicit method, in which unknown nodal

temperatures for the new time are solely determined by known nodal temperatures at

the previous time. After discretizing the domain, the model was simulated in MATLAB.

A table with values used for the material properties can be found above and all material

properties are considered to be temperature and time independent. We take the input

signal to be the skin temperature and ambient temperature u(t) while the output y(t)

is the temperature of human body measured by the sensing element (gold) embedded

between PI film layers. A linear thermal system with n=530 is produced by spatially

discretizing the governing heat transfer equation using finite differences with restriction

of ∆x = 0.12× 10−6 and the simulation time is 30ms . The restriction of choosing ∆x

is made here because we wanted one node at the interface of polyimide and silicon so

the dicretization at that node can be defined properly. To see whether the temperature

distribution that we got from the simulation of state space is correct or not, the response

time i.e the time at which sensor reaches 90% of human body temperature, is cross

validated with the COMSOL model and analytical results presented in [36]. Next chapter

discusses the results.

Convergence of relative error

Calculating the difference between original model and reduced models with order r is

perhaps the easiest method for estimating the error in the time domain or frequency

domain. Relative frequency response error is defined as:
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Er(s) = |G(s)−Gr(s)|
|G(s)| (4.0.11)

As said previously, this error indication can also be utilized in the time-domain. "Quadratic

relative step-response error" shall be defined as:

ε(r) = 1
N
·

√√√√N ·∆t∑
t=0

(
y (t)− yr (t)

y (t)

)2
(4.0.12)

where y(t) and yr(t) are the outputs of original and reduced model respectively.
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Results and Discussion

5.1 Full-order model FEM simulation results

The TCR sensor is simulated in COMSOL which is a versatile, user-friendly, and pow-

erful multi-physics simulation tool used to accurately and efficiently simulate a variety

of engineering and scientific applications by exploiting FEA. After selecting heat trans-

fer transient study, adding parameters, creating geometry, inserting physical properties

from the material library, plugging in the IC’s and and BC’s, the transient study was

performed and computation took ≈ 40 min to simulate with around 68k DoFs. The

results show that the sensor’s response time matches with the experimental results pre-

sented in [38] i.e 3.9ms. Figure 5.1 is representing the temperature distribution on the

surface of the sensor (Zoomed-in View) at the initial state and at the time of response.

Figures 5.2 and 5.3 are showing the line graphs at four different points and a line de-

fined along the sensor’s cross-section. The same device was simulated after changing

encapsulation of the layer from 3.6um to 6um and noticed that the response time also

increased to approximately 10.2ms 5.4. Hence changing the width of layer will affect

the time response.
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Figure 5.1: Temperature distribution across the cross section of the epidermal TCR sensor at

a) t=0 ms b) t=3.9 ms.
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Figure 5.2: (a) Four points of observation across the cross-section of the epidermal TCR sensors

and (b) time evolution of the corresponding temperature.
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Figure 5.3: (a) A line Y Y ′ passing through the middle of the cross-section of the epidermal

TCR sensor (b) temperature distribution along Y Y ′.
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5.2 IRKA results

Simulation time is chosen to be 30ms with time step of 0.3 and relative tolerance 1e−3.

The interpolation points selected randomly and iteratively are used to build ROM while

keeping the initial conditions zero for the original and reduced model both. Figure 5.5

is representing the transient response of the FOM and the ROM with different orders

of reduction (r) and in Figure 5.6 the relative error can be seen w.r.t change in r.

It is observed that the ROM generates output closely matching that of the original

model except for r=5 where the output deviates largely from the original output. The

simulation of FOM took approximately 48 sec while time taken to simulate the reduced

model for r= 5, 15, 30 is 0.4891sec, 2.1788 sec and 6.5589 sec to compute the time

response which was ≈ 3.9ms (Table 5.1). ROM simulates easily and quickly with less

computational power ROM and is stable as well.

There are many ways to increase the accuracy of ROM and increasing reduction order

is one of them but it will eventually increase simulation time. Figure ?? is showing

relative error with respect to changing reduction order.

One important thing that should be noticed here is that the relative tolerance, time

step, and time interval is set approximately same in COMSOL and MATLAB and both

the simulations are carried out on a board with 11th Gen Intel(R) Core(TM) i7-11700,

32 GB RAM.
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the time evolution of temperature of the TCR sensor with respect to full order

model with n=530; the temperature is modelled within the gold sensing element

at point (0.5mm, 62.4 µm as shown in Figure 5.
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Figure 5.7: Relative error with increase of reduction order (r).

Degrees of Freedom Computation Time

FEM (COMSOL) ≈ 68k 40 min

FDM (MATLAB) 530 48 sec

IRKA 5 0.4891 sec

15 2.1788 sec

30 6.5589 sec

Table 5.1: Comparison Table
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Conclusion and future work

In this research, the Iterative Rational Krylov algorithm (IRKA) based MOR is used to

model temperature distribution and response time of the epidermal TCR sensor. The

main goal of applying IRKA was to reduce the computation time while keeping high

accuracy, maintaining stability and quick sensor response time. We observed that FEM

simulation took ≈ 40 minutes to model the sensor while after implementing IRKA of

order r=30, the simulation was 3 orders faster and that as we increased the reduction

order the more accurate results were achieved. This reduction of computation time

will help the designers remarkably to perform iterative design processes more quickly

and efficiently by utilising the smaller models instead of higher-order original models.

Moreover, IRKA’s potential for large computational savings lays the foundation for

accurate and time efficient design of related systems especially in the field of biomedical

where development of light weight sensors and probes is growing day by day. This will

help for various design optimisations, parametric analyses, and real-time applications

where computing speed is essential without compromising the precision.

6.1 Future work

Given that micro-level systems commonly consist of coupled subsystems, typically in

array structures, it is preferable to breakdown each subsystem separately and couple

them back together for system-level simulation. Therefore, for future work, we aim

to find a certain type of compact thermal representation that makes coupling simple

to the following thermal port while allowing heat fluxes to pass the boundaries. It is
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uncertain how to combine the thermal fluxes at the shared surfaces between two finite

element models in order to produce the thermal ports that would tie together a number

of compact models.
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Appendix A

IRKA Framework

Iterative Rational Krylov Algorithm [24]: Given a full-order G(s), a reduction order r,

and convergence tolerance tol.

1. Make an initial selection of r distinct interpolation points, {si}ri=1, that is closed

under complex conjugation.

2. Construct V r and W r

3. while (relative change in {si} > tol )

(a) Ar =
(
W T

r V r

)−1
W T

r AV r

(b) Solve the r × r eigenvalue problem Aru = λu and assign si ← −λi (Ar) for i =

1, . . . , r.

(c) Update V r and W r with new si

4. Ar =
(
W T

r V r

)−1
W T

r AV r, Br =
(
W T

r V r

)−1
W T

r B, and Cr = V T
r C.
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