EVALUATION OF ANTIMICROBIAL EFFECTS OF *NIGELLA SATIVA* AND *CAPSICUM FRUTESCENS* L.

By

Sonia Abid Bhatti NUST2019MSCEE318862

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

In

Environmental Engineering

INSTITUTE OF ENVIRONMENTAL SCIENCES AND ENGINEERING (IESE)

SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING (SCEE)

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY ISLAMABAD, PAKISTAN

(2021)

EVALUATION OF ANTIMICROBIAL EFFECTS OF *NIGELLA SATIVA* AND *CAPSICUM FRUTESCENS* L.

By

Sonia Abid Bhatti NUST2019MSCEE318862

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

In

Environmental Engineering

INSTITUTE OF ENVIRONMENTAL SCIENCES AND ENGINEERING (IESE)

SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING (SCEE)

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY ISLAMABAD, PAKISTAN

(2021)

It is certified that the contents and forms of the thesis entitled

EVALUATION OF ANTIMICROBIAL EFFECTS OF *NIGELLA SATIVA* AND *CAPSICUM FRUTESCENS* L.

Submitted by

Sonia Abid Bhatti

Has been found satisfactory for the requirements of the degree of

Master of Science in Environmental Engineering

Supervisor:

Dr. Waqas Qamar Zaman

Assistant Professor

IESE, SCEE, NUST

Member:

Dr. Imran Hashmi

Professor

IESE, SCEE, NUST

Member:

Dr. M. Arshad

Associate Professor

IESE, SCEE, NUST

I dedicate this thesis to my *Mother* and my Sister *Anam* who have been very supportive in all this master's journey

ACKNOWLEDGMENTS

I wish to express my heartiest thanks to my supervisor Dr. Waqas Qamar Zaman for his kind supervision and advise throughout the period of this research work. He is and will always remain a source of inspiration and motivation for me. The cooperation and guidance of my GEC Dr. Imran Hashmi and Dr. Muhammad Arshad is also acknowledged.

I am grateful to my master's fellows Sumbal, Arooj, Ali and Shanza Bashir for helping me in understanding microbial study. I am grateful to Ma'am Anisa for her cooperation.

Sonia Abid Bhatti

INTRO	DUCTION1
1.1	BACKGROUND
1.2	PRESENT STUDY
1.3	SIGNIFICANCE AND NOVELTY 4
1.4	STATEMENT OF THE PROBLEM
1.5	OBJECTIVES
LITERA	ATURE REVIEW
2.1	HERBS WITH ANTIMICROBIAL PROPERTIES
2.2	DISEASE CAUSING MICROBES 11
2.3	NIGELLA SATIVA PRODUCING COUNTRIES
2.3	.1 Trends, area, production and yield of <i>Nigella sativa</i> in Pakistan
2.3	.2 Growing areas of <i>Nigella sativa</i> in Pakistan
2.4	CAPSICUM FRUTESCENS L. PRODUCING COUNTRIES 14
2.4	.1 Trends, area, production and yield of <i>Capsicum frutescens</i> L. in Pakistan 14
2.4	.2 Growing areas of <i>Capsicum frutescens</i> L. in Pakistan
2.5	NIGELLA SATIVA AND CAPSICUM FRUTESCENS L. AS AN ANTIMICROBIAL
	NT14
2.6	CHEMICAL COMPOSITION OF NIGELLA SATIVA 17
2.6	3
2.7	CHEMICAL COMPOSITION OF CAPSICUM FRUTESCENS L
2.7	
L 2.8	ANTI-MICROBIAL COMPOUNDS
2.8	
	J 1
2.8	
2.8	
2.8	
2.8	
2.8	
2.8	1
2.9	ANTIMICROBIAL MECHANISM

TABLE OF CONTENTS

2.9	.1 Antimicrobial mechanism of bioactive compounds	28
2	2.9.1.1 Disrupts cell membrane	29
2	2.9.1.2 Reversing antimicrobial resistance and synergetic effects to antibiotics	30
2	2.9.1.3 Induce reactive oxygen species production	30
2	2.9.1.4 Inhibit biofilm formation	31
2	2.9.1.5 Stops cell wall construction	31
2	2.9.1.6 Stops toxins produced by bacteria	31
2	2.9.1.7 Inhibit energy synthesis	31
2	2.9.1.8 Inhibit microbial DNA replication	31
2.9	.2 Antimicrobial mechanism of Thymoquinone	31
2.9	.3 Antimicrobial mechanism of Melanin	32
2.9	.4 Antimicrobial mechanism of P-cymene	32
2.9	.5 Antimicrobial mechanism of Pinene	32
2.9	.6 Antimicrobial mechanism of Alkaloid	32
2.9	.7 Antimicrobial mechanism of Limonene	32
2.9	.8 Antimicrobial mechanism of Camphene	32
2.10	TECHNIQUES FOR THE PREPARATION OF NIGELLA SATIVA	32
2.11	TECHNIQUES FOR THE PREPARATION OF CAPSICUM FRUTESCENS L	33
MATEI	RIALS AND METHODS	35
3.1	REAGENTS	35
3.2	WASHING AND STERILIZATION OF GLASSWARE	35
3.3	PREPARATION OF MEDIA	35
3.4	NIGELLA SATIVA AND CAPSICUM FRUTESCENS L. COLLECTION AND	
	ARATION	
3.5	BACTERIAL INOCULUM PREPARATION	
3.6	PREPARATION OF FILTER PAPER DISCS	
3.7	POURING OF MEDIA	
3.8	STREAKING OF BACTERIA	
3.9	LOADING OF FILTER PAPER DISCS	
3.10 (DISC	KIRBY BAUER METHOD OF PLANT MATERIAL SUSCEPTIBILITY TESTING C DIFFUSION METHOD)	
	FTIR ANALYSIS	
	TS AND DISCUSSIONS	

REFE	RENCES	61
CONC	LUSIONS AND RECOMMENDATIONS	59
4.5	COST ESTIMATION	57
4.4	FTIR ANALYSIS OF NIGELLA SATIVA AND CAPSICUM FRUTESENCE L	51
4.3	INTERPRETATION AND REPORTING OF THE RESULTS	50
4.2	DISC DIFFUSION METHOD	47
4.1	GROWTH OF BACTERIAL SPECIES	43

ABREVIATIONS

FTIR	Fourier-transform infrared spectroscopy
GC-MS	Gas chromatography-mass spectrometry
N. sativa	Nigella sativa
DDD	Defined daily doses
WHO	World health organization
TQ	Thymoquinone

LIST OF TABLES

Table 1-1: National estimates of antimicrobial consumption some countries	1
Table 2-1 List of herbal materials for making anti-microbial agents	6
Table 2-2: Infectious diseases cause by microbes	
Table 2-3: Nigella sativa and Capsicum frutescens L. as an antimicrobial agent	15
Table 2-4: Chemical composition of Nigella sativa (Devi et al.)	17
Table 2-5: : GC-MS analyses of ethanolic extract of N. sativa (Devi et al.)	
Table 2-6: Chemical composition of n-hexane extracts of Capsicum frutescens L. seeds a	unalyzed
by GC-MS (Gurnani et al., 2016)	
Table 2-7: Chemical composition of chloroform extracts of Capsicum frutescens L. seed	ls
analyzed by GC-MS (Gurnani et al., 2016)	
Table 2-8: Chemical composition of market available antibiotics against <i>Pseudomonas</i>	
aeruginosa and Klebsiella species	
Table 2-9: Extracts of Capsicum frutescens L. and Nigella sativa effective against micro	bes 27
Table 2-10: List of some anti-microbial agents and their respective functions (Ullah & A	li, 2017)
Table 2-11: Techniques for the preparation of Nigella sativa	
Table 2-12: Techniques for the preparation of Capsicum frutescens L	
Table 3-1: Disc diffusion method	
Table 4-1: Comparative analysis of usage of different substances to control microbial inf	ections
Table 4-2: Infectious diseases cured by Nigella sativa and Capsicum frutescens 1	
Table 4-3: Observed outcomes	
Table 4-4: Pseudomonas aeruginosa and Klebsiella species recommended antimicrobial	disks
interpretative zone sizes (Hudzicki, 2009)	
Table 4-5: FTIR analysis interpretations	
Table 4-6: Cost estimation.	57

LIST OF FIGURES

Figure 1-1: Experimental design of present study	4
Figure 2-1 GC-MS analyses of ethanolic extract of N. sativa (Devi et al.)	19
Figure 2-2: : GC-MS analyses of n-hexane extract of Capsicum frutescens L. (Gurnani e	
2016)	
Figure 2-3: GC-MS chromatogram of the chloroform extract of the seeds of Capsicum f	frutescens
L. (Gurnani et al., 2016)	
Figure 2-4: Chemical structure of Thymoquinone	
Figure 2-5: Chemical structure of Melanin	
Figure 2-6: Chemical structure of P-cymene	
Figure 2-7: Chemical structure of a and b pinene	
Figure 2-8: Chemical structure of Alkaloid	
Figure 2-9: Chemical structure of Limonene	
Figure 2-10: Chemical structure of Camphene	
Figure 2-11: Antimicrobial mechanism of bioactive compounds	
Figure 2-12: Promote cell wall disruption and lysis	
Figure 3-1: Streaking	39
Figure 4-1: Flow diagram database search of publications	
Figure 4-2: Analysis of worldwide mortality due to bacterial species	
Figure 4-3: 0.5 optical density at 600nm absorbance in spectrophotometer	
Figure 4-4: Growth of Pseudomonas aeruginosa and Klebsiella specie	
Figure 4-5: Measurement of zone of inhibition	50

ABSTRACT

Global burden of infectious diseases is on rise and there is a need to overwhelm them via environment friendly solutions. Number of antibiotics and vaccines are made by the scientist to protect human population. These antibiotics and vaccines have number of positive effects but unfortunately, they also cause number of long-term negative effects to human race by making the bacteria antibiotic-resistant, which is much harder to treat than those caused by non-resistant bacteria. Nature also plays its role by providing resources that may fight against disease-causing bacterial species. Plethora of plants have antimicrobial effects that can fight against various disease-causing microbes like; bacteria, viruses, and various fungi species. These microbes cause Methicillin-Resistant Staphylococcus Aureus, Diarrhea, Pneumonia and various human infections. Nature blessed antimicrobial materials have Thymoquinone, P-cymene, Pinene, Alkaloid, Limonene, Camphene and Melanin that disrupt cell membrane of microbes, inhibit cellular division and inhibit the formation of biofilm in bacterial species thus reducing the number of microbes. Nature blessed antimicrobials are not only available at a very low cost but also do not require any laborious techniques for their preparation against disease-causing microbes. In Pakistan 75 and 82.35% of married women are infected due to Pseudomonas aeruginosa and Klebsiella species respectively. This study augmented the effectiveness of Nigella sativa and Capsicum frutescens L. against Pseudomonas aeruginosa and Klebsiella specie by agar disc diffusion method. For the *Pseudomonas aeruginosa* observed zone of inhibition was 30mm and 25mm by 5g/20ml Capsicum frutescens L. and Nigella sativa, respectively for 10µL dilution. For Klebsiella specie no zone of inhibition was observed by Capsicum frutescens L. while 1mm zone of inhibition was observed by 7g/20ml Nigella sativa for 20µL dilution. Positive results of Nigella sativa and Capsicum frutescens L. were evaluated against both bacterial species streaked on single agar plate and by Nigella sativa 20mm zone of inhibition was observed while no zone of inhibition was observed by Capsicum frutescens L. FTIR analysis showed the presence of antimicrobial compounds in Nigella sativa and Capsicum Frutescens L. The obtained results indicated that Nigella sativa is effective against combine bacterial species. Thus, N. sativa may be used as an effective antimicrobial agent against selected bacterial infections.

Keywords: *Nigella sativa*, *Capsicum frutescens L.*, *Pseudomonas aeruginosa*, *Klebsiella species*, Antimicrobial activity, Disc diffusion method, FTIR, Meta-analysis.

INTRODUCTION

1.1 BACKGROUND

Infectious diseases constitute a public health concern for the whole world. All human problems like nail infection, diarrhea, abdominal cramps, bloody urine, loss of appetite, hair whitening, mouth infection, ear pain and skin infection are due to microbes. There is a global pandemic of resistant microbes that requires anti-microbial agents to fight with them. Anti-microbial agents basically disrupt the cellular structure of microbes thus inhibit the occurrence of various infectious diseases (Peterson, 2008). According to WHO the overall consumption of anti-microbial agents are between 4.4 to 64.4 Defined Daily Doses (DDD) per 1000 persons per day (Organization, 2018). Table below shows the antimicrobial consumption in some countries (Organization, 2018).

Country or area	Year	DDD	DDD/1000 inhabitants/day	Metric tones	
African region					
Burkina Faso	2015	91 114 955	13.78	136.4	
Burundi	2015	16 533 614	4.44	56.39	
United Republic of	2016	553 622 340	27.29	712.46	
Tanzania					
Region of the Ameri	cas	I		I	
Brazil	2016	1 724 124 919	22.75	2225.47	
Canada	2015	223 101 184	17.05	242.69	
Peru	2016	71 432 278	10.26	94.63	
European Region					
Albania	2015	17 251 602	16.41	18.17	
Armenia	2015	10 981 069	10.31	14.39	
Austria	2015	38 081 745	12.17	38.84	
Azerbaijan	2015	26 995 944	7.66	36.45	
Belarus	2015	60 556 399	17.48	68.88	
Belgium	2015	104 860 173	25.57	112.95	

Table 1-1: National estimates of antimicrobial consumption in some countries

Chapter 1

Bosnia and	2015	23 033 283	17.85	28.66
Herzegovina				
Bulgaria	2015	53 233 312	20.25	52.18
Croatia	2015	31 280 578	20.28	35.27
Cyprus	2015	8 389 248	27.14	8.10
Denmark	2015	36 848 791	17.84	53.25
Finland	2015	36 983 121	18.52	47.21
France	2015	628 986 424	25.92	764.02
Georgia	2015	33 152 652	24.44	33.04
Germany	2015	340 449 193	11.49	290.85
Greece	2015	134 139 320	33.85	139.18
Hungary	2015	58 664 563	16.31	57.27
Iceland	2015	2 146 458	17.87	2.18
Ireland	2015	39 318 933	23.27	50.22
Italy	2015	590 686 917	26.62	662.47
Kazakhstan	2015	114 558 903	17.89	162.22
Malta	2015	3 428 658	21.88	3.55
Netherlands	2015	60 338 150	9.78	55.66
Norway	2015	31 998 795	16.97	46.35
Poland	2015	337 067 701	24.3	306.61
Portugal	2015	67 089 554	17.72	79.84
Romania	2015	206 717 694	28.5	253.28
Russian Federation	2015	779 270 524	14.82	915.65
Serbia	2015	81 762 868	31.57	98.34
Slovakia	2015	48 154 016	24.34	49.55
Slovenia	2015	10 152 289	13.48	14.07
Spain	2015	304 475 774	17.96	343.91
Sweden	2015	48 834 144	13.73	72.70
Tajikistan	2015	68 493 070	21.95	121.12
Turkey	2015	1 090 722 974	38.18	1195.69

United Kingdom	2015	484 761 369	20.47	535.37
Uzbekistan	2015	97 762 994	8.56	185.90
Eastern Mediterran	ean Regior	1		
Iran	2015	1 123 329 829	38.78	1178.61
Jordan	2015	29 836 359	8.92	21.23
Sudan	2015	497 782 564	35.29	675.75
Western Pacific Reg	gion	I		
Brunei Darussalam	2015	901 761	5.92	1.13
Japan	2015	658 400 748	14.19	524.9
Mongolia	2015	69 986 355	64.41	133.24
New Zealand	2015	38 036 523	22.68	36.85
Philippines	2015	304 852 740	8.21	260.55
Republic of Korea	2015	515 342 775	27.68	546.37

Many antibiotics impose various side effects and also some pathogens are resistant to various antibiotics so there is need to use herbal products in order to make antimicrobial agents (Namita & Mukesh, 2012).

1.2 PRESENT STUDY

In developing countries like Pakistan major public health issue is due to the poor environmental health and according to WHO residents of these low-income countries are more likely to die of communicable diseases like Malaria, Tuberculosis, Diarrhea and HIV/AIDS etc. Suitable preventive measures against these infectious and parasitic diseases should be adopted immediately. The preventive measures include cleaning practices and using antimicrobial agents that can fight against infectious and parasitic diseases. Antimicrobial agents can be extracted from plants that are available abundantly in the world. Plants like *Nigella sativa* and *Capsicum frutescens L*. are present abundantly in every region of the world with low cost. In Pakistan total area of 2.31 tons/ha is used for the production of *Capsicum frutescens L* (Khan et al., 2017) while *Nigella sativa* grows during the month of October and November in Pakistan with a yield of about 235 to 370 kg/acre (Rabbani et al., 2011). *Nigella sativa* and *Capsicum frutescens L*. are not only available easily in every part of the world but also have antimicrobial effects that can be used against various disease-causing microbes like *Pseudomonas aeruginosa* and *Klebsiella species* (Dhanasekaran, 2019; Sarwar et al., 2020).

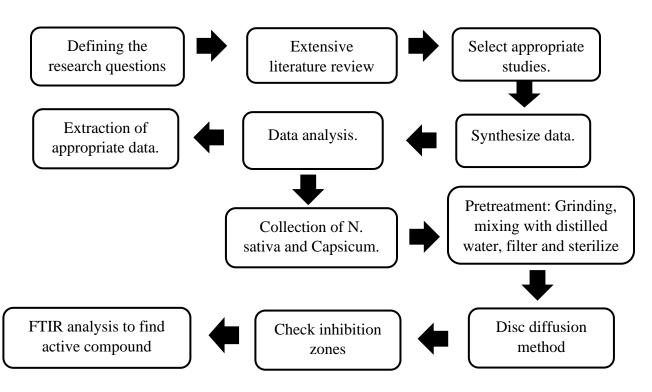


Figure 1-1: Experimental design of present study

1.3 SIGNIFICANCE AND NOVELTY

Infectious diseases are spreading rapidly in the whole world; it is an urgent need to know the antimicrobial effects of easily available materials. This study includes a comprehensive data on the antimicrobial effects of easily available materials and the outcome of this research will be beneficial for human population.

Previous research studies were mostly conducted on different plant extracts. Further the effects of plant extracts were evaluated on single bacterial colonies. Whereas, in present research solely the plants were crushed, mixed in distilled water filtered by Whatman filter paper no 1 and then this solution was used to evaluate its effect on combined bacterial colonies of *Pseudomonas aeruginosa* and *Klebsiella* specie.

1.4 STATEMENT OF THE PROBLEM

Presently the major cause of restlessness in the whole world is the spreading of infectious diseases. The number of confirmed deaths due to infectious diseases are growing day by day. As per current scenario human population have to visit many microbial contaminated sites like hospitals etc. and this increase the chances of getting infected by microbes. So, there is a need to keep safe human beings by using easily available materials that have anti-microbial effects.

1.5 OBJECTIVES

This study aimed to achieve two main objectives as follows:

- (1) To conduct the meta-analysis for comprehensive study.
- (2) To evaluate the anti-microbial effects of Nigella Sativa and Capsicum Frutescens L.

LITERATURE REVIEW

2.1 HERBS WITH ANTIMICROBIAL PROPERTIES

Herbal materials are used as an anti-microbial agent since ancient times. According to WHO 80% of the available drugs in the world are made up of herbal materials (Kirbağ et al., 2009). Plants are enriched with tannins, terpenoids, alkaloids and flavonoids (Cowan, 1999) that can act as anti-microbial agents as shown in table below;

Sr. No Herbal material		Constituent that cause anti-	References
		microbial effect	
1.	Aloe	Complex mixture	(Martinez et al., 1996)
2.	Apple	Flavonoid derivative	(Hunter & Hull, 1993)
3.	Ashwagandha	Lactone	(Cowan, 1999)
4.	Bael tree	Terpenoid	(Rana et al., 1997)
5.	Barberry	Alkaloid	(McDevitt et al., 1996;
			Omulokoli et al., 1997)
6.	Basil	Terpenoids	(Wan et al., 1998)
7.	Bay	Terpenoids	(Cowan, 1999)
8.	Betel pepper	Essential oils	
9.	Black pepper	Alkaloid	(Ghoshal et al., 1996)
10.	Blueberry	Monosaccharide	(Ofek et al., 1996)
11.	Brazilian pepper	Terpenoids	(Cowan, 1999)
	tree		
12.	Buchu	Terpenoid	
13.	Burdock	Polyacetylene, tannins, terpenoids	
14.	Buttercup	Lactone	
15.	Caraway	Coumarins	(Bose, 1958; Elsevier,
			1978; Hamburger &
			Hostettmann, 1991; Scheel,
			2016)

Table 2-1 List of herbal materials for making anti-microbial agents

Sr. No Herbal material		Constituent that cause anti-	References
		microbial effect	
16.	Cascara sagrada	Polyphenols, Anthraquinone	(Cowan, 1999)
17.	Cashew	Polyphenols	-
18.	Ceylon cinnamon	Terpenoids, tannins	
19.	Chamomile	Phenolic acid, Coumarins	(Bose, 1958)
20.	Chapparal	Lignan	(Cowan, 1999)
21.	Chili peppers,	Terpenoid	
	paprika		
22.	Clove	Terpenoid	(Cowan, 1999)
23.	Coca	Alkaloid	
24.	Cranberry	Monosaccharide	(Bose, 1958; Ofek et al.,
			1996; Ofek et al., 1991)
25.	Dill	Terpenoid	(Cowan, 1999)
26.	Eucalyptus	Polyphenol, Terpenoid	
27.	Fava bean	Thionin	
28.	Gamboge	Resin	
29.	Garlic	Sulfoxide, Sulfated terpenoids	(Naganawa et al., 1996;
			San-Blas et al., 1993; San-
			Blas et al., 1989; Yoshida
			et al., 1987)
30.	Apple pomace	Proanthocyanidins, flavonoids	(Lu & Foo, 2000; Schieber
			et al., 2000; Sudha et al.,
			2007)
31.	Banana leaves	Polyphenols (terpenoid and	(Marie-Magdeleine et al.,
		flavonoids)	2010)
32.	Banana	Catechin and gallocatechin	(Babbar et al., 2011)
33.	33. Beet root pomace Betalains and 1,1-Diphenyl-2-		(Čanadanović-Brunet et al.,
		picryl-hydrazyl (DPPH)	2011)

Sr. No	Herbal material	Constituent that cause anti-	References
		microbial effect	
34.	Black currant	Anthocyanins, linolenic acid and	(Holtung et al., 2011)
	pomace	other fatty acids	
35.	Broccoli by-	Glucosinolates, phenolic acids,	(Dominguez-Perles et al.,
	products	flavonoids and vitamin C	2011; Domínguez-Perles et
			al., 2010)
36.	Cabbage,	As a carbon source for synthesis of	(Papaioannou &
	watermelon rind	carotenoids using Blakeslea	Liakopoulou-Kyriakides,
	and peach peels	trispora	2012)
37.	Cashew apple	Vitamin C, organic acids,	(Sancho et al., 2015;
	waste	antioxidants, unsaturated fatty	Sivagurunathan et al.,
		acids, minerals	2010)
38.	Cauliflower cull	Curcumin and phenethyl	(Wadhwa et al., 2015)
		isothiocyanate	
39.	Citrus juice, pulp	Limonoids-highly oxygenated	(Rudra et al., 2015)
	and seed	triterpenoid	
40.	Grape and	Flavonoids phenolic acids	(Babbar et al., 2011;
	pomegranates		Jayaprakasha et al., 2001;
	peels		Li et al., 2006; Shrikhande,
			2000)
41.	Gooseberry peels	Polyphenolic compounds e.g.	(Chitturi et al., 2013;
		ellagic and gallic acids and	Poltanov et al., 2009)
		corilagin	
42.	Guava peel and	Polyphenolic compounds, melanin,	(Chitturi et al., 2013;
	pulp	dietary fibre	Jiménez-Escrig et al., 2001)
43.	Litchi pericarp	Phenolics (epicatechin,	(Duan et al., 2007; Jiang et
		procyanidins, cyanidin-3-	al., 2013; Li et al., 2012;
		glucoside, and quercetin-3-	Sarni-Manchado et al.,
		rutinoside), flavonoids and	2000; Zhang et al., 2004)
		anthocyanin (cyanidin3-rutinoside)	

Sr. No	Herbal material	Constituent that cause anti-	References
		microbial effect	
44.	Litchi seed	Proanthocyanidins, flavonoids,	(Prasad et al., 2009; Singh
		steroids, and sesquiterpenes	et al., 2013; Xu et al., 2011)
45.	Litchi bark	Flavonoids, polyphenols,	(Queiroz et al., 2012;
		anthocyanins and vitamin C	Queiroz et al., 2015)
46.	Longan seeds	polyphenolic compounds	(Panyathep et al., 2013)
47.	Mango peel	Syringic acid, quercitin,	(Ajila et al., 2007; Ajila et
		mangiferin pentoside and ellagic	al., 2010; Berardini et al.,
		acid, carotenoids, vitamins,	2005; Larrauri et al., 1997;
		enzymes and dietary fibres	Schieber et al., 2000)
48.	Mango seed	Gallic acid	(Al-Farsi & Lee, 2008;
	kernels		Puravankara et al., 2000)
49.	Mango pulp and	Carotenoids (b-carotene)	(Chen et al., 2004;
	ripe peel		Varakumar et al., 2011)
50.	Onion waste	Quercetin	(Hertog et al., 1992; Kim &
			Kim, 2006; Ly et al., 2005;
			Nuutila et al., 2003)
51.	Rambutan peels	Ellagic acid, corilagin and geraniin	(Palanisamy et al., 2008;
			Thitilertdecha et al., 2010)
52.	Tomato pomace	Sterols, tocopherols, carotenes	(Kalogeropoulos et al.,
		(Lycopene), terpenes, flavonoids	2012)
		and ascorbic acid	
53.	Ginseng	Saponins	(Cowan, 1999)
54.	Glory lily	Alkaloid	
55.	Goldenseal	Alkaloids	(Freiburghaus et al., 1996;
			Omulokoli et al., 1997)
56.	Gotu kola	Terpenoid	(Cowan, 1999)
57.	Grapefruit peel	Terpenoid	(Stange Jr et al., 1993)
58.	Green tea	Flavonoid	(Cowan, 1999)

Sr. No	Herbal material	Constituent that cause anti-	References
		microbial effect	
59.	Hemp	Organic acid	
60.	Henna	Phenolic	
61.	Hops	Phenolic acid, terpenoids	
62.	Horseradish	Terpenoids	
63.	Hyssop	Terpenoids	
64.	(Japanese) herb	Terpene	(Kadota et al., 1997)
65.	Legume (West	Flavone	(Perrett et al., 1995)
	Africa)		
66.	Lemon balm	Polyphenols	(Warren, 1995)
67.	Lemon verbena	Terpenoid	(Cowan, 1999)
68.	Licorice	Phenolic alcohol	
69.	Mountain	Lactones	
	tobacco		
70.	Oak	Polyphenols, Flavonoid	(Pelkonen et al., 1997)
71.	Olive oil	Aldehyde	(Kubo et al., 1995)
72.	Onion	Sulfoxide	(Vohora et al., 1973)
73.	Orange peel	Terpenoid	(Stange Jr et al., 1993)
74.	Oregon grape	Alkaloid	(Freiburghaus et al., 1996;
			Omulokoli et al., 1997)
75.	Pao d'arco	Terpenoids	(Cowan, 1999)
76.	Papaya	Mix of terpenoids, organic acids,	(Burdick, 1971; Osato et
		alkaloids	al., 1993; Satrija et al.,
			1995)
77.	Pasque-flower	Lactone	(Cowan, 1999)
78.	Peppermint	Terpenoid	
79.	Periwinkle	Alkaloid	
80.	Peyote	Alkaloid	
81.	Рорру	Alkaloids and others	

Sr. No	Herbal material	Constituent that cause anti-	References
		microbial effect	
82.	Purple prairie	Flavonol	(Hufford et al., 1993)
	clover		
83.	Quinine	Alkaloid	(Cowan, 1999)
84.	Rauvolfia,	Alkaloid	
	chandra		
85.	Rosemary	Terpenoid	
86.	Sainfoin	Polyphenols	(Ali-Shtayeh et al., 1997;
87.	Savory	Terpenoid	Jones et al., 1994)
88.	Senna	Anthraquinone	(Cowan, 1999)
89.	St. John's wort	Anthraquinone	
90.	Tansy	Terpenoid	
91.	Tarragon	Terpenoid, Polyphenols	
92.	Thyme	Terpenoid, Phenolic alcohol,	
		Polyphenols, Flavones	
93.	Tree bard	Flavonol, Lactone	(Kubo et al., 1992, 1993;
			Kubo et al., 1994)
94.	Turmeric	Terpenoids	(Apisariyakul et al., 1995)
95.	Valerian	Terpenoids	(Cowan, 1999)
96.	Willow	Phenolic glucoside, Polyphenols,	
		Terpenoid	
97.	Wintergreen	Polyphenols	
98.	Woodruff	Coumarin	(Hamburger &
			Hostettmann, 1991; Scheel,
			2016)

2.2 DISEASE CAUSING MICROBES

Various infectious diseases are spreading nowadays due to different microbes like; Gram-positive bacteria, Gram- negative bacteria, *Candida albicans*, *Staph. Aureus*, *Esch. Coli*, Gram-positive

cocci, Microsporum canis, Trichophyton mentagrophytes, Trichophyton interdigitale, Four species of Trichophyton rubrum, Staphylococcus epidermidis, Micrococcus luteus, Listeria monocytogene, Bacillus cereus, Pseudo. aeruginosa, Salmonella enteritidis, Sal. Typhimurium and Shigella flexneri.

Infectious disease	Microbe that causes the disease	Type of	References
		microbe	
methicillin-resistant Staphylococcus	Gram-positive bacteria	Bacteria	(Doernberg
Aureus (MRSA).			et al., 2017)
Pneumonia, bloodstream infections, wound	Gram- negative bacteria	Bacteria	(Control &
or surgical site infections.			Prevention,
			2011)
Growth of Candida in the bloodstream or	Candida albicans	Fungus	(Akpan &
internal organs like the kidney, heart, or			Morgan,
brain cause infections in these body parts.			2002)
Bloodstream infections, pneumonia, or	Staph. aureus	Bacteria	(Lowy,
bone, tissue infections i.e boils and			1998)
joint infections.			
Urinary tract infection, traveler's diarrhea,	Esch. coli	Bacteria	(Makvana
and pneumonia.			& Krilov,
			2015)
Immunologic infections	Gram-positive cocci	Bacteria	(Gregersen,
			1978)
Tinea corporis (B35. 6)	Microsporum canis	Fungus	(Kokollari
			et al., 2015)
Ringworm in mice.	Trichophyton mentagrophytes	Fungus	(Williford
			& Wagner,
			1982)
Dermatophytosis	Trichophyton interdigitale	Fungus	(Zhang et
			al., 2019)

Table 2-2: Infectious diseases cause by microbes

Infectious disease	Microbe that causes the disease	Type of	References
		microbe	
Nosocomial infections	Staphylococcus epidermidis	Bacteria	(Otto,
			2009)
Foodborne bacterial illness causes to unborn	Listeria monocytogene	Bacteria	(Edelson &
babies, newborns and people with weakened			Unanue,
immune systems			2000)
Diarrheal and toxico-infections	Bacillus cereus	Bacteria	(Jessberger
			et al., 2020)
Acute gastroenteritis and human infections	Vibrio paraheamolyticus ATCC	Bacteria	(Martinez-
worldwide	17802		Urtaza et
			al., 2004)
Superficial and ear infections in humans	Vibrio alginolyticus ATCC 33787	Bacteria	(Reilly et
			al., 2011)
Human infections; burn, urinary tract and	Pseudo. aeruginosa ATCC 27853	Bacteria	(Cao et al.,
human airways infections.			2017)
Bacterial gastroenteritis	Salmonella	Bacteria	(Alexander
	enteric serovar typhimurium ATCC		et al., 2016)
	14028		
Diarrhea, fever, and abdominal cramps	Salmonella enteritidis	Bacteria	(Rodrigue
			et al., 1990)
Gastroenteritis and focal infections	Sal. typhimurium	Bacteria	(Jung et al.,
			2020)
Diarrhea (sometimes bloody), fever, and	Shigella flexneri	Bacteria	(Duncan-
stomach cramps.			Lowey et
			al., 2020)

2.3 NIGELLA SATIVA PRODUCING COUNTRIES

Nigella sativa grows mostly in Southern Europe, North Africa, Southwest Asia, Middle Eastern Mediterranean region, India, Pakistan, Syria, Turkey and Saudi Arabia. In India *N.sativa* productivity is between 300-500 kg ha⁻¹ (Mehmood et al., 2018).

2.3.1 Trends, area, production and yield of *Nigella sativa* in Pakistan

In Quetta and Kalat *Nigella sativa* yield range from 845 to 975 kg ha⁻¹. With improved technologies Nigella sativa can grow between a yield of 1500 to 1800 kg ha⁻¹(Zahoor & Abdul, 2007).

2.3.2 Growing areas of *Nigella sativa* in Pakistan

Major producing area of *N. sativa* are Kohat, Lahore, Faisalabad and Hatter with 82.3, 108.5, 109.7 and 108.9 g yield/row (Rabbani et al., 2011).

2.4 CAPSICUM FRUTESCENS L. PRODUCING COUNTRIES

In the whole world *Capsicum Frutescens* L. produce around 7 million tons on 1.5 million hectares land. In India production of Capsicum Frutescens L. production is 11 lakh tons, in Mexico 3 lakh tons and in Pakistan 2 lakh tons (Khokhar & NARC, 2013).

2.4.1 Trends, area, production and yield of *Capsicum frutescens* L. in Pakistan

In Pakistan since 2000-01 to 2009-10 production of *Capsicum Frutescens* L. range from 174.6 to 188.9 thousand tones. Sindh is the major pricing area with production of 122.9 thousand tons (Khokhar & NARC, 2013).

2.4.2 Growing areas of *Capsicum frutescens* L. in Pakistan

Punjab produces 6.3 %, Balochistan 33.4 %, KPK 0.6 % and Sindh produces 89.7 % *Capsicum Frutescens L*. In Punjab, Sindh, KPK and Baloshistan *Capsicum Frutescens* L. produce in Kasur, Okara, Pakpattan, Sahiwal, Multan, Sheikhapura, Khanewal, Vehari, Bahawal Nagar, Mirpurkhas, Hyderabad, Badin, Sanghar, Mohmand Agency, Bajour, Dir, Kohat, Killa Saifullah, Khuzdar, Loralai and Musa Khel (Khokhar & NARC, 2013).

2.5 NIGELLA SATIVA AND CAPSICUM FRUTESCENS L. AS AN ANTIMICROBIAL AGENT

Nigella sativa contains more than 100 valuable elements including proteins, vitamins and essential fatty acids that have antimicrobial effects. Due to the presence of thymoquinone and

thymohydroquinone in *N. sativa* it can fight against microbial infectious diseases (Bakal et al., 2017).

Capsicum frutescens L. has medicinal importance in the whole world. It contains Capsaicinoids that have more than 20 alkaloids (Bakht et al., 2020). *Capsicum* has strong antimicrobial properties and thus it is good to use this in daily food items.

Sr. No	Name of	Constituent	Adopted	Findings	References
	material	that causes	methodology		
		antimicrobial			
		effect			
1.	Nigella	Presence of	Paper disc	Antibacterial	(Bakathir &
	sativa	Thymoquinone	diffusion	effect against	Abbas, 2011;
		and Melanin	method	Staphylococcus.	Hassieb,
					2006; Roy et
					al., 2006)
		Fixed oil and	-	Effective against	(Agarwal et
		Thymoquinone		many microbes	al., 1979; Ali
		of N. Sativa		Most effective	& Blunden,
				against	2003)
				Aspergillus	
				species.	
		Thymoquinone,	Disc diffusion	Thymoquinone is	(Roy et al.,
		p-cymene and	method	the main	2006)
		pinene		component that	
				causes	
				antimicrobial	
				effects	
		Essential oil of	Plate diffusion	Most effective	(El-Kamali
		N. sativa	method	against Bacillus	et al., 1998)
				subtilis	

Table 2-3: Nigella sativa and Capsicum frutescens L. as an antimicrobial agent

Sr. No	Name of	Constituent	Adopted	Findings	References
	material	that causes	methodology		
		antimicrobial			
		effect			
		Crude alkaloid	-	Gram negative	(Morsi,
		and water		was most effected	2000)
		extract of the		than Gram	
		seed		positive	
2.	Capsicum	Low pH of fruit	Disk diffusion	Extracts of	(Careaga et
	frutescens		method and	Capsicum fruits	al., 2003;
	L.		Well diffusion	are suitable for	Koffi-Nevry
			method	antibacterial	et al., 2012;
				activities	Tano et al.,
					2008)
		Isopropanol	Growth	Cinnamic and M-	(Dorantes et
		extracts	inhibition test	coumaric acids	al., 2000)
				from Chilli	
				extracts are	
				effective against	
				bacterial species.	
		Capsaicin-	-	Prevent microbial	(Tellez et al.,
		induced		infections	1993)
		alterations in the			
		рН			
		Presence of	Inhibit CT	Effective against	(Omolo et
		Capsaicin	production	V. cholera	al., 2014)
		Presence of	Disk diffusion	Capsaicinoids is	(Das et al.,
		Capsaicin and	method	the main	2018)
		Capsaicinoids		component that	
				causes	

Sr. No	Name of material	Constituent that causes antimicrobial effect	Adopted methodology	Findings	References
				antibacterial effect.	

2.6 CHEMICAL COMPOSITION OF NIGELLA SATIVA

Nigella sativa contains valuable fixed oils, volatile oils, protein, carbohydrates and more than 100 valuable elements. According to science *N. sativa* contains proteins, vitamins and essential fatty acids that have antimicrobial effects. Due to the presence of thymoquinone and thymohydroquinone in *N. sativa* may fight against microbial infectious diseases (Bakal et al., 2017).

Constituents	Chemical constituents	Pharmacological
		Activity
Fixed Oils	Linoleic acid (Omega-6 and 3) and Oleic acid	Prevents infection and
		chronic ailments
Volatile Oil	Thymoquinone, Dithymoquinon,	Antineolastic, Anti-
		oxidant, Anti-
	Thymohydroquinone, Thymol,	inflammatory effect
		both invite and in
	nigellone	vivo. TQ effect on
		Apoptosis. TQ and
		Nigellone – Anti-
		spasmodic and
		bronch-dilator.
Protein	Arginine, Aspartic acid, leucine, Glycine,	Hormonal regulation,
	Valine, Histidine,	Regulation of cell-
		division, Immune
	Methionine, Phenylalanin	system actions
Carbohydrates	Glucose, Xylose, Arabinose,	Energy production &
		storage, Build
		macromolecules,
		sparing protein, Lipid

Table 2-4: Chemical composition of Nigella sativa (Devi et al.)

Constituents	Chemical constituents	Pharmacological
		Activity
		metabolism, Glucose
		stored as glycogen.
Minerals	Ca, K, Fe, Zn, Mg, phosphorus, Na, Mn, Cu,	Calcium utilizes
	Selenium	Vitamin C, Zinc-
		Vitamin A,
		Magnesium-B,
		Selenium for Vitamin
		E absorption.
Saponins	α-Hederin (melanthin), Hederagenin	Alpha-hederin &
	(melanthigenin)	Thymoquinone
		inhibit four tumor cell
		lines-A549, HEp-2,
		HT-29, MIA paca2-
		both apoptotic and
		necrosis.
Alkaloids	Nigelicine, Nigellimine, Nigellidine	Bitter in taste,
		strengthen tissue, and
		eliminate excess
		acids, helps in
		digestive problems.
Vitamins	Vitamin A and C, Thiamin, Riboflavin,	Help in the utilization
	Pyridoxine, Niacin, Folacin	of energy nutrient,
		maintain normal body
		tissue, and act as a
		regulator.

2.6.1 GC-MS analysis of ethanolic extract of *Nigella sativa*

Ethanolic extracts of *Nigella sativa* was analyzed by GC-MS. Graph and table below shows the presence of various compound in *N. sativa* along with anti-microbial compound.

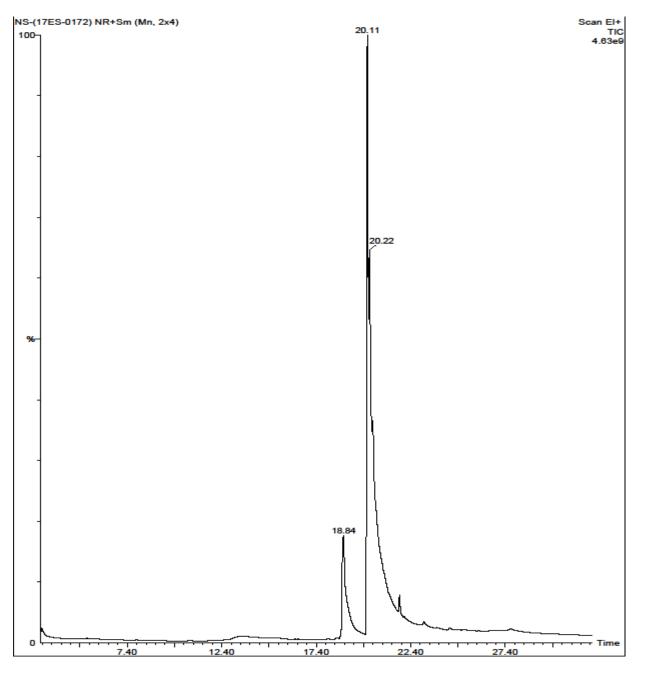


Figure 2-1: GC-MS analyses of ethanolic extract of *N. sativa* (Devi et al.)

			_	
Table 2-5: GC-MS	analyses of et	hanolic extract of	f N. sativa	(Devi et al.)

S.No	Phytochemical	Retention	Molecular	Molecular	Pharmocalogical Activity
	compounds	time	formula	weight	
1.	Hexadeconoic	3.192	$C_{18}H_{36}O_2$	284	Antioxidant, Flavor, Hepoc-
	acid, Ethyl Ester				cholestrolemic pesticide-5
					Alpha reductase inhibitor
2.	Ecosonoic acid,	9.32	$C_{20}H_{40}O_2$	312	Lower lipid levels in adults
	Ethyl Ester				

S.No	Phytochemical compounds	Retention time	Molecular formula	Molecular weight	Pharmocalogical Activity
3.	9,12	20.205	C ₁₈ H ₃₁ OCl	298	Cancer preventive, Anti-
	Decadecadienoyl,		- 1051		inflammatory, Hepato-
	Chloride (Z,Z)				protective, Insectifuge, Hypo-
					choletrolemic
4.	Z,E-2-Methyl-	20.105	C19H36O	280	Anti-microbial activity and
	313,				Anti-carcinogenic activity
	Octadecadien-I-				
	OL				
5.	9,12	20.405	$C_{18}H_{32}O_2$	280	Anti-inflammatory,Nematicide
	Octadecadienoic				and Insectifuge
	acid (Z,Z)				

2.7 CHEMICAL COMPOSITION OF CAPSICUM FRUTESCENS L.

Capsicum frutescens L. has medicinal importance in the whole world. It contains Capsaicinoids that have more than 20 alkaloids (Bakht et al., 2020). *Capsicum frutescens L.* has strong antimicrobial properties and thus it is good to use this in daily food items.

2.7.1 GC-MS analysis of n-hexane and chloroform extract of *Capsicum frutescens L.* N-hexane extracts of *Capsicum frutescens L.* was analyzed by GC-MS. Graph and table below shows the presence of various compound in *Capsicum frutescens L.* along with anti-microbial compound.

Chapter 2

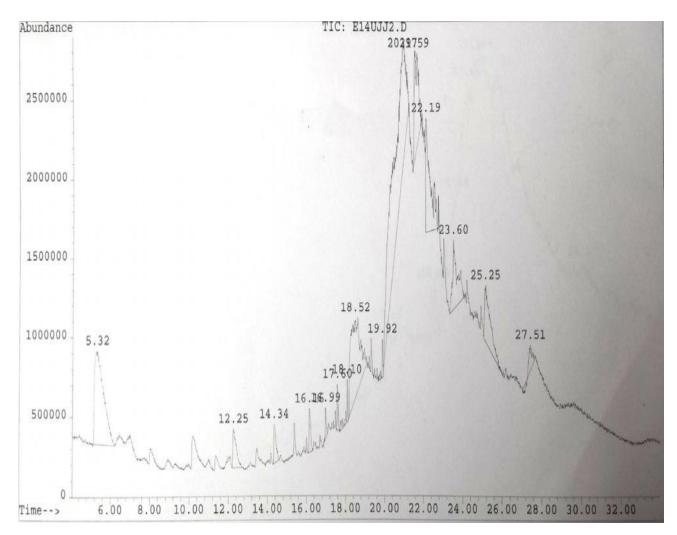


Figure 2-2: GC-MS analyses of n-hexane extract of Capsicum frutescens L. (Gurnani et al., 2016)

Table 2-6: Chemical composition of n-hexane extracts of <i>Capsicum frutescens L</i> . seeds analyzed by GC-MS
(Gurnani et al., 2016)

S.No	Name of compounds	Retention time	Molecular weight	Molecular formula	Pharmocalogical Activity
1.	3-Carene	5.32	136	C ₁₀ H ₁₆	Inhibit growth of Clostridium difficile, paraputrificum and perfringens, Staphylococcus aureus, Escherichia coli and Bacteroides fragilis (Koziol et al., 2014)
2.	Hexadecane	12.25	226	C ₁₆ H ₃₄	Have antibacterial activity (Kumaresan et al., 2014)
3.	Octadecane	14.34	254	C ₁₈ H ₃₈	Have antibacterial activity (Rouis-Soussi et al., 2014)

Chapter 2

S.No	Name of	Retention	Molecular	Molecular	Pharmocalogical Activity
	compounds	time	weight	formula	
4.	Eicosane	16.16	282	$C_{20}H_{42}$	Have antimicrobial activity
					(Farzaei et al., 2014)
5.	10-	16.98	294	$C_{21}H_{42}$	No pharmocalogical activity.
	Heneicosene				

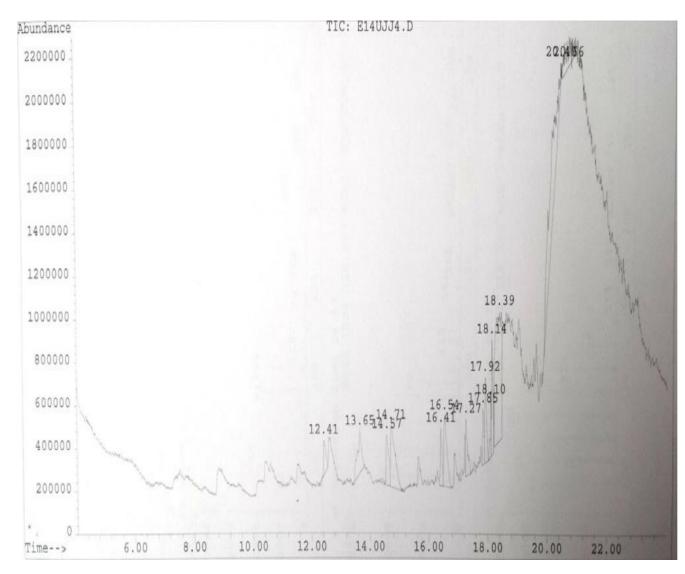


Figure 2-3: GC-MS chromatogram of the chloroform extract of the seeds of *Capsicum frutescens L*. (Gurnani et al., 2016)

Table 2-7: Chemical composition of chloroform extracts of Capsicum frutescens L. seeds analyzed by GC–MS
(Gurnani et al., 2016)

;	S.No	Name of compounds	Retention time	Molecular weight	Molecular formula	Pharmocalogical Activity
	1.	1-Phenyloctane	12.41	190	$C_{10}H_{16}$	No pharmocalogical activity.

S.No	Name of compounds	Retention time	Molecular weight	Molecular formula	Pharmocalogical Activity
2.	Phenol,2,4- bis(1,1- dimethyethyl)	13.65	206	$C_{16}H_{34}$	Effective against many microbes (Zhao et al., 2020)
3.	Octadecane	14.57	254	C ₁₈ H ₃₈	Have antimicrobial activity (Rouis-Soussi et al., 2014)
4.	1-Hexadecene	14.71	224	$C_{20}H_{42}$	Have antimicrobial activity (Mou et al., 2013)
5.	Eicosane	16.41	282	C ₂₁ H ₄₂	Anti-androgenic and aldose reductase inhibitor (Khatua et al., 2016)

Table 2-8: Chemical composition of market available antibiotics against Pseudomonas aeruginosa and Klebsiella species

Name of medicine	Chemical composition
Cephalosporin	Carbonyl group, Carboxylic acid, 6 membered dihydrothiazine ring, B
	lactam ring
Dihydrostreptomycin	Streptidine, hydroxyl alcoholic group, N-methyl-L-glucosamine unit
Moxifloxacin	1-Cyclopropyl-6-fluoro-7-((4aS,7aS)-hexahydro-1H-pyrrolo[3,4-b]pyridin-
	6(2H)-yl)-8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid
Chloramphenicol	Nitrobenzene ring, an amide bond, alcoholic function
Ciprofloxacin	Naldixic acid, 1-cyclopropyl-6-fluoro-1, 4dihydro-4-oxo-7-(1-piperazinyl)-
	3-quinolinecarboxylic acid hydrochloride

There are some compounds present in market available antibiotics similar to that present in *Nigella sativa* and *Capsicum frutescens L*. i.e. Carbonyl group, Carboxylic acid, hydroxyl alcoholic group, 8-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic acid, alcoholic and Naldixic acid.

2.8 ANTI-MICROBIAL COMPOUNDS

Thymoquinone, Melanin, P-cymene, Pinene, Alkaloid, Limonene and Camphene are the major anti-microbial compounds present in *N. sativa* and *Capsicum frutescens L*.

2.8.1 Thymoquinone

Thymoquinone is a compound that have remarkably antisepsis activity at specific dose (Alkharfy et al., 2018; Alkharfy et al., 2015; Alkharfy et al., 2011). Sepsis is such condition in which NO is released at faster rate, which causes systematic disfunction and tissue injuries in human and animals (Rabuel et al., 2010; Tsolaki et al., 2017). Thymoquinone modulates the production of NO thus saving humans and animals from multiple organ disfunction syndrome (Galley, 2011; Ichinose et al., 2007). Thymoquinone is the main component present in *Nigella Sativa* that was found to be effective against Avian influenza virus (Salem & Hossain, 2000; Umar et al., 2016). If the cells have consumed *Nigella sativa* then it decreases the replication of virus in that body (Ulasli et al., 2014) and according to another study after consuming *Nigella sativa* the virus survival becomes difficult in the cell (Ahmad et al., 2020).

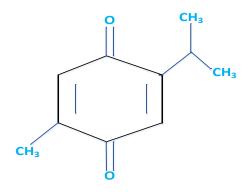


Figure 2-4: Chemical structure of Thymoquinone

2.8.2 Melanin

Melanin is an efficient green agent that has vast application in the field of biomedical. Melanin consumes antioxidant activity. (Da Silva et al., 2017; Ju et al., 2011; Rageh et al., 2015; Schweitzer et al., 2010; Silvestri et al., 2017) Antioxidants are basically that substances that protects our bodies from the free radicals, which may otherwise cause various diseases.

Chapter 2

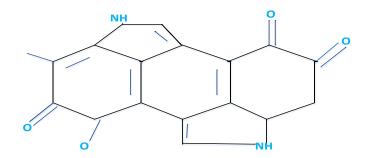


Figure 2-5: Chemical structure of Melanin

2.8.3 P-cymene

P-cymene is found in many plants (Benchaar et al., 2008; Singh et al., 1999). It is used as an important agent in many drugs (Selvaraj et al., 2002). It is widely present in orange juice, grape fruit, mandarin, carrots, raspberries, butter, nutmeg, oregano, and almost in every spice (Siani et al., 1999). P-cymene have anti-inflammatory (Bonjardim et al., 2012), analgesic (Quintans et al., 2013) and anti-tumor effects (Li et al., 2016). It also possesses antioxidant effects (Nickavar et al., 2014; Yvon et al., 2012).

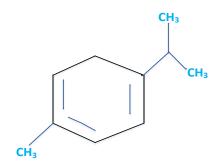


Figure 2-6: Chemical structure of P-cymene

2.8.4 Pinene

Pinene is the natural compound found in citrus fruits. Pinene has various potential benefits such as it has anti-inflammatory, anti-microbial, antioxidant and neuroprotective effects (Di Rauso Simeone et al., 2020).

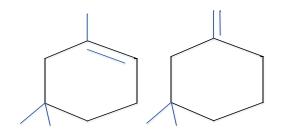


Figure 2-7: Chemical structure of a and b pinene

2.8.5 Alkaloid

Alkaloid is the natural compound found in many plants. Presence of alkaloids in plants protect them from destruction of various insects (Zhang et al., 2005).

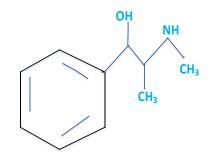


Figure 2-8: Chemical structure of Alkaloid

2.8.6 Limonene

Limonene is chemical found mostly in citrus fruits (Rodríguez et al., 2011). Limonene has several health benefits and belongs to the group of terpenes (Miguel, 2010). These chemicals have strong aromas which protect plants from predators. Limonene also have anti-inflammatory (Yoon et al., 2010) and antioxidant effects (Miguel, 2010).

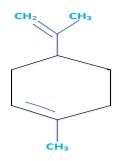


Figure 2-9: Chemical structure of Limonene

Chapter 2

2.8.7 Camphene

Camphene is a monoterpene found in many plants (Russo & Marcu, 2017). Terpenes are those chemicals which have strong aromas which protect plants from predators (Miguel, 2010).

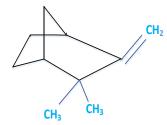


Figure 2-10: Chemical structure of Camphene

Table 2-9: Extracts of	Capsicum frutescens	L. and Nigella Sativa	effective against microbes

Substrates	Effective against microbes	References
Extracts of	Bacillus cereus and subtilis, Clostridium	(De Lucca et al., 2006;
Capsicum	sporogenes, and tetani, Streptococcus pyogenes,	Koffi-Nevry et al., 2012;
frutescens L.	Vibrio cholerae, Staphylococcus aureus, and	Shariati et al., 2010)
	Salmonella typhimurium	
Nigella	Bacteria (gram-positive and gram-negative),	(Alshareef, 2019; Chaieb et
sativa	Candida albicans, Staph. Aureus, Esch. Coli,	al., 2011; Halawani, 2009;
	Gram-positive cocci, Microsporum canis,	Hanafy & Hatem, 1991;
	Trichophyton mentagrophytes, Trichophyton	Hannan et al., 2008;
	interdigitale, Four species of Trichophyton	Hosseinzadeh et al., 2007;
	rubrum, Staphylococcus epidermidis,	Khan et al., 2003)
	Micrococcus luteus, Listeria monocytogene,	
	Bacillus cereus, Vibrio parahaemolyticus,	
	Pseudo. aeruginosa, Salmonella enteritidis, Sal.	
	Typhimurium and Shigella flexneri	

2.9 ANTIMICROBIAL MECHANISM

Plants have plethora of constituents that impose antimicrobial effects (Casciaro et al., 2019; Dewapriya et al., 2018; Mickymaray et al., 2016). Basically, two major groups of antibiotics extracted from plants are; (1) Phytoanticipins and (2) Phytoalexins. Phytoanticipins inhibit the microbial actions whereas Phytoalexins are generally antioxidants (Sukalingam et al., 2017, 2018).

Antimicrobials secondary metabolites extracted from plants are grouped into three types; (1) Phenolic compounds (2) Terpenes and (3) Alkaloids. These antimicrobial extracts disrupts cell wall, induce reactive oxygen species production, stops the formation of biofilm, inhibit cell wall construction, inhibit microbial DNA replication, inhibit energy synthesis, and inhibit bacterial toxins to the host (Awolola et al., 2014; Cushnie et al., 2007; El-Adawi, 2012; Ganesan & Xu, 2017b, 2017c; Górniak et al., 2019; Stapleton et al., 2004). In spite of all these effects these antimicrobials also prevent antimicrobial resistance and synergetic to antibiotics, which helps in killing pathogenic organisms.

Below table shows some anti-microbial agents and their functions;

Sr.	Name of anti-microbial agent	Function
No		
1.	Sulphonamides	Inhibit folate synthesis at initial stages
2.	Amphenicols, e.g.	Inhibits the synthesis of protein
	chloroamphenicol	
3.	Spectinomycin	Inhibits the synthesis of protein
4.	Trimethoprim	Disturbs the tetrahydrofolate synthesis
		pathway
5.	Tigecycline	Inhibits the synthesis of protein
6.	Erythromycin	_
7.	Linezolid	_
8.	Doxycycline	
9.	Penicillin	Interfere the synthesis of the bacterial cell wall
10.	Carbapenems	
11.	Gentamicin	Inhibits the synthesis of protein
12.	Quinolones	Blocks bacterial DNA replication
13.	Vancomycine	Inhibit cell wall synthesis
14.	Polymyxin B	Disrupts cell membrane

 Table 2-10: List of some anti-microbial agents and their respective functions (Ullah & Ali, 2017)

2.9.1

Antimicrobial mechanism of bioactive compounds

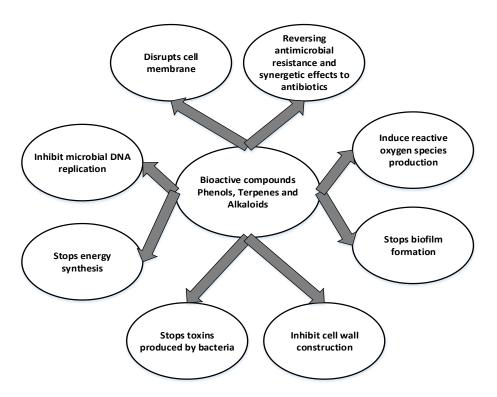


Figure 2-11: Antimicrobial mechanism of bioactive compounds

2.9.1.1 Disrupts cell membrane

Phenolic compounds belong to the family of aromatics containing hydroxyl functional group which when react with the microorganism disrupt their cell wall (Ganesan & Xu, 2017a, 2018). These aromatics are thrown to the microbe's cell surface and thus they cause the disruption to their cell walls (Ganesan & Xu, 2017a). Flavonoids are phenolic compounds which form complex relationship with bacterial cell wall and thus disrupt its structure (Ganesan & Xu, 2017b, 2017c). Some of the flavonoids such as (1), rutin (2), naringenin (3), sophoraflavanone (4), tiliroside (5) and 2, 4, 6-trihydroxy-30-methyl chalcone cause the disruption of S.aureus and S.mutans microbes's (Sanver et al., 2016; Tsuchiya & Iinuma, 2000). Terpenes contains isoprene, which causes the disruption of microbial membranes (Guimarães et al., 2019; Moghrovyan et al., 2019).

Chapter 2

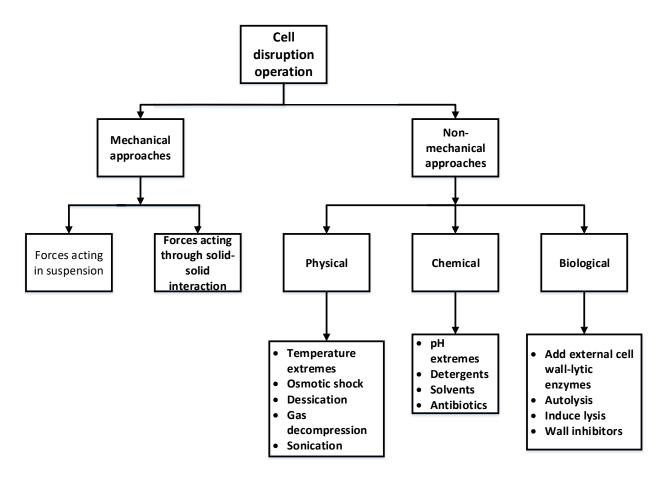


Figure 2-12: Promote cell wall disruption and lysis

2.9.1.2 Reversing antimicrobial resistance and synergetic effects to antibiotics

Disease causing bacteria have resistance against various antibiotics due to different mechanisms. These mechanisms are; (1) resistance through transformation, transduction, and conjugation phenomenon's (2) antibiotics deactivation through the processes of phosphorylation, adenylation, or acetylation (3) bacteria prevent the interaction of drug and antibiotic (4) efflux of the antibiotic from the cell (Bush, 2013; Bush & Fisher, 2011; Munita & Arias, 2016).

2.9.1.3 Induce reactive oxygen species production

Reactive oxygen species are formed by the partial reduction of molecular oxygen that targets the exertion of antimicrobial activity which helps defensing against various microbes. The method of catechins involves augmentation of the production of oxidative stress causes disruption of cell wall (Fathima & Rao, 2016). In another study it was shown that catechins cause disruption of membrane in S.aureus (Górniak et al., 2019).

2.9.1.4 Inhibit biofilm formation

Biofilms developed by bacteria are 100-1000 times more resistant to antimicrobial drugs (Kahaliw et al., 2017). In some studies it was indicated that flavonoids aggregates the multicellular composites and thus inhibit bacteria growth. Flavonoids such as; (1) galangin, (2) isovitexin (3) 3-O-octanoyl-epicatechin and (4) 5, 7, and 40-trihydroxyflavanol cause the aggregation of S. aureus and S. mutans thus inhibiting their growths (Awolola et al., 2014; Cushnie et al., 2007; El-Adawi, 2012; Stapleton et al., 2004).

2.9.1.5 Stops cell wall construction

Bacterial cell wall causes osmoregulation, respiration, transport mechanism, and biosynthesis of lipids. For these functions' membrane health is very important and thus the disruption of membrane leads to bacterial death (Reygaert, 2014).

2.9.1.6 Stops toxins produced by bacteria

Catechins and some other flavonoids cause disruption of bacteria cell wall and in this way inhibits the discharge of toxins (Lee et al., 2011; Shah et al., 2008).

2.9.1.7 Inhibit energy synthesis

Production of energy or ATP is important for the development of bacteria on which living systems depends. Flavonoids disrupts the cell wall of S. aureus (Kuete et al., 2011).

2.9.1.8 Inhibit microbial DNA replication

Alkaloids inhibits the respiration of cell and stops the production of various enzymes that are involved in multiplication of cells (Zielińska et al., 2019). Bioactive compounds present in plants such as quercetin, nobiletin, myricetin, tangeritin, genistein, apigenin, chrysin, kaempferol, and 3, 6, 7, 30, 40-pentahydroxyflavone are DNA disrupters (Plaper et al., 2003; Ulanowska et al., 2006; Verdrengh et al., 2004; Vijayakumar et al., 2018; Wu et al., 2008).

2.9.2 Antimicrobial mechanism of Thymoquinone

Bacterial pathogens are the main causes of respiratory system diseases i.e. pneumonia and bronchitis. Biofilm formation is the important activity of microbes in their virulence strategy. Thymoquinone stops biofilm formation in some bacterial species and inhibit the oxidative activity of microbes present in biofilm that eventually reduces the number of microbes (Khan, 2018).

Since fungal infections are increasing due to immense usage of immunosuppressive chemotherapeutics against malignant diseases and in the transplantation of organs. Thymoquinone is effective against fungus causing pathogens like *Candida albicans* and *Aspergillus fumigatus* (Khan, 2018).

2.9.3 Antimicrobial mechanism of Melanin

Upon infection, melanin formation around a pathogen blocks its proliferation (Nosanchuk & Casadevall, 2006).

2.9.4 Antimicrobial mechanism of P-cymene

P-cymene by accumulating in bacterial membrane and changes its structure. P-cymene has significant impact against protein and cause the death of E.coli (Marchese et al., 2017).

2.9.5 Antimicrobial mechanism of Pinene

Pinene have antimicrobial activity against C. albicans, C. neoformans, R. oryzae and MRSA. The combination a pinene with commercially present antimicrobials are important because they reduce MIC, cause antimicrobial activity and decrease toxicity. Pinene also works against the formation of biofilm (Silva et al., 2012).

2.9.6 Antimicrobial mechanism of Alkaloid

Alkaloids are produced naturally by plants and they protect then against pathogens. Alkaloids disrupt cell membrane of microbes, inhibit cellular division, inhibit efflux pump, and inhibit biofilm formation (Mittal & Jaitak, 2019).

2.9.7 Antimicrobial mechanism of Limonene

Limonene has antibacterial activity with significant effect against bacteria (gram-negative and gram positive) as well as against fungi (Han et al., 2020).

2.9.8 Antimicrobial mechanism of Camphene

Camphene penetrate into bacterial cell membrane and disrupts bacterial metabolic function, and cellular activities (Er et al., 2018).

2.10 TECHNIQUES FOR THE PREPARATION OF NIGELLA SATIVA

Preparation steps of Nigella sativa in literature against microbes are listed in table below;

Chapter 2

Name of material	Methodology	Reference
Nigella sativa	• Dry to remove moisture.	(Bhalani &
	• Powdered.	Shah, 2015)
	• Extraction with petroleum and methanol.	
_	• Dry.	(Nawarathne
	• Soak in hexane, ethyl acetate and methanol.	et al., 2019)
	• Evaporate using rotary evaporator.	
-	• Air dry.	(Manju et
	• Soak in water.	al., 2016)
	• Hydro distillation.	
	• Heated to vapor.	
	• Condense.	
	• Extraction.	
-	• Powder.	(Liaqat et
	• Mix in ethanol and water.	al., 2018)
	• Prepare extract with Soxhlet apparatus.	
	• Extraction with ether.	(Roy et al.,
		2006)
	• Mixture of <i>Nigella Sativa</i> and water.	(Bakathir &
		Abbas,
		2011)

Table 2-11: Techniques for the preparation of Nigella sativa

2.11 TECHNIQUES FOR THE PREPARATION OF *CAPSICUM FRUTESCENS L*.

Preparation steps of *Capsicum frutescens L*. in literature against microbes are listed in table below;

Chapter 2

Name of material	Methodology	Reference
Capsicum	• Boil in ethanol.	(Oguzie et
frutescens L.	• Triple filter.	al., 2013)
	• Extraction.	
	• Wash.	(Koffi-
	• Oven dry.	Nevry et al.,
	• Powder.	2012)
	• Boil.	
	• Filter.	
	• Evaporation.	
	• Mixture of <i>Capsicum Frutescens L</i> . with silver nitrate, garlic and ginger.	(Otunola et
		al., 2017)
-	• Acetonitrile extract of <i>C. frutescens</i> .	(Nascimento
		et al., 2014)
-	• Dry.	(Doğan et
	• Add solvent.	al., 2018)
	• Filter.	
	• Evaporate.	
	• <i>Capsicum frutescens L.</i> extract.	(Cao & Zhu,
		2007)

 Table 2-12: Techniques for the preparation of Capsicum frutescens L.

MATERIALS AND METHODS

3.1 REAGENTS

Nutrient agar (Chomini et al., 2020) and nutrient broth were used for the growth of both *Pseudomonas aeruginosa* and *Klebsiella species*. Agar and broth were collected from Biotechnology lab, IESE, NUST. Bacteria's were collected from Microbiology lab, IESE, NUST. Plant materials includes *Nigella sativa* and *Capsicum frutescens L* both were purchased from local market. Diclofenac free acid antibiotic was also purchased from local market.

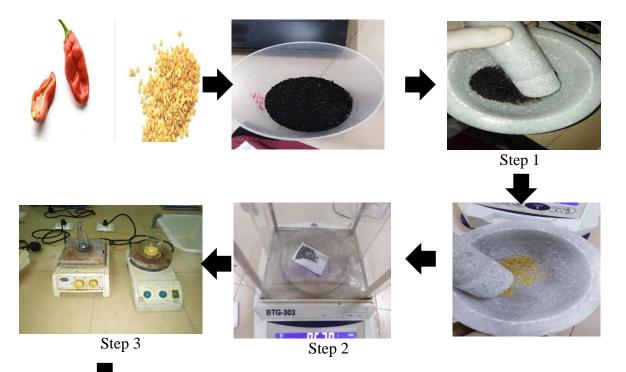
3.2 WASHING AND STERILIZATION OF GLASSWARE

All glassware used in the experiments was washed thoroughly and then sterilized by autoclaving at 121°C and 15 psi pressure for 1 hour and 30 minutes. All glassware was dried in oven at 150°C for 1 hour after sterilization.

Step 1

Step 2

Step 4


3.3 PREPARATION OF MEDIA

Nutrient broth and Nutrient agar were prepared by adding 6.5g of broth and 14g of agar in 500 ml of distilled water respectively. Both were then autoclaved at 121°C and 15 psi for 1 hour 30 minutes. For sterility test the broth was placed in incubator at 37°C for 24 hours while agar was poured in petri plated and then placed in incubator at 37°C for 24 hours.

3.4 *NIGELLA SATIVA* AND *CAPSICUM FRUTESCENS L*. COLLECTION AND PREPARATION

N. sativa and *Capsicum frutescens L.* were purchased from the local market. After grinding them manually in a domestic grinder they were allowed to mix separately in distilled water. Stock solutions were made as 2, 5, 7 and 10 g *Nigella sativa* in 20 ml distilled water respectively. Then *N. sativa* and distilled water solution was mix thoroughly on a shaker so that homogenous mixture was obtained same step was performed for *Capsicum frutescens L.* and distilled water solution. After this both are filter one by one in filtration assembly using Whatman filter paper No 1 and then filtered samples was placed in autoclave for sterilization at 121°C and 15 psi for 1 hour and 30 minutes. After this samples are stored at 8°C.

Step 4

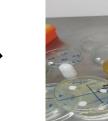
3.5 **BACTERIAL INOCULUM PREPARATION**

Pseudomonas aeruginosa and Klebsiella species control samples was taken from Microbiology lab of Institute of Environmental Sciences and Engineering, National University of Sciences and Technology, Islamabad Pakistan.

The day prior to test picked isolated colonies of bacteria's and they were allowed to grow 48 hours in 5ml broth medium at 37°C. Standardized the inoculum size by measuring the absorbance at 600nm in spectrophotometer. At the time of test, absorbance was 0.5 at 600 nm.

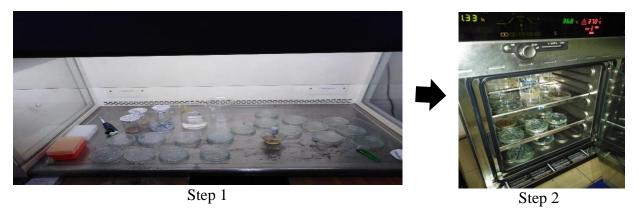
Step 1

Step 5


Step 4

3.6 PREPARATION OF FILTER PAPER DISCS

Through micropipette 5, 10, 15 and 20µl dilutions of respective samples were loaded on filtered paper discs and then discs were allowed to completely dry in laminar flow hood for 30 minutes. After this, discs were stored in refrigerator at 8°C. When the media was poured and bacteria were streaked on media, carefully placed dried discs with sterilized spatula on media and slightly tap it on the media so that the discs makes fully contact with the media.


Step 1

3.7 POURING OF MEDIA

Prepared nutrient agar was poured carefully on sterilized and autoclaved petri plates in laminar flow. After pouring 150µL nutrient agar on petri plates, agar plates were placed in oven at 37°C for 24 hours for the sterility test. If no bacterial colonies were found on agar plates, then these plates were used for further tests. If slight contamination found on agar plates, then the plates were discarded.

3.8 STREAKING OF BACTERIA

Bacterial single colony was picked and were streaked on petri plate by sterilized swabs. *Pseudomonas aeruginosa* and *Klebsiella species* were streaked on separate plates. After this inhibition zones were measured. On the maximum zone of inhibition conditions both bacterial colonies were streaked one by one on single agar plate and combine bacterial effect was measured.

Figure 3-1: Streaking

3.9 LOADING OF FILTER PAPER DISCS

When the agar plates were prepared then prepared discs were placed on them. Each plate was divided into 4 regions. One first region *Nigella sativa* disc, on second disc *Capsicum Frutescens L.*, on third diclofenac free acid antibiotic as a positive control and on four region distilled water disc was placed. After placing all discs, they were allowed to have fully contact with the media by pressing them slightly. Then these petri plates were placed in Oven at 37°C for 24 hours to check the inhibition zones.

3.10 KIRBY BAUER METHOD OF PLANT MATERIAL SUSCEPTIBILITY TESTING (DISC DIFFUSION METHOD)

Disc diffusion method was used for the evaluation of antimicrobial effects of *Nigella sativa* and *Capsicum frutescens L.* 2, 5, 7, 10g per 20ml distilled water stock solution of both plants were prepared and these stock solution further dilutions of 5,10,15 and 20 μ l were poured on prepared discs by micropipette as shown in table below;

Organism	Plants	Stock solution	Dilutions
		g/20ml	μl
Pseudomonas aeruginosa	Nigella sativa	2	5
			10
			15
	_		20 5
		5	
			10
			15
			20 5
		7	
			10
			15
			20
	Capsicum frutescens L.	2	5
			10
			15
			20 5
		5	
			10
			15
			20
		7	5
			10
			15
Kishes in the second se		2	20 5
Klebsiella species	Nigella sativa	2	
			10
			15
			20

Table 3-1: Disc diffusion method

Organism	Plants	Stock solution	Dilutions
		g/20ml	μl
		5	5
			10
			15
			20
		7	5
			10
			15
			20
		10	5
			10
			15
			20
	Capsicum frutescens L.	2	5
	1 3		10
			15
			20
		5	5
			10
			15
			20
		7	5
			10
			15
			20
		10	5
		-	10
			15
			20
Pseudomonas aeruginosa +	Nigella sativa	5	10
Klebsiella species	Capsicum frutescens L.	5	10

3.11 FTIR ANALYSIS

FTIR analysis of plant material and distilled water solution was conducted for the determination of active antimicrobial groups in them. FTIR is rapid technique with minimum sample preparation, economical, simple handling and require less sample compared to GC-MS (Aysal et al., 2007; Nivetha & Prasanna, 2016).

Step 1

Step 2

RESULTS AND DISCUSSIONS

4.1 FLOW DIAGRAM FOR THE DATABASE SEARCH OF PUBLICATIONS

Firstly 480 studies abstracts were reviewed then from these 360 studies included for full text review, from these 360; 150 studies were excluded because no relevant synergy was reported in them and from 360, 245 studies are included in this research in which 35 studies were added from conference proceeding, 15 were added through reference reviews and 195 were added from google scholar.

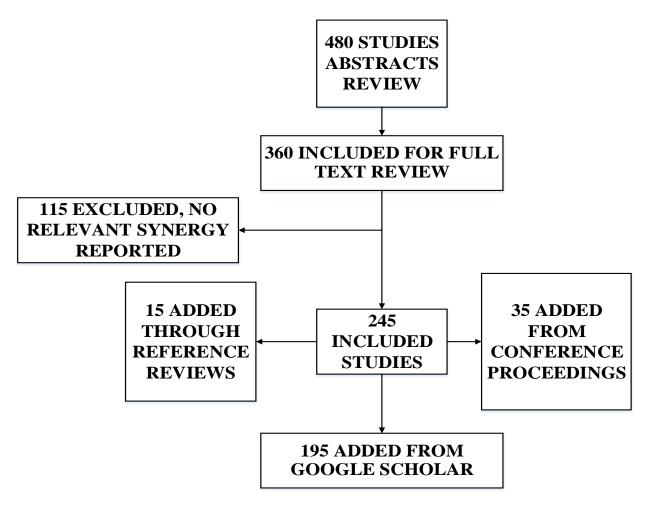


Figure 4-1: Flow diagram database search of publications

4.2 COMPARATIVE ANALYSIS OF USAGE OF DIFFERENT SUBSTANCES TO CONTROL MICROBIAL INFECTIONS

From meta-analysis it was concluded that previous research works were on plant extracts, plant materials or on plant derived products as shown in table below;

Sr No.	Potential component	No of studies	Relative efficiencies (%)
1.	Plant extracts (Essential oil, Coumarine, Vanillic acid, Naphthoquinones, Allicin, garlic acid, Amorphastibol and Alkaloids etc)	98	94
2.	Plant materials (Nigella sativa, Capsicum frutescens L., Aloe, Malus domestica, Ocimum basilicum, Piper nigrum and Cyanococcus etc)	74	75
3.	Plant derived products (Antibiotics and related substances)	93	90

Table 4-1: Comparative analysis of usage of different substances to control microbial infections

4.3 ANALYSIS OF WORLDWIDE MORTALITY DUE TO BACTERIAL

SPECIES

Among different bacterial species 61% of worldwide deaths are due to *Pseudomonas aeruginosa* and 69% of worldwide deaths are due to *Klebsiella species*. This high death rate urges the researcher of present study to find effective antibacterial solution against *Pseudomonas aeruginosa* and *Klebsiella species* infections (Chessa et al., 2015; Dutta et al., 2013; Ko et al., 2002; Linden et al., 2003; Ramirez-Garcia et al., 2016; Sati et al., 2019; Siegman-Igra et al., 2002; Van Delden & Iglewski, 1998; Younes et al., 2016).

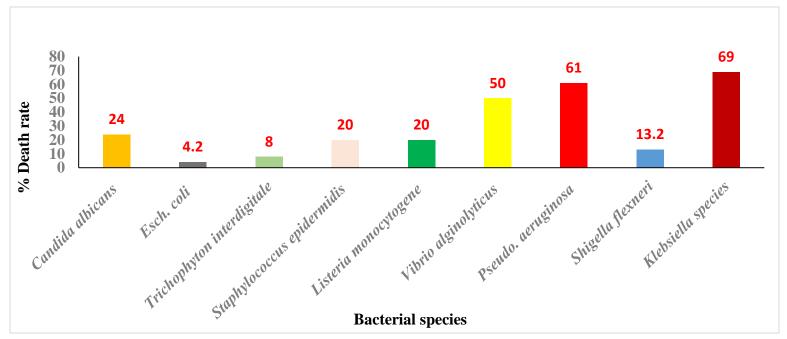


Figure 4-2: Analysis of worldwide mortality due to bacterial species

4.4 INFECTIOUS DISEASES CURED BY *NIGELLA SATIVA* AND *CAPSICUM FRUTESCENS* L.

N. sativa and *Capsicum frutescens* L. can cure cancer, stiff joints, cough, headache, skin infection, hair whitening, osteoarthritis, blood pressure, they have anti-viral, anti-fungal and anti-microbial properties (Bakhtiar & Sardo; Gbadamosi & Erinoso, 2016; Hussein, 2015; Kunnumakkara et al., 2009; Ramzan et al., 2017; Saad, 2015; Sahai et al.; Saleh et al., 2018; Singh, 2008; Taha et al., 2019) as shown in table below:

Sr. No	Diseases	Nigella sativa	Capsicum frutescens L.
1.	Cancer	×	✓
2.	Stiff joints	~	✓
3.	Cough	~	✓

Table 4-2: Infectious diseases cured by Nigella sativa and Capsicum frutescens I.

Sr. No	Diseases	Nigella sativa	Capsicum frutescens L.
4.	Headache	 ✓ 	~
5.	Skin infection	~	✓
6.	Hair whitening	~	~
7.	Osteoarthritis	~	~
8.	Blood pressure	~	~
9.	Anti-viral properties	~	~
10.	Anti-fungal properties	~	~
11.	Anti-microbial properties	~	✓

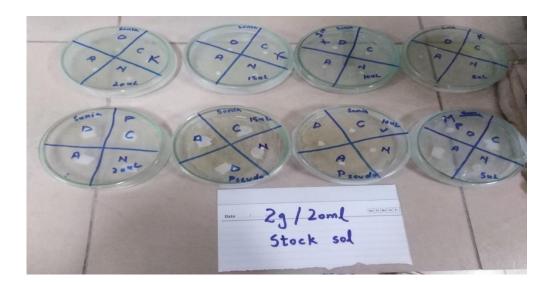
4.5 GROWTH OF BACTERIAL SPECIES

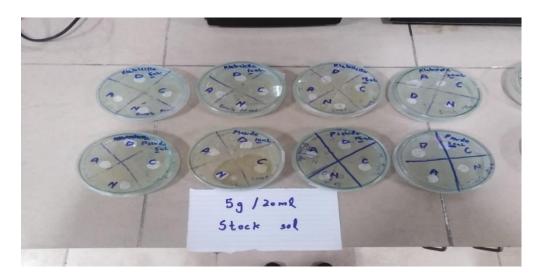
After collecting bacterial species from controlled environment inoculum size was standardized by measuring the absorbance at 600nm in spectrophotometer. At the time of test, absorbance was 0.5 at 600 nm.

Figure 4-3: 0.5 absorbance at spectrophotometer

When the bacterial species are grown dip sterile swab in nutrient broth containing bacteria's and streak on agar plates.

Figure 4-4: Growth of Pseudomonas aeruginosa and Klebsiella specie


4.6 DISC DIFFUSION METHOD


- For the Pseudomonas aeruginosa observed zone of inhibition was 30mm and 25mm by 5g/20ml *Capsicum frutescens L. Nigella sativa* for 10uL dilution respectively.
- For *Klebsiella specie* no zone of inhibition was observed by *Capsicum frutescens L*. while 1mm zone of inhibition was observed by 7g/20ml *Nigella sativa* for 20uL dilution.

• Positive results of *Nigella sativa* and *Capsicum frutescens L*. were evaluated against both bacteria streaked on single petri plate and by *Nigella sativa* 20mm zone of inhibition was observed while no zone of inhibition was observed by *Capsicum frutescens L* as shown in table below;

Organism	Plants	Stock solution g/20ml	Dilutions µl	Zones of inhibition (mm)
Pseudomonas	Nigella sativa	5	10	25
aeruginosa	Capsicum frutescens L.	5	10	30
Klebsiella specie	Nigella sativa	7	20	1
	Capsicum frutescens L.	7	20	-
Pseudomonas	Nigella sativa	5	10	20
aeruginosa+ Klebsiella specie	Capsicum frutescens L.	5	10	-

Table 4-3	Observed	outcomes
-----------	----------	----------

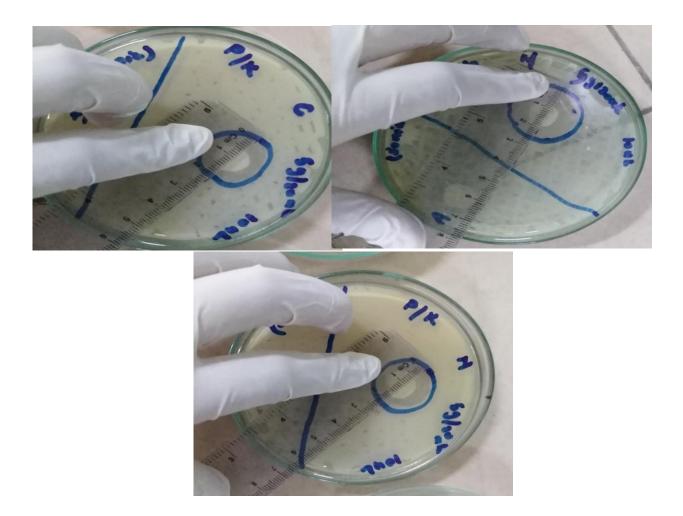
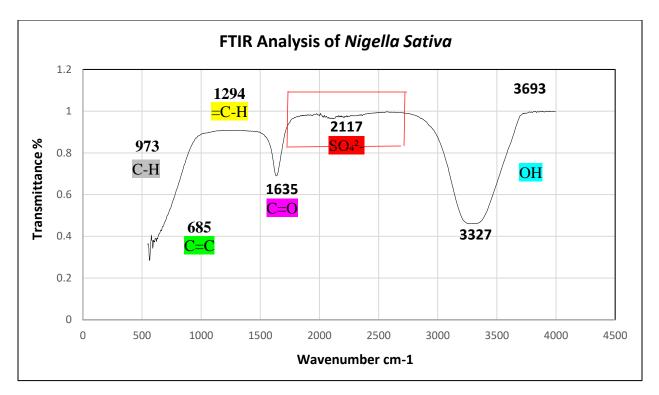


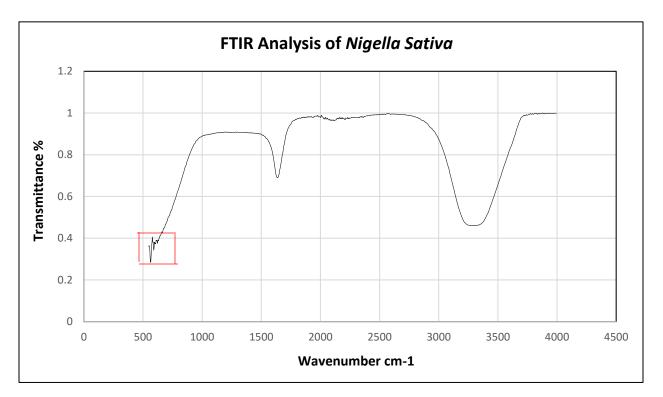
Figure 4-5: Measurement of zone of inhibition

4.7 INTERPRETATION AND REPORTING OF THE RESULTS

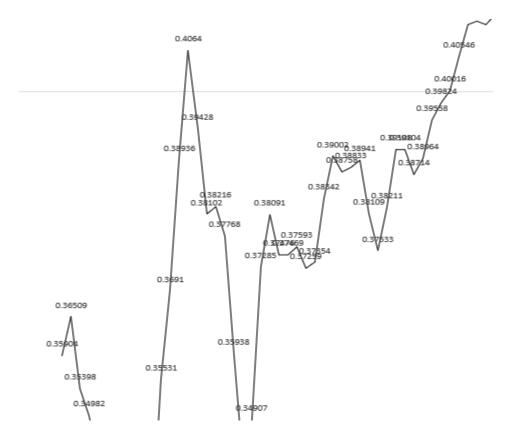

Using the published Clinical & Laboratory Standards Institute (CLSI) guidelines, determine the susceptibility or resistance of the organism to each plant material. For each plant material, indicate on the recording sheet whether the zone size is susceptible (S), intermediate (I), or resistant (R) based on the interpretation chart. Susceptible means that the plant material is effective against bacterial species, intermediate means higher dose is needed to prevent bacterial growth while resistant means that the plant material is ineffective against bacterial species. Table below shows that the 20mm zone of inhibition of *N. sativa* has a susceptible effect.

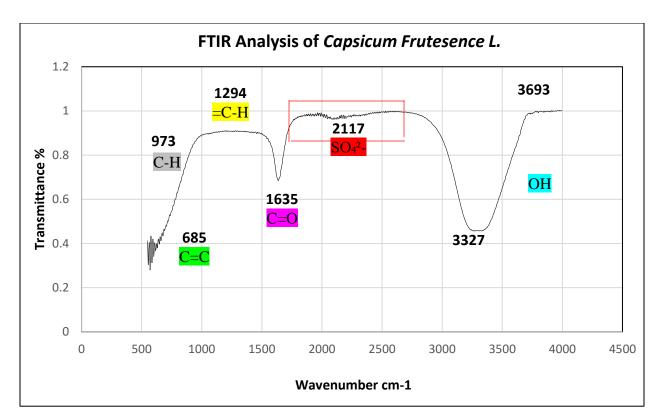
	Resistant	Intermediate	Sensitive	Result
Amikacin	≤14	15-16	≥17	Therapeutic success
Cefoperazone	≤15	16-20	≥21	Uncertain therapeutic effect
Cefotaxime	≤14	15-22	≥23	Uncertain therapeutic effect
Gentamicin	≤12	13-14	≥15	Therapeutic success
Piperacillin	≤17	-	≥18	Therapeutic success
Tetracycline	≤14	15-18	≥19	Therapeutic success
Ticarcillin	≤14	-	≥15	Therapeutic success
Tobramycin	≤12	13-14	≥15	Therapeutic success

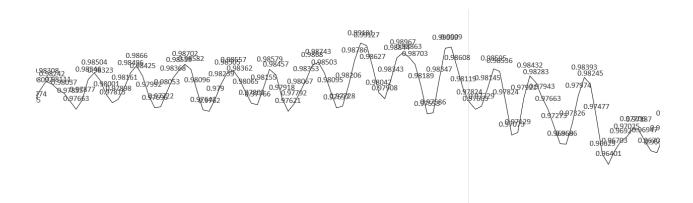
 Table 4-4: Pseudomonas aeruginosa and Klebsiella species recommended antimicrobial disks interpretative zone sizes (Hudzicki, 2009)

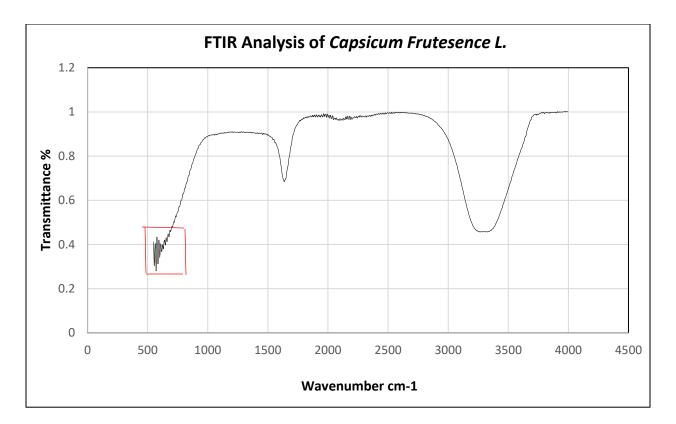

4.8 FTIR ANALYSIS OF *NIGELLA SATIVA* AND *CAPSICUM FRUTESENCE L*.

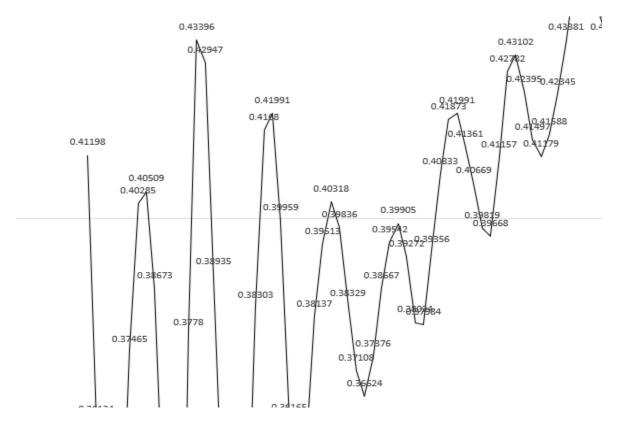
The FTIR graph shows that the peaks for the plant samples was in the range of 4000–500 cm⁻¹. Spectra of *N. sativa* and *Capsicum* were analysed and the information extracted was as follows; sharp peak at 1636 cm⁻¹ is of aldehyde carbonyl C=O (Masyithah et al., 2017). This main peak corresponds to high levels of carboxylic acid in *N. sativa* and *Capsicum*. The peak at 2117 cm⁻¹ is assigned to the sulphate group (Prasad et al., 2005). 1294 cm⁻¹ peak is attributed to the CH₂ alkanes (Li et al., 2013). The peak at 973 cm⁻¹ is assigned to the ethane C-H bending vibration absorption (Li et al., 2013). The peak at 685 cm⁻¹ corresponds to alkenes (Li et al., 2013). The peak at 685 cm⁻¹ corresponds to alkenes (Li et al., 2013). The peak at 685 cm⁻¹ corresponds to alkenes (Li et al., 2013). The peak at 685 cm⁻¹ corresponds to alkenes (Li et al., 2013).




Red box spectrum is shown below:




Red box spectrum is shown below:



Red box spectrum is shown below:

Red box spectrum is shown below:

Sr No.	Peak value	Bond	Functional	Pharmocalogical Activity	Reference
			group		
1.	2117	SO ₄ ² -	sulphate	Sulphated flavonoids have anticoagulant,	(Barron et
			group	anti-inflammatory, and antitumor	al., 1988;
				activities.	Calzia et al.,
					2015;
					Gledhill et
					al., 2007;
					Guglielmone
					et al., 2005;
					Teles et al.,
					2015)
2.	1635	C=O	aldehyde	C=O are the carboxylic acids and their	(Badea &
			carbonyl	derivatives. These are used in	Radu, 2018)
				pharmaceutical drugs and can also be	
				used antimicrobials.	
3.	1294	=С-Н	alkanes	Alkanes have little biological activity.	(Holla et al.,
					2001)
4.	973	C-H	ethane	-	
5.	685	C=C	alkenes	Alkenes have little biological activity.	(Tsukamoto
					et al., 1994)

 Table 4-5: FTIR analysis of N. sativa and Capsicum frutescens L.

A slight difference in the minor peaks can be observed in FTIR graphs of *Nigella sativa* and *Capsicum frutescens* L. however no significant difference is seen in overall spectrum.

Presently the major cause of restlessness in the whole world is the spreading of infectious diseases. So, there is a need to save human beings by adopting suitable preventive measures such as using antimicrobial agents on regular basis. Therefore, it is proposed in this work that *Nigella Sativa* should be considered against different microbial infections, reasoning the raw material cost is low as well as it is easily available to every human being.

Most plant materials are active against only gram-positive bacteria while some are active against both gram positive and gram-negative bacteria. In present study *Capsicum frutescens* L. does not show inhibition zone when combined bacterial species were streaked on a single plate it may be due to the fact that *Capsicum frutescens* L. is not much effective against gram negative bacteria (Koffi-Nevry et al., 2012). A.R. McCutcheona in his paper proved that the presence and absence of light also effects the activity of plant materials on bacteria. This can be a reason that *Capsicum frutescens* L. didn't show any antibacterial effect (McCutcheon et al., 1992). Neelam in her paper showed that n-hexane and chloroform extracts of *Capsicum frutescens* L. are effective against gram negative bacteria (Morsi, 2000). Mashhad in his paper showed that aqueous extract of *N. sativa* did not show any effect against *Candida albicans, Staphylococcus aureus* [CPSA] and Pseudomonas aeruginosa but other extracts showed significant effect (Mashhadian & Rakhshandeh, 2005). Emeka et al., 2015).

These variations in the results are due to different preparation techniques used in these papers and due to different environmental conditions.

4.5 COST ESTIMATION

Table below shows the cost of different antibiotics consumed in comparison with *Pseudomonas aeruginosa* and *Klebsiella specie*. The associated cost of *Nigella sativa* and *Capsicum frutescens* L. can be seen significantly lower in prices. This shows that *Nigella sativa* and *Capsicum frutescens L*. are much economical as compared to market available antibiotics.

Antibiotics	Price (Rs. /Pack)	Plants	Price (Rs. /kg)
Amikacin	360	Nigella sativa	90
Cefoperazone	225	Capsicum Frutescens L.	100
Cefotaxime	110		

Table 7-0. Cost command	Table 4	-6: Cost	estimation
-------------------------	---------	----------	------------

Antibiotics	Price (Rs. /Pack)	Plants	Price (Rs. /kg)
Gentamicin	258		
Piperacillin	807		
Tetracycline	801		
Ticarcillin	2720	1	
Tobramycin	152		

CONCLUSIONS AND RECOMMENDATIONS

- Meta-analysis depicted that gram-negative bacteria are resistant to multiple drugs and are increasingly resistant to most available antibiotics.
- Through extensive meta-analysis it was found that gram-negative bacterial species i.e. *Pseudomonas aeruginosa* and *Klebsiella species* account for worldwide mortality rates of 61 and 69%, respectively
- For the *Pseudomonas aeruginosa* observed zone of inhibition was 30mm and 25mm by 5g/20ml *Capsicum frutescens L. Nigella sativa*, respectively for 10 µL dilution.
- For *Klebsiella specie* no zone of inhibition was observed by *Capsicum frutescens L*. while 1mm zone of inhibition was observed by 7g/20ml *Nigella sativa* for 20 μL dilution.
- Positive results of *Nigella sativa* and *Capsicum frutescens L*. were evaluated against both bacteria streaked on single petri plate and by *Nigella sativa* 20mm zone of inhibition was observed while no zone of inhibition was observed by *Capsicum frutescens L*. This 20mm zone of inhibition showed susceptible results in Amikacin, Gentamicin, Piperacillin, Tetracycline, Ticarcillin and in Tobramycin antibiotics. While has intermediate effect in Cefoperazone and in Cefotaxime antibiotics. Susceptible results shows the therapeutic success in the field of pharmacology.
- FTIR analysis of *Nigella sativa* and *Capsicum frutescens L*. showed the presence of alcohol or phenol, sulphate group, major peak of aldehyde carbonyl, alkanes, ethane and alkenes. Alcohol or phenol and sulphate flavonoids have anticoagulant, anti-inflammatory, and antitumor activities. Carboxylic acids and their derivatives are used in pharmaceutical drugs and can also be used as antimicrobials. While Alkanes and Alkenes have little biological activity.
- *Capsicum frutescens L.* did not show inhibition zone when combined bacterial species were streaked on a single plate. It may be due to the fact that *Capsicum frutescens L.* is not much effective against gram negative bacteria. Also, various other factors can be accounted for such as presence and absence of light also effects the antibacterial activity. These variations in the results as compared to previous literature are due to different preparation techniques used in these papers and due to different environmental conditions.

- The results indicated that *Nigella sativa* is more effective than *Capsicum frutescens* L. against combine bacterial species. Thus, *N. sativa* can be used as an effective antimicrobial agent against selected bacterial infections.
- Further *N. sativa* effect on other bacterial species should be evaluated in future.

REFERENCES

- Agarwal, R., Kharya, M., & Shrivastava, R. (1979). Antimicrobial & anthelmintic activities of the essential oil of Nigella sativa Linn. *Indian Journal of Experimental Biology*, *17*(11), 1264.
- Ahmad, A., Rehman, M. U., Ahmad, P., & Alkharfy, K. M. (2020). Covid-19 and thymoquinone: Connecting the dots. *Phytotherapy Research*.
- Ajila, C., Naidu, K., Bhat, S., & Rao, U. P. (2007). Bioactive compounds and antioxidant potential of mango peel extract. *Food Chemistry*, *105*(3), 982-988.
- Ajila, C., Rao, L. J., & Rao, U. P. (2010). Characterization of bioactive compounds from raw and ripe Mangifera indica L. peel extracts. *Food and Chemical Toxicology*, *48*(12), 3406-3411.
- Akpan, A., & Morgan, R. (2002). Oral candidiasis. *Postgraduate Medical Journal*, 78(922), 455-459.
- Al-Farsi, M. A., & Lee, C. Y. (2008). Optimization of phenolics and dietary fibre extraction from date seeds. *Food Chemistry*, 108(3), 977-985.
- Alexander, D. C., Fitzgerald, S. F., DePaulo, R., Kitzul, R., Daku, D., Levett, P. N., & Cameron,
 A. D. (2016). Laboratory-acquired infection with Salmonella enterica serovar
 Typhimurium exposed by whole-genome sequencing. *Journal of Clinical Microbiology*, 54(1), 190-193.
- Ali-Shtayeh, M., Al-Nuri, M., Yaghmour, R. M.-R., & Faidi, Y. (1997). Antimicrobial activity of Micromeria nervosa from the Palestinian area. *Journal of Ethnopharmacology*, 58(3), 143-147.
- Ali, B., & Blunden, G. (2003). Pharmacological and toxicological properties of Nigella sativa. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 17(4), 299-305.
- Alkharfy, K. M., Ahmad, A., Jan, B. L., & Raish, M. (2018). Thymoquinone reduces mortality and suppresses early acute inflammatory markers of sepsis in a mouse model. *Biomedicine & Pharmacotherapy*, *98*, 801-805.
- Alkharfy, K. M., Ahmad, A., Raish, M., & Vanhoutte, P. M. (2015). Thymoquinone modulates nitric oxide production and improves organ dysfunction of sepsis. *Life Sciences*, 143, 131-138.
- Alkharfy, K. M., Al-Daghri, N. M., Al-Attas, O. S., & Alokail, M. S. (2011). The protective effect of thymoquinone against sepsis syndrome morbidity and mortality in mice. *International Immunopharmacology*, *11*(2), 250-254.
- Alshareef, I. A. A. (2019). Antimicrobial Activity of Nigella sativa Seeds Extracts Against Staphylococcus aureus Nasal Isolates among Sudan University of Science and Technology Students Sudan University of Science & Technology].
- Apisariyakul, A., Vanittanakom, N., & Buddhasukh, D. (1995). Antifungal activity of turmeric oil extracted from Curcuma longa (Zingiberaceae). *Journal of Ethnopharmacology*, 49(3), 163-169.
- Awolola, G. V., Koorbanally, N. A., Chenia, H., Shode, F. O., & Baijnath, H. (2014). Antibacterial and anti-biofilm activity of flavonoids and triterpenes isolated from the extracts of Ficus sansibarica Warb. subsp. sansibarica (Moraceae) extracts. *African Journal of Traditional, Complementary and Alternative Medicines*, 11(3), 124-131.
- Aysal, P., Ambrus, A., Lehotay, S. J., & Cannavan, A. (2007). Validation of an efficient method for the determination of pesticide residues in fruits and vegetables using ethyl acetate for extraction. *Journal of Environmental Science and Health, Part B*, 42(5), 481-490.

- Babbar, N., Oberoi, H. S., Uppal, D. S., & Patil, R. T. (2011). Total phenolic content and antioxidant capacity of extracts obtained from six important fruit residues. *Food Research International*, 44(1), 391-396.
- Badea, G. I., & Radu, G. L. (2018). Introductory Chapter: Carboxylic Acids-Key Role in Life Sciences. *Carboxylic Acid: Key Role in Life Sciences*, 1.
- Bakal, S. N., Bereswill, S., & Heimesaat, M. M. (2017). Finding novel antibiotic substances from medicinal plants—antimicrobial properties of Nigella sativa directed against multidrug resistant bacteria. *European Journal of Microbiology and Immunology*, 7(1), 92-98.
- Bakathir, H. A., & Abbas, N. A. (2011). Detection of the antibacterial effect of nigella sativa ground seeds with water. *African Journal of Traditional, Complementary and Alternative Medicines*, 8(2).
- Bakht, J., Noor, N., Iqbal, A., & Shafi, M. (2020). Antimicrobial activity of different solvent extracted samples from the leaves and fruits of Capsicum annuum. *Pak. J. Pharm. Sci*, 33(1), 027-032.
- Bakhtiar, L., & Sardo, P. A. Angiogenesis and Breast Cancer causes, diagnosis, metastasis and treatment with Traditional Avicennian Medicine (TAM).
- Barron, D., Varin, L., Ibrahim, R. K., Harborne, J. B., & Williams, C. A. (1988). Sulphated flavonoids—an update. *Phytochemistry*, 27(8), 2375-2395.
- Benchaar, C., Calsamiglia, S., Chaves, A., Fraser, G., Colombatto, D., McAllister, T., & Beauchemin, K. (2008). A review of plant-derived essential oils in ruminant nutrition and production. *Animal Feed Science and Technology*, 145(1-4), 209-228.
- Berardini, N., Knödler, M., Schieber, A., & Carle, R. (2005). Utilization of mango peels as a source of pectin and polyphenolics. *Innovative Food Science & Emerging Technologies*, 6(4), 442-452.
- Bhalani, U., & Shah, K. (2015). Preparation and evaluation of topical gel of Nigella sativa (kalonji). International Journal of Research and Development in Pharmacy & Life Sciences, 4(4), 1669-1672.
- Bonjardim, L. R., Cunha, E. S., Guimarães, A. G., Santana, M. F., Oliveira, M. G., Serafini, M. R., Araújo, A. A., Antoniolli, Â. R., Cavalcanti, S. C., & Santos, M. R. (2012). Evaluation of the anti-inflammatory and antinociceptive properties of p-cymene in mice. *Zeitschrift für Naturforschung C*, 67(1-2), 15-21.
- Bose, P. (1958). On some biochemical properties of natural coumarins. J. Indian Chem. Soc, 58, 367-375.
- Burdick, E. M. (1971). Carpaine: An alkaloid of Carica papaya: Its chemistry and pharmacology. *Economic Botany*, 363-365.
- Bush, K. (2013). The ABCD's of β -lactamase nomenclature. Journal of Infection and Chemotherapy, 19(4), 549-559.
- Bush, K., & Fisher, J. F. (2011). Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annual Review of Microbiology, 65, 455-478.
- Calzia, D., Oneto, M., Caicci, F., Bianchini, P., Ravera, S., Bartolucci, M., Diaspro, A., Degan, P., Manni, L., & Traverso, C. E. (2015). Effect of polyphenolic phytochemicals on ectopic oxidative phosphorylation in rod outer segments of bovine retina. *British Journal of Pharmacology*, 172(15), 3890-3903.

- Čanadanović-Brunet, J. M., Savatović, S. S., Ćetković, G. S., Vulić, J. J., Djilas, S. M., Markov, S. L., & Cvetković, D. D. (2011). Antioxidant and antimicrobial activities of beet root pomace extracts. *Czech Journal of Food Sciences*, 29(6), 575-585.
- Cao, H., Lai, Y., Bougouffa, S., Xu, Z., & Yan, A. (2017). Comparative genome and transcriptome analysis reveals distinctive surface characteristics and unique physiological potentials of Pseudomonas aeruginosa ATCC 27853. *BMC Genomics*, 18(1), 459.
- Cao, X., & Zhu, X. (2007). Antimicrobial activities of Capsicum frutescens L. extract. *Food Sci. Tech*, *11*, 40.
- Careaga, M., Fernández, E., Dorantes, L., Mota, L., Jaramillo, M. E., & Hernandez-Sanchez, H. (2003). Antibacterial activity of Capsicum extract against Salmonella typhimurium and Pseudomonas aeruginosa inoculated in raw beef meat. *International Journal of Food Microbiology*, 83(3), 331-335.
- Casciaro, B., Calcaterra, A., Cappiello, F., Mori, M., Loffredo, M. R., Ghirga, F., Mangoni, M. L., Botta, B., & Quaglio, D. (2019). Nigritanine as a New Potential Antimicrobial Alkaloid for the Treatment of Staphylococcus aureus-Induced Infections. *Toxins*, 11(9), 511.
- Chaieb, K., Kouidhi, B., Jrah, H., Mahdouani, K., & Bakhrouf, A. (2011). Antibacterial activity of Thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. *BMC Complementary and Alternative Medicine*, *11*(1), 29.
- Chen, J., Tai, C., & Chen, B. (2004). Improved liquid chromatographic method for determination of carotenoids in Taiwanese mango (Mangifera indica L.). *Journal of Chromatography A*, *1054*(1-2), 261-268.
- Chessa, D., Ganau, G., & Mazzarello, V. (2015). An overview of Staphylococcus epidermidis and Staphylococcus aureus with a focus on developing countries. *The Journal of Infection in Developing Countries*, 9(06), 547-550.
- Chitturi, S., Talatam, V. G., & Vuppu, S. (2013). Studies on protein content, protease activity, antioxidants potential, melanin composition, glucosinolate and pectin constitution with brief statistical analysis in some medicinally significant fruit peels. *Der Pharmacia Lettre*, *5*(1), 13-23.
- Chomini, M., Peter, M., Ameh, M., Chomini, A., Bassey, E., & Ayodele, A. (2020). Phytochemical Screening and Antibacterial Activities of Aframomum melegueta (K. Schum) Seed Extracts on Salmonella typhi and Klebsiella pneumoniae. *Journal of Applied Sciences and Environmental Management*, 24(8), 1419-1424.
- Control, C. f. D., & Prevention. (2011). Gram-negative bacteria infections in healthcare settings. *Consulté sur <u>https://www</u>. cdc. gov/hai/organisms/gram-negative-bacteria. html.*
- Cowan, M. M. (1999). Plant products as antimicrobial agents. *Clinical Microbiology Reviews*, 12(4), 564-582.
- Cushnie, T., Hamilton, V., Chapman, D., Taylor, P., & Lamb, A. (2007). Aggregation of Staphylococcus aureus following treatment with the antibacterial flavonol galangin. *Journal of Applied Microbiology*, *103*(5), 1562-1567.
- Da Silva, L. P., Oliveira, S., Pirraco, R. P., Santos, T. C., Reis, R. L., Marques, A. P., & Correlo, V. M. (2017). Eumelanin-releasing spongy-like hydrogels for skin re-epithelialization purposes. *Biomedical Materials*, 12(2), 025010.
- Das, J., Deka, M., & Gogoi, K. (2018). Antimicrobial Activity of Chilli Extracts (Capsicum chinense) Against Food Borne Pathogens Escherichia coli and Staphylococcus aureus. *International Journal of Research and Analytical Reviews (IJRAR)*, 5(4), 717-720.

- De Lucca, A., Boue, S., Palmgren, M., Maskos, K., & Cleveland, T. (2006). Fungicidal properties of two saponins from Capsicum frutescens and the relationship of structure and fungicidal activity. *Canadian Journal of Microbiology*, *52*(4), 336-342.
- Devi, N. S. J. P. S. D. K., Jagapriya, L., & Nathiya, S. Evaluation of bioactive components of Nigella sativa L. seeds by Gas Chromatography–Mass Spectrometry and FT-IR.
- Dewapriya, P., Khalil, Z. G., Prasad, P., Salim, A. A., Cruz-Morales, P., Marcellin, E., & Capon, R. J. (2018). Talaropeptides AD: Structure and biosynthesis of extensively N-methylated linear peptides from an Australian marine tunicate-derived Talaromyces sp. *Frontiers in Chemistry*, 6, 394.
- Dhanasekaran, S. (2019). Research Article Alteration of Multi-drug Resistance Activities by Ethanolic Extracts of Nigella sativa Against Urinary Pathogens. *Int. J. Pharmacol*, *15*, 962-969.
- Di Rauso Simeone, G., Di Matteo, A., Rao, M. A., & Di Vaio, C. (2020). Variations of peel essential oils during fruit ripening in four lemon (Citrus limon (L.) Burm. F.) cultivars. *Journal of the Science of Food and Agriculture*, *100*(1), 193-200.
- Doernberg, S. B., Lodise, T. P., Thaden, J. T., Munita, J. M., Cosgrove, S. E., Arias, C. A., Boucher, H. W., Corey, G. R., Lowy, F. D., & Murray, B. (2017). Gram-positive bacterial infections: research priorities, accomplishments, and future directions of the Antibacterial Resistance Leadership Group. *Clinical Infectious Diseases*, 64(suppl_1), S24-S29.
- Doğan, A. N. C., Çelik, E., Kılıçle, P. A., Atalay, E., Sağlam, A. G., Doğan, A., & Otlu, S. (2018). Antibacterial Effect of Hot Peppers (Capsicum annuum, Capsicum annuum var globriusculum, Capsicum frutescens) on Some Arcobacter, Campylobacter and Helicobacter Species. *Pakistan Veterinary Journal*, 38(3).
- Dominguez-Perles, R., Moreno, D. A., Carvajal, M., & Garcia-Viguera, C. (2011). Composition and antioxidant capacity of a novel beverage produced with green tea and minimallyprocessed byproducts of broccoli. *Innovative Food Science & Emerging Technologies*, 12(3), 361-368.
- Domínguez-Perles, R., Martínez-Ballesta, M. C., Carvajal, M., García-Viguera, C., & Moreno, D. A. (2010). Broccoli-derived by-products—A promising source of bioactive ingredients. *Journal of Food Science*, 75(4), C383-C392.
- Dorantes, L., Colmenero, R., Hernandez, H., Mota, L., Jaramillo, M. E., Fernandez, E., & Solano, C. (2000). Inhibition of growth of some foodborne pathogenic bacteria by Capsicum annum extracts. *International Journal of Food Microbiology*, 57(1-2), 125-128.
- Duan, X., Jiang, Y., Su, X., Zhang, Z., & Shi, J. (2007). Antioxidant properties of anthocyanins extracted from litchi (Litchi chinenesis Sonn.) fruit pericarp tissues in relation to their role in the pericarp browning. *Food chemistry*, 101(4), 1365-1371.
- Duncan-Lowey, J. K., Wiscovitch, A. L., Wood, T. E., Goldberg, M. B., & Russo, B. C. (2020). Shigella flexneri disruption of cellular tension promotes intercellular spread. *Cell Reports*, 33(8), 108409.
- Dutta, S., Guin, S., Ghosh, S., Pazhani, G. P., Rajendran, K., Bhattacharya, M. K., Takeda, Y., Nair, G. B., & Ramamurthy, T. (2013). Trends in the prevalence of diarrheagenic Escherichia coli among hospitalized diarrheal patients in Kolkata, India. *PLoS One*, 8(2), e56068.
- Edelson, B. T., & Unanue, E. R. (2000). Immunity to Listeria infection. *Current Opinion in Immunology*, 12(4), 425-431.

- El-Adawi, H. (2012). Inhibitory effect of grape seed extract (GSE) on cariogenic bacteria. *Journal* of Medicinal Plants Research, 6(34), 4883-4891.
- El-Kamali, H., Ahmed, A., Mohammed, A., Yahia, A. M., & El-Tayeb, I. (1998). Antibacterial properties of essential oils from Nigella sativa seeds, Cymbopogon citratus leaves and Pulicaria undulata aerial parts. *Fitoterapia (Milano)*, 69(1), 77-78.
- Elsevier, A. B. B. (1978). Preliminary report on warfarin for the treatment of herpes simplex. *Irish Coll Phys Surg*, 22.
- Emeka, L. B., Emeka, P. M., & Khan, T. M. (2015). Antimicrobial activity of Nigella sativa L. seed oil against multi-drug resistant Staphylococcus aureus isolated from diabetic wounds. *Pakistan Journal of Pharmaceutical Sciences*, 28(6).
- Er, Y., Sivri, N., & Mirik, M. (2018). Antimicrobial activity of essential oil against Rhizobium (Agrobacterium) vitis using agar well and disc diffusion method. *Bacteriology Journal*, 8(1), 1-11.
- Farzaei, M. H., Rahimi, R., Attar, F., Siavoshi, F., Saniee, P., Hajimahmoodi, M., Mirnezami, T., & Khanavi, M. (2014). Chemical composition, antioxidant and antimicrobial activity of essential oil and extracts of Tragopogon graminifolius, a medicinal herb from Iran. *Natural Product Communications*, 9(1), 1934578X1400900134.
- Fathima, A., & Rao, J. R. (2016). Selective toxicity of Catechin—a natural flavonoid towards bacteria. *Applied Microbiology and Biotechnology*, *100*(14), 6395-6402.
- Freiburghaus, F., Kaminsky, R., Nkunya, M., & Brun, R. (1996). Evaluation of African medicinal plants for their in vitro trypanocidal activity. *Journal of Ethnopharmacology*, 55(1), 1-11.
- Galley, H. F. (2011). Oxidative stress and mitochondrial dysfunction in sepsis. *British Journal of Anaesthesia*, 107(1), 57-64.
- Ganesan, K., & Xu, B. (2017a). A critical review on polyphenols and health benefits of black soybeans. *Nutrients*, 9(5), 455.
- Ganesan, K., & Xu, B. (2017b). Polyphenol-rich dry common beans (Phaseolus vulgaris L.) and their health benefits. *International Journal of Molecular Sciences*, 18(11), 2331.
- Ganesan, K., & Xu, B. (2017c). Polyphenol-rich lentils and their health promoting effects. *International Journal of Molecular Sciences*, 18(11), 2390.
- Ganesan, K., & Xu, B. (2018). A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). *Food Science and Human Wellness*, 7(1), 11-33.
- Gbadamosi, I. T., & Erinoso, S. M. (2016). A review of twenty ethnobotanicals used in the management of breast cancer in Abeokuta, Ogun State, Nigeria. *African Journal of Pharmacy and Pharmacology*, *10*(27), 546-564.
- Ghoshal, S., Prasad, B. K., & Lakshmi, V. (1996). Antiamoebic activity of Piper longum fruits against Entamoeba histolytica in vitro and in vivo. *Journal of Ethnopharmacology*, *50*(3), 167-170.
- Gledhill, J. R., Montgomery, M. G., Leslie, A. G., & Walker, J. E. (2007). Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. *Proceedings of the National Academy of Sciences*, *104*(34), 13632-13637.
- Górniak, I., Bartoszewski, R., & Króliczewski, J. (2019). Comprehensive review of antimicrobial activities of plant flavonoids. *Phytochemistry Reviews*, 18(1), 241-272.
- Gregersen, T. (1978). Rapid method for distinction of Gram-negative from Gram-positive bacteria. *European Journal of Applied Microbiology and Biotechnology*, 5(2), 123-127.

- Guglielmone, H. A., Agnese, A. M., Montoya, S. C. N., & Cabrera, J. L. (2005). Inhibitory effects of sulphated flavonoids isolated from Flaveria bidentis on platelet aggregation. *Thrombosis Research*, *115*(6), 495-502.
- Guimarães, A. C., Meireles, L. M., Lemos, M. F., Guimarães, M. C. C., Endringer, D. C., Fronza, M., & Scherer, R. (2019). Antibacterial activity of terpenes and terpenoids present in essential oils. *Molecules*, 24(13), 2471.
- Gurnani, N., Gupta, M., Mehta, D., & Mehta, B. K. (2016). Chemical composition, total phenolic and flavonoid contents, and in vitro antimicrobial and antioxidant activities of crude extracts from red chilli seeds (Capsicum frutescens L.). *Journal of Taibah University for Science*, 10(4), 462-470.
- Halawani, E. (2009). Antibacterial activity of thymoquinone and thymohydroquinone of Nigella sativa L. and their interaction with some antibiotics. *Advances in Biological Research*, *3*(5-6), 148-152.
- Hamburger, M., & Hostettmann, K. (1991). 7. Bioactivity in plants: the link between phytochemistry and medicine. *Phytochemistry*, *30*(12), 3864-3874.
- Han, Y., Sun, Z., & Chen, W. (2020). Antimicrobial susceptibility and antibacterial mechanism of limonene against Listeria monocytogenes. *Molecules*, 25(1), 33.
- Hanafy, M., & Hatem, M. (1991). Studies on the antimicrobial activity of Nigella sativa seed (black cumin). *Journal of Ethnopharmacology*, *34*(2-3), 275-278.
- Hannan, A., Saleem, S., Chaudhary, S., Barkaat, M., & Arshad, M. U. (2008). Anti bacterial activity of Nigella sativa against clinical isolates of methicillin resistant Staphylococcus aureus. J Ayub Med Coll Abbottabad, 20(3), 72-74.
- Hassieb, A. M. (2006). Melanin is the secret of Nigella sativa. *Al-Faisal Scientific J*, 4(3), 110-143.
- Hertog, M. G., Hollman, P. C., & Katan, M. B. (1992). Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands. *Journal* of Agricultural and Food Chemistry, 40(12), 2379-2383.
- Holla, B. S., Gonsalves, R., Rao, B. S., Shenoy, S., & Gopalakrishna, H. (2001). Synthesis of some new biologically active bis-(thiadiazolotriazines) and bis-(thiadiazolotriazinyl) alkanes. *Il Farmaco*, 56(12), 899-903.
- Holtung, L., Grimmer, S., & Aaby, K. (2011). Effect of processing of black currant press-residue on polyphenol composition and cell proliferation. *Journal of Agricultural and Food Chemistry*, 59(8), 3632-3640.
- Hosseinzadeh, H., Fazly Bazzaz, B., & Haghi, M. M. (2007). Antibacterial activity of total extracts and essential oil of Nigella sativa L. seeds in mice. *Pharmacologyonline*, 2, 429-435.
- Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol.
- Hufford, C. D., Jia, Y., Croom Jr, E. M., Muhammed, I., Okunade, A. L., Clark, A. M., & Rogers, R. D. (1993). Antimicrobial compounds from Petalostemum purpureum. *Journal of Natural Products*, 56(11), 1878-1889.
- Hunter, M. D., & Hull, L. A. (1993). Variation in concentrations of phloridzin and phloretin in apple foliage. *Phytochemistry*, 34(5), 1251-1254.
- Hussein, A. O. A. (2015). Biological Activities and some Physiochemical Characteristics of the Black Cumin (Nigella sativa L.) Seed Oil University of Gezira].
- Ichinose, F., Buys, E. S., Neilan, T. G., Furutani, E. M., Morgan, J. G., Jassal, D. S., Graveline, A. R., Searles, R. J., Lim, C. C., & Kaneki, M. (2007). Cardiomyocyte-specific overexpression

of nitric oxide synthase 3 prevents myocardial dysfunction in murine models of septic shock. *Circulation Research*, *100*(1), 130-139.

- Jayaprakasha, G. K., Singh, R., & Sakariah, K. (2001). Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. *Food Chemistry*, *73*(3), 285-290.
- Jessberger, N., Dietrich, R., Granum, P. E., & Märtlbauer, E. (2020). The Bacillus cereus food infection as multifactorial process. *Toxins*, 12(11), 701.
- Jiang, G., Lin, S., Wen, L., Jiang, Y., Zhao, M., Chen, F., Prasad, K. N., Duan, X., & Yang, B. (2013). Identification of a novel phenolic compound in litchi (Litchi chinensis Sonn.) pericarp and bioactivity evaluation. *Food Chemistry*, 136(2), 563-568.
- Jiménez-Escrig, A., Rincón, M., Pulido, R., & Saura-Calixto, F. (2001). Guava fruit (Psidium guajava L.) as a new source of antioxidant dietary fiber. *Journal of Agricultural and Food Chemistry*, 49(11), 5489-5493.
- Jones, G., McAllister, T., Muir, A., & Cheng, K.-J. (1994). Effects of sainfoin (Onobrychis viciifolia Scop.) condensed tannins on growth and proteolysis by four strains of ruminal bacteria. *Applied and Environmental Microbiology*, *60*(4), 1374-1378.
- Ju, K.-Y., Lee, Y., Lee, S., Park, S. B., & Lee, J.-K. (2011). Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radicalscavenging property. *Biomacromolecules*, 12(3), 625-632.
- Jung, T., Jung, Y., Ahn, J., & Yang, S. (2020). Continuous, rapid concentration of foodborne bacteria (Staphylococcus aureus, Salmonella typhimurium, and Listeria monocytogenes) using magnetophoresis-based microfluidic device. *Food Control*, 107229.
- Kadota, S., Basnet, P., Ishii, E., Tamura, T., & Namba, T. (1997). Antibacterial activity of trichorabdal A from Rabdosia trichocarpa against Helicobacter pylori. *Zentralblatt Für Bakteriologie*, 286(1), 63-67.
- Kahaliw, W., Aseffa, A., Abebe, M., Teferi, M., & Engidawork, E. (2017). Evaluation of the antimycobacterial activity of crude extracts and solvent fractions of selected Ethiopian medicinal plants. *BMC Complementary and Alternative Medicine*, *17*(1), 143.
- Kalogeropoulos, N., Chiou, A., Pyriochou, V., Peristeraki, A., & Karathanos, V. T. (2012). Bioactive phytochemicals in industrial tomatoes and their processing byproducts. *LWT-Food Science and Technology*, 49(2), 213-216.
- Khan, M., Ashfaq, M., Zuberi, H., Mahmood, M., & Gilani, A. (2003). The in vivo antifungal activity of the aqueous extract from Nigella sativa seeds. *Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives*, 17(2), 183-186.
- Khan, M. A. (2018). Antimicrobial Action of Thymoquinone. In *Molecular and Therapeutic actions of Thymoquinone* (pp. 57-64). Springer.
- Khan, M. T. I., Ali, Q., & Ashfaq, M. (2017). Economic analysis of open field chilli (Capsicum annuum L.) production in Punjab, Pakistan. *Journal of Experimental Biology and Agricultural Sciences*, 5, 120-125. <u>https://doi.org/10.18006/2017.5(1).120.125</u>
- Khatua, S., Pandey, A., & Biswas, S. J. (2016). Phytochemical evaluation and antimicrobial properties of Trichosanthes dioica root extract. *Journal of Pharmacognosy and Phytochemistry*, 5(5), 410.
- Khokhar, K. M., & NARC, I. (2013). Present status and prospects of chillies in Pakistan. In.
- Kim, S.-J., & Kim, G.-H. (2006). Quantification of quercetin in different parts of onion and its DPPH radical scavenging and antibacterial activity. *Food Science and Biotechnology*, 15(1), 39-43.

- Kirbağ, S., Zengin, F., & Kursat, M. (2009). Antimicrobial activities of extracts of some plants. *Pak. J. Bot*, 41(4), 2067-2070.
- Ko, W.-C., Paterson, D. L., Sagnimeni, A. J., Hansen, D. S., Von Gottberg, A., Mohapatra, S., Casellas, J. M., Goossens, H., Mulazimoglu, L., & Trenholme, G. (2002). Communityacquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. *Emerging Infectious Diseases*, 8(2), 160.
- Koffi-Nevry, R., Kouassi, K. C., Nanga, Z. Y., Koussémon, M., & Loukou, G. Y. (2012). Antibacterial activity of two bell pepper extracts: Capsicum annuum L. and Capsicum frutescens. *International Journal of Food Properties*, 15(5), 961-971.
- Kokollari, F., Daka, A., Blyta, Y., Ismajli, F., & Haxhijaha-Lulaj, K. (2015). Tinea Corporis, Caused by Microsporum Canis-a Case Report From Kosovo. *Medical Archives*, 69(5), 345.
- Koziol, A., Stryjewska, A., Librowski, T., Salat, K., Gawel, M., Moniczewski, A., & Lochynski, S. (2014). An overview of the pharmacological properties and potential applications of natural monoterpenes. *Mini Reviews in Medicinal Chemistry*, 14(14), 1156-1168.
- Kubo, A., Lunde, C. S., & Kubo, I. (1995). Antimicrobial activity of the olive oil flavor compounds. *Journal of agricultural and food chemistry*, 43(6), 1629-1633.
- Kubo, I., Muroi, H., & Himejima, M. (1992). Antibacterial activity of totarol and its potentiation. *Journal of Natural Products*, 55(10), 1436-1440.
- Kubo, I., Muroi, H., & Himejima, M. (1993). Combination effects of antifungal nagilactones against Candida albicans and two other fungi with phenylpropanoids. *Journal of Natural Products*, 56(2), 220-226.
- Kubo, I., Muroi, H., & Kubo, A. (1994). Naturally occurring antiacne agents. *Journal of Natural Products*, *57*(1), 9-17.
- Kuete, V., Ango, P. Y., Fotso, G. W., Kapche, G. D., Dzoyem, J. P., Wouking, A. G., Ngadjui, B. T., & Abegaz, B. M. (2011). Antimicrobial activities of the methanol extract and compounds from Artocarpus communis (Moraceae). *BMC Complementary and Alternative Medicine*, 11(1), 42.
- Kumaresan, S., Senthilkumar, V., Stephen, A., & Balakumar, B. (2014). GC-MS analysis and PASS-assisted prediction of biological activity spectra of extract of Phomopsis sp. isolated from Andrographis paniculata. World Journal of Pharmaceutical Research, 4(1), 1035-1053.
- Kunnumakkara, A. B., Koca, C., Dey, S., Gehlot, P., Yodkeeree, S., Danda, D., Sung, B., & Aggarwal, B. B. (2009). Traditional uses of spices: an overview. *Molecular Targets and Therapeutic Uses of Spices: Modern Uses for Ancient Medicine*, 1-24.
- Larrauri, J. A., Rupérez, P., & Saura-Calixto, F. (1997). Mango peel fibres with antioxidant activity. Zeitschrift Für Lebensmitteluntersuchung und-Forschung A, 205(1), 39-42.
- Lee, J.-H., Regmi, S. C., Kim, J.-A., Cho, M. H., Yun, H., Lee, C.-S., & Lee, J. (2011). Apple flavonoid phloretin inhibits Escherichia coli O157: H7 biofilm formation and ameliorates colon inflammation in rats. *Infection and Immunity*, *79*(12), 4819-4827.
- Li, J., Liu, C., & Sato, T. (2016). Novel antitumor invasive actions of p-Cymene by decreasing MMP-9/TIMP-1 expression ratio in human fibrosarcoma HT-1080 cells. *Biological and Pharmaceutical Bulletin*, *39*(8), 1247-1253.
- Li, W., Liang, H., Zhang, M.-W., Zhang, R.-F., Deng, Y.-Y., Wei, Z.-C., Zhang, Y., & Tang, X.-J. (2012). Phenolic profiles and antioxidant activity of litchi (Litchi chinensis Sonn.) fruit pericarp from different commercially available cultivars. *Molecules*, 17(12), 14954-14967.

- Li, Y.-q., Kong, D.-x., & Wu, H. (2013). Analysis and evaluation of essential oil components of cinnamon barks using GC–MS and FTIR spectroscopy. *Industrial Crops and Products*, 41, 269-278.
- Li, Y., Guo, C., Yang, J., Wei, J., Xu, J., & Cheng, S. (2006). Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. *Food Chemistry*, *96*(2), 254-260.
- Liaqat, A., Ali, L., Khalid, M. A., Liaqat, F., & Liaqat, F. (2018). Anti-Microbial Potential of Panacea (Nigella Sativa). *Annals of Punjab Medical College (APMC)*, *12*(3), 202-206.
- Linden, P. K., Kusne, S., Coley, K., Fontes, P., Kramer, D. J., & Paterson, D. (2003). Use of parenteral colistin for the treatment of serious infection due to antimicrobial-resistant Pseudomonas aeruginosa. *Clinical Infectious Diseases*, 37(11), e154-e160.
- Lowy, F. D. (1998). Staphylococcus aureus infections. *New England Journal of Medicine*, 339(8), 520-532.
- Lu, Y., & Foo, L. Y. (2000). Antioxidant and radical scavenging activities of polyphenols from apple pomace. *Food Chemistry*, 68(1), 81-85.
- Ly, T. N., Hazama, C., Shimoyamada, M., Ando, H., Kato, K., & Yamauchi, R. (2005). Antioxidative compounds from the outer scales of onion. *Journal of Agricultural and Food Chemistry*, 53(21), 8183-8189.
- Makvana, S., & Krilov, L. R. (2015). Escherichia coli infections. *Pediatrics in Review*, *36*(4), 167-170; quiz 171.
- Manju, S., Malaikozhundan, B., Vijayakumar, S., Shanthi, S., Jaishabanu, A., Ekambaram, P., & Vaseeharan, B. (2016). Antibacterial, antibiofilm and cytotoxic effects of Nigella sativa essential oil coated gold nanoparticles. *Microbial Pathogenesis*, 91, 129-135.
- Marchese, A., Arciola, C. R., Barbieri, R., Silva, A. S., Nabavi, S. F., Tsetegho Sokeng, A. J., Izadi, M., Jafari, N. J., Suntar, I., & Daglia, M. (2017). Update on monoterpenes as antimicrobial agents: A particular focus on p-cymene. *Materials*, 10(8), 947.
- Marie-Magdeleine, C., Boval, M., Philibert, L., Borde, A., & Archimède, H. (2010). Effect of banana foliage (Musa x paradisiaca) on nutrition, parasite infection and growth of lambs. *Livestock Science*, 131(2-3), 234-239.
- Martinez-Urtaza, J., Lozano-Leon, A., DePaola, A., Ishibashi, M., Shimada, K., Nishibuchi, M., & Liebana, E. (2004). Characterization of pathogenic Vibrio parahaemolyticus isolates from clinical sources in Spain and comparison with Asian and North American pandemic isolates. *Journal of Clinical Microbiology*, 42(10), 4672-4678.
- Martinez, M., Betancourt, J., Alonso-Gonzalez, N., & Jauregui, A. (1996). Screening of some Cuban medicinal plants for antimicrobial activity. *Journal of Ethnopharmacology*, 52(3), 171-174.
- Mashhadian, N., & Rakhshandeh, H. (2005). Antibacterial and antifungal effects of Nigella sativa extracts against S. aureus, P. aeroginosa and C. albicans. *Pak J Med Sci*, 21(1), 47-52.
- Masyithah, Z., Sitohang, L. V., & Sihombing, M. P. (2017). Synthesis of azelaic acid from oleic acid with green oxidant H2O2/H2WO4. *J Eng Applied Sci*, 24, 7031-7038.
- McCutcheon, A., Ellis, S., Hancock, R., & Towers, G. (1992). Antibiotic screening of medicinal plants of the British Columbian native peoples. *Journal of Ethnopharmacology*, *37*(3), 213-223.
- McDevitt, J., Schneider, D., Katiyar, S., & Edlind, T. (1996). Program and abstracts of the 36th Interscience Conference on Antimicrobial Agents and Chemotherapy.

- Mehmood, A., Naveed, K., Azeem, K., Khan, A., Ali, N., & Khan, S. M. (2018). 10. Sowing time and nitrogen application methods impact on production traits of Kalonji (Nigella sativa L.). *Pure and Applied Biology (PAB)*, 7(2), 476-485.
- Mickymaray, S., Al Aboody, M. S., Rath, P. K., Annamalai, P., & Nooruddin, T. (2016). Screening and antibacterial efficacy of selected Indian medicinal plants. *Asian Pacific Journal of Tropical Biomedicine*, 6(3), 185-191.
- Miguel, M. G. (2010). Antioxidant and anti-inflammatory activities of essential oils: a short review. *Molecules*, 15(12), 9252-9287.
- Mittal, R. P., & Jaitak, V. (2019). Plant-Derived Natural Alkaloids as New Antimicrobial and Adjuvant Agents in Existing Antimicrobial Therapy. *Current Drug Targets*, 20(14), 1409-1433.
- Moghrovyan, A., Sahakyan, N., Babayan, A., Chichoyan, N., Petrosyan, M., & Trchounian, A. (2019). Essential oil and ethanol extract of oregano (Origanum vulgare L.) from Armenian flora as a natural source of terpenes, flavonoids and other phytochemicals with antiradical, antioxidant, metal chelating, tyrosinase inhibitory and antibacterial activity. *Current Pharmaceutical Design*, 25(16), 1809-1816.
- Morsi, N. M. (2000). Antimicrobial effect of crude extracts of Nigella sativa on multiple antibiotics-resistant bacteria. *Acta Microbiologica Polonica*, 49(1), 63-74.
- Mou, Y., Meng, J., Fu, X., Wang, X., Tian, J., Wang, M., Peng, Y., & Zhou, L. (2013). Antimicrobial and antioxidant activities and effect of 1-hexadecene addition on palmarumycin C2 and C3 yields in liquid culture of endophytic fungus Berkleasmium sp. Dzf12. *Molecules*, 18(12), 15587-15599.
- Munita, J. M., & Arias, C. A. (2016). Mechanisms of antibiotic resistance. *Virulence Mechanisms* of Bacterial Pathogens, 481-511.
- Naganawa, R., Iwata, N., Ishikawa, K., Fukuda, H., Fujino, T., & Suzuki, A. (1996). Inhibition of microbial growth by ajoene, a sulfur-containing compound derived from garlic. *Applied* and Environmental Microbiology, 62(11), 4238-4242.
- Namita, P., & Mukesh, R. (2012). Medicinal plants used as antimicrobial agents: a review. *Int Res J Pharm*, *3*(1), 31-40.
- Nascimento, P. L., Nascimento, T. C., Ramos, N. S., Silva, G. R., Gomes, J. E. G., Falcão, R. E., Moreira, K. A., Porto, A. L., & Silva, T. (2014). Quantification, antioxidant and antimicrobial activity of phenolics isolated from different extracts of Capsicum frutescens (Pimenta Malagueta). *Molecules*, 19(4), 5434-5447.
- Nawarathne, N. W., Wijesekera, K., Wijayaratne, W. M. D. G. B., & Napagoda, M. (2019). Development of Novel Topical Cosmeceutical Formulations from Nigella sativa L. with Antimicrobial Activity against Acne-Causing Microorganisms. *The Scientific World Journal*, 2019.
- Nickavar, B., Adeli, A., & Nickavar, A. (2014). TLC-bioautography and GC-MS analyses for detection and identification of antioxidant constituents of Trachyspermum copticum essential oil. *Iranian journal of pharmaceutical research: IJPR*, *13*(1), 127.
- Nivetha, K., & Prasanna, G. (2016). GC-MS and FT-IR analysis of Nigella sativa L. seeds. *Int J* Adv Res Biol Sci, 3, 45-54.
- Nosanchuk, J. D., & Casadevall, A. (2006). Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds. *Antimicrobial Agents and Chemotherapy*, 50(11), 3519-3528.

- Nuutila, A. M., Puupponen-Pimiä, R., Aarni, M., & Oksman-Caldentey, K.-M. (2003). Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. *Food Chemistry*, 81(4), 485-493.
- Ofek, I., Goldhar, J., & Sharon, N. (1996). Anti-Escherichia coli adhesin activity of cranberry and blueberry juices. In *Toward Anti-adhesion Therapy for Microbial Diseases* (pp. 179-183). Springer.
- Ofek, I., Goldhar, J., Zafriri, D., Lis, H., Adar, R., & Sharon, N. (1991). Anti-Escherichia coliAdhesin Activity of Cranberry and Blueberry Juices. *The New England Journal of Medicine*, 324(22).
- Oguzie, E. E., Oguzie, K. L., Akalezi, C. O., Udeze, I. O., Ogbulie, J. N., & Njoku, V. O. (2013). Natural products for materials protection: Corrosion and microbial growth inhibition using Capsicum frutescens biomass extracts. *ACS Sustainable Chemistry & Engineering*, 1(2), 214-225.
- Omolo, M. A., Wong, Z.-Z., Mergen, K., Hastings, J. C., Le, N. C., Reil, H. A., Case, K. A., & Baumler, D. J. (2014). Antimicrobial properties of chili peppers. *Journal of Infectious Diseases and Therapy*.
- Omulokoli, E., Khan, B., & Chhabra, S. (1997). Antiplasmodial activity of four Kenyan medicinal plants. *Journal of Ethnopharmacology*, *56*(2), 133-137.
- Organization, W. H. (2018). WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation.
- Osato, J. A., Santiago, L. A., Remo, G. M., Cuadra, M. S., & Mori, A. (1993). Antimicrobial and antioxidant activities of unripe papaya. *Life sciences*, *53*(17), 1383-1389.
- Otto, M. (2009). Staphylococcus epidermidis—the'accidental'pathogen. *Nature Reviews Microbiology*, 7(8), 555-567.
- Otunola, G. A., Afolayan, A. J., Ajayi, E. O., & Odeyemi, S. W. (2017). Characterization, antibacterial and antioxidant properties of silver nanoparticles synthesized from aqueous extracts of Allium sativum, Zingiber officinale, and Capsicum frutescens. *Pharmacognosy Magazine*, *13*(Suppl 2), S201.
- Palanisamy, U., Cheng, H. M., Masilamani, T., Subramaniam, T., Ling, L. T., & Radhakrishnan, A. K. (2008). Rind of the rambutan, Nephelium lappaceum, a potential source of natural antioxidants. *Food Chemistry*, 109(1), 54-63.
- Panyathep, A., Chewonarin, T., Taneyhill, K., & Vinitketkumnuen, U. (2013). Antioxidant and anti-matrix metalloproteinases activities of dried longan (Euphoria longana) seed extract. *Scienceasia*, *39*(1), 12-18.
- Papaioannou, E. H., & Liakopoulou-Kyriakides, M. (2012). Agro-food wastes utilization by Blakeslea trispora for carotenoids production. *Acta Biochimica Polonica*, 59(1).
- Pelkonen, O., Raunio, H., Rautio, A., Pasanen, M., & Lang, M. (1997). The metabolism of coumarins: In; Coumarins: Biology, Applications and mMde of Action. Wiley.
- Perrett, S., Whitfield, P., Sanderson, L., & Bartlett, A. (1995). The plant molluscicide Millettia thonningii (Leguminosae) as a topical antischistosomal agent. *Journal of Ethnopharmacology*, 47(1), 49-54.
- Peterson, L. (2008). Currently available antimicrobial agents and their potential for use as monotherapy. *Clinical Microbiology and Infection*, 14, 30-45.
- Plaper, A., Golob, M., Hafner, I., Oblak, M., Šolmajer, T., & Jerala, R. (2003). Characterization of quercetin binding site on DNA gyrase. *Biochemical and Biophysical Research Communications*, 306(2), 530-536.

- Poltanov, E. A., Shikov, A. N., Dorman, H. D., Pozharitskaya, O. N., Makarov, V. G., Tikhonov, V. P., & Hiltunen, R. (2009). Chemical and antioxidant evaluation of Indian gooseberry (Emblica officinalis Gaertn., syn. Phyllanthus emblica L.) supplements. *Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives*, 23(9), 1309-1315.
- Prasad, K. N., Yang, B., Yang, S., Chen, Y., Zhao, M., Ashraf, M., & Jiang, Y. (2009). Identification of phenolic compounds and appraisal of antioxidant and antityrosinase activities from litchi (Litchi sinensis Sonn.) seeds. *Food Chemistry*, 116(1), 1-7.
- Prasad, P., Chaitanya, V. K., Prasad, K. S., & Rao, D. N. (2005). Direct formation of the γ-CaSO4 phase in dehydration process of gypsum: In situ FTIR study. *American Mineralogist*, *90*(4), 672-678.
- Puravankara, D., Boghra, V., & Sharma, R. S. (2000). Effect of antioxidant principles isolated from mango (Mangifera indica L) seed kernels on oxidative stability of buffalo ghee (butter-fat). *Journal of the Science of Food and Agriculture*, 80(4), 522-526.
- Queiroz, E. d. R., Abreu, C. M. P. d., & Oliveira, K. d. S. (2012). Chemical constituents of the in natura and dried fractions of litchi: nutritional potential of by-products. *Revista Brasileira de Fruticultura*, *34*(4), 1174-1179.
- Queiroz, E. d. R., Abreu, C. M. P. d., Oliveira, K. d. S., Ramos, V. d. O., & Fráguas, R. M. (2015). Bioactive phytochemicals and antioxidant activity in fresh and dried lychee fractions1. *Revista Ciência Agronômica*, 46(1), 163-169.
- Quintans, J. d. S. S., Menezes, P. P., Santos, M. R. V., Bonjardim, L. R., Almeida, J. R. G. S., Gelain, D. P., de Souza Araújo, A. A., & Quintans-Júnior, L. J. (2013). Improvement of pcymene antinociceptive and anti-inflammatory effects by inclusion in β-cyclodextrin. *Phytomedicine*, 20(5), 436-440.
- Rabbani, M. A., Ghafoor, A., & Masood, M. S. (2011). NARC-kalonji: an early maturing and high yielding variety of Nigella sativa released for cultivation in Pakistan. *Pak. J. Bot*, 43, 191-195.
- Rabuel, C., Samuel, J.-L., Lortat-Jacob, B., Marotte, F., Lanone, S., Keyser, C., Lessana, A., Payen, D., & Mebazaa, A. (2010). Activation of the ubiquitin proteolytic pathway in human septic heart and diaphragm. *Cardiovascular Pathology*, 19(3), 158-164.
- Rageh, M. M., El-Gebaly, R. H., Abou-Shady, H., & Amin, D. G. (2015). Melanin nanoparticles (MNPs) provide protection against whole-body γ-irradiation in mice via restoration of hematopoietic tissues. *Molecular and Cellular Biochemistry*, 399(1-2), 59-69.
- Ramirez-Garcia, A., Rementeria, A., Aguirre-Urizar, J. M., Moragues, M. D., Antoran, A., Pellon, A., Abad-Diaz-de-Cerio, A., & Hernando, F. L. (2016). Candida albicans and cancer: Can this yeast induce cancer development or progression? *Critical Reviews in Microbiology*, 42(2), 181-193.
- Ramzan, S., Soelberg, J., Jäger, A. K., & Cantarero-Arévalo, L. (2017). Traditional medicine among people of Pakistani descent in the capital region of Copenhagen. *Journal of Ethnopharmacology*, 196, 267-280.
- Rana, B., Singh, U., & Taneja, V. (1997). Antifungal activity and kinetics of inhibition by essential oil isolated from leaves of Aegle marmelos. *Journal of Ethnopharmacology*, 57(1), 29-34.
- Reilly, G., Reilly, C., Smith, E., & Baker-Austin, C. (2011). Vibrio alginolyticus-associated wound infection acquired in British waters, Guernsey, July 2011. *Eurosurveillance*, 16(42), 19994.

- Reygaert, W. C. (2014). The antimicrobial possibilities of green tea. *Frontiers in Microbiology*, *5*, 434.
- Rodrigue, D., Tauxe, R., & Rowe, B. (1990). International increase in Salmonella enteritidis: a new pandemic? *Epidemiology & Infection*, 105(1), 21-27.
- Rodríguez, A., Andrés, V. S., Cervera, M., Redondo, A., Alquézar, B., Shimada, T., Gadea, J., Rodrigo, M., Zacarías, L., & Palou, L. (2011). The monoterpene limonene in orange peels attracts pests and microorganisms. *Plant Signaling & Behavior*, 6(11), 1820-1823.
- Rouis-Soussi, L. S., El Ayeb-Zakhama, A., Mahjoub, A., Flamini, G., Jannet, H. B., & Harzallah-Skhiri, F. (2014). Chemical composition and antibacterial activity of essential oils from the Tunisian Allium nigrum L. *EXCLI Journal*, 13, 526.
- Roy, J., Shakleya, D. M., Callery, P. S., & Thomas, J. G. (2006). Chemical constituents and antimicrobial activity of a traditional herbal medicine containing garlic and black cumin. *African Journal of Traditional, Complementary and Alternative Medicines*, 3(2), 1-7.
- Rudra, S. G., Nishad, J., Jakhar, N., & Kaur, C. (2015). Food industry waste: mine of nutraceuticals. *Int. J. Sci. Environ. Technol*, 4(1), 205-229.
- Russo, E. B., & Marcu, J. (2017). Cannabis pharmacology: the usual suspects and a few promising leads. In *Advances in Pharmacology* (Vol. 80, pp. 67-134). Elsevier.
- Saad, B. (2015). Integrating traditional Greco-Arab and Islamic diet and herbal medicines in research and clinical practice. *Phytotherapies: Efficacy, safety, and regulation*, 142-182.
- Sahai, S., Pavithran, P., & Barpujari, I. BIOPIRACY.
- Saleh, B. K., Omer, A., & Teweldemedhin, B. (2018). Medicinal uses and health benefits of chili pepper (Capsicum spp.): a review. *MOJ Food Process Technol*, 6(4), 325-328.
- Salem, M. L., & Hossain, M. S. (2000). Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. *International Journal of Immunopharmacology*, 22(9), 729-740.
- San-Blas, G., Marino, L., San-Blas, F., & Apitz-Castro, R. (1993). Effect of ajoene on dimorphism of Paracoccidioides brasiliensis. *Journal of Medical and Veterinary Mycology*, 31(2), 133-141.
- San-Blas, G., San-Blas, F., Gil, F., Marino, L., & Apitz-Castro, R. (1989). Inhibition of growth of the dimorphic fungus Paracoccidioides brasiliensis by ajoene. *Antimicrobial Agents and Chemotherapy*, 33(9), 1641-1644.
- Sancho, S. d. O., da Silva, A. R. A., Dantas, A. N. d. S., Magalhães, T. A., Lopes, G. S., Rodrigues, S., da Costa, J. M. C., Fernandes, F. A. N., & Silva, M. G. d. V. (2015). Characterization of the industrial residues of seven fruits and prospection of their potential application as food supplements. *Journal of Chemistry*, 2015.
- Sanver, D., Murray, B. S., Sadeghpour, A., Rappolt, M., & Nelson, A. L. (2016). Experimental modeling of flavonoid–biomembrane interactions. *Langmuir*, *32*(49), 13234-13243.
- Sarni-Manchado, P., Le Roux, E., Le Guernevé, C., Lozano, Y., & Cheynier, V. (2000). Phenolic composition of litchi fruit pericarp. *Journal of Agricultural and Food Chemistry*, 48(12), 5995-6002.
- Sarwar, A., Butt, M. A., Hafeez, S., & Danish, M. Z. (2020). Rapid emergence of antibacterial resistance by bacterial isolates from patients of gynecological infections in Punjab, Pakistan. *Journal of Infection and Public Health*, 13(12), 1972-1980.
- Sati, H. F., Bruinsma, N., Galas, M., Hsieh, J., Sanhueza, A., Ramon Pardo, P., & Espinal, M. A. (2019). Characterizing Shigella species distribution and antimicrobial susceptibility to

ciprofloxacin and nalidixic acid in Latin America between 2000–2015. *PLoS One*, 14(8), e0220445.

- Satrija, F., Nansen, P., Murtini, S., & He, S. (1995). Anthelmintic activity of papaya latex against patent Heligmosomoides polygyrus infections in mice. *Journal of Ethnopharmacology*, 48(3), 161-164.
- Scheel, L. D. (2016). The biological action of the coumarins. *Microbial Toxins*, 8, 47-66.
- Schieber, A., Ullrich, W., & Carle, R. (2000). Characterization of polyphenols in mango puree concentrate by HPLC with diode array and mass spectrometric detection. *Innovative Food Science & Emerging Technologies*, 1(2), 161-166.
- Schweitzer, A. D., Revskaya, E., Chu, P., Pazo, V., Friedman, M., Nosanchuk, J. D., Cahill, S., Frases, S., Casadevall, A., & Dadachova, E. (2010). Melanin-covered nanoparticles for protection of bone marrow during radiation therapy of cancer. *International Journal of Radiation Oncology** *Biology** *Physics*, 78(5), 1494-1502.
- Selvaraj, M., Pandurangan, A., Seshadri, K., Sinha, P., Krishnasamy, V., & Lal, K. (2002). Comparison of mesoporous Al-MCM-41 molecular sieves in the production of p-cymene for isopropylation of toluene. *Journal of Molecular Catalysis A: Chemical*, 186(1-2), 173-186.
- Shah, S., Stapleton, P., & Taylor, P. (2008). The polyphenol (-)-epicatechin gallate disrupts the secretion of virulence-related proteins by Staphylococcus aureus. *Letters in Applied Microbiology*, 46(2), 181-185.
- Shariati, A., Pordeli, H., Khademian, A., & Aydani, M. (2010). Evaluation of the antibacterial effects of Capsicum spp. extracts on the Multi-resistant Staphylococcus aureus strains.
- Shrikhande, A. J. (2000). Wine by-products with health benefits. *Food Research International*, 33(6), 469-474.
- Siani, A., Ramos, M. d. S., Menezes-de-Lima Jr, O., Ribeiro-dos-Santos, R., Fernadez-Ferreira, E., Soares, R., Rosas, E., Susunaga, G., Guimarães, A., & Zoghbi, M. d. G. (1999). Evaluation of anti-inflammatory-related activity of essential oils from the leaves and resin of species of Protium. *Journal of Ethnopharmacology*, 66(1), 57-69.
- Siegman-Igra, Y., Levin, R., Weinberger, M., Golan, Y., Schwartz, D., Samra, Z., Konigsberger, H., Yinnon, A., Rahav, G., & Keller, N. (2002). Listeria monocytogenes infection in Israel and review of cases worldwide. *Emerging Infectious Diseases*, 8(3), 305.
- Silva, A. C. R. d., Lopes, P. M., Azevedo, M. M. B. d., Costa, D. C. M., Alviano, C. S., & Alviano, D. S. (2012). Biological activities of a-pinene and β-pinene enantiomers. *Molecules*, 17(6), 6305-6316.
- Silvestri, B., Vitiello, G., Luciani, G., Calcagno, V., Costantini, A., Gallo, M., Parisi, S., Paladino, S., Iacomino, M., & D'Errico, G. (2017). Probing the eumelanin–silica interface in chemically engineered bulk hybrid nanoparticles for targeted subcellular antioxidant protection. ACS Applied Materials & Interfaces, 9(43), 37615-37622.
- Singh, G. (2008). How to Boost Your Immune System Naturally? Lulu. com.
- Singh, H. P., Kohli, R. K., Batish, D. R., & Kaushal, P. S. (1999). Allelopathy of gymnospermous trees. *Journal of Forest Research*, 4(3), 245.
- Singh, J. P., Chandel, R., Mishra, B., & Suneetha, V. (2013). Evaluation of antimicrobial and antioxidant property of lychee's seed for therapeutic purpose. *Int J Pharm Sci Rev Res*, *19*, 72-76.

- Sivagurunathan, P., Sivasankari, S., & Muthukkaruppan, S. (2010). Characterisation of cashew apple (Anacardium occidentale L.) fruits collected from Ariyalur District. *Journal of Biosciences Research*, 1(2), 101-107.
- Stange Jr, R. R., Midland, S. L., Eckert, J., & Sims, J. J. (1993). An antifungal compound produced by grapefruit and Valencia orange after wounding of the peel. *Journal of Natural Products*, 56(9), 1627-1629.
- Stapleton, P. D., Shah, S., Hamilton-Miller, J. M., Hara, Y., Nagaoka, Y., Kumagai, A., Uesato, S., & Taylor, P. W. (2004). Anti-Staphylococcus aureus activity and oxacillin resistance modulating capacity of 3-O-acyl-catechins. *International Journal of Antimicrobial Agents*, 24(4), 374-380.
- Sudha, M., Baskaran, V., & Leelavathi, K. (2007). Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. *Food Chemistry*, 104(2), 686-692.
- Sukalingam, K., Ganesan, K., & Xu, B. (2017). Trianthema portulacastrum L.(giant pigweed): phytochemistry and pharmacological properties. *Phytochemistry Reviews*, *16*(3), 461-478.
- Sukalingam, K., Ganesan, K., & Xu, B. (2018). Protective effect of aqueous extract from the leaves of Justicia tranquebariesis against thioacetamide-induced oxidative stress and hepatic fibrosis in rats. *Antioxidants*, 7(7), 78.
- Taha, H., Taha, T., & Arisha, M. (2019). Chemical and Molecular Comparative Study on Different Genotypes of Pepper (Capsicum annuum, L.). *Journal of Agricultural Chemistry and Biotechnology*, 10(2), 29-37.
- Tano, K., Nervy, R., Koussemoun, M., & Oule, M. (2008). The effects of different storage temperatures on the quality of fresh bell pepper (Capsicum annum L.). Agric. J, 3(2), 157-162.
- Teles, Y. C., Horta, C. C. R., Agra, M. D. F., Siheri, W., Boyd, M., Igoli, J. O., Gray, A. I., & De Souza, M. D. F. V. (2015). New sulphated flavonoids from Wissadula periplocifolia (L.) C. Presl (Malvaceae). *Molecules*, 20(11), 20161-20172.
- Tellez, G., Jaeger, L., Dean, C., Corrier, D., DeLoach, J., Williams, J., & Hargis, B. (1993). Effect of prolonged administration of dietary capsaicin on Salmonella enteritidis infection in leghorn chicks. *Avian Diseases*, 143-148.
- Thitilertdecha, N., Teerawutgulrag, A., Kilburn, J. D., & Rakariyatham, N. (2010). Identification of major phenolic compounds from Nephelium lappaceum L. and their antioxidant activities. *Molecules*, 15(3), 1453-1465.
- Tsolaki, V., Makris, D., Mantzarlis, K., & Zakynthinos, E. (2017). Sepsis-induced cardiomyopathy: oxidative implications in the initiation and resolution of the damage. *Oxidative Medicine and Cellular Longevity*, 2017.
- Tsuchiya, H., & Iinuma, M. (2000). Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophora exigua. *Phytomedicine*, 7(2), 161-165.
- Tsukamoto, S., Kato, H., Hirota, H., & Fusetani, N. (1994). Antibacterial and antifungal sulfated alkane and alkenes from the hepatopancreas of the ascidian Halocynthia roretzi. *Journal of Natural Products*, *57*(11), 1606-1609.
- Ulanowska, K., Tkaczyk, A., Konopa, G., & Węgrzyn, G. (2006). Differential antibacterial activity of genistein arising from global inhibition of DNA, RNA and protein synthesis in some bacterial strains. *Archives of Microbiology*, *184*(5), 271-278.
- Ulasli, M., Gurses, S. A., Bayraktar, R., Yumrutas, O., Oztuzcu, S., Igci, M., Igci, Y. Z., Cakmak, E. A., & Arslan, A. (2014). The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and

Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family. *Molecular Biology Reports*, 41(3), 1703-1711.

- Ullah, H., & Ali, S. (2017). Classification of anti-bacterial agents and their functions. *Antibacterial Agents*, 1-16.
- Umar, S., Munir, M. T., Subhan, S., Azam, T., Nisa, Q., Khan, M. I., Umar, W., Rehman, Z., Saqib, A. S., & Shah, M. A. (2016). Protective and antiviral activities of Nigella sativa against avian influenza (H9N2) in turkeys. *J. Saudi Soc. agric. Sci.*
- Van Delden, C., & Iglewski, B. H. (1998). Cell-to-cell signaling and Pseudomonas aeruginosa infections. *Emerging Infectious Diseases*, 4(4), 551.
- Varakumar, S., Kumar, Y. S., & Reddy, O. V. S. (2011). Carotenoid composition of mango (Mangifera indica L.) wine and its antioxidant activity. *Journal of Food Biochemistry*, 35(5), 1538-1547.
- Verdrengh, M., Collins, L. V., Bergin, P., & Tarkowski, A. (2004). Phytoestrogen genistein as an anti-staphylococcal agent. *Microbes and Infection*, 6(1), 86-92.
- Vijayakumar, R., Sandle, T., Al-Aboody, M. S., AlFonaisan, M. K., Alturaiki, W., Mickymaray, S., Premanathan, M., & Alsagaby, S. A. (2018). Distribution of biocide resistant genes and biocides susceptibility in multidrug-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii—A first report from the Kingdom of Saudi Arabia. *Journal of Infection and Public Health*, 11(6), 812-816.
- Vohora, S., Rizwan, M., & Khan, J. (1973). Medicinal uses of common Indian vegetables. *Planta Medica*, 23(04), 381-393.
- Wadhwa, M., Bakshi, M., & Makkar, H. (2015). Wastes to worth: value added products from fruit and vegetable wastes. *CAB International*, *43*, 1-25.
- Wan, J., Wilcock, A., & Coventry, M. (1998). The effect of essential oils of basil on the growth of Aeromonas hydrophila and Pseudomonas fluorescens. *Journal of Applied Microbiology*, 84(2), 152-158.
- Warren, R. I. (1995). The Complete Book of Natural and Medicinal Cures-How to Choose the Most Potent Healing Agents for over 300 Conditions and Diseases. *Journal of Human Lactation*, 11(4), 339-339.
- Williford, C. B., & Wagner, J. E. (1982). Bacterial and mycotic diseases of the integumentary system. In *Diseases* (pp. 55-75). Elsevier.
- Wu, D., Kong, Y., Han, C., Chen, J., Hu, L., Jiang, H., & Shen, X. (2008). D-Alanine: D-alanine ligase as a new target for the flavonoids quercetin and apigenin. *International Journal of Antimicrobial Agents*, 32(5), 421-426.
- Xu, X., Xie, H., Xu, L., & Wei, X. (2011). A novel cyclopropyl-containing fatty acid glucoside from the seeds of Litchi chinensis. *Fitoterapia*, 82(3), 485-488.
- Yoon, W.-J., Lee, N. H., & Hyun, C.-G. (2010). Limonene suppresses lipopolysaccharide-induced production of nitric oxide, prostaglandin E2, and pro-inflammatory cytokines in RAW 264.7 macrophages. *Journal of Oleo Science*, *59*(8), 415-421.
- Yoshida, S., Kasuga, S., Hayashi, N., Ushiroguchi, T., Matsuura, H., & Nakagawa, S. (1987). Antifungal activity of ajoene derived from garlic. *Applied and Environmental Microbiology*, 53(3), 615-617.
- Younes, A., Fares, M., Gaafar, A., & Mohamed, L. A. (2016). Isolation of Vibrio alginolyticus and Vibrio vulnificus strains from cultured Oreochromis niloticus around Qarun Lake, Egypt. *Global Veterinaria*, *16*(1), 01-05.

- Yvon, Y., Guy Raoelison, E., Razafindrazaka, R., Randriantsoa, A., Romdhane, M., Chabir, N., Guedri Mkaddem, M., & Bouajila, J. (2012). Relation between chemical composition or antioxidant activity and antihypertensive activity for six essential oils. *Journal of Food Science*, 77(8), H184-H191.
- Zahoor, A., & Abdul, G. (2007). Nigella sativa-a potential commodity in crop diversification traditionally used in healthcare. *Breeding of Neglected and Under-utilized Crops, Spices and Herbs*, 215-230.
- Zhang, F., Chen, B., Xiao, S., & Yao, S.-z. (2005). Optimization and comparison of different extraction techniques for sanguinarine and chelerythrine in fruits of Macleaya cordata (Willd) R. Br. Separation and Purification Technology, 42(3), 283-290.
- Zhang, M., Jiang, L., Li, F., Xu, Y., Lv, S., & Wang, B. (2019). Simultaneous dermatophytosis and keratomycosis caused by Trichophyton interdigitale infection: a case report and literature review. *BMC Infectious Diseases*, 19(1), 1-8.
- Zhang, Z., Xuequn, P., Yang, C., Ji, Z., & Jiang, Y. (2004). Purification and structural analysis of anthocyanins from litchi pericarp. *Food Chemistry*, 84(4), 601-604.
- Zhao, F., Wang, P., Lucardi, R. D., Su, Z., & Li, S. (2020). Natural sources and bioactivities of 2, 4-di-tert-butylphenol and its analogs. *Toxins*, *12*(1), 35.
- Zielińska, S., Wójciak-Kosior, M., Dziągwa-Becker, M., Gleńsk, M., Sowa, I., Fijałkowski, K., Rurańska-Smutnicka, D., Matkowski, A., & Junka, A. (2019). The Activity of Isoquinoline Alkaloids and Extracts from Chelidonium majus against Pathogenic Bacteria and Candida sp. *Toxins*, 11(7), 406.