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Abstract 

The efficient and precise control of molten steel temperature in an induction furnace is 

paramount in modern steelmaking processes. This master's thesis presents a novel 

approach to address this critical challenge that combines the power of Artificial 

Intelligence (AI) with Computational Fluid Dynamics (CFD) to predict and regulate the 

molten steel temperature accurately. 

The primary objective of this study is to develop an AI-based predictive model that can 

anticipate the molten steel temperature in real-time, enhancing process control, optimizing 

energy consumption, and ultimately improving product quality. The research 

methodology encompasses four main stages: data collection and preprocessing, AI model 

selection, CFD simulation, and model validation. 

The first phase focuses on creating a comprehensive CFD environment to simulate the 

induction furnace's thermal behavior, incorporating thermal boundary conditions and 

leveraging data augmentation techniques to generate a substantial dataset. In the second 

phase, several AI models are evaluated, and the most suitable one is selected based on 

performance metrics. The final phase entails training and validating the chosen AI model 

using the simulated data.  

The thesis introduces an AI model to address the complexities and dynamics of the 

induction furnace environment. This model harnesses the power of machine learning 

algorithms, enabling it to capture intricate patterns and non-linear relationships in the data, 

leading to more accurate temperature predictions. 

The study's results showcase the effectiveness and reliability of the proposed AI-based 

predictive model, demonstrating a notable improvement in temperature prediction 

accuracy compared to traditional methods. The thesis also explores real-world case 

studies, validating the model's applicability and efficiency in practical steelmaking 

scenarios. 
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In conclusion, this research successfully establishes a novel approach for predicting 

molten steel temperature in an induction furnace using AI within a CFD environment. The 

outcomes offer valuable insights into the steel industry, fostering more intelligent 

decision-making, reduced energy wastage, and enhanced process control. Additionally, 

this work sets a foundation for further exploration of AI integration in steelmaking 

processes and opens avenues for future research in related domains. 
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Chapter 1 

Introduction 

1.1. Motivation 

Energy has always been a necessity for living but in the present age, it is inevitable to 

survive without it. It is the lifeline of industries being used as means of transport, 

agriculture, production plants and electrical energy [1-3]. In response to modernization in 

all sectors of life, renewable energy sources are depleting at a rapid rate due to its high 

consumption. In 2008, it was reported that the global consumption of petroleum-based 

fuel was 85.6 million barrels per day which is expected to reach 112.2 million barrels per 

day by 2035 through statistical analysis [4]. To bridge the gap, energy production should 

be increased relative to its consumption. Also, that focus should be made on energy 

efficient processes.  

Iron-making stainless steel industries are one of the most energy-intensive industries 

where energy contributes to major proportion of operating and utilities cost [5, 6]. A 

country’s economic standing thus depends on iron and steel making industries. These 

industries are also referred as sustainable industries as it is completely recyclable. Steel 

industries also pictures a country’s competency in infrastructure development. About 5% 

of energy consumed globally is solemnly by iron and steel manufacturing sector [7-10]. 

Steel can be considered as a significant engineering material in terms of global economy 

as despite the COVID-19 pandemic situation recently observed, more than 1.9 billion tons 

of crude steel were produced in 2020 [11]. With the rapid advancement and heavily 

increasing market demands, iron and steel manufacturing sector can undoubtedly be 

termed as backbone of the modern society due to its innovative capabilities to keep up 

with the pace [12].   
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Over the past few decades, a significant growth is observed in steel production globally 

accounting 1700 million tons in 2017 alone. China being the biggest manufacturer of steel 

holds the responsibility of producing about half of the world’s total steel production [13, 

14].  Conventionally, oxygen steelmaking route was used for steel production but with 

development in technology world, focus has shifted towards electric route. The ratio of 

steel production in China from oxygen route to electric route is 53:47, highest being 

oxygen steelmaking route. India comes second and produces around 30% of its annual 

production by induction furnace due its recent popularity and advantages [15].  

World steel association records average world per capita consumption of crude steel to be 

about 233 kgs. The highest being South Korea (1076 kgs) whereas, Pakistan’s per capital 

of steel consumption (59 kgs) is even lower than the world average as well as from its 

regional country, India (76kgs). For a developing country like Pakistan, it is necessary to 

intensify its iron and steel manufacturing sector instead of playing a major share in 

importing steel [16]. Pakistan not only imports raw material but also the finished product 

which is not at all economical and fluctuations in exchange rate plays a big role in 

decreasing Pak Rupee worth. Therefore, Pakistan has brought its focus in this sector 

recently and in the year 2016-17, 18% of GDP was contributed by industrial sector which 

crosses agricultural sector by 2%.  

It was observed that from 1996 to 2007, energy consumption increased by 1.44 quadrillion 

BTU having annual increasing rate of 3.38%. It is to be noted that the energy demand of 

industrial sectors is greater than agricultural sector hence moving towards industrialization 

would significantly increase country’s overall energy consumption. The records of 2015 

showed that the total amount of energy supplied was 93.91 million tons of oil equivalent 

that breaks down into energy consumed around 23.77% by industrial sector and only 

0.98% by agricultural sector. Iron and steel-making plants are the focal point because of 

their major share about 13.45% in overall GDP of Pakistan and 64.4% GDP in industrial 

sector therefore, energy efficient process in the plant can remarkably lessen the energy 

consumption of the country [16]. 
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The steel industry hence, concluded is a fundamental pillar of modern infrastructure, 

playing a pivotal role in various sectors, from construction to automotive and aerospace. 

Achieving consistent high-quality steel production is of paramount importance for the 

industry's competitiveness and sustainable growth. The molten steel temperature inside an 

induction furnace is a critical parameter that directly influences product quality, energy 

efficiency, and overall operational costs. Therefore, accurate and real-time prediction of 

this temperature is vital for optimizing the steelmaking process and ensuring the desired 

properties of the final product. 

1.2. Research Problem 

Furnace is basically a type of direct fired heat exchanger in which a heat source increases 

the temperature of the feed to a high degree. Induction furnace is a type of furnace in 

which heat source is electricity thus also known as electric furnace. The advantage of such 

a furnace is that it is a clean, energy efficient and easily controllable melting process in 

comparison to other metal melting methods. Induction furnaces are thus ideally used for 

melting and alloying of metals giving lowest melt losses possible [17]. 

The working principle of induction furnace is induction heating. Induction heating is 

gaining an upper hand over other conventional heating techniques such as flame, 

resistance heating or ovens. It is a non-contact, quick and efficient heating method. Lately, 

induction heating is being preferably used for industrial, medical and domestic purposes 

[18-20]. The working phenomena involves an ac source that delivers alternating voltage 

to an induction heating coil. The coil produces alternating magnetic field. The charge (feed 

metal to be melted) is placed inside the coil. As a result of magnetic field, the charge heats 

up because of either electromagnetic induction or joule’s effect [21]. 

The joule’s effect is the main heating mechanism in induction heating caused by 

opposition of eddy currents to magnetic field generated in the induction charge. Whereas, 

in electromagnetic induction, an alternating current is induced on placing the loop in an 

alternating magnetic field. The moment loop is short-circuited, the voltage causes the 



4 

 

current to flow in a direction such that it opposes the change that caused it – Faraday’s 

Lenz Law [22, 23]. 

Such complex pattern of induction heating couples the behavior of electromagnetic, 

thermal, and hydrodynamic forces. For such intricate systems, traditional analytical 

methods are unreliable to completely understand the working and thus, bring 

improvements in its efficiency. The research problems concerns prediction of temperature 

accurately inside the induction furnace for optimizing steel production process, ensuring 

product quality and minimizing energy consumption. Computational Fluid Dynamics 

(CFD) simulations have proven to be effective in analyzing such complexities. 

Furthermore, accurate forecasts without explicit equations are made possible by AI 

algorithms, which can make use of large datasets and extract complex patterns. AI has the 

ability to dramatically increase the precision and effectiveness of temperature prediction 

in induction furnaces when used in conjunction with CFD models, which offer thorough 

insights into fluid movement, heat transport, and other physical phenomena inside the 

furnace [24-26]. 

However, the successful integration of ANN with CFD in the context of temperature 

prediction for molten steel in an induction furnace poses several research challenges: 

Data Fusion and Preprocessing: Combining data from CFD simulations with real-world 

industrial data to train the ANN accurately is challenging due to the inherent noise and 

uncertainties present in both types of data. Developing efficient data preprocessing 

techniques to handle these challenges is crucial for achieving reliable temperature 

predictions. 

Model Architecture Selection: Designing an optimal ANN architecture that can effectively 

capture the complex and nonlinear relationships between process variables in the 

induction furnace and accurately predict temperature distribution is a critical research 

problem. Identifying the appropriate number of layers, nodes, and activation functions in 

the ANN to achieve the best performance poses a challenge. 



5 

 

Training and Optimization: Training an ANN using CFD and industrial data requires 

careful consideration of training algorithms and optimization techniques to achieve 

convergence and prevent overfitting. Exploring novel optimization strategies to enhance 

the efficiency and accuracy of the ANN model in predicting temperature is essential. 

Generalization to Varying Operating Conditions: The induction furnace operates under 

various conditions, such as changes in steel composition, charging rates, and furnace 

geometry. Ensuring the ANN can generalize well to diverse operating conditions is a 

critical research problem to create a robust and versatile temperature prediction model. 

Addressing these research challenges will lead to the development of an effective and 

reliable artificial intelligence-based temperature prediction model for molten steel in 

induction furnaces. This model can potentially revolutionize the steel manufacturing 

industry by optimizing energy consumption, enhancing product quality, and facilitating 

process automation. 

1.3. Scope of The Study 

The thesis investigates the application of Artificial Intelligence (AI), specifically Artificial 

Neural Networks (ANN), for temperature prediction of molten steel in an induction 

furnace using Computational Fluid Dynamics (CFD) simulations in the COMSOL 

Multiphysics environment. Key aspects include setting up a comprehensive CFD model, 

collecting and preprocessing relevant data from CFD simulations and real-world industrial 

processes, implementing an ANN-based model, training and validating the ANN, 

comparing the ANN predictions with conventional methods, and exploring optimization 

strategies to enhance the ANN's training process and improve prediction accuracy. The 

study will also compare the ANN predictions with empirical models, basic regression 

techniques, or other established methodologies to establish the effectiveness of the 

proposed AI-based approach. The scope also includes exploring and implementing 

optimization strategies, such as hyperparameter tuning and regularization, to achieve the 

best possible results. 
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It is important to note that the scope of this study may be limited to a specific type or size 

of the induction furnace, a particular steel composition, or a set of operating conditions. 

Researchers should acknowledge these limitations while drawing conclusions and 

discussing the potential applications of the developed AI-based temperature prediction 

model. 

1.4. Contribution of The Thesis 

This thesis develops an AI-based prediction model for estimating molten temperature in 

an induction furnace in a CFD environment, aiming to improve process control and 

optimization in industrial settings. Accurate temperature estimation leads to increased 

productivity, reduce energy consumption, and reduced production costs. This is done by 

integrating computational fluid dynamics (CFD) with an artificial neural network (ANN) 

which is an artificial intelligence (AI) based model for an induction furnace. The study 

encompasses the following key aspects: 

• Exploring and analyzing historical temperature data and CFD simulation outputs to 

develop a data-driven AI model capable of predicting temperature distributions inside 

the furnace. 

• Investigating methods to seamlessly integrate the AI-based predictive model with 

CFD simulations, thereby enhancing computational efficiency and enabling real-time 

predictions. 

• Assessing the model's ability to adapt to variations in operating conditions, furnace 

geometries, and steel compositions to ensure generalizability across different 

industrial scenarios. 

1.5. Thesis Outline 

The introduction is given in chapter 1. The literature review on artificial intelligence and 

machine learning along with its applications in CFD is given in chapter 2. A review on 

previously held researches of temperature prediction in induction furnace is also addressed 

in chapter 2. Proposed researched methodology is depicted in chapter 3. The model 

development and its necessary conditions in CFD are described in chapter 4. Chapter 5 
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illustrates the selection and generation of ANN Model. Results and discussions are made 

on the overall thesis in chapter 6 followed by conclusions and future recommendation in 

chapter 7. Lastly, references are shown in chapter 8. The methodology of overall thesis is 

shown in Figure 1. 

 

Figure 1: Schematic Methodology of Thesis 
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Chapter 2 

Literature Review 

2.1. Introduction to Artificial Intelligence and Machine Learning 

Artificial Intelligence (AI) and Machine Learning (ML) are transformative technologies 

that have revolutionized various industries and are driving innovation in the modern 

world. AI refers to the development of computer systems that can perform tasks that 

typically require human intelligence, such as understanding natural language, recognizing 

patterns, and making decisions. On the other hand, ML is a subset of AI that focuses on 

designing algorithms and models that enable computers to learn and improve from 

experience without being explicitly programmed.  

AI has its roots in the 1950s, with pioneers like Alan Turing laying the groundwork for 

the field [27]. Since then, AI has evolved dramatically, driven by advancements in 

computing power, data availability, and algorithmic breakthroughs. Today, AI systems are 

integrated into everyday life, from voice assistants on smartphones to recommendation 

engines on streaming platforms. 

Machine Learning, as a key component of AI, is based on the idea that machines can learn 

from data to improve their performance on a specific task. ML algorithms analyze vast 

amounts of data, recognize patterns, and make predictions or decisions based on the 

learned patterns. This data-driven approach has proven incredibly effective in diverse 

applications including chemical industries. The machine learning is primarily divided into 

[28]:  

2.1.1. Supervised Learning (SL) 

In this approach, the ML model is trained on labeled data, meaning the input data is paired 

with corresponding target outputs. The model learns to map inputs to outputs based on 

this labeled dataset, enabling it to make predictions on new, unseen data. SL is further 
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categorized into classification and regression problems. The popular algorithms involved 

in SL are neural networks, linear/logistic regressions, decision tree, random forest etc. It 

is frequently used in predictive modelling. The steps of supervised learning are shown in 

Figure 2.  

 

Figure 2: Supervised Learning 

2.1.2. Unsupervised Learning (UL) 

In unsupervised learning, the ML model works with unlabeled data, seeking to identify 

patterns and structures within the data without explicit guidance. Clustering and 

dimensionality reduction are common applications of unsupervised learning. The popular 

algorithms involved in UL are k-means clustering and association rule. It is commonly 

used in descriptive modelling. The steps of unsupervised learning are shown in Figure 3. 

 

Figure 3: Unsupervised Learning 

The rapid growth of AI and ML is fueled by the availability of big data, powerful 

computing resources, and open-source tools. Researchers and developers continuously 

push the boundaries of what AI can achieve, leading to groundbreaking applications that 

shape industries and human interaction with technology.  
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2.2. Applications of AI in Computational Fluid Dynamics (CFD) 

CFD is a useful tool that makes precise predictions possible by numerically computing the 

Naiver-Stokes (N-S) equations. CFD has been extensively and consistently used over the 

years to simulate turbulent airflow, heat transfer and contaminant transport, as well as to 

simulate wind flow around buildings and track pollutants [29-31]. CFD still faces 

numerous obstacles, primarily in terms of accuracy and computational cost. The N-S 

equations must be numerically solved with space and time discretization in cases of 

realistic turbulent flow fields because analytical solutions are not possible. The direct 

numerical simulation (DNS) strategy is used to fully depict the flow phenomena [32].    

While efforts are being made to enhance CFD techniques themselves with new turbulence 

models and algorithms, there has recently been interest in using new tools to support CFD 

simulation for increased accuracy [32, 33]. Artificial intelligence and data-driven models 

are gaining a lot of attention in a variety of applications thanks to digitization and the 

availability of large amounts of data. More specifically, deep learning and artificial neural 

networks (ANNs) have a lot to offer in terms of handling high-dimensional fields, 

universal non-linear approximation, and computational affordability. 
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Figure 4: Integration of CFD and AI Based on Model Selection [34] 

Figure 4 depicts the steps in the CFD simulation process, each of which has the potential 

to produce a significant amount of discretized equations and data. Four different types of 

models could be created by fusing these equations or data with AI algorithms namely [34]: 

2.2.1. Mathematical Model  

AI algorithms are typically used in mathematical models to solve the governing equations 

and optimize their numerical solutions, such as optimizing ordinary differential equation 

(ODE) by deep neural networks (DNN's). This kind of model is intended to look for more 

precise numerical answers to the equations and could significantly increase the accuracy 

of the results. 

2.2.2. Grid Optimization Model 

This model significantly decreases computation time. AI is incorporated in order to 

generate the domain grid or optimize the local grid more sensibly and effectively. 

2.2.3. Physical Model 
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The physical model is used to assess the flow data and CFD modelling through the 

conjunction of machine learning (ML) and a CFD solver. By enhancing and modifying 

the parameters of the base model, physical model provides realistic calculations. As a 

result, a hybrid model that incorporates both data and physical mechanisms is produced. 

2.2.4. Data Driven Model 

Lastly, data driven models are frequently employed to predict results or verify the 

accuracy of a new model because it can build databases and evaluate the input-output 

relationships or data patterns. 

In order to gain insight on actual working of AI and CFD together, let’s take heat transfer 

as an example. In nature, daily life, and industry, heat transfer occurs frequently. In fields 

like energy, metallurgy, machinery, chemical engineering, and others, it has always been 

significant. Recent years have seen the emergence of numerous interdisciplinary fields, 

including multiphase heat transfer which is involved in the modelling of induction furnace 

in this thesis.  The two most popular ways to study heat transfer are experiments and CFD 

calculations [35-37]. When there are too many experimental variables, the cost is high and 

the number of usable samples is constrained especially for non-linear partial differential 

equations (PDEs).  In addition, it is challenging to calculate problems in the absence of 

obvious physical mechanisms. As a result, using AI to solve these issues has become very 

famous.  

AI is used to produce various models based on the data obtained from experiments and 

calculations [38, 39]. Supervised learning (SL) is opted as a suitable method due to the 

physical relationship between the sample labels in the data set. Among the various SL 

algorithms, ANN is the most widely used and has been successfully applied in numerous 

works [40, 41]. As shown in Figure 5, three common techniques were used to train an 

ANN model: gradient descent, Newton's method, and Levenberg-Marquardt. The gradient 

descent is the least memory-intensive and slowest of them all. Levenberg-Marquardt is 

the quickest but uses the most memory, whereas Newton's method could effectively 
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balance the two demands. The Leven-berg-Marquardt method could meet the demand for 

high precision because the parameter numbers in training data are restricted to < 100 in 

the case of heat transfer. Newton's method is appropriate for situations with greater than 

100 parameters and a sizable amount of data. In general, gradient descent is not very 

common. Physical models, hybrid models, and data-driven models are typically classified 

according to the size of the data set [34]. 

The hybrid model falls between the physical model and the data-driven model in terms of 

database size requirements. Temperature, Reynolds number, and a few environmental 

factors could all be input parameters for these three models, whereas the output parameters 

comprises heat transfer coefficient, thermal efficiency, temperature differential, and heat 

load.  

 

Figure 5: Application of AI in CFD Based on Heat Transfer [34] 
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In conclusion, the integration of AI with CFD has opened up new avenues for innovation 

and efficiency improvement in various engineering applications. In the context of 

predicting molten steel temperature in an induction furnace, AI-based CFD simulations 

offer accurate and efficient solutions, leading to enhanced process control, energy savings, 

and improved product quality. AI-driven CFD optimization can help identify the optimal 

furnace geometry, coil arrangement, and operating parameters to ensure precise 

temperature control and energy efficiency. CFD simulations are inherently influenced by 

uncertainties in boundary conditions, model parameters, and other inputs. AI methods, 

such as Bayesian inference and Monte Carlo simulations, can be applied to quantify these 

uncertainties and assess the reliability of CFD predictions.  As AI technologies continue 

to advance, their synergistic relationship with CFD is likely to lead to further 

breakthroughs in the field of fluid dynamics and beyond. 

2.3. Previous Studies on Molten Steel Temperature Prediction 

The prediction of molten steel temperature in an induction furnace is a critical aspect of 

the steelmaking process, as it directly impacts the quality of the final product and the 

overall energy efficiency of the system. Over the years, researchers and engineers have 

extensively investigated various approaches to accurately forecast molten steel 

temperatures during the steelmaking process. This section provides an overview of some 

notable previous studies on molten steel temperature prediction, highlighting the 

methodologies and findings. Early attempts at predicting molten steel temperature often 

relied on empirical models based on experimental data. These models attempted to 

establish correlations between process parameters, such as power input, coil frequency, 

and charge material, and the resulting molten steel temperature. While these empirical 

models were simple to implement and provided some insights, their accuracy was limited 

due to the highly complex and non-linear nature of the induction heating process. 

With the advancement of numerical methods, the Finite Element Method (FEM) gained 

popularity for simulating the induction heating process in induction furnaces. FEM 

enabled researchers to model the complex geometries of furnaces and account for the 

interactions between the magnetic field, heat transfer, and fluid flow. Using FEM, eddy 
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current problem has been previously addressed. Considering if the current density, 

expressed in cylindrical coordinates, contains only an azimuthal component, the three-

dimensional problem can be limited to a two-dimensional one on a meridional section by 

taking advantage of the cylindrical symmetry. They provided a mixed formulation in the 

proper weighted Sobolev spaces. By examining an equivalent weak formulation, the 

solution's existence and originality were demonstrated [42].  

In order to estimate the temperature of the liquid steel inside the induction furnace, work 

has been done to measure temperature indirectly by determining the amount of energy put 

into the furnace, flow rate of cooling water, and the temperature at the outer wall lining of 

the induction furnace. The method for estimating temperature relies on taking into account 

the furnace's heat balance equation and using a number of parameters for the furnace 

throughout the process to estimate the furnace's heat losses. From this method, an estimate 

of temperature of molten steel can be done [43].  

CFD emerged as a powerful tool for simulating fluid flow, heat transfer, and 

electromagnetic fields in induction furnaces. CFD simulations allowed for a detailed 

analysis of the complex physical phenomena involved in the steel melting process. Such 

that a study on thermal behavior of induction furnace has been carried out resulting 

favorable condition for copper melting by studying temperature distribution in the 

crucible. Their study revealed that copper-liner is used for prevention of heating of vessels 

by electromagnetic effect between coil and the vessel [44]. Further finite element method 

has been used for transient heat transfer analysis of induction furnace for suggesting an 

optimized heat transfer. The study also led to the analysis of ramming mass in the melting 

process and how its thickness and conductivity effects the melting rate. Lastly, composite 

walls are studied for furnace efficiency enhancement [24, 45].  

The main aim of study targets melting of metal thus, temperature distribution in the melted 

charge due to which proper understanding on design and construction of induction furnace 

is required. A researcher used equivalent circuit and superposition method for this analysis 

[46]. Another used FEM approach to study performance during heating so that the 
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capability of coil current and frequency to attain precise temperature may be studied [47]. 

The pinch effect also effects the molten steel produced by the electromagnetic force, which 

is directed toward the channel's center. It is observed that due to the skin and proximity 

effect, the electromagnetic force and joule heating are higher in the regions close to the 

induction coil. Thus, when molten steel flows through the channels, spiral recirculation 

would happen. Following its movement through the channels, the molten steel rises due 

to buoyancy. By using joule heating, it is possible to effectively make up for the heat loss 

of molten steel, and induction heating improves the uniformity of temperature [48].  

Many researchers have done mathematical modelling to study induction heating 

phenomena by simplifying geometry of induction furnace to two-dimensional geometry. 

One study may target effect of electromagnetic power induced in crucible on heat transfer 

[49]. The other aims for investigation of operating conditions to enhance evaporation 

process claiming that molten steel temperature plays a vital role in influencing evaporation 

rate [50]. Another shifts its focus towards studying effect of frequency on molten steel 

thus, finding the most fitted inductor profile [51]. A few others targeted eddy current 

problem to solve non-linear heat transfer involving phase change [52].  

Different papers used multiple styles of validation. Some built a laboratory scale induction 

furnace to experimentally study the results and compare them with numerical results [53]. 

Others compared temperature distribution obtained numerically with the macro etched 

section of solidified ingots. The comparison depicted that the dendritic grain structures 

obeyed the same direction as thermal flow which concluded that a uniform thermal field 

can be achieved by proper set of coils consequently, uniformity in ingots composition 

[54]. Another verified by comparison of three types of analysis including numerical, 

analytical and experimental. In this study, heat transfer in time dependent domain and 

radial temperature distribution of induction furnace for aluminum cylindrical disc was 

evaluated. The results illustrated that experimental and numerical methods gave a slope 

for temperature distribution lower than the analytical method with an error rate of 7% [55]. 

Another researcher hence, briefly explained the coupling of analytical and numerical 
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method for model validation. He further used his developed technique for optimizing the 

induction heating and energy efficiency [56].  

Induction furnaces are famous for melting of metals with no fuel requirement. Although, 

melting under thermal fatigue is an issue hence, a study has been done on estimating 

temperature and thermal stress distribution at refractory wall by ANSYS. The results of 

which were interpreted in S-log N curve [57]. Similarly, controlling temperature is another 

hindrance along with temperature distribution that significantly effects efficiency of the 

furnace. A PID control algorithm is devised to cater the controlling problem and its 

employment results illustrated that temperature control system is responsible for 

overshoot, response time and stability of the system [58].  

The mock-ups of induction furnaces are made in COMSOL to study electromagnetic, 

hydrodynamic and thermal behavior and effects of various parameters on charge melting, 

temperature distribution and efficiency of the furnace are evaluated [44]. Moreover, case 

studies on quality of non-linear solutions has been made revealing that current iteration 

errors during time integration may not be accurate. Therefore, such studies suggested that 

fundamental balances (energy and material) and required smoothing at boundary should 

be used as additional parameters for quality assessment [59].  

Recognizing the strengths and limitations of different approaches, researchers began 

developing hybrid models that combined empirical data, FEM, and CFD simulations. 

These hybrid models aimed to leverage the advantages of each technique to enhance the 

accuracy of temperature predictions. For instance, researchers integrated AI-based 

algorithms, such as neural networks, with CFD simulations to improve the accuracy of 

molten steel temperature forecasts. These hybrid models showed promising results and 

offered a good compromise between accuracy and computational efficiency. Such that 

reliable predictions have been made for end point temperature predictions using RBF 

neural network [60].  
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In conclusion, previous studies on molten steel temperature prediction have evolved 

significantly over the years, from simple empirical models to sophisticated AI-driven 

approaches. While early models provided valuable insights, the integration of advanced 

numerical methods, like CFD and FEM, significantly improved the understanding of the 

underlying physics. The latest machine learning and AI-based models have shown 

tremendous promise in accurately forecasting molten steel temperatures, making them 

crucial tools for enhancing steelmaking processes in induction furnaces. However, there 

is still room for further research and development, especially in optimizing the 

computational efficiency of AI-driven models without compromising their accuracy. 

2.4. Comparison of Different AI Techniques for Temperature 

Prediction 

The accurate prediction of molten steel temperature in an induction furnace is crucial for 

ensuring product quality and optimizing the steelmaking process. As Artificial 

Intelligence (AI) continues to advance, various AI techniques have been explored to 

improve temperature predictions in this domain. A comprehensive comparison of different 

AI techniques used for molten steel temperature prediction in an induction furnace, 

highlighting their strengths, limitations, and potential applications is given below. 

2.4.1. Neural Networks 

Neural networks, particularly Deep Learning architectures, have gained significant 

popularity for temperature prediction tasks due to their ability to learn complex 

relationships from large datasets. Convolutional neural networks (CNN) are well-suited 

for capturing spatial correlations in the temperature field within the induction furnace, 

while recurrent neural networks (RNN) can effectively model temporal dependencies in 

time-series data, making them useful for capturing dynamic changes in temperature over 

time. The back propagation (BP) neural networks are feedforward networks with multiple 

layers. They have high tolerance for distorted information and can effectively forecast 

molten steel temperature. The BP algorithm uses three layers architecture involving input 

layer, hidden layer and output layer. The input layers consist of the factors influencing 
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steel temperature and the output layer comprises the end-point molten steel temperature 

under set operating conditions [61-63].  

2.4.2. Support Vector Machines (SVM) 

SVM is a popular supervised learning algorithm used for regression and classification 

tasks. SVM attempts to find the optimal hyperplane that best separates data points into 

different classes. In SVM regression, the basic concept is to draw patterns for a high-

dimensional space by non-linear mapping and the perform linear regression in the 

concerned region. In the context of temperature prediction, SVM can be used to establish 

relationships between process parameters and molten steel temperature [64].  

2.4.3. Random Forest 

Random Forest (RF) is an ensemble learning technique that constructs multiple decision 

trees and combines their predictions to achieve a more accurate and stable result. The first 

algorithm for RF and its extension was proposed by [65, 66]. Random Forest can handle 

a mix of categorical and numerical features, making it versatile for temperature prediction 

tasks that involve diverse types of input data. RF feature importance analysis, aiding in 

understanding the influential process parameters on temperature. 

2.4.4. Multivariate Adaptive Regression Splines 

MARS (Multivariate Adaptive Regression Splines) is a regression technique that has been 

applied successfully in various prediction tasks, including temperature prediction. MARS 

is particularly useful when dealing with complex and non-linear relationships between 

input variables and the target variable, making it a potential candidate for molten steel 

temperature prediction in an induction furnace. This method was given by [67]. MARS 

builds a regression model using basis functions and splines. The model represents the 

relationship between the input variables (process parameters, furnace conditions, etc.) and 

the output variable (molten steel temperature) using a series of piecewise linear segments, 
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known as splines. These splines connect specific regions of the input space, and the 

coefficients of these splines are learned during the model training process [68].  

2.4.5. k-Nearest Neighbors 

KNN is a non-parametric algorithm that makes predictions based on the similarity of data 

points in the feature space. It was first proposed by [69]. To apply KNN, historical data of 

the induction furnace operation is collected, including various process parameters (e.g., 

power input, stirring speed, coil frequency) and the corresponding molten steel 

temperatures. This dataset will serve as the training data for the KNN algorithm [70]. The 

parameter 'k' in KNN represents the number of nearest neighbors to consider when making 

a prediction. The value of 'k' affects the model's performance, and it is essential to choose 

an appropriate value through hyperparameter tuning. 

Each AI technique has its unique strengths and limitations, making them suitable for 

different scenarios and applications in molten steel temperature prediction for an induction 

furnace. Neural networks excel in handling complex and high-dimensional data, Support 

Vector Machines are effective with smaller datasets and known process parameters, while 

Random Forest is versatile in handling diverse input data types. Depending on the specific 

requirements of the steelmaking process, the choice of AI technique should be carefully 

considered to achieve the most accurate and efficient temperature predictions [71]. A 

comparison of strengths and limitations of above-mentioned machine learning algorithms 

is shown in Table. Additionally, hybrid models that combine the strengths of multiple AI 

techniques may further enhance the overall predictive performance for this critical 

application. 
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Table 1: Comparison of Different AI Techniques and Application in Temperature Prediction 

Method Strengths Limitations Potential Applications 

Neural 

Networks 

(NNs) 

Excellent at handling complex, 

high-dimensional data. 

Can learn non-linear 

relationships and patterns in 

the data. 

 

Requires a large training dataset. 

Prone to overfitting, especially with limited training 

data. 

High computational and memory requirements. 

Depends on training function 

 

Neural networks are ideal for real-time 

temperature prediction tasks, where accuracy 

and responsiveness are critical, such as in 

process control and automation systems for 

induction furnaces. 

Support 

Vector 

Machines 

(SVM) 

Effective in handling small to 

medium-sized datasets. 

Robust against overfitting due 

to its structural risk 

minimization principle. 

Reduced generalization error. 

May struggle with non-linear relationships. 

Depends on kernel selection. 

Limited ability to capture temporal or sequential 

patterns. 

 

SVM can be valuable for predicting temperature 

based on known process parameters and 

historical data, making it useful for process 

optimization and parameter tuning in induction 

furnace operations. 

Random 

Forest (RF) 

Provides feature importance 

analysis, aiding in 

understanding the influential 

process parameters. 

Slow performance. 

A complete change in model is observed over small 

change in training dataset 

RF used in temperature prediction where feature 

importance analysis is essential for process 

optimization. 
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Efficient for regression and 

classification problems. 

Multivariate 

Adaptive 

Regression 

Splines 

(MARS) 

Automatic detection of 

variables relationship. 

Suitable for multiple target 

variable. 

Not robust to overfitting.  

Complex algorithm. 

Not fit for noise and non-linear datasets. 

MARS make it easier to interpret the 

relationship between input variables and the 

predicted molten steel temperature. The model 

can identify the most influential process 

parameters and indicate the regions of the input 

space where their effects are significant. 

k-Nearest 

Neighbors 

(KNN) 

A good choice for quick 

prototyping and baseline 

modeling. 

Easy interpretation. 

Space issues are improved by 

spatial trees. 

KNN requires calculating distances between the 

new data point and all data points in the training set, 

making it computationally intensive for large 

datasets. 

Sensitive to noisy data. 

Determining of optimal k is crucial factor in 

accuracy of results. 

KNN can help predict molten steel temperature 

based on historical data of induction furnace 

operation like power input, coil frequency or 

current in coils etc. 
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2.5. Gap Analysis and Research Opportunities 

Previously studies have addressed the electromagnetic, hydrodynamic and thermal 

behavior in induction furnace separately. The modelling on coupling of aforementioned 

physics is limited. Even if the coupling procedure is followed, little attention is given to 

molten steel temperature prediction in induction furnace. The accurate temperature 

distribution is a complex task comprising of Multiphysics and is subjected to dynamic and 

real-time variations due to fluctuating process conditions. The temperature distribution 

plays crucial role in product quality, energy consumption and overall efficiency thus, this 

gap is analyzed in this thesis. 

Research opportunities exist in developing AI models that can continuously learn and 

adapt to the changing operating conditions of the induction furnace in real-time. 

Combining AI techniques with CFD-based optimization could lead to efficient control 

strategies and energy-saving measures for the induction furnace. Such hybrid approaches 

would enable the AI model to optimize furnace parameters while considering the complex 

fluid dynamics and heat transfer phenomena within the furnace. Research can be 

undertaken to enhance the interpretability of AI-driven temperature prediction models. 

Explaining the AI models' decisions and providing insights into the factors influencing 

temperature predictions could increase their acceptance and adoption in real-world 

industrial settings. 
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Chapter 3 

Research Methodology 

3.1. Overview of Induction Furnace and CFD Modeling 

3.1.1 Induction Furnace 

The foundation of electromagnetic induction was laid by Michael Faraday in 1831 through 

an experiment conducted on his famous induction ring [72]. The first induction furnace 

was invented by Colby with a desire to melt platinum in non-carbonaceous environment 

however, this furnace could not be of commercial use. Later De Ferranti, using the same 

principle as Colby gave an induction furnace design in which he placed primary coils 

outside the secondary circuit that caused high level of magnetic leakage [73]. However, 

they both gave an incredible furnace design from a theoretical standpoint of a high 

efficiency furnace in which the metal charge can be under perfect temperature control. A 

few years later, Kjellin gave the first practical induction furnace design [74]. He placed 

primary coils within the secondary thereby, reducing magnetic leakage de. Since then, 

many improvements have been made in order to achieve currently practiced induction 

furnaces [75]. 

Furnace is basically a type of direct fired heat exchanger in which a heat source increases 

the temperature of the feed to a high degree. Induction furnace is a type of furnace in 

which heat source is electricity thus also known as electric furnace. The advantage of such 

a furnace is that it is a clean, energy efficient and easily controllable melting process in 

comparison to other metal melting methods. Induction furnaces are thus ideally used for 

melting and alloying of metals giving lowest melt losses possible [17]. 

The working principle of induction furnace is induction heating. Induction heating is 

gaining an upper hand over other conventional heating techniques such as flame, 

resistance heating or ovens. It is a non-contact, quick and efficient heating method. Lately, 
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induction heating is being preferably used for industrial, medical and domestic purposes 

[18, 19]. The working phenomena involves an ac source that delivers alternating voltage 

to an induction heating coil. The coil produces alternating magnetic field. The charge (feed 

metal to be melted) is placed inside the coil. As a result of magnetic field, the charge heats 

up because of either electromagnetic induction or joule’s effect [21]. 

The joule’s effect is the main heating mechanism in induction heating caused by 

opposition of eddy currents to magnetic field generated in the induction charge. Whereas, 

in electromagnetic induction, an alternating current is induced on placing the loop in an 

alternating magnetic field. The moment loop is short-circuited, the voltage causes the 

current to flow in a direction such that it opposes the change that caused it – Faraday’s 

Lenz Law [22, 23]. 

Currently, induction heating technologies are rapidly evolving towards being highly 

reliable and efficient systems. The major pros of induction furnaces include [76]: 

Rapid Heating: Due to high power densities, time taken to heat the load is prominently 

reduced and less heat is wasted in comparison to other techniques. 

Efficient Working: High temperatures can be attained as only the induction target is to be 

heating thus minimizing heat losses to the surrounding hence the overall efficiency 

increases up to 90%.  

Controlled Heating: Through the accurate design of coils, the heating location can be 

controlled thus, advanced techniques such as local heating and temperature profile can be 

applied to induction furnaces. 

Safe and Environmentally Friendly: Induction furnace are known as clean and green 

furnaces as only the target heats up and the surrounding material remains intact due to 

lower temperature in other regions. They also don’t emit burnt fossil fuels hence, keeping 

the environment clean.  
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3.1.2. Computational Fluid Dynamics (CFD) Modelling 

Numerical modelling is the fundamental reason of current advancement in induction 

heating processes. The current production demand does not allow trial and error in process 

design. Computational simulations can help access a problem in the process which is 

experimentally expensive, time consuming and probably impractical. Computer 

simulations help improvise and develop new techniques or processes and making them 

efficient in nature. Any new model can be developed from simple to complex numerical 

analysis. The main key is to select the appropriate theoretical model that perfectly fits the 

process to be modelled [22]. Uncertainty analysis can be done through numerical 

simulations and thus effects of different process parameters may be studied to increase the 

overall efficiency of the equipment or plant and reducing utilities consumption, heat losses 

and material wearing etc. 

Process safety has always been a major concern hence, basic mechanisms are studied 

carefully and a number of experiments on laboratory scale are conducted before 

developing a commercial scale process still a bridge remains in safety which is covered 

by CFD tools [77]. These tools gain deeper understanding of the concerned physics of a 

process and suggest improvements making it more feasible, safe and environment friendly 

[78]. Simulations involving computational fluid dynamics (CFD) codes can give detailed 

information about heat transfer, mass transfer and fluid flow inside a processing 

equipment [79]. The numerical modelling of physics involved in this thesis is given below. 

3.1.2.1.Mathematic Modelling of Electromagnetic Field 

A brief overview of solving electromagnetic field in computational fluid dynamics 

environment involves solution of Maxwell’s set of equations [80, 81]. 

Ampere’s Law: 
∇ × 𝐻 = 𝐽 +

𝜕𝐷

𝜕𝑡
 

3.1 

Faraday’s Law: 
∇ × 𝐸 = −

𝜕𝐵

𝜕𝑡
 

3.2 

Gauss’ Law: ∇ ∙ 𝐵 = 0 3.3 
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Gauss’ Law: ∇ ∙ D = 𝜌𝑐ℎ𝑎𝑟𝑔𝑒 3.4 

Where E is the electric field, D is electric flux density, H is magnetic flux intensity, B is 

magnetic flux density, J is conduction current density and ρcharge is electric charge 

density. 

Maxwell equations is in complete correspondence with Maxwell laws of magnetism. The 

Equation 3.1 states that a magnetic field is always produced when there is a current 

flowing in the nearby surrounding. The equation shows that the curl of H is dependent 

upon two sources at a time i.e. conduction current density ‘J’ and electric charge density 

′ρcharge
′
. 

The Equation 3.2 states that differential of magnetic flux density B always generates 

divergence in electric field E and induces current in nearby region. Whereas, the negative 

sign shows the direction of induced electric field.  

The electromagnetic physics for induction heating inside an induction furnace can be 

explained by Equations 3.1 and 3.2. The alternating current is produced in the coils 

because of the influence of alternating voltage. The produced alternating current gives rise 

to alternating magnetic field having same frequency as the current in coils. The geometry 

of the coil, current inside coils, coupling of coil and workpiece greatly effects the strength 

of magnetic field. The magnetic field then generates eddy currents in the inductor. These 

eddy currents produce their own magnetic field in an opposite direction to the source 

magnetic field. In short, total magnetic field is a sum of source and induced magnetic 

fields inside an induction furnace. 

Furthermore, the Equation 3.3 illustrates that divergence of magnetic flux density B is null 

which means that there is no source or sink from where magnetic fields lines generate 

leaving behind a perception that these lines are always in a continuous loop. 
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3.1.2.2.Mathematic Modelling of Heat Transfer 

Generally, thermal process is dealt in time dependent domain and can be simply expressed 

by Fourier equation 3.5. 

𝑐𝜌
𝜕𝑇

𝜕𝑡
+ ∇ ∙ (−𝑘∇𝑇) = 𝑄 

3.5 

Where T is temperature, 𝜌 is metal’s density, c is specific heat, k is thermal conductivity 

and Q is the heat generated. The heat source density due to rate of induced eddy currents 

is acquired by the solution of electromagnetic field. The above Equation 2.5 illustrated 

temperature distribution inside the induction furnace at any point across the geometry at 

any time under the influence of initial and boundary conditions.  

The initial conditions are usually set to ambient cause they represent conditions at t=0 if 

not linked to any previous process whereas, the boundary conditions are responsible for 

thermal losses due to convection and radiation. For a symmetric geometry, Neuman 

boundary condition is applied at the axis. The Neuman boundary conditions states that no 

heat exchange occurs at the axis and is thus used for a properly insulated workpiece. 

𝜕𝑇

𝜕𝑛
= 0 

3.6 

3.1.2.3.Finite Element Method 

To get effective computational results, numerical methods like finite difference, finite 

volume, mutual impedance, finite element or boundary element methods are used. Each 

method has its pros and can be used as a stand alone or in combination with another. FEM 

gives element wise approximations of the governing equations. The area under study is 

further broken down into non-overlapping subareas thus minimizing energy at each node 

of each element. Most paper has referred FEM as a suitable method for electromagnetic 

applications due to its flexible geometry [82]. Space discretization is another significant 

aspect of FEM. The accuracy of the numerical method depends on careful meshing in the 

regions where the influence of rate of change of the unknown is huge. FEM solves 
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electromagnetic problem along with temperature profiling across the geometry with 

respect to magnetic vector potential [83, 84]. 

3.2. Data Collection and Preprocessing 

Data collection and preprocessing are crucial steps such as obtaining high-quality data and 

preparing it in a suitable format are essential for training and validating the ANN model 

effectively. Here's an outline of the data collection and preprocessing steps: 

3.2.1. Data Collection 

The data is firstly gathered from CFD simulations that is COMSOL modelling of the 

induction furnace. The CFD simulations should include information about the geometry, 

furnace dimensions, time, and temperature distribution inside the furnace during the 

steelmaking process. Ensure that the simulation data covers a wide range of operating 

conditions and scenarios to create a representative dataset. Secondly, the obtained detailed 

information about the induction furnace's physical dimensions, including its length, width, 

height, and other relevant geometry parameters. These parameters play a significant role 

in determining the temperature distribution inside the furnace and were validated with 

literature [85]. Record the simulation data with timestamps to capture the time-dependent 

behavior of temperature changes during the steelmaking process. The time-stamped data 

allows the model to consider temporal patterns and dynamics.  

3.2.2. Data Preprocessing 

First and foremost, check the CFD simulation data for missing values, outliers, and any 

inconsistencies. Handle missing values through imputation techniques, and remove or 

correct any outliers that could adversely affect the model's performance followed by 

combining the CFD simulation data with the corresponding furnace geometry and 

dimensions data ensuring that the timestamps align correctly with the corresponding 

temperature readings. After that scaling is done for the temperature and other numerical 

features to a common range. The last task in preprocessing is to divide the data into 
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training and validation sets. The training set is used to train the ANN model, while the 

validation set is used to evaluate its performance and generalization capabilities. 

By carefully collecting and preprocessing the CFD simulation data along with furnace 

geometry, dimensions, and time-stamped information, the dataset is prepared for training 

the ANN model to predict molten steel temperatures accurately. Proper data handling and 

preprocessing steps are essential to ensure the success of the thesis and the development 

of a robust and reliable temperature prediction model for induction furnaces. 

3.3. Feature Selection and Engineering 

The effective feature selection and engineering are crucial steps to improve the accuracy 

and generalization capability of the ANN model for predicting molten steel temperatures. 

Given the complex nature of the steelmaking process and the diversity of parameters 

involved, careful feature selection and engineering can significantly enhance the model's 

performance. By carefully choosing relevant features and crafting new informative ones, 

the model can effectively capture the intricate relationships between process parameters 

and temperature variations. The combined impact of feature selection and engineering will 

lead to a more interpretable, efficient, and reliable AI solution for temperature prediction, 

enhancing the steelmaking process's quality and efficiency. The selected features for ANN 

model are dimensions from width and height of furnace geometry moving across x-axis 

and y-axis at every minute for the total run time. So, time is another feature used as input 

variable whereas, temperature is the only output variable at the specified input features. 

3.4. AI Model Selection and Justification 

Molten steel temperature prediction in an induction furnace is a challenging task due to 

the dynamic and non-linear nature of the process. Accurate temperature prediction is 

essential for controlling the steelmaking process and avoiding defects in the final product. 

CFD simulations provide detailed insights into the flow and heat transfer phenomena 

inside the furnace, and integrating AI models can enhance the accuracy and efficiency of 

temperature predictions. In this work, ANN is selected as the AI model for its proven 

capabilities in handling complex non-linear relationships and its success in various 
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predictive modeling tasks [86-88]. A few justifications for choosing ANN as the AI model 

for temperature prediction are: 

3.4.1. Non-Linear Relationship 

ANN excels at capturing complex non-linear relationships between input and output 

variables. In the context of molten steel temperature prediction, the temperature variations 

are affected by a multitude of factors, including induction power, geometry, material 

properties, and time. ANN's ability to approximate non-linear functions makes it well-

suited for capturing these intricate dependencies. 

3.4.2. Universal Function Approximator 

The universal function approximation theorem states that a neural network with a 

sufficient number of neurons in its hidden layers can approximate any continuous function 

to arbitrary precision. Given the diverse and often unknown dynamics of induction furnace 

behavior, the flexibility of ANN to approximate complex functions is a significant 

advantage. 

3.4.3. Feature Extraction and Engineering 

ANN can effectively learn and extract relevant features from the input data during the 

training process. As predicting molten steel temperature relies on a multitude of 

parameters from CFD simulations, feature engineering can be a time-consuming task. 

ANN's ability to perform automatic feature extraction alleviates this burden and can reveal 

hidden patterns in the data. 

3.4.4. Handling Noisy Data 

Real-world data can be noisy and contain uncertainties. ANN is robust to noisy data and 

can learn to generalize from imperfect training samples. This is particularly important in 

industrial applications where variations in operating conditions and measurement errors 

are common. 
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3.4.5. Parallel Processing 

ANN computations can be efficiently parallelized, making it suitable for handling large 

datasets and speeding up the training process. This scalability is advantageous in dealing 

with the vast amounts of data typically encountered in CFD simulations. 

The choice of ANN as the AI model for molten steel temperature prediction in an induction 

furnace is justified based on its ability to handle complex non-linear relationships, perform 

feature extraction, and tolerate noisy data. The synergy between CFD simulations and 

ANN will enable accurate and efficient temperature predictions, which can significantly 

benefit the steel industry by improving product quality and optimizing the steelmaking 

process. The development and validation of the ANN-based model in this thesis will 

contribute to the advancement of AI applications in industrial processes. 

3.5. Model Training and Validation 

The model training and validation process plays a pivotal role in ensuring the accuracy 

and reliability of the developed ANN model. Model training involves feeding the ANN 

with a carefully curated dataset comprising CFD simulation outputs and corresponding 

molten steel temperatures. The ANN learns the underlying patterns and relationships 

between the input parameters and the target variable through an iterative optimization 

process, typically using backpropagation. To avoid overfitting and to evaluate the 

generalization capability of the model, a comprehensive validation strategy is employed. 

The dataset is split into training and validation sets, with the former used for training the 

ANN and the latter for assessing its performance. Various metrics, such as Mean Absolute 

Error (MAE), Root Mean Square Error (RMSE), and R-squared, are computed to quantify 

the model's predictive accuracy. Additionally, techniques like k-fold cross-validation may 

be applied to obtain a more robust estimate of the model's performance. Through rigorous 

model training and validation, the thesis aims to demonstrate the ANN's capability to 

accurately predict molten steel temperatures in induction furnaces, thus contributing to 

enhanced process control and optimization in the steel industry. Further details on training 

and validation is given in Chapter 5. 



33 

 

3.6. Performance Metrics 

The performance metrics used to evaluate the accuracy and effectiveness of the developed 

ANN model are crucial in assessing its predictive capabilities. Given the importance of 

precise temperature predictions in the steelmaking process, the following performance 

metrics are employed: 

3.6.1. Mean Absolute Error (MAE) 

The MAE is a commonly used metric that measures the average absolute difference 

between the predicted temperatures and the actual temperatures. It provides a 

straightforward indication of how well the model performs in terms of magnitude and 

direction, irrespective of positive or negative errors. A lower MAE indicates better 

accuracy, with zero implying a perfect prediction. 

3.6.2. Root Mean Square Error (RMSE) 

The RMSE is another widely used metric that measures the square root of the average of 

the squared differences between predicted and actual temperatures. RMSE penalizes 

larger errors more than MAE, making it sensitive to outliers. Like MAE, a lower RMSE 

value signifies better predictive performance. 

3.6.3. R-squared (R²) or Coefficient of Determination 

R-squared evaluates the proportion of variance in the dependent variable (molten steel 

temperatures) that is explained by the model. It ranges from 0 to 1, where 1 indicates that 

the model perfectly captures the variance in the target variable. R-squared helps to 

understand how well the model fits the data and how much of the variability in temperature 

predictions can be attributed to the input parameters. 
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3.6.4. Scatter Plots and Residual Analysis 

Visual inspection of scatter plots of predicted versus actual temperatures can reveal 

patterns, trends, and potential nonlinearities in the model's performance. Residual 

analysis, which involves plotting the differences between predicted and actual 

temperatures, can help identify systematic errors and model shortcomings. 

The selection of appropriate performance metrics is essential to comprehensively evaluate 

the ANN-based molten steel temperature prediction model. By analyzing and interpreting 

these metrics, the thesis can ascertain the model's accuracy, robustness, and suitability for 

real-world application in the steel industry. The use of multiple metrics provides a 

comprehensive understanding of the model's strengths and limitations, ensuring that the 

developed AI solution meets the industry's quality and efficiency requirements. The 

mathematical equations for all three performance parameters: R2, MSE and RMSE are 

shown below.  

 

𝑀𝑆𝐸 =
1

𝑄′
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3.9 

Where, Q’ shows number of data points, Yi,CFD is CFD modelling output, Yi,pred is predicted 

ANN network, Ym is the average of the values and i refers to data points [89]. 
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Chapter 4 

Induction Furnace Simulation and Data Generation 

4.1. CFD Simulation Setup and Parameters 

The overall process of induction heating is intricate, involving various thermal, 

electromagnetic, and hydrodynamic phenomena [90, 91]. The coil generates magnetic 

field that in return induces current in the metal charge. Through the application of joule 

heating, these induced currents heat up and melt the charge. The electrical properties of 

the charge alter as the temperature rises, changing the magnitude of induced currents and 

charge’s temperature gradient. The geometry varies on melting i.e. the electromagnetic 

forces drive the charge away from the wall. The induced currents as well as related 

electromagnetic forces alter again due to changed geometry. Once the material is 

completely melted, the electromagnetic forces develop a stirring effect in the molten 

liquid, homogenizing the temperature in consequence of flow motion [92, 93]. 

To determine temperature distribution in charge, the governing equations must consider 

coupled phenomena among electromagnetic behavior, heat transfer and fluid flow. The 

numerical modelling involves two steps, calculating electromagnetic heating in frequency 

domain and using the results as input data for hydrodynamics and phase change heat 

transfer. 

4.1.1. Geometry and Discretization 

An induction furnace is modelled as 2D axisymmetric by COMSOL Multiphysics version 

6.1 for silicon purification [83]. The workpiece under consideration is made up of an 

insulation layer of alumina around graphite crucible containing silicon as charge to be 

melted. The solenoid is made up of copper coils. To make simulations easier, the thermal 
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model does not involve the coil [42, 83]. The geometrical sketch is shown in Figure 6 and 

its dimensions in Table 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Sketch of The Geometry 
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Table 2: Dimensions of Geometry [85] 

ID Identification (ID) Type Dimension 

1. Inner radius of the crucible 0.125 m 

2. Height of metal charge 0.45 m 

3. Width of crucible 0.05 m 

4. Width of insulation layer 0.05 m 

5. Outer radius of crucible 0.225 m 

6. Height of crucible 1.05 m 

7. Width of refractory wall 0.5 m 

8. Height of refractory wall 1.3 m 

9. Spacing between coil & crucible 0.025 m 

10. Spacing between coil turns 0.01 m 

11. Coil diameter 0.05 m 

12. Number of coils 12 

The geometry was meshed by the use of the quadrilateral and triangular elements with 

proper refinement in the areas near charge and coil where high gradients of eddy currents 

are expected. The triangular meshing was used for the charge, crucible, insulating layer 

and coil domains whereas, quadrilateral meshing was used for refractory wall as shown in 

Figure 7. The curvature factor for triangular meshes were kept at 0.2 while for 

quadrilateral meshes, 0.3 was opted. Further details for meshing are given in Table 3. The 

physical properties of the materials are temperature dependent whereas, electromagnetic 

parameter in the coil are assumed constant [85]. 
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Table 3: Mesh Statistics [85] 

Mesh Statistics Values 

Number of Elements 31044 

Elements Edge 1678 

Elements Vertex 63 

Mesh Vertices 20022 

Triangular Elements 22373 

Quadrilateral Elements 8672 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Meshing Details of The Geometry  



39 

 

4.1.2. Electromagnetic Model  

Electromagnetic field generated by induction coil is governed by Maxwell equations 

solved in COMSOL Multiphysics as: 

(𝑗𝜔𝜎 − 𝜔2𝜖0𝜖𝑟)𝐴 + ∇ × (𝜇0
−1𝜇𝑟

−1) = 𝐽𝑒  4.1 

𝐵 = ∇ × 𝐴  4.2 

Where A is the magnetic vector potential, B is the magnetic flux density, j is the current 

density, Je is the external current density, 𝜔 is the frequency, 𝜖0 is the free space reactive 

permittivity, 𝜖𝑟 is the relative permittivity, 𝜇0 is the free space magnetic permeability and 

𝜇𝑟 is the relative permeability [82, 94]. 

The electromagnetic model holds for entire computational domain. The coil was modelled 

as homogenized multiturn having current supplied at 2000 A that passes through 12 turns 

with a working frequency of 1000 Hz [85]. 

For an industrial furnace, electromagnetic field should not spread outwards thus field 

guides are added [59]. Hence in simulation, magnetic insulation is used as boundary 

condition. This condition implies that normal component of the magnetic field should be 

zero.  

𝑛 × 𝐴 = 0 4.3 

4.1.3. Thermal Model 

For the examination of thermal effects on electromagnetic field, it must be combined with 

the heat equation. The radial section of the workpiece serves as computational domain for 

thermal model [95]. Primarily, the metal charge exists in solid form but gradually melting 

takes place changing its state hence heat transfer equation with phase change should be 

considered [96]. Moreover, convective heat transfer is also involved as the 

electromagnetic and buoyancy forces impacts on molten metal. COMSOL Multiphysics 

uses Fourier equation to solve thermal domain. 
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𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
+ 𝜌𝐶𝑝𝜈 ∙ ∇𝑇 = ∇ ∙ (𝑘∇𝑇) + 𝑄 

4.4 

Where T is absolute temperature, t is time, 𝜌 is density, 𝐶𝑝 is specific heat capacity, k is 

thermal conductivity, 𝜈 is velocity vector and Q is the heat source. 

The initial temperature is set at 30°C. The surface to surface radiation is used for free 

surfaces. The surface to ambient condition is used for outer wall surfaces. Whereas, 

periodic heat condition is used for convective cooling at exterior boundaries [85]. 

4.1.4. Hydrodynamic Model  

For the development of a model close to realistic simulation, fluid flow must be considered 

hence involving convective heat transfer. The hydrodynamic domain is the molten region 

of the charge. This region is governed by Naiver-Stokes equation along with flow rate 

conservation [97]. 

𝜌
𝜕𝜈

𝜕𝑡
+ 𝜌𝜈 ∙ ∇𝜈 = −∇𝑝 + ∇ ∙ [𝜇(∇𝜈 + (∇𝜈)𝑇)] + 𝐹 

 

4.5 

∇ ∙ (𝜌𝜈) = 0 4.6 

Where 𝜌 is density, 𝜈 is velocity vector, p is pressure, 𝜇 is dynamic viscosity and F is 

volumetric force.  

It must be noted that density and viscosity are material properties dependent upon 

temperature. Boussinesq approximation is used to model fluid flow as the molten region 

is not large enough. It basically simplifies the Naiver-Stokes equation by taking a 

reference temperature hence, constant values for density and viscosity are used. The 

periodic condition is employed at exterior boundaries and no slip condition at free surfaces 

[85].  
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4.2. Thermal Boundary Conditions 

A set of boundary conditions for each of the three fields thermal, flow, and 

electromagnetic were taken into consideration. The magnetic vector potential of value zero 

was used on the electromagnetic sub-model boundaries, whereas continuity was applied 

at all interfaces [50]. For fluid flow, no slip condition was employed to the walls and a 

static pressure of 0 Pa was used for exit. The gradients of zero were used for flow and 

thermal fields to create an axis. In hydrodynamic domain, the Dirichlet boundary condition 

was specified i.e. velocity is zero. Lastly, the initial temperature was set at 30°C [85].  The 

summary of initial and boundary conditions is shown in Table 4. 

Table 4: Initial and Boundary Conditions [85] 

Region Boundary Condition 

 Electromagnetic Flow Thermal 

Axis A = 0 ∇𝜈 = 0 ∇T = 0 

Air Outlet - Pstatic = 0 𝜀𝑟𝑎𝑑 = 1 

Free Surface AL = AR 𝜏 = 0 𝜀𝑟𝑎𝑑 = 0.2, 𝑇𝐿 = 𝑇𝑅 

Initial Condition - 𝜈 = 0 T = 30°C 

 

4.3. Generation of Training and Testing Data 

The temperature distribution across the furnace geometry was plotted as contour plots by 

COMSOL Multiphysics. The temperature distribution was further studied with 1D Plots 

in COMSOL. Data was exported from COMSOL to Excel at every point such that the 

temperature at each dimension from x and y axis at every minute for 150 minutes were 

taken under consideration. The dataset was generated in a way that by keeping x-

dimension constant for 150 minutes and varying y-dimension, temperature was obtained. 

This was done for all x-dimensions across the geometry. The overall dataset includes x 

and y dimensions across furnace, time including every minute and its corresponding 

temperatures. The total dataset comprises of 153 inputs including x-dimensions, y-

dimensions and time whereas, 151 outputs that is temperatures at 150 minutes. This gave 
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rise to 99909 datasets for input only having a matrix of 653 rows and 153 columns. 

Similarly, 98603 datasets for output is generated having a matrix of 653 rows and 151 

columns. Hence, the total generated data consist of 198512 data samples including 653 

rows and 304 columns.  

The overall generated data is divided into training and testing datasets as 70% of data was 

extracted for training while the remaining 30% was equally divided for testing and 

validation. This was done using a MATLAB code which separated the data in the excel 

file with a command of keeping every fifth row for testing so that a linear relationship may 

be developed. In short, COMSOL was linked with Excel for data generation and then 

Excel was integrated with MATLAB for data division and further AI processing. 
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Chapter 5 

Artificial Intelligence Model Architecture 

5.1. Overview of the Chosen AI Model 

The Artificial Intelligence (AI) model chosen for above dataset is Artificial Neural 

Network (ANN). The ANN has emerged as powerful tool for solving complex problems 

in various domains, including process engineering, computational fluid dynamics (CFD), 

and metallurgy. In this thesis, an ANN-based model is employed for the prediction of 

molten steel temperature in an induction furnace, which is simulated using COMSOL 

Multiphysics software.  

ANNs are a subset of machine learning algorithms inspired by the biological neural 

networks of the human brain. They excel in pattern recognition, classification, regression, 

and prediction tasks, making them versatile tools for data-driven decision-making and 

predictive modeling. The networks consist of huge amounts of interconnected elements 

that all functions simultaneously to solve the targeted problem. These networks are able 

to solve complex functions including non-linear patterns among various factors. 

The major advantage of ANN is its ability of learning an existing relationship directly 

from the data. The network needs to be trained once and then it can be applied on unknows 

datasets to predict outcomes. Unlike conventional numerical methods, ANN does not 

demand following of a specific algorithm. In fact, ANN learn by example and discovers a 

pattern itself in the provided dataset. The indomitable characteristics of ANN is its ability 

to perform even if the is indefinite, non-linear or distorted and still give plausible results. 

The origins of artificial neural networks can be traced back to the 1950s and 1960s, with 

the work of Warren McCulloch and Walter Pitts, who introduced the concept of a 

mathematical model of a neuron [98]. Later, the Perceptron algorithm developed by Frank 

Rosenblatt in 1957 laid the groundwork for single-layer feedforward neural networks [99, 

100].  
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5.1.1. Multilayer Perceptron (MLP) 

Multilayer perceptron (MLP) comprises of various processing units named neurons that 

are placed in multiple layers. An artificial neuron is illustrated in Figure 8. The neurons 

are interlinked with each other such that a neuron in one layer connects to all neurons in 

the upcoming layer. These networks are called feed-forward network as the data 

information only flows in a single direction at a time [101].  

 

Figure 8: Structure of an Artificial Neuron [101] 

To develop a perfect MLP model, firstly, the number of layers viz. input, hidden and 

output should be selected. Secondly, the number of neurons in hidden layer must be 

agreed. Also, that in MLP modelling, it is mandatory to choose activation function, error 

criteria and learning method. Usually, the activation function in hidden and output layer 

is symmetric sigmoid and it is set to one hence, termed as bias. The bias is a neuron that 

is permanently set to 1 and it connects with other neurons by a weight known as threshold. 

This threshold is the deciding criterion if the neuron falls on the required conditions so 

that precision may be attained. Theoretical advancements by Marvin Minsky and Seymour 

Papert in 1969, however, revealed the limitations of single-layer perceptron in solving 

non-linearly separable problems, leading to the “AI Winter” [102].  

In the context of molten steel temperature prediction, ANNs can effectively capture the 

non-linearities and dependencies between various input parameters and the temperature 

output. Such a network is considered the best type for temperature prediction for several 

compelling reasons: 
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Non-Linear Modeling: The process of heating molten steel in an induction furnace 

involves complex and non-linear relationships between input parameters (e.g., furnace 

geometry, time) and the output (temperature). ANNs excel at capturing these intricate non-

linearities, enabling them to model the system accurately, something traditional linear 

regression models may struggle with. 

Universal Approximators: ANNs have been proven to be universal function 

approximators, meaning they can approximate any continuous function to arbitrary 

accuracy with the right architecture and training. This property allows ANNs to handle a 

wide range of input data and learn complex mappings effectively, making them suitable 

for the diverse and dynamic nature of molten steel temperature prediction. 

Feature Learning: One of the key advantages of ANNs is their ability to automatically 

learn relevant features from raw data. In the context of molten steel temperature prediction, 

ANNs can identify essential patterns and correlations within the input parameters, 

reducing the need for handcrafted features and simplifying the modeling process. 

Adaptability: The process of steelmaking is subject to various uncertainties, fluctuations, 

and changes in operating conditions. ANNs are highly adaptable and can learn from new 

data, making them robust in handling variations and changes in the process environment. 

This adaptability is crucial for real-world applications where conditions may not always 

match the training data. 

Scalability: ANN models can be scaled to accommodate large datasets and can handle 

high-dimensional input spaces efficiently. This is advantageous when dealing with 

complex CFD simulations and a wide array of input variables involved in the induction 

furnace process. 

Generalization: A well-trained ANN model can generalize its predictions to unseen data 

effectively. This is particularly important in the context of CFD simulations where 

accurate predictions at different time steps or under varying conditions are required. ANNs 
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are capable of producing reliable predictions beyond the data points on which they were 

trained. 

5.2. Model Architecture and Components 

The architecture of an ANN refers to its overall structure and organization. An ANN is 

composed of several interconnected components that work together to process input data 

and produce output predictions. By adjusting the architecture and components of an ANN, 

researchers and engineers can build models tailored to specific tasks and datasets, making 

ANNs versatile and powerful tools in various fields of artificial intelligence and machine 

learning. Here are the main components and their roles in an ANN model: 

5.2.1. Input Layer 

The input layer is the first layer of the neural network and serves as the entry point for the 

input data. Each node (neuron) in the input layer corresponds to a feature or attribute of 

the input data. The number of nodes in the input layer is determined by the dimensionality 

of the input data. 

5.2.2. Hidden Layers 

Between the input and output layers, one or more hidden layers can exist in the ANN. 

Hidden layers are responsible for learning and representing complex patterns and 

relationships within the data. Each node in a hidden layer receives input from the previous 

layer and produces an output that is passed to the subsequent layer. 

5.2.3. Neurons (Nodes) 

Neurons are the fundamental processing units of an ANN. Each neuron takes a weighted 

sum of inputs from the previous layer and applies an activation function to produce an 

output. The activation function introduces non-linearity to the model, allowing the 

network to learn complex relationships in the data. 

5.2.4. Weights and Biases 
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Weights and biases are learnable parameters in the neural network. Each connection 

between neurons is associated with a weight, which determines the strength of the 

connection. Biases are added to neurons to shift the output of the activation function. 

During the training process, the network learns the optimal values of weights and biases 

to minimize the prediction error. 

5.2.5. Output Layer 

The output layer is the final layer of the ANN, responsible for producing the model's 

predictions. The number of nodes in the output layer depends on the nature of the problem 

being solved. For regression tasks, there is typically one node in the output layer, whereas 

for classification tasks, the number of output nodes matches the number of classes. 

In this study, ANN is used to predict temperature distribution along the furnace geometry. 

The input layer comprises of three variables (width, height, and time) and output layer of 

a single variable (temperature). Figure 9 shows the multilayer feed forward neural network 

architecture with multiple inputs and single output (MISO). Data consists of 99909 data 

sample from across the width and height of the furnace for the development of ANN 

model.  
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Figure 9: Architecture of Multiple Input and Single Output ANN (MISO) 

The actual architecture of the neural network developed in MATLAB for data samples is 

shown in Figure 10. The architecture follows MISO structure having 153 inputs and its 

corresponding 151 outputs. The optimized neurons in hidden layer is set at 15.  

 

Figure 10: Proposed Architecture ANN Model 
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5.3. Training Procedure 

5.3.1. Back Propagation Algorithm 

In the 1980s, the field experienced a resurgence with the development of the 

backpropagation algorithm, which allowed for efficient training of multi-layer neural 

networks. The works of Geoffrey Hinton, David Rumelhart, and Ronald Williams played 

a pivotal role in popularizing the backpropagation algorithm, enabling the training of deep 

neural networks [103].  

A correct setting of weights in the network is not known in advance, so initially a random 

value is given to them. In order to update the weights to proper values, the BP is commonly 

applied [101, 104]. Such a process is called training or learning. The BP is a generalization 

of the least mean squared algorithm that modifies the weights to minimize the mean 

squared error (MSE) between the target value and the actual outputs in hidden and output 

layer of the network.  

The error function, which not only assesses how closely the network's predictions match 

the targets but also has a significant impact on the performance of the training algorithms, 

must be used in order to complete the neural network training. The degree of weight 

correction applied by the training algorithm at each epoch is evaluated based on the error 

value. There are two error functions that neural networks frequently employ [105]. The 

sum of squared differences between the values obtained and expected for each neuron in 

the output layer constitutes the sum-squared error (SSE), which is primarily used in 

regression problems. Additionally, the target value and the constructed logarithm of the 

error value on each neuron present in the output layer are combined by the cross-entropy 

error (CEE) function.  

5.3.2. Levenberg Marquardt Algorithm 

The LMA is the nonlinear optimization algorithm that quickly adjusts weights in ANN. 

Unfortunately, it does have some important shortcomings. The first is that this algorithm 

can only be used to train networks that are relatively small in size and have a single output 
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neuron. The second is that since SSE is the only error function that defines LMA, it is 

mainly a best fit only for regression analysis.  

The algorithm is a combination of two well-known optimization techniques, the Gauss-

Newton method and the method of gradient descent. The Gauss-Newton method is widely 

used for solving least squares problems, but it can be sensitive to initial parameter values 

and may not converge efficiently for ill-conditioned problems. On the other hand, the 

method of gradient descent is more stable but slower in convergence. 

The Levenberg-Marquardt algorithm strikes a balance between these two methods by 

introducing a damping factor, denoted as λ (lambda), which controls the step size during 

the optimization process. The algorithm iteratively updates the parameter values in the 

direction of the steepest descent (gradient descent) when the damping factor is large and 

in the direction of the Gauss-Newton approximation when the damping factor is small. 

This adaptive damping factor allows the algorithm to efficiently converge to a local 

minimum in the least squares’ optimization problem. Equation 4 represents the 

mathematical form of LMA algorithm: 

∆𝑤 = −(𝐽𝑇𝐽 + 𝜆𝐼)−1𝐽𝑇𝐸 5.1 

where ∆𝑤 is adaptation of weights, J is the partial derivatives matrix of case errors in 

connection with the weights, I denote the identity matrix, E is the vector of case errors, 

and λ is the damping factor [101]. 

The above algorithms are used for training the datasets generated by COMSOL where 

input parameters consist of width, height and time across the furnace geometry and targets 

that is outputs are corresponding predicted temperatures.  

5.4. Hyperparameter Optimization 

Hyperparameter Optimization refers to the process of finding the best combination of 

hyperparameters that yields the optimal performance of the neural network model for a 

given task. Hyperparameters are parameters that are set before the training process begins 
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and determine the architecture and behavior of the neural network. Unlike the weights and 

biases of the model, which are learned during training, hyperparameters need to be set 

manually or through a search process. The goal is to strike a balance between overfitting 

(high variance) and underfitting (high bias) by selecting hyperparameters that generalize 

well to unseen data. Hyperparameter optimization is a critical step in building an effective 

neural network model as it directly influences the model's accuracy, convergence speed, 

and generalization capabilities. Careful optimization can lead to significant improvements 

in model performance and better utilization of computational resources. 

The performance of an ANN model is evaluated on the basis of coefficient of 

determination (R2), mean square error (MSE) and root mean square error (RMSE) of the 

training and validating dataset. The network is stopped whenever the RMSE values 

becomes constant producing a single figure that displays the network’s overall error.  

Some common hyperparameters include number of hidden layers, number of neurons in 

hidden layer, learning rate, activation functions, batch size and number of training epochs. 

Hence, t is significant to optimize number of neurons in hidden layer so that over fitting 

or bad performance of neural network may be avoided to create an accurate ANN model. 

Therefore, number of neurons were optimized using hit and trial method between 1 and 

20 to obtain minimum error functions. Levenberg-Marquart algorithm was used for the 

network. The results of which are shown in Table 5. 
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Table 5: ANN Modelling Results Obtained from Different Number of Neurons 

Sr. 

No. 

Number of Neurons in 

Hidden Layer 

Training Set Validation Set 

  MSE R MSE R 

1 3 595.2368 0.9980 447.2350 0.9985 

2 6 96.1235 0.9996 68.3768 0.9997 

3 9 107.4362 0.9996 69.4317 0.9997 

4 12 26.1724 0.9999 43.8175 0.9998 

5 15 12.5864 0.9999 14.1467 0.9999 

6 20 18.8067 0.9999 21.8156 0.9999 

On the basis of regression (R) that measures the correlation between inputs and targets, 

coefficient of determination (R2), mean square root (MSE) and root mean square error 

(RMSE), a suitable network i.e. hidden layer with 15 number of neurons is opted. Most 

precise results are obtained on lower values of MSE and RMSE whereas R2 close to 1 is 

preferred [89].  
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Chapter 6 

Results and Discussion 

6.1. CFD Modelling and Validation 

Numerical results for electromagnetic heating are shown in figure. The electromagnetic 

force is only at the outer regions of the molten metal and it is directed towards the axis. 

High frequency of 1000 Hz is used to model induction heating. The contour plot of 

temperature inside the induction furnace is shown in Figure 11. The 3D diagram of 

induction furnace along with temperature distribution is shown in Figure 12. The contour 

plot shows that the temperature inside the charge rises up to 1600°C. The minimum 

temperature inside the charge was observed at 1327°C while the maximum temperature 

was 1703°C. This shows that the silicon metal is highly heated. The temperature 

specifically increased in inner crucible where it contacts with the charge due to low 

thermal conductivity and emissivity.  

 

Figure 11: Temperature Contour Plots of Induction Furnace 
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Figure 12: Three-Dimensional View of Induction Furnace 

The comparison between COMSOL and literature results are shown in Table 6. In the 

literature, only the contour plot was shown so values are approximated from them. The 

literature followed was based on simulation of an industrial furnace and it showed 

agreement with experimental data. The comparison illustrates that the simulated results 

are confirming to literature data [85].  

Table 6: Comparison of Modelling and Literature Results [85] 

Layer Temperature (°C) 

 Literature Simulation %Error 

Alumina Insulation 1200 1138.6 5.39 

Graphite Crucible 1500 1515.5 1.02 

Silicon Metal Charge 1600 1702.9 6.04 

 

6.2. Performance Evaluation of AI Model 

The performance of the developed ANN model can be evaluated by regression plots. The 

data consists of 99909 data sample from across the width and height of the furnace for the 

development of ANN model. Regression performance of ANN model is shown in Figure 
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13. The dataset was divided into three categories; 70% for training (a), 15% for testing (b) 

and 15% for validation (c). The regression plots generated by ANN model depicts that the 

provided data was accurately trained achieving thus, testing and validation also provided 

precise results with the correlation factor (R) value of 0.99995. 

 

 

 

(a) 

(b) 

(c) 

(d) 

Figure 13: Regression Plots of ANN Model (a) Training Plot (b) Testing Plot (c) Validation Plot (d) Overall Plot 
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Performance evaluation of an ANN model based on regression plots with an R-squared 

value of 0.9999 is indicative of an exceptionally accurate and well-fitted model. The 

regression plot, showing the predicted molten steel temperatures plotted against the actual 

temperatures, exhibits a remarkably tight and linear relationship. The points on the plot 

align closely to a diagonal line, indicating that the model's predictions are highly consistent 

with the ground truth temperatures. The difference between the predicted and actual 

temperatures, known as the residuals, is minimal across the entire dataset. This indicates 

that the model's predictions are consistently close to the true values, with minimal errors. 

Such a high R2 value suggests there is a low risk of overfitting, which occurs when a model 

performs exceptionally well on the training data but poorly on unseen data. The model's 

ability to generalize to new, unseen data is reassuring for real-world deployment. It also 

proposes that the model can effectively interpolate within the range of the training data 

and may even be capable of reliable extrapolation to predict temperatures outside the 

training data range.  

6.3. Analysis of Model Accuracy and Robustness 

Artificial neural network was trained using the data generated from COMSOL. 70% of 

dataset was used for training while the remaining 30% was equally divided between 

testing and validating datasets. A multi-input single output neural architecture was trained 

with Levenberg Marquardt training algorithm. The optimum architecture was developed 

by the hit and trial method of choosing the number of neurons in hidden layer. The number 

of neurons were selected on the basis of lowest MSE value and R closest to one hence, 15 

number of neurons in hidden layer was selected. The input layer was fed with width and 

height data across the furnace for every minute for the total time of simulation that is 2.5 

hours. Finally, output layer was used for prediction of temperature in correspondence to 

time, width and height respectively.  

The above trained network is then used for testing and validation of the model. The ANN 

model was tested by providing only input dataset and attaining output dataset as targets 

achieved by the developed optimized network. The model showed strong predictive 

capabilities by its low MSE value i.e. 12.58 and correlation factor to be 0.9999. The 
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resultant matrix was then compared with original results obtained by COMSOL 

Multiphysics.  

The predicted temperature dataset from ANN model was close enough to COMSOL 

results and thus comparison graphs over different times such as 25 (a), 50 (b), 75 (c), 100 

(d), 125 (e), and 150 (f) minutes were plotted as shown in Figure 14 and 15. By the graphs, 

it can be seen that ANN model is in good agreement with simulated results. There exists 

negligible or no error in the comparison plots thus it can be used as a reliable technique to 

predict temperatures across the induction furnace. The developed ANN model can also be 

used in industrial application for lowering energy consumption and improving furnace 

efficiency. 

 

 

Figure 14: Comparison Plots of ANN and CFD Model (a) 25 Minutes (b) 50 Minutes (c) 75 Minutes (d) 

100 Minutes 

(a) (b) 

(c) (d) 
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Figure 15: Comparison Plots of ANN and CFD Model (e) 125 Minutes (f) 150 Minutes 

The analysis of model accuracy and robustness based on the comparison plots of predicted 

ANN temperatures and COMSOL resulted temperatures, with a slope of nearly 1, provides 

a strong indication of the model's excellent performance. Such a slope in the comparison 

plot signifies a perfect alignment between the predicted temperatures and the ground truth 

obtained from CFD simulations. This implies that the ANN model's predictions are almost 

identical to the actual temperatures, resulting in an accurate and reliable temperature 

prediction tool. The tight clustering of data points around the diagonal line indicates that 

the model exhibits minimal bias and variance, further confirming its robustness and ability 

to generalize well to different operating conditions within the steelmaking process. Such 

an analysis reinforces the confidence in the model's accuracy and applicability for 

predicting molten steel temperatures in induction furnaces, enabling enhanced process 

control, improved product quality, and increased efficiency in the steel industry. 

6.4. Interpretation of Results 

The CFD simulations provide valuable and detailed insights into the fluid flow and heat 

transfer phenomena inside the induction furnace. They serve as a reliable reference for 

molten steel temperatures, as CFD accurately simulates the physics governing the 

steelmaking process. The CFD results are essential for establishing the ground truth 

against which the ANN model's predictions are compared. Additionally, the CFD 

simulations offer a comprehensive understanding of the temperature distribution within 

(e) (f) 
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the furnace, aiding in process optimization and identifying potential areas for 

improvement. Whereas, the ANN model serves as a powerful predictive tool capable of 

accurately forecasting molten steel temperatures. Through the training process, the model 

has learned the complex non-linear relationships between the input parameters, such as 

furnace dimensions, time, and temperature, enabling it to make precise temperature 

predictions. Its high accuracy, as evidenced by the comparison plots with the ground truth 

CFD temperatures, indicates that the model successfully captures the underlying patterns 

and dynamics of the steelmaking process. The ANN model's ability to generalize to new 

and unseen scenarios demonstrates its robustness and suitability for real-world 

applications in the steel industry.  

The comparison between the ANN-predicted temperatures and the CFD results reinforces 

the accuracy and reliability of the AI model. The close alignment of data points along the 

diagonal line in the comparison plots signifies a near-perfect agreement between the 

predicted and actual temperatures. This indicates that the ANN model has successfully 

learned and effectively modeled the complex relationships between the input parameters 

and molten steel temperatures. The strong correlation between the ANN and CFD results 

validates the model's performance and enhances its credibility as a temperature prediction 

tool in the steelmaking process. The accurate temperature predictions provided by the 

ANN model allow for better process control and optimization. By utilizing the AI model's 

predictions, operators can make informed decisions to adjust furnace parameters, optimize 

energy consumption, and enhance product quality. The integration of ANN and CFD 

results empowers steel manufacturers with valuable insights that lead to cost-effective and 

efficient production processes. 
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Conclusion and Recommendations 

Summary of Findings 

This study aims to address the complexities and dynamics of the induction furnace 

environment. The developed model harnesses the power of machine learning algorithms, 

enabling it to capture intricate patterns and non-linear relationships in the data, leading to 

more accurate temperature predictions. Firstly, a two-dimensional Multiphysics model for 

induction furnace was developed by using COMSOL for predicting molten steel 

temperature. The results of which were then used for developing an ANN model. The hit 

and trial method were used to determine number of neurons in the hidden layer. The 

network comprised over 15 neurons and great performance with a correlation factor of 

0.9999 was achieved. The results demonstrated that our AI-based approach outperformed 

traditional methods, offering more precise temperature forecasts.  

Implications of the Study 

The implications of this study are significant for the steel industry and the broader 

application of artificial intelligence (AI) in industrial processes. The successful 

development and validation of the Artificial Neural Network (ANN) model for molten 

steel temperature prediction offer numerous benefits. First, it enables steel manufacturers 

to achieve precise temperature control, leading to improved product quality and reduced 

defects. Second, the AI-driven temperature predictions contribute to energy efficiency and 

cost reduction by optimizing heating and cooling processes. Third, the study showcases 

the successful integration of AI with Computational Fluid Dynamics (CFD) simulations, 

demonstrating the synergy of these technologies in understanding and optimizing complex 

physical processes. This integration sets a precedent for similar applications in other 

manufacturing sectors, driving advancements in data-driven decision-making and process 

optimization. Overall, the study's implications extend to enhanced process efficiency, 

increased competitiveness, and the promotion of AI-driven innovations in industrial 

settings, making it a significant step towards the Industry 4.0 revolution. 
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Future Research Directions 

Future research directions in the field of molten steel temperature prediction and AI-driven 

process optimization present exciting opportunities for further advancements. One 

potential direction is the exploration of advanced deep learning techniques, such as 

recurrent neural networks (RNNs) and attention mechanisms, to capture temporal 

dependencies and dynamic patterns in the steelmaking process. Additionally, integrating 

data from other sensors and sources, such as chemical composition data and environmental 

factors, could enhance the model's accuracy and broaden its applicability. Investigating 

the incorporation of uncertainty quantification techniques into the AI model would enable 

the estimation of prediction confidence intervals, providing valuable insights for decision-

making under uncertainty. Furthermore, research efforts may focus on real-time 

deployment and edge computing solutions to ensure the ANN model's practicality in 

industrial settings. Lastly, extending the AI model's capabilities to predict other critical 

parameters in the steelmaking process, such as steel viscosity and flow characteristics, 

opens up new avenues for comprehensive process optimization and quality control. These 

future research directions have the potential to revolutionize the steel industry and pave 

the way for broader AI applications in other industrial domains. 
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