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Abstract 
 

Mobile Edge Computing (MEC) is a new paradigm that utilizes edge infrastructure to 

bring computation power closer to end-users. This reduces latency and improves performance. 

With the advancement of self-driving technology, real time traffic monitoring, and on-board 

entertainment services, vehicular networks have made significant progress. Roadside units 

(RSUs), or roadside edge servers, are used by MEC and strategically placed along highways to 

bring computing resources and services closer to the vehicle. Through optimized performance, 

vehicular services can meet the high standards of computation and precision necessary for 

efficient and reliable performance. However, a problem arises when the vehicle and roadside 

unit (RSU) are outside the line of sight (LOS) communication range of each other. 

Reconfigurable intelligent surfaces (RIS) have become a potential solution to solve this 

problem. These intelligently reflect the signal towards the receiver in mm Wave and THz 

communication when there is a blockage between the transmitter and receiver. In this thesis, 

we propose an RIS-assisted latency-aware computational offloading strategy for autonomous 

systems in a mobile edge computing environment. This strategy enables an autonomous vehicle 

to offload its task to an RSU even when the LOS view between the autonomous vehicle and 

RSU is blocked. We place an RIS at the center of this environment to enable line-of-sight 

communication between the vehicle and RIS, and between the RIS and RSU. Our simulations 

show that our proposed approach works well in a dynamic environment where the conditions 

are constantly changing, in terms of received signal strength and time delay. We also compared 

our results to the existing schemes, and our approach showed 10 dBm increase in receive power 

at RSU. The proposed solution achieved 5-7 seconds reduction in MES execution delay 

compared to local execution delay. The simulation results demonstrated a clear correlation 

between RTT and the number of states in the system. 

 

Keywords – Reconfigurable Intelligent Surfaces, Mobile Edge Computing, Computation 

Offloading, Autonomous Systems 
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Chapter 1 

Introduction 
 

In this chapter, the need of the solution proposed in this thesis is discussed. The problem 

statement to be solved by this thesis, the objectives of this thesis, and the organization of this 

thesis are also discussed in this chapter. 

 

1.1 Overview 
 

Cloud computing has emerged as a major force in the computing industry in recent 

years. It offers a number of benefits over traditional on-premises computing, including 

scalability, flexibility, cost savings, and improved security. Cloud computing is being used by 

businesses of all sizes, from small startups to large enterprises [1]. It offers computation for a 

variety of autonomous network applications, including collision avoidance, safety, blind 

crossing, dynamic route planning, and real-time traffic situation monitoring [2]. To further 

minimize the time delay and the transmission cost of the computation offloading, cloud-based 

mobile edge computing (MEC) offloading frameworks are recommended in autonomous 

vehicular networks [3]. They reduce the computational load on autonomous vehicles and save 

time. In vehicle-to-infrastructure (V2I) communication, the vehicles can transmit their 

computational assignments to the roadside units (RSUs), which are edge servers positioned at 

the side of the road and are used to carry out these costly computing activities. MEC’s 

performance advantage over traditional mobile cloud computing (MCC) in terms of time delay, 

however, increases when compared to MCC [4] due to the MEC servers’ close proximity to end 

users and vehicles. 

Providing processing services to ensure minimum delay and high reliability is a key 

goal in vehicle networks. However, choosing a suitable task offloading and computation 

technique is the key challenge. Vehicles have a hard time making a choice, especially in areas 

where RSU communication ranges overlap. The task division technique can be used to lessen 

the service delay [5]. Task division technique is that in which a task is divided into smaller parts 

to be processed by multiple roadside units (RSUs). 
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Moreover, due to the vehicle’s rapid speed and the edge servers’ limited connection 

range, there is an in-service risk session [6]. The rationale is because service interruptions are 

brought on by the vehicle’s quick location changes and potential for being out of 

communication range with the relevant RSU [7]. In [8], [9], and [10], the issue of choosing how 

to offload computing tasks in vehicular networks is discussed. Dynamic service placement and 

migration have been looked at in [11] to maintain service continuity employing MCC systems. 

As autonomous vehicles migrate across various geological areas, the task can be moved to 

another cloud server. As a result, by the end of the task execution, the vehicle may collaborate 

with a different cloud server [12] for the delivery of task. 

Recent technology breakthroughs such as augmented reality (AR), virtual reality (VR), 

and 8K video conferencing/streaming require exceptionally high data rates that can be 

accommodated in wireless network utilizing millimeter wave (mmWave) or Terahertz (THz) 

communication [13]. Line of sight (LOS) linkages between the transmitter and receiver i.e., 

Vehicle and RSU, are necessary for such high frequency communication, although they may 

not always be available, especially in the case of densely populated areas with significant 

obstructions. To address this problem, Reconfigurable Intelligent Surfaces (RIS) have lately 

become a technology that can address the obstruction issue in such contexts by reflecting light 

[14]. RIS is made up of periodic patterns of reflecting components that offer fine control over 

the EM wave that is impinging, enabling functions like guiding the wave in a certain direction 

or its complete absorption to stop an unapproved user. The better attractive approach for 

implementing RIS is meta-surfaces since their subwavelength size allows for greater control of 

the incoming wave [15]. In [16], the authors focus on the scheme for coding meta surfaces to 

mathematically express meta-surface directivity and use it to calculate RIS transmit antenna 

gain. A meta-surface is a large array of small, inexpensive, and passive artificial "meta-atoms" 

integrated into an RIS which can be used to intelligently change the direction of reflection 

towards any desired users by adjusting a series of phase shifters [17]. 

Reconfigurable intelligent surfaces (RISs) can be used to provide an indirect line-of-

sight (LoS) wireless communication link for vehicles traveling in areas where LoS to a roadside 

unit (RSU) is blocked by large buildings. This is known as a dark zone [18]. In these situations, 

the RSU can maximize the quality of service (QoS) for passing vehicles by jointly optimizing 

the RSU resource scheduling and the RIS element coefficients (passive beamforming). A few 

works have addressed the RIS phase-shift configuration in vehicular networks. However, these 

works have only considered the case where the RIS elements can have continuous element 

tuning. In practice, the RIS elements can only have a limited number of values due to limited  



CHAPTER   I:  INTRODUCTION 

3 
 

 

hardware [19], [20]. There is a wealth of literature available on systems which utilize Mobile 

Edge Computing and Reconfigurable Intelligent Surfaces for vehicular networks. Some of this 

literature is discussed in Chapter 2 of the "Literature Review". 

 

1.2 Problem Statement 
 

When it comes to vehicular networks, there is a need to provide high quality processing 

services to guarantee low delay and high reliability. This is necessary because vehicular 

networks need to perform many applications which require near-real-time processing such as 

self-driving. Reducing time delay includes high speed processing as well as high quality and 

fast communication. All of this becomes even more necessary for autonomous systems. 

Moreover, vehicles can suffer from the problem of unavailability of direct Line-of-sight 

connection from the Road side unit. This will result in increased time delay and poor quality of 

communication. The problems addressed in this thesis are to find a viable solution for 

autonomous vehicles to provide them low latency communication even when there is no direct 

Line-of-sight connection, which is solved using Reconfigurable Intelligent Surfaces. 

 

1.3 Objectives 
 

The primary goal of this thesis is to propose a latency aware framework for computation 

offloading of autonomous systems in Mobile Edge Computing where autonomous vehicle and 

Roadside Unit (RSU) are in the non-Line of sight communication range of each other i.e., there 

is a blockage between them. The main contributions are as follows: 

• A collaborative computing approach among Roadside Units (RSUs) for vehicular 

networks in the presence of RIS, which operates through Mobile Edge Computing 

(MEC) is introduced. 

• Based on the optimal offloading policy, the proposed scheme enables parallel execution 

between two RSUs, that further optimizes the total service delay. 

• As the vehicles send tasks which need to be processed, therefore the time delay for 

result delivery is also considered to improve service reliability and reduce the failure  
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of service sessions due to the high mobility of the vehicles so that the results get 

delivered back to the vehicle successfully. 

 

1.4 Thesis Organization 
 

The thesis is organized as follows: Chapter 2 details the literature review and related 

works. Chapter 3 explains about the system model of the proposed solution, it also explains all 

the formulae formulated for the proposed solution. Chapter 4 formulates the proposed solution. 

The simulation results are shown and discussed in Chapter 5. Finally, Chapter 6 concludes the 

thesis which is based on the results of simulations.
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Chapter 2 

Literature Review 
 

In this chapter, different research papers are discussed on how they solved the problems 

they discovered and what methods they used in their system models. Firstly, the literature 

related to computational offloading is discussed. Then the literature related to Reconfigurable 

Intelligent Surfaces (RIS) is explored. Lastly, the literature exploring the multiple domains of 

integration of computation offloading in RIS for mobile edge computing is discussed. 

 

2.1 Computation Offloading 
 

Mobile Edge Computing (MEC) frameworks have been proposed in vehicular 

networks to reduce the time delay. They not only save time but also reduce the computational 

burden on vehicles. Road side units (RSUs) are manifestation of MEC, which are servers 

located at the edge of a road and vehicles can offload their tasks very quickly. A lot of research 

is done on RSUs in vehicular networks. In [21], the authors solve the resource allocation 

problem in MEC servers. They used a multi-agent deep deterministic policy gradient 

(MADDPG)-based method to solve the problem. The authors in [22] enabled the MEC server 

to independently make online scheduling based on the derived allocation probability in 

vehicular network. Their algorithm transforms the objective function into an augmented 

Lagrangian and achieves the optimal solution iteratively using the Alternating Direction 

Method of Multipliers (ADMM). To address the challenge of computation offloading in a 

heterogeneous vehicular network, deep deterministic policy gradient (DDPG) is utilized as the 

learning method in [23]. In [24], the authors proposed a resource management scheme for 

vehicular networks assisted by multi-access edge computing (MEC) and unmanned aerial 

vehicles (UAVs). The authors designed a deep deterministic policy gradient (DDPG)-based 

solution, where the optimization problem is transformed and trained offline to obtain optimal 

vehicle association and resource allocation decisions. The problem of service migration in a 

MEC-enabled vehicular network is explored in [25]. The problem is modeled as a multi-agent 

Markov decision process (MMDP) and solved using deep Q learning (DQL) algorithm. 
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The problem of offloading decision and resource allocation in SDN-assisted MEC-

based vehicular networks is addressed in [26]. The paper formulates the problem as a load 

distribution problem and aims to find an optimal strategy that minimizes the system overhead 

while considering task heterogeneity and resource diversity. In [27], the authors propose a 

unique vehicular Mobile Edge Cloud (MEC) architecture where vehicular communication 

packets are routed through the MEC network, accommodating vehicle-to-vehicle (V2V) and 

vehicle-to-infrastructure (V2I) communication with high scalability and low packet delay. A 

multi-armed bandit learning algorithm called Utility-table based Learning for workload 

balancing among MEC servers in [28]. In this paper, a utility table is established to determine 

the optimal solution by online learning of real-time workload distribution, which is updated 

based on the feedback signal of task assignment. In [29], the authors propose a federated 

offloading scheme for vehicular networks with mobile edge computing (MEC) to minimize 

latency. It considers vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) 

communication for offloading computation tasks. A distributed algorithm is proposed in this 

paper to obtain an optimal routing for offloading the V2V part of the task, utilizing the available 

resources in neighboring vehicles. In [30], the paper presents a computation model for single 

vehicle computation offloading in MEC-enabled vehicular networks. It considers a 

unidirectional road with successive small cells, each consisting of a RSU and a collocated MEC 

server. The paper proposes a dynamic offloading scheduling scheme for MEC-enabled 

vehicular networks. 

Use of deep reinforcement learning in vehicular networks is explored in [31]. The paper 

proposes a novel resource allocation algorithm based on deep reinforcement learning to allocate 

computation and transmission resources in MEC-enabled vehicular networks. The algorithm 

proposed in the paper improves the long-term average task success ratio and transmit power 

performance. In [32], the authors formulate the constrained optimization problem of offloading 

decisions as a game based on game theory. The paper considers the mutual interference of tasks 

in the same channel and proposes a TM algorithm and a COMO algorithm to address this issue. 

In [33], Joint Optimization of Wireless and Computation Allocation (JOWCA) algorithm is 

proposed to minimize global delay in MEC-enabled vehicular networks. The optimization 

problem is formulated as minimizing global delay in the vehicular network. It is decomposed 

into two sub-problems: V2X matching and MEC computation capability optimization. In [34], 

the authors formulate the offloading decision and resource allocation problem as a mixed 

integer nonlinear programming (MINLP) problem and decomposes it into two subproblems: 

offloading decision subproblem and resource allocation subproblem. It proposes a coalition  
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game-based algorithm to solve the subcarrier assignment problem and a convex optimization 

method to solve the power allocation problem. Finally, the offloading decision is obtained by 

solving a linear program (LP) problem. In [35], the authors address the problem of energy 

optimization in massive multiple-input-multiple-output (MIMO) unmanned aerial vehicle 

(UAV)-aided mobile edge computing (MEC)-enabled vehicular networks. They propose a 

novel architecture that utilizes UAVs as  ARSUs (aerial road side units) or relays and employs 

line-of-sight (LoS) massive MIMO technology. 

In [36], the authors propose a novel framework that combines Deep Neural Network 

(DNN) and Particle Swarm Optimization (PSO) to address the joint offloading decision and 

resource allocation problem in Multi-access Edge Computing (MEC)-based vehicular 

networks. PSO accelerates the training of DNN by providing high-quality labeled data, while 

DNN performs real-time decision-making based on simple algebraic calculations. In [37], the 

authors propose a user association policy for a UAV-aided time-varying vehicular network with 

Multi-access edge computing (MEC) servers. The authors derive achievable video chunks and 

link reliability based on the vehicle mobility model and content caching model, and formulate 

the user association problem as a utility optimization problem. They propose an improved 

Dijkstra algorithm to solve the NP-hard problem of user association, which is transformed into 

a shortest path selection problem. In [38], the authors discuss the time consumption and off-

loading cost of various transmission modes in the proposed framework. They designed a task-

file transmission strategy with predictive V2V relay and proposes an optimal predictive 

combination-mode off-loading scheme. The results demonstrated a significant reduction in off-

loading cost. In [39], the authors propose a Mobile Edge Computing (MEC)-based cooperative 

Collision Avoidance (MECAV) system for vehicular networks. The system utilizes a Collision 

Avoidance (CAV) service allocated in the MEC infrastructure, which processes data received 

from vehicles and transmits relevant information within each vehicle's collision risk area. The 

problem of resource allocation in the context of Internet of Vehicles (IoV) services is explored 

in [40]. The authors design a resource allocation algorithm based on deep reinforcement 

learning (DRL) to adapt to the changeable MEC environment and process high-dimensional 

data. 
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2.2 Reconfigurable Intelligent Surfaces (RIS) 
 

Reconfigurable intelligent surfaces (RISs) are a new type of technology that can be 

used to improve the performance of wireless networks. They work by reflecting 

electromagnetic waves in a way that can be controlled. This allows them to be used to enhance 

the signal strength, coverage, and reliability of wireless networks. A good amount of research 

is being done on RISs. In [41], the paper provides a comprehensive overview of the state-of-

the-art on RISs, including their operating principles, performance evaluation, beamforming 

design, resource management, applications of machine learning, and integration with other 

emerging technologies. It also identifies major issues and research opportunities associated with 

the integration of RISs and other technologies for next-generation networks. In [42], the paper 

provides a tutorial overview of reconfigurable intelligent surfaces (RIS) for wireless 

communications, explaining their working principles and different candidate implementations 

using metasurfaces and reflectarrays. It discusses suitable channel models and the feasibility of 

obtaining accurate channel estimates for RIS implementations. This paper also highlights the 

challenges and potential opportunities associated with RIS optimization compared to traditional 

MIMO arrays. RISs are aimed at intentionally and deterministically controlling the propagation 

environment to boost signal quality at the receiver. They are nearly passive and ideally do not 

require a dedicated energy source. This distinguishes RISs from other systems, such as smart 

mirrors, which are more focused on reflecting signals [43]. In [44], the authors investigate the 

adoption of Reconfigurable Intelligent Surfaces (RIS) for downlink multi-user communication 

from a multiantenna base station. They proposed energy-efficient designs for transmit power 

allocation and phase shifts of the surface reflecting elements, leading to non-convex design 

optimization problems. The paper demonstrates that properly designing the phase shifts applied 

by the RIS leads to higher energy efficiency than traditional amplify-and-forward relays. In 

[45], the authors discuss the potential applications of reconfigurable intelligent surfaces (RISs) 

in wireless networks operating at high-frequency bands, such as millimeter wave and sub-

millimeter wave frequencies. They compared the similarities and differences between RISs and 

relays, highlighting the spectral efficiency gains of RISs when their size is sufficiently large 

compared to the wavelength of the radio waves. 

In [46], the authors provide an overview of the applications of RISs in wireless 

networks, present an electromagnetic-based communication-theoretic framework for analyzing 

and optimizing metamaterial-based RISs, discuss the current state of research, and highlight the 

need to reconcile Shannon's theory of communication with Green's and Maxwell's theories of  
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electromagnetism for modeling and deploying RIS-empowered smart radio environments 

(SREs). In [47], the authors aim to validate the potential gains of reconfigurable intelligent 

surfaces (RISs) in realistic communication environments. RISs can modify the wireless channel 

and provide physical layer security in wireless networks. The authors present a low-power and 

portable proof-of-concept RIS prototype and evaluates its performance in real-world scenarios. 

In [48], the authors focus on three fundamental physical-layer challenges for incorporating RISs 

into wireless networks: channel state information acquisition, passive information transfer, and 

low-complexity robust system design. They summarize the state-of-the-art solutions and 

explores potential research directions. Additionally, the paper discusses other promising 

research directions of RISs, including edge intelligence and physical-layer security. In [49], the 

authors discuss optimization techniques for phase shifts in RIS-assisted wireless 

communications, including joint optimization for point-to-point communication systems and 

hybrid beamforming for multi-user MIMO systems. In [50], the authors propose a deep learning 

method for efficient online configuration of Reconfigurable Intelligent Surfaces (RISs) in 

indoor communication environments. They used a database of coordinate fingerprints and a 

Deep Neural Network (DNN) to map the measured position information of a user to the optimal 

phase configurations of the RIS, maximizing the received signal strength at the intended 

location. 

The authors of [51] discuss the limitations of using the independent and identically 

distributed (i.i.d.) Rayleigh fading channel model in the context of reconfigurable intelligent 

surfaces (RIS) with rectangular geometry. They propose an alternative physically feasible 

Rayleigh fading model that can be used as a baseline for evaluating RIS-aided communications. 

To maximize energy efficiency, [52] focuses on resource allocation in a wireless 

communication network with distributed reconfigurable intelligent surfaces (RISs). It proposes 

two iterative algorithms for the single-user and multi-user cases, which optimize transmit 

beamforming and RIS control to achieve higher energy efficiency. In [53], the authors present 

a general hardware model for simultaneous transmitting and reflecting reconfigurable 

intelligent surfaces (STAR-RISs) and propose channel models for both near-field and far-field 

scenarios. This paper analyzes and compares the diversity gain of STAR-RISs with 

conventional RISs. In [54], the paper discusses the placement of RIS in an indoor environment 

and its impact on the Path Estimation Bias (PEB). It shows that placing RIS on the wall facing 

the RIS can provide better coverage and that using multiple RISs can provide uniform coverage 

in the deployment region. In [55], the authors propose an RIS-enhanced multiple-input single-

output system with reflection pattern modulation (RPM) to achieve passive beamforming and  
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information transfer simultaneously. The active and passive beamforming is jointly optimized 

to maximize the average received signal power, considering the communication outage 

probability. Their proposed scheme outperforms the conventional RIS-assisted system without 

information transfer in terms of achievable rate. 

The challenge of overhead in reconfigurable intelligent surfaces (RIS) used in wireless 

networks is addressed in [56]. It proposes an overhead-aware resource allocation framework 

that optimizes the system rate and energy efficiency by considering the phase shifts of the RIS, 

transmit and receive filters, power and bandwidth used for communication and feedback 

phases. In [57], the authors highlight the potential of RISs for enhancing positioning and 

orientation estimation in next-generation cellular networks. They mention that RISs have not 

yet received much attention in wireless localization, despite their promise for various 6G 

applications such as augmented reality and self-driving cars. The authors propose a localization 

scheme that utilizes infrastructures envisioned for next-generation communication systems. In 

[58], the paper explores the use of Reconfigurable Intelligent Surfaces (RISs) for radar 

surveillance in Non-Line Of Sight (N-LOS) scenarios. It describes the geometry of the scene, 

the required operative modes, and the role played by the RIS in N-LOS radar surveillance. 

Nonterrestrial communications, including unmanned aerial vehicles (UAVs), high-altitude 

platforms (HAPs), and satellites, have emerged as a key enabler for seamless connectivity in 

upcoming generation networks. Reconfigurable intelligent surfaces (RIS) are expected to be a 

cost-efficient solution to address practical implementation limitations, such as power 

consumption, blockage, and dynamic propagation environment. RIS can bypass blockages, 

create multiple line-of-sight links, and provide controllable communication channels [59]. In 

[60], the authors demonstrate through numerical results how approximate global designs can 

be achieved using locally passive RISs with zero electrical resistance, even for large angles of 

reflection and at high power efficiency. 

 

2.3 RIS assisted Computation Offloading 
 

The attractive benefits of Reconfigurable Intelligent Surfaces (RIS) have led to 

numerous investigations in recent years, particularly in relation to the performance 

improvements brought on by programmable wireless settings in MEC-enabled vehicular 

networks. In [61], the authors have utilized multiple reconfigurable intelligent surfaces (RIS) 

between a source and destination to create a line-of-sight (LOS) connectivity.  However,  
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problems like signal strength and time delay overhead cannot be evaded. In [62], the authors 

proposed a system for RIS-aided vehicular networks that considers two scenarios for channel 

estimation. In the first scenario, the channels are assumed to be fixed within a coherence time, 

which is the time it takes for the channel to change significantly. In the second scenario, the 

small-scale fading is neglected, which is the variation of the channel due to factors such as the 

movement of vehicles. This is possible because the positions of vehicles can be known in 

advance. In [63], the authors analyzed the outage probability in vehicular networks that use 

reconfigurable intelligent surfaces (RISs). They derived an expression for the outage 

probability, which is the probability that the signal strength between a vehicle and an RIS is too 

low to be decoded. The analysis showed that RISs can reduce the outage probability for vehicles 

in their vicinity. The analysis also showed that higher density roads increase the outage 

probability. This is because passing vehicles can block the communication links between the 

RIS and the vehicles. In [64], the paper focuses on optimizing the local computing frequencies 

and transmission power of IoT devices, time-slot assignment, and phase beamforming of the 

RIS to achieve max-min computation efficiency under secure computation rate requirements. 

An iterative algorithm is developed to solve the formulated nonconvex problem, utilizing the 

Dinkelbach-type method and block coordinate descent technique. In [65], the authors 

investigate the use of RIS (Reconfigurable Intelligent Surface) and NOMA (Non-Orthogonal 

Multiple Access) in a UAV-MEC (Unmanned Aerial Vehicle-Mobile Edge Computing) 

network. They explored the use of a deep Q-network algorithm to minimize energy 

consumption in a UAV-NOMA-RIS system. The algorithm helped to optimize the RIS strategy 

in the network. 

In [66], the authors propose the use of UAV-enabled aerial RIS (ARIS) technology in 

MEC networks to address the drawbacks of terrestrial MEC networks. By mounting the edge 

server on a UAV, the mobility, flexibility, and maneuverability of network components are 

improved, leading to an energy-efficient design that prolongs the UAV's service time. The 

results of the paper show that the ARIS-assisted MEC network offers four main benefits: 

improved MEC performance, reduced energy consumption, guaranteed latency, and high 

spectral and energy efficiencies. The concept of reconfigurable intelligent surfaces (RIS) into 

edge computing also supports low-latency applications [67]. RIS can enhance the quality of 

wireless communication by intelligently altering the radio propagation environment. It 

establishes a distributed computing environment by deploying computation and storage 

resources in proximity to end users. In [68], the authors explore the use of RIS-aided 

simultaneous wireless information and power transfer (SWIPT) systems under QoS constraints.  
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The authors have discussed the limitations of existing technologies (11p and C-V2X), in 

meeting the QoS requirements for advanced vehicular applications and high-data-rate 

transmission. In [69], the paper focuses on the optimization of task scheduling in Intelligent 

Reflecting Surface (IRS)-aided Multi-access Edge Computing (MEC)-served vehicular 

networks. The authors have considered factors such as vehicle mobility patterns, transmission 

conditions, and task sizes to improve the allocation of limited processors and IRS resources. 

Various research contributions that leverage artificial intelligence (AI) techniques to address 

the challenges of RIS-assisted networks such as AI-based channel estimation, phase-shift 

optimization, and resource allocation have been explored in [70]. The authors have focused on 

the challenges of reconfigurable intelligent surfaces (RISs) in terms of channel state 

information (CSI) acquisition and passive beamforming optimization. 

The problem of resource allocation in IRS-aided vehicular networks, specifically in 

high-density urban areas where signal propagation is affected by buildings and infrastructure 

has been addressed in [71]. The authors have proposed an intersection-based IRS-aided 

vehicular network model and formulates the resource allocation problem as a mathematical 

model. It considers the mutual interference and blocking effects of buildings and aims to 

optimize the IRS resource allocation to accelerate the average offloading rate. In [72], the 

authors have discussed the deployment of IRS in high-speed mobile vehicles to aid passengers 

in communicating with roadside base stations, mitigating fast channel fading caused by the 

Doppler effect. In [73], the authors have explored an optimization approach to minimize 

weighted total energy consumption (WTEC) while considering transmit power constraints, 

timeslot scheduling, and task allocation. They have proposed a novel computation offloading 

framework for Internet of Vehicles (IoV) networks, utilizing a dual-RIS configuration and an 

unmanned aerial vehicle (UAV) as an aerial road side unit (ARSU) and relay. In [74], the paper 

addresses the problem of energy minimization in an IRS-assisted and wireless-powered mobile 

edge computing (MEC) system for vehicular networks. The problem is decomposed into two 

subproblems: downlink energy transfer and uplink data offloading phases. The uplink phase is 

efficiently optimized using the conventional semi-definite relaxation (SDR) method, while the 

downlink phase is solved through alternating optimization between users' offloading decisions 

and joint active and passive beamforming strategies. In [75], the paper addresses the problem 

of resource allocation and task offloading in an internet of vehicles (IoV) network with multi-

access edge computing (MEC) servers and reconfigurable intelligent surfaces (RISs). The 

authors introduce a multi-agent deep reinforcement learning (MA-DRL) algorithm for 

optimizing task offloading decisions. 
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In [76], the paper aims to solve the problem of maximizing the energy efficiency of 

reconfigurable intelligent surface (RIS)-assisted unmanned aerial vehicle (UAV)-enabled 

mobile edge computing (MEC) systems. The paper proposes an iterative algorithm with a 

double-loop structure to jointly optimize the bit allocation, phase shift, and UAV trajectory. The 

algorithm is based on Dinkelbach's method and the block coordinate descent (BCD) technique. 

To solve the problem of poor quality of service (QoS) on task latency in a complicated 

environment where unmanned aerial vehicles (UAVs) are frequently blocked by ground 

obstacles, leading to blocked UAV-ground terminal (GT) links. The authors in [77] proposed a 

joint optimization approach that considers UAV trajectory, task offloading, cache, and phase-

shift design of reconfigurable intelligent surfaces (RIS) to maximize the energy efficiency of 

RIS-assisted UAVs. The authors utilize the successive convex approximation (SCA) method to 

solve the non-convex joint optimization problem. In [78], the authors proposed a Digital Twin-

Driven Vehicular Task Offloading and IRS Configuration Framework (DTVIF) to efficiently 

monitor, learn, and manage the Internet of Vehicles (IoV) by employing Mobile Edge 

Computing (MEC) and Intelligent Reflective Surface (IRS) technologies. In [79], the authors 

discuss the use of Intelligent Reflecting Surfaces (IRS) in 6G-driven vehicle tracking in smart 

cities. The paper provides formulas and equations to solve the wave equation in different 

scenarios, such as a curved tunnel and a straight-line tunnel, to calculate the received power at 

the mobile device. 
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Chapter 3 

Problem Formulation and Proposed 

Solution 
 

In this chapter, the topics under consideration include system model, how it is designed, 

how it works, and the mathematical formulation of the problem. Furthermore, the proposed 

solution and the methods used in the solution; the constraints utilized in the solution are also 

discussed. 

 

3.1 System Model 
 

 

Fig.1. System Model 

 

Think of a group of autonomous vehicles V = {𝑉1, 𝑉2, 𝑉3, …, 𝑉𝑛} where any vehicle 𝑉𝑎, 

a ∈ V wishes to hand over a task to a roadside unit (RSU). Each RSU acts as a MEC server for  
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autonomous vehicles and connects to nearby RSUs through wireless networks to exchange 

information. Since there is a blockage between the vehicle and RSU, the Line of sight (LOS) 

view between them is blocked, and RIS is placed in the center that enables Line of sight 

communication between both to preserve the signal strength at the RSU. A vehicle interacts 

with a roadside unit (RSU) at time x from a specific distance. Since both are in the non-LOS 

region to each other, this interaction will pass through RIS. Meta-surfaces of RIS are coded 

such that to obtain directivity of RIS antenna to maximize the RIS antenna gain, which in turn 

maximizes the data rate and reduces the time delay. During this interaction, the vehicle 

communicates data about its trajectory and a certain scale of computing. Z(x) refers as the 

computing task’s size. In exchange, the RSU allocates an ID to the computing task that the 

vehicle has offloaded and provides both the ID and the task ID to the vehicle. It is presumed 

that each vehicle’s interaction must be completed before the next iteration. A binary vector 

π𝑎(x) at time x represents each vehicle’s offloading choice, where a represents 𝑅𝑆𝑈𝑎. If π𝑎(x) 

= 1, the computation tasks of the vehicle are offloaded to 𝑅𝑆𝑈𝑎 at time x. If π𝑎(x) = 0, the 

computation tasks are not offloaded to 𝑅𝑆𝑈𝑎 at time x. For the computing task created at time 

x, “a” is the receiver RSU. Another 𝑅𝑆𝑈𝑏 exists that might execute a portion of the computing 

task in tandem and send the finished results back to the vehicle. 

 

3.2 Scenario 
 

A scenario is depicted in Fig. 1 where a vehicle assigns its computational task to 𝑅𝑆𝑈𝑎 

at time x. To minimize the time delay, another RSU’s cooperation is required to accomplish a 

part of the task through parallel computing. The task is intelligently separated into two sub-

components by 𝑅𝑆𝑈𝑎. After that, 𝑅𝑆𝑈𝑎 retains a portion of the task while sending the remainder 

to another RSU in the vehicle’s trajectory, 𝑅𝑆𝑈𝑏. These two RSUs process their respective tasks 

in parallel. When each component of task is completed, 𝑅𝑆𝑈𝑎 forwards its result to 𝑅𝑆𝑈𝑏 for 

combination. The output of the entire task will be accessible at 𝑅𝑆𝑈𝑏, quoted as the supporter 

RSU for computational tasks created at time x. A supporter RSU is one that either processes the 

computational task’s component in parallel with 𝑅𝑆𝑈𝑎 or processes the entire computational 

task individually. 
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3.3 Problem Formulation 
 

Mathematical formulae used in the system model are explained below: The path-loss 

between a transmitter and receiver at a distance “d” [80] can be calculated as follows: 

P(d) = 40(1 – 4 × 103h) log10 𝑑 - 18log10 ℎ + 21log10 𝑓 + 80,  (1) 

where h is the height of receiver antenna, d is the distance between transmitter and receiver and 

f is the carrier frequency. Directivity of IRS [13] can be computed using: 

                                  D(θ, ϕ) = 
4πU(𝜃,ϕ)

∫ ∫ 𝑈
π

0

2π

0
(𝜃,ϕ) sin 𝜃𝑑𝜃𝑑ϕ

 ,    (2) 

where U(𝜃, 𝜙) is a transmitter’s radiation output in the direction indicated by θ and ϕ.  

Transmitter gain of IRS antenna [13] can be computed using: 

  𝐺𝑡 = εD     (3) 

where ε is the efficiency and D is the directivity of IRS antenna. The data rate can be computed 

using: 

R = Blog2(1 + 
𝑃𝑇𝐺𝑡𝐺𝑟10−𝑃(𝑑)/10

𝛿2
),   (4) 

where B is the bandwidth, 𝑃𝑇 is the transmit power of transmitter antenna, P(d) is the Path Loss 

at a distance d, 𝛿2 is the gaussian noise in the channel, 𝐺𝑡 is the transmitter antenna gain and 

𝐺𝑟 is the receiver antenna gain. Orthogonal frequency division multiple-access (OFDMA) is 

the system paradigm utilized for network implementation. In this model, subcarriers are used 

to separate the bandwidths allocated for a vehicle and an RSU to transfer the task that was 

offloaded at time x, denoted by 𝑐𝑀 ∈ 𝐶𝑀 = [1, 2, ..., M] and 𝑐𝐷 ∈ 𝐶𝐷 = [1, 2, ..., D], respectively. 

OFDMA is commonly used in modelling system models, as demonstrated by related works 

[80], and [81]. This thesis also considers OFDMA for comparison. A fixed channel condition 

for the duration of task offloading is assumed. Since the task to be offloaded goes from vehicle 

to RSU through RIS, the transmission time for offloading a computation task at time x to 𝑅𝑆𝑈𝑎 

is: 

       𝑇𝑎(x) = 
𝑍(𝑥)

𝑅𝑎
 + 

𝑍(𝑥)

𝑅𝑏
,     (5) 

where 𝑅𝑎 is the data rate from Vehicle to RIS, and 𝑅𝑏 is the data rate from RIS to 𝑅𝑆𝑈𝑎. The 

forwarding time for a portion of task at time x to 𝑅𝑆𝑈𝑏 is: 
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       𝑇𝑏(x) = 
ζ𝑎(𝑥) × 𝑍′(𝑥)

𝑅(𝑎,𝑏)
,     (6) 

where ζ𝑎(𝑥) is a binary vector that has a value of “1” if 𝑅𝑆𝑈𝑏 takes help in the execution of 

some portion of task and it has a value of “0” if 𝑅𝑆𝑈𝑏 does not take help in the execution and 

whole task is executed at 𝑅𝑆𝑈𝑎. 𝑅(𝑎,𝑏) is the data rate reserved from 𝑅𝑆𝑈𝑎 to 𝑅𝑆𝑈𝑏. The time 

for execution of a task on 𝑅𝑆𝑈𝑎 at time x is: 

                     𝑇𝑐(x) = 
𝑉[𝑍(𝑥) × 𝑛]

𝑊
,     (7) 

Similarly, the time for execution of a task on 𝑅𝑆𝑈𝑏 at time x is: 

     𝑇𝑑(x) = 
V[ζ𝑎(𝑥) × 𝑍′(𝑥) × 𝑛]

𝑊
,    (8) 

where, V is the number of computation cycles needed to execute one bit measured in bits per 

second and W is the computing capabilities of MEC server available at RSU and 𝑍′(𝑥) in the 

amount of task that needs to be executed at 𝑅𝑆𝑈𝑏 and n is the CPU cores available at 𝑅𝑆𝑈𝑏 for 

execution of subtask. The receiving delay for the delivery of results might be regarded as 

minimal, since the output data is typically smaller than the input data [80], [81]. The reception 

delay can be computed as: 

𝑇𝑟(x) = 
𝛼 × 𝑍(𝑥)

𝑅𝑣
,     (9) 

where 𝛼 is the value used to estimate the size of result regarding the size of the computational 

task and 𝑅𝑣 is the data rate reserved for delivery RSU to vehicle. Delivery RSU can be any one 

of both 𝑅𝑆𝑈𝑎 and 𝑅𝑆𝑈𝑏. The complete list of notations used in this thesis is shown in Table I. 
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Notation Description 

P Path Loss 

D Directivity of RIS antenna 

B Bandwidth 

𝑷𝑻 Transmit Power 

𝜹𝟐 Gaussian Noise 

Z Task at 𝑅𝑆𝑈𝑎 

𝒁′ Task at 𝑅𝑆𝑈𝑏 

V CPU clock cycle per byte 

W Computing Capability of an RSU 

𝛇 Binary vector representing if 𝑅𝑆𝑈𝑏 takes 

part in execution or not 

𝑻𝒂 Transmission to 𝑅𝑆𝑈𝑎 delay 

𝑻𝒃 Forwarding from 𝑅𝑆𝑈𝑎 to 𝑅𝑆𝑈𝑏 delay 

𝑻𝒄 𝑅𝑆𝑈𝑎 execution delay 

𝑻𝒅 𝑅𝑆𝑈𝑏 execution delay 

𝑻𝒓 Reception delay 

𝑻𝒌 Round Trip Time (RTT) 

𝛚° SNR threshold for V2I and I2I 

communication 

𝛚𝒓 SNR threshold for result delivery 

 

Table I – Notations 

 

 

3.4 Proposed Solution 
 

For any task offloaded by a vehicle, there can be a specific number of policies, which 

is depend on the division of the task into two components, e.g., a 3MB task can be divided into 

4 possible combinations, i.e., (3, 0), (2, 1), (1, 2), and (0, 3). The first number in each bracket 

shows the size of a subtask that needs to be executed at 𝑅𝑆𝑈𝑎 and the second number shows 

the size of subtask that needs to be executed at 𝑅𝑆𝑈𝑏. These combinations can also be called  
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offloading policies. Out of these four policies, 𝑅𝑆𝑈𝑎 intelligently selects that policy whose 

combination will give the least time delay. A computational task is offloaded to 𝑅𝑆𝑈𝑎 only if 

its signal-to-noise ratio is positive. Since, in this system model the computational task offloaded 

by vehicle to RSU goes through RIS, SNR is considered to be SNR from vehicle to RIS added 

to the SNR from RIS to 𝑅𝑆𝑈𝑎. Similarly, SNR must also be positive at the time of delivery of 

result from RSU to vehicle. If the SNR threshold is not met, the task will be discarded, and it 

will not be given to RSU at the time of transmission and to Vehicle at the time of delivery. The 

main goal is to reduce the round-trip time (RTT) and enhance the received signal strength at the 

RSU. Therefore, the RTT for offloading the computational task to RSU can be obtained as: 

𝑇𝑘(x) = 𝑇𝑎(x) + 𝑇𝑟(x) + max{𝑇𝑐(x), 𝑇𝑏(x) + 𝑇𝑑(x)},  (10) 

where 𝑇𝑎(x) is the transmission delay of task from vehicle to 𝑅𝑆𝑈𝑎, 𝑇𝑟(x) is the reception delay 

of result from RSU to vehicle, 𝑇𝑐(x) is the execution delay at 𝑅𝑆𝑈𝑎, 𝑇𝑏(x) is the forwarding 

delay to 𝑅𝑆𝑈𝑏, and 𝑇𝑑(x) is the execution delay at 𝑅𝑆𝑈𝑏 at time x. When it comes to offloading 

policy, there are three possible scenarios for each task: 

• When computing the total computational task, if receiver 𝑅𝑆𝑈𝑎 is responsible for it 

while supporter 𝑅𝑆𝑈𝑏 is not, ζ𝑎(𝑥) will be “0”. This causes both 𝑇𝑏(x) and 𝑇𝑑(x) to be 

zero as well. Therefore, 𝑇𝑐(x) will be selected by the maximum function. 

• When supporter 𝑅𝑆𝑈𝑏 is responsible for computing the total computational task, 

receiver 𝑅𝑆𝑈𝑎 does not perform any computation in this scenario. Thus, 𝑇𝑐(x) will be 

zero, and the max function will select 𝑇𝑏(x) + 𝑇𝑑(x) as the optimal decision. 

• When both receiver 𝑅𝑆𝑈𝑎 and supporter 𝑅𝑆𝑈𝑎 are involved in a computational task, 

both will execute a subtask of an entire task. In such scenario, the maximum function 

will select the greater value between 𝑇𝑐(x) and 𝑇𝑏(x) + 𝑇𝑑(x), since both RSUs are 

computing in parallel. 

 

3.5 Optimization Constraints 
 

Some constraints are designed for the optimization problem that should be considered 

when calculating the total service delay. 
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3.5.1 Time threshold for total service delay 
 

A threshold is set for the maximum time delay that a computational task can take to be 

processed. If a task takes longer than the threshold, it is discarded. The threshold is set to 15 

minutes, which is a flexible value that can be adjusted as needed. This means that the total 

service delay for a task should be between 0 and 15 minutes. 

 

3.5.2 SNR threshold for RIS to 𝑹𝑺𝑼𝒂 
 

A computational task will be accepted by 𝑅𝑆𝑈𝑎 when it satisfies a signal-to-noise ratio 

(SNR) threshold, ω°. Therefore, 

   π𝑎(x) = {
1,      𝑖𝑓          

𝑃𝑇 10−𝑃(𝑑𝑎)/10

𝛿2
 ≥  ω°

0,                                 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ,   (11) 

where  𝑑𝑎 is the distance between RIS and 𝑅𝑆𝑈𝑎. 

 

3.5.3 SNR threshold for I2I 
 

A computational task or sub-component of the task can be forwarded from 𝑅𝑆𝑈𝑎to 

𝑅𝑆𝑈𝑏 only when it satisfies an SNR threshold, ω°. Therefore, 

ζ𝑎(𝑥) = {
1,      𝑖𝑓          

𝑃𝑇 10−𝑃(𝑑𝑎,𝑏)/10

𝛿2
 ≥  ω°

0,                                   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ,   (12) 

where 𝑑𝑎,𝑏 is the distance between 𝑅𝑆𝑈𝑎 and 𝑅𝑆𝑈𝑏. 

Moreover, at the end of service session, if a vehicle gets out of the range of 𝑅𝑆𝑈𝑏, then 

the vehicle will not be able to receive the results. Which will cause the service session to fail. 

The SNR threshold for result delivery is denoted by ω𝑟. A binary variable is kept which tells if 

the service session has failed or not, and is denoted by r(x). If r(x) = 1, then it means that the 

service session has failed. If r(x) = 0, it means that the service session is not failed. Hence, 

  r(x) = {
1,      𝑖𝑓        

𝑃𝑇 10−𝑃(𝑑𝑣(𝑥+ 𝑇𝑘))/10

𝛿2
 ≤  ω𝑟

0,                                            𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ,   (13) 
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where 𝑑𝑣(𝑥 +  𝑇𝑘) is the distance between the deliver RSU and vehicle. This is the 

distance which is taken when the offloaded task has been computed and the results are received 

at the deliver RSU. This is why the round-trip time at epoch x is added. 
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Chapter 4 

Simulation Results 
 

Simulation results were obtained using three algorithms in comparison with the 

proposed scheme. These algorithms include the Closest Server method, the Continuous Server 

relocation method, and the random method [7]. In the closest server method, a task is 

transmitted to 𝑅𝑆𝑈𝑎 by vehicle without considering the division of tasks or the support of 𝑅𝑆𝑈𝑏. 

The entire task is processed at the 𝑅𝑆𝑈𝑎, which is then responsible for delivering the task to the 

vehicle. In the continuous server relocation method, a task is transmitted to 𝑅𝑆𝑈𝑎 by a vehicle, 

but the entire task is shifted to supporter 𝑅𝑆𝑈𝑏 as the vehicle approaches it. The whole task is 

then executed at the 𝑅𝑆𝑈𝑏, which functions as a supporter RSU and hands over the task to the 

vehicle. As part of the Random method, a vehicle sends a task to 𝑅𝑆𝑈𝑎 in two components. One 

component is retained at 𝑅𝑆𝑈𝑎, while the other is sent to supporter 𝑅𝑆𝑈𝑏 both the sub 

components are executed in parallel, combined together after execution and delivered back to 

the vehicle. This process is done randomly. 
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Parameter Value 

Height of IRS antenna 10 m 

Height of RSU antenna 5 m 

f 25 GHz 

B 24 MBps 

𝑷𝑻 20 dBm 

θ  45 

Φ 90 

ε 0.9 

𝜹 158 dBm 

Distance between vehicle and RIS 30 m 

Distance between RIS and 𝑹𝑺𝑼𝒂 10 m 

Distance between 𝑹𝑺𝑼𝒂 and 𝑹𝑺𝑼𝒃 10 m 

Distance between delivery RSU and 

vehicle 
15 m 

Size for the RIS 5λ x 5λ 

Size for each unit cell 𝜆

3
 

Reflecting elements in RIS 15 x 15 

𝑵𝒔 4 

 

Table II – Simulation Parameters 
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4.1 MES execution delay vs Local execution delay 
 

 

Fig. 2. MES execution delay vs Local execution delay 

 

Fig. 2 shows the round-trip time of a complete task when it is offloaded to the server 

and when it is executed locally. Note that for every size of task, offloading is a better option 

compared to executing it locally. The height of IRS antenna, height of RSU antenna, f, B and 

𝑃𝑇 are considered as 10m, 5m, 25GHz, 24MBps and 20dBm [81] respectively. θ, ϕ and ε are 

taken as 45, 90 and 0.9 respectively. The values for δ, distance between vehicle and RIS, 

distance between RIS and 𝑅𝑆𝑈𝑎, distance between 𝑅𝑆𝑈𝑎 and 𝑅𝑆𝑈𝑏 and distance between 

delivery RSU and vehicle are taken as − 158dBm, 30m, 10m, 10m and 15m respectively. The 

complete list of simulation parameters is shown in Table II. In RIS, the angle of reflection of 

the incoming electromagnetic wave is determined by elevation angle (θ𝑟) and angle of azimuth 

(ϕ𝑟). In scenario specified as reference, there is 5λ x 5λ size for the RIS and 
𝜆

3
 size for each unit 

cell, given the wavelength (λ). It is also assumed that there are 15 x 15 reflecting elements in 

RIS, and each reflecting element can attain four different states (N𝑠 = 4). 
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4.2 RTT vs Number of States 
 

 

Fig. 3. RTT vs Number of States 

 

Fig. 3 shows the relationship between round-trip time (RTT) and Number of states (2𝑛) 

of RIS. To see the effect on the round-trip time, the number of states of RIS is increased 

gradually. It can be seen from Fig. 3 that by increasing the number of states of RIS, the round-

trip time decreases. This is because when the number of states of RIS increase, it causes the 

transmitter gain to increase. Because of that the data rate of communication increases and hence 

finally the round-trip time decreases. 

Therefore, to provide real-time services the number of states of RIS need to be 

appropriate. Because fast communication is also dependent on the number of states. 
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4.3 RTT vs Size of RIS 
 

 

Fig. 4. RTT vs Size of RIS 

Fig. 4 shows the relationship between round-trip time (RTT) and the Size of RIS (
𝐷𝑚

λ
). 

It can be seen that by increasing the size of RIS, the transmitter gain increases, which increases 

the data rate of communication and hence the round-trip time decreases. Hence, appropriate 

size of RIS needs to be selected so that reliable services for vehicular networks can be provided. 
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4.4 RTT vs Size of Unit Cell 
 

 

Fig. 5. RTT vs Size of Unit Cell 

 

Fig. 5 shows the relationship between round-trip time (RTT) and varying the size of 

Unit Cell (
λ

𝐷
). It can be seen that as the Size of Unit Cell increases, transmitter gain decreases, 

because of which, the data rate decreases and the RTT increases. This is because when the size 

of unit cell of RIS increases, the number of ‘meta-atoms’ of RIS also increases. Which means 

that the incoming signal will be stronger and of high quality after being redirected. 

 

 

 

 

 

 

 

 

 

 



CHAPTER   IV:  SIMULATION RESULTS 

28 
 

 

4.5 RTT vs Distance from Vehicle to RIS 
 

 

Fig. 6. RTT vs Distance from Vehicle to RIS 

 

Fig. 6 shows the round-trip time (RTT) as the distance between the vehicle that wants 

to transmit its task and RIS increases. It can be seen that as the distance between the vehicle 

and RIS increases, the round-trip time also increases. This is because if the distance if vehicle 

from RIS is large, then the signal-to-noise ratio from vehicle to RIS will be of low quality. 

Because of this, the data from the vehicle will take longer to reach RIS and then RSU and so it 

will take longer time to process the task from the vehicle. 

However, the selection for offloading a task based on the distance between vehicle and 

RIS may vary depending upon the speed of vehicle, urgency of task, and size of task. 
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4.6 Comparison of RTT with respect to Total task 

size 
 

 

(a) 

 

Zoomed version of (a) 

Fig. 7. Comparison of RTT with respect to Total task size 
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Fig. 7 shows the comparison of round-trip time of the proposed method with the closest 

server method, the continuous server relocation method, and the random method. It can be seen 

from Fig. 7, that the round-trip time increases with respect to increase in the size of task. This 

increase in the round-trip time is because the execution time of a task on the server increases, 

as more time will be required for a bigger task. 

As the complexity of task increases, the RTT also increases because its execution time 

on the server increases. However, no algorithm from closest server method, continuous server 

relocation method, and random method, achieves a lower round-trip time than the proposed 

method, which means that the proposed method reduces the total service delay to its minimum 

attainable level. 

 

4.7 Comparison of Proposed scheme by varying the 

total number of Vehicles approaching 𝑹𝑺𝑼𝒂 for 

offloading their task 
 

 

Fig. 8. Comparison of Proposed scheme by varying the total number of Vehicles approaching 

𝑅𝑆𝑈𝑎 for offloading their task 
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In Fig. 8, the relationship between round-trip time and the total vehicles requesting task 

processing by both the 𝑅𝑆𝑈𝑎 and 𝑅𝑆𝑈𝑏 is explored. In this simulation all the variables are kept 

constant, the only variable is the number of autonomous vehicles which varies from 1 to 10.  

The values are taken in this way because only the relation between round-trip time and 

the number of vehicles that wish to have their tasks processed is explored. All the tasks are 

combined. Therefore, the overall amount of data that has to be processed is the sum of tasks 

from each vehicle. As the traffic on the RSU increases, the resources of the RSU are divided 

among the vehicles, resulting in a division of the parameter W in eq. 7 and eq. 8. This leads to 

an increase in the RTT for the combination of all tasks of every vehicle. It can be seen that the 

round-trip time of the random method fluctuates and at some points it is comparable to the 

round-trip time of the continuous server relocation method. However, the proposed method 

performs better than the benchmark policies and achieves the minimum round-trip time. 
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Chapter 5 

Conclusion and Future Works 
 

The complete thesis is concluded in this chapter using bullet points. The proposed 

solution, the methods used to get the results, as discussed in chapter 4, and the what those results 

show, are discussed in this chapter. Moreover, the future work to continue this thesis is also 

discussed. 

 

5.1 Conclusion 
 

This thesis proposes a solution to the challenge of reliable and efficient communication 

between an autonomous vehicle and a Roadside Unit (RSU) in real time environments. 

• The challenge of reliable and efficient communication between an autonomous vehicle 

and a RSU is due to the fact that these vehicles are often moving and can be in 

obstructed environments. This can make it difficult for the vehicle to maintain a clear 

line of sight with the RSU, which can lead to communication problems. 

• The RIS is a new technology that can be used to improve the reliability and efficiency 

of communication in these environments. The RIS is a surface that can be programmed 

to reflect radio waves in a specific way. This can be used to create a virtual line of sight 

between the vehicle and the RSU, even if they are obstructed. 

•  The RIS improves transmission reliability and reduces signal attenuation, ensuring 

seamless communication between the autonomous vehicle and RSU. 

•  The thesis also proposes a task distribution mechanism to reduce latency and improve 

system efficiency. 

•  This research opens up new possibilities for enhancing the reliability and performance 

of vehicular communication networks in the 25GHz frequency band. 
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5.2 Future Work 
 

For the future work, research on different intelligent schemes can be conducted to 

integrate them with the proposed system model to further improve the efficiency and reliability 

of vehicular networks. Different AI models, such as Deep Learning, Reinforcement Learning, 

and also Federated Learning can be explored to see the improvement. By utilizing these 

approaches, the total service delay will minimize even further and a model can be developed 

that will work even in situations where there are more RISs and RSUs.
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