NYLON GRID AS SOIL REINFORCEMENT IN C-Φ SOILS

By

Muhammad Babar Khan

(2002 - NUST - MSc - PhD - 7)

A Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

In

Department of Civil Engineering

National Institute of Transportation

National University of Sciences and Technology

Rawalpindi, Pakistan

(2004)

This is to certify that the

thesis entitled

NYLON GRID AS SOIL REINFORCEMENT IN $\mbox{C-}\Phi\mbox{ SOILS}$

Submitted by

Muhammad Babar Khan

Has been accepted towards the partial fulfillment

of

the requirements

for

Master of Science in Civil Engineering

Dr. Noor Ul Amin, PhD (Japan)

Military College of Engineering, Risalpur

National University of Sciences and Technology, Rawalpindi

NYLON GRID AS SOIL REINFORCEMENT IN C- Φ SOILS

By

Muhammad Babar Khan

A Thesis

of

Master of Science

Submitted to the

National Institute of Transportation

Risalpur

of

National University of Sciences and Technology

Rawalpindi

In partial fulfillment of the requirements

For the degree of

Master of Science in Civil Engineering

2004

iii

To My Family

ACKNOWLEDGEMENT

I am thankful to All Mighty Allah who gave me the strength and courage to accomplish this research. I wish to acknowledge specially the efforts of my thesis advisor Dr. Noor Ul Amin, who faithfully and conscientiously steered me throughout the research work. His fatherly teaching and guidance approach during the thesis will always be remembered.

The inspiration provided by Lecturer Habib Ur Rehman during the course of this study cannot be forgotten. I am also thankful to the exam committee members Lt. Col. Mohammad Ali and Dr. Sajjad Haider for their critical comments at every stage of the research as a blessing in disguise without which this study would have been impossible.

I am also indebted to my colleagues Qazi Aurangzab and Naeemuddin for their encouragement, help and assistance.

In the last but not the least, I bow before my parents, whose day and night prayers and continuous encouragement enabled me to achieve the ambitions of my life.

v

ABSTRACT

In this study nylon rope has been considered as soil reinforcement in the form of grid at 6 x 6 inches spacing. To determine the resistance of the ropes under different normal stresses, simulating 2, 4, 6, 8 feet high embankments, pullout tests were performed. The apparatus for pullout test was fabricated. Five nylon ropes (¼ inches thick) in the grid were pulled out of the test pit, with the help of motorized jack. The resistance offered by the ropes was measured with the help of proving ring. Tests were conducted on Risalpur soil. Laboratory tests were carried out to determine the index properties of soil. After conducting the pullout tests, it is found that the nylon grid can be used as soil reinforcement for low to moderate height slopes i.e. 8 to 15 feet high slopes or embankments and it can also be used in the subgrade stabilization of weak soils. In this hypothesis nylon was used as reinforcement because it is cheaper than the other polymeric reinforcement (Paraweb straps) and steel reinforcement. It can be practiced in stabilizing slopes of the embankments. In the temporary works it can be utilized efficiently for reinforcing the military bunkers and underground trenches for its stability.

TABLE OF CONTENTS

CHAPTER			PAGE NO.
1	INTF	RODUCTION	1
	1.1	GENERAL	1
	1.2	PURPOSE OF THE STUDY	3
	1.3	OBJECTIVES OF THE STUDY	4
	1.4	SCOPE OF THE SUTDY	4
	1.5	RESEARCH METHODOLOGY	4
	1.6	OUTLINE OF DISSERTATION	5
2	LITE	ERATURE REVIEW	7
	2.1	HISTORY OF SOIL REINFORCEMENT	7
	2.2	ANCIENT STRUCTURES	10
	2.3	MODERN STRUCTURES	14
	2.4	TYPES OF REINFORCEMENTS	21
		2.4.1 Strip Reinforcement	21
		2.4.2 Grid Reinforcement	22
	2.5	INTERACTION MECHANISM OF SOIL	
		REINFORCEMENT	24
		2.5.1 Strip Reinforcement- Soil Interaction	24
		2.5.2 Grid Reinforcement- Soil Interaction	29
	2.6	THEORIES OF MECHANISM OF SOIL-STRIP	
		REINFORCEMENT	29
		2.6.1 The Enhanced Confining Theory	30
		2.6.2 Anisotropic Cohesion Theory	30
3	POL	YMERIC MATERIALS	33
	3.1	INTRODUCTION	33
	3.2	HISTORY AND DEVELOPMENTS	34
		3.2.1 Coyne's Ladder Wall	34
		3.2.2 Reinforced Earth	36

CHA	PTER			PAGE NO.
		3.2.3	Geotextiles	41
		3.2.4	Grids	41
	3.3	MAIN	TYPES OF POLYMER SOIL	
		RETA	AINING WALLS	47
		3.3.1	Types of Polymer Used as Reinforcement	47
		3.3.2	Polymer Uses in Reinforced Earth Technique	48
	3.4	PROP	PERTIES OF POLYMERS WITH RESPECT	
		TO TI WAL 3.4.1		50 50 50
			b. Creep Behavior of Polymers	58
4	RESI	EARCH	I METHODOLOGY	62
	4.1	GENH	ERAL	62
	4.2	DESK	X STUDY	62
	4.3	FIELI	D RECCONANCENCE	62
	4.4	LAB	TESTS	63
		a.	Soil Classification	63
		b.	Density/Unit Weight	63
		c.	Moisture Content	64
		d.	Atterberg Limits	64
		e.	Direct Shear Test	64
		f.	Standard Compaction Test	65
		g.	Elongation Test	66
		h.	Specific Gravity Test	66
		i.	Tensile Strength Test	67
	4.5	PULL	OUT TEST	67
		4.5.1	Development of Apparatus	67
		a.	Apparatus	67
		b.	Soil Sample	71
		c.	Test Box	71
		d.	Pullout Test Procedure	72

CHAPTER		PAGE NO.	
5.	PRE	SENTATION OF RESULTS AND DISCUSSION	75
	5.1	GENERAL	75
	5.2	LABORATORY EVALUATION OF	
		RISALPUR SOIL	75
		5.2.1 General	75
		5.2.2 Field Moisture Content Test	75
		5.2.3 Field Density Test	75
		5.2.4 Specific Gravity Test	76
		5.2.5 Liquid Limit Test	76
		5.2.6 Plastic Limit Test	76
		5.2.7 Grain Size Analysis Test	77
		5.2.8 Permeability Test	77
		5.2.9 Direct Shear Test	78
		5.2.10 Standard Compaction Test	78
		5.2.11 Elongation Test	78
		5.2.12 Tensile strength Test	80
		5.2.13 Pullout Test	80
	5.3	INSTALLATION ARRANGEMENT	84
	5.4	COST COMPARISON	85
		5.4.1 Material Cost of Nylon	85
	5.5	DESIGN EXAMPLE	87
6.	CON	ICLUSIONS AND RECOMMENDATIONS	91
	6.1	CONCLUSIONS	91
	6.2	RECOMMENDATIONS	91
APP	PENDIX	X I	93
APPENDIX II			97
LIST	Г OF R	EFERENCES	104

ix

LIST OF FIGURES

FIGURE	TITLE	PAGE NO.
2.1.	Typical Reinforced Soil Structure	9
2.2.	Roman Wharf	11
2.3.	Munster Earth Retaining Structure	13
2.4.	Coyne Retaining Wall	14
2.5.	Vidal Wall	15
2.6.	Concrete Cruciform Faced Wall	16
2.7.	York Method (After Jones 1978)	17
2.8.	Wire Net Reinforced Roof Pack in Yorkshire Coalfield	d 17
2.9.	Multi-anchor Wall (After Okasan Kogyo, 1985)	19
2.10.	NEW Wall System	20
2.11.	Tailed Gabion	21
2.12.	Typical Strip Reinforcement	22
2.13.	Typical Welded Wire Grid Reinforcement	24
2.14.	Soil Strip Reinforcement Interaction Mechanism	25
2.15.	Comparison of Strip Mechanism to Spring	26
2.16.	Stress Conditions of Unreinforced Sand Reinforced so	il
	Structures	27
2.17.	(a) α and β Characteristics of Reinforced Soil fill	
	Produced by the Wall Rotating about A (After Milligation	n,
	1974), (b) Strain Arcs, (c) α and β Characteristics for	
	Reinforced Fill. β Direction Aligned with Horizontal	
	Reinforcement (After Bassett and Last, 1978)	28
2.18.	(a) The Idealized Zero Extension Characteristics	
	Field Through and Beneath an Embankment	
	(b) Possible Reinforcement Placing	29
2.19.	The Enhanced Confining Pressure Concept	
	(Ingold, 1982)	30
2.20.	The LCPC Cohesion Theory (After Haussman, 1976)	31
2.21.	The NWS Cohesion Theory (After Haussman, 1976)	32

FIGURE	TITLE	PAGE NO.
3.1.	Ladder Wall System Invented by Coyne (1929)	35
3.2.	Cohesive Materials as Combinations of "Grains"	
	and Reinforcement"	37
3.3.	Behavior of Reinforced Earth Material at the Triaxial	
	Apparatus	39
3.4.	Influence of the Reinforcement on the Potential	
	Failure lines	40
3.5.	Type of Welded Bar Mat and Panel Used	
	by California Transportation	42
3.6.	Mechanism of Bar Pullout Resistance	43
3.7.	Pullout Force/Displacement Curves for a Metallic	
	Bar Mat and a Plastic Grid	45
3.8.	Difference Between Jewell's Direct Shear Test	
	and Pullout Test	46
3.9.	Types and Mechanical Properties of Geotextiles	
	and Geogrids	47
3.10.	Deformability and Strength Inclusion Influence on	
	Reinforced Dense Sand Behavior	48
3.11.	Stress-Strain Behavior of Different Material Fibers	51
3.12.	Elongation Test on Filament Extracted from	
	Non-Woven Fabrics	52
3.13.	Influence of the In-Soil Confinement	
	and of the Fabric Structure on Elongation Properties.	54
3.14.	Lateral Construction Occurring During an	
	Elongation Test on a Non-Woven Fabric.	55
3.15.	Variation in Tensile Strength of Some Woven Fabric	
	With Strain Rate	56
3.16.	Tensile Strength and Deformation Moduli of Polyester	
	and Polypropylene Fabrics Listed on the Sleeve-	
	Cylinder Apparatus (Paute and Segouin, 1977)	57

3.17.	Creep of Polyester and Polypropylene Yarns	
	(Greenwood and Myles, 1986)	59
3.18.	Creep of Synthetic Woven Fabrics Under Prolonged	
	Loading (50% of the Breaking Strength)	
	(Van Leeuwen, 1977)	60
3.19.	Creep Behavior of Tensar SR2	
	(After Mc Gown et al., 1982)	61
4.1.	Liquid Limit and Plastic Limit Tests	65
4.2.	Elongation Test on Nylon	66
4.3.	Tensile Strength Test	67
4.4.	Motorized Jack for Pulling the Ropes	69
4.5.	Nylon Grid and the Iron Frame	70
4.6.	Clamp, Proving Ring and Dial Gauges Arrangement	71
4.7.	Concrete Test Box and Jack Arrangement	72
5.1.	Liquid Limit Test	76
5.2.	Gain size Analyses Test	77
5.3.	Direct Shear Test	78
5.4.	Elongation Test	79
5.5.	Tensile strength Test	81
5.6.	Pullout Tests Under Four Different Overburden Loads	
	(Dry of Optimum)	82
5.7.	Pullout Tests Under Four Different Overburden Loads	
	(Wet of Optimum)	82
5.8.	Increased Pullout Resistance With Increasing Overburden	83
5.9	Installation Arrangement	84

LIST OF SYMBOLS

Abbreviation	Description
α	
β	
σ1	
σ3	
νμ	
σν	
σϖ	
ση	
σηρ	
σ	
φμ	
φ	
σρ	
τ	
3	
ε1	

Abbreviation	Description
А	Corresponding Area of Cross-section of Specimen (mm ²)
a	Area of Piston
ACU	Anisotropically Consolidated Undrained Triaxial Test
CU	Consolidated Undrained Test
CL	Low Plastic Clays
Ev	Elastic Modulus from Consolidation Test
F	Force
FOS	Factor of Safety
K _C	Co-efficient of Lateral Earth Pressure
G _s	Specific Gravity
LL	Liquid Limit
ML	Low Plastic Silts
PI	Plasticity Index
PL	Plastic Limit
SC	Clayey Sand
UU	Unconsolidated Undrained Test
C _c	Compressibility Index
γ	In-situ Density
σ _{po}	Pre-consolidation Pressure
μ	Poisson Ratio
Ē	Modulus of Elasticity