LANDSLIDE HAZARD AND RISK MAPPING OF URBAN MURREE

By

Muhammad Naeemuddin

(2002 - NUST - MS - PhD - 8)

A thesis submitted in partial fulfillment of The requirement for the degree of Master of Science

In

Department of Civil Engineering National Institute of Transportation National University of Sciences and Technology Rawalpindi, Pakistan (2006)

LANDSLIDE HAZARD AND RISK MAPPING OF URBAN MURREE

By

Muhammad Naeemuddin

(2002 - NUST - MS - PhD - 8)

A thesis submitted in partial fulfillment of The requirement for the degree of Master of Science

In

Department of Civil Engineering National Institute of Transportation National University of Sciences and Technology Rawalpindi, Pakistan (2006)

This is to certify that the thesis entitled LANDSLIDE HAZARD AND RISK MAPPING OF URBAN MURREE

Submitted by

Muhammad Naeemuddin

Has been accepted towards the partial fulfillment

of

the requirements

for

Master of Science in Civil Engineering

Brigadier Dr. Tayyeb Akram, Ph. D (USA)

National Institute of Transportation, Risalpur

National University of Sciences and Technology, Rawalpindi

LANDSLIDE HAZARD AND RISK MAPPING OF URBAN MURREE

By

Muhammad Naeemuddin

A Thesis

of

Master of Science

Submitted to the

National Institute of Transportation

of

National University of Sciences and Technology

Rawalpindi

in partial fulfillment of The requirements

For the degree of

Master of Science In civil engineering

(2006)

DEDICATED TO MY MOTHER AND WIFE

ACKNOWLEDGEMENT

First of all, I am thankful to Almighty Allah who enabled me to accomplish this thesis.

I would like to thank my parent institute Balochistan University of Engineering and Technology, Khuzdar and Higher Education Commission, Islamabad for their financial support during my studies.

I am grateful to Brigadier Dr. Tayyeb Akram for his extended guidance and supervision. I greatly appreciate his encouragement and facilitation throughout the study period. I am highly obliged to my teacher Assistant Professor Habib-Ur-Rehman. It would have been a very difficult task without his direction and guidance.

I also owe a lot of thanks to my respectable teachers and committee members Lt. Col (Retd.) Muhammad Ali, Lt Col Muhammed Naveed Iqbal, and Dr. Sajjad Haider.

I am also thankful to the administration and staff of National Institute of Transportation for their extended help in the research work. I would like to pay my gratitude to all my colleagues especially Qazi Aurangzeb for assistance and encouragement throughout this process.

Finally, I appreciate the cooperation, encouragement and patience of my wife and other family members. Also special thanks to my daughter Aateka and son Ammar, for their sweet and lovely kisses which kept me fresh and active.

ABSTRACT

Landslides are an inherent dilemma of the mountainous areas and have been observed and recorded for several centuries worldwide. Geographically, Murree lies in the southern part of outer or sub Himalayas and is one of the busiest hill resorts of Northern Pakistan. The altitude of Murree hills above mean sea level ranges from 1600 to 2200m. The population of Murree urban area increases from 25,000 to 300,000 during peak tourist season. Tourist related commercial activities like shops, hotels, and residential construction is growing at a very rapid pace. Owing to the fragile geology, deforestation and uncontrolled urbanization, the area is under constant threat to landslides and slope failures, thereby, creating very high risk to human life, limb and property. In the past no effort was directed towards landslide hazard mapping of the area that should help in the planning, design and construction / maintenance of infrastructure projects, including management and relief works in case of landslide induced disaster. The research described herein highlights the factors affecting the slope instability, causing risk to the human life and property. Landslide Hazard Potential (LHP) and Risk data was collected through reconnaissance site-walkover surveys. Intensive field and laboratory investigations were performed to ascertain critical parameters at the selected locations across Murree urban area. The data was analyzed using Fuzzy Logic Technique. The outcomes of this research are identification of critical factors contributing to the landslide hazard and risk in the study area. Based on the knowledge of these critical factors, landslide hazard and risk models / maps were developed. The resulting maps demarcate the area into different intensity hazard and risk zones.

TABLE OF CONTENTS

CONTENTS

LIST OF FIGURES		xii
LIST OF TABLES		
ACKNOWLEDGEMENT		
ABSTRACT		vii
Chapter 1		
INTRODUCT	TION	1
1.1	GENERAL	1
1.2	RESEARCH OBJECTIVES	2
1.3	RESEARCH PLAN	3
Chapter 2		
LITERATUR	E REVIEW	7
2.1	GENERAL	7
2.2	DESCRIPTION OF THE STUDY AREA	8
2.3	GEOLOGIC HISTORY	8
2.4	TECTONICS / SEISMICITY OF STUDY AREA	10
2.5	GEOLOGIC STRATIFICATION	11
2.6	CLIMATIC AND VEGETATION CONDITIONS	13
2.7	TYPES OF SLOPE FAILURES IN STUDY AREA	13
2.8	LANDSLIDE STABILIZATION / REHABILITATION WORKS IN T	HE
	STUDY AREA	14
	2.8.1 Geological Survey of Pakistan (GSP)	14
	2.8.2 National Engineering Services of Pakistan (NESPAK)	14
	2.8.3 Other Responsible Departments	14
2.9	LANDSLIDES HAZARD ZONATION TECHNIQUES	16
	2.9.1 Direct and Indirect Hazard Mapping Techniques	17
	2.9.2 White, Black, and Grey Box Models	17
	2.9.2.1 Heuristic Approach	20
	2.9.2.2 Statistical Approach	20
	2.9.2.3 Deterministic Approach	20
	2.9.3 Fuzzy Set Theory and Logic	21
	2.9.4 Use of Fuzzy Set Theory and Logic in Landslides Studies	22
	2.9.5 Use of GIS in Analysis and Prediction of Landslides	24
2.10	LANDSLIDES HAZARD MAPPING WORKS IN STUDY AREA	24
2.11	LANDSLIDES RISK MAPPING TECHNIQUES	26
	2.11.1 Relative Risk Scoring	27
	2.11.2 Risk Ranking Matrices	28
	2.11.3 Relative Risk Rating	31
	2.11.4 The FMECA Approach	32
Chapter 3		39
METHODOLOGY		
3.1	GENERAL	39

CONTENTS

Page No.

3.2	FIELI	D RECONNAISSANCE	40
3.3	FIELI	D INVESTIGATIONS	40
	3.3.1	Development of Landslide Hazard Potential (LHP) Factor	rs 41
		Collection of Landslide Hazard Potential (LHP) Data	42
		Geologic / Geotechnical Data	45
		3.3.3.1 Geotechnical Strata Models	45
		3.3.3.2 Climatic Data	46
		3.3.3.3 Vegetation Data	46
		3.3.3.3 Hydrologic Data	50
		3.3.2.6 Topographic / Landform Data	51
	3.3.4	Subsurface Exploration	51
		3.3.4.1 Electrical Resistivity Tests	51
		3.3.4.2 Test Pits	52
		3.3.4.3 Drilling and Sampling of Boreholes	52
		3.3.4.4 Installation of Standpipe Piezometers	54
3.4	LABC	DRATORY INVESTIGATIONS	55
	3.4.1	Classification Tests	55
	3.4.2	Triaxial Strength Studies	55
	3.4.3	Swell / Consolidation Tests	55
	3.4.4	Slake Durability Tests	56
3.5	LANDSLIDE HAZARD ZONATION AND MAPPING		
	3.5.1	Statistical Modeling using Fuzzy Logic Analysis	57
		3.5.1.1 Input	57
		3.5.1.2 Fuzzifier	58
		3.5.1.3 Rules and Inferences	61
		3.5.1.4 Defuzzification	61
	3.5.2	LHPI Zoned Maps	61
3.6	IDEN	TIFICATION AND COLLECTION OF FACTORS	
	CONTRIBUTING IN RISK ANALYSIS OF THE STUDY AREA		
	3.6.1	Population	62
	3.6.2	Type of Structures	63
	3.6.3	Nature of Structures	64
	3.6.4	Consequences Level	65
	3.6.5	Value of Land	65
3.7	LANI	DSLIDE RISK MODELING AND MAPPING	68
	3.7.1	Risk Modeling	68
	3.7.2	Risk Mapping	69
Chapter 4			
RESULTS A	ND DIS	SCUSSIONS	71
4.1	GENE	ERAL	71
4.2	SLOP	E INSTABILITY CAUSAL FACTORS IN THE STUDY A	AREA 72
	4.2.1	Slope Instability Conditioning Factors	73
		4.2.1.1 Weathering Zones	73
		4.2.1.2 Weatherable / Erodible Rocks	74

CONTENTS

Page No.

		4.2.1.3	Poor Surface Drainage	77
		4.2.1.4	Poor Subsurface Drainage	78
		4.2.1.5	Improperly Designed / Inefficient Slope Retaining	
			Structures	83
		4.2.1.6	Removal of Trees / Vegetation	84
	4.2.2	Slope Inst	ability Triggering Factors	84
		4.2.2.1	Intense Long Duration Rainfalls	86
		4.2.2.2	Rapid Snowmelt	86
		4.2.2.3	Change in Slope Configuration and Wrong	
			Placement and Design of Structures	86
4.3	TYPE	S OF LAN	DSLIDES IN THE STUDY AREA	87
	4.3.1	Rotationa	l Slope Failures	87
	4.3.2	Road Sett	lements / Failures	88
	4.3.3	Rock / Bo	ulder Falls	88
4.4	LANI	DSLIDE HA	AZARD POTENTIAL ZONING OF STUDY AREA	90
	4.4.1	Spatial Di	stribution of LHP	91
	4.4.2	Temporal	Variations of LHP	93
4.5	FACT	ORS CON	TRIBUTING TO LANDSLIDE RISK	94
	4.5.1	Landslide	Hazard Failure Potential Index (LHPI)	94
		Population		94
	4.5.3	• 1	Nature of Structures	97
4.6			SK MAPPING OF THE STUDY AREA	99
	4.6.1	Spatial dis	stribution of the Risk	99
	4.6.2	Temporal	Variations of Risk	100
Chapter 5				
			IMENDATIONS	103
5.1		CLUSIONS		103
5.2		OMMENDA		106
5.3	RECC	OMMENDA	ATION FOR FUTURE STUDY	107
REFERENC	TES			109
				109
APPENDIX		ECTION	NIEP-TO	
FIELD DAT				110
			ali (Upper Jhika Gali Road)	112
			r Point (Bank Road)	115
			a (Kuldana Road)	116
			ıldana Road	118
			ege - Jhika Gali (Lower Jhika Gali Road)	121
			oint (Mall Road)	130
		-	uarter - Lawrence College Road	132
		-	uarter - Sunny Bank Road	136
		-	ali - Kashmir Point (Viewforth Road)	138
KUU	IE. Nas	siinin point	- GPO (Hall Road)	139

APPENDIX II	
METROLOGICAL DATA	
Precipitation Data	140
Maximum Temperature Data	141
Minimum Temperature Data	142
Humidity Data	143
APPENDIX III	
BOREHOLE / TEST PIT LOGS	
BH-JK-01	144
BH-JL-01	145
BH-SHQ-01	146
BH-UJG-01	147
TP-JL-01	148
TP-JL-02	149
TP-JL-03	150
APPENDIX IV	
LABORATORY TEST RESULTS	
Soil Classification Tests	151
Slake Durability Tests	152
Triaxial Test (At Natural Moisture Level)	153
Triaxial Test (At Saturated Moisture Level)	154
Swell / Consolidation / Permeability Tests	155

LIST OF FIGURES

Fig. 1.1.	Research Plan – Flow Chart of Activities	5
Fig. 1.2.	Layout of the Study Area	6
Fig. 2.1.	Location Map of the Study Area (Source Geological Survey of Pakistan)	9
Fig. 2.2.	Layout Map of the Study Area (Murree Guide Map, Survey of	
Fig. 2.3.	Pakistan, 1997) Tectonic Map of Northern Pakistan (Source Geological Survey	10
	of Pakistan)	12
Fig. 2.4.	Geological Map of the Study Area (Source Geological Survey of	
	Pakistan)	12
Fig. 2.5.	Stabilization Work at Chitta Morr Landslide by NESPAK	15
Fig. 2.6.	Stabilization Work at Shawala Landslide by NESPAK	15
Fig. 2.7.	Heuristical Approach in Landslide Hazard Zoning	20
Fig. 2.8.	Deterministic Approach for Landslide Hazard Zoning	21
Fig. 2.9.	Slope Failure Potential Factors Tree	23
Fig. 2.10:	Digital Elevation Model (DEM) and Landslide Hazard Map of	
	Northern Murree Area (Ishfaq, 2005)	25
Fig. 2.11.	Example of a Risk Matrix (Lee and Jones)	28
Fig. 2.12.	A typical LCI Diagram (Lee, 2003)	34
Fig. 3.1.	Morphogenetic Regions (after Peltier, 1950)	47
Fig. 3.2.	Weathering Regions (after Peltier, 1950)	47
Fig. 3.3.	Chemical Weathering Regions (after Peltier, 1950)	48
Fig. 3.4.	Frost Action Regions (after Peltier, 1950)	48
Fig. 3.5.	Pluvial Erosion Regions (after Peltier, 1950)	49
Fig. 3.6.	Mass Movement Regions (after Peltier, 1950)	49
Fig. 3.7.	Perforated PVC Pipe Used for Standpipe Piezometers.	54
Fig. 3.8.	Typical Fuzzy Logic Process Adopted in the Study	57
Fig. 3.9.	Normal Distribution Curve for Risk Scores in Monsoon	70
Fig. 4.1.	Typical View of Intact Murree Formation	75

Fig. 4.2 .	Geotechnical Strata Map of Urban Murree	76
Fig. 4.3.	Typical View of Poor Surface Drainage in the Area	78
Fig. 4.4a.	Electrical Resistivity Inverse Section at RD 152 Lower Jhika Gali Road	80
Fig. 4.4b.	Electrical Resistivity Inverse Section at RD 1984 Jhika Gali –	
	Kuldana Road	81
Fig. 4.4c.	Electrical Resistivity Inverse Section at RD 172 SHQ Murree	82
Fig. 4.5.	Typical Poor Subsurface Drainage in the Area	83
Fig. 4.6.	Bent-up Trees Showing High Creep in the Area.	83
Fig. 4.7.	Vegetation Type Map of Urban Murree	85
Fig. 4.8.	Vegetation Density Map of Urban Murree	85
Fig. 4.9.	View of Construction of a Multistory Building and Slope Toe Cutting	87
Fig 4.10 .	View of an Old Landslide Scarp near Chitta Morr on Murree-	
	Rawalpindi Road	89
Fig. 4.11.	View of Movement Cracks on the Valley Side of an Old landslide	
	Scarp near Chitta Morr	89
Fig. 4.12.	A Chronic Settlement Problem in Urban Murree	90
Fig. 4.13.	Boulder Fall Scene in Urban Murree Area on Lower Jhika Gali Road	90
Fig. 4.14a.	Landslide Hazard Map of Urban Murree at Very High Saturation Level	92
Fig. 4.14b.	Landslide Hazard Map of Urban Murree at High Saturation Level	92
Fig. 4.14c.	Landslide Hazard Map of Urban Murree at Medium Saturation Level	93
Fig. 4.15a.	Population Density Map of Urban Murree (Monsoon Season)	95
Fig. 4.15b.	Population Density Map of Urban Murree (Summer Season)	95
Fig. 4.15c.	Population Density Map of Urban Murree (Spring Season)	96
Fig. 4.15d.	Population Density Map of Urban Murree (Winter Season)	96
Fig. 4.16.	A View of Multistorey Buildings in Urban Murree	98
Fig. 4.17.	View of a Collapsed Building near GPO.	98
Fig. 4.18.	Structure Map of Urban Murree	99
Fig. 4.19a.	Landslide Risk Map of Urban Murree (Monsoon Season)	101
Fig. 4.19b.	Landslide Risk Map of Urban Murree (Summer Season)	101
Fig. 4.19c.	Landslide Risk Map of Urban Murree (Spring Season)	102
Fig. 4.19d.	Landslide Risk Map of Urban Murree (Winter Season)	102

LIST OF TABLES

Table 2.1.	Overview of Input Data in Landslide Hazard Analysis	19
Table 2.2a.	Indicative Measures of landslide likelihood (Australian	
	Geomechanics Society, 2000)	29
Table 2.2b.	Indicative Measures of Consequences (Australian	
	Geomechanics Society, 2000)	30
Table 2.2c.	Qualitative Risk Assessment Matrix: Levels of Risk to Property	
	(Australian Geomechanics Society, 2000)	30
Table 2. 2d.	Indicative Risk Implications (Australian Geomechanics	
	Society, 2000)	31
Table 2.3a.	The FMECA Approach: Key Considerations for Defining a Confidence	
	Score in an LCI Diagram (Hughes et al., 2000)	35
Table 2.3b.	FMECA Approach: Impact Scoring System (Hughes et el., 2000)	36
Table 2.3c.	FMECA Approach: Standard Tables for Calculating Impact Scores	
	(Hughes et al., 2000)	38
Table 3.1 .	Primary and Secondary Level Factors affecting Slope Stability	
	in the Study Area	43
Table 3.2 .	Tertiary Level Attributes to the Secondary Level Factors Affecting	
	Slope Stability in the Study Area	44
Table 3.3.	Summary of boreholes locations	54
Table 3.4 .	Primary and Secondary Level Factors and Their Grades with Assigned	
	Values Considered in Landslide Hazard Analysis	.59
Table 3.5.	Tertiary Level Attributes to Secondary Level Factors and Their	
	Corresponding Grades with their Numerical Values Effecting Stability	
	of Slopes in the study area.	60
Table 3.6 .	Different Seasons of Year and Corresponding Population and	
	Saturation Levels	63
Table 3.7.	Different Factors and their Grade & Values in Risk analysis	67
Table 3.8 .	Cutoff Values for Defining Different Level of Risk in Monsoon	70