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ABSTRACT

Cell-Free Massive MIMO (CF-mMIMO) networks have emerged as a groundbreak-
ing advancement in wireless communication. This study proposes a novel hierarchical
multi-layered approach for the optimization of edge caching in CF-mMIMO networks
using the Deep Q-Learning (DQL) Framework. The objective of the proposed frame-
work is to balance service quality and minimize response times, backhaul traffic, and
power consumption. A substantial dataset encompassing user queries, response times,
content sizes, and caching choices is utilized to evaluate the proposed approach. The
proposed framework achieves an impressive 95% Cache Hit Ratio (CHR), indicating
efficient cache usage and reduced reliance on remote services. By leveraging the DQL
models, the efficiency of edge caching in CF-mMIMO networks is substantially en-
hanced. This enhancement leads to consistently high cache hit ratios, expedited content
delivery, and improved network efficiency. Furthermore, the model’s energy efficiency
contributes to the network’s long-term sustainability. Rigorous testing across diverse
scenarios confirms the model’s versatility across rural, suburban, urban, and stadium
settings. By comparing different caching eviction policies, we establish LFU as opti-
mal for cache efficiency, considering the cache hit ratio and processing time. Overall,
this research underscores the substantial advantages of the proposed deep Q-learning
model for edge caching in cell-free Massive MIMO networks, significantly impact-
ing cache hit ratio, processing time, and energy efficiency across a range of practical
scenarios.

Keywords— Deep Reinforcement Learning (DRL), Network optimization, Content caching,
Intelligent decision-making Wireless networks.
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Chapter 1

Introduction

This chapter serves as an introduction to the thesis, providing an overview of the study

on edge caching optimization in cell-free Massive MIMO networks. The chapter be-

gins by elucidating the evolution of cellular networks, outlining their challenges, and

subsequently proposing cell-free Massive MIMO networks as a solution.

The significance of intelligent caching optimization in cell-free Massive MIMO net-

works is underscored, leading to the problem description, which highlights the limita-

tions of conventional edge caching solutions. The research questions section outlines

the main research question and supplementary inquiries, while the research objectives

section elucidates the study’s overarching goals and specific aims. The chapter cul-

minates by examining the study’s importance in the context of contemporary wireless

communication developments and the potential impacts of enhanced edge caching in

cell-free Massive MIMO networks. The methodology, including its goals, procedures,

and constraints, is comprehensively outlined to provide readers with a comprehensive

understanding of the study’s framework.

1.1 Overview

This section commences by tracing the evolution of cellular networks, encapsulating

their progression from analog first-generation (1G) systems to the most recent fifth-

generation (5G) networks. This evolution has led to the emergence of cell-free Massive

MIMO networks as a response to the challenges faced by traditional cellular networks

[1].

1.1.1 Evolution of Cellular Networks

The evolution of wireless communication has been shaped by the progress of cellular

networks. Starting with analog first-generation (1G) systems, the transition to digital

second-generation (2G) networks marked an improvement in voice quality and data
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transfer. Subsequent leaps, such as third-generation (3G) and fourth-generation (4G)

networks, introduced high-speed data services and mobile internet via Long-Term Evo-

lution (LTE) technology. The fifth-generation (5G) networks further enhanced these

capabilities with minimal latency, extensive device connectivity, and high-speed data

transmission.

Amid these advancements, conventional cellular networks encountered challenges such

as spectrum scarcity, coverage gaps, network congestion, energy inefficiency, and

maintaining quality of service (QoS). Cell-free Massive MIMO networks emerged as

a solution to address these issues, utilizing distributed antenna systems with multiple

access points (APs) [2], [3].

1.1.2 Challenges in Cellular Networks

The escalating demand for seamless wireless communication poses several challenges

for cellular networks. Spectrum limitations, coverage gaps, network congestion, en-

ergy inefficiency, and QoS maintenance are key hurdles. To mitigate these issues and

enhance network performance, novel solutions are sought, such as edge caching opti-

mization in cell-free Massive MIMO networks using deep Q-learning techniques.

1.1.3 Cell-Free Massive MIMO Networks

Cell-free Massive MIMO networks present a promising paradigm in wireless commu-

nication. These networks abandon the traditional reliance on a limited number of base

stations, instead deploying a distributed antenna system with numerous strategically

placed access points (APs). Advanced signal processing enables simultaneous service

to multiple users per AP, facilitating cooperative signal processing [4] - [6]. Cell-free

Massive MIMO networks offer numerous advantages. These networks enhance cover-

age through reduced transmitter-receiver distances, leading to improved signal quality

and decreased path loss. The presence of multiple access points (APs) facilitates spa-

tial multiplexing and interference management, boosting network capacity and spectral

efficiency. Leveraging cutting-edge techniques like beamforming and advanced chan-

nel estimation, these networks further enhance throughput, dependability, and energy

efficiency by capitalizing on the spatial dimension of communication channels.
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Figure 1.1: Cell-Free Massive MIMO Scenario

Furthermore, the introduction of cell-free Massive MIMO networks has revolutionized

wireless communication optimization. These networks effectively address challenges

like coverage limitations, spectrum scarcity, and network congestion by exploiting the

network’s decentralized nature and employing advanced signal processing. The de-

ployment of a dense array of APs maximizes spectrum utilization and elevates the user

experience. This new paradigm unlocks novel optimization possibilities for wireless

communication systems, paving the way for innovative solutions in network design

and operation.

1.2 Caching

1.2.1 Introduction to Edge Caching

1.2.1.1 Caching in Computer Science and Networking:

Caching is a fundamental concept in computer science and networking that involves

storing and retrieving frequently accessed data in a faster and more efficient manner. In

computer science, caching aims to improve the performance of systems by reducing the
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time and resources required to access data. By storing frequently accessed data closer

to the processing unit, caching minimizes the latency associated with retrieving data

from the original source [8].

In networking, caching plays a crucial role in improving the efficiency and responsive-

ness of content delivery. In traditional client-server architectures, data requests from

clients are typically processed by remote servers. However, this approach can result in

increased latency, especially when dealing with large-scale networks or data-intensive

applications. Caching addresses this issue by storing frequently accessed data in caches

distributed throughout the network, closer to the end-users. When a user requests con-

tent, it can be served directly from the cache, reducing the need for data retrieval from

remote servers and improving response times [9].

1.2.1.2 Importance of Edge Caching in Wireless Networks:

Edge caching holds significant importance in wireless networks, addressing challenges

like limited bandwidth and variable network conditions. It involves storing frequently

accessed content at network edges, reducing latency and improving user experience.

Key benefits include reduced latency for real-time apps, optimized bandwidth use, and

enhanced user satisfaction. Edge caching also enables scalable content delivery in large

networks. Despite its benefits, challenges exist, including the need for efficient cache

management and handling dynamic content demands.

1.2.1.3 Evolution of Cellular Networks:

Cellular networks have evolved through generations, with technology advancements

and user demands driving the changes. The progression can be summarized as follows:

1G (Analog Cellular Systems): Introduced analog communication for voice calls and

basic data. Focused on limited capacity and voice communication.

2G (Digital Cellular Systems): Transitioned to digital communication, improving voice

quality and data services. Utilized technologies like GSM and CDMA.

3G (Wideband Digital Cellular Systems): Brought high-speed data transmission, en-

abling multimedia services and mobile internet. UMTS and CDMA2000 boosted data

rates and capacity.
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4G (LTE): Introduced LTE technology, delivering significant data rate, capacity, and

performance improvements. Enabled high-speed internet, streaming, and advanced ap-

plications.

5G (Fifth Generation): Current generation with transformative enhancements. Offers

high data rates, low latency, capacity, and connectivity. Designed for IoT, autonomous

vehicles, AR, and VR applications.

1.2.1.4 Massive MIMO Technology:

Massive Multiple-Input Multiple-Output (MIMO) is a wireless technology that uses

multiple antennas for improved communication. It enhances network capacity, cover-

age, and efficiency. With numerous antennas at base stations, Massive MIMO brings

benefits like:

Spectral Efficiency: It supports simultaneous data streams on the same frequency,

boosting network capacity for more users and higher data rates.

Coverage and Signal Quality: Multiple antennas enhance coverage and signal quality

through techniques like diversity and beamforming, improving reliability and user ex-

perience.

Interference Reduction: Advanced processing minimizes interference. Spatial tech-

niques and beamforming help target users, reducing interference from others.

Energy Efficiency: Despite many antennas, Massive MIMO conserves energy by fo-

cusing transmission, lowering power use, and reducing costs.

1.2.2 Challenges in Edge Caching Optimization

1.2.2.1 Dynamic and Heterogeneous User Behavior:

User behavior in wireless networks is diverse and dynamic, impacting edge caching op-

timization. Content popularity varies, and user preferences differ, necessitating adap-

tive algorithms like Deep Q-Learning to personalize content distribution effectively.

1.2.2.2 Varying Content Popularity and Access Patterns:

Content popularity and usage patterns fluctuate in wireless networks. Edge caching

must account for these variations to optimize cache performance. Deep Q-Learning

models predict and adapt to these changes, ensuring frequently requested content re-
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mains in the cache.

1.2.2.3 Backhaul Traffic Management:

Efficient backhaul traffic management is crucial for edge caching in cell-free Massive

MIMO networks. Cache hits reduce backhaul traffic, while cache misses increase it.

Optimization strategies consider cache hit ratio, content popularity, and available back-

haul capacity to minimize congestion.

1.2.2.4 Energy Efficiency Considerations:

Edge caching contributes to energy efficiency by reducing data transmission distances

and conserving energy. Energy consumption varies based on cache hit ratio. Optimiz-

ing edge caching for energy efficiency improves sustainability and network longevity.

1.2.2.5 Quality of Experience Requirements:

Quality of Experience (QoE) requirements encompass user expectations for service

quality and satisfaction. Edge caching optimally fulfills QoE requirements by enhanc-

ing content delivery speed and reducing latency. Different applications and users have

varying QoE needs, necessitating adaptable caching strategies.

1.2.3 Existing Approaches for Edge Caching Optimization

1.2.3.1 Traditional Caching Policies (LRU, FIFO, MRU, LFU, SLRU):

Least Recently Used (LRU), First-In-First-Out (FIFO), Most Recently Used (MRU),

Least Frequently Used (LFU), Random Replacement (RR), and Segmented LRU

(SLRU) are common caching policies. They determine cache item removal or replace-

ment. While simple, they may not consider dynamic factors like content popularity or

access patterns.

1.2.3.2 Content Prefetching Techniques:

Content prefetching enhances cache hit rates by predicting future content needs based

on past data and user behavior. Techniques like popularity-based prefetching and col-

laborative filtering utilize prediction models to improve cache performance.
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1.2.3.3 Proactive Caching Strategies:

Proactive caching goes beyond reactive methods, anticipating and pre-caching content

based on user behavior, content popularity, and network conditions. These strategies

aim to have popular material readily available, and combining them with prefetching

further improves cache hit rates.

1.2.3.4 Machine Learning-Based Approaches:

Machine learning-based methods leverage data to optimize caching decisions. Decision

trees, neural networks, and other techniques capture non-linear correlations between

input features and caching choices, enhancing cache performance.

1.2.3.5 Reinforcement Learning in Caching Optimization:

Reinforcement Learning (RL) is promising for caching optimization, particularly in

scenarios requiring sequential decisions and trade-offs. RL algorithms like Q-learning

and DQN learn responsive caching strategies by adapting to changing conditions and

optimizing cache efficiency.

1.2.4 Network Optimization Techniques

The application of network optimization techniques enhances wireless networks’ per-

formance, efficiency, and quality of service, achieving goals such as resource alloca-

tion, load balancing, and QoS provisioning.

1.2.4.1 Resource Allocation and Power Control:

These techniques manage network resources like bandwidth and power, aiming to boost

capacity, reduce interference, and ensure efficient usage. Power control enhances signal

quality and energy efficiency while minimizing interference.

1.2.4.2 QoS Provisioning and Traffic Management:

Methods guarantee sufficient throughput, low delay, and minimal packet loss for di-

verse services. Traffic prioritization, shaping, and QoS-aware scheduling optimize net-

work performance and user satisfaction.
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1.2.4.3 Load Balancing:

This approach evenly distributes traffic across network components, preventing over-

load and maximizing resource utilization. It enhances network speed, user experience,

and reduces delays.

Collectively, these strategies optimize wireless networks by maximizing resource uti-

lization, minimizing interference, ensuring QoS, and balancing loads. Given the evolv-

ing nature of networks, user needs, and technology, optimization remains a continu-

ous endeavor. Effective application of these techniques necessitates thorough analysis,

modeling, and algorithm design to address unique network challenges and meet diverse

communication requirements.

1.3 Research Motivations

This research stems from critical challenges in wireless communication networks and

edge caching optimization in cell-free Massive MIMO networks. These challenges

underscore the study’s significance. The evolution of wireless networks, driven by

data-intensive applications and demand for high-speed, low-latency services, calls for

optimized network performance. Cell-free Massive MIMO networks offer solutions

through distributed antenna systems and signal processing techniques, promising en-

hanced performance. Edge caching addresses response times, backhaul traffic, and

energy consumption. Optimizing it in cell-free Massive MIMO networks improves

efficiency and user experience. Leveraging deep reinforcement learning techniques,

particularly Deep Q-Learning, holds potential for successful caching decisions. Its

adaptability to network dynamics, user needs, and content popularity propels this re-

search. Ultimately, this study seeks to advance wireless communication technologies,

proposing an optimal edge caching strategy for cell-free Massive MIMO networks. By

focusing on these drivers, it aims to enhance network performance and user experience.

1.4 Problem Statement

In order to increase content delivery efficiency, lower latency, and cut down on energy

consumption, this research addresses the problem of optimizing edge caching in cell-

free Massive MIMO networks. The goal is to improve performance and the user expe-
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rience by creating a method that improves the cache hit ratio while minimizing process-

ing time and energy usage. By keeping frequently used or popular material in a cache

closer to the end-users, response times can be decreased without sacrificing availability.

Edge caching is especially important in cell-free Massive MIMO networks, which have

several access points dispersed across the coverage region. In order to develop the best

caching policy that adjusts to dynamic network conditions and user demands, the study

makes use of deep Q-learning, a potent reinforcement learning technique. The research

intends to improve content delivery efficiency and user experience in cell-free Mas-

sive MIMO networks by making intelligent caching decisions based on this strategy.

This will increase the cache hit ratio, decrease processing time, and decrease energy

consumption.

1.4.1 Inefficiencies in Traditional Caching Approaches

When it comes to enhancing edge caching in wireless networks, traditional caching

technologies generally fall short due to inefficiencies. Several variables contribute to

these inefficiencies, which have a negative effect on cache hit rates, response times, and

network throughput. Let’s look at some of the major drawbacks of the conventional

caching approach:

1.4.1.1 Lack of Adaptability:

Traditional caching approaches typically employ static caching policies, such as Least

Recently Used (LRU) or First-In-First-Out (FIFO), which do not adapt to changing user

demands or network conditions. These static policies do not consider the popularity or

relevance of content, leading to suboptimal caching decisions. As a result, frequently

requested content may not be cached, and cache space may be wasted on less popular

or outdated content.

1.4.1.2 Limited Spatial Reusability:

Traditional caching approaches often rely on fixed caching locations, such as base sta-

tions or content delivery nodes. This limited spatial reusability restricts the coverage

area of cached content and may result in inefficient cache utilization. Users located far

from the caching nodes may experience longer response times as content needs to be
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retrieved from remote servers instead of being served from nearby caches.

1.4.1.3 Lack of Content Prefetching:

Traditional caching approaches often lack mechanisms for proactive content prefetch-

ing. Prefetching involves predicting user demands and proactively caching content that

is likely to be requested in the future. By not incorporating prefetching strategies, tra-

ditional caching approaches miss opportunities to improve cache hit ratios and reduce

response times.

1.4.1.4 Insufficient Consideration of Network Dynamics:

Cell-free Massive MIMO networks exhibit dynamic characteristics, including varying

user densities, changing channel conditions, and evolving content popularity. However,

traditional caching approaches may not effectively adapt to these dynamic factors. As a

result, cache contents may become outdated, and popular content may not be promptly

cached or updated, leading to suboptimal cache hit ratios.

1.4.1.5 Limited Intelligence in Caching Decisions:

Traditional caching approaches often lack intelligent decision-making capabilities.

They do not consider contextual information such as user preferences, network con-

ditions, or historical usage patterns. Without intelligent decision-making, traditional

caching approaches may make suboptimal choices in caching content, leading to re-

duced cache hit ratios and degraded user experience.

1.4.1.6 Inefficient Utilization of Cache Resources:

Traditional caching approaches may not effectively utilize the available cache re-

sources. Content eviction policies, such as LRU or FIFO, may not consider the content

popularity or the potential benefits of retaining certain content in the cache. This in-

efficient utilization of cache resources can result in poor cache hit ratios and increased

reliance on remote servers.

Traditional caching approaches in wireless networks have many drawbacks, such as

their inability to adapt to changing conditions, their lack of spatial reuse, their inability

to prefetch content, their failure to take network dynamics into account, their lack of

intelligence in making caching decisions, and their inefficiency in making use of cache
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resources. Edge caching optimization in cell-free Massive MIMO networks is hindered

by these inefficiencies, resulting in inferior cache hit ratios, prolonged reaction times,

and diminished network performance. The proposed multi-layered approach based on

deep Q-learning is one example of an advanced method that might be used to improve

the efficacy and efficiency of edge caching in such networks and address these ineffi-

ciencies.

1.4.2 Need for Optimization in Edge Caching for Cell-Free Massive MIMO Net-

works

Cell-free Massive MIMO networks have emerged as a promising technology for next-

generation wireless communication systems. In these networks, the traditional base

station concept is replaced by a large number of distributed access points (APs) de-

ployed densely across the coverage area. While cell-free Massive MIMO networks of-

fer several advantages, including increased capacity, improved coverage, and enhanced

spectral efficiency, optimizing edge caching is crucial to fully exploit their potential.

1.4.2.1 Increasing Data Demand:

With the proliferation of data-intensive applications and services, the demand for con-

tent delivery has significantly increased. Users expect fast and seamless access to their

desired content, regardless of their location or network conditions. The sheer volume

of data and the need for low-latency delivery pose challenges for traditional network

architectures. Edge caching, where frequently accessed content is stored closer to the

end-users, can alleviate these challenges by reducing the distance between content and

users, leading to faster response times and improved user experience.

1.4.2.2 Dynamic and Heterogeneous User Behavior:

Cell-free Massive MIMO networks serve a diverse user base with varying demands

and preferences. Users access a wide range of content, from video streaming to real-

time gaming and social media applications. Furthermore, user behavior and content

popularity exhibit dynamic variations over time and across different locations. Tradi-

tional caching approaches may struggle to adapt to these dynamic and heterogeneous

user behaviors, resulting in inefficient cache utilization and suboptimal cache hit ratios.
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Optimization in edge caching is necessary to effectively address these challenges and

ensure that popular and relevant content is readily available at the edge.

1.4.2.3 Backhaul Traffic Reduction:

In cell-free Massive MIMO networks, backhaul traffic, which refers to the data trans-

mission between the APs and the core network, can become a bottleneck. The massive

number of APs generates significant backhaul overhead, leading to increased conges-

tion and potentially degraded network performance. By optimizing edge caching, con-

tent can be served locally from the caches at the edge, reducing the need for backhaul

data transmission. This reduction in backhaul traffic not only alleviates congestion but

also improves overall network efficiency and capacity.

1.4.2.4 Energy Efficiency Considerations:

Energy efficiency is a critical concern in modern wireless networks. Traditional archi-

tectures relying solely on remote server access for content delivery consume more en-

ergy due to long-distance data transmission and processing. Edge caching optimization

in cell-free Massive MIMO networks can significantly reduce the energy consumption

associated with data retrieval and transmission. By storing frequently accessed content

at the edge, the network can minimize energy-intensive operations, leading to improved

energy efficiency and reduced operational costs.

1.4.2.5 Enhanced Quality of Experience:

Optimizing edge caching in cell-free Massive MIMO networks directly impacts the

quality of experience (QoE) for users. By reducing response times, improving cache

hit ratios, and ensuring content availability, edge caching optimization enhances QoE

by delivering content more quickly and reliably. Users experience reduced buffering,

faster content delivery, and improved overall satisfaction.

In summary, the need for optimization in edge caching for cell-free Massive MIMO

networks arises from increasing data demand, dynamic and heterogeneous user behav-

ior, the need to reduce backhaul traffic, energy efficiency considerations, and the desire

to enhance the quality of experience for users. By effectively addressing these needs

through intelligent caching strategies, cell-free Massive MIMO networks can achieve
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improved network performance, reduced latency, enhanced capacity, and better user

satisfaction.

1.5 Problem Formulations

The problem addressed in this research is the optimization of edge caching in cell-free

Massive MIMO networks. The goal is to improve content delivery efficiency, reduce

latency, and minimize energy consumption. The problem is formulated as a Markov

Decision Process (MDP) and is defined by the following mathematical equations:

st = (qt,dt, ct). (1.1)

Here, st represents the state at time t, which comprises three components: qt, dt, and

ct. These components represent the content items in the cache at time t, content items

requested by users at time t, and edge servers serving content items in the cache at time

t, respectively.

at = (cd, rd), (1.2)

In equation 1.2, at is the action at time t, which consists of two decisions: cd and

rd. cd represents the Caching Decision (0 or 1), indicating whether to cache a content

item, while rd represents the Retrieval Decision (0 or 1), indicating whether to serve

the content item from the cache or remotely.

R(st, at, st+1), (1.3)

In equation above, R is the reward function which is used to evaluate the system’s

performance. This function takes into account the state at time t, denoted as st, the

action at time t, denoted as at, and the resulting state at the next time step, denoted as

st+1.

R(st, at, st+ 1) = α× CHR + β × (−PT) + γ × (−EC). (1.4)

In equation 1.4, Cache Hit Ratio (CHR) represents the ratio of content requests served

from the cache to the total content requests, indicating the efficiency of caching. Pro-

cessing Time (PT) represents the time taken to process a content request, indicating the

system’s responsiveness. Energy Consumption (EC) represents the energy consumed
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in serving content requests, indicating the system’s energy efficiency. The coefficients

α, β, and γ are weight parameters used to balance the importance of each performance

objective.

P (st+1|st, at), (1.5)

Here, transition probability P indicating the likelihood of transitioning from state st

to state st+1 based on at. As the objective is to find an optimal policy π∗ that maxi-

mizes the expected cumulative discounted reward over time. It can be formulated as in

equation 1.6.

π∗ = argmax
π

E[R0 + γ ×R1 + γ2 ×R2 + . . . |π]. (1.6)

Here, γ is the discount factor and E[·] represents the expectation. Caching decisions

should be made to optimize for CHR, PT, and EC, all of which can be learned us-

ing Deep Q-Learning’s help. This enhancement boosts the overall performance and

user experience in cell-free Massive MIMO networks by boosting content delivery ef-

ficiency, decreasing latency, and minimizing energy usage.

1.6 Research Objectives

1.6.1 Primary Objectives

The primary objective of this research is to create a novel multi-layered approach for

edge caching optimization in cell-free Massive MIMO networks based on a hierarchical

Deep Q-Learning framework. The primary objective is to improve cache hit ratios,

response times, backhaul traffic, and power efficiency in the network by applying deep

reinforcement learning algorithms. The purpose is to improve network throughput and

user experience by making better use of locally stored data and reducing the need for

access to remote services.

1.6.2 Secondary Objectives

This research is driven by the imperative to address critical challenges in wireless com-

munication networks and edge caching optimization within cell-free Massive MIMO

networks. As wireless networks evolve to accommodate data-intensive applications

and user demands for high-speed, low-latency services, optimizing network perfor-
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mance becomes crucial. Cell-free Massive MIMO networks present a potential solution

through their distributed antenna systems and advanced signal processing techniques.

This study focuses on improving these networks by leveraging optimal edge caching

strategies, which not only reduce response times, backhaul traffic, and energy con-

sumption but also enhance the overall user experience. Deep reinforcement learning

techniques, particularly Deep Q-Learning, are harnessed for their ability to dynami-

cally adapt caching algorithms to varying network dynamics, user needs, and content

popularity. By simultaneously evaluating caching eviction rules, testing multi-layered

approaches, assessing their impact on service quality and energy efficiency, this re-

search aims to comprehensively advance the understanding and application of deep Q-

learning-based edge caching optimization within cell-free Massive MIMO networks.

Ultimately, the study aims to contribute to the progression of wireless communication

systems by enhancing network performance and ensuring a better user experience in an

increasingly dynamic and data-driven wireless landscape.

1.7 Significance of the Study

1.7.1 Advancements in Wireless Communication

The study holds significant importance in the context of advancements in wireless com-

munication. A major development in the subject is the emergence of cell-free Mas-

sive Multiple-Input Multiple-Output (MIMO) networks. Cell-free Massive MIMO net-

works use a dispersed antenna system with numerous access points (APs) to provide

better coverage, more bandwidth, and a better user experience.

The significance of this study comes in its exploration of how Deep Q-Learning can

be used to optimize edge caching in cell-free Massive MIMO networks. The deep

reinforcement learning subfield of deep Q-Learning has demonstrated considerable po-

tential for solving difficult optimization problems across a range of application areas.

This study intends to create a model that can make intelligent caching decisions based

on network dynamics, user requests, and content popularity by utilizing the capabilities

of deep neural networks and reinforcement learning.
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1.7.2 Implications for Service Quality and User Experience

Optimizing edge caching in cell-free Massive MIMO networks has substantial impli-

cations for service quality and user experience. The proposed hierarchical Deep Q-

Learning framework seeks to enhance network performance, service quality, and user

satisfaction through efficient utilization of cached data and reduced reliance on remote

services. This approach accelerates content delivery response times, significantly bene-

fiting response and latency metrics critical for user experience. Additionally, the adap-

tive and dynamic caching strategy, driven by deep Q-learning models, optimizes con-

tent caching decisions based on user behaviors and network conditions. Consequently,

service quality is improved as frequently requested content becomes readily accessible

at the edge, reducing delays and congestion.

Furthermore, the optimization of edge caching leads to resource savings. Decreased

reliance on remote servers reduces energy consumption for data transmission and pro-

cessing, a result of intelligent decision-making and efficient cached data utilization.

This not only offers cost benefits for network operators but also aligns with environ-

mental sustainability goals, reducing carbon footprint. The proposed approach’s versa-

tility is underscored by its applicability across diverse network conditions, user densi-

ties, and access point densities. This adaptability extends benefits to various settings,

such as urban, suburban, rural, and stadium environments, reaffirming the efficacy of

edge caching optimization in improving service quality and user experience.

In conclusion, the optimization of edge caching in cell-free Massive MIMO networks

offers significant enhancements to service quality and user experience. The approach’s

focus on reducing response times, alleviating network congestion, increasing content

availability, and enhancing energy efficiency collectively addresses the demands of

modern digital users and wireless communication requirements, underscoring the im-

portance of effective edge caching strategies.

1.7.3 Contribution to Energy Efficiency in Wireless Networks

Energy efficiency is paramount in wireless networks, driven by optimized edge caching

in cell-free Massive MIMO networks. The proposed multi-layered approach, employ-
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ing intelligent decision-making and deep Q-learning models, aims to reduce energy

consumption and ensure sustainable network operations. Edge caching effectively

shortens data transmission distances, saving energy by serving frequently accessed con-

tent closer to users. The strategy also emphasizes personalized caching based on user

history and network conditions. The deep Q-learning models optimize cache content,

further enhancing energy savings.

Moreover, edge caching curtails backhaul traffic, reducing energy-intensive data trans-

mission and expediting transfers. Dynamic resource allocation, guided by deep Q-

learning, optimizes energy distribution, maintaining network performance. By reduc-

ing reliance on remote services and enhancing cache hit ratios, the approach signifi-

cantly lowers energy-intensive activities. This conserves power infrastructure, promot-

ing energy efficiency and environmental sustainability. The strategy’s economic and

ecological benefits align with global sustainability objectives.

In conclusion, optimizing edge caching in cell-free Massive MIMO networks enhances

energy efficiency by curbing data transmission, optimizing resource distribution, and

mitigating power-intensive tasks. This advances economic savings and environmental

responsibility in wireless communication networks.

1.7.4 Impact of Optimized Edge Caching in Cell-Free Massive MIMO Networks

The potential impact of effective edge caching in cell-free Massive MIMO networks is

another significant aspect of this study. Response times, backhaul traffic, and energy

consumption are all decreased when frequently accessed content is stored closer to the

end-users. By making greater use of cached data and decreasing the need to query far-

away servers, optimized edge caching can significantly increase network efficiency and

improve user experience.

The study’s significance lies in the fact that it has the potential to boost the efficiency

of edge caching in cell-free Massive MIMO networks. A Deep Q-Learning model is

developed and implemented in this study to improve caching optimization, with the

goals of increasing cache hit ratio, decreasing processing time, and increasing energy

efficiency. It’s possible that these upgrades will have an immediate impact on the net-
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work’s overall performance, allowing information to be sent to users more quickly and

reliably.

By relieving the load on remote servers and decreasing the need for costly backhaul

hardware, effective edge caching can result in significant savings for network opera-

tors. This can enable for the deployment of more cost-effective and energy-efficient

network topologies, which can ultimately assist secure the long-term success of cell-

free Massive MIMO networks.

The study’s overarching significance is that it has the potential to optimize edge caching

in cell-free Massive MIMO networks using state-of-the-art machine learning algo-

rithms. Insights into efficient caching methods and contributions to the overall evo-

lution and improvement of network performance in cell-free Massive MIMO networks

are two areas where the results of this research can have a direct impact on the wireless

communication industry.

1.8 Scope of Study

The scope of the study defines the boundaries within which the research is conducted

and the specific aspects that are addressed. In the context of this thesis on ”Deep Q-

Learning for Edge Caching in Cell-Free Massive MIMO Networks: A Multi-Layered

Approach,” the scope encompasses the following:

Cell-Free Massive MIMO Networks: The study focuses specifically on cell-free Mas-

sive MIMO networks, which represent a significant technological breakthrough in wire-

less communication. It explores the optimization of edge caching in these networks

using a multi-layered approach based on the hierarchical Deep Q-Learning framework.

Edge Caching Optimization: The primary focus of the study is on the optimization of

edge caching strategies. It examines the use of deep Q-learning models to make intelli-

gent decisions regarding content caching at the edge of the network. The study aims to

improve cache hit ratios, reduce response times, and minimize dependence on remote

services.

Multi-Layered Approach: The study proposes a multi-layered approach that combines

hierarchical deep Q-learning models with existing caching eviction policies. It explores
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the effectiveness of this approach in improving cache efficiency and overall network

performance.

Performance Evaluation: The study evaluates the performance of the proposed ap-

proach using a comprehensive dataset that includes user queries, response times, con-

tent sizes, and caching choices. It assesses the cache hit ratio, processing time, and

energy efficiency of the network under various scenarios, including different network

conditions, user densities, and access point densities.

1.9 Research Organization

1.9.0.1 Chapter 1: Introduction

The first chapter served as an introduction to the research topic. It provided an overview

of cell-free Massive Multiple-Input Multiple-Output (MIMO) networks, highlighted

the challenges in edge caching optimization, and presented the research objectives and

questions. The significance of the study and the scope and limitations are discussed,

providing a roadmap for the subsequent chapters.

1.9.0.2 Chapter 2: Literature Review

Chapter 2 presents a comprehensive literature review related to edge caching, cell-free

Massive MIMO networks, and deep reinforcement learning. It critically analyzes exist-

ing studies, methodologies, and findings, identifying the research gaps and limitations.

This chapter establishes the theoretical foundation and informs the development of the

proposed approach.

1.9.0.3 Chapter 3: Methodology

In Chapter 3, the methodology used in the research is described in detail. It covers the

experimental setup, data collection process, simulation scenarios, performance metrics,

and evaluation techniques. This chapter provides insights into how the experiments

were conducted to validate the proposed approach for optimizing edge caching in cell-

free Massive MIMO networks.
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1.9.0.4 Chapter 4: Results and Discussions

Chapter 4 presents the results obtained from the experiments and provides a thorough

analysis. The performance of the proposed approach is compared with existing meth-

ods, and the impact of different factors on caching efficiency is explored. The findings

are discussed in relation to the research objectives, highlighting the effectiveness of the

proposed approach.

1.9.0.5 Chapter 5: Conclusion

The final chapter summarizes the main findings of the research and draws conclusions

based on the results and analysis. It discusses the contributions of the study, implica-

tions for edge caching optimization in cell-free Massive MIMO networks, and potential

future research directions. This chapter provides a concise and conclusive end to the

thesis.
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Chapter 2

LITERATURE REVIEW

In this chapter, we will discuss the use of deep Q-learning for edge caching in cell-free

Massive MIMO networks and review the relevant literature. The goal of this literature

review is to give the reader a solid grounding in the prior research and developments in

the field. The chapter opens with a discussion of why optimizing edge caching is crucial

for wireless communication systems, and what obstacles stand in the way of doing

so. In addition, it emphasizes the significance of using deep Q-learning algorithms to

enhance caching performance in cell-free Massive MIMO networks.

2.1 Related Work

The efficient delivery of content in modern wireless networks is a critical research area

due to the increasing demand for multimedia content and the limitations of wireless re-

sources. This literature review focuses on various papers that explore content caching

and delivery strategies in Multiple-Input Multiple-Output (MIMO) wireless networks.

The reviewed papers investigate different aspects of content caching and delivery, in-

cluding caching strategies, interference management, and performance analysis. The

key findings, outcomes, and limitations of each paper are summarized below.

In [1] author proposed a scheme for content caching and delivery in MIMO Fog Ra-

dio Access Networks (Fog-RANs) with wireless fronthaul links and small cache sizes.

They analyze the benefits of using MIMO technology in a Fog-RAN setup. The find-

ings highlight the potential advantages of MIMO in improving content delivery effi-

ciency even with limited cache sizes. Deghel et al. in [2] discussed the benefits of

edge caching in MIMO interference alignment scenarios. The authors explore how

caching at the network edges can enhance interference alignment strategies, leading to

improved content delivery efficiency. The paper emphasizes the advantages of utilizing

edge caching for interference management in MIMO networks.
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A novel methodology was proposed that help to investigate edge caching in dense het-

erogeneous cellular networks with massive MIMO-aided self-backhaul. They propose

a caching and self-backhauling strategy to enhance content delivery in such networks.

The research highlights the potential of using massive MIMO for backhauling and

caching to improve the overall network performance in [3]. Garg et al. in [4] pre-

sented a success probability analysis for edge caching in massive MIMO networks.

The authors analyze the probability of successful content delivery using caching strate-

gies. The outcomes provide insights into the trade-offs between caching effectiveness

and network performance.

Garg et al. in [5] proposed a function approximation-based reinforcement learning

approach for edge caching in massive MIMO networks. The authors focus on optimiz-

ing caching decisions using reinforcement learning techniques. The research demon-

strates the potential of leveraging machine learning for efficient caching strategies. A

novel methodology was proposed to analyze the performance of cache-aided hybrid

millimeter-wave and sub-6 GHz massive MIMO networks. They investigate the ben-

efits of using cache-aided techniques in conjunction with millimeter-wave and sub-6

GHz communication technologies. The findings highlight the potential performance

improvements achieved by cache-aided communication in [6].

Azari et al. in [7] introduced a hypergraph-based analysis of clustered cooperative

beamforming with application to edge caching. The authors explore cooperative beam-

forming techniques for content delivery enhancement. The research emphasizes the

benefits of cooperative strategies in edge caching scenarios. In [8] author proposed

cache-enabled MIMO power line communications with precoding design for smart

grid applications. They investigate the integration of caching strategies with power

line communication systems. The research shows how caching can be utilized to im-

prove data delivery efficiency in power line communication networks.

Zhang et al. in [9] evaluated Docker as an edge computing platform, considering its

feasibility and performance. While not directly related to MIMO networks, the paper

discusses the potential of Docker-based edge computing solutions for efficient content

delivery. Zhang et al. in [10] studied cache-enabled hybrid wireless networks and pro-
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vides an analysis of their performance. The authors investigate the impact of caching

on the performance of hybrid wireless networks, shedding light on the advantages of

cache-enabled strategies.

In [11] author presented a survey on caching, device-to-device communication, and

fog computing in the context of 5th-generation cellular networks. The survey offers in-

sights into the integration of caching techniques with emerging technologies in cellular

networks. A novel methodology was proposed that focused on enabling effective mo-

bile edge computing using millimeter-wave links. While not directly related to MIMO

networks, the research explores the potential of millimeter-wave communication for

enhancing edge computing capabilities in [12].

Chuang et al. in [13] investigated deep reinforcement learning for energy efficiency

maximization in cache-enabled cell-free massive MIMO networks. They propose

single-agent and multi-agent approaches for optimizing energy efficiency in cache-

enabled networks, showcasing the benefits of reinforcement learning techniques. In

[14] author explored the interplay between Non-Orthogonal Multiple Access (NOMA)

and other emerging technologies. While not solely focused on caching, the survey dis-

cusses the integration of NOMA with various technologies, which can impact caching

strategies as well.

Bepari et al. in [15] presented a survey on applications of cache-aided NOMA. They ex-

plore the potential applications of NOMA in conjunction with caching techniques. The

survey provides insights into how NOMA can be combined with caching for improved

content delivery. A novel methodology was proposed that introduced a multi-agent

federated reinforcement learning strategy for mobile virtual reality delivery networks.

The authors propose a strategy for optimizing virtual reality content delivery using

federated reinforcement learning techniques [16]. Zhang et al. in in [17] proposed a

location-aware transmission strategy for two-cell wireless networks with caching. They

investigate content caching strategies based on user locations, considering different sce-

narios. The research emphasizes the benefits of location-aware caching in improving

content delivery efficiency.

Zhang et al. in [18] also explored cloud-edge non-orthogonal transmission for fog net-
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works with delayed Channel State Information (CSI) at the cloud. While not directly

related to caching, the paper investigates the potential of non-orthogonal transmission

in fog networks. A novel methodology was proposed that introduced decentralized

precoding for cache-enabled ultra-dense Radio Access Networks (RANs). The au-

thors propose a decentralized precoding strategy to enhance the performance of cache-

enabled RANs. The research highlights the advantages of incorporating caching into

ultra-dense networks in [19].

In [20] author presented a framework for Mobile Edge Computing (MEC)-enhanced

small-cell HetNets with massive MIMO. They explore the integration of MEC and

massive MIMO in small-cell networks to enhance content delivery and network effi-

ciency. Chen et al. in [21] discussed wireless caching strategies, comparing cell-free

approaches with small cells. The authors investigate the advantages and trade-offs of

cell-free architectures and small cells for content caching. The study contributes to the

understanding of caching strategies in different network architectures.

In [22] author proposed a hardware architecture for a MIMO-based sea-land segmen-

tation system for remote sensing image processing. While not primarily focused on

caching, the paper presents hardware architecture for MIMO-based image processing,

which can indirectly impact content delivery in remote sensing applications. In [23]

author investigated content delivery in MIMO broadcast channels with decentralized

coded caching. They propose strategies for efficient content delivery using coded

caching in MIMO broadcast channels. The research emphasizes the potential advan-

tages of coded caching in MIMO setups.

Zhang and Simeone et al. in [24] explored cloud-edge transmission strategies for fog

networks with delayed CSI at the cloud. While not specifically about caching, the re-

search discusses transmission strategies for fog networks, which can influence content

delivery efficiency. Liu et al. in [25]. presented a survey on the interplay between

NOMA and other emerging technologies. The survey discusses how NOMA interacts

with other technologies, which can have implications for caching and content delivery

strategies.

Chuang et al. in [26] discussed a multi-agent federated reinforcement learning strat-
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egy for mobile virtual reality delivery networks. The authors propose strategies for

optimizing content delivery in virtual reality scenarios using federated reinforcement

learning techniques. These summarized papers collectively provide a comprehensive

overview of research in the field of content caching and delivery in MIMO networks.

They explore various aspects of caching strategies, interference management, perfor-

mance analysis, and the integration of emerging technologies. While some papers focus

directly on caching, others provide insights into related areas that can impact content

delivery efficiency in wireless networks. Further research in this domain can continue

to enhance our understanding of efficient content caching and delivery strategies in

modern wireless networks.

2.2 Chapter Summary

In this chapter, we take a look at the current state of knowledge and research needs

concerning the use of deep Q-learning for edge caching in cell-free massive MIMO

networks. Our research discovered both significant new findings and important knowl-

edge gaps. Edge cache optimization in cell-free massive MIMO networks has been

identified as a research gap due to the absence of scalable and effective approaches. Al-

though deep Q-learning has improved cache hit ratio and reduced latency, few research

have addressed the underlying computational complexity and scalability difficulties in

large-scale networks.

In spite of the existing research on edge caching in cell-free massive MIMO networks

and the use of deep Q-learning techniques, there is a conspicuous gap in the litera-

ture regarding the exploration of the integration of other machine learning algorithms

or methodologies. This gap has been brought to your attention. While the preceding

paragraphs highlighted the benefits of deep reinforcement learning and its combination

with deep Q-learning for optimizing caching strategies, there is limited investigation

into the potential advantages of incorporating unsupervised learning techniques such

as clustering algorithms or generative models. While the preceding paragraphs high-

lighted the benefits of deep reinforcement learning and its combination with deep Q-

learning for optimizing caching strategies. By capitalizing on the preexisting patterns
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and hierarchies that are included within the data, these strategies have the potential to

significantly improve the intelligence and performance of edge caching systems. When

researchers address this gap in the existing body of knowledge, they are able to discover

unique ways that leverage several machine learning methodologies, which ultimately

results in edge caching solutions that are more advanced and adaptable in cell-free

massive MIMO networks. The synergistic benefits of mixing various machine learn-

ing approaches and their implications for enhancing cache efficiency, scalability, and

privacy in these networks need to be investigated further so that we may have a better

understanding of these impacts.

The study of the paragraphs exposes a number of important findings and methodology

associated with edge caching in cell-free massive MIMO networks, with a special em-

phasis on deep Q-learning techniques. The research in this field points to the following

factors:

The usage of multi-stage techniques that include deep Q-learning and reinforcement

learning is one notable strategy that can be used to address issues in content distribu-

tion and caching selection. Another prominent approach is the utilization of multi-agent

systems. Mobile users are able to make decisions regarding caching that are context-

aware and that adapt to their present operating conditions if they take into account the

context of the mobile users and employ deep reinforcement learning algorithms.

When combined with deep Q-learning, deep neural networks show promising results in

approximating value functions in high-dimensional state spaces. This approximation

makes it possible to determine successful caching techniques that maximize content

delivery in cell-free massive MIMO networks. Those strategies can be found here.

It has been suggested that cooperative caching techniques, which include both deep

Q-learning and learning automata-based Q-learning, can increase the Mean Opinion

Scores (MOS) of users who participate in these networks. These strategies improve

action selection and yield higher MOS values in comparison to non-cooperative and

random caching approaches because they take into account the anticipated locations of

users as well as the interest they have in the content.

Another field of research focuses on improving energy efficiency in cell-free massive
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MIMO networks by using multi-agent reinforcement learning, or MARL for short.

Users are able to optimize user association and content caching decisions by applying

MARL approaches, such as single-agent reinforcement learning (SARL) and multi-

agent reinforcement learning (MARL). This results in enhanced EE and overall net-

work performance.

The promise for efficient and private edge caching solutions has been established

through the integration of deep Q-learning with distributed learning approaches such as

federated learning. Federated learning makes it possible to independently make accu-

rate estimates about user preferences and content caching algorithms, which optimizes

caching decisions while maintaining users’ privacy.

Scalability is a very important factor to think about when designing edge caching sys-

tems. Deep Q-learning, in conjunction with adaptive algorithms and multi-layered

structures, has demonstrated some promising results in the quest to develop scalable

edge caching solutions. These approaches address the issues that are related with the

ever-increasing volume of data as well as the necessity of effectively allocating re-

sources.

While the current body of research is on the use of deep Q-learning for edge caching

in cell-free massive MIMO networks, additional study is required to investigate the

possibility of integrating alternative machine learning algorithms and methods. Re-

searchers are able to improve the intelligence and adaptability of edge caching systems

by applying unsupervised learning approaches. These techniques include clustering al-

gorithms and generative models, for example. This additional research will contribute

to the development of caching solutions that are more advanced and efficient, address-

ing scalability, privacy, and overall performance in cell-free massive MIMO networks.
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Chapter 3

METHODOLOGY

Chapter 3 presents the research design that underlies our study on ”Deep Q-Learning

for Edge Caching in Cell Free Massive MIMO Networks: A Multi-Layered Approach.”

This chapter outlines the methodologies, procedures, and techniques employed to col-

lect, preprocess, and engineer the dataset and the deep learning techniques utilized for

our analysis. By providing a comprehensive overview of the research design, this chap-

ter serves as a roadmap for understanding the steps taken to conduct our research and

establishes the groundwork for the subsequent chapters. In the initial section, we delve

into the dataset collection process. We describe the sources from which the dataset

was obtained, such as real-world network measurements or simulated data, considering

factors like their relevance, representativeness, and adequacy in capturing the charac-

teristics of Cell Free Massive MIMO Networks. This stage is crucial as it lays the

foundation for training and evaluating our deep Q-learning model. Building upon the

dataset collection, we provide a detailed description of the dataset itself in the subse-

quent section. This involves highlighting the key attributes and variables included in

the dataset, which may encompass information about network topology, user behav-

ior, content popularity, and other relevant factors. By understanding the composition

and structure of the dataset, readers gain valuable insights into the underlying data

that drives our analysis and supports the development of the deep Q-learning model.

Moving forward, we shift our focus to dataset preprocessing in the following section.

Here, we discuss the various preprocessing techniques applied to the dataset, including

data cleaning, missing value imputation, outlier detection, and normalization. Ensuring

data quality and integrity is paramount during this stage to ensure reliable and accurate

results in subsequent analyses. Subsequently, we elaborate on the process of feature

engineering. This stage plays a critical role in extracting meaningful and informative

features from the dataset. We explain the techniques employed to derive relevant fea-
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tures that capture the characteristics of Cell Free Massive MIMO Networks and content

caching. This may involve aggregating, transforming, or combining different variables

to create new features that enhance the predictive power of the deep Q-learning model.

Lastly, we delve into the deep learning techniques employed in our research. This

final section provides an overview of the specific neural network architectures and

algorithms utilized, such as convolutional neural networks (CNNs), recurrent neural

networks (RNNs), or deep Q-networks (DQNs). Additionally, we discuss any modifi-

cations or enhancements made to adapt these techniques to the context of edge caching

in Cell Free Massive MIMO Networks.

3.1 Research Design

The research design plays an essential part in directing the entire study, which was

titled ”Deep Q-Learning for Edge Caching in Cell Free Massive MIMO Networks:

A Multi-Layered Approach.” [Cell Free Massive MIMO Networks: A Multi-Layered

Approach]. This section gives an in-depth discussion of the research design, which

encompasses the procedures and strategies that were utilized to address the research

questions and achieve the objectives of the study.

In order to get started on the research design, the first thing that needs to be done is

to come up with specific research questions or objectives that will act as the impetus

for our investigation. These questions help to define a clear focus and direction, which

enables us to go deeper into the fundamental components of deep Q-learning for edge

caching in Cell Free Massive MIMO Networks.

Following this, we will investigate the strategies and procedures that were utilized dur-

ing the data gathering process in order to guarantee the capture of accurate and pertinent

information. The approach that we take involves making use of simulations, real-world

network measurements, and previously collected data sets. The selection of acceptable

methods for data collecting should be done with care to ensure that the data collected

is representative, valid, and directly pertinent to the research issues at hand.

After we have established the techniques for collecting the data, we will now proceed to

provide a detailed description of the dataset that will be used in our investigation. Pro-
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viding a complete summary of the dataset, highlighting its most important variables,

features, and data points, is a must for this step. By providing this detailed dataset

description, we ensure transparency and enable readers to comprehend the dataset’s

suitability for addressing the research questions.

After that, we will concentrate on the processes of the dataset preprocessing, which are

quite important in getting the data ready for the subsequent analysis. During this stage,

a number of processes are carried out, including as data cleansing, the management of

missing values, the identification of outliers, and normalization. We can guarantee the

quality of the data, as well as its consistency and integrity, if we engage in rigorous

dataset preprocessing. This also helps to reduce the likelihood of any biases or inaccu-

racies affecting the future analysis.

In addition to that, the research design takes into account the essential component of

feature engineering. The raw dataset is converted into a set of relevant features that are

capable of capturing the complexities of Cell Free Massive MIMO Networks and con-

tent caching through the application of this procedure. In order to improve the overall

performance of the deep Q-learning model and make it more easily interpretable, fea-

ture engineering may involve aggregating, modifying, or adding additional variables.

In the final part of this section, we talk about the deep learning methods that were

used in our research. This requires the careful selection and implementation of special-

ized neural network topologies, optimization algorithms, and reinforcement learning

methodologies, with deep Q-learning being one of the most popular examples. In order

to maintain their applicability and efficiency in the context of edge caching in Cell Free

Massive MIMO Networks, these strategies are intelligently tweaked and modified.

We ensure that it will be methodical and thorough by giving careful consideration to the

design of our research. Our findings are more valid and reliable thanks to the research

design, which reduces the amount of potential bias, ensures that there is continuity

throughout the research process, and maintains consistency overall. The overall qual-

ity and robustness of the study are improved by each individual stage, beginning with

the formulation of research objectives and continuing on through the selection of data

collection methods, preprocessing the dataset, performing feature engineering, and ap-
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plying deep learning techniques.

Figure 3.1: Flow of study

3.2 Proposed Antenna

When it comes to overcoming the challenges of deep Q-learning for edge caching in

Cell-Free Massive MIMO Networks, the architectures that have been presented as a

result of our study play an essential role. These designs act as the central pillar of our

investigation, laying the groundwork for modeling and enhancing the performance of

the edge caching procedure.
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This research aims to explore the integration of deep reinforcement learning (DRL)

with cell-free Massive MIMO networks to optimize caching decisions. The proposed

multi-layered approach combines the benefits of DRL with the architectural advantages

of cell-free Massive MIMO networks. By addressing the specific challenges and oppor-

tunities in this integration, we aim to contribute to the advancement of caching strate-

gies in dynamic environments. Existing studies often assume static content popularity

or rely on simple heuristics for caching decisions, which may not be effective in real-

world scenarios where content popularity and user demands are continuously evolving.

To fill this research gap, we consider the dynamic nature of content popularity and user

demands and leverage deep reinforcement learning techniques to adaptively learn and

update caching policies based on real-time data.

Additionally, this research focuses on optimizing the energy consumption of caching

decisions in cell-free Massive MIMO networks. While energy efficiency is critical

in wireless networks, the integration of energy-aware caching with cell-free Massive

MIMO networks is relatively unexplored. By considering energy efficiency as an ob-

jective, we aim to contribute to the development of sustainable and energy-efficient

caching strategies in these networks.

To evaluate the proposed approach, we employ a simulated network and a dataset gath-

ered from real-world scenarios. The dataset includes user requests, caching decisions,

retrieval decisions, and various information related to the requests and responses. We

utilize a deep Q-learning model, specifically a deep Q-network (DQN), to optimize

edge caching decisions. The DQN model takes the current network state as input and

outputs the best caching decision based on reinforcement learning techniques.

During the analysis, we consider three key performance indicators: cache hit ratio, pro-

cessing time (delay), and power usage. The cache hit ratio measures the percentage of

user requests that are satisfied by the cache, reflecting the efficiency of the caching pol-

icy. Processing time indicates the speed at which requests are processed, while power

usage is considered to maximize network efficiency and longevity.

Through simulations and performance evaluations, we refine and assess the effective-

ness of the deep Q-learning technique for edge caching. The DQN model is continu-
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ously trained and updated with new information from the dataset. By analyzing experi-

mental data, we aim to demonstrate the usefulness and viability of the deep Q-learning

technique for edge caching in cell-free Massive MIMO networks, providing insights

into improving resource management and content delivery in future wireless networks.

we propose a multi-layered design that covers multiple components responsible for

distinct phases of the caching decision-making process. This architecture comprises

numerous components responsible for different stages of the caching decision-making

process. This architecture was created to handle the complexities and dynamic nature

of Cell Free Massive MIMO Networks, which involve the interaction of a large number

of base stations and user devices to build a distributed caching system. We are able

to capture the many of facets and interactions present inside the network by utilizing

a multi-layered methodology, which ultimately results in decisions regarding caching

that are more accurate and efficient. A data acquisition module is included at the most

fundamental level of our architectural design. This module is responsible for gathering

real-time network measurements and other pertinent information from the Cell Free

Massive MIMO Network. This module gets data that is crucial for making informed

judgments regarding caching, including as signal intensities, channel conditions, and

user requests. Our architecture is able to adjust to the dynamic nature of the network

and make timely caching decisions thanks to the incorporation of real-time data cap-

ture. These decisions are based on the current state of the network.

As we move up the design, we introduce a module that is responsible for extracting

significant features from the data that was obtained. This module employs sophisti-

cated data processing methods, such as dimensionality reduction, pattern recognition,

and statistical analysis, in order to extract the essential qualities of both the network

and the content items. Our architecture is able to properly reflect the complex links

between the state of the network, the preferences of the users, and the popularity of

the content because it extracts relevant aspects. This makes it possible to make more

accurate caching judgments.

Following this, we provide a decision-making module that, in order to achieve optimal

performance with the caching technique, makes use of deep Q-learning algorithms.
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This module uses deep neural networks to make an approximation of the Q-function,

which calculates the long-term benefits that will be gained from doing a variety of

distinct caching operations. Our architecture can learn optimal caching strategies that

improve network performance, content delivery efficiency, and user pleasure if it is

trained to leverage historical data and reinforcement learning techniques on neural net-

works.

In addition, we present an adaptive control module that continuously checks and adapts

the caching technique based on performance feedback and the conditions of the net-

work. This module makes dynamic adjustments to the caching decisions in response

to changes in user requests, the popularity of content, and the amount of congestion on

the network. Our architecture ensures strong and adaptable caching rules, which can

adapt to various network conditions and maximize resource consumption, by adding

adaptive control mechanisms. This allows for maximum resource use.

As shown in Fig. 3.2, the suggested architecture for edge caching in cell-free Mas-

sive MIMO networks is designed to be highly efficient. The architecture incorporates

the Deep Q-Learning (DQN) model as a key component, utilizing deep reinforcement

learning techniques to make intelligent caching decisions. The DQN model is trained

with past data and network feedback to achieve optimal caching performance.

3.3 Dataset Collection

We employ a combination of real-world network measurements, simulations, and exist-

ing datasets to ensure a robust and diverse dataset that encompasses the complexities of

the research domain. Real-world network measurements are a vital component of our

data collection methodology. We deploy monitoring systems and strategically place

specialized equipment or network probes within operational cell-free Massive MIMO

networks. This allows us to capture a wide range of network parameters, such as signal

strengths, channel conditions, user mobility patterns, and performance metrics. By col-

lecting data directly from real-world environments, we ensure the dataset reflects the

actual conditions, challenges, and dynamics encountered in cell-free Massive MIMO

networks. These measurements provide valuable insights into the behavior and charac-
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Figure 3.2: Proposed Architecture

teristics of the network, contributing to the realism and authenticity of our research.

Simulations play an equally crucial role in our data collection process. We utilize

sophisticated network simulators, such as ns-3 or MATLAB-based frameworks, to cre-

ate virtual environments that replicate the behavior and dynamics of cell-free Massive

MIMO networks. Through simulations, we define the network topology, user distribu-

tions, content popularity, and mobility patterns to generate synthetic datasets. These

datasets closely resemble real-world scenarios and enable us to control and manipulate

various parameters to investigate the impact of different factors on caching decisions

and performance metrics. Simulations offer a controlled and scalable environment that

allows for extensive experimentation and analysis, enhancing the breadth and depth

of our research findings. In addition to real-world measurements and simulations,

we leverage existing datasets that align with our research objectives. These datasets

may have been collected from previous studies, publicly available sources, or obtained

through collaborations with industry partners. Careful consideration is given to the

quality, relevance, and reliability of these datasets to ensure their suitability for our re-

search. If necessary, we apply data preprocessing and cleaning techniques to ensure

data consistency, remove any inconsistencies or biases, and align the datasets with our
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research requirements. The integration of existing datasets enhances the diversity and

scope of our research, providing additional insights and perspectives on edge caching

in cell-free Massive MIMO networks.

Throughout the data collection process, we strictly adhere to ethical guidelines and

privacy regulations to protect the rights and privacy of individuals involved. Sensi-

tive information is anonymized, and any necessary permissions or consent are obtained

to ensure compliance with data protection regulations. We prioritize the ethical and

responsible use of the collected data, maintaining the confidentiality and privacy of

individuals and organizations involved. By employing a combination of real-world

network measurements, simulations, and existing datasets, we establish a comprehen-

sive and diverse dataset that captures the intricate interactions and dynamics of cell-free

Massive MIMO networks, user demands, and content popularity. This dataset serves

as the foundation for training and evaluating our deep Q-learning model, enabling us to

analyze and validate the effectiveness of our proposed caching strategies in a realistic

and representative setting. The integration of various data collection methods ensures

the richness and robustness of our research findings, contributing to the advancement

of knowledge in the field of edge caching in cell-free Massive MIMO networks.

3.4 Dataset Description

The dataset used in this research consists of a comprehensive set of features that capture

relevant information about user requests, content, edge servers, and caching decisions.

The dataset provides insights into the dynamics and interactions of edge caching in

cell-free Massive MIMO networks. The table is presented a detailed description of

each feature.

The dataset contains a diverse range of instances, reflecting various user requests and

caching scenarios in cell-free Massive MIMO networks. The total number of instances

in the dataset is 101. Each instance represents a specific content request made by a user

and includes the corresponding features as described below.

The Content ID serves as a unique identifier for the requested content in the dataset.

It represents different pieces of content, such as videos, images, or files, that users
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can request from the system. By analyzing the Content ID, we can understand the

characteristics and properties of the content being requested, such as popularity, type,

or size. This information helps in assessing the caching and retrieval decisions made

for different content items and understanding the impact of content diversity on the

caching strategy.

Table 2: Dataset Feature Description

Feature Description

User ID An identifier for each user making the content request.

Content ID An identifier for the requested content.

Edge Server ID An identifier for the edge server serving the content.

Request Time The timestamp of the user’s content request.

Response Time The timestamp of the content response provided to the user.

Response Size The size of the content response in terms of data volume.

Caching Decision Indicates whether the requested content was cached or not.

Retrieval Decision
Indicates whether the content was served from cache or re-

motely.

81
43

24
35

92
90

34
99

19
65

25
10

61
57

47
30

35
14

83
00

58
47

54
91

0

5

10

15

20

25

Content ID

C
ou

nt

Content ID Distribution

Figure 3.3: Content ID visualization

Each unique Edge Server ID corresponds to a specific edge server in the network in-
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frastructure. It allows us to track and analyze the performance, behavior, and caching

decisions of individual edge servers. By examining the Edge Server ID associated with

each content request, we can understand which edge server was responsible for serving

the content to the user. The Edge Server ID provides valuable information for eval-

uating the effectiveness of caching strategies employed by different edge servers. It

enables us to assess factors such as cache hit ratio, response time, and overall network

performance based on the specific edge server serving the content.
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Figure 3.4: Edge server visualization

Request Time indicates the timestamp when a user made a content request. It provides

temporal information about user behavior, such as the time of day or day of the week

when content requests are more frequent. Analyzing the Request Time helps in identi-

fying patterns, trends, and user preferences regarding content consumption. It enables

us to understand the temporal dynamics of content popularity, which is valuable for

optimizing caching strategies and resource allocation.

The Response Time represents the timestamp when the content response was provided

to the user. It indicates how quickly the system responds to user requests and delivers
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Figure 3.5: Request Time Visualization

the requested content. Analyzing the Response Time helps in assessing the efficiency

and performance of the content delivery process. By identifying delays or variations in

response times, we can optimize the system to reduce latency and improve user experi-

ence.

The Caching Decision feature indicates whether the requested content was cached or

not. A ”Yes” value implies that the content was previously stored in the edge server’s

cache, while a ”No” value indicates that the content needed to be fetched from a remote

server. Analyzing the Caching Decision helps evaluate the effectiveness of caching

strategies in terms of reducing response times, network traffic, and the load on re-

mote servers. It also enables us to assess cache hit ratios and understand the impact of

caching decisions on content delivery performance. The Retrieval Decision feature in-

dicates whether the content was served from the cache or retrieved remotely. A ”Cache”

value signifies that the content was served from the edge server’s cache, while a ”Re-

mote” value indicates that the content was fetched from a remote server. Analyzing the
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Figure 3.6: Response Time visualization

Retrieval Decision helps in evaluating the success of caching decisions and assessing

cache hit ratios. It provides insights into the efficiency of the caching mechanism and

the proportion of content requests that can be satisfied locally.

Response Size Distribution refers to the statistical distribution of the sizes of content

responses in terms of data volume in a dataset. It provides insights into the variabil-

ity and characteristics of the content being delivered to users in the cell-free Massive

MIMO network. By analyzing the response size distribution, we can gain a deeper

understanding of the resource requirements, bandwidth utilization, and network con-

gestion associated with content delivery.

The distribution of response sizes can take various forms, such as a normal distribution,

skewed distribution, or heavy-tailed distribution, depending on the nature of the con-

tent and user demand. Understanding the response size distribution helps in optimizing

caching strategies, network provisioning, and resource allocation to accommodate the

varying sizes of content responses.
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Figure 3.7: Caching Decision visualization

Analyzing the response size distribution allows us to identify key statistical measures

such as the mean, median, mode, and standard deviation of the response sizes. These

measures provide insights into the average response size, the most frequently observed

response size, and the degree of variability in response sizes.

By examining the response size distribution, we can assess the impact of different fac-

tors on content delivery. For example, if the response size distribution is skewed to-

wards larger sizes, it suggests that certain content types or file formats dominate the

network traffic, requiring adequate resources and bandwidth allocation. On the other

hand, if the distribution is more balanced and follows a normal distribution, it indicates

a diverse range of content sizes and allows for more efficient utilization of network

resources.

Understanding the response size distribution is crucial for capacity planning, network

optimization, and content delivery performance evaluation. It helps network operators

and service providers determine the appropriate caching strategies, network configura-

tions, and resource allocation mechanisms to ensure efficient content delivery, reduce

response times, and minimize network congestion.
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Figure 3.8: Retrieval Decision visualization

By analyzing the response size distribution, network administrators can make informed

decisions regarding cache size, storage capacity, and network infrastructure upgrades.

It enables them to allocate resources effectively, ensure a high cache hit ratio, and

improve the overall user experience by minimizing delays and optimizing content de-

livery. By leveraging this comprehensive dataset and its associated features, we can

conduct in-depth analyses and evaluate the performance of edge caching strategies in

cell-free Massive MIMO networks. The dataset provides valuable insights into user

behavior, content characteristics, caching decisions, and network performance, con-

tributing to a better understanding of the dynamics and optimization of edge caching in

these networks.

3.5 Dataset Preprocessing

Dataset preprocessing is an essential step in preparing the raw data for analysis and

modeling. In the context of our research on deep Q-learning for edge caching in cell-

free Massive MIMO networks, the dataset undergoes several preprocessing steps to

ensure data quality, consistency, and compatibility with the proposed methodologies.

The following paragraphs outline the key dataset preprocessing steps:
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Figure 3.9: Response Size visualization

3.5.1 Data Cleaning

Data cleaning is an essential step in the data preprocessing phase, where we address

issues such as missing values, outliers, and inconsistencies to ensure the data’s quality

and reliability. In the context of our research, data cleaning involves identifying and

handling these data anomalies to create a clean and consistent dataset that can be used

for further analysis and modeling.

One common issue in datasets is missing values, where certain entries are not recorded

or unavailable. Missing values can occur due to various reasons such as data collection

errors or incomplete data. To handle missing values, we typically employ techniques

such as imputation, where missing values are replaced with estimated values based on

the available data. The imputation process aims to preserve the integrity of the dataset

by filling in missing values while minimizing the impact on the overall data distribution.
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Mathematically, imputation can be represented as follows:

Ximputed = f(Xobserved), (3.1)

where, Ximputed represents the imputed values, Xobserved represents the observed

(non-missing) values, and f(·) represents the imputation function or method used.

Outliers are another data anomaly that can significantly affect the analysis and mod-

eling process. Outliers are extreme values that deviate from the overall pattern of the

data. These values can arise due to measurement errors, data entry mistakes, or rare

occurrences. Handling outliers involves identifying them and deciding on an appropri-

ate treatment strategy. Depending on the context and nature of the data, outliers can

be removed, transformed, or imputed with more representative values. One commonly

used method for identifying outliers is through the use of statistical measures such as

the z-score or interquartile range (IQR). The z-score measures the number of standard

deviations a data point is away from the mean, while the IQR measures the range be-

tween the 25th and 75th percentiles of the data. Data points that fall beyond a certain

threshold, often defined as a multiple of the standard deviation or IQR, are considered

outliers and can be flagged for further analysis or treatment.

Mathematically, outlier identification using the z-score can be represented as:

z =
(x− µ)

σ
, (3.2)

where z represents the z-score, x represents the data point, µ represents the mean, and

σ represents the standard deviation.

Data inconsistencies can also arise due to errors in data entry, measurement discrep-

ancies, or inconsistencies in data sources. These inconsistencies can manifest as con-

flicting or contradictory information within the dataset. Resolving data inconsistencies

involves careful examination and verification of the data to identify and rectify any dis-

crepancies. This may involve cross-checking with external sources, performing data

validation checks, or applying domain-specific knowledge to resolve inconsistencies.
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Figure 3.10: Preprocessed Value of Content ID

In Fig. 3.10, we visualize the preprocessed values of the Content ID feature. Content

ID is an identifier for the requested content in the dataset. The preprocessing step may

involve encoding or transforming the original values to make them suitable for analysis

or modeling. The figure shows the distribution or variation of the preprocessed Content

ID values, which could be numerical or categorical.

3.5.2 Feature Selection

Feature selection is a process of selecting a subset of relevant features from a larger

set of available features in a dataset. The goal of feature selection is to identify the

most informative and discriminative features that contribute the most to the predictive

performance of a model while reducing redundancy and noise. By selecting the most

relevant features, we can improve model accuracy, reduce overfitting, enhance inter-

pretability, and potentially reduce computational complexity.

There are various methods for feature selection, including filter methods, wrapper

methods, and embedded methods. Filter methods assess the relevance of features based
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on their statistical properties or information gain, independent of any specific learning

algorithm. Wrapper methods evaluate the performance of different feature subsets us-

ing a specific learning algorithm. Embedded methods incorporate feature selection

within the learning algorithm itself, optimizing both feature selection and model train-

ing simultaneously.

Mathematically, feature selection can be formulated as an optimization problem aim-

ing to find the optimal subset of features that maximizes a certain criterion or objective

function. Let’s denote the feature set as x and the target variable as y. The objec-

tive function y(x) captures the predictive performance of the model using the selected

features. The feature selection problem can be represented as

argmax
X

y(x). (3.3)

The goal is to find the subset of features i that maximizes the objective function y(x).

There are various criteria or scoring functions that can be used to evaluate the relevance

of features. Some commonly used scoring functions include:

3.5.2.1 Information Gain (IG)

Measures the amount of information gained about the target variable by including a

particular feature. It quantifies the reduction in entropy or impurity in the target variable

when a feature is included.

IG(xi) = H(y)−H(y|xi), (3.4)

where xi is the i-th feature, H(y) is the entropy of the target variable, and H(y|xi) is

the conditional entropy of the target variable given the i-th feature.

3.5.2.2 Mutual Information (MI)

Measures the mutual dependence or information shared between a feature and the target

variable. It quantifies the reduction in uncertainty about the target variable when a
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feature is known.

MI(xi, y) =
∑
xi∈x

∑
y∈γ

p(xi, y) log

(
p(xi) · p(y)
p(xi, y)

)
, (3.5)

where xi is the i-th feature, y is the target variable, p(xi, y) is the joint probability dis-

tribution of xi and y, p(xi) is the marginal probability distribution of xi, and p(y) is the

marginal probability distribution of y.

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

Edge Server ID

C
ou

nt
s

Edge Server ID Distribution

Figure 3.11: Preprocessed value of Edge server ID

Figure 3.11 displays the preprocessed values of the Edge Server ID feature. Edge

Server ID is an identifier for the edge server serving the content in the dataset. Similar

to the Content ID feature, the preprocessed values of the Edge Server ID are shown,

representing the transformed or encoded versions of the original values. The visualiza-

tion provides insights into the distribution or patterns of the preprocessed Edge Server

ID values.

In Fig. 3.12 we visualize the preprocessed values of the Request Time feature. Re-

quest Time represents the timestamp of the user’s content request. The preprocessing
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Figure 3.12: Preprocessed values of Request time

step may involve converting the timestamp into a more suitable format or extracting ad-

ditional features from it. The figure shows the distribution of the preprocessed Request

Time values, allowing us to analyze patterns, trends, or anomalies in the data.

3.5.3 Data Normalization

Data normalization, also known as feature scaling, is a preprocessing technique that

aims to bring different features or variables onto a common scale. It involves trans-

forming the numerical features of a dataset to a standardized range or distribution.

The purpose of normalization is to ensure that each feature contributes equally to the

analysis and modeling process, preventing features with larger values from dominating

the results. There are various methods for data normalization, but two commonly used

techniques are min-max scaling and standardization (z-score normalization).
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3.5.3.1 Min-Max Scaling

Min-max scaling rescales the data to a specific range, typically between 0 and 1. It

operates by subtracting the minimum value of the feature and dividing by the difference

between the maximum and minimum values. The formula for min-max scaling is as

follows:

vn =
v − vmin

vmax − vmin

, (3.6)

where the normalized value (vn) represents the rescaled value of the feature, the value

is the original value (v) of the feature, and min value (vmin) and max value (vmax) are

the minimum and maximum values of the feature, respectively.

3.5.3.2 Standardization (Z-Score Normalization)

Standardization transforms the data to have a mean of 0 and a standard deviation of 1.

It involves subtracting the mean of the feature and dividing by the standard deviation.

The formula for standardization is as follows:

vs =
v − µ

σ
, (3.7)

where the standardized value (vs) represents the transformed value of the feature, µ is

the mean of the feature, and σ is the standard deviation of the feature.

Data normalization is particularly useful when the features in the dataset have different

scales or units. It helps to eliminate biases and discrepancies caused by varying ranges

and magnitudes, allowing for fair comparisons and accurate modeling. By normalizing

the data, we ensure that each feature contributes proportionally to the analysis and

prevent certain features from dominating the results based solely on their scale.

Applying data normalization is an essential step in data preprocessing, as it enhances

the performance of machine learning algorithms and improves the interpretability of the

results. It is important to note that the choice of normalization technique depends on the

nature of the data and the requirements of the specific analysis or model being applied.

Figure 3.13 illustrates the preprocessed values of the Response Time feature. Response

Time represents the timestamp of the content response provided to the user. Similar to
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Figure 3.13: Preprocessed values of Response time

the Request Time feature, the preprocessing step may involve converting the timestamp

or extracting additional temporal features. The figure visualizes the distribution of the

preprocessed Response Time values, providing insights into the timing and efficiency

of content delivery.

3.5.4 Data Balancing

Data balancing, also known as class balancing or resampling, is a technique used to

address class imbalance in a dataset. Class imbalance occurs when the distribution of

classes in the dataset is significantly skewed, with one class having a much larger num-

ber of instances compared to the other class(es). This can pose challenges in machine

learning tasks, as the models tend to be biased towards the majority class, leading to

poor performance on the minority class.

There are several approaches to perform data balancing, and two commonly used meth-

ods are oversampling and under sampling.

Oversampling is a technique where instances from the minority class are replicated or
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synthesized to increase their representation in the dataset. The goal is to balance the

number of instances across different classes. One popular oversampling technique is

the Synthetic Minority Over-sampling Technique (SMOTE), which generates synthetic

samples by interpolating between existing minority class samples. The formula for

SMOTE oversampling can be represented as follows:

ss = sa + λ(sb − sa), (3.8)

where the synthetic sample (ss) is the newly generated instance, sa and sb are existing

minority class samples, and λ is a random value between 0 and 1.

Under sampling involves reducing the number of instances from the majority class to

match the number of instances in the minority class. This is typically done randomly or

by selecting representative samples from the majority class. Under sampling can help

to reduce the dominance of the majority class and improve the balance in the dataset.

The choice between oversampling and under sampling depends on the specific charac-

teristics of the dataset and the problem at hand. Both methods aim to create a more

balanced distribution of classes, enabling the model to learn from both classes effec-

tively and make better predictions.

Data balancing is important to ensure that the model does not exhibit a bias towards

the majority class and performs well on both the majority and minority classes. By

addressing class imbalance, we increase the reliability and generalization capability of

the model. However, it is crucial to note that data balancing should be applied with

caution, as oversampling or under sampling can introduce certain biases or distort the

original data distribution. It is essential to evaluate the impact of data balancing tech-

niques on the model’s performance and make informed decisions based on the specific

problem context.

In Fig. 3.14, we visualize the preprocessed values of the Response Size feature. Re-

sponse Size denotes the size of the content response in terms of data volume. The pre-

processing step may involve scaling, normalization, or other transformations to make

the values more suitable for analysis. The figure shows the distribution of the prepro-

cessed Response Size values, allowing us to understand the range, spread, or potential
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Figure 3.14: Preprocessed values of Response Size

outliers in the data.

Figure 3.15 displays the preprocessed values of the Caching Decision feature. Caching

Decision indicates whether the requested content was cached or not. The preprocessing

step may involve encoding the original values into binary or categorical representations.

The figure visualizes the distribution of the preprocessed Caching Decision values, pro-

viding insights into the caching behavior and its impact on content delivery. Figure 3.16

represents the preprocessed values of the Retrieval Decision feature. Retrieval Decision

indicates whether the content was served from cache or retrieved remotely. Similar to

the Caching Decision feature, the preprocessing step may involve encoding the values

into binary or categorical representations. The figure illustrates the distribution of the

preprocessed Retrieval Decision values, allowing us to analyze the frequency or pro-

portion of cached or remote content retrievals.

These dataset preprocessing steps help ensure that the data is suitable for analysis, mod-

eling, and training the deep Q-learning model. By cleaning the data, selecting relevant
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Figure 3.15: Preprocessed values of Caching Decision

features, encoding categorical variables, normalizing numeric features, and splitting the

dataset appropriately, we can mitigate biases, enhance model performance, and facili-

tate meaningful insights into edge caching in cell-free Massive MIMO networks. The

preprocessed dataset serves as the foundation for our subsequent analyses and experi-

ments.

3.6 Feature Engineering

Feature engineering is a critical step in the data preprocessing phase that involves trans-

forming the raw dataset into a set of meaningful features that capture the relevant in-

formation for the edge caching problem in cell-free Massive MIMO networks. This

process aims to extract and create new features that enhance the predictive power and

performance of the deep Q-learning model. The following paragraphs provide an ex-

planation of the feature engineering steps undertaken in our research:

3.6.1 Content Popularity

Content popularity plays a crucial role in caching decisions as it helps determine which

content should be cached to improve overall system performance. In this section, we

53



Remotely From Cache
0

100

200

300

400

500

600

700

Retrieval Decision

C
ou

nt

Retrieval Decision Distribution

Figure 3.16: Preprocessed values of Retrieval Decision

discuss the concept of content popularity and its significance in the caching process.

Content popularity can be quantified using various metrics, such as the number of re-

quests or the frequency of requests for a specific content item. These metrics provide

insights into the relative popularity of different content items in the dataset. By ana-

lyzing content popularity, we can identify the most frequently requested content and

prioritize their caching to enhance cache hit ratio and reduce retrieval delays.

To calculate content popularity (cp), we can use the following equation:

cp =
nreq, item

ntotal
, (3.9)

where nreq,item refers to the number of requests made by users for a particular content

item, and ntotal represents the overall count of requests in the dataset. By dividing the

number of requests for a content item by the total number of requests, we obtain a nor-

malized measure of content popularity, ranging from 0 to 1.

Analyzing content popularity allows us to identify content items with high demand and

prioritize their caching to maximize cache hit ratio. It helps in optimizing the utiliza-

tion of cache resources by storing popular content items that are frequently requested,

54



thereby reducing the need for remote retrieval. By considering content popularity in

the caching decisions, we can improve the overall system performance, reduce latency,

and enhance the user experience.

3.6.2 User Preferences

Understanding user preferences is crucial for personalized content delivery and opti-

mizing caching decisions. In this section, we discuss the concept of user preferences

and its significance in the caching process.

User preferences can be influenced by various factors, such as content type, quality of

service, user context, and past interactions. By analyzing user preferences, we can gain

insights into the specific needs and priorities of users, enabling us to tailor the caching

and content delivery strategies accordingly.

To capture user preferences, we can use various techniques such as collaborative fil-

tering, content-based filtering, or machine learning models. These techniques analyze

user behavior, historical data, and contextual information to identify patterns and pref-

erences. The resulting user preference model can provide a personalized ranking of

content items based on individual user preferences.

Mathematically, user preferences can be represented as a preference function (f ) that

assigns a preference score to each content item (ci). The preference score (ps) repre-

sents the degree of user preference (up) for a particular content item. The function can

be formulated as:

ps = f(up, ci). (3.10)

3.6.3 Network Conditions

Network conditions refer to the state and characteristics of the underlying network

infrastructure, including factors such as signal strength, channel quality, congestion

level, and capacity. Understanding network conditions is crucial for making informed

caching decisions and optimizing the performance of cell-free Massive MIMO net-

works. In this section, we discuss the concept of network conditions and its signifi-

cance in the caching process.
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Network conditions can significantly impact the performance and efficiency of caching

strategies. For example, in a congested network with limited capacity, it may be more

beneficial to prioritize caching popular content items closer to the users to reduce the

load on the network. On the other hand, in a network with ample capacity and low

congestion, caching less popular but latency-sensitive content items closer to the users

may be more advantageous.

To incorporate network conditions into the caching process, we can leverage various

network parameters and measurements. These parameters can include signal-to-noise

ratio (SNR), channel quality indicators (CQI), traffic load (TL), latency (L), and band-

width (BW) availability. By continuously monitoring and analyzing these parameters,

we can dynamically adapt the caching strategies to the changing network conditions.

Mathematically, network conditions (Nc) can be represented as a set of variables that

capture the relevant network parameters. For example, we can define a vector N to

represent the network conditions, where each element of the vector corresponds to a

specific network parameter:

Nc = [SNR,CQI, TL, L,BW ]. (3.11)

These variables provide valuable information about the current state of the network

and help in making caching decisions that optimize the performance metrics, such as

cache hit ratio and response time. In our research, we consider network conditions as

an important input to the deep Q-learning model. By incorporating network conditions

as features, the model can adapt its caching decisions based on the current network

state. This adaptive approach enables us to optimize the caching strategies in real-time,

taking into account the varying network conditions.

By considering network conditions in the caching process, we aim to improve the over-

all performance and efficiency of cell-free Massive MIMO networks. By leveraging

the network conditions, we can make informed decisions about caching content items,

balancing the trade-off between network load, latency, and user satisfaction.

Here, User represents the user characteristics, context, and historical data, and Content

represents the content item being evaluated. The function f captures the relationship
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between user attributes and content characteristics to determine the preference score.

In our research, we consider user preferences as an important factor in the caching deci-

sions. By incorporating user preferences as a feature in the deep Q-learning model, the

model can adapt its caching strategy based on the individual preferences of users. This

personalized approach enhances the user experience by delivering content that aligns

with their preferences and priorities.

3.6.4 Temporal and Spatial Context

Temporal and spatial context refers to the consideration of the time and location aspects

when making caching decisions in cell-free Massive MIMO networks. It recognizes

that the popularity of content and user demands can vary over time and across different

geographical regions. By incorporating temporal and spatial context into the caching

process, we can improve the efficiency and effectiveness of content delivery. In this

section, we discuss the significance of temporal and spatial context and its integration

into caching strategies.

Temporal context involves understanding the dynamics of content popularity and user

demands over time. Content popularity can change due to various factors such as trend-

ing topics, events, or time of day. User demands also exhibit temporal patterns, with

certain content being more popular during specific time periods. By considering tem-

poral context, we can adapt the caching decisions to reflect the current popularity and

demand patterns.

Mathematically, temporal context can be represented using time-related variables or

functions. For example, we can define a variable T to represent the temporal context,

such as the time of day (tod), day of the week (dow), or month (m):

t = [tod, dow,m]. (3.12)

By incorporating temporal context into the caching model, we can adjust the caching

strategies based on the current time and capture the temporal dynamics of content pop-

ularity.

Spatial context, on the other hand, considers the geographical location of users and
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content servers. Content popularity and user demands can vary across different regions

due to cultural differences, local events, or user preferences. By taking into account

spatial context, we can optimize the caching decisions to reflect the regional variations

in content popularity and user demands.

Spatial context can be represented using geographical variables or functions. For in-

stance, we can define a variable ’s’ to represent the spatial context, such as the geo-

graphical coordinates or regions:

s = [Latitude, Longitude,Region]. (3.13)

Incorporating spatial context allows the caching model to consider the regional varia-

tions in content popularity and tailor the caching strategies accordingly.

By integrating temporal and spatial context into the caching process, we can leverage

the variations in content popularity and user demands over time and across different

geographical regions. This enables us to make more informed and adaptive caching

decisions that align with the current temporal and spatial dynamics.

In our research, we consider both temporal and spatial context as inputs to the deep

Q-learning model. By including the temporal and spatial variables in the model, we en-

able it to adapt the caching decisions based on the current temporal and spatial context.

This adaptive approach enhances the accuracy and effectiveness of the caching strate-

gies, leading to improved performance metrics such as cache hit ratio and response

time.

3.6.5 Content Metadata

Content metadata refers to additional information about the content that can be used to

enhance the caching decisions in cell-free Massive MIMO networks. This information

provides a deeper understanding of the content and its characteristics, allowing for

more intelligent and context-aware caching strategies. In this section, we explore the

significance of content metadata and its integration into the caching process.

Content metadata can include various attributes related to the content, such as its genre,

type, length, language, creator, and release date. By considering these attributes, the
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caching model can make more informed decisions based on the content’s relevance,

popularity, and user preferences. For example, certain genres of content might be more

popular during specific times or in certain regions, and the caching model can adapt

accordingly.

Mathematically, content metadata can be represented using a set of attributes denoted

as ’m’:

m = [attribute1, attribute2, ..., attributeN ]. (3.14)

Each attribute can be further represented using numerical values, categories, or one-hot

encoding, depending on the nature of the attribute. For instance, the attribute ”genre”

can be represented using categories such as ”action,” ”comedy,” ”drama,” e.t.c.., while

the attribute ”release date” can be represented using numerical values or date cate-

gories.

By integrating content metadata into the caching model, we enrich the information

available for making caching decisions. The model can use this additional informa-

tion to consider the context and relevance of the content to the current user requests

and network conditions. This context-aware approach enhances the performance of

the caching strategies and leads to a more personalized content delivery experience for

users.

In our research, we incorporate content metadata as additional features in the deep Q-

learning model. By including the content metadata attributes in the model, we enable it

to leverage the context and characteristics of the content to optimize the caching deci-

sions. This allows the model to make more intelligent decisions based on the content’s

metadata, leading to improved cache hit ratios and overall network efficiency. Figure

3.16 depicts the Feature Correlation Matrix, which illustrates the relationships between

different features in the dataset used for deep Q-learning-based edge caching in cell-

free Massive MIMO networks. The correlation matrix provides valuable insights into

the connections and dependencies among the features, enabling the identification of

patterns and potential influences on caching decisions and overall system performance.
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3.7 Other Techniques

3.7.1 Single-layer Technique

The single-layer technique is based on a simple neural network called a perceptron.

This type of network has one layer of neurons connected to input and output layers.

Neurons calculate weighted sums of input features, apply an activation function, and

generate output. In edge caching, input features like user ID, content ID, e.t.c.., influ-

ence caching choices. The single-layer neural network learns to link these inputs to op-

timal caching decisions. Neurons weigh input features to calculate sums, using weights

showing feature importance. Activation functions like sigmoid, ReLU, or softmax add

complexity. They make the network capture data patterns. Output of this network is Q-

values, indicating expected rewards for caching choices. Higher Q-value means more

desirable caching. Decision usually picks action with the highest Q-value. Training

uses deep Q-learning, merging neural networks and reinforcement learning. Network

interacts with the environment, gets rewards for caching, and updates Q-values using

temporal difference learning. This trains the network on the best caching strategy. The
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single-layer neural network can be represented mathematically as follows:

For a given set of input features x = [x1, x2, ..., xn], where xi represents the ith feature,

and a set of corresponding weights w = [w1, w2, ..., wn], the weighted sum of the inputs

can be calculated as:

z = w1 ∗ x1 + w2 ∗ x2 + ...+ wn ∗ xn. (3.15)

The weighted sum is then passed through an activation function to introduce non-

linearity. One common activation function used in the single-layer technique is the

sigmoid function (σ), given by:

a = σ(z) =
1

1 + exp(−z)
. (3.16)

The output of the single-layer neural network is the Q-values, which represent the

expected rewards for each possible caching decision. The Q-values are calculated

based on the activation outputs of the network for each possible action (caching or not

caching). Let’s denote the Q-values as Q = [Q1, Q2, ..., Qn], where Qi represents the

Q-value for the ith action. During the training process, the single-layer neural network

is optimized using the deep Q-learning algorithm. The Q-learning algorithm employs

the temporal difference learning method to update the Q-values iteratively. The updated

Q-value (Q′) for a specific action can be calculated as:

Q′ = Q + α× (R + Y ×max(Q′)− Q), (3.17)

where α is the learning rate, R is the immediate reward obtained from the environment

(e.g., based on the caching decision), and Y is the discount factor that determines the

importance of future rewards. The term max(Q′) represents the maximum Q-value

among all possible actions in the next state.

The training process involves iteratively interacting with the environment, observing

the rewards, and updating the Q-values based on the Q-learning equation. This allows

the single-layer neural network to learn the optimal caching policy by maximizing the

expected cumulative rewards over time.
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The advantage of the single-layer technique is its simplicity and computational effi-

ciency. With a reduced network architecture, the training and inference processes are

faster, requiring fewer computational resources. Additionally, the Q-learning algorithm

with a single-layer network can converge to an optimal solution in certain scenarios.

However, it is important to note that the single-layer technique may struggle to capture

complex relationships and interactions among the input features. It may not be able to

model higher-order dependencies and adapt to the intricate dynamics of cell-free Mas-

sive MIMO networks. In such cases, more sophisticated neural network architectures,

such as multi-layered networks, may be required to achieve better performance.

3.7.2 Double-layer Technique

The double-layer technique builds upon the single-layer technique by incorporating an

additional hidden layer in the neural network architecture. This hidden layer serves as

an intermediate processing stage between the input layer and the output layer. It allows

for more complex computations and introduces non-linear transformations, enabling

the model to capture intricate patterns and relationships in the data. In the double-layer

technique, each neuron in the hidden layer receives the weighted sum of its inputs,

similar to the single-layer technique.Mathematically, the weighted sum for a particular

neuron in the hidden layer can be expressed as:

zh = w1 ∗ x1 + w2 ∗ x2 + ...+ wn ∗ xn, (3.18)

where zh represents the weighted sum of inputs for the hidden layer neuron, wi denotes

the weight associated with the ith input feature, and xi represents the value of the ith in-

put feature. To introduce non-linearity, an activation function is applied to the weighted

sum. Commonly used activation functions include the sigmoid function and the recti-

fied linear unit (ReLU) function. The activation output for a neuron in the hidden layer

is denoted as ah. It can be calculated as:

ah = f(zh), (3.19)
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where f(zh) represents the activation function.

The activation outputs from the hidden layer are then passed to the output layer, which

generates the Q-values representing the expected rewards for different caching deci-

sions or actions. Each neuron in the output layer corresponds to a specific caching

action, and its associated Q-value is computed as a weighted sum of the activation

outputs from the hidden layer. Mathematically, the Q-value for the ith action can be

expressed as:

Qi = w1 ∗ a1h + w2 ∗ a2h + ...+ wn ∗ anh
, (3.20)

where aih represents the activation output from the hidden layer neuron for the ith ac-

tion, and wi denotes the weight associated with the hidden layer neuron’s output.

The double-layer technique offers several advantages over the single-layer technique.

Firstly, the additional hidden layer allows for more expressive power and flexibility

in capturing complex relationships and dependencies among the input features. It can

learn higher-order interactions and non-linear patterns, which can lead to improved per-

formance in edge caching decisions.

Furthermore, the double-layer technique enhances the model’s adaptability and gen-

eralization ability. The hidden layer acts as a feature extractor, transforming the input

features into a more abstract representation. This allows the model to capture and lever-

age complex temporal and spatial dependencies, user preferences, network conditions,

and content popularity.

However, the double-layer technique also has certain limitations. One major drawback

is the increased computational complexity. Training a neural network with multiple

layers and a large number of parameters requires more computational resources and

can be computationally intensive. This can impact the training time and the feasibility

of deploying the model in resource-constrained environments.

Another challenge associated with the double-layer technique is the risk of overfitting.

With the increased model complexity, there is a higher chance of the model memoriz-

ing the training data instead of generalizing well to unseen data. Overfitting can occur,

especially when the training dataset is limited or contains noise or outliers. Techniques
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such as regularization, early stopping, and cross-validation can help mitigate overfitting

and improve generalization performance.

3.8 Evaluation Metrics

In this research, we employed three primary indicators to measure how well the deep

Q-learning technique performed for edge caching:

3.8.1 Cache Hit Ratio

The Cache Hit Ratio is the percentage of requests satisfied by items stored in the cache

rather than sent to the server. A more excellent Cache Hit Ratio indicates a successful

caching policy, which reduces the strain on the network and increases the efficiency

with which content is delivered [1].

The cache hit ratio can be calculated as follows:

CHR =

(
ch
tr

)
× 100, (3.21)

where ’ch’ represents the number of cache hits, which is the count of requests that are

successfully served from the cache, and ’tr’ represents the total count of requests made

to the system. The cache hit ratio provides a measure of how effectively the cache is

able to satisfy requests without needing to access the remote server.

This caching efficiency can be gauged by looking at the Cache Hit Ratio. A better

Cache Hit Ratio means more requests were satisfied from the cache, which in turn

means less waiting time for the user. In contrast, a low Cache Hit Ratio indicates that

many requests were forced to retrieve data from the remote server, which might cause

delays and bottlenecks in the network.

An efficient caching strategy that maximizes content availability at the network edge

while minimizing reliance on remote server access relies heavily on the Cache Hit Ra-

tio, which must be measured and optimized. The Cache Hit Ratio and system speed can

be enhanced by using techniques like Deep Q-Learning, which allow for the dynamic

adjustment of the caching approach.
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3.8.2 Cache Operation

A cache operation refers to the process of storing or retrieving data from a cache. In an

edge caching system, caching operations involve storing frequently accessed data in a

cache for faster retrieval and reducing the need to access remote servers.

To calculate cache operations, we typically consider two main metrics: cache hit and

cache miss. A cache miss occurs when the requested data is not found in the cache, and

it needs to be retrieved from the remote server. The cache miss ratio is the proportion

of requests that result in cache misses. It can be calculated using the following formula

[9]:

CMR =

(
cm
tr

)
× 100, (3.22)

where ’cm’ is the count of requests that require accessing the remote server, while the

total number of requests (tr) includes all the requests made to the system.

3.8.3 Processing Time (Delay)

The Processing Time (PT) in edge caching systems can be determined based on various

factors such as the time required for caching (ct), retrieval time (rt), and transmission

to the users time (tt). The specific formula for calculating processing time may vary

depending on the system architecture and implementation. Here’s a general formula

that can be used as a starting point:

PT = ct + rt + tt. (3.23)

3.8.4 Energy Consumption

The energy consumption in edge caching systems can be estimated by considering the

power usage of various components involved, such as energy in caching operations

(ce), energy utilized in retrievals (re), and transmission energy (te). Again, the specific

formula for calculating energy consumption may vary based on the system architecture

and implementation. Here’s a general formula that can be used as a starting point:

EC = ce + re + te + te/o. (3.24)
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3.8.5 Caching Energy

This represents the energy consumed during the caching process, which depends on

factors such as C is the capacitance of the cache memory, V is the supply voltage and

fcache is the frequency of cache accesses and updates. The formula for caching energy

can be represented as:

ce = C × V 2 × fcache. (3.25)

3.8.6 Retrieval Energy

This refers to the energy consumed during data retrieval from the cache. It depends

on C,V and fretrieve is the frequency of cache retrieval (accesses). The formula for

retrieval energy can be represented as:

re = C × V 2 × fretrieve. (3.26)

3.8.7 Transmission Energy

This represents the energy consumed during data transmission from the cache to the

users. It depends on factors like power required for transmission (ptrans) and time

required for transmission(ttrans). The formula for transmission energy can be repre-

sented as:

te = ptrans × ttrans. (3.27)

3.8.8 Transmission Energy per Operation

To calculate the energy per transmission operation, you need to determine the power

consumption during data transmission (po) and the time duration it takes to transmit the

data (to). The formula can be represented as:

te/o = po × to. (3.28)

In above equation, the transmission power represents the power consumption during

data transmission, and the transmission time represents the time duration for a single

transmission operation.
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3.9 Mathematical Model

Mathematical Modeling for Edge Caching in Cell-Free Massive MIMO Networks:

State Space (s): Let s = s1, s2, ..., sN be the set of all possible states in the cell-free

massive MIMO network, where N is the total number of possible states. Each state si

represents a snapshot of the network’s current status and is defined by a feature vector

that includes the following components:

si = (ui, ci, ei, ti, si, cdi, rdi), (3.29)

ui: The user ID for the content request in state si.

ci: The content ID of the requested item in state si.

ei: The ID of the edge server serving the content in state si.

ti: The timestamp of the user’s content request in state si.

si: The size of the content response in state si.

cdi: The caching decision in state si, represented by a binary variable (1 for cached,

0 for not cached).

rdi: The retrieval decision in state si, represented by a binary variable (1 for retrieval

from cache, 0 for retrieval from remote).

Action Space (a): Let a = a1, a2, ..., aM be the set of all possible actions that can be

taken by the caching agent in the cell-free massive MIMO network, where M is the total

number of possible actions.Each action aj represents a caching decision for a specific

content item and is defined by a binary variable:

aj = cj, (3.30)

where cj represents the caching decision for content item j, represented by a binary

variable (1 for cache, 0 for not cache).

Transition Function (T): The transition function T : S ×A× S → [0, 1] represents the

probability of transitioning from one state to another after taking a specific action. It is

defined as follows:

T (si, aj, sk) = P (sk|si, aj), (3.31)
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where P (sk|si, aj) is the probability of reaching state sk after taking action aj in si.

Reward Function (R): The reward function R : S × A × S → R represents the im-

mediate reward associated with transitioning from state si to state sk after taking action

aj . It is defined as follows:

R(si, aj, sk) = α× CHR(sk, aj)− β × PT(sk, aj)− γ × EC(sk, aj), (3.32)

where: α, β, and γ are weighting coefficients to balance the importance of each compo-

nent. CHR(sk, aj) represents the cache hit ratio achieved after taking action aj in state

sk. PT(sk, aj) represents the processing time required after taking action aj in state sk.

EC(sk, aj) represents the energy consumption incurred after taking action aj in state

sk.

Q-Value Function (Q): The Q-value function Q : S × A × S → R represents the ex-

pected cumulative reward for taking a specific action aj in a given state si. It is defined

as follows:

Q(si, aj) = E

[
∞∑
t=0

γt ·R(s(it), a(jt), s(it+1))

∣∣∣∣∣si, aj
]
, (3.33)

where: E[·] denotes the expected value. s(it) and a(jt) represent the state and action at

time t, respectively. γ is the discount factor that balances immediate and future rewards.

Optimal Policy (π∗): The optimal policy π∗s → a is the strategy that maximizes the

expected cumulative reward in the cell-free massive MIMO network. It is defined as

follows:

π∗(si) = argmaxajQ(si, aj), (3.34)

where argmax finds the action aj that maximizes the Q-value for a given state si.

DQN Training Objective: The objective of training the deep Q-network (DQN) model

is to learn the optimal Q-value function Q*(si, aj) that approximates the Q-value for

each state-action pair. The training process aims to minimize the mean squared error
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between the predicted Q-values and the target Q-values:

Loss =
∑
i

(Q(si, aj)−Q∗(si, aj))
2. (3.35)

3.10 Training the DQN Model

The DQN model is trained to perform better by continuously refining its settings in

response to new information gained from the results of previous iterations. This is a

summary of the training procedure:

Algorithm 1 DQN Training Algorithm
Initialization:
I. Initialize replay buffer D
II. Initialize DQN model Q
III. Initialize target DQN model Q′

IV. Set hyperparameters: α, γ, ϵ, ϵmin, ϵdecay, B, C
each episode Episode = episode number
Initialize: Initialize network and state si
each time step Step = time step number
Select action: Select action aj using ϵ-greedy policy
Execute action and observe: Execute aj and observe sk, R, and source
Store experience: Store (si, aj, R, sk) in D
Sample mini-batch: Sample mini-batch from D
Update DQN model: For each mini-batch experience, calculate y using Q′ Update Q
using (y −Q(si, aj))

2

Update target DQN model: If time step modulo C equals 0, update Q′ ← Q
Decay exploration rate: Decrease ϵ using ϵdecay

Transition to next state: Transition: si ← sk

By interacting with its surroundings, the DQN model learns the best caching policy and

gets better at predicting Q-values throughout training. The DQN learns to maximize the

expected cumulative reward by progressively updating the model’s parameters using

the TD learning rule and the Bellman equation.

3.11 Reward Function

The reward function typically takes the current state of the system and the action taken

by the agent as inputs and outputs a scalar value representing the immediate reward

associated with that state-action pair.
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The general form of a reward function can be written as:

R(s, a, s′) (3.36)

where:

s is the current state of the system,

a is the action taken by the agent,

s’ is the next state transitioned to after taking action a.

The specific form and calculation of the reward function depend on the problem do-

main and the goals of the learning task. The design of the reward function is crucial, as

it influences the agent’s behavior and learning process.
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Chapter 4

RESULT AND DISCUSSION

In Chapter 4, we present the results of our research on edge caching in cell-free Mas-

sive MIMO networks. This chapter focuses on analyzing and discussing the outcomes

of our experiments, evaluating the performance of the proposed caching models, and

providing insights into the effectiveness of different strategies and techniques.

The main objective of this chapter is to provide a comprehensive assessment of the pro-

posed caching approaches and their impact on network performance metrics, such as

latency, throughput, and user experience. We delve into the experimental setup, dataset

used, evaluation metrics employed, and statistical analysis techniques utilized to ensure

the validity and reliability of our findings.

Additionally, we discuss the implications of the results in the context of real-world

deployments of cell-free Massive MIMO networks. We explore the practicality and

feasibility of implementing the proposed caching models, considering factors such as

computational complexity, scalability, and resource requirements. Furthermore, we

highlight the potential benefits and challenges associated with integrating edge caching

into existing network infrastructures.

We demonstrate and discuss our proposed Deep Q-Learning approach to edge caching

in cell-free Massive MIMO networks. The efficiency of a model can be evaluated in

terms of how well it handles cache hits, processing time (delay), and power usage. The

efficiency of a caching strategy is measured by the proportion of requests that can be

fulfilled from data already stored in the cache. The content can be retrieved and sent

to users quickly if the processing time is short. The effectiveness and longevity of the

network are both directly related to the amount of energy consumed. The effectiveness

of the proposed method can be evaluated in comparison to these benchmarks. A greater

cache hit ratio, shorter processing times, and lower energy usage are just some of the

potential benefits that can be gleaned from the data. Our method for optimizing edge
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caching in cellular-free Massive MIMO networks is described in further depth, and its

benefits and drawbacks are highlighted.

4.1 Training

In order to cache data at the network’s periphery, cell-free Massive MIMO networks

rely on a concept we call Deep Q-Network (DQN). Maximum performance and intel-

ligent caching decisions from the model require training. The DQN model is trained

through iterative updates based on observations of rewards and behaviors in the en-

vironment. The goal of this work is to improve the cache hit ratio and reduce the

processing time and energy consumption of the model through caching optimization.

The average reward earned during training of the Deep Q-Learning (DQN) model is de-

picted graphically in Fig. 4.1. The y-axis shows the typical reward the model has earned

throughout its training, while the x-axis shows the total number of training episodes.

The blue line exhibits a rising trend, suggesting that the model’s accuracy increases over

time. Higher rewards indicate better caching methods and increased content delivery

efficiency as the model learns from its interactions with the environment and improves

its caching decisions. This figure illustrates the average reward obtained by the Deep

Q-Network (DQN) model over 100 episodes. The x-axis represents the episode num-

ber, while the y-axis represents the average reward obtained during that episode. The

figure provides insights into the learning progress of the DQN model over time. A

higher average reward indicates better performance and convergence of the model.

The DQN model’s training loss over 100 episodes is depicted in Fig. 4.2. The number

of training episodes on the x-axis and training loss on the y-axis. There is a dimin-

ishing trend in the red line as training continues, indicating that the model’s loss is

improving. When the training loss decreases, the model gets better at predicting the

target values. This declining trend is evidence that the training procedure successfully

optimised the DQN model’s caching decisions This figure shows the training loss of

the DQN model over 100 episodes. The x-axis represents the episode number, while

the y-axis represents the training loss. The training loss is a measure of how well the

model is able to minimize the difference between predicted and target values during
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Figure 4.1: Average Reward vs 100 Episode in DQN Model

the training process. A decreasing training loss indicates that the model is effectively

learning and improving its predictions.

As shown in Fig. 4.3 the cache hit ratio for all three caching strategies (a) Proposed

(blue), (b) Multi-Agent (red), and (c) Single Agent (yellow) was calculated across

100 episodes. The cache hit ratio is shown on the y-axis, and the number of train-

ing episodes is shown on the x-axis. The cache hit ratio reveals what proportion of

queries were answered by data already stored in the cache. The illustration evaluates

the effectiveness of the suggested caching strategy compared to those of the multi-agent

and single-agent methods. A caching method quickly responds to user queries if it has

a high cache hit ratio. The proposed method is depicted by the blue line, and its superi-

ority in terms of cache hit ratio is visually compared to that of the red line (multi-agent)

and the yellow line (single-agent). This figure presents the cache hit ratio achieved by

the proposed caching model over 100 episodes. The cache hit ratio represents the pro-

portion of content requests that are served from the cache rather than being retrieved
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Figure 4.2: Training Loss vs 100 Episode in DQN Model

from the remote server. A higher cache hit ratio indicates more efficient content caching

and better utilization of the cache resources.

Figure 4.4 compares the amount of time required to process 100 episodes using three

distinct caching strategies: (a) the proposed (blue), (b) the multi-agent, and (c) the

single agent. The y-axis shows how long it takes to process, while the x-axis shows

how many training episodes have been completed. The time it takes to complete a user

request, including any necessary caching or retrieval procedures, is known as the pro-

cessing time. The figure evaluates the processing time of the suggested caching strategy

and the multi-agent and single-agent methods. The faster data can be sent to users, the

less time it takes to process. The suggested technique is represented by the blue line,

and its effectiveness in lowering processing time is evaluated by visually comparing its

performance to that of the red line (multi-agent) and the yellow line (single-agent).

Figure 4.5 compares the energy savings of three distinct caching algorithms (a) Pro-

posed (blue), (b) Multi-Agent (red), and (c) Single-Agent (yellow) throughout a sample
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Figure 4.3: Cache Hit Ratio vs 100 Episodes

of 100 episodes. The number of training sessions is on the x-axis, and energy efficiency

is on the y-axis. The efficiency with which the network’s energy resources are cached

is referred to as energy efficiency. Lower energy consumption and greater network sus-

tainability result from a caching approach that maximizes energy efficiency. The blue

line shows the proposed approach, and its superiority in terms of energy efficiency is vi-

sually compared to that of the red line (multi-agent) and the yellow line (single-agent).

Figure 4.6 depicts the values of the learning curves across a sample of 100 episodes

for three distinct caching strategies: (a) the proposed (blue), (b) the multi-agent, and

(c) the single agent. The y-axis shows the values throughout the learning curve, while

the x-axis shows the total number of training episodes. The steepness and slope of

the learning curves reveal information about the caching methods’ ability to learn and

adapt to their surroundings. The suggested method is represented by the blue line,

and its learning curve values are visually compared with those of the multi-agent and
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Figure 4.4: Processing Time vs 100 Episodes

single-agent approaches (represented by the red and yellow lines, respectively) to de-

termine how well it learns and adapts. This figure displays the learning curve values

obtained during the training of the caching model. The x-axis represents the episode

number, while the y-axis represents the learning curve values. The learning curve val-

ues provide insights into the learning progress of the model over time. They can include

various metrics such as rewards, losses, or other performance indicators. This figure

presents the cache hit ratio achieved by the proposed caching model over 100 episodes.

The cache hit ratio represents the proportion of content requests that are served from

the cache rather than being retrieved from the remote server. A higher cache hit ratio

indicates more efficient content caching and better utilization of the cache resources.

This figure depicts the processing time required by the caching model to make caching

decisions over 100 episodes. The x-axis represents the episode number, while the y-
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Figure 4.5: Energy Efficiency vs 100 Episodes

axis represents the processing time in milliseconds. The figure provides insights into

the computational efficiency of the caching model. A lower processing time indicates

faster decision-making and reduced latency in serving content requests.

This figure showcases the energy efficiency achieved by the caching model over 100

episodes. The energy efficiency represents the ratio of the amount of data transferred to

the energy consumed in the caching process. Higher energy efficiency indicates more

efficient utilization of energy resources, leading to reduced energy consumption and im-

proved sustainability of the network. Figure 4.7 presents the convergence graphs of the

proposed caching models for different performance metrics: cache hit ratio, processing

time, and energy efficiency. Each sub-figure (a, b, c) represents one specific perfor-

mance metric. The x-axis represents the episode number, while the y-axis represents

the corresponding metric value. The convergence graphs provide an understanding of

how the models converge over time and achieve stable performance.
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Figure 4.6: Learning Curve Values vs 100

Convergence graphs of the suggested models are shown in fig. 4.7 for three differ-

ent metrics: (a) Cache Hit Ratio, (b) Processing Time in milliseconds, and (c) Energy

Efficiency in Joules per Bit. The x-axis shows the total number of training sessions,

while the y-axis displays the values of the individual metrics. Convergence graphs il-

lustrate how suggested models progressively improve over the training periods. The

convergence of the cache hit ratio over time is depicted in figure (a). figure (b) shows

convergence in processing time, which also shows how this time decreases as the model

converges. figure (c) shows the convergence of energy efficiency, illustrating how the

suggested models minimise energy use as they converge on the best caching method.

4.1.1 Configuration Settings

The efficacy of the model is examined in a wide range of contexts by employing differ-

ent experimental designs. Some examples of hyperparameters are cache size, learning

rate, Reply Buffer, and Batch Size. The model’s sensitivity to inputs allows us to iden-

tify optimal parameters through repeated iterations.
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Figure 4.7: Convergence Graphs of Proposed Models (a) Cache Hit Ratio (b) Process-
ing Time (ms) (c) Energy Efficiency (J/Bit)

Table 3: Summarizing the configurations of DQN

Config Config 1 Config 2 Config 3 Config 4

Hidden

Layers

Fully con-

nected neural

network with

ReLU

Convolutional

layers and

fully con-

nected

LSTM layer

and fully con-

nected

Dual-Stream

Architecture

and fully con-

nected

Activation

Layer
ReLU ReLU Tanh ReLU

Learning

Rate
0.001 0.0005 0.0001 0.0002

Gamma 0.99 0.95 0.9 0.98

Epsilon 0.9 0.8 0.7 0.85

Decay Rate 0.001 0.0005 0.0001 0.0002

Replay

Buffer Size
10000 5000 2000 8000
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Config Config 1 Config 2 Config 3 Config 4

Target

Network

Frequency

1000 500 200 800

Steps per

Episode
1000 500 200 800

Episodes for

Training
50000 25000 10000 40000

Activation Layer: The activation function used in the hidden layers of the neural net-

work. Learning Rate: The rate at which the model updates its weights during training

using gradient descent. Gamma: The discount factor used in the Q-learning update

equation to balance immediate and future rewards. Epsilon: The exploration rate that

determines the probability of choosing a random action instead of the one with the

highest Q-value. Decay Rate: The rate at which the epsilon value is decayed over time

during training to decrease exploration. Replay Buffer Size: The maximum number

of experiences stored in the replay buffer for experience replay during training. Batch

Size: The number of experiences sampled from the replay buffer for each training itera-

tion. Target Network Frequency: The frequency at which the target network is updated

with the weights of the online network during training. Steps per Episode: The max-

imum number of steps (time-steps) allowed in each episode during training. Episodes

for Training: The total number of episodes used for training the DQN model.

Figure 4.8 displays a heatmap representing the distribution of states and configurations

in the system in episode 1. The heatmap uses different colors or shades to indicate the

frequency or density of states and configurations. It helps visualize the initial state of

the system and the distribution of different configurations across the states at the begin-

ning of the experiment or simulation.

Figure 4.9 shows a heatmap representing the distribution of states and configurations

in the system in the last episode. Similar to Figure 13, Config 1 is more favorable due

to their smaller batch sizes, which could allow the model to explore a larger variety

of states and actions during training. Smaller batch sizes can lead to more frequent
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Figure 4.8: Episode 1: Heatmap States vs Configurations

updates of the Q-values and better exploration

4.2 Testing

We explain the testing procedure for the Deep Q-Network (DQN) model used for edge

caching in cell-free Massive MIMO networks. In this stage, we put the model through

its paces, examining its performance under various conditions and setups. The purpose

is to determine how effectively the model scales across various user densities, access

point densities, and environmental conditions. The testing process can be summarized

as follows:

4.2.1 Test Scenarios

The model is put through its paces across a variety of network settings. These envi-

ronments include stadiums, rural areas, suburbs, and cities with varying densities. The

number of users, the average number of requests, and the availability of access points

will all change from one situation to the next.

4.2.2 Performance Metrics

The effectiveness of the model is measured in a variety of ways, including the number

of cache hits per unit of time and the amount of energy saved. A caching technique’s
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efficacy can be measured by examining its cache hit ratio, or the percentage of requests

that were satisfied by data already stored in the cache. How quickly a request is pro-

cessed is an indication of the system’s efficiency. Energy efficiency gives a quantifiable

estimate of the model’s overall energy consumption by taking into account caching

processes and data retrieval from the remote server.

4.2.3 Comparison with Baseline Methods

The model’s effectiveness is determined by contrasting it with standard caching tech-

niques or well-established protocols. Commonplace regulations, such as Least Re-

cently Used (LRU) or First In, First Out (FIFO), may serve as a baseline. The model’s

superiority in cache hit ratio, processing time, and energy efficiency may be determined

by comparing it to these baselines.

4.2.4 Experimental Runs

Multiple experimental runs are conducted to ensure statistical significance and verify

the model’s performance. In each experiment, the model is run under a unique set of

conditions and metrics are gathered to assess its performance. By repeating the exper-

iment, we can gauge the stability and dependability of the model’s output over time.

Figure 4.10 displays the suggested model’s performance relative to 100 experimental

runs across three metrics:

(a) Cache Hit Ratio (a), (b) Processing Time (ms), and (c) Energy Efficiency (J/Bit).

The x-axis shows the 100 iterations of the experiment, and the y-axis displays the cor-

responding metrics. The proposed model’s Cache Hit Ratio performance throughout

100 iterations of the experiment is shown in Fig. 4.10(a).

It sheds light on how the suggested model’s cache hit ratio varies over time and how

stable that hit ratio is. An efficient caching technique will result in more user requests

being satisfied from the cache rather than being provided from remote servers, as mea-

sured by a greater cache hit ratio.

Figure 4.10(b) shows the suggested model’s Processing Time performance in millisec-

onds (ms) during the 100 testing trials. It demonstrates how the suggested paradigm

affects the processing time of user requests differently. Faster content retrieval and
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delivery mean a better user experience and less delay if processing time can be mini-

mized. The suggested model’s energy efficiency, evaluated by average Joules per Bit

(J/B) consumption across 100 separate experimental runs, is depicted in Fig. 4.10(c).

Indicating how well the suggested model uses the network’s energy resources, it em-

phasizes the range of efficiencies attained by the model. Reduced energy use and better

long-term sustainability result from increased energy efficiency. Table 3 provides a

comprehensive overview of the model’s testing conditions. The name of the scenario,

the total number of users, the average number of requests made by each user, the total

number of access points, and the current status of the environment. A box plot of the
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Figure 4.11: Box Plot Distribution of Cache Hit Ratio vs 5 Scenarios

cache hit ratio over all five test cases is shown in Fig. 4.11. The median, the quartiles,

and the outliers are only some of the statistical parameters that can be visualised using

a box plot. The cache hit ratio is the proportion of requests fulfilled from data stored in

the cache. The caching strategy’s efficacy can be assessed across various use cases by

comparing the cache hit ratio using the box plot.
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Within the box, the median line indicates the middle quartile of cache hit ratios, while

the higher and lower quartiles are indicated by the box’s upper and bottom margins.

Excluding outliers, shown as single data points, the whiskers reach from the box to

the minimum and maximum values. A box plot representing the range of energy ef-
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Figure 4.12: Box Plot Distribution of Energy efficiency vs 5 Scenarios

ficiency values across all five test cases is shown here. The energy efficiency of a

caching technique evaluates how well it uses the network’s available power sources. If

the caching approach has higher energy efficiency, it improves performance using less

power. To better understand how varied network conditions, affect energy consump-

tion, the box plot allows for a visual comparison of energy efficiency across different

scenarios. Measures of central tendency and dispersion are plotted in a manner analo-

gous to Fig.4.12. Figure 4.13 shows a box plot representation of the processing time

distribution across the five test cases. Time spent processing user requests includes both

caching and retrieval activities. A quicker processing time means more quickly deliv-

ered material and a happier user base. The caching strategy’s ability to handle user

85



Rural

Suburban

Low-Density
Urban

High-Density
Urban

Stadium
0.7

0.72

0.74

0.76

0.78

0.8

Pr
oc

es
si

ng
Ti

m
e

(m
s)

Box Plot Distribution of Processing Time for Different Scenarios

Figure 4.13: Box Plot Distribution of Processing Time vs 5 Scenarios

requests under varying network conditions can be gauged using the box plot, which

allows for comparing processing time across different scenarios. Figure 15-style visu-

alisation of statistical variables, including median, quartiles, and outliers.

4.3 Comparison of Caching Policies in Different Scenarios

The LRU policy demonstrates superior performance in high-density scenarios due to

its retention of popular items in the cache. In environments with high user densities

and predictable request patterns, frequently accessed items are more likely to be stored

in the cache and requested again, resulting in a higher cache hit ratio. The performance

of MRU decreases from low to high density environments, mainly because it evicts

the most recently used items. In high-density scenarios, where popular items are fre-

quently accessed in short intervals, evicting the most recent items can lead to more

cache misses. Similar to LRU, FIFO also performs well in high-density environments

because it evicts items based solely on their arrival time, not considering access pat-
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terns. As a result, popular items are likely to be stored and accessed before eviction,

leading to a higher cache hit ratio. The LFU policy shows mixed performance as it

evicts the least frequently used items. Its effectiveness depends on the specific request

patterns in both high- and low-density scenarios. In this case, LFU performs relatively

well across all scenarios, likely because frequently accessed items are retained in the

cache, resulting in a higher cache hit ratio. RR exhibits consistent performance across

all scenarios since it evicts items in a circular order without considering access pat-

terns or popularity. Its performance remains stable regardless of the environment’s

characteristics. SLRU, a variation of LRU with a ”probationary” segment for items,

performs well in high-density environments for similar reasons as LRU. By retaining

popular items in the cache, which are likely to be repeatedly requested, SLRU achieves

a higher cache hit ratio.

Figure 4.3 shows how various caching eviction policies fared throughout all five test

cases regarding the cache hit ratio. LRU, MRU, FIFO, LFU, RR, and SLRU are some

of the cache eviction policies that have been studied. Figure 18 is broken down into

subfigures, each representing a different setting (high-density urban, low-density urban,

suburban, rural, and stadium). This graph represents the various eviction policies along

the x-axis, and the cache hit ratio is shown along the y-axis. We may determine which

eviction policy performs best in various network configurations by contrasting the two.

Various eviction policies have various strengths and weaknesses, and understanding

these through analyzing the cache hit ratio for each strategy in each circumstance can

provide light on these issues. Figure 4.15 is a heatmap depicting the performance of the

Deep Q-Network (DQN) model in various settings and setups. The heatmap displays

a colour-coded matrix that represents the model’s performance. The heatmap displays

the various settings along the x-axis and scenarios along the y-axis. The colour of the

corresponding cell in the heatmap represents the DQN model’s performance in a given

scenario and setup. Higher values are represented by warmer colours (like red), and

lower values are represented by more incredible colours (like blue) in the heatmap’s

colour scale, which reflects the performance level. The model’s performance in various

settings is represented visually using a consistent colour scheme. The heatmap provides
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a visual representation of DQN model performance, making it easy to see trends and

patterns. Warmer colours in high-performance regions imply that the model does well

in that scenario with that configuration. Conversely, places depicted in more excellent

colours suggest those where the model is expected to perform poorly.

4.4 Discussions

Our research into edge caching in cellular-free Massive MIMO networks is presented

and discussed in this part. We suggested a deep Q-learning model for edge caching

that underwent rigorous testing across various use cases to determine its efficacy. Key

parameters, including cache hit ratio, processing time, and energy efficiency, were used

to evaluate the model’s performance. The model’s robustness and adaptability to varied

network settings were revealed through rigorous testing. With a moderate user load and
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medium building density, the model showed promising performance in the low-density

urban setting.

Because the cache was able to handle multiple requests, fewer messages had to be sent

to the server. The processing time was low, which meant that the content could be

delivered to the consumer quickly. The model’s superior energy efficiency also con-

tributed to the sustainability of the network as a whole. The prototype was tested in

a densely populated urban environment. High cache hit ratio and fast execution show

that the model performed well despite the obstacles. The model proved its versatility

by handling a large number of requests in a densely populated region. However, it was

shown that the energy efficiency dropped marginally because of the higher resource

consumption. The model performed admirably in the suburbia scenario, which simu-

lated a low building-density environment. The cache hit ratio has stayed high, meaning

consumers will continue receiving timely and relevant content. Minimal processing

time meant a more fluid experience for the end user. In addition, the model’s energy ef-
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ficiency stood out as a critical indicator of its potential to maximize resource utilization

in less densely inhabited areas. The model’s flexibility in dealing with low popula-

tions and poor infrastructure was on display in the rural scenario. The model’s cache

hit ratio and processing time remained respectable, even with a few users and access

points. The comparatively high energy efficiency highlighted the model’s capacity to

reduce energy use while still satisfying consumer needs. Last but not least, the stadium

scenario presented a challenging environment with many people in a small area. The

model’s performance was impressive overall, with a high cache hit ratio and quick pro-

cessing time being two of its hallmarks. High demand and resource utilization resulted

in a slight decline in energy efficiency. The outcomes show the efficacy and flexibility

of our proposed deep Q-learning model for edge caching in cell-free Massive MIMO

networks. The model’s potential to significantly enhance content delivery and network

performance is demonstrated by its capacity to maximize cache utilization, decrease

processing time, and increase energy efficiency. However, for optimal outcomes, it is

necessary to tailor the model’s implementation to each network environment’s particu-

lar needs and traits.

Our research into edge caching in cellular-free Massive MIMO networks is presented

and discussed in this part. We suggested a deep Q-learning model for edge caching

that underwent rigorous testing across various use cases to determine its efficacy. Key

parameters, including cache hit ratio, processing time, and energy efficiency, were used

to evaluate the model’s performance. The model’s robustness and adaptability to varied

network settings were revealed through rigorous testing. With a moderate user load and

medium building density, the model showed promising performance in the low-density

urban setting.

Because the cache was able to handle multiple requests, fewer messages had to be sent

to the server. The processing time was low, which meant that the content could be

delivered to the consumer quickly. The model’s superior energy efficiency also con-

tributed to the sustainability of the network as a whole. The prototype was tested in

a densely populated urban environment. High cache hit ratio and fast execution show

that the model performed well despite the obstacles. The model proved its versatility
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by handling a large number of requests in a densely populated region. However, it was

shown that the energy efficiency dropped marginally because of the higher resource

consumption. The model performed admirably in the suburbia scenario, which simu-

lated a low building-density environment. The cache hit ratio has stayed high, meaning

consumers will continue receiving timely and relevant content. Minimal processing

time meant a more fluid experience for the end user. In addition, the model’s energy ef-

ficiency stood out as a critical indicator of its potential to maximize resource utilization

in less densely inhabited areas. The model’s flexibility in dealing with low popula-

tions and poor infrastructure was on display in the rural scenario. The model’s cache

hit ratio and processing time remained respectable, even with a few users and access

points. The comparatively high energy efficiency highlighted the model’s capacity to

reduce energy use while still satisfying consumer needs. Last but not least, the stadium

scenario presented a challenging environment with many people in a small area. The

model’s performance was impressive overall, with a high cache hit ratio and quick pro-

cessing time being two of its hallmarks. High demand and resource utilization resulted

in a slight decline in energy efficiency. The outcomes show the efficacy and flexibility

of our proposed deep Q-learning model for edge caching in cell-free Massive MIMO

networks. The model’s potential to significantly enhance content delivery and network

performance is demonstrated by its capacity to maximize cache utilization, decrease

processing time, and increase energy efficiency. However, for optimal outcomes, it is

necessary to tailor the model’s implementation to each network environment’s particu-

lar needs and traits.
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Chapter 5

CONCLUSIONS

In conclusion, our research on leveraging deep Q-learning for optimizing edge caching

within cell-free Massive MIMO networks has yielded significant contributions and in-

sights. Through comprehensive experiments, rigorous analysis, and thorough evalua-

tion, we have convincingly demonstrated the prowess of deep Q-learning techniques in

elevating cache hit ratios, reducing processing time, and enhancing energy efficiency.

Notably, the superiority of the double-layer technique over the single-layer counter-

part has been established across cache hit ratio, processing time, and energy efficiency

metrics. Our study underscores the pivotal influence of content popularity, user pref-

erences, and network conditions on caching performance. By embracing these factors,

we can fine-tune content placement strategies and tailor caching decisions to dynamic

network dynamics. The practical implications of our findings are profound, positively

impacting user experience, network scalability, efficiency, and energy conservation ulti-

mately aligning with the goal of sustainable communication systems. Moving forward,

our research lays the groundwork for further exploration in this domain, inviting con-

tinued inquiry into refined caching algorithms and adaptive strategies that account for

evolving network landscapes and user behaviors.

5.1 Limitations and Future Direction

While our study contributes valuable insights, it’s important to note certain limitations.

Operating under idealized network conditions and assuming uniform user distributions,

our findings might not fully encapsulate real-world complexities. To enhance practical

applicability, future research should delve into the impact of heterogeneous network

scenarios and varying user behaviors. Broader datasets reflecting these complexities

would be crucial for validating and generalizing our results. Additionally, exploring

alternative caching policies could uncover further optimization possibilities in diverse
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network environments.

Looking ahead, several exciting directions beckon in the domain of edge caching for

cell-free Massive MIMO networks. The integration of advanced machine learning

techniques, such as reinforcement learning and deep neural networks, holds promise

for refining caching decisions. Scalability remains a pivotal concern, prompting the

need for efficient caching algorithms tailored to expansive networks with numerous

users, content items, and edge servers. Exploring the synergy between edge computing

and caching offers an avenue to reduce latency and expedite content delivery. Eval-

uating caching strategies under dynamic network conditions, devising energy-efficient

approaches, and subjecting proposed models to real-world testing are vital steps toward

practical deployment and optimization.
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