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Abstract

We investigate the factorizability of the decay amplitude W+ → Bγ at tree
level and with one loop QCD corrections. It was found that working in the
heavy quark limit allows these amplitudes to be factorized as this limit sets
the tone for the kinematical hierarchy of this process which is
mW ∼ mb >> ΛQCD. In light of this one can employ the Factorization
Theorem of Heavy Quark Effective Theory to express each amplitude as a
convolution of a hard perturbative part, namely the Hard Kernel and a non-
perturbative part, the LCDA.
The decay amplitude can be decomposed in terms of two scalar form factors
FV and FA which can be shown to be equal up-to one loop level. They can be
explicitly calculated using the Hard Kernel and a model dependant LCDA.
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Chapter 1

Introduction

One of the most thoroughly tested theories of contemporary physics is the
Standard Model (SM) of Particle Physics. It describes the Electromagnetic,
Strong and Weak forces of nature. However, in recent years, experimental
evidence has shown its shortcomings and inconsistencies hence it is deemed
to be incomplete.

Unlike the gauge sector of the SM, the flavour sector of the SM has
not been verified to a high degree of precision. One of the most interesting
problems in flavour physics is the determination of the CKM matrix elements
which dictate the degree of mixing between the quark weak and mass eigen
states in the weak interaction. The numerical values of these parameters are
extracted from experimental data, prior to theoretical calculations.
Another interesting topic in flavour physics is the violation of CP symmetry
which was first observed in 1964 in the study of neutral K mesons. Later it
was also observed in a large number of decays involving the B meson. These
decays are one of the most direct ways of determining the CKM elements.
They are also highly suitable for the study of non-perturbative QCD which
is responsible for the confinement of quarks and gluons within hadrons. This
is due to the asymptotic freedom of QCD which causes the quark-gluon
coupling to be strong at low energy scales and weak at high energy scales.

The B meson is interesting on account of the b quark which is heavi-
est of the quarks able to form a hadron. Due to its mass being far larger
than typical hadronic scales, the strong interaction involving the b quark
are perturbative because at the heavy quark mass scale the effective QCD
coupling is sufficiently small for perturbative calculations of short distance
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effects. Hence studies involving the B meson help improve our understanding
of QCD at different dynamical scales.

To deal with the disparate kinematical scales in the study of hadrons,
various theoretical approaches have been developed. Among these, QCD
Factorization is of crucial importance. It provides the theoretical basis to
control QCD effects in exclusive processes. Factorization requires the high
and low energy dynamics of a system to be independent of each other [1,2].
This is not really the case but can be a useful approximation under certain
conditions and up to a certain degree of accuracy. This is something that has
to be checked and proven for a particular process at a given order and may
involve certain prerequisite conditions or approximations, outside of which
Factorisation might not hold.
The earliest applications of the factorization framework in collider physics
were in hard probing experiments like Deep Inelastic Scattering [3] and in
hard hadron scattering like the Drell-Yan process [4]. The description of such
processes relies on the parton model wherein the partons composing a hadron
are considered mutually free [1,2]. The total cross sections of such scatter-
ings are equal to a convolution integral of a hard perturbative parton-level
cross-section with a process-independent, non-perturbative parton distribu-
tion function (PDF) [1,3].

Amplitudes of weak decays/productions of hadrons can also be under-
stood in the factorization framework as there are two different types of in-
teractions governing such processes. There is the electroweak sector which
is responsible for the flavour changing and there is the low energy strong in-
teraction which is responsible for binding the quarks together as a hadronic
state. The issue is that the former has to be treated perturbatively and the
latter non-perturbatively, even though they occur in the same process. For
this, the technique of QCD Factorisation is used. Its factorization formula
expresses the Feynman amplitude as a convolution of a perturbative Hard
Kernel and a universal non-perturbative distribution amplitude [5,6]. The
long distance hadronic information for exclusive hadron reactions is described
by Light-Cone Distribution Amplitudes (LCDA’s) which are analogous to
parton distribution functions (PDFs) in the inclusive processes [2].
This approach is applied to factorize a decay process of the B meson in [7]
and a similar approach for the factorization of a W boson to produce a B
meson in [8] where the order by order computation of the B meson LCDA
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uses bi-local operators comprising Wilson lines [2,9]. This is in contrast to
the approaches of [10] using QCD sum rules and [11] using operator product
expansion (OPE). LCDA evolution with respect to the factorization scale
can be computed for both light mesons [12] and heavy mesons [13].
The B mesons distribution amplitudes play a central role in factorization ap-
proaches and were introduced as a direct analogue to LCDA’s of light mesons
[12]. To study the properties of B meson LCDA’s, the radiative leptonic B
decays such as B → γlν̄l [14] are among the simplest processes. The form
factor for such radiative processes can be evaluated in terms of B meson
LCDA’s up to one loop level accuracy.
The validity of factorisation approaches can also be tested through produc-
tion processes of the B meson which involves the decay of Z or W bosons.
The first detailed studies of radiative decays of W boson into Dc [15] and Bc

in the framework of non-relativistic QCD (NRQCD) and light cone factori-
sation (LCF).

In light of all this we investigated the production of heavy-light mesons
within the framework of Heavy Quark Effective Theory (HQET) factoriza-
tion. For this we mainly focus on the process W+ → Bγ. This process
involves three different kinematical scales. Namely, the Weak boson mass
MW , b-quark mass mb, and the QCD scale ΛQCD. At leading twist mb ∼MB

because they differ only by O(ΛQCD). By an explicit computation up to
one-loop level, we found that hard-scattering kernel is free of infrared (IR)
divergences. This implies that this amplitude, up to one-loop level, can be
factorized into a convolution of perturbatively calculable hard kernel and
non-perturbative LCDA.

The structure of this thesis is as follows: After the Introduction follows a
brief overview of some of the tools used to tackle this problems. Chapter 2
introduces the rudiments of Factorisation and Wilson lines. Chapter 3 gives a
brief overview of HQET. The remaining chapters constitute the core problem
of the thesis. In Chapter 4 we introduce the kinematics of the process and
calculate the Feynman amplitudes, LCDA’s and Hard Kernels. In Chapter
5 the Hard Kernels and LCDA’s are used to calculate the vector and axial
vector Form Factors for this process at tree level and one loop level. In
Chapter 6 we conclude by proving that the factorization theorem holds for
this process at tree level and one loop level. All of the Feynman and LCDA
diagrams in this thesis have been drawn using the software JaxoDraw [16].

3



Chapter 2

Factorization

In this chapter we discuss the idea and motivation behind the Factorisation
framework. We start off with a discussion on Naive Factorisation and point
out its drawbacks. Then we introduce the approach of QCD Factorisation,
which is what we will use to study this problem and we explain the perturba-
tive and non-perturbative quantities associated with it like the Hard Kernel,
LCDA’s and Form Factors.

When dealing with weak decays of heavy-light mesons, there are three
main kinematical scales [5]. Namely the mass scales of the weak boson mW ,
heavy quark mb (in our case, the b quark) and the scale of non-perturbative
QCD interactions ΛQCD. When considering this process in the heavy quark
limit, these scales follow a hierarchy given as

mW ∼ mb >> ΛQCD (2.1)

Hadronic processes involving the weak interactions are of the form

A =
GF√
2

∑
i

λiCi(µ) ⟨F | Oi(µ) |I⟩ (2.2)

WhereGF is the four fermion effective coupling, λi are the CKM elements and
Ci(µ) are the short distance Wilson coefficients of the long distance effective
operators Oi(µ). These are all defined at the scale µF which is the energy
scale separating the large and short distance physics of the process. Solving
the matrix element is complicated on this account and requires partitioning or
factorizing the amplitude, written out in terms of the constituent particles,
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into a part dependant upon the high energy and small distance dynamics
and another dependant upon the low energy scale which contains the non-
perturbative dynamics. This is due to the three point gluon self interaction
term in the QCD Lagrangian. The QCD effective coupling diverges at the
scale O(ΛQCD) [17], which is the momentum scale of interactions at the
hadronic length scale hence perturbative QCD does not apply here.

2.1 Naive Factorization

A useful decay process to motivate the discussion would be

B → π+π−

The idea behind Naive Factorisation is to divide a matrix element of a four-
fermion operator of a heavy quark decay (mediated by a weak boson) into
matrix elements corresponding to two separate current operators as in [5]:

⟨π+π−| (ūb)V−A(d̄u)V−A |B̄⟩ → ⟨π−| (d̄u)V−A |0⟩ ⟨π+| (ūb)V−A |B̄⟩ (2.3)

This simplifies the matrix element into a product of a decay constant and a
B̄ → π+ Form Factor. As the π− and (B̄π+) system can interact via gluon
exchange so it introduces non-factorisable gluon contributions which can only
be ignored if the gluons are soft. Such an assumption is insufficient as it does
not allow for hard gluon interactions and re-scattering in the final state.

2.2 QCD Factorization

In this study, a subcategory of QCD Factorization is used, called HQET
Factorization as we study a process involving heavy-light mesons. It is the
presence of widely separated kinematical scales which allow the factoriza-
tion decay/production amplitudes of heavy-light mesons into a convolution
of Hard Kernel (T ), containing the hard scales and Light Cone Distribution
Amplitudes or LCDA’s (Φ) and form factors (F ).
In the weak decay or production of B mesons the typical mass and en-
ergy scales are the masses of the b quark and W bosons as mb=4.8 GeV,
mW=80 GeV and the momentum scale of non-perturbative QCD interaction
ΛQCD=0.2 GeV. Studying this process using Light Cone Factorisation (LCF)
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requires treating mW as being far larger than mb ∼ ΛQCD hence the former
gets treated as a hard scale whilst the latter are two different soft scales.
In [7] this decay is studied in QCD Factorisation which requires taking the
b quark in the heavy quark limit, which makes it and all other scales above
it as hard scales. Hence mW ∼ mb are classified as a hard scale and ΛQCD
is the only soft scale, making it a process with only two kinematical scales.
The factorization formula, as given in [5,7] is

〈
M1M2 |Qi|B

〉
=
∑
j

FB→M1
j

(
m2

2

) ∫ 1

0

du T Iij(u) ΦM2(u)

+
∑
k

FB→M2
k

(
m2

1

) ∫ 1

0

dv T Iij(v) ΦM1(v)

+

∫ 1

0

dξ du dv T IIi (ξ, u, v) ΦB(ξ)ΦM1(v)ΦM2(u)

(2.4)

〈
H1M2 |Qi|B

〉
=
∑
j

FB→H1
j

(
m2

2

) ∫ 1

0

du T Iij(u) ΦM2(u) (2.5)

FB→M
j denotes a B → M form factor and ΦM is LCDA for the quark-

antiquark Fock state of meson M . Both of these are non-perturbative quan-
tities and are much simpler relative to the original matrix elements. T Iij(u),
T Iik(v) and T

II
i (ξ, u, v) are the hard-scattering functions of the light-cone mo-

mentum fractions u, v and ξ of the quarks inside the final state mesons and
the B meson respectively. These hard-scattering functions can be computed
perturbatively.

Figure 2.1: Graphical representation of factorization formula [7]
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The decay of B meson into two light mesons is given by (2.3). The first
two terms in it correspond to the spectator quark of the B meson going to
either of the two final state (light) mesons, while the other quark engages
in hard interactions, hence the Hard Kernel T I . The third term in (2.3) is
for the case when both quarks engage in hard interactions and there are no
spectators hence the Hard Kernel T II . In the hard exclusive processes where
the decay is dominated by exchange of hard gluons, the amplitude can be
expressed as the convolution of Hard Kernel with the LCDA’s of the partic-
ipating mesons.
B meson decaying into a heavy and a light meson is represented by (2.4).
Factorization does not hold for the case of a spectator quark going to a light
meson but the other meson being heavy, because the heavy meson is neither
fast nor does it have a small mass.

2.2.1 Non-perturbative quantities

Form Factors

Form Factors are scalar functions consisting of independent terms, which are
obtained by the decomposition of current matrix elements, using Lorentz and
gauge symmetry. In QCD factorization the matrix elements of the vector cur-
rents are parameterized by two scalar form factors: FB→P

+ (q2) and FB→P
0 (q2).

The B to pseudo-scalar (P ) vector matrix element is parameterized as

⟨P (k)| qγµb |B(p)⟩ = FB→P
+ (pµ + kµ)+

[
FB→P
0 − FB→P

+

] m2
B −m2

P

q2
qµ (2.6)

where q is the momentum difference between the two mesons. The two form
factors tend to get equal as the momentum difference between the final and
initial mesons approaches zero.
The above form factors are known as physical form factors and to use them
is advantageous for they are directly related to measurable quantities or to
other form factors that can be calculated from lattice QCD or QCD sum
rules.

LCDA’s of Light Mesons

The momenta distribution of light mesons is given by their respective LCDA’s
in exclusive processes. This is analogous to PDF’s for inclusive processes.
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In general they are vacuum to meson (or vice versa) matrix elements of
a two-quark bi-local operator. Up to the heavy quark limit, the leading
twist LCDA’s for Pseudo-scalar (P ), longitudinally polarized Vector (V∥)
and transversely polarized Vector (V⊥) mesons are given as follows

⟨P (q)| q(y)αq′(x)β |0⟩ |(x−y)2=0 =
ifP
4

(
/qγ5
)
βα

∫ 1

0

duei(uqx+uqy)ΦP (u, µ) (2.7)

⟨V∥(q)| q(y)αq′(x)β |0⟩ |(x−y)2=0 = −ifV
4
/qβα

∫ 1

0

duei(uqx+uqy)Φ∥(u, µ) (2.8)

⟨V⊥(q)| q(y)αq′(x)β |0⟩ |(x−y)2=0 = −ifT (µ)
8

[
/ξ∗⊥, /q

]
βα

∫ 1

0

duei(uqx+uqy)Φ⊥(u, µ)

(2.9)
With fP,V∥,V⊥(µ) being the form factors of the their respective mesons.

LCDA’s of B Mesons

As LCDA’s are defined in light-cone coordinates so the relevant definitions
of these coordinates are given in detail in Chapter 4.
The reason for the introduction of the B meson LCDA in the QCD factoriza-
tion formula is the hard interaction of spectator quark. This hard spectator
interaction term depends upon p′.l where p′ and l are the momenta of the
light meson and spectator quark, respectively. As only the p

′
− component of

the light meson momentum is non-zero so p′l = p
′
−l+. The decay amplitude

for two-particle Fock state of the B meson is

ΨB(z, p) =
〈
0 |qα(z)[z, 0]bβ(0)|Bd(p)

〉
=

∫
d4l

(2π)4
e−ilzΨ̂B(l, p) (2.10)

where Ψ̂B represents the full Bethe-Salpeter wave function and [z, 0] refers
to the Wilson line to ensure bi-local gauge invariance of the matrix element.
Then approximating the result as∫

d4l

(2π)4
A(l, . . .)Ψ̂B(l, p) =

∫
dl+A

(
l+, . . .

) ∫ d2l⊥dl
−

(2π)4
Ψ̂B(l, p) (2.11)
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As the integration of (2.10) is only over l⊥ and l− so z⊥ and z+ are zero.
Under these conditions the B meson LCDA, at leading order in 1/mb, can
be parameterized in terms of two scalar wave functions as:

⟨0| qα(z)[z, 0]bβ(0) |Bd(p)⟩ = −ifB
4
δij
[(
/p+mb

)
γ5
]
βγ

×
∫ 1

0

dξe−iξp
+z−

[
ΦB1(ξ) + /n−ΦB2(ξ)

]
γα

(2.12)

with the renormalization conditions∫ 1

0

dξΦB1(ξ) = 1,

∫ 1

0

dξΦB2(ξ) = 0 (2.13)

As seen from the indices in (2.12), the B meson distribution amplitude is
anti-symmetric at scales near or smaller than that of the heavy quark mass.
At scales much higher than O(mb), it tends to a more symmetric form.
The heavy quark distribution amplitude can be defined in either HQET or
QCD, which entails defining the heavy quark field (in this case for the bottom
quark) b in HQET. The light quark field q will remain the same in QCD or
HQET.

2.3 Wilson Lines

The idea of Wilson lines can be motivated from a geometric investigation of
local gauge invariance of the Dirac Lagrangian [9]. A local gauge transforms
the Dirac fields as ψ → e−igα(x)ψ and ψ̄ → eigα(x)ψ̄
Considering the Lagrangian

L = ψ̄(i/∂ −m)ψ

It is clear that the mass term preserves invariance under a local gauge trans-
form but not the derivative term. For there to be local gauge invariance the
derivative has to transform similarly to a Dirac field and that is a problem
when one considers the derivative by its fundamental definition.

nµ∂µψ(x) = limϵ→0
ψ(x+ ϵ)− ψ(x)

ϵ
(2.14)

There cannot be a common phase factor pulled from the derivative which
will cancel the phase due to the accompanying ψ̄. The conventional work
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around is to modify the derivative to include a gauge field. In the Wilson
line approach we end up with a gauge field as well but it is introduced by
inserting a two point object U(x, y) in the derivative

nµDµψ(x) = limϵ→0
ψ(x+ ϵ)− U(x+ ϵ, x)ψ(x)

ϵ
(2.15)

which is defined to have this bi-local gauge transformation

U(x, y) → eigα(x)U(x, y)e−igα(y) (2.16)

Further properties of U(x, y) are inferred from the approach of [9].

• Transitive Property : If U(x, y) connects the gauge transformation of
two fields at two separate points then U(x, b)U(b, y) will connect those
gauge transformations with that of an intermediate point as well.

• Unitarity : The object ψ̄(x)U(x, y)ψ(y) is locally gauge invariant and
by the transitive property it is ψ̄(x)U(x, b)U(b, y)ψ(y)
ψ(x) = U(x, b)ψ(b) and ψ̄(b) = ψ̄(x)U †(b, x) by their gauge transfor-
mations.
Now considering a local operator from the above definitions
ψ̄(b)ψ(b) = ψ̄(x)U †(b, x)U(b, x)ψ(x)
For it to be gauge invariant, U must be unitary : U †(b, x)U(b, x) = I
The transitive property also allows ψ̄(x)ψ(x) = ψ̄(x)U(x, b)U(b, x)ψ(x)
and this shows that the action of Hermitian conjugation on the Wilson
line is U †(b, x) = U(x, b)

A unitary operator is a pure phase hence U(x, y) = eigα(x,y) where α(x, y)
also obeys the transitive property along with being anti-symmetric. The
Wilson line approach is useful when applied to QCD, where U(x, y) contains
non-ableian generators. This enforces path ordering. For example

U(x, y) = U(x, b1)U(b1, b2)....U(bN−1, bN)U(bN , y)

The path ordered exponentials for this product are written such that all the
points along the Wilson path are going in a descending order from left to
right (Fig 2.2). In parametrizing this path from x to y , α(x, y) gets treated
like a vector function with integration over the path parameters. The path
for the different cases of Wilson lines can be parameterized as

zµ = bµ + λnµ

10



bµ is the end point with λ = [−∞,∞] for fully infinite and λ = [−∞, 0] for
semi-infinite lines.
For a finite line one of the points can be set as zero and and the entire path
parameterized with α = [0, 1]

zµ = αznµ

The general expression of a Wilson line, with path ordering, is therefore given
as

U(x, y) = Peig
∫
dz.A (2.17)

Just like the addition of g /A in the ordinary derivative in a Dirac Lagrangian
introduces an interaction term so here the Wilson line introduces a locally
gauge invariant interaction term of two spinor fields at non-infinitesimally
separate space time points.

n.Dψ =
ψ(y)− Peig

∫
dz.Aψ(x)

y − x
(2.18)

up to NLO in the Dirac Lagrangian

L = ψ̄n.∂ψ −
igψ̄(y)

∫
dz.Aψ(x)

y − x
−mψ̄ψ (2.19)

2.3.1 Wilson Line Feynman Rules

The Wilson line integral can be evaluated explicitly and the result succinctly
be expressed in a set of Feynman rules.

U = Peig
∫
dz.A =

∞∑
0

(ig)n

n!
P
∫
c

dzn.An(z) (2.20)

U = 1 + ig

∫
dz.A+ ...

Aµn(z) =

∫
d4knA(kn)e

−i
∑
n kn.zn

with zµ = bµ + λnµ thus breaking up the exponential into two factors gives
two integrals ; one with the gauge field and other of the parameter integration
hence

U =
∞∑
n=0

(−ig)n

n!

n∏
j=1

∫
d4kjA(kj)e

−i
∑j
l=0 b.klIn(λ) (2.21)
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Figure 2.2: The dotted line denotes the Wilson line. This figure shows the
expansion of the path ordered exponential. Each nth term has n-1 gluons
attached to it because the leading term is just an identity. All of these semi-
infinite lines start from −∞ and end at some point bµ. The line from negative
infinity carries zero momentum.

which is

U =
∞∑
n=0

Un

where some of the terms in the sum are

U0 = 1

U1 = −ig
∫
d4k1n.A(k1)e

−ia.k1I1

U2 =
(−ig)2

2!

∫
d4k1d

4k2n.A(k1)n.A(k2)I2

The general expression of In is given below and explicitly solving individual
Ii’s as in the following section, gives the general result of In.

In(λ) =
n∏
j=1

∫ λj+1

−∞
dλje

−in.
∑n
j=1 λjkj (2.22)

The integration limits of λ determine what case of Wilson line it is. Gen-
erally the semi-infinite case is obtained first and then using the Wilson line
properties like transitivity and unitarity, other cases of Wilson lines can be
derived.
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2.3.2 Semi-Infinite Wilson Line

Evaluating the parameter integrals :

I1 =

∫ 0

−∞
dλ1e

−in.k1λ1 =
i

n.k1 + iϵ

In the explicit form of the above integrand the result should be undefined
due to the infinite limit which gives e−in.k1(−∞). This issue is avoided by
considering k to be complex ie k1 → k1 + iϵ which makes the exponential
with infinity to vanish. This is also why there is an iϵ in the denominator.

I2 =

∫ 0

−∞
dλ2e

−in.k2λ2
∫ λ2

−∞
dλ1e

−in.k1λ1 =
i2

(n.k1)(n.k2 + n.k1) + iϵ

hence

In =
in∏n

i=1

(
n.
∑i

l=1 kl

)
+ iϵ

(2.23)

Putting together the two integrals gives the solved semi-infinite Wilson line

U(b,−∞) =
∞∑
n=0

(−ig)n

n!

n∏
j=1

∫
d4kjA(kj)e

−i
∑j
l=0 b.kl

in∏n
i=1

(
n.
∑i

l=1 kl

)
+ iϵ

(2.24)
which can be constructed from these rules :

• propagator : i
n.k+iϵ

• Wilson line-gluon vertex factor : −ignµT aij
Note that T aij is implicit in Aµ

• end point : e−ib.k

2.3.3 Reversed Semi-Infinite Wilson Line

This path goes from a finite point bµ to an infinite point with the parametriza-
tion λ = [0,∞] but the path ordering remains unaffected. The only change
is in the parameter integral which has its limits flipped :

In(λ) =
n∏
j=1

∫ ∞

λj−1

dλje
−in.

∏n
j=1 λjkj =

(−i)n∏n
i=1

(
n.
∑i

l=1 kl

)
− iϵ

(2.25)
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For this to work the promotion of ki to complex has to be done with the
opposite sign as the infinity limit has opposite sign too.

U(∞, a) =
∞∑
n=0

(−ig)n

n!

n∏
j=1

∫
d4kjA(kj)e

−i
∑j
l=0 b.kl

(−i)n∏n
i=1

(
n.
∑i

l=1 kl

)
− iϵ

(2.26)
In its Feynman rules the only thing different is the propagator : −i

n.k−iϵ

2.3.4 Hermitian Conjugated Semi-Infinite Wilson Line

U †(b,−∞) =
∞∑
n=0

(ig)n

n!

n∏
j=1

∫
d4kjA†(kj)e

i
∑j
l=0 b.kl

(−i)n∏n
i=1

(
n.
∑i

l=1 kl

)
− iϵ

(2.27)
The † has done two things; it has flipped the imaginary signs and it has
reversed the ordering of the gauge fields, which have also been hermitian
conjugated.
The reversal of the order of summation of j is anti-path ordering which is
evident from the earlier definition of Wilson lines : U † = P̄eig

∫
dz.A†

Furthermore A†(k) = A(−k) and substituting k with −k gives

U †(b,−∞) =
∞∑
n=0

(ig)n

n!

1∏
j=n

∫
d4kjA(kj)e

−i
∑j
l=0 b.kl

in∏n
i=1

(
n.
∑i

l=1 kl

)
+ iϵ

(2.28)
Hence the Feynman rules to Hermitian conjugate a semi-infinite line are

• propagator: i
n.k+iϵ

• Wilson line-gluon vertex factor : ignµT aij

• end point : e−ib.k

Hence we see that the action of Hermitian conjugation reverses the path
ordering and flips the sign of the vertex factor. The reversal of path ordering
is equivalent to switching the sign and limits of infinity in the parameter
integral hence

U †(b,−∞) = U(∞, b)
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2.3.5 Finite Wilson Lines

For a finite path the paramterization is similar to the previous cases but with
the limits restricted to λ = [0, |b− a|] hence

U(b, a) =
∞∑
n=0

(ig)n

n!

n∏
i=1

∫
d4kin.A(ki)e

−ia.
∑n
l=1 klIn (2.29)

where

In =
n∏
i=1

∫ |b−a|

0

∫ λi+1

0

dλie
−in.

∑n
l=1 klλl (2.30)

A finite line can also be made by joining two semi-infinite lines by the
transitive property.

U(b, a) = U †(∞, b)U(∞, a) (2.31)

From the previous two subsections, these semi-infinite Wilson lines are

U †(∞, b) =
∞∑
m=0

(ig)m

(2π)4m!

m∏
i=1

∫
d4kin.A

†(ki)e
i
∑m
l=1 b.kl

× (−i)me−in.
∑m
j=1 kj∏m

j=1 n.
∑m

l=1 kl − iϵ
I†m

(2.32)

U(∞, a) =
∞∑
n=0

(−ig)n

(2π)4n!

n∏
r=1

∫
d4krn.A(kr)e

−i
∑n
l=1 a.kl

× (i)nein.
∑
kj∏n

j=1 n.
∑n

l=1 kl + iϵ
In

(2.33)

and

In =
(i)ne−in.

∑n
j=1 kj∏n

j=1 n.
∑n

l=1 kl + iϵ
(2.34)

I†m =
(−i)mein.

∑m
j=1 kj∏m

j=1 n.
∑m

l=1 kl − iϵ
(2.35)

2.3.6 Eikonal Approximation

If an on-shell quark is interacting with a gluon soft enough to result in a
negligible change in momentum, then the Dirac propagator and the QCD
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quark-gluon vertex can be replaced by those of a Wilson line [9]. This ap-
proximation is known as Eikonal approximation. Such a thing becomes useful
later when we discuss QCD loop corrections to heavy quarks hadronic sys-
tems.
Here we discuss the case of an on-shell quark interacting with a single soft
virtual gluon. The part of the amplitude of interest is

M ∼ ...
/p+ /q +M

(p+ q)2 −M2
(gT aγµ)u(p) (2.36)

treating the gluon momentum q as soft gives

M ∼ ...
/p+M

2p.q
(gT aγµ)u(p) (2.37)

rewriting the mass term using the Dirac equation and expanding out /p gives

M ∼ ...
pνγ

νγµu(p) + pνγ
µγνu(p)

2p.q
(gT a) (2.38)

The anti-commutator in the numerator being a Minkowsky metric tensor,
allows the the quark‘s four momentum to be cast in the light cone basis
giving

M ∼ ...
nµu(p)

2n.q
(gT a) (2.39)

This is basically a spinor with the propagator and vertex factor of a Wilson
line and the entire amplitude can be rewritten as a NLO Wilson line being
multiplied with the spinor. For the quark emitting/absorbing more gluons,
one can keep multiplying in Wilson line propagators and vertex factors to
give a spinor being multiplied with nth order Wilson line. Such a situation
expressed as an order by order expansion is given as

M ∼ ...U[0,−∞]u(p) (2.40)
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Chapter 3

Heavy Quark Effective Theory

In this chapter we discuss the motivation behind Heavy Quark Effective The-
ory and give its Lagrangian and Feynman rules, which we then use to solve
the heavy quark self energy loop. We use the HQET formalism to define the
B meson LCDA, projection operator and phenomenological parameters.

Quarks and gluons exist in bound states called Hadrons, due to the non-
perturbative nature of the QCD effective coupling. Hence the physics of
hadrons is influenced by the mass and momentum scales of the fundamental
particles involved. The typical length scale of hadrons is Rh ∼ O(1/ΛQCD),
about the order of femtometer at which the order of magnitude of the ex-
change momenta is O(ΛQCD) [19] where ΛQCD = 0.2 GeV. At this scale the
strong force becomes non-perturbative as the effective QCD coupling diverges
and the effect is seen as quarks and gluons binding together as a hadronic
system.
While the interactions between gluons and all flavours of quarks can be de-
scribed by QCD but for heavy-light mesons HQET is a suitable approxima-
tion. This works because of the mass scale of one of the composing quarks
being significantly greater than that of the other quark and the exchange
momentum holding the meson together. This is aptly applicable to quarks
like b, c, and t which are generally classified as being heavy due to their mass
scale being significantly greater than ΛQCD [19,20]. This effective theory is
derived from the large quark mass limit of QCD which gives it some inter-
esting symmetries. The large mass limit is the extreme end or leading order
of this approximation (M → ∞) and at this order all terms with the heavy
quark mass in the denominator drop off. Hence the interacting quarks are
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insensitive to their flavour and spin effects. Only when moving away from
this approximation (order by order in powers of 1/M) do these effects become
apparent. In this text only the heavy quark limit (M → ∞) is considered
when constructing the kinematics and Lagrangian.

3.1 HQET Lagrangian

The intuitive picture of HQET is that of a very heavy quark of total momen-
tum pµ =Mvµ + kµ acting as a static source of charge with lighter particles
interacting with it. The soft momentum kµ is insufficient to change the ve-
locity of the heavy quark, which remains a conserved quantity [19,20]. In
keeping with this picture it is useful to adopt the heavy quark rest frame
with conserved velocity as vµ = (1, 0⃗)
Starting off with the quark-gluon sector of the QCD Lagrangian

LQCD = Ψ̄(i /D −m)Ψ

where Ψ = e−iMv.x(ψv + χv) with the ψv and χv being the spinor and anti-
spinor components. The exponential serves as a momentum translation op-
erator to subtract off the originalMvµ momentum of the heavy quark. From
the Dirac equation for a heavy quark

(M/v + /k)Ψ =MΨ

it follows that (
1− /v −

/k

M

)
Ψ = 0 (3.1)

To satisfy this equation of Ψ the components have to satisfy(
1+/v+

/k
M

2

)
Ψ = ψv and

(
1−/v− /k

M

2

)
Ψ = χv where /k/M is small enough to

be ignored. Furthermore, in the heavy quark rest frame /v = γ0 which implies
that 1 ± /v acts as a projection operator on the heavy quark field to project
out spinor and anti-spinor components. Due to the small /k/M approxima-
tion the Dirac equation is (1− /v)Ψ ≈ 0 and hence

ψv ≈
(

1+/v

2

)
Ψ and χv ≈ 0

This implies that at leading order the anti-spinors of heavy quarks are sup-
pressed which in turn means that heavy quark vacuum polarization loops are
also suppressed. Hence there is no contribution to the running coupling in
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the heavy quark limit [19,20].
Returning to the QCD Lagrangian, Ψ = e−iMv.xψv gets substituted in to give

LHQET = eiMv.xψ̄v(i /D −M)e−iMv.xψv (3.2)

where
/D = /vv.D + /D⊥ (3.3)

/D is a sum of components of the derivative parallel and perpendicular to the
direction of vµ and the parallel term makes use of v2 = 1 to get the following

/vv.D = γµv
µvαD

α = γµv
αvαD

µ = /D (3.4)

LHQET = eiMv.xψ̄v
(
i/vv.(∂ + igA) + i /D⊥ −M

)
e−iMv.xψv (3.5)

LHQET = ψ̄v(−(1− /v)M + iv.(∂ + igA))ψv

as (/v − 1)ψv = 0 so

LHQET = ψ̄v(iv.D)ψv +O(1/M) (3.6)

At leading order this Lagrangian does not have any gamma matrices so it
has an SU(2) spin symmetry. The absence of a mass term in it implies heavy
flavour symmetry as there is no way to differentiate between the quarks of
different flavours. The derivation of this term hinges on the assumption that
M >> ΛQCD [19,20].

3.1.1 Reparameterization Invariance

Considering the following decomposition of the heavy quark momentum

pµ =Mvµ + kµ

The derivation of HQET hinges on the assumption that the residual mo-
mentum kµ must be O(ΛQCD) and be much smaller than the heavy quark
mass. These conditions allow for the expansion in orders of O(k/M). This
expansion in orders of O(k/M) does not necessarily have to be in the heavy
quark momentum but can also be taken in its velocity

v → v + ε/M (3.7)
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where ε ∼ O(ΛQCD) and to preserve the same parameterization of pµ, the
residual momentum should transform similarly

k → k − ε (3.8)

Upon dropping higher order terms and using v2 = 1 and v.ε = 0 and trans-
forming the heavy quark field as ψvh → ψvh + δψvh to conserve /vψvh = ψvh On
ends up with the result

(1− /v)δψvh =
/ε

M
ψvh (3.9)

at leading order in (ε/M). Upon operating with /v, one ends up with
/vδψvh = −δψvh. Hence the appropriate choice for the change in hv is

δhv =
/ε

2mQ

hv (3.10)

For the HQET Lagrangian to be reparameterization invariant, it should be
conserved under the following combined transformations

v → v + ε/M

ψvh → eiε·x
(
1 +

/ε

2M

)
ψvh (3.11)

where eiε·x is the shift in residual momentum. This results in the follow-
ing altered Lagrangians under the velocity shift and heavy quark field shift,
respectively

L0 → L0 +
1

M
ψ
v

h(iε ·D)ψvh (3.12)

L1 → L1 −
1

M
ψ
v

h(iε ·D)ψvh (3.13)

3.2 HQET Feynman Rules

LHQET = iψ̄vv.∂ψv + igψ̄vv.Aψv (3.14)

The Feynman rules can be read off from this Lagrangian
Heavy quark-gluon vertex factor : −igT avµ
Heavy quark propagator : 1

v.p
δij
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They can also be derived in an alternate fashion by taking the heavy quark
limit of QCD Feynman rules.

/p+M

p2 −M2
δij

Where pµ =Mvµ + kµ. Substituting this in and dividing through by M

/v + 1 + k/M

2v.k + k2/M
δij

/v + 1

2v.k
δij +O(k/M)

In the denominator, the momentum k being dotted with v is what is called
the residual momentum and is soft and responsible for taking the heavy quark
off-shell [21]. For heavy anti-quarks, the numerator will have /v − 1 due to
the anti-spinor completeness relation giving /p−M .
The Lagrangian and Feynman rules of the light quark and gluon sectors
remain unchanged.

3.3 Heavy Quark Self Energy

Just like the fermion self energy diagram, the one involving heavy quarks
also has a UV divergence. Applying the Feynman rules on this section of the
diagram in Fig 3.1(a) and using dimensional regularisation

ΣQ = −CFg2µ2ε

∫
dDl

vµgµνv
ν

[l2][v.(l + p)]
(3.15)

The loop correction is on the heavy quark propagator and hence p is also
residual momentum [20]. As the denominator has a quadratic and a linear
term of loop momentum so it is more convenient to use this parametrisation
from [20]

1

AB
=

∫ ∞

0

dx
1

(A+ xB)2
(3.16)

where A = l2 and B = v.(l + p)

ΣQ = −CFg2µ2ε

∫ ∞

0

dx

∫
dDl

1

(l2 + xv.(l + p))2
(3.17)
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Using ∫
dDl

1

[l2 + 2l.Q−R2]n
=

(−1)niπD/2Γ(n−D/2)

Γ(n)[Q2 +R2]n−D/2
(3.18)

from [22] for integrating loop momenta where Qµ = xvµ/4 (different from
the subscript Q of Σ ) and R2 = −xv.p

ΣQ = −CFg2µ2ε

∫ ∞

0

dx
iπ2−εΓ(ε)(
x2

4
− xv.p

)ε (3.19)

ΣQ = −iCFg2π1.5−εµ2ϵ(−v.p)1−2εΓ(1− ε)Γ(ε− 1/2)Γ(ε)

expanding out in powers of ε

ΣQ = −2iCFg
2π2−ε(p.v)

[
2 ln

(
µ

p.v

)
+𭟋[0,−1/2]

]
+O(ε) (3.20)

Here the UV divergence is in the 1/ε term and has to be subtracted off by a
counter-term diagram.
As a further note, the self energy diagram can also be made with loop mo-
mentum directed opposite which will mean that the propagator denominator
will be [l2][v.(p − l)] but this negative sign of l (and consequently of Qµ)
makes no difference when the general loop integration formula is applied, it
squares Qµ hence both conventions of the diagram are equal.

3.4 Renormalization of HQET Propagator

The counter-term is present in the heavy quark bare fields.

ψ0 =

(
1 +

δψ
2

)
ψ =

√
Zψψ

hence the bare propagator is [1]

G0 = ZψG (3.21)

Considering a sum of propagators at tree level and with an increasing number
of 1PI loops, as in Fig 3.1(b)

iG0 =
i(1 + /v)

v.k
+
i(1 + /v)

v.k
iΣQ

i(1 + /v)

v.k
+ ... (3.22)
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Figure 3.1: (a) a single heavy quark propagator with one loop self energy
correction. (b) summed heavy quark propagators including tree level and up-
to N 1PI self energy loop corrections.

Taking the first term common and expressing the rest as a geometric series

iG0 =
i(1 + /v)

v.k

[
1

1 +
(1+/v)ΣQ

v.k

]
(3.23)

The renormalized propagator will be

iGR =
1

1 + δψ

i(1 + /v)

v.k + (1 + /v)ΣQ

(3.24)

Expanding out the denominator gives

iGR =
i(1 + /v)

v.k + (1 + /v)ΣQ + δψv.k +O(1/ε2)
(3.25)

only the terms with 1/ε type of divergence have been retained in forming
the counter-term because ΣQ has divergence to the first order. From here a
divergence-less self energy loop is ΣR

Q = ΣQ + v.k
1+/v

δQ
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3.5 HQET Factorization for Radiative B De-

cay

To focus on the essential features of the discussion we shall restrict ourselves
to a simpler process as given in [7]

B → γlν̄l

The part which is to be factorised consists of only the hard photon and weak
boson as the final states. In [7] its factorisation is done at tree level and up to
first order gluon loop corrections in QCD. Due to the absence of any mesons
in the final state, the HQET factorisation formula for this only consists of
the second convolution integral.

M =

∫ ∞

0

dkT II(k, µF )Φ(k, µF ) +O(1/mb) (3.26)

Where k is the light quark momentum and µF is the factorization scale
separating the long and short distance physics. Thence it can be expressed
as an order by order expression.

M(0) +M(1) + ... = Φ(0) ⊗ T (0) + Φ(1) ⊗ T (0) + Φ(0) ⊗ T (1) + ... (3.27)

From here it can be proven that factorisation holds up to one loop order and
that it does not require dependance on any transverse components.

3.5.1 B Meson Light-Cone Distribution Amplitude in
HQET

For the two quarks in the B meson separated by light-like distance, in the
rest frame of the B meson, the most general parametrization of the B meson
LCDA which satisfies Lorentz and gauge symmetries, can be written in term
of two independent variables: ϕ̃±

B as

⟨B(v)|uβ(z)[z, 0]hv,α(0) |0⟩ =
if̂BmB

4

{[
2ϕ̃+

B(t)−
/z

t

(
ϕ̃−
B(t)− ϕ̃+

B(t)
)]

PL

}
αβ

(3.28)
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where z2 = 0 and t = v · z and ϕ̃±
B both are non-perturbative functions of

t whereas α and β represent the spinor indices. mB denotes the mass of B
meson, [z,0] is the Wilson line for bi-local gauge invariance, u is the light
quark field, defined in QCD. hv is the field of a b quark moving with velocity
v, defined in HQET. f̂B is the B meson decay constant defined in HQET,
upto one loop order.

f̂B(µF ) =

[
1 +

αsCF
4π

(
3 ln

µF
mb

+ 2

)]
fB (3.29)

The parameterizing functions of the LCDA are defined in [8] as

Φ̂±
B = imB f̂Bϕ̂

B
αβ =

1

v±

∫
dteiωv·z⟨B(v)|u(z)[z, 0]/v∓γ

5hv(0)|0⟩
∣∣∣
z+,z⊥=0

(3.30)

3.5.2 B Meson Momentum Space Projector

To derive the B meson momentum space operator, we start with (3.28). The
pre-factor is chosen such that for z = 0 and ϕ̃+(t) = ϕ̃−(t) = 0

⟨B(p)| q̄β[γµγ5]βαbα |0⟩ = −ifBmB (3.31)

Then using the identity∫
d4zM(z)T (z) =

∫
d4k

(2π)4
T (k)

∫
d4ze−ikzM(z)

≡
∫ ∞

0

dk+MBT (k)

∣∣∣∣∣
k=k·n−

(3.32)

where M(z) is the position space projector and T (z) the hard scattering
amplitude in position space. To extract from here the B meson position
space operator, we first decompose k momentum into light cone components.
The factors /z and 1/(v.z) are removed by taking the derivative and then the
partial integral of the hard scattering amplitude. This gives∫

d4zM(z)T (z) =
if̂BmB

4

{
1− /v

2

∫ ∞

0

dω

[
2ϕ+

B(ω)

+

∫ ω

0

dη
(
ϕ−
B(η)− ϕ+

B(η)
)
γµ

∂

∂kµ

]
γ5

}
αβ

Tβα(k)

∣∣∣∣∣
k=ωv

(3.33)
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k− component does not contribute to the momentum space hard scattering
amplitude at leading order in the heavy quark limit and hence T (k) can be
written as

T (k) = T (0)
(
k+
)
+ kµ⊥T

(1)
µ

(
k+
)

(3.34)

Decomposing ∂/∂kµ in terms of light-cone components with the derivative
with respect to k− not contributing, we have

MB
βα =

if̂BmB

4

{
1− /v

2

[
ϕ+
B(ω)/n

+ + ϕ−
B(ω)/n

−−

∫ ω

0

dη
(
ϕ−
B(η)− ϕ+

B(η)
)
γµ

∂

∂kµ⊥

]
γ5

}
αβ

(3.35)

3.5.3 B Meson Phenomenological Parameters

Vector and Axial vector form factors associated with processes involving the
B meson, have to be expressed in terms of a class of integrals called inverse
moments. These integrals are unique to the meson in question. For the
purposes of this text, we shall be dealing with the first inverse moment

1

λ
(0)
B

=

∫ ∞

0

dk̃+
Φ+(k̃+)√

2k̃+
(3.36)

and the logarithmic inverse moments (n = 1, 2 for the process in this text)

1

λ
(n)
B

=

∫ ∞

0

dk̃+
Φ+(k̃+)√

2k̃+
ln(n)

(√
2mbk̃+
µ2
F

)
(3.37)

Here Φ+ is the µF scale dependant leading contributor to the full LCDA and
its evolution equation is defined by the Lange-Neubert equation [7,8]. The
solution has a number of different forms based upon the type of model being
considered. In [7] one of the models is of this form :

Φ+(k̃+) =
2k̃+(
λ
(0)
B

)2 e−
√
2k̃+

λ
(0)
B (3.38)
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The moments are dependant upon the scale µF which occurs in both the
logarithm and in Φ+. The solution proceeds by first defining Φ+ and λ(0) at

the scale µF = 1 GeV where λ
(0)
B = 0.35± 0.15 GeV [7] and then getting the

above solution for any other µF . The values of λ(0) at µF = 1 GeV can be
different for other types of mesons and LCDA models.
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Chapter 4

Factorization of the Amplitude
W+ → Bγ

In this chapter, we compute the Feynman amplitudes of the W+ → γB pro-
cess and the LCDAs of the B meson, both at tree level and one loop level.
Then using the factorisation theorem at leading and next to leading orders
we can extract the Hard Kernels to be used in calculating the vector and axial
vector form factors.

In this thesis the radiative production of a B meson is studied in the
process

W+ → Bγ

as described in [8]. While the initial and final states are different as compared
to the process of [7], the momenta scaling of the various particles is the
same which gives the calculations quite similar features. The amplitudes are
computed in the full theory of QCD while the LCDA’s can be computed
in either HQET or QCD, resulting in a different Hard Kernel in each case.
However, this will result in the convolutions being the same in both cases [7].

There are two types of tree level amplitudes contributing to the leading
order of this process. From each of these tree level amplitudes arise six
different QCD one loop amplitudes and all of these have their corresponding
LCDA’s and Hard Kernels.
To prove factorisation the procedure that we will follow is thus; essentially a
Feynman amplitude is split between the part comprised by its partons (which
are joined by a Wilson line) and the rest of the diagram and the two parts
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are then convoluted together. At tree level it is

M(0) = Φ(0) ⊗ T 0 (4.1)

and at one loop level

M(1) = Φ(1) ⊗ T 0) + Φ(0) ⊗ T (1) (4.2)

This is because when the amplitude has a loop correction, that loop can
equally well be a part of the LCDA or the Hard Kernel. Hence one term has
the LCDA with the loop and Hard Kernel at tree level and vice versa for the
second term.

4.1 Kinematics

The situation is of a very massive W boson decaying to a B meson and a
photon. The meson and photon move off in opposite directions in keeping
with the conservation of momentum.

4.1.1 In the rest frame of the W boson

One of the possible ways of viewing this process is in the rest frame of the
W boson, in Light-Cone Factorization (LCF). With respect to the stationary
W , the B meson and photon move off in opposite directions.
The four momenta of the particles are

P µ
W = (MW , 0⃗) (4.3)

P µ
B = (EB, P⃗B) (4.4)

qµ = (Eγ,−q⃗) (4.5)

To express all these energies and three-momenta in terms of known masses we
make use of the on-shell condition and the principle of energy conservation.
MW = EB + Eγ. Using

q2 = 0 = (P µ
W − P µ

B)
2 (4.6)

we get

EB =
M2

W +M2
B

2MW

(4.7)
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and

Eγ =
M2

W −M2
B

2MW

(4.8)

Then using the energy-mass-momentum relation

P⃗B =
M2

W −M2
B

2MW

ẑ (4.9)

and from the fact that P⃗W = 0 = P⃗B + q⃗

q⃗ =
M2

B −M2
W

2MW

ẑ (4.10)

So now we have in Minkowsky coordinates

P µ
W = (MW , 0, 0, 0) (4.11)

P µ
B =

(
M2

W +M2
B

2MW

, 0, 0,
M2

W −M2
B

2MW

)
(4.12)

and

qµ =

(
M2

W −M2
B

2MW

, 0, 0,
M2

B −M2
W

2MW

)
(4.13)

As the meson is a bound state of two quarks so we use the light cone coor-
dinate system. A vector in the light cone representation is

V µ = (V+, V−, V⊥)

where V± = V 0±V 3
√
2

and V⊥ = V 1, V 2 and a scalar product of two vectors in

this representation is [9]

V µUµ = V+.U− + V−.U+ + V⊥.U⊥ (4.14)

A vector can also be represented in light cone basis vectors: nµ = 1√
2
(1, 0, 0, 1)

and n̄µ = 1√
2
(1, 0, 0,−1) which implies that the contraction of same basis is

zero
V µ = (V.n)n̄µ + (V.n̄)nµ + V µ

⊥ = V µ
+ + V µ

− + V µ
⊥ (4.15)

Working with this notation, these momenta can be written in Light Cone
coordinates as

P µ
W =

1√
2
(MW ,MW , 0) (4.16)

P µ
B =

1√
2

(
MW ,

M2
B

MW

, 0

)
(4.17)
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4.1.2 In the rest frame of B meson

As this process will be studied in HQET which holds in the rest frame of
the B meson so here we set up the kinematics of the process in the frame of
a stationary B meson with the W boson and photon moving off in opposite
directions along ẑ. The photon’s four-momentum is boosted along ẑ with
respect to the stationary B meson reference frame. Hence its boosted energy
is

E
′

γ = γ(Eγ − β⃗.q⃗z) (4.18)

Where the γ outside the bracket is the Lorentz factor and with the B being at
rest γ = 1 and β⃗ = 0 hence the photon’s four momentum is frame invariant.
The momenta of the three particles in Light Cone coordinates are

P µ
B =

1√
2
(MB,MB, 0) (4.19)

qµ =

(
0,
M2

W −M2
B

M2
B

, 0

)
(4.20)

All the amplitude calculations to follow will be done in terms of quark and
photon momenta in light cone coordinates, defined in the B meson rest frame.
As the B meson is composed of a b̄ and u quark so its total momentum will
be split between them. The momentum of the b̄ quark will be

pµb = P µ
B − kµ

where kµ is the u quark momentum. As mu,d ∼ 0.001 GeV the O(ΛQCD)
exchange momenta make all the components of light quarks of order ΛQCD.
Hence they are grouped together with ΛQCD in a single soft scale.
Based upon the kinematical hierarchy

mW ∼ mb >> ΛQCD

the exchange momenta of O(ΛQCD) are not sufficient to accelerate a 5 GeV
mass appreciably as differences of O(ΛQCD) are ignored.
Quark and photon momenta in light cone coordinates, whilst using the kine-
matical hierarchy, are :

• pµ ∼ (mb,mb, 0)

• kµ ∼ (ΛQCD,ΛQCD,ΛQCD)

• qµ ∼ (0,mb, 0)
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The Feynman amplitudes (M) are calculated using the usual Feynman
rules of the known Standard Model. The software FeynCalc [23] was utilized
to compute the loop Feynman amplitudes. The output takes the form of
PV scalar integrals [24] and coefficients. Terms suppressed in the heavy
quark limit are dropped from the output, identified by power counting the
coefficients which are functions of the various masses and momenta scalar
products.
The meson LCDA’s require solving the following matrix element [7,8,18] with
HQET.

Φ(k̃+) =

∫
dz−e

ik̃+z− ⟨b̄, u| ψ̄u(z)e−ig
∫
dz.Aψb̄(0) |0⟩ |z+,⊥=0 (4.21)

Both the Wilson line and the S matrix (implicit in the matrix element) can
be expanded out to give LCDA’s of any arbitrary order of correction. The
Fourier integral is only over a single variable because being on the light cone
z⊥, z+ = 0. Then the hard kernel T (k̃+) can be extracted by solving the
convolution integrals. It is convenient to calculate the hard kernel at the end
because the amplitudes and LCDA’s can be obtained from Feynman rules
and the LCDA’s contain Dirac delta functions which simplify the integration
of the convolution.

4.2 Tree Level

Of the two tree level diagrams shown for this process in Fig 4.1(a) and
Fig 4.1(b), the one with the heavy quark propagator isO(1/mb) so it is highly
suppressed. Hence at all orders, only the diagrams with the weak current at
the heavy quark have the dominant contribution.
Two tree level diagrams can be constructed for this process. Only the one
with the light quark propagator (4.22) contributes in the heavy quark limit
while the second one with the b quark propagator (4.23) is suppressed and
hence will not contribute at tree or loop level.

M(0)
u = −e2Vubū/ϵ∗γ

/q + /k +m

(q + k)2 −m2
/ϵWPLν ∼ O(1/ΛQCD) (4.22)

M(0)

b̄
= −e2Vubū/ϵWPL

/p+ /q − /k −mb

(p+ q − k)2 −m2
b

/ϵ∗γν ∼ O(1/mb) (4.23)
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The tree level LCDA in Fig 4.1(c) is given by the matrix element

Φ(k̃+) =

∫
dz−e

ik̃+z− ⟨b̄, u|0⟩ (4.24)

and can be constructed from the following Feynman-Wilson rules :

• Spinor or anti-spinor for external fermion.

• e−ipx for each point where any external or internal line joins the Wilson
line. Momentum p is being carried to or from the Wilson line. x being
the relative distance from that point to some origin on the Wilson line

• Fourier transform it to momentum space by integrating over position
space

Hence

Φ(k̃+) =

∫
dz−e

ik̃+z−e−i(−k+)z−e−i(0)ūν = 2πδ(k̃+ + k+)ūν (4.25)

Extracting the tree level hard kernel

−e2Vubū/ϵ∗γ
/q + /k +m

(q + k)2 −m2
/ϵWPLν =

∫
dk̃+2πδ(k̃+ + k+)ūT

(0)(k̃+)ν (4.26)

T (0)(k̃+) = e2Vub
/ϵ∗γ/q/ϵWPL

2q−.k̃+
(4.27)

The above expression of the tree level hard kernel can be further simplified
by invoking the following projector at leading order in αs

ū(k)ν(p− k) =
δij
N

1− /v

4
γ5 (4.28)

which ensures that the B meson is a spin and colour singlet. So the Hard
Kernel becomes [8]

T (0)(ω) =
−iR
ω

(
εµναβp

µqνϵαW ϵ
∗β
γ

p.q
+ iϵW .ϵ

∗
γ

)
(4.29)

For the validity of the Factorisation Theorem, a necessary condition is that
the Hard Kernel should be independent of the external states [7]. An expan-
sion of the Fock state of the meson is given in [25] as follows :

|B⟩ = |b, ū⟩+ |b, g, ū⟩+ ... (4.30)

The Hard Kernel associated with each of these states turns out to be the
same [7].
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Figure 4.1: (a) Tree level diagram with light quark propagator (b) Tree level
diagram with b quark propagator. (c) Tree level LCDA for the B meson,
common to both.
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Figure 4.2: (a) Feynman amplitude and (b) LCDA for the electromagnetic
vertex correction. The vertex loop occurs over the electromagnetic current
vertex.

4.3 Electromagnetic Vertex Correction

4.3.1 Feynman Amplitude

Mem =βR

∫
dDl

×
ūγϕ(/k + /l +m)/ϵ∗γ(/q + /k + /l +m)γϕ(/q + /k +m)/ϵWPLν

[(k + l)2 −m2][l2][(q + k + l)2 −m2][(q + k)2 −m2]

(4.31)

where βR,F = −iCFVubg2e2µ2ε
R,F . Some of the scalar products required for

simplifying this calculation are :
p2 = m2

b , k
2 = m2 , q2 = 0 , q.ϵ∗ = 0 and 2q.k = 2q−k+.

As this contains a vertex loop so there will be a UV divergence.
Running this in FeynCalc [23] gives a result in terms of the one, two and three
point scalar functions but retaining only the leading terms of O(1/ΛQCD) and
dropping terms which have coefficients of O(ΛQCD/mb) leaves an output con-
taining only bubble integrals which are shown in Appendix A.
A further series expansion [26] of the remaining result in powers of the reg-
ulator ε and the light quark mass m, both around zero, leaves the following
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form at the leading order :

Mem =
αCF
4π

T (0)(k̃+)

[
1

εUV
+ ln

(
−2q.kµ2

R

m4

)]
(4.32)

The UV divergence is subtracted off by the counter-term diagram.
As a final step we also put in the 1

(2π)D
pre-factors in conjunction with the

µ2 in modified minimal subtraction scheme, in order to pull out a 1
16π2 to get

a α
4π

= g2

16π2 term upfront. From now onwards this is done for all amplitude,
LCDA and convolution results.

4.3.2 LCDA

The EM vertex LCDA in Fig 4.2(b) has similar Feynman-Wilson rules to
compute it but with a few additions :

• integrate over loop momentum

• integrate over the length of the meson Wilson line, the point at which
a loop propagator joins a Wilson line

• loop momentum is taken to be soft if it is connected to a Wilson line.
As all the LCDA’s being considered here are in HQET so the soft scale
of loop momentum is ΛQCD

• gluon-Wilson line vertex factor : −igT anϕ

Φem(k̃+) =CFg
2µ2ε

F

∫
dz−

∫
dDl

×
∫ 1

0

dαz−e
i(k̃+k+l−αl)z

∫
ūγϕ(/k + /l +m)nϕν

[l2][(k + l)2 −m2]

(4.33)

Φem = CFg
2µ2ε

F

∫
dz−e

i(k̃+k)z

×
(
z−
e−il+z− − 1

−il+z−

)∫
dDl

ūγϕ(/k + /l +m)nϕν

[l2][(k + l)2 −m2]

(4.34)

Φem = 2πCFg
2µ2ε

F

∫
dDl[δ(k̃+k+ l)−δ(k̃+k)] ūγ

ϕ(/k + /l +m)nϕν

[l+][l2][(k + l)2 −m2]
(4.35)
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Although in all LCDA diagrams the separation scale of the partons implies
that the virtual gluons carry momentum of O(ΛQCD) which breaks the va-
lidity of perturbative QCD but the loop gluons are being exchanged over
smaller length scales hence carry more momentum which means that the
coupling parameters gs are small enough to allow the perturbative expansion
of the path ordered exponential. From the LCDA one of the convolutions is
calculated thus

Φem ⊗ T (0) = −βF
∫
dDl

×
∫
dk̃+[δ(k̃ + k + l)− δ(k̃ + k)]

ūγϕ(/k + /l +m)/ϵ∗γnϕ/q/ϵWPLν

[l+][l2][(k + l)2 −m2][2qk̃+]

(4.36)

Φem ⊗ T (0) = −βF
∫
dDl

×
ūγϕnϕ(/k + /l +m)/ϵ∗γ/q/ϵWPLν

−2l+l2[(k + l)2 −m2]

(
−ql+

(qk)(q(k + l))

) (4.37)

The above loop integral has a zero degree of divergence which implies that
it is the upper limit of the integral which will cause the divergence. Even
though l is taken to be soft, the upper limit of this integral is much greater
than the lower limit which characterises this divergence as UV.

Φem ⊗ T (0) = −βF
∫
dDl

ūγϕ(/k + /l +m)/ϵ∗γ/qγϕ/q/ϵWPLν

[l2][(k + l)2 −m2][q.(k + l)]b
(4.38)

The m in the numerator of the light quark propagator gets dropped due to
the on-shell photon. The numerator can be broken up thus

ūγϕ(/k + /l)/ϵ∗γ/qγϕ/q/ϵWPLν + ūγϕ(m)/ϵ∗γ/qγϕ/q/ϵWPLν (4.39)

The first term makes use of the identity γϕ/a/b/cγϕ = −2/c/b/a and hence

γϕ(/k + /l)/ϵ∗γ/qγϕ = −2/q/ϵ
∗
γ(/k + /l).

Using {/q, /ϵ∗γ} = 0 and the identity

/a/b = 2a.b− /b/a

the first term becomes
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2ū/ϵ∗γ[q.(k + l)− (/k + /l)/q]/q/ϵWPLν

= 2ū/ϵ∗γ[q.(k + l)]/q/ϵWPLν

because /q/q = q2 = 0
The second term can be rearranged using

γϕ/a/bγϕ = 4a.b = 2(/a/b + /b/a).

As /ϵ∗γ/q = −/q/ϵ∗γ so the second term becomes zero as

γϕ/ϵ∗γ/qγϕ = 2(/ϵ∗γ/q − /ϵ∗γ/q) = 0.

This also proves ϵ∗γ.q = 0. This allows the cancellation of q.(k+l) between the
numerator and denominator, leaving a two point PV scalar function which
can be evaluated by dimensional regularisation and its divergence subtracted
off by a counter-term for the EM LCDA.

Φem ⊗ T (0) = −βF
ū/ϵ∗γ/q/ϵWPLν

q.k

∫
dDl

1

[l2][(k + l)2 −m2]
(4.40)

Φem ⊗ T (0) =
αCF
4π

T (0)(k̃+)

[
4 +

2

εUV
+ ln

(
µ4
F

m4

)]
(4.41)

The 1/εUV divergence is subtracted off by the convolution due to the LCDA
vertex correction counter-term diagram.
Another way to obtain the convolution is by Eikonal approximation as shown
in [7]. Those LCDA’s which have a loop momentum attached to a Wilson
line, can be constructed by taking the Eikonal approximation of the Feynman
amplitude as that argument works both ways. As the tensor structure of the
vertex correction is similar to a modified gamma matrix so a vertex correction
is essentially a modified interaction term. Hence the counter-term required
to renormalize it will come from the interaction Lagrangian density of the
quark-gluon interaction.

Lint = g(0)ψ̄(0) /A(0)ψ(0) = (1 + δg)(1 + δA/2)(1 + δψ)gψ̄ /Aψ (4.42)

retaining only the terms with 1/εUV because electromagnetic vertex correc-
tion only has a first-order divergence.

Lint = (1 + δg + δψ + δA/2)gψ̄ /Aψ = (1 + δ1)gψ̄ /Aψ (4.43)
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So the counter-term vertex factor will be −igδ1T a and the counter-term di-
agram to renormalize the electromagnetic vertex correction amplitude will
be

Mc
em = −igδ1ū/ϵ∗γ

/q + /k +m

(q + k)2 −m2
/ϵWPLν (4.44)

The renormalized amplitude, which will be used in the factorization theorem
and contains no divergences, is given by

MR
em = Mem +Mc

em (4.45)

The renormalization of the vertex LCDA is different as the LCDA modified
vertex is fundamentally different from that of Feynman amplitudes. As it
additionally consists of a finite Wilson line propagator and a gluon-Wilson
line vertex. The EM vertex LCDA is essentially

Φem ∼ ⟨b̄, u| ψ̄b̄(0)
(
igs

∫
dz.A

)
ψu(z)

(
ig

∫
d4xψ̄ /Aψ

)
|0⟩ (4.46)

The stuff in between the bra-ket is what differentiates it from a tree level
LCDA so these parameters will contribute the counter-term. As this LCDA
does not use HQET so there are four quark counter-terms in the expression,
two coupling and two gauge field counter-terms. All together they give

2δψ + 2δg + δA (4.47)

which is the same as 2δ1

4.3.3 Hard Kernel

The NLO hard kernel can be obtained from the earlier expression of the
factorisation theorem

Mem − Φem ⊗ T (0) = Φ(0) ⊗ Tem

Φ(0) ⊗ Tem = −e2g2CFVub
ū/ϵ∗γ/q/ϵWPLν

2q.k

[
ln

(
−2q.kµ2

R

µ4
F

)
+ 4

]
(4.48)

IfMem and Φem⊗T (0) are unrenormalized, then the UV divergence in Tem will
be apparent, which is expected because it has a hard scale loop momentum
and its vertex loop is identical to Mem.
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Tem(k̃+) =
αCF
4π

T (0)(k̃+)

[
ln

(
−2q.k̃µ2

R

µ4
F

)
− 4

]
(4.49)

where 2q.k̃ = 2q−k̃+. Mass singularities can arise when the light quark
mass terms tend to zero, being much smaller as compared to the hard scale
contained in the hard kernel. This NLO hard kernel has no mass singularities
as m’s from both logarithms mutually cancel. This is a validation of the
factorisation theorem because the hard kernel by definition has to contain
hard dynamics and hence should be free of infrared effects [7].

4.4 Light Quark Propagator Correction

Muū =βR

∫
dDl

×
ū/ϵ∗γ(/q + /k +m)γϕ(/q + /k − /l +m)γϕ(/q + /k +m)/ϵWPLν

[(q + k)2 −m2][(q + k − l)2 −m2][l2][(q + k)2 −m2]

(4.50)

Series expanding around zero in both ε and m yields

Muū =
αCF
4π

T (0)(k̃+)

[
1

ε
− 1 + ln

(
µ2
R

−2q.k

)]
(4.51)

The UV divergence has to be removed by renormalizing the propagator as
follows
ψ0 =

(
1 +

δψ
2

)
ψ =

√
Zψψ hence the bare propagator is G0 = ZψG.

Considering a sum of propagators at tree level and with increasing number
of 1PI loops.

G0 =
i

/p−m0

+
i

/p−m0

Σ
i

/p−m0

+ ... (4.52)

This can be expressed as a geometric series

G0 =
i

/p−m0 + Σ
(4.53)

The renormalized propagator will be

G =
1

1 + δψ

i

(/p−m(1 + δm) + Σ)
(4.54)
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Expanding out the denominator gives

G =
i

/p+ δ2/p−m− δmm+ Σ+ δ2m
(4.55)

only the terms with 1/ε type of divergence have been retained in forming the
counter-term because Muū has divergence to the first order. From [1], the
counter-term to cancel the divergence in the loop is

/pδ2 −m(δ2 + δm) (4.56)

After renormalization, a one-loop dressed propagator will be

i

/p−m
(Σ + /pδ2 −m(δ2 + δm))

i

/p−m
(4.57)

As in Fig 4.3(b) this LCDA has a term

nϕ
gϕα
l2
nα

from the gluon propagator attaching to the Wilson line at two points. And
this gives nϕnϕ = 0 hence

Φuū = 0 (4.58)

Due to the NLO LCDA for this process being zero, the factorisation theorem
reduces to

Muū = Φ(0) ⊗ Tuū (4.59)

Tuū(k̃+) =
αCF
4π

T (0)(k̃+)

[
−1 + ln

(
−2q.k̃

µ2
R

)]
(4.60)

This hard kernel has no mass singularity and has no factorisation scale de-
pendance either as one of the NLO convolutions (which gives the µF ) is zero.

4.5 Light Quark External Leg Correction

4.5.1 Feynman Amplitude and LCDA

From Fig 4.4(a)

Mu = βRū

∫
dDl

γϕ(/k − /l +m)γϕ
[(k − l)2 −m2][l2]

/ϵ∗γ
(/q + /k +m)

(q + k)2 −m2
/ϵWPLν (4.61)
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Figure 4.3: (a) Feynman Amplitude and (b) LCDA with self energy correction
on internal light quark line. The LCDA (b) is zero from the Wilson line
Feynman rules.

With the self energy loop on the external light quark leg means that this
amplitude can also be written thus in the on-shell subtraction scheme as in
[7].

Mu = M(0) δ
u
2

2
(4.62)

and can be renormalized by the corresponding counter-term vertex as in [1].

Mc
u = βRū (/kδ

u
2 −m(δu2 + δum)) /ϵ

∗
γ

/q + /k +m

2q.k
/ϵWPLν (4.63)

where

δu2 = i
dΣu

2

d/k
|/k=m

and

δum =
Σu

2

m

Σu
2 = −iαCF

4π
µ2ε
R,F

∫
dDl

γϕ(/k − /l +m)γϕ
[l2][(k − l)2−m2]

(4.64)

The LCDA is similar to a tree level LCDA but with a self energy correction on
the external light quark and after dropping linear l terms from the numerator
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Figure 4.4: Light quark external leg self energy correction (a) Feynman Am-
plitude and (b) LCDA. The self energy loop is the same in both cases as it is
on the light quark.

one of the NLO convolutions is

Φu ⊗ T (0) = βF

∫
dk̃δ(k̃ + k)

∫
dDl

ūγϕ(/k +m)γϕ/ϵ
∗
γ/q/ϵWPLν

[2q.k̃][l2][(k − l)2 −m2]
(4.65)

Which can similarly be written in the on-shell subtraction scheme as

Φu ⊗ T (0) = Φ(0) ⊗ T (0) δ
u
2

2
(4.66)

but for the purpose of evaluating the NLO hard kernel, we see that all diver-
gences cancel among the terms in the Factorisation Theorem.

4.5.2 Evaluating the Light Quark Counter-term

Just like the full expression of this amplitude in the above equation, Σu
2 can be

evaluated in FeynCalc [23] in terms of PV scalar integrals and differentiated
with respect to /k and series expanded in m and ε around zero to give

δu2 =
αCF
4π

[
−2

ε
− 4− 4 ln

(
1− k2

m2

)
+ 2 ln

(
m

µR,F

)]
(4.67)

The light quark here is taken to be off-shell [7] hence k2 ̸= m2. µR is for the
counter-term in the amplitude and µF for the convolution.
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Hard Kernel

Employing the above result in the expression of the factorisation theorem :

Mu − Φu ⊗ T (0) = Φ(0) ⊗ Tu (4.68)

Tu(k̃+) =
αCF
4π

T (0)(k̃+)
1

2
ln

(
µ2
F

µ2
R

)
(4.69)

This hard kernel also lacks mass singularities but due to the NLO convolution,
it has dependance on both the factorisation and the renormalisation scales.

4.6 b Quark External Leg Correction

The Feynman amplitude involving heavy quark propagators is evaluated in
QCD but the LCDA’s in HQET [7,8].

4.6.1 Feynman Amplitude and Convolution

From Fig 4.5(a)

Mb̄ = βRū/ϵ
∗
γ

/q + /k +m

2q.k
/ϵWPL

∫
dDl

γϕ(/p− /k − /l −mb)γϕ

[l2][(p− k − l)2 −m2
b ]
ν (4.70)

and from Fig 4.5(b) the convolution is

Φb̄ ⊗ T (0) =
βF
2q.k

∫
dDl

ū/ϵ∗γ/q/ϵWPL(1− /v)ν

[l2][2v.(k + l)]
(4.71)

In the on-shell scheme these are, as before

Mb̄ = M(0) δ
b̄
2

2
(4.72)

and

Φb̄ ⊗ T (0) = Φ(0) ⊗ T (0) δ
Q
2

2
(4.73)

where the field on-shell scheme counter-term for the Feynman amplitude
is similar to the light quark case, in that it is evaluated in QCD but the
counter-term for convolution is evaluated in HQET.

44



Figure 4.5: The Feynman Amplitude (a) of the b quark external leg correction
is calculated in QCD while the corresponding LCDA (b) in HQET.

4.6.2 Evaluating the Counter-terms and Hard Kernel

The self energy loop on the b quark is in QCD

Σb̄
2 = −iαCF

4π
µ2ε
R

∫
dDl

γϕ(/p− /k − /l −mb)γϕ

(p− k − l)2 −m2
b

(4.74)

and δb̄2 can be evaluated in direct analogy with the earlier counter-term δu2 by
considering the b quark with momentum p− k to be off-shell. This basically
amounts to the replacement k → p− k in the expression of δu2 with

(p− k)2 = m2
b − 2mbv.k

to give

δb̄2 = i
dΣb̄

2

d/p
|/p=mb =

2αCF
4π

[
−2 + ln

(
m3
b

4(v.k)2µR

)]
|v.k=0 (4.75)

The heavy quark self energy loop in HQET is

ΣQ
2 = −iαCF

4π
µ2ε
F

∫
dDl

1

[l2][2v.(k + l)]
(4.76)
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Here the momentum p is on-shell and k and l are residual momenta. Using
[7] and after expanding to leading order in ε around zero

δQ2 = i
dΣQ

2

d(v.k)
|v.k=0 =

2αCF
4π

ln

(
µ2
F

4(v.k)2

)
|v.k=0 (4.77)

A divergence due to v.k = 0 in the logarithm is avoided in the Hard Kernel
as the v.k terms ends up cancelling upon subtraction between the amplitude
and convolution.

Tb(k̃+) =
αCF
4π

T (0)(k̃+)

[
−2 + ln

(
m3
b

µ2
FµR

)]
(4.78)

This hard kernel only has the heavy quark mass term in the logarithm, which
does not cause a mass singularity.

4.7 Bottom-Up-Gluon Box

The hard kernel of this process is best illustrated via the technique of regions,
as in [22], being applied to its Feynman amplitude and Convolution. From
Fig 4.6(a)

MBox = βRū

∫
dDl

×
γϕ(/k + /l +m)/ϵ∗γ(/q + /k + /l +m)/ϵWPL(/p− /k − /l −mb)γϕ

[l2][(k + l)2 −m2][(q + k + l)2 −m2][(p− k − l)2 −m2
b ]
ν

(4.79)

By the technique of regions the loop momentum spans four regions and is
characterised by the momentum scaling of SCET I: hard (mb), soft(ΛQCD)
and co-linear

(√
ΛQCDmb

)
scales. As the two energetic particles are mov-

ing off in opposite directions so there are two co-linear regions that have a
longitudinal momentum component directed opposite to each other.

• lµh ∼ (mb,mb,mb)

• lµs ∼ (ΛQCD,ΛQCD,ΛQCD)

• lµc ∼
(
ΛQCD,mb,

√
ΛQCDmb

)
• lµc̄ ∼

(
mb,ΛQCD,

√
ΛQCDmb

)
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Figure 4.6: (a) Box Feynman amplitude and (b) Box LCDA.

This allows the approximation of a loop integral as

A(l) = Ah(l) + As(l) + Ac(l) + Ac̄(l) (4.80)

To apply this technique we power count all the momenta in the integral and
determine the order of magnitude of each. Then the full integral is approxi-
mated as the leading order term. In the following, we use this technique to
determine the dominant contributions of MBox and ΦBox ⊗ T (0)

Recalling the on-shell kinematics and considering that d4l = dl+dl−dlxdly the
four regions of the box amplitude are :

• Mh ∼ 1/mb

• Ms ∼ 1/ΛQCD

• Mc ∼ /ΛQCD

• Mc̄ ∼ 1/mb

Convolutions (but not LCDAs and hard kernels individually) are same in
HQET and QCD [7]. From Fig 4.6(b) the loop gluons are going from the
hard b quark line to the soft light quark line so the loop momentum is soft
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in the LCDA.

ΦBox ⊗ T (0) = βF

∫
dDl

×
ūγϕ(/k − /l +m) /ϵ∗/q/ϵPL(/p−mb)γϕν

[l2][(k − l)2 −m2][(p− k + l)2 −m2
b ][2q.k]

∼ 1/ΛQCD

(4.81)

The convolution is the same order of magnitude as the leading term of the
box amplitude. Extracting the hard kernel correction

Φ(0) ⊗ TBox = Mh +Ms +Mc +Mc̄ − ΦBox ⊗ T (0) (4.82)

Φ(0) ⊗ TBox = Mh +Mc̄ ∼ 1/mb

TBox is of a very small order of magnitude so gets dropped from the final
result.

4.8 Weak Vertex Correction

4.8.1 Feynman Amplitude

From Fig 4.7(a)

Mwk = βR

∫
dDl

×
ū/ϵ∗γ(/q + /k +m)γϕ(/q + /k + /l +m)/ϵWPL(/p− /k − /l −mb)γϕν

[(q + k)2 −m2][l2][(q + k + l)2 −m2][(p− k − l)2 −m2
b ]

(4.83)

Dropping O(1/mb) and smaller scaling terms from the output leaves behind
Mwk which contains both B0 and C0 PV scalar functions. The evaluation of
the C0 integrals requires the aforementioned technique of regions [22].

C0 = Ch
0 + Cs

0 + Cc
0 + Cc̄

0 (4.84)

The above C0 integrals were evaluated using the parameterizations from [22]

1

ABC
=

∫ 1

0

d

∫ x

0

dy
Γ(3)

[Ay +B(x− y) + C(1− x)]3
(4.85)

and
1

ABC
=

∫ ∞

0

dx

∫ ∞

0

dy
Γ(3)

[A+Bx+ Cy]3
(4.86)
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Figure 4.7: Weak Vertex correction’s (a) Feynman amplitude is written in
QCD and requires the technique of regions to completely solve. Its LCDA (b)
can be written in either QCD or HQET.

and Ch
0 had to be fully expanded using the package HypExp [27]. Finally

this gives the following weak vertex amplitude where a = 2p.q = 2p+q−

Mwk =
αCF
4π

M(0)

[
2m2

b + 3a

a+m2
b

ln

(
−a
m2
b

)
− 2 ln

(
1 +

m2
b

a

)
ln

(
−m2

b

a

)
− 2Li2

(
−m2

b

a

)
− 2

3
π2 + ln

(
a

2q.k

)
ln

(
a 2q.k

m4
b

)
− 2iπ ln

(
a

2q.k

)
+ 2 ln

(
−µR mb

2q.k

)
− 2 ln2

(
a

2q.k

)] (4.87)

4.8.2 LCDA and Hard Kernel

The weak vertex LCDA can be evaluated using similar Feynman-Wilson rules
as those of the EM vertex where the LCDA is evaluated with HQET Feynman
rules. From Fig 4.7(b)

Φwk(k̃+) = −ig2µ2ε
F CF

∫
dz−d

Dl

∫ 1

0

dαz−e
i(k̃+k+l)z ūn

ϕ(1− /v)vϕν

[l2][2l.v]
(4.88)
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or the weak vertex amplitude can be written in the Eikonal approximation
[7], thus making it equal to the convolution of with the NLO LCDA in QCD.

Φwk ⊗ T (0) = βF

∫
dDl

ū/ϵ∗γ/qγ
ϕ/q/ϵWPL(/p−mb)γϕν

[2q.k][l2][2q.(k + l)][−2p.l]
(4.89)

From this point on it proceeds in the same fashion as the EM vertex. Using
the identities

γϕ/q/ϵγϕ = 4q.ϵ

along with q2 = 0 to get rid of the mb term in the numerator. The remaining
part gets simplified using

γϕ/q/ϵPL/pγϕ = −2/p/ϵPL/q

Hence the numerator becomes

ū/ϵ∗γ/qγ
ϕ
/q/ϵWPL(/p−mb)γϕν = (2a)ū/ϵ∗γ/q/ϵWPLν

Φwk ⊗ T (0) = βF
ū/ϵ∗γ/q/ϵWPLν

b

∫
dDl

2a

[l2][2q.(k + l)][−2p.l]
(4.90)

Solving this integral using (B.3) and (B.4) from [22] where
A = l2 , B = 2q.(k + l) and C = −2p.l∫

dDl
1

ABC
= 2a

∫ ∞

0

dx

∫ ∞

0

dy
Γ(3)iπD/2(−1)3Γ(1 + ε)

Γ(3)[m2
by

2 − axy − bx]1+ε
(4.91)

Φwk ⊗ T (0) = g2CFM(0)
(2a)

(
aµF

mbbe
γE/2

)2ε
πCosec(2πε)Γ(1 + ε)

(2π)Daε
(4.92)

series expanding around zero in ε and dropping the divergent terms

Φwk ⊗ T (0) =
α

4π
CFM(0)

×

[
3π2

4
+ 2 ln2

(
a

2q.k

)
+

1

2
ln2

(
µ2
F

m2
b

)
+ 2 ln

(
a

2q.k

)
ln

(
µ2
F

m2
b

)] (4.93)

and substituting in explicit expressions of the scalar products

Φwk ⊗ T (0) =
α

4π
CFM(0)

[
3π2

4
+ 2 ln2

(
µF√
2k+

)]
(4.94)
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Using the Factorisation Theorem to get the Hard Kernel

Twk(k̃+) =
αCF
4π

T (0)(k̃+)

×

[
2m2

b + 3a

a+m2
b

ln

(
−a
m2
b

)
− 2 ln

(
1 +

m2
b

a

)
ln

(
−m2

b

a

)

− 2Li2

(
−m2

b

a

)
− 2

3
π2 + ln

(
a

2q.k̃

)
ln

(
a 2q.k̃

m4
b

)
− 2iπ ln

(
a

2q.k̃

)

+ 2 ln

(
−µR mb

2q.k̃

)
− 2 ln2

(
a

2q.k̃

)
− 2 ln2

(
µF√
2k̃+

)
− 3π2

4

]
(4.95)

This hard kernel also lacks light quark mass terms as all such terms were
removed when performing power counting in the various propagator denom-
inator factors in both the amplitude and the convolution. Like three of the
previous cases of the NLO Hard Kernel, this one also has a dependance on
both the factorisation and renormalisation scale. µF dependance comes from
the loop level convolution integrals while µR comes from Mwk, from the B0

functions to be precise, as all µR dependance cancels among the three con-
tributing regions of C0. The fact that some of our Hard Kernels still contain
µR, does not spoil the factorisabiltiy of the amplitude as independance from
µR is something that has to hold at an entire order rather than individual
terms of that order. It shall be shown how the different contributors to T (1)

end up canceling all µR terms when they are added together.
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Chapter 5

Vector and Axial Vector Form
Factors

Due to the fact that hadronic systems are bound states with their constituent
quarks and gluons held together by non-perturbative interactions, describing
their amplitudes with Feynman diagrams is not sufficient as the formalism
of Feynman diagrams really only applies to asymptotically free particles. To
compensate for this, the idea is to equate the amplitude at the level of the
constituents (as done earlier in this text), with the decomposed form of the
amplitude as in [7,8,25], based on Lorentz symmetries.
Using [8] for this particular process

⟨B̄(p), γ(ϵ∗, q)| (Ψ̄u /APLΨb)(Ψ̄u /AΨu) |W (ϵ, p+ q)⟩ ∼ M

= R

(
εµνϕα

pµqνϵϕW ϵ
∗α
γ

p.q
FV + iϵW .ϵ

∗
γFA

)
(5.1)

Here R = eue2Vub
4
√
2 sin θw

and FV and FA are the vector and axial vector form fac-
tors, respectively and they are Lorentz scalars so can be calculated similarly
in any reference frame [8]. The general Lorentz structure only depends upon
the external states and so the above expression will be equally valid for tree
or any loop order. The only difference between the two will be in the nature
of the form factors which can be expressed as an order by order expansion.
In both cases the information about the magnitude of the amplitude resides
in the form factors as their coefficients are of unit magnitude.
Before moving onto actually calculating these form factors, it is prudent to
prove their equivalence at both tree and loop level.
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5.1 Equivalence of the Vector and Axial

Vector Form Factors

5.1.1 F
(0)
V = F

(0)
A

For ease of notation, the decomposed amplitude (5.1) will be expressed as

M(0) = R
(
XF

(0)
V + Y F

(0)
A

)
(5.2)

where

X =
εµναβp

µqνϵαW ϵ
∗β
γ

p.q

and
Y = iϵW .ϵ

∗
γ

.
Following [7,8] the LCDA Φ will have only Φ+ at leading order (Φ− being
suppressed by a factor of 1/mb ) and those LCDA’s calculated earlier will
now be

Φ+ = if̂BmBϕ+ (5.3)

where f̂B is the B meson decay constant in HQET [8,18]. Then decomposing
the tree level hard kernel obtained earlier in (4.29) and applying it in the
HQET factorisation theorem

M(0) =

∫ ∞

0

dωΦ
(0)
+ (ω)T (0)(ω)

= if̂BmB

∫ ∞

0

dω
−iR
ω

(X + Y )ϕ+
B(ω) =

f̂BmBR(X + Y )

λ
(0)
B

(5.4)

where 1/λB is the first inverse moment of ϕ+. Equating (5.2) and (5.5)

M(0) = R
(
XF

(0)
V + Y F

(0)
A

)
=
f̂BmBR(X + Y )

λ
(0)
B

(5.5)

and comparing coefficients of X and Y gives

F
(0)
V = F

(0)
A =

f̂BmB

λ
(0)
B

(5.6)
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5.1.2 F
(1)
V = F

(1)
A

Lorentz decomposition of the NLO amplitude looks similar to the one at LO
but with correspondingly different form factors

M(1) = R
(
XF

(1)
V + Y F

(1)
A

)
= Φ(1) ⊗ T (0) + Φ(0) ⊗ T (1) (5.7)

All the NLO convolutions and hard kernels calculated earlier can be expressed
as a factor being multiplied with its LO counterpart.

Φ(1) ⊗ T (0) = Φ(0) ⊗ T (0)G = M(0)G (5.8)

T (1)(ω) = T (0)(ω)H(ω) (5.9)

Φ(0) ⊗ T (1) = if̂BmB

∫ ∞

0

dωϕ+
B(ω)

−iR
ω

(X + Y )H(ω) (5.10)

Using the earlier results of leading order form factors and M(0)

M(1) = R
(
XF

(1)
V + Y F

(1)
A

)
= RGF

(0)
V,A (X + Y )

+Rf̂BmB(X + Y )

∫ ∞

0

dω

ω
ϕ+
B(ω)H(ω)

(5.11)

comparing the coefficients of X and Y gives

F
(1)
V = F

(1)
A = F

(0)
V,AG+ f̂BmB

∫ ∞

0

dω

ω
ϕ+
B(ω)H(ω) (5.12)

5.2 Evaluating the Form Factors

From [7,8] the form factors take this general form

FV,A =

∫ ∞

0

dk̃+Φ+(k̃+)T (k̃+) (5.13)

Such integrals involving Φ+ can be expressed in terms of the first inverse
moment and nth logarithmic inverse moments of the meson in question.
The Hard Kernel has an order by order expansion in αs and so the expressions
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for the LO and NLO form factors can be obtained by substituting in the
relevant Hard Kernels.

F
(0)
V,A =

∫ ∞

0

dk̃+Φ+(k̃+)T
(0)(k̃+)

= e2Vub
/ϵ∗γ/q/ϵWPL√

2q−

∫ ∞

0

dk+
Φ+(k+)√

2k̃+
= e2Vub

/ϵ∗γ/q/ϵWPL√
2q−

1

λ
(0)
B

(5.14)

As the NLO Hard Kernel consists of a sum of constant terms as well as
double and single logarithms of k̃+ so the NLO Form Factors can be expected
to be composed of both the first inverse moment and the first and second
logarithmic inverse moments.
First writing out the total NLO Hard Kernel as

T (1) =
αCF
4π

T (0)(k̃+)

[
c0 + c1 ln

(√
2mbk̃+
µ2
F

)
+ c2 ln

2

(√
2mbk̃+
µ2
F

)]
(5.15)

F
(1)
V,A =

αCF
4π

F
(0)
V,Aλ

(0)
B

[
c0

1

λ
(0)
B

+ c1
1

λ
(1)
B

+ c2
1

λ
(2)
B

]
(5.16)

where the coefficients of the terms containing single and double logarithms
of k̃+ are in c1 and c2 and those terms entirely without k̃+ are in c0. For the
case evaluated in this text, these coefficients are

c0 = ln

(
−m5

b

µ5
F

)
− 2

3
π2 − 2 ln2

(
µF
mb

)
− 2 ln2

(√
2µ2

F q−
a mb

)
− 3

4
π2

− 7− 2Li2

(
−m2

b

a

)
+

3a+ 2m2
b

a+m2
b

ln

(
−a
m2
b

)
+ 2iπ ln

(√
2q−µ

2
F

a mb

)

− 2 ln

(
1 +

m2
b

a

)
ln

(
−m2

b

a

)
− ln

(√
2q−µ

2
F

a mb

)
ln

(
a
√
2q−µ

2
F

m5
b

)
+ 2iπ

(5.17)

c1 = − ln

(√
2µ2

F q−
a mb

)
− ln

(
a
√
2µ2

F q−
m5
b

)
− 4 ln

(√
2µ2

F q−
a mb

)

− 4 ln

(
µF
mb

)
+ 2iπ

(5.18)

and
c2 = −5 (5.19)
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Chapter 6

Conclusion

In this thesis we investigated the factorisability of the following amplitude

W+ → γB

It was found that using the heavy quark limit affects not only the kinematical
hierarchy but also the QCD Lagrangian which gets modified to the HQET
Lagrangian. This allows the Factorisation Theorem to hold for this process
at tree level and at one gluon loop level. All the amplitudes are computed
in the following hierarchy

mW ∼ mb >> ΛQCD

and loop corrections on the b quark use the HQET Lagrangian.
From the factorisation theorem we extracted two functions associated with
this process, namely the Hard Kernel and LCDA. They describe the hard
and soft dynamics in the system respectively. In this section we see how all
our previous calculations come together to prove the Factorisation Theorem.
From the form of the Hard Kernel which contains no infrared effects, it can
also be seen that it lacks any mass singularities and soft loop divergences.
The Hard Kernel at NLO is also free of dependance on the renormalisation
scale µR which is also a condition of factorisability as µR is associated with
the regularized one loop Feynman amplitudes while the Hard Kernels occur in
the convolution integrals which receive µF scale as a result of regularization.
A further validation of the factorisation theorem is that the Hard Kernel
is proven to be the same for next to leading Fock state of the B meson.
It was also established that the factorisability of this amplitude requires no
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dependance on the transverse components of momenta of any of the particles.
Furthermore, the distribution amplitudes of the mesons are defined with the
z− light cone component, the z+ and z⊥ (transverse) components being zero.

The tree level Hard Kernel at leading order in 1/mb is found to be

T (0)(k̃+) = e2Vub
/ϵ∗γ/q/ϵWPL

2q.k̃
(6.1)

An entire class of amplitudes where the light quark propagator is replaced
with the b quark propagator is suppressed due to the heavy quark limit.
At one gluon loop order or g2s the Hard Kernel receives contributions from
six different amplitudes.

T (1) = Tem + Tuū + Tu + Tb + Twk + TBox (6.2)

At leading order in 1/mb the Hard Kernels are :

Tem(k̃+) =
α

4π
CFT

(0)(k̃+)

[
ln

(
−2q.k̃µ2

R

µ4
F

)
− 4

]
(6.3)

Tuū(k̃+) =
α

4π
CFT

(0)(k̃+)

[
−1 + ln

(
−2q.k̃

µ2
R

)]
(6.4)

Tu(k̃+) =
α

4π
CFT

(0)(k̃+)

[
1

2
ln

(
µ2
F

µ2
R

)]
(6.5)

Tb(k̃+) =
α

4π
CFT

(0)(k̃+)

[
−2 + ln

(
m3
b

µ2
FµR

)]
(6.6)

Twk(k̃+) =
α

4π
CFT

(0)(k̃+)

×

[
2m2

b + 3a

a+m2
b

ln

(
−a
m2
b

)
− 2 ln

(
1 +

m2
b

a

)
ln

(
−m2

b

a

)

− 2Li2

(
−m2

b

a

)
+ ln

(
a

2q.k̃

)
ln

(
a 2q.k̃

m4
b

)
− 2iπ ln

(
a

2q.k̃

)

+ 2 ln

(
−µR mb

2q.k̃

)
− 2 ln2

(
a

2q.k̃

)
− 17π2

12
− 2 ln2

(
µF√
2k̃+

)]
(6.7)
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The contribution from the box amplitude is suppressed due to it being next
to leading order in 1/mb

TBox = 0 (6.8)

The above expressions illustrate how the renormalisation scale cancels in the
NLO Hard Kernel, something which is a necessary condition for factorisation
to hold at an order. Tem and Tūu cancel their µR’s mutually. Tu and Tb give
a µR which cancels with the one in Twk.
Lorentz decomposition of the amplitudes gives an expression in terms of two
scalar form factors FV and FA and those were shown to be equal. They can
be computed from the Hard Kernel and a model dependant expression of the
Φ+ component of the LCDA.
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