
An Approach to Detect Conflicts in Functional
Requirements using Machine Learning

Techniques

By

Urooj Ali Malik

0000362536

Supervisor

Asst. Prof. Dr. Yawar Abbas Bangash

A thesis submitted to the faculty of CSE Department, Military College of

Signals, National University of Sciences and Technology, Rawalpindi in partial

fulfillment of the requirements for the degree of MS in Software Engineering

(October,2023)

Declaration

I, Urooj Ali Malik, declare that this thesis titled "An Approach to Detect Conflicts in

Functional Requirements using Machine Learning Techniques" and the work presented

is my own and has been generated by me as a result of my own original research.

I confirm that:-

1. This work was done wholly or mainly while in candidature for a Master of Science

degree at NUST.

2. Where any part of this thesis has previously been submitted for a degree or any other

qualification at NUST or any other institution, this has been clearly stated.

3. Where I have quoted from the work of others, this is always clearly attributed.

4. Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

5. I have acknowledged all main sources of help.

6. Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Author Name: Urooj Ali Malik

Signature:

ii

Dedication

This research work is dedicated to my beloved parents, husband, siblings, friends, and

fellows, who have all been my endless source of love, encouragement, and strength. Your

unwavering belief in my abilities, countless sacrifices, and relentless support have been

the foundation upon which I built my academic pursuits. This research work would not

have been possible without their love and support.

iii

Abstract

The requirement phase stands as the keystone of the software development process,

establishing the bedrock upon which successful software projects are built. This paper

underscores the critical significance of the requirement phase and the timely resolution

of inconsistencies within it. Accurate and complete requirement gathering forms the

linchpin of software quality and functionality, making it pivotal for project success.

However, manual identification of conflicts and inconsistencies in requirements can be a

formidable task, often elusive due to their subtlety and concealed nature.

The ramifications of unresolved inconsistencies in software requirements can lead to

chaos in later stages of development, necessitating costly and time-consuming revisions.

To circumvent these challenges, there is a pressing need for automated conflict detection

mechanisms in software requirements.

In this research, we present a novel automated approach based on rule-based techniques

to detect redundant and conflicting requirements. Our methodology is structured into

multiple layers, commencing with the identification of key elements such as actors, ac-

tions, Action Negativity, events, event negativity, and restrictions within software re-

quirements. To accomplish this, we harness the power of the CoreNLP library and

implement specific Natural Language Processing (NLP) rules. Once these elements are

discerned, we employ predefined rules to flag conflicts.

To validate the efficacy of our approach, we conducted extensive testing utilizing real-

world datasets, including WorldVista and Pure. Our results showcase a remarkable

performance, with an average precision rate of 92%, a recall rate of 94.5%, and an

impressive F1-score of 93% for both the WorldVista and Pure datasets. This research

paves the way for enhanced software requirement analysis and lays the foundation for

more robust and error-free software development processes.

iv

Acknowledgments

All worship and glory be to the All-Magnificent and All-Merciful Allah Almighty. I am

deeply grateful to Allah Almighty for granting me the capability and determination to

pursue and complete this research. Allah Almighty’s divine blessings and guidance have

been instrumental in overcoming obstacles and achieving success. I humbly acknowledge

that no words can fully express my gratitude for the countless blessings bestowed upon

me. I dedicate this thesis as a humble tribute to Allah Almighty, recognizing His infinite

wisdom and benevolence. I pray that my work may benefit others and be pleasing to

Allah Almighty.

I would also like to express my heartfelt appreciation to my thesis supervisor, Asst.

Prof. Dr. Yawar Abbas Bangash, for his unwavering support and guidance through-

out my thesis. His knowledge, expertise, and dedication to his field have been a source

of inspiration to me, and I am grateful for the time and effort he invested in my suc-

cess. From the beginning of my journey until the end, he has been an embodiment of

kindness, motivation, and inspiration towards me.

In addition, I extend my gratitude to my GEC committee members, Professor Dr.

Hammad Afzal and Asst. Prof. Noman Ali Khan, for their continuous availabil-

ity for assistance and support throughout my degree, both in coursework and thesis.

Their expertise and knowledge have been invaluable to me, and I am grateful for their

unwavering support and guidance.

v

Table of Contents

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 3

1.3 Problem Statement . 5

1.4 Research Objectives . 7

1.5 Relevance to National Needs . 8

1.6 Area of Application . 10

1.7 Advantages . 11

1.8 Thesis Organization . 11

2 Literature Review 13

2.1 Introduction . 13

2.2 Related Work . 13

3 Design and Methodology 25

3.1 Overview of Proposed Model . 26

3.2 Proposed model description . 27

3.2.1 Dataset: . 27

3.2.2 Data Pre-processing: . 28

3.2.3 Conflict Definition and Detection: 33

4 Implementation 36

vi

Table of Contents

4.1 Dataset: . 36

4.2 Data extraction & pre-processing: . 37

4.2.1 PDF data extraction . 37

4.2.2 Text Splitting . 37

4.2.3 Part-of-Speech Tagging . 38

4.2.4 Dependency Parsing . 38

4.2.5 Tokenization . 39

4.2.6 Text Normalization . 40

4.2.7 Text Preprocess . 40

4.3 Elements identification: . 40

4.3.1 Identifying the Action . 41

4.3.2 Identifying the Actor . 43

4.3.3 Identifying the Event . 46

4.3.4 Identifying the Rules . 47

4.4 Element Identification Results: . 51

4.5 Conflict Definition & Detection: . 53

5 Results & Analysis: 58

6 Conclusion 64

6.1 Discussion . 64

6.2 Future Work . 66

7 Bibliography 68

vii

List of Tables

2.1 Table showing comparison between the latest research studies 24

3.1 Table showing the brief details about the datasets used in our research

work. 28

4.1 Element detection accuracy table showing the percentage of correctly

detected elements by our Rules-based element detection approach from

the text requirements. 52

4.2 Sample pairs of texts taken from datasets. The relationship between

Texts 1 and 2 is depicted in the ’Result’ column. 53

5.1 Conflict detection result table . 58

5.2 True Positive and False Negative Table for WorldVista Dataset 59

5.3 True Positive and False Negative Table for Pure Dataset 60

5.4 The effectiveness of our research in identifying conflict types in World-

Vista and Pure requirements . 61

viii

List of Figures

1.1 Difference between the functional, non-functional, and domain require-

ments from the system perspective. 2

1.2 Impact of Software requirement conflict or the bug detection and fixation

on the overall cost of a project during SDLC phases 3

1.3 Software Requirement Conflict detection model representing the brief

steps involved in software requirements data collecting till the conflict

detection . 6

1.4 Impact of Requirement changes on project cost throughout the SDLC . 8

1.5 Organization of the thesis . 12

2.1 Impact of requirement changes affecting the cost of the project on each

level of Software Development Life Cycle Phases depicted via chart. . . 14

2.2 Difference between people, process, and documentation error. 15

3.1 High-level model representing the detailed steps required for conflict de-

tection from the software requirements using NLP techniques 26

3.2 Briefly visualizing the steps involved in Actor Identification 29

3.3 Briefly visualizing the steps involved in Event Identification 30

3.4 Briefly visualizing the steps involved in Action Identification 31

3.5 Briefly visualizing the steps involved in Rules Identification 31

3.6 Rule-based defined Requirements Conflict type 34

ix

List of Figures

5.1 Ratio of Conflicted and Neutral Requirements in WorldVista dataset

shown by piechart . 59

5.2 Ratio of Conflicted and Neutral Requirements in Pure dataset shown by

piechart . 60

5.3 Conflict type distribution for WorldVista dataset shown in bar chart . . 62

5.4 Conflict type distribution for Pure dataset shown in bar chart 62

x

Chapter 1

Introduction

1.1 Overview

Software requirements and more specifically functional requirements are key components

of any software development process, as they define the specific functions that a system

must perform to meet the needs of its users. A software requirement is a description

of a feature or function that a software system must exhibit or perform to satisfy a

stakeholder’s need or expectation [1].

Conflicts arising between different functional requirements can lead to errors, delays, and

other problems during development. Traditional approaches to identifying conflicts in

functional requirements have relied on manual analysis, which can be time-consuming,

error-prone, and difficult to scale. It describes the method of locating and resolving

discrepancies or conflicts between various software requirements. Conflicts can develop

as a result of stakeholders having divergent goals or priorities or as a result of ambiguity

or contradiction in the requirements themselves.

One approach to detecting requirement conflicts is to use formal methods, such as for-

mal specification languages or model-checking techniques, to automatically verify the

consistency of the requirements. An additional approach is to analyze and categorize

requirements based on their attributes using machine learning (ML) techniques, and

then detect possible conflicts based on the classification.

There are several types of software requirements, including functional requirements,

non-functional requirements, and domain requirements.

1

Chapter 1: Introduction

1. Functional requirements specify what the software system should do or the

services it should provide. Functional requirements describe the system’s behavior

under specific conditions and can be expressed in terms of inputs, processes, and

outputs[2]. An example of a functional requirement is "The system shall allow

users to log in and create an account."

2. Non-functional requirements must specify the criteria of the level of perfor-

mance that the software system must meet. Non-functional requirements describe

the system’s quality attributes, such as its reliability, availability, usability, and

security[3]. An example of a non-functional requirement is "The system shall be

available 99.9% of the time."

3. Domain requirements specify the characteristics and constraints of the applica-

tion domain in which the software system operates. Domain requirements describe

the external factors that affect the system’s design and implementation, such as le-

gal, cultural, and technical considerations[4]. An example of a domain requirement

is "The system shall comply with privacy regulations and protect user data."

Figure 1.1: Difference between the functional, non-functional, and domain requirements

from the system perspective.

2

Chapter 1: Introduction

These three types of requirements are commonly used in software development to ensure

that the software system meets the needs of its stakeholders and operates effectively and

efficiently in its intended environment.

1.2 Motivation

Software requirement conflict detection is an essential process in software development

that aims to identify conflicts or inconsistencies among different requirements. These

conflicts can lead to costly errors and delays in the development process. Traditional

methods for detecting conflicts rely on manual inspection, which can be time-consuming

and error-prone.

Software requirement gathering is the main phase of SDLC so it must be conflict-free

as all the project development and success is based on this. Conflicts in requirements

lead to many issues like cost overrun (as shown in Figure 1.2), late delivery (time issue),

and quality compromise. Many researchers try to come across an efficient technique for

detecting conflicts among functional, non-functional, and quality requirements. Our ap-

proach will analyze and detect the conflicts from the software’s functional requirements.

Figure 1.2: Impact of Software requirement conflict or the bug detection and fixation

on the overall cost of a project during SDLC phases

Machine learning (ML) offers a promising approach to automate this process, by lever-

aging the power of data to identify patterns and predict conflicts. We will explore some

3

Chapter 1: Introduction

recent studies that have proposed ML-based approaches for software requirement con-

flict detection. Machine learning techniques offer a promising approach to detecting

conflicts in functional requirements.

Machine learning algorithms can examine big datasets of functional requirements and

look for trends that can point to conflicts between them by utilizing the capabilities

of artificial intelligence. Using machine learning techniques, we will offer a method for

identifying conflicts between functional needs in this work and go through its possible

advantages and drawbacks.

Currently, the conflicts in software requirements are done in various ways, We can

categorize them:

1. The manual approaches, such as easy-win-win[5] form of the win-win require-

ments negotiation strategy, are particularly popular in reality and are very common

in practice.

The "time-intensive and error-prone" method is manual identification. Although

using an automated system can help save some human work. These methods

require the requirements to be in a particular format, such as the extended Bakkus-

Naur-Form (EBNF)[6] and the Semantic Application Design Language (SADL)[7].

2. Automated approaches for software requirement conflict detection has been

proposed by several researchers. The authors[8] propose an automated approach

for detecting and resolving conflicts in software requirements using machine learn-

ing. They use natural language processing techniques to extract features from re-

quirements and then train a machine learning classifier to identify conflicts. They

also propose a resolution mechanism based on stakeholders’ preferences.

Conflicts between requirements of the same or different sorts can arise from an angle of

contending objects, such as between

1. Functional requirements.

2. Functional and Non-Functional requirements

3. Non-functional requirements.

Furthermore, there may be conflicting manifestations of the same request, such as

4

Chapter 1: Introduction

1. textual terms and use case graph,

2. textual terms and tabular form, and so on.

There has been a growing interest in using machine learning techniques for software en-

gineering tasks, including detecting conflicts in functional requirements. Several studies

have investigated the use of machine learning algorithms for this purpose, with promising

results.

For example, a recent study by Wang et al. (2021) developed a machine learning-based

approach to detect conflicts in functional requirements. The approach used natural

language processing techniques to analyze the textual content of functional requirements

and a neural network model was trained to identify potential conflicts. The results

demonstrated that the system detected conflicts with excellent accuracy, highlighting

the potential of machine-learning techniques for this purpose.

Another study by Maira et al. (2020) explored the use of decision tree algorithms for

identifying conflicts in functional requirements. The study used a dataset of functional

requirements for a web application, and the decision tree algorithm was able to identify

several conflicts between the requirements. The authors concluded that machine learning

algorithms could be an effective tool for detecting conflicts in functional requirements,

particularly in complex software systems.

Similarly, a study by Grigorescu and Cleland-Huang (2016) investigated the use of sup-

port vector machines for detecting conflicts in functional requirements. The authors used

a dataset of requirements for a safety-critical system, and the support vector machine

algorithm was able to identify several potential conflicts. The study highlighted the po-

tential of machine learning techniques for detecting conflicts in safety-critical systems,

which is especially relevant considering the potential implications of such failures.

1.3 Problem Statement

Due to the lack of understanding and communication, conflicting requirements can be

recorded in the initial phases of software engineering. Such conflict happens when two

software requirements cannot be implemented simultaneously. However, discovering

requirement conflicts is the most crucial and difficult component of requirements vali-

dation.

5

Chapter 1: Introduction

Therefore, we propose an automated conflict detector for software requirements that

should be easy to use and will help the requirement analysts to do their work more

clearly.

Our proposed model is shown in the below figure 1.3 which is comprised of multiple

individual modules connected with each other. All of these modules will be explained

in detail in the further section

Figure 1.3: Software Requirement Conflict detection model representing the brief steps

involved in software requirements data collecting till the conflict detection

The proper elicitation, gathering, and propagation of the requirements give the software

a high chance of success. Conflicts in requirements lead the project directly to failure.

One example of conflicting functional software requirements can be the following:

Requirement 1: The software should have a high level of security to prevent unau-

thorized access.

Requirement 2: The software should be easy to use and accessible to many users,

including those with limited technical knowledge.

These two requirements may conflict because the more secure a software is, the more

complex it usually becomes, making it difficult for some users to understand and use it

6

Chapter 1: Introduction

effectively. In contrast, software that is very easy to use and accessible may not have the

necessary security measures to protect sensitive information and prevent unauthorized

access.

To resolve this conflict, the development team may need to find a balance between

security and ease of use, by implementing security features that are not too complex or

difficult to use, while still providing adequate protection for the system and user data.

Along with keeping the software’s overall usability for the majority of users, they might

also think about adding more security measures for people who need it.

1.4 Research Objectives

This research aims with the following goals:

1. Provide an automated solution for detecting conflicts among the software require-

ments.

2. Provide ease to our system analysts and other experts.

3. Save project time, and cost and increase the project success rate. Figure 1.5

depicts software requirement changes’ impact on the project cost through the

SDLC phases.

7

Chapter 1: Introduction

Figure 1.4: Impact of Requirement changes on project cost throughout the SDLC

4. Proposing the model which gives the best results on different data sets.

1.5 Relevance to National Needs

Currently, in the Pakistan IT industry, the conflicts in software requirements are de-

tected and highlighted manually which is a time-consuming thing and can lead to project

latency and sometimes failure. This research will help our professionals with an auto-

mated solution for this problem to save their time and effort for some other important

tasks. It can be highly relevant to national needs in several ways:

1. Enhancing Software Security: National security agencies and organizations often

rely on software systems for critical functions. Detecting conflicts in functional

requirements can help ensure the security and integrity of software used in critical

infrastructure, defense systems, and government operations.

2. Government Efficiency: Governments at various levels use software systems to

deliver services to citizens. Efficient software development processes can lead to

cost savings and improved service delivery. By reducing conflicts in requirements,

this thesis can contribute to more effective government operations.

8

Chapter 1: Introduction

3. Economic Growth: The software industry is a significant contributor to a nation’s

economy. By improving the quality and reliability of software products, the the-

sis can help stimulate economic growth through increased software exports, job

creation, and innovation.

4. National Innovation and Technology Competitiveness: Nations that invest in

cutting-edge research and development in software engineering and NLP gain a

competitive edge in the global technology landscape. This thesis contributes to

innovation by advancing the state of the art in conflict detection and NLP tech-

niques.

5. Education and Workforce Development: National needs include a well-trained and

skilled workforce. Educational institutions can use the findings from this thesis to

enhance curricula in software engineering and NLP, ensuring that graduates are

well-prepared for the demands of the modern software industry.

6. Cybersecurity: Detecting conflicts in software requirements is essential for cyberse-

curity. National cybersecurity initiatives can benefit from the research to identify

vulnerabilities and security risks in software systems.

7. Healthcare and Public Health: In the context of healthcare, where software sys-

tems are vital for patient care and data management, detecting conflicts in re-

quirements can contribute to the reliability and safety of healthcare IT systems,

aligning with national health priorities.

8. Environmental and Energy Management: National efforts to address environmen-

tal and energy challenges often involve software systems. Ensuring that software

requirements are conflict-free can lead to more efficient energy management and

environmental monitoring systems.

9. Disaster Management: Software systems are critical in disaster management and

response. Detecting conflicts in requirements can help improve the reliability and

effectiveness of software used in disaster preparedness, response, and recovery ef-

forts.

10. Infrastructure Development: National infrastructure projects often rely on soft-

ware systems for monitoring and control. Conflict detection in requirements can

contribute to the reliability and safety of infrastructure systems.

9

Chapter 1: Introduction

1.6 Area of Application

The application of this research can extend across various sectors of the software in-

dustry, including development, testing, project management, education, and beyond,

with the overarching goal of improving the quality and success rate of software projects.

Several potential areas of application are:

1. Software Development Industry: This research can directly benefit software de-

velopment companies and teams. It can be applied to various types of software

projects, from web and mobile applications to large-scale enterprise systems. By

detecting conflicts in functional requirements early in the development cycle, it

helps in improving the quality and reliability of software products.

2. Quality Assurance and Testing: The thesis can be applied in quality assurance

and testing phases of software development. It can aid in designing test cases and

test scenarios to ensure that all potential conflicts in functional requirements are

identified and addressed before the software is deployed.

3. Requirement Engineering: Requirement engineers and analysts can use the NLP

techniques presented in the thesis to streamline the process of gathering, docu-

menting, and analyzing functional requirements. This can lead to more accurate

and consistent requirements specifications.

4. Project Management: Project managers can use conflict detection tools derived

from this research to better manage project risks. By identifying conflicts early,

project timelines and budgets can be more accurately estimated, and mitigation

strategies can be put in place.

5. Regulatory Compliance: In industries with strict regulatory requirements, such

as healthcare or finance, ensuring that software requirements are conflict-free is

crucial. This research can help organizations adhere to regulatory standards more

effectively.

6. Education and Training: The techniques and methodologies developed in this

thesis can also be applied in educational settings. They can be used to teach

software engineering students about requirement analysis and the importance of

conflict detection in real-world projects.

10

Chapter 1: Introduction

7. Research and Development: Academics and researchers in the fields of Natural

Language Processing (NLP) and Software Engineering can use the thesis as a

foundation for further research in conflict detection, NLP techniques, and their

application in software development.

8. Custom Software Solutions: Organizations that develop custom software solutions

for specific industries or niches can leverage this research to create specialized

conflict detection tools tailored to their domain.

1.7 Advantages

Analyzing the SRS document manually, going through all the requirements, modeling

their functionalities, and finding their impacts on one another take up a lot of cost

in terms of manpower. Therefore, coming up with a solution that provides a faster

and more effective way to automate these tedious and difficult tasks will provide a great

advantage from the monetary perspective, and also the overall process will be undertaken

a lot more efficiently as compared to humans because it will be prone to errors.

1.8 Thesis Organization

We have organized the structure of this paper into different chapters.

1. In the first chapter, we have an introduction.

2. The second chapter includes a review of the literature as well as background infor-

mation on the broad notion of requirements conflict and related work on require-

ments conflict detection.

3. In the third chapter, we have stated the design and methodology of our research

work with a detailed explanation of each step taken for this thesis.

4. In the fourth chapter, we included the implementation of the work involving the

framework and the code part which also with detailed explanation.

5. In the fifth chapter, we have included our results explained with the help of tables

and graphs.

11

Chapter 1: Introduction

6. Finally, in the sixth chapter, the work’s results and future work plan are presented.

Figure 1.5: Organization of the thesis

12

Chapter 2

Literature Review

2.1 Introduction

Requirements are the bedrock of any software development process, and they are one of

the first and most crucial components of the Software Development Life Cycle (SDLC).

Requirements outline what the system should perform and what are the conditions that

must be met in order for objectives to be met. There are teams specifically designated

to gather, analyze, and describe requirements.

Among the SDLC phases Requirement gathering and Analysis is the most crucial phase.

The project team can never create a good solution without understanding the require-

ments. Most of the groups work hard on creating projects without following the correct

requirements and at last, the project results in the failure of the software project. This

is the main reason driving 66% of project failure, as reported in the Standish Group’s

2022 CHAOS. Hence, it’s crucial to outline the requirements in detail so that every team

member can understand.

2.2 Related Work

In paper[9], using their text pattern and semantical reliance-based heuristic detecting

criteria, the researcher created seven different types of conflicts. This work’s main goal

was to create a technique known as the "Finer Semantic Analysis-based Requirements

Conflict Detector (FSARC)" that can automatically identify conflicts between specific

functional requirements expressed in plain language by looking at their finer seman-

13

Chapter 2: Literature Review

tic components. In order to find requirements conflicts, the researcher developed and

implemented an algorithm that looks at the linguistic features of the requirements.

The results of this study might turn the functional needs expressed in natural language

into eight semantic tuples, which can then be used to identify requirements that con-

flict with one another as well as do other activities like creating associations between

requirements.

In three separate open needs datasets, the semantic analysis algorithms correctly rec-

ognized, on average, 94.93% of the software requirement items. The third experiment,

which included four requirement datasets, showed that FSARC has an average precision

of 83.88% and around 100% recall for conflict identification.

Identifying the requirement conflicts in the early phases of SDLC will help save the

project cost and failure. We can say that identification of conflict in the requirement

analysis phase will protect more cost, time, and project success status than identifying

it in the coding phase. The below graph 2.1 can also explain that the cost of the project

will be affected directly if the conflicts are not identified in the early phases of SDLC.

Figure 2.1: Impact of requirement changes affecting the cost of the project on each level

of Software Development Life Cycle Phases depicted via chart.

In 2004 a badly designed Child support system resulted in 784 million dollars of extra

cost. The poor requirement phase can result in financial loss and schedule overrun. A

conflict in two requirements would always result in extra man hours, ambiguity, and

14

Chapter 2: Literature Review

cost overrun. So, it should be looked after at the requirement phase as it would result in

havoc in later phases. Conflicting requirements would result in bad design, which would

result in a bad system and extra cost.

Jarke, Gebhardt, Jacobs, and Nissen[10] developed a method for analyzing conflict.

Their strategy includes a meta-modeling strategy aimed at conflict analysis.

Walia et al.[11] proposed a requirement error taxonomy. The literature survey of soft-

ware engineering, psychology, and human cognitive domains yielded a total of fourteen

categories of errors. The mistakes are then classified into three high-level requirement

error classes:

• People errors are errors caused by persons involved in requirements preparation.

• Process errors are errors that occur as a result of insufficient requirement engineer-

ing processes. And choosing the incorrect means of reaching goals and objectives.

• Documentation mistakes are errors that occur as a result of poor requirement

structure and specification. Regardless of whether the creator of the requirement

(Requirement Analyst) accurately understands the requirements.

Figure 2.2: Difference between people, process, and documentation error.

Egyed and Grunbacher [12] claim that "requirements conflict with each other if they

make contradictory statements about common software attributes." The number of re-

quirements may result in up to n2 conflicts. The number of potential conflicts may

15

Chapter 2: Literature Review

be enormous, presenting the engineer with the time-consuming and error-prone task

of discovering true conflicts." As a result, requirement conflicts can lead to a number

of issues, such as cost overruns[12], [13], late delivery (due to a time restriction), and

quality compromise.

Chentouf[14] incorporated the requirements into a KAOS-derived regulated natural lan-

guage. The study concentrated on three sorts of conflicts: redundant requirements,

incompatible requirements, and assumptions. His study, however, lacks an automated

technique or essential detection algorithms.

The authors of a study offer[15] a method for finding conflicts in natural language re-

quirements that combines ML and graph analysis approaches. The approach involves

first extracting semantic information from the requirements using natural language pro-

cessing techniques and then representing the requirements as a graph. The authors

then use a decision tree classifier to predict conflicts based on the graph structure. The

authors report an accuracy of 87% in detecting conflicts.

M. M. Kabir and M. A. Azim [16] compare the performance of different ML algorithms

for detecting conflicts in software requirements. The algorithms evaluated include SVM,

decision trees, random forests, and naive Bayes. The authors report that SVM outper-

forms the other algorithms, achieving an accuracy of 86% in detecting conflicts.

In a research paper [17], the authors propose an approach that combines rule-based and

ML-based techniques for detecting conflicts in software requirements. The approach

involves first applying rule-based techniques to identify potential conflicts and then

using a decision tree classifier to confirm or reject these conflicts. The authors report

an accuracy of 89% in detecting conflicts.

In a study[18], the authors propose an ML-based approach for detecting conflicts in

software requirements. The approach involves training a support vector machine (SVM)

classifier on a dataset of requirement specifications to predict conflicts. The authors

report promising results, with an accuracy of 83% in detecting conflicts.

A paper[19] provides a deep learning-based solution for detecting software requirement

conflicts. The authors trained a convolutional neural network (CNN) to learn the fea-

tures of the requirements before classifying them using a fully connected network. The

technique was tested on a collection of 100 requirements documents, and the findings

revealed that it outperformed other state-of-the-art techniques.

16

Chapter 2: Literature Review

A study [20] proposes a new approach for automated conflict detection in software re-

quirements using NLP and machine learning. The authors use a combination of word

embedding and classification techniques to detect conflicts in requirements. The ap-

proach is evaluated on a dataset of software requirements and achieves an accuracy of

88.5%.

Osman et al. [21] presents a systematic review of machine learning algorithms for

detecting requirements conflicts. The authors examine 24 research and identify the

most often utilized machine learning approaches, including support vector machines,

decision trees, and random forests. They also explore the difficulties and limitations of

current techniques.

Acharya et al. [22] present a novel strategy for detecting needs conflicts using NLP

techniques. To detect needs conflicts, the authors employ a combination of semantic

similarity and clustering approaches. The method is tested on a dataset of software

requirements and achieves a 90% accuracy.

Conflict happens when two or more software requirements cannot be implemented at the

same time, and they lead to big trouble. The requirements are usually from laymen with

diverse backgrounds and interests [23]. Example of conflicting software requirement is:

Requirement 1: The system should be able to integrate all kinds of services.

Requirement 2: The system should be able to block integration with external services.

The conflict between requirements 1 and 2 is obvious. This conflict will turn into a

disastrous situation. However, discovering requirement conflicts is the most significant

and difficult component of requirements validation.

Detecting the conflicting requirements from large Software Requirement Specification

(SRS) documents would be a very cumbersome process. Various approaches are already

proposed as a solution to this problem, but most are manual [24]. The automated

approaches proposed also involve human effort, which is time-consuming and costly.

Considering the current and future expectations in the field of Software Engineering,

especially for Requirement Engineering, an automated conflict detector for software

requirements should be easy to use and can help the requirement analyst do their work

more easily.

Conflict is defined in the world of requirement engineering as the inference, interdepen-

17

Chapter 2: Literature Review

dence, and discrepancy between requirements. Kim et al.[25] defined software require-

ments conflict as "the interactions and dependencies between requirements that can lead

to negative or undesired system operation." Another researcher, Cameron, defines re-

quirements conflicts as "unexpected or contradictory interactions between requirements

that harm the results."

Gouri Deshpande in research [26] addressed three main challenges.

1. To begin, Natural Language Processing (NLP) is being researched in order to auto-

matically extract dependencies from textual sources. Verb classifiers are used to auto-

mate the elicitation and analysis of many sorts of relationships.

2. Second, the representation and management of changing need dependencies is inves-

tigated when building graph theoretic algorithms.

3. Third, the procedure of recommending dependencies is investigated. The findings

are intended to aid project managers in evaluating the impact of interdependencies and

making successful decisions throughout the software development life cycle.

Working with conflicting requirements would cost the project a lot of time and effort,

which will finally lead to project failure, according to studies. This unique approach

research [27] offers defining and resolving functional requirements using an AI technique.

A rule-based system can identify the conflicts, and then a genetic algorithm can be

used to resolve those conflicts, yielding a set of functional requirements with the fewest

conflicts. The use of artificial intelligence tools would boost project efficiency and quality

while decreasing human effort and errors.

According to Jeff Grigg, the individual should prioritize their business goals or require-

ments and then trace those back to the business goals g to reach. Assign a higher priority

to the criterion that they believe is a more important business goal [28]. When a dis-

agreement arises, it is necessary to negotiate a settlement, either by picking alternatives

or re-evaluating priorities.

In another research, David proposed a prioritization method in which each business goal

or requirement is scored regarding the organization’s value, cost, and risk[29]. So, that

the requirements can be prioritized in a more meaningful way.

Few research also covered the healthcare areas scenarios where the requirement conflicts

are observed. Since emotions are individually constructed[30], there is a need to examine,

18

Chapter 2: Literature Review

determine, and resolve conflicts that are usually present when eliciting emotional or

affective requirements.

Non-atomic requirements are a set of criteria in which there is more than one elemen-

t/function of the system. Halim, F., Siahaan, & D.[31] undertook research to create

a model that can detect non-atomic needs in natural language Software requirement

specifications.

According to A.M. Abu-Mahfouz and H.M. Al-Aqrabi[32], a framework for detecting

software requirement conflicts using machine learning approaches was proposed. The

framework employs natural language processing techniques to extract key information

from requirements papers, and machine learning algorithms such as Decision Trees and

Random Forests are employed to classify the demands as conflicting or non-conflicting.

Another study[33] proposes an ensemble machine-learning technique for detecting soft-

ware requirements conflicts that includes a variety of machine-learning algorithms like

as Random Forest, Support Vector Machines, and Gradient Boosting. The approach

also incorporates feature selection and data balance approaches to improve the accuracy

of conflict identification.

The authors of another study[34] suggested an approach that employs machine learning

techniques to find conflicts in functional requirements. The concept combines a combi-

nation of feature selection approaches and machine learning algorithms such as Naive

Bayes and Support Vector Machines to uncover conflicting criteria.

S. Ali, S. Javed, and S. Ali[35] proposed a method for detecting software requirement

conflicts using machine learning approaches. The technique employs several machine

learning techniques such as Random Forest, Naive Bayes, and K-Nearest Neighbor to

classify requirements as conflicting or non-conflicting.

F. Calefato, F. Lanubile, and N. Novielli[36] introduced a method for detecting require-

ments conflicts using machine learning approaches. The technique employs machine

learning techniques such as Decision Trees, Random Forests, and Logistic Regression to

classify requirements as conflicting or non-conflicting. The approach was also tested on

a real-world dataset, with positive results.

The paper[37] explored a machine learning-based approach to detect conflicts in func-

tional requirements. The approach uses decision trees to classify requirements as con-

flicting or non-conflicting. The authors evaluated their approach on a dataset of 1000

19

Chapter 2: Literature Review

functional requirements and achieved an accuracy of 85%.

S. Kamal and M. R. Khan in their paper[38], the authors propose an approach that

uses support vector machines (SVM) to detect conflicts in software requirements. The

approach extracts features from the requirements and trains the SVM model on a dataset

of 300 requirements. The authors achieved an accuracy of 87% using their approach.

S. Kumar et al. [39] propose a hybrid approach that combines rule-based and machine-

learning techniques to detect conflicts in software requirements. The authors used fuzzy

logic to extract features from the requirements and trained a random forest model on

a dataset of 500 requirements. The authors achieved an accuracy of 92% using their

approach.

M. H. Khan et al. [40] propose a machine learning-based approach that uses decision

trees to detect conflicts in functional requirements. The approach extracts features from

the requirements and trains the decision tree model on a dataset of 400 requirements.

The authors achieved an accuracy of 89% using their approach.

The authors of a study[41] suggested a mixed machine learning approach to detect

conflicts in requirements papers. To identify requirements papers as conflicting or non-

conflicting, they coupled NLP techniques such as named entity identification and de-

pendency parsing with ML algorithms such as SVM and decision trees. The authors

evaluated their method on a dataset of requirements documents and discovered that it

was 92% accurate.

Al-Hajjaji et al. in a paper[42], proposed a machine-learning approach to detect conflicts

in requirements documents. They classified requirements documents as conflicting or

non-conflicting using ML techniques such as Random Forest and Naive Bayes. They

also employed feature selection approaches like Information Gain and Chi-Square to

determine which features were most useful for categorization. The authors tested their

method on a dataset of requirements documents and found it to be 93% accurate.

Singh et al., [43], suggested an NLP-based method for detecting conflicts in requirements

specifications. To preprocess the needs specifications, they used various NLP techniques

such as tokenization, stemming, and part-of-speech tagging. The criteria were then

clustered using K-means, an unsupervised clustering technique, based on their semantic

similarity. On a dataset of needs specifications, the authors analyzed their approach

and received an F1 score of 0.88.

20

Chapter 2: Literature Review

In a paper[44], the authors proposed a machine-learning approach to detect conflicts

in requirements documents. They used a combination of NLP techniques and ML al-

gorithms, including support vector machines (SVM) and decision trees, to classify re-

quirements documents as conflicting or non-conflicting. The authors evaluated their

approach on a dataset of real-world requirements documents and achieved an accuracy

of 90%.

In a paper[45], the authors proposed a method for detecting conflicts in software require-

ments using ML techniques. Using a dataset of software requirements, they developed

a classification model based on Support Vector Machines (SVM) and Random Forest

(RF) techniques. The results showed that the SVM algorithm outperformed the RF

method by 91% in detecting requirement conflicts.

In a study[46], the authors proposed a deep learning-based approach for detecting and

resolving conflicts in software requirements. They used a convolutional neural network

(CNN) to classify requirement conflicts and a long short-term memory (LSTM) network

to resolve them. The results showed that their approach detected requirement conflicts

with a 94% accuracy.

A study[47] conducted a systematic literature review on the use of ML techniques for

detecting conflicts in software requirements. The authors analyzed 27 papers and found

that the most commonly used ML algorithms were SVM, RF, and Naïve Bayes. They

also identified several challenges, including the lack of standardized datasets and the

need for more research on deep learning techniques.

In paper[48], the authors proposed a method for detecting conflicts in software require-

ments using natural language processing (NLP) and ML techniques. They used a dataset

of software requirements and applied NLP techniques to extract features from the re-

quirements. They then used an SVM algorithm to classify requirement conflicts. The

results showed that their approach achieved an accuracy of 89% in detecting requirement

conflicts.

21

Chapter 2: Literature Review

Research Study Dataset Evaluated Results

"A Machine Learning

Approach to Conflict

Detection in Require-

ments Engineering" by

Shen et al. (2020)

Requirements ex-

tracted from six

open-source soft-

ware projects

Achieved an F1-score of

0.83 for conflict detec-

tion

"Deep Conflict Resolu-

tion for Requirements

Engineering" by Sun et

al. (2018)

Requirements ex-

tracted from 15

open-source soft-

ware projects

Achieved an F1-score of

0.89 for conflict detec-

tion

"Conflict Detection

in Requirements Using

Machine Learning Tech-

niques: A Comparative

Study" by AlSulaiman

et al. (2019)

Requirements ex-

tracted from five

open-source soft-

ware projects

Achieved an F1-score of

0.76 for conflict detec-

tion using logistic re-

gression and 0.77 using

decision tree

"A Neural Network-

Based Approach to

Identify Conflicts

between Software Re-

quirements" by Afzal et

al. (2014)

Requirements

extracted from

three industrial

software projects

Achieved an F1-score of

0.94 for conflict detec-

tion

"Conflict Detection in

Requirements: An Ex-

ploratory Study Using

Machine Learning Tech-

niques" by Thakkar et

al. (2020)

Requirements

extracted from

three open-source

software projects

Achieved an F1-score of

0.81 for conflict detec-

tion using decision tree

22

Chapter 2: Literature Review

"A Machine Learning

Approach to Detecting

Conflicts in Require-

ments Documents" by

Chen et al. (2020)

Real-world Re-

quirements Docu-

ments

Accuracy (90%)

"A Machine Learning

Approach to Conflict

Detection in Require-

ments Engineering" by

Shen et al. (2020)

Requirements ex-

tracted from six

open-source soft-

ware projects

Achieved an F1-score of

0.83 for conflict detec-

tion

"Conflict Detection in

Requirements Docu-

ments using Machine

Learning Techniques"

by Al-Hajjaji et al.

(2019)

Requirements

documents

Accuracy (93%)

"A Hybrid Machine

Learning Approach for

Detecting Conflicts in

Requirements Docu-

ments" by Chen et al.

(2019)

Requirements

documents

Accuracy (92%)

"Automated Conflict

Detection in Require-

ments Engineering

using Machine Learning

and Natural Language

Processing" by Ahire et

al. (2021)

Requirements

documents

Accuracy (91%)

23

Chapter 2: Literature Review

"Conflict Detection in

Requirements Specifica-

tions using NLP Tech-

niques" by Singh et al.

(2020)

Requirements

specifications

F1 Score (0.88)

"Conflict Detection in

Requirements Specifica-

tions using NLP Tech-

niques" by Singh et al.

(2020)

Requirements

specifications

F1 Score (0.88)

"Unsupervised and

Supervised Machine

Learning Approaches

for Conflict Detection

in Requirements" by

Luka et al. (2020)

Requirements

documents

Precision, Recall, F1

Score

"Machine learning ap-

proach for conflict de-

tection in software re-

quirements" (2021)

Dataset of re-

quirements from

the literature and

a case study from

the oil and gas

industry

Accuracy, Precision,

Recall, F1-Score

"Conflict Detection

in System Require-

ments Using Machine

Learning Techniques"

(2019)

Requirements

dataset from the

literature

Accuracy, Precision,

Recall, F1-Score

Table 2.1: Table showing comparison between the latest research studies

24

Chapter 3

Design and Methodology

We will explain our research design and methodology in this part. The goal of the

research is to develop an approach that can automatically discover conflicts or incon-

sistencies in software specifications. Using Natural Language Processing (NLP), the

system will examine and detect disparities in textual requirements.

The research includes the following contributions:

• An automated approach that will semantically detect the conflicts from the func-

tional requirements. This automation can significantly reduce the manual effort

required for identifying inconsistencies, making the software development process

more efficient and less error-prone.

• The research introduces a structured approach with well-defined elements like ac-

tor, action, Action Negativity, event, event negativity, and restriction to represent

software requirements. This structured approach not only aids in the identifi-

cation of potential conflicts but also provides a clear and standardized way to

analyze and understand software requirements, enhancing the overall quality of

requirement specifications.

• The research goes beyond theoretical proposals by applying and evaluating the

proposed method on real-world datasets (WorldVista and Pure datasets). This

actual software development context-based testing proves the viability and efficacy

of the automated conflict detection approach. It provides empirical evidence of

its utility and reliability, which can be valuable for practitioners seeking practical

solutions to requirement inconsistencies.

25

Chapter 3: Design and Methodology

3.1 Overview of Proposed Model

The below figure3.1 shows our high-level model that represents the steps involved in

our conflict detection process. These steps will be further explained in detail in later

sections.

Data Collection Data Pre-processing Conflict Definition Conflict Detection Results

Software Requirement
Documents

Data Parsing

Identified Elements

Actor

Action

Action Negativity

Event Negativity

Rules

Event

Conflict Definition

Conflict Types

General Conflict

Action Frequency Conflict

Event Frequency Conflict

Redundant Requirements

Defined Conflict Types

Detected Software
Requirement

Conflict results

Semanticalluy restructured data and
defined conflict types will be processed by

NLP to detect the Software Requirement
Conflicts

Data segmentation using NLP

Figure 3.1: High-level model representing the detailed steps required for conflict detec-

tion from the software requirements using NLP techniques

In order to achieve this goal, our research design and methodology will be structured

into several key phases, each aimed at addressing specific aspects of the problem.

1. Data Collection and Preprocessing: To begin, we will gather a diverse dataset

comprising software specifications and requirements documents from various do-

mains and industries. This dataset (as described in section 3.2.1) will serve as

the foundation for training and evaluating our NLP-based conflict detection sys-

tem. Preprocessing steps will involve cleaning and standardizing the text data,

26

Chapter 3: Design and Methodology

tokenization, and annotating the data with labels to indicate potential conflicts.

2. Algorithm Selection or Development: The next step in our methodology involves

selecting or developing appropriate NLP algorithms and techniques for conflict

detection. Customized algorithms will be developed to enhance the system’s ability

to identify conflicts accurately.

3. Integration and Testing: Subsequently, we will integrate the developed system into

existing software development workflows or environments commonly used by prac-

titioners. Integration testing will ensure the system’s compatibility with various

software development tools and its ability to seamlessly fit into the development

process.

4. Statistical Analysis: Finally, we will perform statistical analyses to draw meaning-

ful insights from the results, including identifying patterns of conflicts in different

types of software specifications. This analysis will provide a deeper understanding

of the challenges and opportunities in conflict detection and guide future research

directions in the field.

3.2 Proposed model description

3.2.1 Dataset:

Data collection is an important part of our research and necessitates the extraction of

pertinent documents housing software functional requirements. In our research work,

we have utilized two of the open-source available datasets to get software functional

requirements, WorldVista1 and Pure2 as our test cases to assess the effectiveness of our

semantic element identification algorithm that we have introduced in later chapters and

also discussed that in detail.

We will quickly outline the datasets used in our research below:

1. WorldVista: The software requirements for a healthcare management system are
1https://gitfront.io/r/user-9946871/ii6eJFSh7oT4/DA-Sentence-Pairs/blob/Dataset/

world_vista_clean_pairs.csv
2https://gitfront.io/r/user-9946871/ii6eJFSh7oT4/DA-Sentence-Pairs/blob/Dataset/pure_

clean_pairs.csv

27

https://gitfront.io/r/user-9946871/ii6eJFSh7oT4/DA-Sentence-Pairs/blob/Dataset/world_vista_clean_pairs.csv
https://gitfront.io/r/user-9946871/ii6eJFSh7oT4/DA-Sentence-Pairs/blob/Dataset/world_vista_clean_pairs.csv
https://gitfront.io/r/user-9946871/ii6eJFSh7oT4/DA-Sentence-Pairs/blob/Dataset/pure_clean_pairs.csv
https://gitfront.io/r/user-9946871/ii6eJFSh7oT4/DA-Sentence-Pairs/blob/Dataset/pure_clean_pairs.csv

Chapter 3: Design and Methodology

included in the WorldVista dataset, with a focus on patient information manage-

ment and hospital admission and discharge procedures. These needs are provided

in a simple manner, using plain language and basic healthcare terminology.

The 117 requirements in our dataset describe the attributes and functions of a

health information system and an electronic health record system, respectively.

2. Pure: PURE, is an openly available Software Requirements Specification (SRS)

documents obtained from open-source software projects. Specifically, we have se-

lected one of the famous SRS documents from this compilation i.e. THEMAS

(Thermodynamic System). Initially, the requirement structures in these docu-

ments were intricate, and organized into paragraphs. To facilitate analysis, we

undertook preprocessing to simplify and streamline these requirements.

In our dataset, there are 66 requirements that collectively define the functionality

of an electronic health record and health information system.

Dataset Total Requirements (#) Known Conflicts (#)

WorldVista 117 39

Pure 66 21

Table 3.1: Table showing the brief details about the datasets used in our research work.

3.2.2 Data Pre-processing:

3.2.2.1 Data Parsing

Before data is passed for further analysis and experimentation preprocessing is required.

To normalize data, we have applied multiple techniques to our dataset. These techniques

help in transforming unstructured text into structured representations that can be used

further for conflict detection. The most important one of the used techniques is Sentence

Segmentation.

Core NLP is used for the data parsing from PDF format. Sentence segmentation involves

splitting a text into individual sentences. It is essential for tasks like machine translation,

text summarization, and information retrieval.

28

Chapter 3: Design and Methodology

3.2.2.2 Data Segmentation

Before conflict detection from the software requirements, we identified certain elements

from the requirement that would later be used for conflict detection. For this purpose, we

have used the CoreNLP library and certain NLP rules to identify them. The major part

of our research work is element identification. The identified elements are actor, event,

action, Action Negativity, event negativity, and rules. We have defined a sub-model in

our research for the identification of each element. Below we will explain in detail each

element with their model. Implementation details for each element are described in the

next chapter.

• Actor: Actor is the individual responsible for carrying out the designated task,

typically the main subject of the requirement. Actor is an important concept used

in use cases and is properly mentioned and identified in the case template. Actors

represent the various roles, entities, or individuals that interact with the software

system. These can be human users, external systems, hardware devices, or even

other software applications.

Figure 3.2: Briefly visualizing the steps involved in Actor Identification

Each actor has specific responsibilities and objectives within the system. Actors

interact with the software system by initiating and participating in various actions,

such as requesting information, providing input, or triggering specific functions.

29

Chapter 3: Design and Methodology

Figure(3.2) explains the actor identification process in detail.

• Event: When the event is executed successfully, then the Action is performed.

In the context of software requirements and system behavior, an "event" refers

to a specific occurrence or incident that triggers actions or processes within the

software system. Events are essential for defining the conditions under which the

system should respond or behave in a certain way. When a particular event occurs,

the system responds accordingly. Events serve as triggers for the software system

to initiate specific actions, processes, or state transitions. Figure(3.3) explains the

event identification process in detail.

Figure 3.3: Briefly visualizing the steps involved in Event Identification

• Action: The action refers to a fundamental element that describes what the soft-

ware system is supposed to do or the specific task it needs to perform in response

to a user request or an event. Actions are critical for defining the functionality

and behavior of the software. Actions are often framed from a user perspective,

describing what a user expects the system to perform. For instance, a user require-

ment might state, "The system must allow users to create new accounts." Here,

"create new accounts" is the action that the user expects to happen. Figure(3.3)

explains the action identification process in detail.

30

Chapter 3: Design and Methodology

Figure 3.4: Briefly visualizing the steps involved in Action Identification

• Rules: In software requirements, rules are constraints and conditions placed on

the execution of an action or operation. These rules and Rules help define the

boundaries and limitations within which the action or operation must operate.

These constraints also help ensure that the software behaves predictably, securely,

and in compliance with specific requirements or business needs. Clear and well-

defined rules are essential for the accurate implementation and testing of software

systems. Figure(3.5) explains the rules identification process in detail.

Figure 3.5: Briefly visualizing the steps involved in Rules Identification

• Action Negativity: When the event remains the same but once the operation starts

in one requirement while stopping in the other one, its state of operation frequency

changes. Action Negativity in software requirements deals with how the state or

31

Chapter 3: Design and Methodology

frequency of a particular operation changes when the same event occurs multiple

times. This concept is essential for ensuring that software requirements are precise

and unambiguous, leading to consistent and predictable system behavior.

• Event Negativity: When the operation remains the same but the event changes like

once starting in a requirement and then stopping in another requirement, its state

of event frequency changes which is highlighted in the event negativity element.

"Event Negativity" in software requirements refers to situations where the state or

frequency of an event changes while the operation or action remains the same.

We can better understand the above-defined elements from the below examples:

Example 1:

Requirement: User Registration

As a user, I want to create a new user profile by providing a unique username and a valid

email address. Upon submitting the registration form, the system should successfully

create the user profile.

Actor: User

Action: Create a new user profile

Rules: The user must provide a unique username and a valid email address.

Event: When the user submits the registration form

Example 2:

Requirement: Sales Reporting

As an administrator, I need to generate a monthly sales report that includes data from

all sales transactions within the specified month. The system should generate the report

in PDF format automatically on the last day of each month at 11:59 PM.

Actor: Administrator

Action: Generate monthly sales report

Rules: The report must include data from all sales transactions within the specified

month.

Event: On the last day of each month at 11:59 PM.

32

Chapter 3: Design and Methodology

3.2.3 Conflict Definition and Detection:

In the context of our research, conflict detection and definition play a pivotal role in

identifying areas of contention within textual requirements. Below we elaborate on

how conflicts are defined and detected based on the analysis of detected elements using

natural language processing techniques.

The goal is to provide a comprehensive understanding of conflicts within textual re-

quirements and the criteria used for their classification. Below we defined the cosine

similarity threshold, our major criteria for considering a requirement for conflict.

The semantical relationships between elements will be primarily triggered while dis-

cussing the conflict definition and their detection rules. We can categorize the software

requirement into two types

1. Neutral

2. Conflicted

Inconsistency in action, actor, event, and rule usually leads to the requirement conflict

situation. If two requirements Requirement1 and Requirement2 cannot be satisfied,

there is an inconsistent relationship between them. There are three types of inconsis-

tencies action-inconsistency, rule-inconsistency, and event-inconsistency.

1. Action Inconsistency: If both Requirement1 and Requirement2’s event and agent

are the same, but Requirement1’s action conflicts with Requirement2’s, then.

There is allegedly a relationship called action inconsistency.

2. Rule Inconsistency: If the action, actor, and event of Requirement1 are equal to

those of Requirement2 respectively but the rules of Requirement1 contradict with

Requirement2. It is said that there is a rules-inconsistency relation.

3. Event Inconsistency: If agents, action, and rules of Requirement1 and Require-

ment2 are equal, but there exists some contradiction between the events of both

requirements then we can say there is an event-inconsistency relation between both

requirements.

33

Chapter 3: Design and Methodology

3.2.3.1 Neutral Requirements

Requirements that do not have any inconsistency in their action, actor, event, and rule

and also do not have a cosine similarity falling below 50% are categorized as "Neutral."

3.2.3.2 Conflicted Requirements

Requirements that contain any of the above inconsistencies and also have a cosine simi-

larity falling above 50% are categorized as "Conflicted." The conflicted requirement can

be further categorized into four types of conflicts as shown in figure 3.6:

Figure 3.6: Rule-based defined Requirements Conflict type

1. General Conflict: If two requirements share the same "Action", "Agent", "Event",

"Rules," "Action Negativity", and "Event Negativity," they are classified as having

a general conflict with no specific conflict type.

2. Action Frequency Conflict: When two requirements match in "Action", "Agent",

"Event", "Rules," and "Event Negativity" but differ in "Action Negativity", they

are identified as exhibiting an "Action Frequency Conflict."

3. Event Frequency Conflict: Requirements sharing the same "Action", "Agent", and

"Rules" but differing in "Event" and "Event Negativity" are considered to exhibit

an "Event Frequency Conflict."

34

Chapter 3: Design and Methodology

4. Redundant Requirements: Requirements sharing identical values for "Action",

"Agent", "Event", "Rules", "Action Negativity", and "Event Negativity" are re-

garded as having a "Redundant Conflict."

35

Chapter 4

Implementation

4.1 Dataset:

As discussed in the previous chapter, data collection is a pivotal aspect of our research

and necessitates the extraction of pertinent documents housing software functional re-

quirements. This extraction process involves techniques such as web scraping and the

availability of the selected data sources. It is imperative that the collected documents

exhibit diversity across software projects, domains, and industries, ensuring the creation

of a comprehensive and representative dataset.

In our research work, we have utilized two of the open-source available datasets to get

software functional requirements, WorldVista and Pure as our test cases to assess the

effectiveness of our semantic element identification algorithm.

Dataset is being collected from https://gitfront.io/r/user-9946871/ii6eJFSh7oT4/DA-

Sentence-Pairs/

We’ll give a brief overview of the datasets we used below:

1. WorldVista: The features and capabilities of an electronic health record sys-

tem and a health information system are covered by the 117 requirements in the

WorldVista dataset.

2. Pure: Our dataset consists of a total of 66 requirements, delineating the func-

tionalities of a THEMAS system.

We initiated a process of requirement adjustment to ensure that all requirements meet

the prerequisites for natural language (NL) requirements, facilitating our automated

36

https://gitfront.io/r/user-9946871/ii6eJFSh7oT4/DA-Sentence-Pairs/
https://gitfront.io/r/user-9946871/ii6eJFSh7oT4/DA-Sentence-Pairs/

Chapter 4: Implementation

processing. This adjustment procedure involves the incorporation of modal verbs, the

inclusion of conditional adverbial clause keywords such as "if" and "when," and the re-

placement of pronouns with their corresponding nouns. We are interested in quantifying

the ratio of requirements necessitating these adjustments.

4.2 Data extraction & pre-processing:

4.2.1 PDF data extraction

The data set will be in pdf form and we will be extracting the data from the pdf for

further processing. Below is the code of how we read the data from the pdf file.

def readPdf(pdf_path):

sentences_with_page = []

with pdfplumber.open(pdf_path) as pdf:

for page_number, page in enumerate(pdf.pages, start=1):

page_text = page.extract_text()

sentences = re.split(r’(?<=[.!?])\s+(?=[A-Z][^.]*\.)’, page_text)

for sentence in sentences:

sentences_with_page.append((page_number,sentence))

return sentences_with_page

4.2.2 Text Splitting

The data that is extracted from pdf format is now split into sentences. This will separate

the all pdf text into sentences for further processing.

def SentenceSplit(pdf_text):

pdf_text = re.sub(r’\n+’, ’ ’, pdf_text)

pdf_text = re.sub(r’\x0c’, ’ ’, pdf_text) # Page break character

Split sentences based on periods, exclamation marks, or question marks

followed by spaces

sentences = re.split(r’(?<=[.!?])\s+(?=[A-Z])’, pdf_text)

return sentences

37

Chapter 4: Implementation

4.2.3 Part-of-Speech Tagging

We will do POS tagging on the data in the final step after pre-processing the dataset.

Through the process of POS tagging, each word in the text is assigned a part of speech

(such as a noun, verb, or adjective). Understanding the grammatical structure of the

demand and recognizing verbs, which frequently denote activities, are made easier with

the use of POS tagging.

4.2.4 Dependency Parsing

A essential activity in natural language processing (NLP), dependency parsing examines

the relationships between words in a phrase to assess its grammatical structure. To

develop a dependency tree, it includes examining the syntactic connections between

words in a sentence. It aids in comprehending the relationships between words in terms

of their grammatical functions.

Create a CoreNLP parser

parser = CoreNLPParser()

parsed = next(parser.raw_parse(requirement))

dependency_parser = CoreNLPDependencyParser()

dependency_tree = next(dependency_parser.raw_parse(requirement))

Extract and format dependencies

dependencies = []

for triple in dependency_tree.triples():

dep = {

"type": triple[1],

"start": triple[0][0],

"end": triple[2][0]

}

dependencies.append(dep)

return dependencies

return formatted_dependencies

This code demonstrates how to perform dependency parsing using the Stanford CoreNLP

library and extract the grammatical relationships between words in a sentence. Depen-

dency parsing is useful for various NLP tasks, including syntactic analysis, information

38

Chapter 4: Implementation

extraction, and machine translation. Here we are using it for information extraction.

4.2.5 Tokenization

Tokenization is a crucial step in natural language processing (NLP), where a text is

divided into individual words or tokens. Many NLP procedures, such as part-of-speech

tagging, named entity recognition, and syntactic parsing, are built upon it.

for sentence in parsed_response["sentences"]:

for dep in sentence["basicDependencies"]:

formatted_dep = {

"dep": dep["dep"],

"governor": dep["governor"],

"governorGloss": sentence["tokens"][dep["governor"] -

1]["word"],

"dependent": dep["dependent"],

"dependentGloss": sentence["tokens"][dep["dependent"] -

1]["word"]

}

formatted_dependencies.append(formatted_dep)

for token in sentence["tokens"]:

formatted_token = {

"index": token["index"],

"word": token["word"],

"originalText": token.get("originalText", ""),

"lemma": token.get("lemma", "N/A"),

"characterOffsetBegin": token.get("characterOffsetBegin", -1),

"characterOffsetEnd": token.get("characterOffsetEnd", -1),

"pos": token.get("pos", ""),

"before": token.get("before", ""),

"after": token.get("after", "")

}

formatted_tokens.append(formatted_token)

return formatted_tokens

This code demonstrates how to tokenize text using the Stanford CoreNLP library and

extract the individual tokens for further NLP analysis or processing.

39

Chapter 4: Implementation

4.2.6 Text Normalization

Text normalization is an essential preprocessing step in NLP that aims to standardize

and clean text data to make it more suitable for analysis and modeling. In the provided

method, we have a simple text normalization function called normalize.

def normalize(clause):

index = len(clause) - 1

while clause[index] in [’!’, ’?’, ’;’, ’\n’, ’ ’, ’.’]:

index -= 1

return clause[: index + 1] + ’.’

4.2.7 Text Preprocess

Text preprocessing is an important stage in natural language processing (NLP) that

entails cleaning and transforming raw text input into a format appropriate for analysis

and machine learning activities.

def preprocess(text):

text = remove_stopwords(text)

text = remove_instances(text)

text = change_ables(text)

return find_restrictions(text)

The above code demonstrates a set of text pre-processing techniques commonly used in

NLP. These techniques aim to remove noise, standardize certain phrases, and simplify

the text, making it more amenable for downstream NLP tasks i.e. information retrieval.

4.3 Elements identification:

As defined in the above section we have four tuples/elements i.e. Actor, Event, Action,

Action Negativity, Event Negativity, and Rules extracted from a text requirement based

on semantics. So here we will be identifying each element separately:

40

Chapter 4: Implementation

4.3.1 Identifying the Action

The action identification from a text requirement refers to the process of understanding

and extracting the specific actions that need to be performed or allowed based on the

information provided in the requirement text.

Natural Language Processing (NLP) involves using computational techniques to analyze

the text, identify the relevant actions, and possibly categorize or label them accordingly.

We have defined some rules/ conditions based on which the action will be extracted

from the text requirements. We will pass all the required data as input to the method

that will then process the further things based on the defined code. The following data

will be passed to the action function as Input

1. clause (a single requirement entry)

2. checkNeg (check whether word before operation is negative or not)

This will involve rules that capture specific sentence structures or verb-object relation-

ships that indicate actions.

Conditions or the rules to identify the actions are as follows:

1. Check for the presence of modal verbs (e.g., "shall," "must," "can," "may," "should,"

"will") in the text. If a modal verb is found, proceed with the following checks:

(a) If checkNeg is False, meaning negations are not being checked:

i. If "able to" is found after the modal verb, extract the words following "able

to" until the end of the sentence or another preposition is encountered

(e.g., "in," "on," "at"). Return these words as the operation and the

preposition that follows "able to."

ii. If "be" is found after the modal verb and "by" is also present in the text,

extract the words following "be" until the end of the sentence or another

preposition is encountered. Return these words as the operation and the

preposition that follows "be."

iii. If neither "able to" nor "be" is found, extract the words following the

modal verb until the end of the sentence or another preposition is en-

countered. Return these words as the operation and the preposition that

follows the modal verb.

41

Chapter 4: Implementation

def OperationParse(clause,checkNeg):

tokens = clause.split()

operation_tokens = []

check = ["be", "have", "do"]

stoppers = ["in", "on", "at", "with", "by", "for", "among",

"if", "between", "from", ":", ",",";"]

modals = ["shall", "must", "can", "may", "should", "will"]

for modal in modals:

if modal in tokens:

index = tokens.index(modal)

if "only" in tokens[index+1]:

indexs=tokens.index("only")

for token in tokens[indexs + 1:]:

if token in stoppers:

break

operation_tokens.append(token)

return (" ".join(operation_tokens), tokens[indexs

+ 1])

if checkNeg == False:

if "able" in tokens and "to" in tokens:

to_index = tokens.index("to")

for token in tokens[to_index + 1:]:

if token in stoppers:

break

operation_tokens.append(token)

return (" ".join(operation_tokens),

tokens[to_index + 1])

elif "be" in tokens:

be_index = tokens.index("be")

if index + 2 < len(tokens) and "by" in tokens:

for token in tokens[index + 2:]:

if token in stoppers:

break

operation_tokens.append(token)

return (" ".join(operation_tokens),

tokens[index + 2])

for token in tokens[index + 1:]:

42

Chapter 4: Implementation

if token in stoppers:

break

operation_tokens.append(token)

return (" ".join(operation_tokens), tokens[index +

1])

(b) If checkNeg is True, meaning negations are being checked:

i. Extract the words following the modal verb until the end of the sentence

or another preposition is encountered. Return these words as the oper-

ation and the word two positions after the modal verb (to account for

negations like "can’t").

elif checkNeg == True:

for token in tokens[index + 2:]:

if token in stoppers:

break

operation_tokens.append(token)

return (" ".join(operation_tokens), tokens[index + 2])

2. If no modal verb is found in the text, return an empty string ("").

The extracted operation and preposition are returned as a tuple, making it easier to

process the information.

4.3.2 Identifying the Actor

Using computational methods to examine and extract data from the text is necessary

for NLP-based actor identification.

The following data will be passed to the function as Input data:

1. clause (a single requirement entry)

2. Operation (result returned from operation identification)

3. Dependencies (dependencies parsed in data extraction and pre-processing step)

We will pass all the required data as input to the method that will then process the

43

Chapter 4: Implementation

further things based on the defined code. The steps involved in identifying or extracting

the actor from text requirement will be:

1. Passive Voice Identification:

(a) It first checks if the clause is in passive voice. If the dependency analysis

indicates that the word "by" is present and is the last word in a dependency

path, it identifies the actor.

(b) It also considers articles ("a," "an," "the," etc.) that might precede the actor

and includes them in the actor’s identification if present.

def Agent_Identification(clause, operation, dependencies):

agents = ’’

for dep in dependencies:

if dep["type"] in ("dep", "case") and dep["end"] == "by":

agents= dep["start"]

if agents:

article = clause.split(agents, 1)[0].strip().split()[-1]

if article in ["a", "an", "the", "A", "An", "The", "This",

"this"]:

agents = f"{article} {agents}"

elif article not in ["a", "an", "the", "A", "An", "The",

"This", "this"]:

agents = agents

else:

agents =’’

2. Active Voice Identification:

(a) If the clause is not in passive voice, it looks for a nominal subject (nsubj)

dependency with the starting word being either the extracted operation or

"able." This is an indicator of the actor in an active voice construction.

(b) Like in the passive voice identification, it also considers articles preceding the

actor.

elif dep["type"] == "nsubj" and dep["start"] == operation or dep["start"]

== "able":

44

Chapter 4: Implementation

agents = dep["end"]

if agents:

article = clause.split(agents, 1)[0].strip().split()[-1]

if article in ["a", "an", "the", "A", "An", "The", "This",

"this"]:

agents = f"{article} {agents}"

elif article not in ["a", "an", "the", "A", "An", "The",

"This", "this"]:

agents = agents

else:

agents = ’’

3. Fallback:

(a) If neither passive nor active voice constructions are identified, the code checks

for the presence of modal verbs (e.g., "shall," "must," "can," etc.) in the clause.

(b) If a modal verb is found, it identifies the word immediately preceding the

modal verb as the actor.

if agents == ’’:

for modal in modals:

if modal in words:

index = words.index(modal)

agents = words[index - 1]

if "by" in words:

keyword = "by" if "by" in words else ""

idx = words.index(keyword)

agents = words[idx + 1]

if agents:

article = clause.split(agents, 1)[0].strip().split()[-1]

if article in articles:

agents = f"{article} {agents}"

elif article not in articles:

agents = agents

return agents

4. Article Handling:

45

Chapter 4: Implementation

(a) The code handles articles in a way that if an article is found before the

identified actor, it is included in the actor’s identification.

5. Return the Identified actor:

The identified actor is returned as a string.

4.3.3 Identifying the Event

Using NLP, event identification from text requirements entails extracting and compre-

hending particular events, actions, or tasks based on textual descriptions or needs.

This process utilizes NLP techniques to analyze and parse the text, enabling the system

to identify and categorize various events or actions that are mentioned.

The following data will be passed to the event identification function as Input

1. clause (a single requirement entry)

2. tokens (extracted in token parse)

We will pass all the required data as input to the method that will then process the

further things based on the defined code. The steps involved in identifying or extracting

the event from the text requirement will be:

1. Tokenization and Condition Leading Words:

(a) The input tokens and clause are used to tokenize the clause into words.

(b) The find_condition_words function is called to identify the positions (in-

dexes) of condition-leading words (e.g., "when," "if," "while") within the to-

kens.

def find_condition_words(tokens):

condition_leading_words = [’when’, ’if’, ’While’]

return find_in_tokens(tokens, condition_leading_words, start=1, end=0)

2. Finding Punctuation After Condition Words:

(a) For each identified condition-leading word, the code searches for the positions

of specific punctuations (, and .) that occur after the condition word.

46

Chapter 4: Implementation

(b) If punctuations are found, the start and end positions of the condition are

determined based on the token indexes.

(c) The condition text is extracted by joining the words between the start and

end positions in the clause_words.

def Event_Parse(tokens, clause):

clause_words = clause.split()

words_indexes = find_condition_words(tokens)

conditions_list = []

for words_index in words_indexes:

start_pos = tokens[words_index][’index’] - 1

punc_index = find_in_tokens(tokens, [’,’, ’.’], words_index + 1,

len(tokens))

if len(punc_index) > 0:

end_pos = tokens[punc_index[0]][’index’]-1

condition = ’ ’.join(clause_words[start_pos:end_pos])

conditions_list.append(condition)

return conditions_list if conditions_list else " "

3. Event Conditions List:

Extracted conditions are added to the conditions_list.

4. Return the extracted event: The function returns the list of extracted event

conditions. If no conditions are found, it returns "None."

4.3.4 Identifying the Rules

In NLP, determining the rules from text requirements is a crucial problem, especially in

fields like software engineering, compliance, or legal document analysis. These limita-

tions or regulations frequently list prerequisites, limitations, or instructions that must

be followed.

The following data will be passed to the event identification function as Input

1. clause (a single requirement entry)

2. tokens (extracted in token parse)

47

Chapter 4: Implementation

3. dependency (extracted in dependency parse)

We will pass all the required data as input to the method that will then process the

further things based on the defined code. The steps involved in identifying or extracting

the rules from text requirements will be:

1. Parsing Restrictions with parse_restriction:

(a) This function is the entry point for extracting restrictions.

(b) It first calls RulesIdentification to identify restrictions based on dependency

parsing.

(c) It then extends the identified restrictions with those found using frequency_restriction.

(d) If there’s only one empty string in the restriction list, it is removed to ensure

the result is clean.

(e) Finally, it returns the list of restrictions.

def parse_rule(clause, dependencies, tokens):

restriction = RulesIdentification(clause, dependencies, tokens)

restriction.extend(frequency_restriction(clause, dependencies,

tokens))

if len(restriction) == 1 and restriction[0] == ’’:

restriction = None

return restriction if restriction else " "

2. Finding Restrictions with find_restrictions:

(a) This function identifies restrictions or conditions based on specific keywords

and phrases defined in the dictionary. These include words like "without,"

"within," "via," "as long as," and "until."

(b) It extracts these phrases from the text and appends them to the restrictions

list.

(c) The extracted restrictions are removed from the original text to prevent dou-

ble counting.

(d) The modified text and the list of restrictions are returned.

def find_rules(text):

48

Chapter 4: Implementation

restrictions = []

dictionary = {

’before condition’: [’when’, ’if’],

’before instance’: [’such as’, ’for example’, ’for instance’,

’including’, ’etc’],

’before restriction’: [’without’, ’within’, ’via’, ’as long

as’, ’until’],

’stop words’: [’then ’, ’in turn ’, ’_’, ’"’],

’modal verbs’: [’must’, ’shall’, ’should’, ’can’, ’may’],

’before adj clause’: [’that’, ’which’, ’who’, ’whom’],

’able words’: [’provide the means to ’, ’provide means to ’,

’provide a way to ’, ’provide the way to ’,’provide the

ability to ’]

}

for w in [’without’, ’within’, ’via’, ’as long as’, ’until’]:

if (l_index := text.find(w)) >= 0:

right = text.find(’,’, l_index)

res = text[l_index: right].replace(’.’, ’’)

if res != ’’:

restrictions.append(res)

text = text[:l_index] + text[right:]

return text,restrictions

3. Identifying Restrictions with RulesIdentification:

(a) This function identifies restrictions based on the grammatical dependencies

between words in the text.

(b) It looks for words that serve as adverbial modifiers (advmod) and appends

them to the restriction list if they are not common adverbs like "when" or

"then."

(c) Additionally, it identifies restrictions related to time and appends them to

the restriction list based on specific dependencies (nmod:tmod, nmod:per,

nmod:npmod).

def RulesIdentification(clause, dependencies, tokens):

restriction = []

for dep in dependencies:

49

Chapter 4: Implementation

if dep[’dep’] == ’advmod’ and dep[’dependentGloss’].lower()

not in [’when’, ’then’]:

restriction.append(dep[’dependentGloss’].lower())

for dep in [dep for dep in dependencies if dep[’dep’][:4] ==

’nmod’]:

end_index = int(dep[’dependent’])

if tokens[end_index][’pos’] in (’NNP’) or

tokens[end_index][’lemma’] == ’time’:

for d in [d for d in dependencies if d[’dep’] == ’case’

and d[’governor’] == end_index]:

restriction.append(token2text(tokens, d[’dependent’],

end_index + 1))

break

return restriction

4. Identifying FrequencyBased Restrictions with frequency_restriction:

(a) This function identifies frequency-based restrictions, such as "every time,"

"everyday," or "N time1 per/a time2."

(b) It looks for specific dependencies (nmod:tmod, nmod:per, nmod:npmod) and

the use of "everyday" as a keyword.

(c) The identified frequency-based restrictions are appended to the restriction

list.

def frequency_restriction(clause, dependencies, tokens):

restriction = []

for dep in [dep for dep in dependencies if dep[’dep’] ==

’nmod:tmod’]:

end_index = dep[’dependent’]

for d in dependencies:

if d[’dep’] == ’det’ and d[’governor’] == end_index and

d[’dependentGloss’] == ’every’:

restriction.append(token2text(tokens, d[’dependent’],

end_index + 1))

break

for t in tokens:

if t[’lemma’] == ’everyday’:

50

Chapter 4: Implementation

restriction.append(’everyday’)

for dep in [dep for dep in dependencies if dep[’dep’] ==

’nmod:per’ or dep[’dep’] == ’nmod:npmod’]:

time1 = dep[’governor’]

time2 = dep[’dependent’]

for d in [d for d in dependencies if d[’dep’] == ’nummod’ and

d[’governor’] == time1]:

restriction.append(token2text(tokens, d[’dependent’],

time2 + 1))

break

return restriction

4.4 Element Identification Results:

After all the elements are identified in the above section, now we need to store all

extracted results in an Excel file.

def Main(requirement, id, groupId):

formatted_dependencies, formatted_tokens, dependencies =

CoreNLPParse(requirement)

restrictions = []

requirement1 = normalize(requirement)

requirement2, restrictions = preprocess(requirement1)

operation_Negativity = check_not(requirement2,’op’)

operation_string, operation =

OperationParse(requirement2,operation_Negativity)

agent = Agent_Identification(requirement2, operation, dependencies)

event = Event_Parse(formatted_tokens, requirement2)

eventString=" ".join(event)

event_Negativity = check_not(eventString,’eve’)

if restrictions == []:

restriction = parse_rule(requirement2, formatted_dependencies,

formatted_tokens)

else:

restriction = restrictions

return [

51

Chapter 4: Implementation

requirement,

operation,

operation_string,

operation_Negativity,

agent,

eventString,

event_Negativity,

", ".join(restriction)

]

file_path1 = "worldvista dataset.pdf"

file_path2 = "pureclean dataset.pdf"

saveDataIntoExcel(file_path1,"WorldVista")

saveDataIntoExcel(file_path2,"Pure")

The returned results from all the element identification methods will be passed to an

Excel file via the Main function.

Here we have used, openpyxl library. It collects data from the processing of text re-

quirements and saves it row by row in an Excel worksheet. In Table 4.1, our rules-based

element detection approach achieved varying levels of accuracy for different types of

elements.

Element WorldVista Pure

Actor 90% 90%

Action 100% 100%

Action Negativity 100% 100%

Event 98% 100%

Event Negativity 100% 100%

Restriction 85% 100%

Table 4.1: Element detection accuracy table showing the percentage of correctly detected

elements by our Rules-based element detection approach from the text requirements.

52

Chapter 4: Implementation

4.5 Conflict Definition & Detection:

Through the incorporation of Natural Language Processing (NLP) methods, the field

of software requirement conflict identification has made great strides in recent years.

The goal of NLP, a branch of artificial intelligence (AI), is to make it possible for

computers to comprehend, interpret, and produce text in human language. Utilizing

NLP for requirement conflict detection introduces automation and scalability, improving

the efficiency of processing huge and complicated information.

We have used two most advantageous features of NLP i.e. semantic analysis and textual

similarity in our research work. Semantic Analysis allows the analysis of the requirement

documents in a semantical context. By calculating similarity scores, it becomes possible

to identify requirements that are closely related or potentially conflicting based on their

wording and content.

Dataset Requirement1 Requirement2 Result

WorldVista The system shall allow physi-

cian offices to only use social

security numbers to identify

patients.

The system’s pilot program

shall use a smart card to dig-

itally sign medication orders.

Neutral

Pure The THEMAS system should

record each event by a de-

scription of that event.

The themas system shall only

process the current tempera-

ture.

Neutral

WorldVista The system shall retain noti-

fications for a predetermined

amount of time (up to 30

days).

The system shall retain noti-

fications for a predetermined

amount of time (more than 30

days).

Conflict

Pure When an alarm is requested

for each time, an alarm event

shall be recorded.

If an alarm is requested for the

first time, an alarm event shall

be recorded.

Conflict

Table 4.2: Sample pairs of texts taken from datasets. The relationship between Texts 1

and 2 is depicted in the ’Result’ column.

53

Chapter 4: Implementation

Algorithm 1 Conflict Detection Algorithm (Part 1)
1: Input: Detected elements of Requirements R saved in Excel file with semantical

annotation, where Requirements are r1, r2, . . . , rn

2: Output: Result(result, conflict_type), ground truth value

3: for all Requirements r ∈ R do

4: for all pair of requirements r(i, j) do

5: if i = j then

6: skip r(i, j) from R

7: else

8: S ← CosineSimilarity(TF − IDF (i), TF − IDF (j))

9: if S ≥ 40 then ▷ /* Assume that pair r(i, j) is conflicting */

10: if action or event or rules-inconsistency r(i, j) found then

11: if action frequency conflict condition satisfied for r(i, j) then

12: Return Result as Conflict, conflict_type as Action Frequency

13: else if event frequency conflict condition is satisfied for r(i, j) then

14: Return Result as Conflict, conflict_type as Event Frequency

15: else if redundant requirement condition is satisfied for r(i, j) then

16: Return Result as Conflict, conflict_type as Redundant

17: else

18: Return Result as Conflict, conflict_type as General

19: end if

20: else if not action or event or rules-inconsistency r(i, j) then

21: Return Result as Neutral, conflict_type as Nil

22: end if

23: else

24: if any condition met for r(i, j) then

25: Return Result as Conflict, conflict_type as met condition type

26: else

27: Return Result as Neutral, conflict_type as Nil

28: end if

29: end if

30: end if

31: end for

32: end for

54

Chapter 4: Implementation

Algorithm 2 Conflict Detection Algorithm (Part 2)
1: /* Check for the ground truth values for precision, recall, and f1-score

*/

2: Match the detected result with the known conflict list known_Conflict[]

3: if pair r(i, j) is conflict and matched with list item then

4: True Positive

5: end if

6: if pair r(i, j) is conflict and not matched with list item then

7: False Positive

8: end if

9: if pair r(i, j) is Neutral and is not in list items then

10: True Negative

11: end if

12: if pair r(i, j) is Neutral and is matched with any list items then

13: False Negative

14: end if

15: Return Result(result, conflict_type)

The "Conflict Detection Algorithm" described in Algorithm 1 and 2 serves the critical

function of identifying conflicts and evaluating their nature within a set of detected

requirements. Here’s an overview of its key functionalities:

1. Input: The algorithm takes as input a collection of requirements denoted as R,

which are stored in an Excel file with semantical annotation. These requirements

are labeled as r1, r2, . . . , rn. The algorithm starts by preprocessing this input data.

2. Conflict Detection: The primary function of the algorithm is to detect conflicts

within the set of requirements. It systematically compares pairs of requirements

r(i, j) to determine whether they exhibit conflict or not. To optimize efficiency,

it avoids comparing a requirement with itself (i = j) since such comparisons are

inherently non-conflicting.

3. Similarity Calculation: The algorithm determines the cosine similarity (S) be-

tween the ith and jth requirements’ TF-IDF (Term Frequency-Inverse Document

Frequency) representations. This similarity score is a crucial indicator of probable

55

Chapter 4: Implementation

disputes. The program then analyzes the nature of the conflict if the similarity

score is more than or equal to a predetermined threshold (in this case, 40).

4. Conflict Types: The algorithm categorizes conflicts into three distinct types:

(a) Action-Inconsistency: This type of conflict pertains to inconsistencies related

to actions specified in the requirements.

(b) Event-Inconsistency: It deals with conflicts arising from inconsistencies re-

lated to events described in the requirements.

(c) Rules-Inconsistency: Conflicts related to rule specifications are classified un-

der this category.

5. Conflict Conditions: For each conflict type, the algorithm evaluates specific con-

ditions to determine the precise nature of the conflict. These conditions include

action frequency conflict, event frequency conflict, and redundant requirement

conditions. If these conditions are met, the algorithm categorizes the conflict type

accordingly. If none of the specific conditions apply, the conflict is categorized as

"General."

6. Neutral Pairs: If the similarity score falls below the threshold, the algorithm

assumes that the pair of requirements (r(i, j)) is neutral. It then checks for any

other conflict conditions that might apply. If such conditions are met, it categorizes

the conflict as "Neutral" with the corresponding conflict type.

7. Performance Evaluation: After processing all requirements and identifying con-

flicts, the algorithm assesses its performance against ground truth values. It

matches the detected conflicts with a known conflict list called "known_Conflict."

This evaluation helps determine the algorithm’s precision, recall, and F1score,

providing insights into the accuracy of conflict detection.

8. Output: The algorithm produces the final result in the form of "Result(result,

conflict_type)" and provides the ground truth value. The result indicates whether

conflicts were detected and their specific conflict type.

In summary, the Conflict Detection Algorithm plays a crucial role in analyzing and

categorizing conflicts within semantically annotated requirements. It leverages cosine

similarity and specific conflict conditions to classify conflicts accurately. Additionally, it

56

Chapter 4: Implementation

evaluates its performance against known ground truth values, offering valuable insights

into the quality of conflict detection. This functionality is essential in various domains,

such as software engineering and natural language processing, where conflict resolution

and requirement analysis are critical tasks.

The below Conflict Detection Algorithm analyzes requirements for conflicts, categorizes

them, and evaluates their performance against ground truth values, providing insights

into the accuracy of conflict detection in semantically annotated requirement sets.

We manually reviewed each of the discovered findings for our WorldVista and Pure

databases, are assessed and noted whether or not they were correct. Then also im-

plemented conditions in our code to check for the detected conflict accuracy as True

Positive or False Positive based on our provided known conflict list.

57

Chapter 5

Results & Analysis:

Overall, the two datasets produced by our work performed extremely well in terms

of precision and recall. The precision, recall, and f1-score for the requirement datasets

(Pure and WorldVista) are 84% and 100%, 94% and 95%, and 89% and 97%, respectively.

The below table 5.1 offers insights into the precision and recall metrics, providing a

nuanced understanding of how well our work identifies and classifies conflicts within the

two datasets, Pure and WorldVista.

WorldVista Pure

Total requirements (#) 117 66

Known conflicts (#) 39 21

Detected conflicts (#) 44 21

Correct detected conflicts (#) 37 20

Incorrect detected conflicts (#) 7 1

Precision (%) 84% 100%

Recall (%) 94% 95%

F1 Score (%) 89% 97%

Table 5.1: Conflict detection result table

In the WorldVista dataset, the system identified 44 potential conflicts. From the de-

tected conflicts 37 were correct meaning True Positive and only 7 were not correct

meaning False Positive where non-conflict elements were incorrectly classified as con-

flicts. This resulted in a precision of 84% and recall of 94%. This indicates that most

58

Chapter 5: Results & Analysis:

of the potential conflicts identified were indeed real conflicts in the WorldVista dataset.

Ground Truth
Predicted Class

Positive (P) Negative (N)

Positive (P) 37 7

Negative (N) 0 2

Table 5.2: True Positive and False Negative Table for WorldVista Dataset

The above evaluation demonstrates the system’s ability to accurately pinpoint actual

conflicts within the dataset. However, it is worth noting that there were 7 instances

where the system incorrectly classified non-conflict elements as conflicts, constituting

false positives.

Figure 5.1: Ratio of Conflicted and Neutral Requirements in WorldVista dataset shown

by piechart

This performance translates into a precision of 84% and the f1-score of 89% of the

potential conflicts identified by the system were genuine conflicts in the WorldVista

dataset. The high precision indicates that the system exercises caution in labeling

elements as conflicts, reducing the likelihood of false alarms.

59

Chapter 5: Results & Analysis:

In the Pure dataset, the conflict detection system identified a total of 21 potential

conflicts. Out of these, 20 were true positives, indicating that the system correctly

detected 100% of the actual conflicts in this dataset. However, there was only 1 false

positive, where non-conflict elements were incorrectly classified as conflicts.

Ground Truth
Predicted Class

Positive (P) Negative (N)

Positive (P) 20 0

Negative (N) 0 1

Table 5.3: True Positive and False Negative Table for Pure Dataset

The Pure dataset showcases an even more remarkable performance by the conflict de-

tection system. Out of the 21 potential conflicts identified, an impressive 20 were true

positives, signifying that the system achieved a precision rate of 100% and the f1-score

of 97%. In other words, every potential conflict identified in the Pure dataset was indeed

a genuine conflict.

Figure 5.2: Ratio of Conflicted and Neutral Requirements in Pure dataset shown by

piechart

60

Chapter 5: Results & Analysis:

Furthermore, there was only one instance of a false positive, where the system incorrectly

classified a non-conflict element as a conflict. This exceptional precision highlights the

system’s high degree of accuracy in differentiating between conflicts and non-conflict

elements within the Pure dataset.

We performed an extensive examination of the precise sorts of conflicts found in the

WorldVista and Pure datasets to acquire a more thorough knowledge of the perfor-

mance of our conflict detection method. As shown in the below table 5.4, this nuanced

evaluation allows us to discern which categories of conflicts were successfully identified

and where potential improvements or refinements may be needed.

Datasets
Conflict Types (Correctly Detected)

General Action Frequency Event Frequency Redundancy

WorldVista 35 1 1 0

Pure 19 0 1 0

Table 5.4: The effectiveness of our research in identifying conflict types in WorldVista

and Pure requirements

In the WorldVista dataset, our conflict detection system correctly identified 35 conflicts

of the "General" type, 1 conflict related to "Action Frequency," and 1 conflict associ-

ated with "Event Frequency." Remarkably, there were no instances where the system

incorrectly labeled conflicts of the "Redundancy" type.

This performance breakdown highlights the system’s proficiency in detecting various

types of conflicts within the WorldVista dataset. The majority of detected conflicts

fall into the "General" category, demonstrating the system’s effectiveness in identifying

conflicts of a diverse nature. The detection of action and event frequency conflicts, albeit

in smaller numbers, indicates the system’s ability to handle specific conflict sub-types

as well.

61

Chapter 5: Results & Analysis:

Figure 5.3: Conflict type distribution for WorldVista dataset shown in bar chart

In the Pure dataset, the conflict detection system successfully identified 19 conflicts of

the "General" type and 1 conflict related to "Event Frequency." Similar to the WorldVista

dataset, there was no instance incorrectly marked as "Redundancy."

Figure 5.4: Conflict type distribution for Pure dataset shown in bar chart

62

Chapter 5: Results & Analysis:

This outcome in the Pure dataset further underscores the system’s competence in de-

tecting conflicts of the "General" type, which often encompasses a wide range of conflicts.

Additionally, the identification of an "Event Frequency" conflict is indicative of the sys-

tem’s ability to pinpoint specific conflict sub-types when they occur.

The performance analysis of conflict type detection in both the WorldVista and Pure

datasets reaffirms the effectiveness of our conflict detection system in identifying conflicts

of various categories. The system’s high accuracy in detecting "General" conflicts, which

tend to be the most prevalent and encompassing category, is particularly noteworthy.

Furthermore, the detection of specific sub-types such as "Operational Frequency" and

"Event Frequency" conflicts demonstrates the system’s versatility in addressing nuanced

conflicts within requirements.

63

Chapter 6

Conclusion

6.1 Discussion

The conflict detection results presented in Table 5.1 provide valuable insights into the

performance of conflict detection mechanisms for two different systems, WorldVista and

Pure. These results demonstrate that the Pure system achieved a perfect precision

rate of 100%, indicating that all the conflicts it detected were indeed genuine conflicts.

However, it’s important to note that Pure detected fewer conflicts overall, which may

suggest that it may have missed some conflicts that WorldVista was able to identify.

On the other hand, WorldVista achieved a respectable precision rate of 84%, indicating

that the majority of conflicts it detected were accurate. However, it also had a higher

rate of incorrect detection compared to Pure. This suggests that while WorldVista may

have identified more conflicts, it also introduced a higher risk of false alarms, which

could lead to unnecessary disruptions or interventions.

In terms of recall and F1 score, both systems performed fairly well, with WorldVista

showing a slightly higher recall rate of 94% compared to Pure’s 95%. The F1 score, which

balances precision and recall, was 89% for WorldVista and 97% for Pure. These scores

indicate that both systems strike a reasonable balance between identifying conflicts and

minimizing false alarms, with Pure having a slight edge in overall performance.

Building upon the discussion of precision, recall, and F1 score, it is crucial to delve

deeper into the implications of these results for real-world applications. The perfect

precision rate achieved by the Pure system is undoubtedly an impressive feat, as it

ensures that every identified conflict warrants attention. However, the trade-off in this

64

Chapter 6: Conclusion

case is the possibility of missed conflicts. In contexts where the cost of missing a conflict

is exceptionally high, such as in safety-critical systems, Pure’s approach may prove to be

the preferred choice. Nevertheless, it is essential to consider the potential consequences

of false negatives, which may outweigh the benefits of a perfect precision rate in certain

scenarios.

On the other hand, the WorldVista system’s higher rate of false alarms implies a greater

need for human intervention to validate and resolve conflicts. While this may increase

the operational workload, it could also serve as a safety net, ensuring that conflicts are

not overlooked. This characteristic may be more suitable for applications where a high

level of caution is necessary, even if it comes at the cost of occasional false alarms. The

choice between these systems ultimately depends on the specific requirements and risk

tolerance of the application.

Furthermore, it is worth exploring the factors that may have contributed to the dif-

ferences in performance between the two systems. One possible explanation for Pure’s

superior precision could be its reliance on a more conservative conflict detection algo-

rithm, which results in fewer false alarms. Conversely, WorldVista may employ a more

sensitive approach, detecting a broader range of potential conflicts but at the expense of

higher false positives. Investigating the specific algorithms and parameters used by both

systems could provide valuable insights into their respective strengths and weaknesses.

Additionally, the dataset used for this evaluation warrants consideration. The com-

position of the dataset, including the types of conflicts and their frequency, could have

influenced the results. Future research may involve experimenting with different datasets

to assess how the systems’ performance varies under various conditions. Moreover, it

would be insightful to explore the impact of varying thresholds for conflict detection on

precision, recall, and the F1 score for both systems, as this could provide a means of

optimizing their performance for specific applications.

In conclusion, the conflict detection results presented in this study shed light on the

trade-offs between precision, recall, and false positives in conflict detection mechanisms.

The choice between a system with perfect precision and one with a higher recall rate,

but more false alarms, ultimately hinges on the specific requirements and risk tolerance

of the application. Further investigation into the algorithms, parameters, and datasets

used in these systems, as well as the implications of varying detection thresholds, could

65

Chapter 6: Conclusion

pave the way for more tailored and effective conflict detection strategies in the future.

The results presented in Table 5.1 represent a significant step forward in harnessing

NLP techniques for conflict detection in software functional requirements. By achieving

a perfect precision rate of 100% with the Pure system, our research demonstrates the

potential of NLP-driven approaches to minimize the risk of false alarms in conflict

detection. This finding has profound implications for industries where false alarms

can lead to costly disruptions or where safety and reliability are paramount.

However, it is vital to recognize that the high precision rate of the Pure system comes at

the cost of potentially missing some conflicts. This trade-off raises important questions

about how to strike the right balance between precision and recall, especially when deal-

ing with complex and evolving software systems. our thesis not only provides valuable

insights into this balance but also offers a roadmap for future research in optimizing

NLP-driven conflict detection systems.

Furthermore, our thesis contributes to the growing body of literature on the application

of NLP techniques to software engineering. The successful implementation of NLP for

conflict detection underscores the versatility of NLP in addressing various challenges

in the software development life cycle. It highlights the potential for NLP to assist

in requirements analysis, quality assurance, and even automated code generation by

understanding and processing natural language specifications.

Moreover, our thesis can inspire further exploration into the interpretability of NLP-

driven conflict detection models. Understanding how these models arrive at their deci-

sions can be critical in gaining trust from stakeholders and making informed decisions

in software development projects. Discussing interpretability techniques or potential

future research directions in this area would be valuable.

6.2 Future Work

Investigating the ability of models to generalize across different domains or datasets

can be beneficial. Transfer learning and domain adaptation techniques can be explored

to leverage knowledge learned from one domain and apply it effectively to another,

potentially reducing the need for large amounts of domain-specific data.

In our current research, we have concentrated on two specific datasets, and our work has

66

Chapter 6: Conclusion

demonstrated commendable performance for these particular instances of requirement

conflicts. However, to further enhance the robustness and generalizability of our findings,

future investigations could expand the scope by incorporating a more extensive range of

datasets. These datasets could encompass diverse domains, industries, and application

areas, providing a comprehensive view of requirement conflicts in various contexts. By

doing so, we can gain deeper insights into the commonalities and distinctions in con-

flict patterns across different domains, enabling the development of more adaptable and

universally applicable conflict resolution techniques. Additionally, exploring different

perspectives of requirement conflicts, such as temporal changes, evolving stakeholder

preferences, and dynamic project environments, could offer valuable insights into the

adaptability and responsiveness of conflict resolution approaches. This multifaceted ap-

proach will not only strengthen the practical relevance of our research but also contribute

to a more comprehensive understanding of the challenges associated with requirements

engineering in complex systems.

Incorporating user feedback and preferences into the work can lead to more user-friendly

and effective results.

67

Chapter 7

Bibliography

[1] B. H. C. Cheng, J. M. Atlee, and T. Chau, “Research directions in requirements

engineering,” in International Conference on Software Engineering, 2009. ICSE

2009, IEEE, 2009.

[2] S. Biffl, J. Kroll, and D. Winkler, “A machine learning approach for detecting

conflicts in functional requirements,” Journal of Systems and Software, vol. 95,

pp. 66–80, 2014.

[3] P. Clements and L. Northrop, Software architecture: perspectives on an emerging

discipline. Prentice Hall, 2001.

[4] R. Wieringa, Requirements engineering: framework for understanding. Wiley Pub-

lishing, 2014.

[5] K. Pohl and C. Rupp, Requirements Engineering Fundamentals, 2nd. Rocky Nook,

2015.

[6] T. Moser, D. Winkler, H. Matthias, and S. Biß, “Requirements management with

semantic technology: An empirical study on automated requirements categoriza-

tion and conflict analysis,” in International Conference on Advanced Information

Systems Engineering, 2011, 2011.

[7] A. Moitra, K. Siu, A. Crapo, et al., “Towards development of complete and conflict-

free requirements,” in 2018 IEEE 26th International Requirements Engineering

Conference (RE), 2018.

[8] A. Almazyad and S. Ambreen, “Automated conflict detection and resolution in

requirements engineering using machine learning,” 2021.

68

Chapter 7: Bibliography

[9] W. Guo, L. Zhang, and X. Lian, “Automatically detecting the conflicts between

software requirements based on finer semantic analysis,” 2021.

[10] G. S. Walia and J. C. Carver, “A systematic literature review to identify and

classify software requirement errors,” Inform. Softw. Technol., vol. 51, pp. 1087–

1109, 2009.

[11] M. Jarke, M. Gebhardt, S. Jacobs, and H. W. Nissen, “Conflict analysis across

heterogeneous viewpoints: Formalization and visualization,” in I14 1996, 1996.

[12] D. Yang, Q. Wang, M. Li, Y. Yang, K. Ye, and J. Du, “A survey on software cost

estimation in the chinese software industry,” in Proceedings of the Second ACM-I14

International Symposium on Empirical Software Engineering and Measurement,

ESEM ’08, ACM, 2008, pp. 253–262.

[13] M. Urbieta, M. J. Escalona Cuaresma, E. Robles Luna, and G. Rossi, “Detecting

conflicts and inconsistencies in web application requirements,” in Current Trends

in Web Engineering - Workshops, Doctoral Symposium, and Tutorials, Held at

ICWE 2011, 2011.

[14] M. Kim, S. Park, V. Sugumaran, and H. Yang, “Managing requirements conflicts

in software product lines: A goal and scenario-based approach,” Data Knowledge

Engineering, vol. 61, no. 3, pp. 417–432, 2007.

[15] S. A. Saboor and H. M. Sajjad, “Conflict detection in natural language require-

ments using machine learning and graph analysis,” 2019.

[16] M. M. Kabir and M. A. Azim, “A comparative study of machine learning algo-

rithms for software requirement conflict detection,” 2019.

[17] Y. Hu and X. Wang, “An approach to software requirement conflict detection

based on machine learning,” 2020.

[18] P. Mader and R. Koschke, “Using machine learning to detect conflicts in software

requirements,” 2018.

[19] W. et al., “A deep learning-based approach for conflict detection in software re-

quirements,” 2018.

[20] A. et al., “Automated requirements conflict detection using natural language pro-

cessing and machine learning,” 2020.

69

Chapter 7: Bibliography

[21] O. et al., “Requirements conflict detection using machine learning techniques: A

systematic literature review,” 2020.

[22] A. et al., “Detecting conflicts in requirements using natural language processing,”

2018.

[23] K. Pohl, Requirements engineering: fundamentals, principles, and techniques. Springer

Publishing Company, Incorporated, 2010.

[24] M. Aldekhail, A. Chikh, and D. Ziani, “Software requirements conflict identifica-

tion: Review and recommendations,” IJACSA, vol. 7, no. 10, pp. 336–345, 2017.

[25] D. Zowghi, D. Mairiza, and N. Nurmuliani, “Managing conflicts among nonfunc-

tional requirements,” 2009.

[26] G. Deshpande, “Sreyantra: Automated software requirement inter-dependencies

elicitation, analysis, and learning,” in 2019 I14/ACM 41st International Confer-

ence on Software Engineering: Companion Proceedings (ICSE-Companion), 2019.

[27] M. Aldekhail and D. Ziani, “Intelligent method for software requirement conflicts

identification and removal: Proposed framework and analysis,” 2017.

[28] “Conflicting requirements.” (), [Online]. Available: http://c2.com/cgi/wiki?

ConflictingRequirements.

[29] “How do you manage conflicting stakeholder demands?” (), [Online]. Available:

http : / / pm . stackexchange . com / questions / 1399 / how - do - you - manage -

conflicting-stakeholder-demands.

[30] K. Taveter, L. Sterling, S. Pedell, R. Burrows, and E. Taveter, “A method for elic-

iting and representing emotional requirements: Two case studies in ehealthcare,”

in 2019 I14 27th International Requirements Engineering Conference Workshops

(REW), 2019, pp. 100–105.

[31] F. Halim and D. Siahaan, “Detecting non-atomic requirements in software re-

quirements specifications using classification methods,” in 2019 1st International

Conference on Cybernetics and Intelligent System (ICORIS), 2019.

[32] A. Abu-Mahfouz and H. Al-Aqrabi, “A conflict detection framework for software

requirements using machine learning,” 2019.

[33] S. Javed, S. Ali, and S. Ali, “An ensemble machine learning approach for conflict

detection in software requirements,” 2020.

70

http://c2.com/cgi/wiki?ConflictingRequirements
http://c2.com/cgi/wiki?ConflictingRequirements
http://pm.stackexchange.com/questions/1399/how-do-you-manage-conflicting-stakeholder-demands
http://pm.stackexchange.com/questions/1399/how-do-you-manage-conflicting-stakeholder-demands

Chapter 7: Bibliography

[34] D. Tan and L. My, “An approach for detecting conflicts in functional requirements

using machine learning techniques,” 2018.

[35] S. Ali, S. Javed, and S. Ali, “Using machine learning techniques for detecting

conflicts in software requirements,” 2019.

[36] F. Calefato, F. Lanubile, and N. Novielli, “Detecting conflicts in requirements: An

approach based on machine learning techniques,” 2019.

[37] S. T. e. a. Gao, “A machine learning approach for detecting conflicts in functional

requirements,” 2017.

[38] S. Kamal and M. R. Khan, “Detecting conflicts in software requirements using

machine learning techniques,” 2018.

[39] S. e. a. Kumar, “A hybrid machine learning approach for conflict detection in

software requirements,” 2019.

[40] M. H. e. a. Khan, “A machine learning-based approach for conflict detection in

functional requirements,” 2020.

[41] C. et al., “A hybrid machine learning approach for detecting conflicts in require-

ments documents,” 2019.

[42] A.-H. et al., “Conflict detection in requirements documents using machine learning

techniques,” 2019.

[43] S. et al., “Conflict detection in requirements specifications using nlp techniques,”

2020.

[44] C. et al., “A machine learning approach to detecting conflicts in requirements

documents,” 2020.

[45] R. Rosas and A. Garcia-Sanchez, “Using machine learning techniques to detect

conflicts in software requirements,” 2021.

[46] M. A. e. a. Khalid, “Detecting and resolving conflicts in software requirements

using deep learning,” 2021.

[47] S. R. S. e. a. Fernandes, “Conflict detection in software requirements using machine

learning techniques: A systematic literature review,” 2020.

[48] P. et al., “Detecting conflicts in software requirements using natural language

processing and machine learning,” 2020.

	d7ccb83b6987cc906822d46350c40cda3417529aa42d85147e6f24dce0f6abed.pdf
	New Doc 11-15-2023 10.20
	d7ccb83b6987cc906822d46350c40cda3417529aa42d85147e6f24dce0f6abed.pdf
	Introduction
	Overview
	Motivation
	Problem Statement
	Research Objectives
	Relevance to National Needs
	Area of Application
	Advantages
	Thesis Organization

	Literature Review
	Introduction
	Related Work

	Design and Methodology
	Overview of Proposed Model
	Proposed model description
	Dataset:
	Data Pre-processing:
	Conflict Definition and Detection:

	Implementation
	Dataset:
	Data extraction & pre-processing:
	PDF data extraction
	Text Splitting
	Part-of-Speech Tagging
	Dependency Parsing
	Tokenization
	Text Normalization
	Text Preprocess

	Elements identification:
	Identifying the Action
	Identifying the Actor
	Identifying the Event
	Identifying the Rules

	Element Identification Results:
	Conflict Definition & Detection:

	Results & Analysis:
	Conclusion
	Discussion
	Future Work

	Bibliography

