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Abstract 

 

The Agile technique is a widely recognized and used strategy within the field of software engineering. 

Numerous organizations that prioritize adaptability, customer-centric methodologies, and team 

appreciation use agile practices. The use of agile approach in software development is undeniably 

associated with the capacity to adapt to changing environments and foster personal growth among 

employees. The Agile methodology allows for the active participation of all team members, fostering 

creativity and facilitating the management of large-scale projects within expansive teams. The 

proficiency in inter-team and cross-team communication for the purpose of deliberating project 

resolutions and effectively implementing effective solutions to real-world challenges.  

In the realm of agile methodology, a story point refers to a challenging job that has the potential for 

adverse consequences on team collaboration and overall project performance, often resulting in 

budgetary overruns. This relatively small but crucial area need meticulous deliberation throughout the 

estimating process, when a project manager with substantial expertise is tasked with making pivotal 

decisions for the project. If the manager is deficient in certain expertise, it might have catastrophic 

consequences for the whole business. Story points refer to the user requirements that are carefully 

considered by a business analyst, with potential involvement from a software developer to clarify the 

expectations. Projects that have clear and well-defined timetables are more likely to be completed on 

time, resulting in a higher level of satisfaction in terms of team performance. 

Artificial Intelligence (AI) has emerged as a rapidly expanding field in the current decade, with several 

activities being performed utilizing this advanced technology. Deep Learning, Federated Learning, 

ML, Reinforcement learning, and several other techniques are integral components of artificial 

intelligence (AI). The practice of artificial intelligence (AI) in addressing practical challenges partakes 

provided researchers with an opportunity to apply their repertoire of knowledge and skills towards 

resolving environmental issues. This is a significant demonstration of software engineering, whereby 

automation is used to enhance human productivity and save their precious time. This phenomenon is 

seen in the context of narrative point estimate with artificial intelligence (AI), whereby AI is used to 

provide precise estimations in order to enhance project planning. 

This study introduces a unique Deep Hybrid Learning Model, namely GPT2-CNN, which is used as 

an Agile Project Estimation approach through story point. The Deep Hybrid Learning Model, GPT2-

CNN, utilizes a GPT2 etymological model that has prior experience, combined with deep neural-based 

architecture known as CNN. This integration enables our models to effectively comprehend the 
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interconnections among words, taking into account the contextual information surrounding a specific 

word and its placement within the sequence. The findings of our study indicate that our proposed 

Hybrid Learning Model, namely GPT2-CNN, has a median Mean Absolute Error (MAE) of 1.96. This 

performance surpasses that of the current baseline technique used for estimating within-project 

estimates. The ablation research also demonstrates the efficacy of our deep hybrid learning architecture 

in augmenting the estimation process of agile user stories, henceforth rank the momentous 

progressions of AI in Agile story point estimation. Our findings are substantiated by the 

implementation of five distinct hybrid models, namely GPT2-CNN (with default settings), GPT2-

LSTM, GPT2-LSTM-CNN (a fusion of three deep learning models), and RoBERTa-RoBERTa. The 

whole of the experimental configuration confirms the strong performance of GPT2-CNN(AdamW). 

The task of estimating story points is regarded as a complex endeavor, as noted by Agile practitioners. 

The use of big data and powerful computers is expected to significantly improve the quality of the 

solution offered. 
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Chapter 1 

Introduction 

1.1 Overview 
 

Agile methodologies entail a collection of pivotal activities that collectively define the operational 

landscape of dynamic project development. These activities, calibrated for collaborative engagement, 

communication, and continuous enhancement, align with agile principles. "Sprint Planning" involves 

selecting tasks from the prioritized product backlog for an upcoming sprint, reflecting agility's 

responsiveness to evolving requirements. The "Daily Stand-up" meeting is a brief, daily forum for 

team members to share progress, plans, and obstacles, promoting communication and synergy. "Sprint 

Review" entails showcasing completed work to stakeholders, eliciting feedback for iterative 

refinement. The "Sprint Retrospective" fosters introspection, identifying strengths, areas for 

improvement, and actionable steps. "Product Backlog Refinement" involves meticulous grooming of 

backlog items to ensure clarity and readiness for integration. Incremental development partitions 

projects into sprint-sized segments, delivering value iteratively and enabling course corrections. "Pair 

Programming" fosters knowledge exchange as two developers collaborate at one workstation, 

elevating code quality. "Test-Driven Development (TDD)" mandates writing tests before code to 

ensure functionality aligns with expectations. "Continuous Integration (CI)" automates code merging 

and testing, enhancing codebase stability. "Continuous Delivery/Deployment (CD)" automates code 

delivery, enabling rapid and dependable releases. "Backlog Prioritization" orders items based on 

feedback, market shifts, and strategic goals, prioritizing value. "Cross-Functional Collaboration" 

blends roles, fostering comprehensive perspectives for holistic development. These activities 

collectively embody agile principles, promoting adaptability, user-centricity, and iterative progress. 

Less research is carried on estimating all methods of agile project, particularly the struggle needed to 

finish user stories or issues, despite the fact that there has been a lot of work done on software 

engineering for approximation effort for conventional software projects. The story point is the most 

often used unit of measurement for estimating the amount of struggle required to complete a user 

experience or resolve an issue on schedule and within budget. As a starting point for developing project 

planning, iteration or release timelines, planning, and estimate, various stakeholders may use effort 

estimates. To estimate a proportionate number in terms of man hours or man months, agile makes use 

of story-based estimations. The goal of estimating story points from agile user stories is related to how 

much work, how much time, how difficult it is, the risks involved, and how unpredictable it is. Before 
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a project is started, the scope is established when a team is given a project. User stories are used in 

Agile teams to break down work into manageable, achievable chunks. Typically, story point estimating 

occurs during the product backlog refinement session. The proposed research will carry out the 

utilization of deep learning models in combination with machine learning models.  

Estimation of effort is considered challenging task in agile practices. The estimated amount of work 

required to entirely accomplish artefact is expressed in story points. Story points are units of 

measurement. According to team consensus, the team often estimates the story points by utilizing a 

variety of approaches, including Planning Poker, analogies, and expert judgment, while taking into 

consideration the labor required, the complexity of the situation, the risk involved, and the degree of 

uncertainty. However, it should be understood that a subjective analysis based on domain experts may 

introduce bias [5]. 

Many projects failed due to over estimation and under estimation of project schedule. Story point 

estimation comes in the initial stages of software development. Analyst after gathering requirement 

delivers the user stories to team, where product owner and project managers are responsible for making 

project plans.   

 

As a result, many machine learning (ML) and artificial intelligence (AI) algorithms have been used to 

evaluate story points. For example, Porru[4] employed a combination of Bag-of-Words (BoW) 

features and other approaches to learning, such as support vector algorithms. The process was time-

consuming due to the manual creation of Bag-of-Words (BoW) pieces. The Deep-SE venture was 

initiated by providing training to a language model in order to generate vector interpretations. Deep-

SE incorporates the utilization of LSTM (Long Short-Term Memory) plus Recurrent Highway 

Network (RHWN) to automatically make estimations of story points also acquire the scattered 

depiction of phrases. Nevertheless, the Deep-SE technique is susceptible to certain restrictions. 

Throughout the setting of a single task, Deep-SE initially constructs an already-trained language model 

by leveraging its exclusive story point databases.  

Project-explicit prior training requires a significant amount of time, characteristically ranging from 2 

to 7 hours for Deep-SE [23] to generate a pretrained model for each project. This approach restricts 

the language model's comprehension to familiar vocabularies specific to the trained project and lacks 

the ability to be applied to different projects, as evidenced by Deep-SE's unreliable estimations when 

used across projects. Additionally, the embedding vectors produced by the pre-trained models are 

acquired through the utilization of Long Short-Term Memory (LSTM) by Deep-SE. The chronic order 
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of LSTM bounds processing words in one direction. Hence, the potency of these networks is 

constrained in terms of thoroughly capturing the complex lexical variations and interrelationships 

among phrases within the context of a topic and its corresponding story points. This limitation results 

from their incapacity to determine wider word dependencies that extend across the present words 

through the preceding words during a given sequence. A sample story point from apccelerator studio 

is show in figure 1.1 

The purpose of story point estimation will save the development team time, all members are expected 

to put their input in estimating story point, now with help of machine learning based techniques can 

assist in this important task. In general, the use of algorithms based on machine learning for the 

assessment of story points is a subject of ongoing scholarly investigation, with several distinct 

methodologies recently examined until now. One advantage of machine learning algorithms is their 

ability to enhance accuracy by effectively analyzing extensive datasets and detecting patterns that may 

elude human perception, hence resulting in more precise estimations. 

1) Consistency: Machine learning models can provide consistent estimates, reducing variability in 

estimates between team members. 

2) Speed: Machine learning algorithms can process data and generate estimates much faster than 

humans, which can be especially useful for large projects with many stories to estimate. 

3) Adaptability: Machine learning models can be trained on new data and adjust their estimates 

accordingly, allowing them to adopt to changes in the project or team’s estimation 

process. 

4) Reduced Bias: Machine learning algorithms can reduce bias in estimates by removing human 

subjectively from the estimation process. 

Area of Application of study: 

This ablation study will be used to assist project managers, product owners and other sub fields of 

project management as mentioned below: 

1) Agile software development: Machine learning can be used to help teams estimate the size 

and complexity of stories in agile development process. 

2) Project management: Machine learning can be used to help project managers accurately 

estimate the duration and cost of projects, leading to more accurate budget and resource 

planning. 

3) Resources Allocation: Machine learning can be used to help teams allocate resources more 

effectively by accurately estimating the efforts required for each task. 
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4) Risk Management: Machine learning can help teams identify and mitigate risks by analyzing 

data on past projects and identifying patterns that may indicate potential issues. 

5) Quality Assurance: Machine learning can be used to help teams identify and prioritize defects 

or issues that need to be addressed, leading to improved product quality. 

 

Figure 1.1  A visualized sample of Jira story from Appcelerator Studio 

1.2 Problem Statement 

Agile development is the most practiced in software house around globe. Beside it has many 

variations in the form Scrum, Kanban, etc. The gathering of user stories is always a tedious task. 

After selecting the right requirements for the project user stories are evaluated by the experienced 

team members. The practice of story-point estimate allows teams working on software to enhance 

their ability to define the scope of projects, organize requirements, distribute assets, and then 

evaluate progress, besides other benefits. Project managers who give story points estimations 

should have prior experience and knowledge. Most of the time when a single project manager is 

working on multiple projects needs some assistance in executing the managerial tasks. To ease this 

problem many researchers have carried out research in the field of story point estimation using 

user stories. Since user stories are stored in the product backlog, the product owner has to maintain 

that product backlog. The maintenance of product backlog items involves the estimation of story 

points and prioritizing user stories according to pre-planned schedules and available resources. The 
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predicted story points will help the product owner to make decisions beforehand so that 

development team time can be saved. An accurate estimation by the model is beneficial to the 

product owner. As our predicted story points allowed them to decide in a better way and not go 

through the extensive task of reading the user stories completely. 

 

1.3 Objectives of Research 

The present study centers on the following research aims: 

• To develop a novel approach where deep learning models and conventional machine learning 

models are used for making story point estimation interpretable by product owners and project 

managers. 

• A comparative analysis on dataset, provided by cutting-edge approaches. 

• Evaluate the efficiency and efficacy of the suggested model. 

1.4 Research Contribution 

To the finest of our knowledge, the methodology and framework presented in this thesis have 

not previously been used in the process of estimating story point. The primary points of this 

thesis are: 

• Dataset pre-processing, since the provided dataset by baseline approach require a cleansing of 

data to improve the model results. 

• We present unique hybrid learning model to solve the desired problem. A transformer-based 

model and machine-learning-based model, which we denoted as Hybrid Learning Model. 

• To the best of our knowledge, this study conducts a comprehensive evaluation of 23,313 Jira 

issues using a prevalent reference point approach, including Deep-SE, to analyze assessment 

situations inside a project. Ablation research was conducted to assess the individual contributions 

of five components (GPT2-CNNAdamW, GPT2-CNN, GPT2-LSTM, GPT2-LSTM-CNN, 

Roberta-Roberta) employed in our hybrid learning model.  

• Furthermore, we propose the deep hybrid learning model is lightweight model as compared to 

Deep-Se.  
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1.5 Thesis Organization 

The present thesis has been structured in the following manner: 

• Chapter 2 provides a comprehensive summary concerning related work in the domain of 

Story Point Estimation (SPE). The section 2.1 thoroughly discusses the Traditional 

techniques used in SPE. Section 2.2 gives briefing about Machine Learning (ML) 

techniques. Section 2.3 provides the through literature from Deep Learning (DL) 

approaches 2.4 provides the limitation of all approaches 2.5 provides summary of SPE. 

The chapter also gives systematic review of the models used in the current study. 

• Chapter 3 discusses materials and methodology used for conducting the analysis. It gives 

an overview regarding dataset collection, preprocessing, feature extraction techniques, 

baseline models and discusses the proposed framework. 

• Chapter 4 is results and discussion which presents results of the best baseline models 

applied and their limitations. It also provides an insight of the results improved by 

applying proposed framework for the particular dataset. The comparative analysis of 

previous studies is also presented which shows how classification has improved with 

application of deep learning models. 

• Chapter 5 serves as the concluding section of this study, wherein the research effort is 

summarized and future directions are outlined, also presents the limitations of the study 

and the proposed framework with respect to the SPE, it also suggests future direction in  

the corresponding domain. 

1.6  Summary 
 

This chapter 1 discusses detail background and problem statement. The agile method is one of the 

famous around the world for project execution method.  This research area has a lot more to cover 

and require detail data gathering. The chapter also highlights the advantages, areas of application  

and the  contribution of  this research in the field of software engineering.
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Chapter 2 

Related Work 

2.1  Overview 
The literature is thoroughly studied in this chapter, with a focus on various techniques of agile 

story point estimation. The existing story point estimation techniques are characterized into three 

classes. The first class is expert-opinion based approaches, consist of delphi method, planning 

poker and wideband delphi method. The second category is model based approach, it involves 

the Functional Points Analysis (FPA) and the Constructive Cost Model (COCOMO). The third 

category is machine learning based approaches, which includes regression models, classification 

model and neural networks. Story point assessment is the primary job to begin a project, which 

implies that correctly done can be beneficial to project budget and overall team performance[1].  

The other sections will describe the limitations of existing approaches of story point estimation 

in agile. The further discussions will focus on the use of deep learning approach in agile story 

point estimation. The evaluation and performance metrics for story point estimation. This 

discussion categorizes and organizes the different technologies and methods used for story point 

estimation in software engineering and making it relevant with Agile projects.  

2.2    Conventional Approaches to Agile Story Point Estimation 

The existing approaches involves the expert opinion based, the metrics based and machine 

learning based algorithms[4]. Expert opinion-based approaches to story point estimation depend 

on the collective judgement and experience of a team of software development experts or 

stakeholders. These approaches seek to capitalize on the information and expertise of the 

acquaintance people with the project requirements and development context. As mentioned 

earlier the expert-based approaches [5] to agile story point estimation are divided in three 

categories.  

i) Delphi Method 

The Delphi method is a structured communication technique to gather and refine expert 

opinions. In this technique a panel of experts provides anonymous and iterative estimates 

for story points. Multiple rounds of estimation and feedback are involved in the process. 

After each round, a facilitator collects, summarizes, and distributes the estimates to the 

experts, encouraging them to revise their estimates based on the response received. The 

goal is for the experts to collaborate and discuss their estimates in order to arrive at a 
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consensus estimate. To explain further, how delphi method is applied to story point 

estimation we consider following activities that will initiate delphi method.  

 

A) Preparation: To prepare means to gather people from team or experts or relevant stake 

holders who have sound experience with Agile Story point estimation. The gathered 

group must have the ability to understand the backlog items in the form of story points 

and have knowledge about Agile practices. 

B) Anonomity:  Keep the identity of expert anonymous, which can be done via online 

survey. Or a facilitator might help in collecting the estimates and maintain anonymity. 

C) Initial Estimates: Each member of the group make individual estimates to story points 

or backlog items of agile sprint. The members use fibonaci sequence starting from 

(1,2,3,5,..etc). The sequence is selected upon the task complexity or the relative effort 

required to execute story points. 

D)  Consolidation: The facilitator collects all estimates and then calculates mean or 

median of all estimates given by the participants. A consolidated estimate is then shared 

among group without disclosing individuals estimate values. 

E) Discussion and Feedback: The participants view the consolidated estimates and 

compare it with their individual estimate. They share the rationale behind their 

estimates and analyze any difference appear between their estimated and consolidated 

estimate. They also discuss any insight that might help with better story point estimate. 

F) Iterative Process: The facilitator streamlined the received feedback and share it with 

participants. The participants then revisit their estimates based on this feedback and 

insights provided by others. This process of feedback, consolidation and estimation 

revision is performed in iteration until a consensus is attained. 

G) Consensus: Consensus is achieved when the estimates are converged and the 

differentiation between individuals estimates are decreased. This point of consensus 

allows choosing the right estimate which will help in planning and prioritization of 

story points.  

The Delphi method assists in mitigating the biases that can arise in the estimation process due to 

group dynamics or dominant individuals. It promotes a more objective and informed estimation 

approach by providing anonymity and allowing iterative revisions based on feedback. It's 

important to note that the Delphi method is only one approach to estimating story points; different 

teams or organizations may prefer different techniques. 
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ii) Planning Poker: 

Planning Poker is a widely recognized collaboratively developed estimation technique in 

Agile environments. It entails a group of experts, usually formed up of developers, testers, 

and other stakeholders. Each team member receives a set of story point cards representing 

various values (for illustration, the Fibonacci sequence starts with 1, 2, 3, 5, and 8). The 

team discusses the requirements of a user story, and each member chooses a card 

representing their estimate for the story points in private. The cards are revealed at the same 

time, and any significant differences are discussed. The process is repeated until an 

agreement on an estimate is reached. 

 

iii) Wide Band Delphi Method: 

Wideband Delphi is a Delphi method manifestation that incorporates additional discussion 

and feedback from experts. Experts in this approach meet in groups or workshops to 

exchange ideas and revise their estimates based on feedback from others. Wideband 

Delphi's iterative nature allows experts to refine their judgments through collaborative 

discussions, resulting in more accurate estimates. 

The expert-opinion based approaches are helpful to build collaboration, communication 

and substantial relation among team. It enhances trust between the team and allows each 

member to express their individual experience. The expert opinions and feedback 

ameliorate members learning from sessions. Alternatively, the downside to approach is 

often more time consumption as per expected, not suitable where large team or project is 

under discussion. The tendentiousness of individual can delay the process and often lead to 

deficient estimates [2]. 

Wilson Rosa et.al discussed the nature of elements considered during the estimation of a 

project. Most of the agile software development require particular information at the 

beginning of project to make concrete estimations. The functional points in traditional 

approach were used and story points were used in non-conventional way more. The 

selection of either story points and function point is truly based on the nature, behavior, 

scope and business goals of the project [4].  
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2.3      Machine Learning Approaches to Agile Story Point Estimation 

The model based approach is considered when team has past projects data. The data plays a vital 

role in learning the patterns and relationships between various factors. The past completed user 

stories in agile sprint gives a ground to estimate new user stories with some mathematical 

inference.  

This research paper by Federica Sarro et al[9] published in the IEEE Transactions on Software 

Engineering. It focuses on the subject of effort assessment in the development of software 

projects. The paper presents an empirical study that investigates the predictability of human 

expert misestimations in terms of type, severity, and magnitude. The study uses machine 

learning techniques to predict these misestimations and evaluates their effectiveness in 

improving future effort estimates. The paper discusses an introduction that provides background 

information on effort estimation and the motivation for the study. It then presents the research 

questions that the study aims to answer, which include predicting the type and severity of 

misestimations, predicting the magnitude of misestimations, and enhancing effort estimates 

using machine learning. The methodology of this paper describes the datasets used in the study, 

which consist of real-world industrial projects from different application domains. It also 

explains the machine learning techniques and evaluation criteria used in the study. The results 

section presents the findings of the empirical study. It shows that human expert misestimations 

can be predicted to a certain extent, with average classification accuracies of 71% for type and 

70% for severity. The predicted magnitude of misestimations is also close to the true amount of 

misestimation.  In summary, this research paper explores the predictability of human expert 

misestimations in effort estimation for software development projects. It presents an empirical 

study using machine learning algorithms such as Linear Regression, RF, Naïve Bayes, KNN 

and LP that provides insights into the potential for improving effort estimates. The findings of 

the study contribute to the field of software engineering and can be useful for practitioners and 

researchers involved in effort estimation.  

Vali Tawosi et.al.  under taken the state-of-the-art model namely DeepSE, where they studied 

the efficacy of results by this model. They have taken another data set of TAWOS with 31,960 

more issues. They used the algorithm of TF/IDF- SVM, and others that were used by the 

Choetkiertikul et.al. The results appeared to prove effectiveness of benchmark approach of 

DeepSE. The authors suggest that further studies were required to estimate agile software 

development. [2] 
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Ritu et.al. recapitulated a comparative analysis of machine learning algorithms. They analyzed 

Naïve Bayes Algorithm, Regression Algorithm, SG Boost Technique, and Neural Networks. The 

Naïve Bayes technique performed quite well with an accuracy metric of 80%, but its complex 

in nature. The most promising results were obtained by Story Point technique. [3] 

Yuvna Ramchureetoo et.al.[7] worked on estimating agile user stories with multiple classifiers 

of machine learning. The Naïve Bayes method, Support Vector Machine algorithm, and 

Decision Tree algorithm were employed. These three algorithms were applied to user stories 

data and effort was estimated and measured by accuracy, precision, error rate, recall and F-

measure. The comparison of these machine learning algorithms was taken into study and it was 

initiate that SVM algorithm has got the highest precision of 100%.  The study was undertaken 

by WEKA tool. The preprocessing of data was done initially and then the processed data was 

used in WEKA.  Accuracy of Naïve Bayes was 64% and Decision Tree got accuracy of 80%. 

The paper by Muaz et al [8] focuses on developing an objective and exact effort approximation 

model for the projects of software using the Scrum methodology. The ultimate focus of the 

research is to evaluation the effort involved in software development projects using story points 

as a element of evaluation. The proposed model divides projects into phases and iterations, and 

estimates effort for every problem. The whole effort is then estimated using aggregation 

functions for iterations, phases, and the entire project. This approach provides elasticity to 

making decision in case of deviations from the plan of project. This study examines the 

execution of the suggested model and assesses its performance through the utilization of 

regression-based machine learning algorithms, including gradient boosting, SV Regression, 

RF Regression, and MLP. The results indicate that the method for estimating story points based 

on the story point-based estimation model performs significantly more than other models in 

terms of error rate. Overall, this research paper provides a framework for accurately estimating 

effort in software projects using story points and machine learning techniques. It offers a 

valuable approach for decision-makers and project managers in planning and managing 

software development projects.  

The research conducted by Pendharkar et al. [9] focuses Bayes networks for estimation of 

software development effort. The paper examines the application of the Bayesian model in prior 

research and emphasizes the distinctive contributions made by this particular study. The paper 

additionally addresses the constraints of the study and proposes potential avenues for its 

enhancement. This paper presents a comprehensive examination of the COCOMO and 
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COCOMO II models, which are commonly used in cost estimation. The SLIM method, which 

is utilized for estimating software development effort and schedule, is also referenced. This 

document elucidates the utilization of Bayesian networks and Artificial Neural Network 

algorithms in the acquisition of joint probability distribution and the belief updating procedure 

for the purpose of modeling uncertainty in managerial decision-making. This study makes a 

valuable contribution to the existing body of literature by providing a benchmark for evaluating 

the effectiveness of Bayesian point software development forecasts. Additionally, it 

demonstrates the potential for integrating subjective managerial estimates into the Bayes-based 

model. In general, the document offers valuable insights regarding the estimation of software 

development effort and the utilization of Bayesian networks within this particular domain. 

This study examines the utilization of developer features as a means to estimate story points in 

software projects, as investigated by Ezequiel Scott et al [10]. This study conducts a comparative 

analysis of various prediction models that employ a fusion of developer-related and textual 

elements in order to assess the story points assigned to subject reports. The paper elucidates 

various characteristics employed in the study, including developer repute, present developer 

workload, overall work capacity, number of developer comments, and textual attributes derived 

from issue descriptions. The article additionally addresses the utilization of Support Vector 

Machines (SVMs) in constructing predictive models. It also examines the assessment 

parameters employed to evaluate the algorithms' performance, including Accuracy, Mean 

Absolute Error (MAE), and Standardized Accuracy (SA). The objective of this study is to 

address research questions pertaining to the appropriateness of developer features in estimating 

story points, the accuracy of forecasting story points using developer features compared to 

textual characteristics, and the performance of developer features in terms of SA (Spearman's 

rank correlation coefficient) and MAE (Mean Absolute Error). The findings indicate that the 

models using developer features generally exhibit superior performance compared to the models 

incorporating textual features. However, it is important to note that the performance of these 

models differs across various projects. The study continues by recommending additional inquiry 

into the factors contributing to the diverse performance outcomes and the possible 

enhancements that might be implemented. This study offers valuable insights into the utilization 

of developer attributes for the estimation of story points in software projects, emphasizing the 

potential advantages of integrating these features into predictive models. 

The study conducted by Ardiansyah et al. [11] examines the utilization of the analogy-based 

method for software project effort estimation. The objective of this study is to examine the 
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precision of estimating the level of effort necessary for software development projects. The 

author elucidates the significance of precise effort estimation in order to successfully 

accomplish projects within the designated timeframe and allocated resources. The text examines 

a range of methodologies and approaches employed in the estimation of software projects. These 

include expert judgment, Planning Poker, Function Point, COCOMO, Use Case Point, 

regression analysis, and Bayesian Belief Network. The study centers on the analogy-based 

estimation approach, which entails the comparison of the project to be assessed with historical 

data derived from like projects. The study outlines the several processes involved in the process 

of analogy-based estimation, encompassing the assessment of similarity, adaptation of 

analogies, computation of estimates, and evaluation of the model. Additionally, the paper 

examines the many parameters employed in the estimation process, including Euclidean 

distance, Manhattan distance, and Minkowski distance. The findings of the research indicate 

that the most effective approach for estimating software project work through analogy 

approaches involves employing the Manhattan distance metric. This method demonstrates a 

level of accuracy with a 50% Mean Magnitude of Relative Error (MMRE), a 28% Median 

Magnitude of Relative Error (MdMRE), and a 48% prediction within 25% of the actual effort. 

This implies that the model described in the research can be effectively employed for accurate 

estimation of software project effort.  

The present research study conducted by Tawosi et al. [12] examines the correlation between 

story points and development effort within the context of Agile software projects. The objective 

of this study is to examine the relationship between estimated narrative points and the actual 

effort needed for the completion of a software development activity. The researchers employ 

proxies as a means of approximating the duration of development and evaluating their efficacy 

in accurately determining the true level of effort required. The document additionally addresses 

the methods employed in the study, encompassing the dataset, statistical analyses, and research 

inquiries. This study offers valuable insights into the degree of consistency in assigning story 

points throughout a project and delves into the difficulties associated with estimating effort in 

the context of Agile software development. The document provides valuable insights for anyone 

involved in software development, project management, and research who have an interest in 

Agile estimate methodologies and the correlation between narrative points and development 

work. 

The study conducted by Abdelali Zakrani et al. [13] examines the process of effort estimation 

in the context of agile software development. The article explores the utilization of user stories 
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and narrative points as a means of estimating the level of effort necessary for software 

development. The paper also examines various estimation methodologies, including expert 

opinion, planning poker, and use case points. The study emphasizes the subjective character of 

these methodologies and the possibility of errors and discrepancies in estimations. The 

subsequent section of the paper presents the application of machine learning methods, notably 

support vector regression (SVR) that has been tuned using the grid search strategy, in order to 

enhance the precision of effort estimation. This paper introduces a theoretical model and 

optimization approach, accompanied by an empirical assessment conducted on past agile 

software projects. The evaluation of the model's accuracy is conducted using various metrics. 

This study offers valuable insights into the difficulties and strategies involved in estimating 

effort in the context of agile software development. Specifically, it explores the utilization of 

machine learning techniques and optimization methods for this purpose. 

Yasir Mehmood and colleagues [14] discuss the topic of software effort estimation within the 

realm of software development. The significance of precise effort estimation and the difficulties 

linked to it were emphasized. The study offers a comprehensive examination of several 

estimation methodologies, encompassing algorithmic, non-algorithmic, and machine learning 

methodologies. Additionally, this paper provides a comprehensive analysis of existing literature 

pertaining to software effort estimate, with a particular emphasis on the utilization of use case 

points and expert-based estimating techniques. The estimation of effort plays a critical role in 

ensuring the success of software development initiatives. Various methodologies exist for 

estimating software effort, encompassing algorithmic, non-algorithmic, and machine learning 

techniques. The primary focus of this study pertains to the utilization of use case points and 

expert-based estimation techniques in the estimation of software work. This paper presents a 

comprehensive assessment of pertinent studies that have been undertaken to assess the 

enhancement in accuracy achieved through the utilization of ensemble and solo machine 

learning approaches. A checklist for quality assessment is employed to evaluate the chosen 

studies in accordance with their research objectives, study design, estimation methodologies, 

data collection techniques, data analysis procedures, and statistical approaches. In general, this 

study offers a thorough examination of software effort estimating methods and includes a 

methodical analysis of pertinent research articles. This study is beneficial for scholars and 

practitioners in the domain of software development who possess an interest in enhancing the 

precision of effort estimation. 
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In their study, Shashank et al. [15] conducted an empirical evaluation of machine learning 

models in order to estimate the work required for agile software development, specifically 

focusing on the utilization of story points. This paper examines the significance of effort 

estimation in the context of agile software development and the corresponding issues that arise. 

This paper elucidates the story point methodology, a widely adopted technique for estimating 

the effort required in software development projects that employ agile approaches. Additionally, 

this study introduces various machine learning methodologies, including decision tree, 

stochastic gradient boosting, and random forest, which have the potential to enhance the 

precision of effort estimation predictions. This study offers a comparative examination of the 

aforementioned strategies and provides a comprehensive discussion on their respective 

performance. The research findings underscore the necessity for additional inquiry in this 

domain and indicate future expansions to the proposed methodology. This study provides 

valuable insights for software development firms and scholars who are interested in enhancing 

the precision of effort estimation in agile software development projects. 

The present study pertains to the domain of agile software development, with a specific 

emphasis on the estimation of efforts required for different activities within agile projects. In 

her work, Lan Cao [16] examines the complexities and methodologies associated with the 

estimation of effort for tasks related to feature development, issue repair, and refactoring. This 

study also investigates several estimation methodologies employed in agile software 

development, including expert-based techniques such as planning poker and story points, 

alongside emerging techniques like machine learning. The paper presents a comprehensive 

account of the research design and technique employed for the purpose of gathering and 

examining data pertaining to the precision of estimations. This emphasizes the significance of 

documenting and evaluating comprehensive data pertaining to the estimation process, a task that 

is commonly perceived as burdensome inside many organizations. This study provides a 

significant contribution to the comprehension of the difficulties and optimal approaches 

involved in estimating effort for diverse tasks within the context of agile software development. 

This study offers valuable insights into the estimation process, the methodologies employed, 

and the significance of data collecting in enhancing the accuracy of estimations. 

The study work by Yanming Yan et al. [17] centers around the application of predictive models 

within the field of software engineering. This paper offers a detailed and systematic evaluation 

of several predictive modeling approaches and their application in a range of software 

engineering jobs. The objective of this study is to provide a comprehensive overview, 
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categorize, examine, and suggest potential avenues for further research, all based on empirical 

data. The author examines the many difficulties and potential advantages associated with the 

utilization of predictive models within the field of software engineering. This statement 

underscores the significance of utilizing high-quality datasets and acknowledges the influence 

of publication bias on the formation of conclusions. The research approach employed in this 

study encompasses three distinct research inquiries: the examination of publication distribution 

pertaining to predictive models, the categorization and distribution of the predictive models 

utilized, and the evaluation of the application of predictive models in certain software 

engineering jobs. The findings of the study are provided, encompassing the quantity of pertinent 

research articles found and the dispersion of these articles throughout various publication 

platforms. Additionally, the paper presents a comprehensive overview of the predictive 

modeling approaches employed in the aforementioned investigations and examines the 

distribution of these techniques within the research. 

2.4      Deep Learning Approaches to Agile Story Point Estimation  

The study conducted by P. Suresh Kumar and colleagues [18] examines the topic of software 

effort estimate, with a specific emphasis on the application of machine learning techniques, 

notably neural networks, for the purpose of predicting software effort. The author highlights the 

need of precise software estimating in the effective management of intricate and extensive 

software projects. This paper provides an overview of the several stages encompassed in the 

execution of a systematic literature review (SLR) pertaining to software effort estimation. These 

stages encompass the formulation of research inquiries, development of a search strategy, 

selection of relevant studies, synthesis of data, and the subsequent reporting of the review 

findings. Additionally, this underscores the necessity for future research to prioritize the 

development of more precise assessment methods that mitigate the risk of exceeding budgetary 

limits and compromising quality standards. The review article presents a collection of 

fundamental inquiries that the systematic literature review (SLR) endeavors to address. These 

inquiries encompass commonly employed datasets, methodologies, accuracy metrics, and 

amalgamation approaches utilized in the prediction of software effort. The paper also examines 

the prominent publications within the discipline, the years characterized by significant research 

activity, the specific categories of software effort that are examined, and the effectiveness of 

intelligent approaches across diverse datasets. The document finishes by providing a 

comparative analysis of existing literature pertaining to software effort estimation and proposes 

potential avenues for further research.  



 
 

17 
 

Micheal Fu [19] presented a "LineVul: A Transformer-based Line-Level Vulnerability 

Prediction". The paper discourses the use of DL models, specifically the BERT architecture, for 

predicting vulnerabilities at the line-level in source code. It addresses the limitations of existing 

vulnerability prediction approaches that focus on file or function-level granularity, and proposes 

a novel approach that leverages the mechanism of attention inside the BERT model architecture. 

The study explains the concept of line-level vulnerability prediction and highlights the 

challenges associated with it. It discusses the importance of explain ability in AI models and 

how the attention mechanism can be used to provide meaningful explanations for predictions. 

The study provides a summary of the research paper, including key points such as the use of 

BERT architecture, the attention mechanism, and the focus on line-level vulnerability 

prediction. It emphasizes the novelty of the approach and its potential usefulness in improving 

the accuracy and explain ability of vulnerability prediction models. In conclusion, this study 

presents a research paper that introduces a new approach, LineVul, for line-level vulnerability 

prediction using deep learning models. 

The research conducted by Zhang et al. [20] focuses on enhancing the efficacy of function point-

based software size estimate. This study presents a novel deep learning-based approach for 

automating the manual function point analysis process. The effectiveness and efficiency of the 

proposed model are evaluated to assess its potential for improving the overall efficiency of 

function point analysis. The author provides an analysis of the research inquiries, the 

methodology employed, the preparation of data, and the outcomes of the tests carried out to 

authenticate the suggested approach. The research inquiries center on evaluating the 

appropriateness, precision, and enhancement in efficiency of the offered model in comparison 

to the manual approach of function point analysis. The process encompasses the development 

of a Named Entity Recognition (NER) model based on deep learning principles, specifically 

utilizing a Bidirectional Long Short-Term Memory (BiLSTM) architecture with a Conditional 

Random Field (CRF) layer. The process of data preprocessing encompasses several tasks, such 

as cleansing and annotating requirement papers, segmenting words, and labeling function point 

elements. The experimental results demonstrate that the model provided in this study attains 

elevated levels of precision and F1 scores in the domain of function point analysis. Furthermore, 

it exhibits a notable enhancement in the efficiency of software size estimation. The study 

introduces an innovative methodology for enhancing the effectiveness of function point-based 

software size estimate through the utilization of deep learning techniques. The model under 
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consideration has favorable outcomes in terms of both accuracy and efficiency, hence offering 

potential advantages for software project management.  

Hung Phan et al [23] paper presents a model called HeteroSP, which uses graph neural networks 

to estimate story points in software issues. The study explains the motivation behind the 

research, the dataset used, the approach taken, and the research questions addressed. The paper 

addresses the problem of estimating story points in software issues, which is important for effort 

estimation in Agile methodology. The HeteroSP model uses graph neural networks to capture 

the structure and content of software issues. The model constructs a heterogeneous graph 

representation of the issues. The graph is built by preprocessing the textual information of the 

issues and creating nodes for words, sentences, and code parts. The model then uses a series of 

graph transformer layers to propagate information and make predictions. The paper presents 

experiments and results for different research questions, including within-project repository and 

cross-project repository estimation, the impact of preprocessing, and the use of parse trees. The 

HeteroSP model shows promising performance in estimating story points and outperforms 

existing approaches. The model is designed to handle the combination of natural language and 

code parts in software issues and shows good performance in estimating story points. 

Jirat et al [22] conducted study on software development projects to understand the factors that 

influence the changes in story points (SP) of work items. The study focuses on six dimensions: 

activity, collaboration, completeness, experience, readability, and text. It explores various 

metrics within these dimensions and their impact on SP changes. The document explains the 

method of collection and analyzation of the data, including the use of JIRA work items and 

different classification algorithms. The study aims to provide insights into the factors that can 

help predict SP changes in software development projects. The key points of the document 

include the identification of influential metrics, such as stable story points and word-based 

content, and the reflection that certain types of information changes, such as changing scope 

and task adding, are more common in work items with SP changes. The study also confers the 

suggestions of future research directions.  

In their study, Panda et al. [23] discuss the use of the story point technique for agile software 

work estimate. This paper elucidates the use of agile methodologies in the realm of software 

development, while also emphasizing the significance of accurately predicting the magnitude 

and intricacy of the products to be constructed. The notion of narrative points and their use in 

estimating work within the context of agile software development is introduced by the author. 

The research also examines the use of several neural network methodologies, including General 
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Regression Neural Network, Probabilistic Neural Network, Group Method Data 

Handling networks, and cascaded networks, in order to enhance the optimization of the estimate 

procedure. The study presents a comprehensive examination of the suggested methodology and 

the sequential procedures included in forecasting effort via the utilization of diverse neural 

network models. Additionally, the document discussed the assessment criteria used for 

assessing the performance of the models. 

In their study, Fu et al. [24] provide a novel methodology known as GPT2SP for the purpose of 

Agile story point estimation. This strategy leverages a pre-trained language model that utilizes 

a Transformer-based architecture, hence enhancing its ability to comprehend the 

interconnections between words and ultimately leading to improved estimate accuracy. The 

study assesses the suggested methodology using a dataset consisting of 23,313 problem 

instances derived from 16 open-source software projects. The evaluation includes the 

comparison of the proposed technique to 10 established baseline methodologies, including both 

within-project and cross-project situations. The findings indicate that the GPT2SP methodology 

attains a median Mean Absolute Error (MAE) of 1.16, surpassing the precision of current 

baseline methodologies for both within-project and cross-project predictions. The research 

furthermore does an ablation analysis to demonstrate the considerable enhancement of Agile 

story point estimation via the utilization of the GPT-2 architecture in the proposed technique, 

resulting in improvements ranging from 6% to 47%. This underscores the noteworthy progress 

of artificial intelligence in the context of Agile story point estimation. In conclusion, this 

research article presents the creation of a proof-of-concept tool aimed at enhancing practitioners' 

comprehension of story point estimates. Additionally, a survey study is conducted with Agile 

practitioners to assess the effectiveness and reliability of AI-based story point estimation 

accompanied by explanations. 

The significance of effort estimating in software project management, namely in the areas of 

project scheduling and evaluation, is discussed by Morakot Choetkiertikul et al [25]. This 

statement emphasizes the prevalent occurrence of overruns in both costs and schedules in 

software projects and the negative consequences that inaccurate estimations have on project 

results. This article centers on the need of predicting the work required to complete individual 

user stories in agile development environments, characterized by iterative cycles and 

incremental software development. This research presents a novel prediction model that utilizes 

a hybrid approach, combining two deep learning architectures, namely long short-term memory 

(LSTM) and recurrent highway network (RHN), to estimate narrative points. Additionally, it 
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offers a complete dataset for estimating tale points based on a points-based estimate technique. 

Empirical examination of the suggested strategy reveals its superiority over conventional 

baselines and alternative methods in terms of Mean Absolute Error, Median Absolute Error, and 

Standardized Accuracy. This work presents a novel prediction model for the estimation of story 

points in agile projects, therefore making significant contributions to the field. The prediction 

model utilizes a hybrid approach by integrating two deep learning architectures, namely long 

short-term memory (LSTM) and recurrent highway network (RHN). This study presents a 

comprehensive dataset of 23,313 problems extracted from 16 open source projects, with a focus 

on narrative points-based estimate. This study aims to empirically evaluate the suggested 

methodology and compare its performance against three commonly used baselines and six 

alternative methods in terms of Mean Absolute Error, Median Absolute Error, and Standardized 

Accuracy. The results consistently demonstrate that the proposed approach outperforms all the 

compared methods across these evaluation metrics. This study aims to address the existing 

research vacuum in the field of effort estimate in agile projects, with a specific focus on 

estimating the work necessary for the completion of user stories or problems. This system 

provides a comprehensive trainable prediction framework that encompasses the whole 

process, from initial data to forecast results, eliminating the need for human feature engineering. 

2.5     Limitations in Estimation of Story Point Using DL Approaches 

Hoa Khanh Dam et al [26] discusses the concept of explainable software analytics and its 

importance in the field of software engineering. It argues that while accurate predictions are 

crucial, it is equally important for software practitioners to understand the rationale behind those 

predictions. The study outlines a research roadmap for achieving explainability in software 

analytics models, drawing on social science, explainable artificial intelligence, and software 

engineering. Software analytics has gained attention but has not been widely adopted due to a 

lack of trust in the predictions without understanding the reasoning behind them. Explainability 

should be a key measure for evaluating software analytics models. There are different types of 

explanations in software engineering, and software engineers have different preferences for the 

types of explanations they are willing to accept. Transparency at different levels of the model, 

such as the entire model, individual components, and the learning algorithm, can contribute to 

explainability. Designing architectures that self-explain decision making, using attention 

mechanisms and natural language processing, can enhance explainability. Using external 

explainers, such as simpler models or interpretable structured knowledge, can help mimic or 

explain the behaviors of complex models. Evaluating explainability can involve measures such 
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as the size of the model, conducting experiments with practitioners, and formalizing evaluation 

methods using evidence-based approaches. Lastly, this study emphasizes the importance of 

explainability in software analytics and provides a roadmap for achieving it. It highlights 

different approaches and evaluation methods that can be used to make software analytics models 

more understandable and trustworthy for software practitioners. 

2.6    Summary 
  

 In this chapter we discussed the related literature studied during the carrying out our research. 

The related work suggests that use of hybrid model is not widely practiced by many other 

researchers to solve this problem. Since our proposed model is innovative and novel in terms of 

applying GPT2-CNN a hybrid model to solve the problem of story point estimation in agile 

projects.  
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Chapter 3 

Methodology and Framework 

3.1  Overview 
 

Many statistical and software-based solutions have been proposed and improved over the years to 

address the main problems with story point estimation in agile projects. But even systems already in 

place are still susceptible to the accurate story point estimation problem in software projects, as well 

as lack the adaptability to deal with the diversity of real-world settings. [1] 

This chapter introduces an enhanced agile story point estimation method that outperforms the 

existing Deep-SE method. To begin, data provided by Deep-SE is taken to study, and then pre-

processing the data to make it clean for model. Next step involves tokenization to create token 

embeddings of each story point title and description. The model actively learns token-wise 

dependencies for word to word rather than making enormous size of word vocabulary. This 

architecture allows model to predict with efficiency. It can also give answers that are more 

semantically relevant than RHWN and LSTM due to its great efficiency and ability to implicitly 

understand the semantic structure. Therefore, a number of ablation investigations were carried out 

to determine the most effective hybrid model. 

3.2      Overview of Transformers (GPT2) Generative Pretrained Transformers  

Transformers are a specific kind of neural network structures that find use in the domain of natural 

language processing (NLP) endeavors. The models are founded upon the concept of self-attention, 

enabling them to acquire knowledge of distant relationships among words within a sequence. 

Furthermore, they use word order embedding to consider the positional information. The first 

introduction of Transformers occurred in the scholarly work authored by Vaswani et al. [27] The 

study demonstrated that transformers have the capability to attain cutting-edge performance on a 

range of natural language processing (NLP) activities, including translation by machines, 

summarization of text, and query responding. Subsequently, transformers emerged as a highly 

favored neural network framework for Natural Language Processing (NLP). They are being used to 

get cutting-edge outcomes in a diverse array of jobs, encompassing: 

• Automated translation: Transformers have been used to improve the accuracy of machine 

translation systems by a significant margin. 
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• Text summarization: Transformers have been used to generate summaries of text documents 

that are both accurate and concise. 

• Question answering: Transformers have been used to develop question answering systems 

that can answer questions posed in natural language. 

• Natural language inference: Transformers have been used to develop systems that can 

determine whether a sentence implies another sentence. 

• Text generation: Transformers have been used to generate text, such as poems, code, and 

scripts. 

The transformer architecture is composed of two main components: an encoder and a decoder. The 

encoder function processes the input sequence and transforms it into a series of hidden states. The 

encoder function processes the input string in a sequence and transforms it into a series of hidden 

states. The encoder is made up of stack with self-attention layers. Each self-attention layer takes 

the previous hidden states and produces a new set of hidden states. The hidden states from the last 

self-attention layer are then passed to the decoder.  

The decoder utilizes the hidden states obtained from the encoder in order to construct the output 

sequence. The decoder is composed of a series of self-attention layers. In each self-attention layer, 

the preceding hidden states and the output tokens from the preceding phase are used to generate an 

entirely new set of hidden states. The subsequent resulting token is generated using the hidden 

states derived from the preceding self-attention layer. Following that, the decoder utilizes the secret 

states obtained from the encoder to produce the resultant sequence. The encoder and decoder 

consist of a stack with self-attention layers. The mechanism of self-attention enables the 

transformer model to capture and understand the relationships and interdependence among words 

in a given sequence, even when the words are distant from one another. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, ) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
(𝑄𝐾)𝑇

√𝑑𝑘
) 𝑉       (1) 

Where,  

𝑄𝑖𝑠𝑡ℎ𝑒𝑞𝑢𝑒𝑟𝑦𝑣𝑒𝑐𝑡𝑜𝑟, 𝑤ℎ𝑖𝑐ℎ𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠𝑡ℎ𝑒𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑓𝑜𝑟𝑒𝑎𝑐ℎ𝑤𝑜𝑟𝑑

∈ 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑜𝑓𝑖𝑛𝑝𝑢𝑡𝑠𝑡𝑟𝑖𝑛𝑔 

𝐾𝑖𝑠𝑘𝑒𝑦𝑣𝑒𝑐𝑡𝑜𝑟, 𝑤ℎ𝑖𝑐ℎ𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠𝑡ℎ𝑒𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑐𝑒𝑜𝑓𝑒𝑎𝑐ℎ𝑤𝑜𝑟𝑑 ∈ 𝑡ℎ𝑒𝑖𝑛𝑝𝑢𝑡𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒  
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𝑉𝑖𝑠𝑣𝑎𝑙𝑢𝑒𝑣𝑒𝑐𝑡𝑜𝑟, 𝑤ℎ𝑖𝑐ℎ𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠𝑡ℎ𝑒𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑎𝑏𝑜𝑢𝑡𝑒𝑎𝑐ℎ𝑤𝑜𝑟𝑑 ∈ 𝑡ℎ𝑒𝑖𝑛𝑝𝑢𝑡𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

𝑑𝑘𝑖𝑠𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑜𝑓𝑡ℎ𝑒𝑘𝑒𝑦 ∧ 𝑣𝑎𝑙𝑢𝑒𝑣𝑒𝑐𝑡𝑜𝑟𝑠  

𝑆𝑜𝑓𝑡𝑚𝑎𝑥𝑖𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑤ℎ𝑖𝑐ℎ𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑠𝑡ℎ𝑒𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝑠𝑜𝑡ℎ𝑎𝑡𝑡ℎ𝑒𝑦 ∑1   

The attention mechanism works by first calculating the dot product between the query vector and 

each of the key vectors. This produces a score for each word in the input sequence, indicating how 

relevant it is to the query. The scores are then normalized using the softmax function, and the 

resulting attention weights are used to weighted sum the value vectors. The weighted sum is then 

the output of the attention mechanism. The attention mechanism allows the transformer to learn 

long-range dependencies between words in the input sequence. This is because the attention 

weights are not limited to the immediate context of the query word. Instead, they can be influenced 

by words that are far away in the sequence. This allows the transformer to learn the relationships 

between words that are not explicitly stated in the sequence. The transformer is a powerful neural 

network architecture that can be used for a variety of NLP tasks. It has been used to achieve state-

of-the-art results on a wide range of tasks. It is still being used to develop new and innovative NLP 

applications. 

3.3 Proposed GPT2-CNN Hybrid Learning Model for Story Point Estimation in Agile Projects 

The GPT2-CNN hybrid model was created which focused on story point estimation tasks and can 

operate without stacking convolution to extract structural data more effectively. Similar to word 

embedding in NLP, title and description are tokenized and turned into token embedding in our model. 

GPT2 actively understands token-wise dependencies for input text rather than directly computing the 

semantic of each word in a sentence. GPT2 enhances the given issue semantic information in a project 

with excellent efficiency. Along with being highly effective, GPT2-CNN can intuitively learn the 

semantic information and hence produce results that are more accurately predicted than Deep-SE. 

Nevertheless, obtaining comparable performance with Deep-SE often requires a large amount of 

training time or extra supervision else cannot perform as expected due to the lack of inductive biases. 

Suggested model's overall layout is shown in figure 2.2. To start, we preprocess the data into a clean 

data removing unnecessary elements like html tags, repeated rows and unintended data. The Multi-

head Self-Attention based Transformer module will receive the data of issues descriptions as input and 

produce word embedding vectors.  The embedded vectors will be utilized to give CNN input which 

will then perform the remaining task of story point estimation.  
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3.3.1 Data Pre-processing and Acquisition   
 

The data-preprocessing and data acquisition are two-fold process. The data acquisition is the process 

of collecting data from online resources. The process is time taking and confidential at times. The 

author of base-line approach took months to acquire data and provide it to other for open research. The 

second step is data pre-processing, where it requires the molding of data into our model required shape. 

So that model perform well on tuned data. Both of the two-fold process are described in detail. 

 

Data Acquisition 

The data set acquired for this research is being made by Choetkiertikul[27], they have gathered data 

from 16 different repositories and 9 different projects using JIRA. The overall dataset size is 16.6MB. 

The dataset has four main features, which are issueskey, title, description, story points and 

split_mark. The details of each feature are mentioned below in table 3.1: 

 

• Issueskey: The issue(s) key is a a unique identifier, which is used to distinguish one issue from 

another issue. For more information, issues are also represented as sprints and backlog items in 

agile software development. Issue key is normally taken as integer value.   

 

• Title:  The title represents the main context of issue identification in natural language in brief 

form. The title often gives hints to the reader about what is going the happen in the description 

of story point. 

 

• Description: The description of story points tells the reader who might be a senior manager, 

project owner, team lead, senior developer, senior quality assurance engineer, junior developer, 

junior quality assurance analyst or a business analyst or some other stake holders of the project 

that have direct link with the execution of a project. The description involves the explanation 

of task, workable item ny the team. Descriptions should be written or gathered in a manner that 

is understandable by every stake holder. 

 

• Story points: The story points are numbers which embodies the effort required to complete a 

task. The effort is calculated by senior team lead or project manager has experience in executing 

same kind of projects. This number also denoted the intuition of project manager.  

 

• Split_mark: The split mark is use to denote the preprocessing done on data, while each mark 

classify data in train, test and validation part. 
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While training and testing a project file, we have seen the size of each file determines the time 

required to train and test. Those project files which has less number of issues shown more 

accuracy. The files which contain more number of issues require few more seconds to train. This 

also impacts the overall accuracy of the proposed model. 

 

Data Pre-Processing 

The process of pre processing is carried out to ensure that data is clean and ready to use for further 

processing. In this process we analyzed each data file, figure out the anomaly in data. The data is 

extracted from web pages of Jira, so it contains html tags and other web page elements not 

required. The data has some missing values which also affects the model performance so we clean 

all such things and convert it into a useable format. 

 

Table 2.1 Detailed description of dataset utilized for GPT2 CNN Hybrid Learning Model 

Sr 

No. 
Repository Project Name 

Size in 

Memory 

No. of total Issues in a 

file 

1 Appcelerator 
Appcelerator 

Studio 
2509kb 2920 

2 Appcelerator Aptana Studio 
770kb 830 

3 Atlassian Bamboo 
488kb 522 

4 Atlassian Clover 
335kb 385 

5 Lsstcorp Data Management 
1774kb 4668 

6 Dura Space DuraCloud 
282kb 667 

7 Atlassian JIRA Software 
193kb 353 

8 Apache Mesos 
2219kb 1681 

9 Moodle Moodle 
640kb 1167 

10 Mulesoft Mule 
529kb 890 

11 Mulesoft Mule Studio 
389kb 733 

12 Spring Spring XD 
2172kb 3527 
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13 Talendforge 
Talend Data 

Quality 
988kb 1382 

14 Talendforge Talend ESB 
794kb 869 

15 Appcelerator Titanium SDK/CLI 
2630kb 2252 

16 Apache Usergrid 
357kb 483 

 

3.3.2 Sub-word Tokenization and Byte Pair Encoding (BPE)  

Tokenization is the process of making token from the given input text. Since text is hard for most 

of machine learning tasks. The issues are written in natural language which is not understandable 

by machine. Tokenization can sometimes be more complex than just splitting by spaces. It needs 

to handle punctuation, contractions, special characters, and other linguistic nuances to ensure that 

the resulting tokens accurately represent the meaning of the text. This is particularly important for 

languages with complex grammar and syntax. To resolve, natural language processing techniques 

are devised to make tokens which will represent a number against each word. The previous 

methods applied by Deep-SE utilizes the bag-of-words approach, the creation of a vocabulary 

encompassing all distinct words present within the corpus. Subsequently, each document within 

the corpus is represented as a vector in the high-dimensional space defined by this vocabulary. The 

vector's dimensions correspond to the words in the vocabulary, and its values reflect the frequency 

or presence of each word within the document. This transformation facilitates the conversion of 

textual data into a numerical format amenable to mathematical manipulation and analysis. This 

approach has limitations which inherent disregard for word order and grammar precludes it from 

capturing nuanced semantic relationships present in natural language. The algorithm's sensitivity 

to word frequency can also be a double-edged sword, as it may inflate the significance of common 

but semantically uninformative terms, such as stop-words.  

Micheal Fu[26], uses Byte Pair Encoding (BPE), a subword tokenization technique that has gained 

prominence in the domain of NLP for its efficacy in segmenting text into meaningful units. This 

technique stems from the inherent need to handle morphologically rich languages and address the 

challenges posed by rare or out-of-vocabulary words in various NLP tasks. The fundamental 

premise of BPE resides in its data-driven approach to tokenization. It operates by iteratively 

merging the most frequent pairs of characters or subword units in a corpus, thereby forming new 

compound units. The process is guided by a heuristic that aims to maximize the compression rate, 

effectively leading to the formation of a shared vocabulary of subword units. By encoding text into 
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subword units, BPE effectively navigates the trade-off between granularity and vocabulary size. 

This granularity permits the representation of complex words and phrases as compositions of 

subword units, rendering the technique particularly well-suited for story point estimation. 

The BPE algorithm, we used it to perform two operations subsequently, 1 and 2 as shown in the 

figure3.3 The 1 represents the merge operations of which means that how a word should be split 

or divided on the basis of its location in the sentence. A merge operation entails the fusion of the 

most frequently co-occurring pair of characters or subword units within the training corpus. The 

frequency criterion is pivotal, as it guides the algorithm's prioritization of merging operations to 

maximize the compression of the data. As iterations of these merge operations persist, a hierarchy 

of subword units is progressively established, with higher-frequency pairs being amalgamated 

prior to those occurring less frequently. The significance of merge operations is twofold. First, it 

enable the construction of a shared vocabulary of subword units, thereby mitigating vocabulary 

discrepancies that often beset languages marked by agglutinative or inflectional tendencies. 

Second, it facilitate the representation of complex words as compositions of subword units, 

accommodating a granularity capable of capturing both morphological variations and semantic 

nuances. 

With the subsequent process, we put the tokenization pipeline into action to deliver efficient token 

ids. As shown in figure 3.3, we first pre-process the data. After data cleaning we perform the action 

of splitting dataset in 3 ratios, one for training, second one is for testing and third one is for 

validation. Then, we input the sequence of trained dataset comprising of 16 projects to pretrained 

GTP2. The GPT2 model will perform the BPE tokenization, where a simple sentence is break in 

common words being coming together. For example, the story has description explanation as 

shown in figure 1 where expressing is used as a middle word in the description context, 

“expressing” will break into subword of ‘express’, ‘ing’; this allows the model to understand the 

actions a word is performing in that particular sentence. After the subword tokens are formed they 

are merged together by merge operation so that it does not lose any detail from story description 

as shown in figure 3.3. The vocabulary size has reduced from 185,625 to 50,257 vocab. 
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Figure 3.1 GPT2 sub-word tokenization is shown where applying Byte Pair Encoding (BPE) is used for the 
task of making tokens 

3.3.3      Convolutional Neural Networks 
 

We employed a Convolutional Neural Network model on the input tokens received from GPT2. 

The reason behind choosing this combination of hybrid deep learning  model is to check whether 

running the same dataset will improve the results in contrast to Deep-SE model. We employ a 

standard module, 1D convolutional neural network (CNN) which is used to process 1D data, such 

as text or audio. 1D CNNs work by applying a series of filters to the input data. These filters are 

designed to detect specific features in the data, such as word. The output of the filters is then passed 

through a series of layers that learn to recognize these features.  

The input to the CNN is a sequence of tokenized IDs. The first layer of the CNN is a convolutional 

layer. This layer applies a series of filters to the input data. The filters are designed to detect specific 

features in the data, such as word order or the use of certain words. The output of the convolutional 

layer is a sequence of feature maps. The next layer is a pooling layer. This layer reduces the size of 

the feature maps by taking the maximum value in each window. This helps to reduce the number of 

parameters in the model and makes it more efficient. The final layer is a fully connected layer. This 

layer takes the output of the pooling layer and learns to classify the input text.  A detailed 

architecture is shown in figure 3.2 



 
 

30 
 

 

Figure 2.2  CNN Architecture Displaying all layers and transition of data between layers is shown 

3.3.3.1   Embedding Layer of CNN  
 

Given an input sequence of integer-encoded tokens, denoted as a matrix X ∈ RL×N, where L 

is the sequence length and N is the vocabulary size, the embedding layer transforms each 

token into a continuous-valued vector in a learned embedding space of dimension D, resulting 

in an output tensor 𝐸 ∈ 𝑅𝐿𝑥𝐷. 

The embedding process is described as: 

𝐸𝑖𝑗 = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑋𝑖𝑗), ∀𝑖 ∈ {1,2,3, … , 𝐿}, 𝑗 ∈ {1,2,3, … , 𝑁} (2) 

3.3.3.2           1D Convolutional Layer of CNN 

In order to keep position information intact we also add a 1D learning position. Let E, be the 

output tensor from the embedding layer, with E ∈ RL×D. The 1D convolutional layer applies a 

set of F learnable filters, each with a kernel of size K and C channels. The operation results in 

C feature maps, which are then passed through a bias term b and an activation function σ. The 

feature map tensor C∈ R(L−K+1)×C is obtained as follows: 

𝐶𝑖𝑗 = 𝜎(∑ ∑ 𝐸𝑖+𝑘−1,𝑗. 𝑊𝑘𝑗
𝑐 + 𝑏𝑐

𝐷
𝑗=1

𝐾
𝑘=1 ), ∀𝑖 ∈ {1,2,3, … , 𝐿 − 𝐾 + 1}, 𝑐 ∈ {1,2, … } (3) 

Where, 𝑊𝑘𝑗
𝑐   denotes the weight of the kth element of the kernel of the cth filter in relation to the 

jth dimension of the embedding space. 
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3.3.3.3              Global Max Pooling Layer CNN   

The global max pooling layer operates on each feature map from the previous convolutional 

layer independently. Given the feature map C∈R(L−K+1)×C, the global max pooling operation 

extracts the maximum value from each channel, resulting in a pooled tensor P∈ RC 

Transformer inputs.  

𝑃𝑐 = 𝑚𝑎𝑥
𝑖

𝐶𝑖𝑐 , ∀𝑐{1,2, … , 𝐶}  (4) 

3.3.3.4 Dense Layer CNN 
 

The dense layer performs a linear transformation on the input vector P with weights W∈RC×O, 

where O is the output dimension. The transformation is followed by an element-wise 

application of an activation function σ. The output tensor Y∈ RO is computed as: 

𝑌 = 𝜎(𝑃. 𝑊 + 𝑏)   (5) 

Where “.”  represents matrix-vector multiplication, b is bias vector, and σ is activation 

function. 

 

3.4 Ablation Experiments 

There are 4 other experiments carried out during the study: 

 

3.4.1 GPT2-CNN Model 

In this experiment we perform the analysis on GPT2-CNN where we didn’t apply any changes to 

default CNN. We do apply tokenization process through GPT2 which is pre-trained on large 

corpora by the creators. The reason behind using unchanged parameters is to check the working 

and response of model on our problem of agile projects story point estimation. The results are 

discussed in the next section.  

3.4.2 GPT2- LSTM Model 

In the realm of Agile development of software, the precise assessment of work effort has 

significance in facilitating efficient planning for projects and allocation of resources. In order to 

address this difficulty, sophisticated methods using artificial neural networks, namely the Long 

Short-Term Memory (LSTM) architecture, are used in conjunction with pre-trained models like 
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GPT-2. This approach shows great potential in automating and improving the process of estimating 

story points. 

 

The process begins with the utilization of GPT-2, a state-of-the-art language model which is 

pretrained on a diverse corpus of textual data. GPT-2 demonstrates exceptional proficiency in 

understanding natural language and generating coherent text. In story point estimation, GPT-2 is 

leveraged to tokenize the textual description of user stories, effectively segmenting the input into 

discrete units representing sub-word components. This tokenization process is essential to create a 

structured input representation that can be seamlessly integrated into subsequent stages of the 

LSTM-based estimation model. 

 

Following tokenization, the resulting tokens are provided as input to the LSTM architecture. 

LSTMs are a class of recurrent neural networks (RNNs) explicitly designed to capture temporal 

dependencies and patterns within sequential data. In Agile story point estimation, LSTMs can 

effectively exploit the sequential nature of the tokenized user story descriptions, discerning 

intricate linguistic nuances and contextual cues that may impact the estimation process. 

 

The LSTM model's structure incorporates memory cells, augmented with gating mechanisms that 

disseminate information throughout the network. The gates, consisting of forget, input, and output 

components, enable the LSTM to selectively retain relevant information over extended sequences, 

while alleviating the vanishing gradient problem that hampers conventional RNNs. Consequently, 

the LSTM-equipped model can inherently grasp long-range dependencies present in user story 

descriptions, which are often crucial for accurate story point estimation. 

 

By employing a pretrained GPT-2 model for tokenization and subsequently feeding these tokens 

into an LSTM architecture, the story point estimation process benefits from a hybrid approach that 

amalgamates advanced natural language understanding capabilities with the ability to capture 

intricate contextual relationships. This amalgamation empowers the model to interpret and dissect 

the textual descriptions effectively, potentially leading to more accurate and consistent story point 

estimates. 

 

In conclusion, the integration of pretrained GPT-2 and LSTM architecture within the realm of 

Agile story point estimation showcases a progressive convergence of sophisticated language 

processing and sequential modeling techniques. This hybrid methodology addresses the 
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subjectivity and complexity associated with manual story point estimation by automating the 

process through comprehensive linguistic comprehension and contextual analysis, ultimately 

improving the accuracy and efficacy of Agile project planning and execution. 

3.4.3 GPT2-LSTM-CNN Model  

The amalgamation of advanced neural network architectures—GPT-2, LSTM, and CNN—can 

potentially enhance the accuracy and efficiency of this estimation process. GPT-2, a renowned pre-

trained language model, demonstrates exceptional proficiency in understanding and generating 

human-like text. Its application in word tokenization significantly enhances the representation of 

textual input pertinent to agile story descriptions. The tokenization process involves segmenting 

the text into discrete units, enabling a more structured input for subsequent neural network layers. 

Leveraging LSTM (Long Short-Term Memory) following GPT-2's tokenization serves a dual 

purpose. Firstly, LSTMs possess the inherent capability to model sequential dependencies within 

data, a trait crucial for capturing the nuanced relationships often present in agile story narratives. 

These networks excel at handling temporal sequences and preserving contextual information over 

extended spans. Secondly, LSTMs aid in dimensionality reduction, a critical endeavor to manage 

the computational complexity associated with subsequent layers. 

Subsequently, the integration of CNN (Convolutional Neural Network) exhibits its utility in 

enhancing feature extraction and dimensionality reduction within the context of agile story point 

estimation. By employing CNNs, we capitalize on their proficiency in capturing hierarchical 

patterns present within the segmented text tokens. Convolutions performed across these tokens 

enable the identification of localized features, effectively reducing the dimensionality while 

retaining relevant information. Pooling operations further enhance the network's ability to extract 

salient features, ensuring that the subsequent classification task is executed on a refined feature set. 

In this integrated framework, the tokenized input sequence, enhanced by GPT-2's linguistic 

understanding and structured by LSTM's sequential modeling, is then channeled through a CNN 

architecture. The synergistic application of these neural components facilitates the extraction of 

high-level abstract features, thereby encapsulating the intrinsic semantics of agile stories for story 

point estimation. 

This comprehensive approach amalgamates GPT-2's natural language prowess, LSTM's temporal 

modeling capabilities, and CNN's hierarchical feature extraction prowess. Such integration 
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augments the system's ability to discern intricate relationships within agile story narratives, 

ultimately enhancing the precision and robustness of story point estimation. As empirical evidence 

substantiates the efficacy of neural network ensembles, this framework presents a promising 

avenue for advancing agile software development practices through sophisticated estimation 

methodologies. 

3.3.4 RoBERTa(Tokenizer)- RoBERTa(Classifier) 

In the context of software development using agile methodology, story-point estimation 

plays a pivotal role in assessing the complexity and effort required to complete a particular 

user story. Accurate estimation of story points aids project planning and resource 

allocation. Recent advancements in Natural Language Processing (NLP) techniques, such 

as RoBERTa (A Robustly Optimized BERT Pretraining Approach), have shown promise 

in automating this process through the analysis of textual data associated with user stories, 

such as issue descriptions and corresponding identifiers. 

The application of RoBERTa for story point estimation follows a systematic process that 

involves tokenization, model training, and prediction. Tokenization, the initial step, 

converts textual inputs into a sequence of subword tokens, thereby enabling the model to 

process them effectively. The tokens encompass the issue descriptions and issue identifiers. 

Each token is represented by a numerical embedding, which captures its semantic meaning 

in a continuous vector space. 

Subsequently, the tokenized data is employed to train the RoBERTa model. During this 

phase, the model learns to comprehend the intricate contextual relationships within the text. 

It captures the semantic nuances associated with issue descriptions and the underlying 

complexities of the tasks denoted by the respective story points. The model adjusts its 

internal parameters through an iterative optimization process, minimizing a predefined loss 

function that quantifies the disparity between predicted and actual story point values. 

After training, the model moves to the prediction stage, wherein it applies its acquired 

knowledge to make estimations on unseen data, known as the test dataset. The RoBERTa 

model encodes the textual information of issue descriptions and identifiers into meaningful 

representations. These representations are then used as input to a subsequent layer that 
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predicts the corresponding story point values. The model's predictions are evaluated against 

the actual story point labels present in the test dataset, and performance metrics such as 

Mean Absolute Error (MAE) computed to gauge the accuracy of the predictions. 

3.5 Experimental Analysis of Proposed Framework 

3.5.1 Implement Details 

Tensorflow is used to implement the suggested GPT2-CNN along with an NVIDIA NVIDIA-

SMI 460.32.03 GPU and CUDA Version 11.2 without pre-trained networks. The Adam [W] 

optimizer is used, processing 80 epochs with a batch size of 32, with a preset learning rate of 

1𝑒−4. The default setting was set to use Transformer depth 1 as concluded with multiple 

experiments that incurring the depth of the transformers did not increase any artifacts of the 

suggested pipeline. 

3.5.2 Hyper parameters Details 

Learning Rate and Weight Decay 

The optimization process of the CNN model employs an adaptive learning rate algorithm known 

as AdamW. The learning rate (α) is set to0.0001, controlling the step size during gradient descent. 

This value influences the speed and stability of convergence. Additionally, weight decay (λ) is 

also set to 0.0001, introducing a regularization term to the optimization objective. Weight decay 

discourages large parameter values, aiding in preventing overfitting and promoting 

generalization. 

 

Batch Size 

During both the training and validation phases, the data processing is done in batches. All of 

batches contains 32 instances. This parameter influences the granularity of weight updates and 

affects memory consumption. Smaller batch sizes can lead to more frequent updates and might 

allow the model to escape local minima, while larger batch sizes can lead to more stable updates 

but require more memory. 

 

Epochs 

The training process iterates over the dataset multiple times, with 80 epochs defined in this code. 

An epoch represents a complete pass through the training data. Training for multiple epochs 

allows the model to refine its parameters in response to the training data, improving its 
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performance over time. Nevertheless, the process of determining the optimal number of epochs 

involves striking a balance between the effectiveness of the model and the computing efficiency 

it requires.  

 

Filter Size and Number of Filters  

The convolutional layer employs 64 filters with a kernel size of 55. These filters slide across the 

embedded input data, capturing local patterns. The filter size influences the size of the receptive 

field, determining the spatial scope of patterns that the filters can recognize. The number of filters 

affects the CNN capacity to capture different features; a higher number can capture more diverse 

features but may also lead to overfitting if not balanced with other hyperparameters. 

 

Embedding Dimension 

The embedding layer maps input tokens to continuous-valued vectors in a learned embedding 

space. The embedding dimension is set to 128. This hyperparameter determines the 

dimensionality of the embedding space, influencing the CCN’s ability to capture semantic 

relationships between words in the input sequence. Larger dimensions can capture more intricate 

relationships but might require more data. 

 

Activation Functions 

 Rectified Linear Units (ReLU) serve as activation functions within the CNN model. ReLU 

activations introduce non-linearity which assist the GPT2-CNN Hybrid Learning model to 

acquire complex patterns. Specifically, they turn 0 for negative values while leaving positive 

values unchanged, thereby aiding in capturing and propagating relevant features while 

suppressing noise. 

3.5.3 Loss function  

In order to conduct an objective assessment of the model's performance, the mean absolute error 

(MAE) loss function used during training is utilised. The Mean Absolute Error (MAE) calculates the 

average absolute discrepancy between the expected and actual labels of story points. The loss metric 

presented above offers a straightforward assessment of the model's precision in forecasting story 

points, irrespective of the errors' direction. 

Tokenizer and Padding 
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The GPT-2 tokenizer is utilized to preprocess the text data. It converts input text into token IDs suitable 

for model input. The maximum sequence length for tokenized input is set to 128, with padding applied 

to sequences that are shorter. 

3.6 Ablation Study – Experimental Analysis  

The pre-trained GPT2-CNN model with Adam(W) optimizer performs well in all of the other 

experimentation. A detailed diagram of whole architecture is presented to make proper understanding 

of whole model. The issues text and story points were taken as core input parameters. This textual 

input then given to GPT2 for tokenization and creation of input ids for CNN. The CNN is then utilized 

to comprehend those tokens into classified story points notated as predicted story points against each 

story. The evaluation comparison is explained in the next chapter.  

3.7 Summary 
 

This chapter courses proposed model GTP2-CNN Hybrid Learning model, which is based on 

combination of two models put together. The research also shed light on the combination of diverse 

models to validate our model performance. Since such combinations are not tried before, with this 

study future researchers can benefit from it. 
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Figure3.3 A detailed Architecture Diagram, explaining the working of GPT2-CNN Hybrid Learning Model for 
estimation of agile user stories in projects 
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Chapter 4 

Results and Discussion 

4.1 Overview 
The results segment presents the outcomes of our exploration into the application of a deep learning 

model for predicting story points in the context of software development. This endeavor involved the 

development of a sophisticated model that leverages tokenization, convolutional neural networks 

(CNNs), and embedding layers to tackle the challenge of estimating story points associated with 

software development tasks. In this section, we offer a comprehensive analysis of the model's 

performance across a diverse range of software development dataset. The dataset was meticulously 

selected to encompass various software projects, each characterized by unique attributes and 

complexities. Our investigation sought to evaluate the model's efficacy in providing accurate 

estimations of story points, thereby aiding software development teams in enhancing their project 

planning and resource allocation strategies. 

The foundation of our approach lies in the amalgamation of cutting-edge techniques, including state-

of-the-art tokenization with GPT-2 and the integration of CNNs for local feature extraction. The 

architectural configuration of the model is designed to extract meaningful patterns from textual 

descriptions of software development tasks, enabling the translation of these patterns into reliable 

estimates of story points. Additionally, we employed embedding layers to generate vector 

representations for the text, which further enriched the model's ability to grasp semantic nuances and 

correlations within the data. 

Throughout this section, we delve into the specifics of our experimentation, detailing the dataset 

preparation, model architecture, training process, and subsequent evaluation. Our primary objective is 

to not only present quantitative metrics of the model's performance but also to provide a qualitative 

assessment of its effectiveness in real-world software development scenarios. The ensuing subsections 

elucidate the datasets under scrutiny, lay out the architecture of the deep learning model, delineate the 

training and evaluation procedures, and culminate in an in-depth analysis of the performance achieved 

across the diverse software projects. A comprehensive experiment is conducted in order to attain 

favorable outcomes. A comprehensive examination of existing scholarly works is necessary to 

establish the foundation for the experimental setup. In order to substantiate our conclusions, we 

thoroughly examined a variety of research papers and scientific articles.  The gpt2-cnn hybrid model 

demonstrated superior performance compared to the other models in the experimental study.  The field 

of software engineering has seen extensive research in the past and present. Our work specifically 



 
 

40 
 

focuses on the development and evaluation of story point estimation techniques within a project. The 

subsequent sections will provide a comprehensive explanation of the outcomes attained through 

various hybrid models. 

4.2  Regression Evaluation Metrics 
Regression evaluation metrics are used to evaluate the performance of regression models, which are 

used for predicting continuous numerical values. In regression, the goal is to minimize the discrepancy 

between the predicted values and the actual target values. MAE and MedAE are two ways to quantify 

this discrepancy and measure how well the model's predictions align with the true values. The 

implemented scenario has regression task, the evaluation of predicted story points involves the 

assessment of two models at a time. The evaluation carried out on the MAE taken from each epoch 

and then performing the MedAE.  

The authors of DEEP-SE used the metrics of standard accuracy, media absolute error and mean 

absolute error. Also, it chooses the three (3) baseline benchmark evaluation metrics of Random 

guessing, median methods and mean. Our evaluation metric is implemented on the basis of 

considering the type of input which is human understandable text: story points and the predictions are 

made in the form of numeric numbers. We select the MAE and MedAE as prior metrics. 

4.2.1 Mean Absolute Error 

We carry out the assessment using Mean Absolute Error (MAE) to measure the accuracy of a 

predictive model's predictions. It's particularly useful when dealing with continuous numerical data. 

MAE measures the average absolute difference between the predicted values and the actual target 

values. Mathematically, for a set of story point predictions 𝑦𝑖 and corresponding actual story point 

values taken from dataset as 𝑥𝑖. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑥𝑖|𝑛

𝑖=1  (6) 

Where  𝑥𝑖 = actual story points from dataset,  

          𝑦𝑖 = predicted story points by the GPT2-CNN Hybrid model 

The MAE metrics is considered an unbiased metrics to evaluate the model performance. MAE gives 

you an idea of how far off, on average, the predictions are from the actual values. It provides a measure 

of the model's accuracy without considering the direction of the errors. The higher the value is poor 

the performance of model. The lower the value, good performance of model is achieved. 
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4.2.2 Median Absolute Error Evaluation 
 

Median Absolute Error is another metric used to evaluate the performance of predictive models, 

especially when dealing with outliers or skewed data. The dataset we utilized has numerous numbers 

of lines containing text as explained earlier. MedAE, unlike MAE, considers the median of the 

absolute differences between predicted story points and actual story points. The median is less 

sensitive to outliers compared to the mean, making MedAE more robust in the presence of extreme 

values. 

Mathematically, for a set of story point predictions 𝑦𝑖 and corresponding actual story points 𝑥𝑖 , the 

MedAE is calculated as: 

𝑀𝑒𝑑𝐴𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦𝑖 − 𝑥𝑖|, |𝑦𝑖 − 𝑥𝑖|, |𝑦𝑖 − 𝑥𝑖|, … , |𝑦𝑛 − 𝑥𝑛|)  (7) 

𝑛 = 𝑡ℎ𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠 , in our case the number of data points are 16.  

(𝑚𝑒𝑑𝑖𝑎𝑛)𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑖𝑠𝑢𝑠𝑒𝑑𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑡ℎ𝑒𝑚𝑒𝑑𝑖𝑎𝑛𝑜𝑓𝑡ℎ𝑒𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠. 

MedAE provides a measure of central tendency of the errors, which can be a more reliable indicator 

of model performance when dealing with skewed or noisy data. The data we curtailed has some 

missing values and repeated values which makes it a noisy data, it justifies our chice of evaluation 

metric. 

4.3 Experimental Analysis of Proposed Hybrid Models 

On dataset of story points, our experiments show variety of results. To give a small recap to what have 

been shown earlier, this section will demonstrate the results of all the models. The first model is gpt2-

cnn version 2.0, our foremost important model whose performance out performs the baseline paper 

and out other experiments too. The gpt2 pretrained model is used here for the purpose of word vector 

embeddings. These embeddings are then fed to CNN which classifies the vectors into story point 

predictions. The model uses the learning rate (lr) of 0.0001, with a decay of 0.0001 and used AdamW, 

as optimizer. The experiment has been in state of running till 80 epochs. We use the early stopping 

technique to stop the training of model at a point where the results are undesirable. The following table 

shows the results of gpt2-cnn with AdamW as optimizer. 
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Table 4.1  Results of GPT2-CNN (Adam W optimizer) Hybrid Learning Model 

S.N

o 
Repository Project Name 

MAE 

Epoc

h 10 

MAE 

Epoch 

20 

MAE 

Epoch 

30 

MAE 

Epoc

h 50 

MAE 

Epoc

h 80 

Media

n 

1 
Appcelerato

r 

Appcelerator 

Studio 
1.39 1.45 1.59 1.61 

 

2.05 

 

1.39 

2 
Appcelerato

r 
Aptana Studio 5.41 3.53 3.54 3.53 3.54 3.53 

3 Atlassian Bamboo 0.94 0.79 0.76 0.76 0.86 0.76 

4 Atlassian Clover 3.97 3.72 3.74 3.62 3.65 3.62 

5 Lsstcorp 
Data 

Management 
6.18 5.97 5.99 6.52 7.15 5.97 

6 Dura Space DuraCloud 0.80 0.80 0.80 0.77 0.78 0.77 

7 Atlassian JIRA Software 3.64 1.91 1.91 1.84 1.77 1.77 

8 Apache Mesos 1.21 1.19 1.13 1.18 1.10 1.10 

9 Moodle Moodle 5.38 6.52 6.75 6.82 7.73 5.38 

10 Mulesoft Mule 3.01 2.55 2.52 2.48 2.55 2.48 
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11 Mulesoft Mule Studio 5.94 3.83 3.80 3.78 3.84 3.78 

12 Spring Spring XD 1.68 1.68 1.74 1.87 1.81 1.68 

13 Talendforge 
Talend Data 

Quality 
3.36 3.87 3.88 3.47 

 

3.79 

 

3.36 

14 Talendforge Talend ESB 0.90 0.84 0.82 0.84 

 

0.86 

 

0.82 

15 
Appcelerato

r 

Titanium 

SDK/CLI 
2.16 2.20 2.23 2.44 

2.87 

 
2.16 

16 Apache Usergrid 1.94 1.47 1.11 1.17 

 

1.17 

 

1.11 

MedAE = 1.96 

 

The table 4.1 contains extensive trials data of each epoch till 80, where gpt2 used as tokenizer and cnn 

used as classifier to produce the desired outcome. Best values of MAE from each epoch used to 

calculate the median absolute error, which represents the significance of our research. 

4.3.1 Graphs 

 The following graphs of our model are also shown for better understanding the merits and demerits 

of our model. 
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Figure 4.1 Graph of Trained and Validated Appcelerator Studio 

The appcelerator studio figure 4.1 shows the training process is having a straight line convergence that 

generalize the results after 80th epoch. The validation is quiet good as it replicates the behavior of 

training. 

 

Figure 4.2 Training and Validation of Aptana Studio 
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Aptana Studio file figure 4.2 performs well on GPT2-CNN hybrid learning model. All project files 

have some different size of stories contained in data files. This variance of data has allowed our GPT2-

CNN hybrid learning model to train and validate on different data which changes its performance on 

each data file. Like wise figure 4.3 for bamboo studio, figure 4.4 for clover, figure 4.5 for data 

management, figure 4.6 for dura cloud, figure 4.7 for jira software, figure 4.8 for mesos, figure 4.9 

for moodle, figure 4.10 for mule, figure 4.11 mule studio, figure 4.12 spring XD, figure 4.13 for talend 

dataquality, figure 4.14 for talend ESB, figure 4.15 for titanium sdk/cli, figure 4.16 for usergrid 

respectively. 

 

Figure 4.3  Bamboo Studio graph explaining the training and validation of dataset 
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Figure 4.4  Clover data file training and validation MAE 

 

Figure 4.5  Data Management File Training and Validation MAE 
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Figure 4.6 Dura Cloud Training and Validation MAE 

 

Figure 4.7 Jira Software Training and Validation MAE 
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Figure 4.8  Mesos Training and Validation MAE 

 

Figure 4.9  Moodle Training and Validation MAE 
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Figure 3.10  Mule Training and Validation MAE 

 

Figure 4.11  Mule Studio Training and Validation MAE 
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Figure 4.12 Springxd Training and validation MAE 

 

Figure 4.13 Talend Data Quality Training and Validation MAE 
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Figure 4.14  Talendesb Training and Validation MAE 

 

Figure 4.15 Titanium Training and Validation MAE 
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Figure 4.16 Usergrid Training and Validation MAE 

4.3.2  Heat Map 
 

The heatmap is a visual representation of data under study. The heatmap represents the variance 

between the projects on x-axis and projects on y-axis. The use of heatmap allows us to visually 

understand the difference between data files. We observe that the clean data and unclean data has some 

impact on the performance of GPT2-CNN hybrid learning model. See Figure 4.17  
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Figure 4.17  Heatmap of Training and Validation MAE of all project files 

 

4.4   Evaluation on GPT2-CNN  
The evaluation carried out on gpt2-cnn hybrid model, we use the pre-defined hyperparameters. The 

results achieved are equivalent to those of base line paper. The difference is about computational time 

it took. As mentioned in the baseline paper, it requires several hours to train the model but our model 

only require 1.5 hours to train on this enormous dataset of story points. The numbers of epochs are less 

as compared to the previous one because we use early stopping and learned that further training will 

overfit the model for this particular task. The following table 4.2 shows the results. 
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Table 4.2  GPT2 as tokenizer -CNN as classifier where CNN is not used with any optimizer 

S.No Repository Project Name 
MAE 

Epoch 10 

MAE 

Epoch 20 

MAE 

Epoch 30 
Median 

1 Appcelerator Appcelerator Studio 1.41 1.45 1.78 1.41 

2 Appcelerator Aptana Studio 5.41 3.65 3.55 3.55 

3 Atlassian Bamboo 0.88 0.80 0.76 0.76 

4 Atlassian Clover 4.96 3.71 3.77 3.71 

5 Lsstcorp Data Management 6.18 5.98 6.01 5.98 

6 Dura Space DuraCloud 0.82 0.81 0.76 0.76 

7 Atlassian JIRA Software 3.11 2.67 1.94 1.94 

8 Apache Mesos 1.24 1.20 1.14 1.14 

9 Moodle Moodle 5.41 6.52 6.75 5.41 

10 Mulesoft Mule 3.02 2.57 2.54 2.54 

11 Mulesoft Mule Studio 5.94 3.81 3.77 3.77 

12 Spring Spring XD 1.68 1.72 1.89 1.68 

13 Talendforge 
Talend Data 

Quality 
3.36 3.76 3.99 3.36 

14 Talendforge Talend ESB 0.98 0.84 0.84 0.84 

15 Appcelerator Titanium SDK/CLI 2.15 2.19 2.34 2.15 

16 Apache Usergrid 1.95 1.22 1.15 1.15 

MedAE = 2.04 

 

4.5   Evaluation on GPT2-LSTM 
 

Evaluation of gpt2-LSTM is carried out to testify our own model presented with multiple variations. 

The variation of gpt2-LSTM, we use the default parameters. The gpt2 pretrained model is used as 

tokenizer and LSTM is used as classifier and predictor. The notion of using this variation is to learn 
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the difference of performance on a language task. The results showed in following table 4.3 assist the 

understanding of LSTM on a task like story point estimation. 

Table 2.3  GPT2- LSTM where gpt2 as tokenizer and LSTM as classifier 

S.No Repository Project Name 
MAE 

Epoch 10 

MAE 

Epoch 20 

MAE 

Epoch 30 
Median 

1 Appcelerator Appcelerator Studio 1.39 1.30 2.159 1.30 

2 Appcelerator Aptana Studio 3.61 3.61 3.61 3.61 

3 Atlassian Bamboo 0.77 0.75 0.77 0.75 

4 Atlassian Clover 3.75 3.65 3.52 3.52 

5 Lsstcorp Data Management 6.18 6.21 6.07 6.07 

6 Dura Space DuraCloud 0.84 0.72 0.70 0.70 

7 Atlassian JIRA Software 2.24 2.24 2.18 2.18 

8 Apache Mesos 1.26 1.50 1.27 1.27 

9 Moodle Moodle 6.48 6.48 6.48 6.48 

10 Mulesoft Mule 2.46 2.46 2.50 2.46 

11 Mulesoft Mule Studio 3.58 3.58 3.58 3.58 

12 Spring Spring XD 1.73 1.80 2.37 1.73 

13 Talendforge Talend Data Quality 3.29 3.29 3.47 3.29 

14 Talendforge Talend ESB 0.93 0.87 0.84 0.84 

15 Appcelerator Titanium SDK/CLI 2.42 2.14 2.89 2.14 

16 Apache Usergrid 1.16 1.16 1.16 1.16 

MedAE = 2.16 

 

4.6  Evaluation of GTP-2 – LSTM – CNN  
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GPT-2 – LSTM-CNN model is a pure hybrid model, we implement this model to understand the 

working of tokenizer, a separate embedding vector mechanism and a classifier of CNN. The 

architecture aims to capture both sequential and local patterns in the data. The AdamW optimizer with 

weight decay helps in optimizing the model's parameters during training. The results are shown in 

table 4.4 

Table 4.4  GPT2-LSTM-CNN a tri model variation evaluation 

S.No Repository Project Name 

MAE 

Epoch 10 

lr=0.0001 

MAE 

Epoch 20-

lr=0.0001 

Median 

1 Appcelerator Appcelerator Studio 1.30 1.30 1.30 

2 Appcelerator Aptana Studio 3.61 3.61 3.61 

3 Atlassian Bamboo 0.76 0.75 0.75 

4 Atlassian Clover 3.77 3.61 3.61 

5 Lsstcorp Data Management 6.33 6.88 6.33 

6 Dura Space DuraCloud 0.80 0.75 0.75 

7 Atlassian JIRA Software 2.23 2.09 2.09 

8 Apache Mesos 1.148 1.23 1.23 

9 Moodle Moodle 6.48 6.48 6.48 

10 Mulesoft Mule 2.46 2.51 2.46 

11 Mulesoft Mule Studio 3.57 3.58 3.57 

12 Spring Spring XD 1.71 1.72 1.71 

13 Talendforge Talend Data Quality 3.29 3.29 3.29 

14 Talendforge Talend ESB 0.86 0.78 0.78 

15 Appcelerator Titanium SDK/CLI 2.03 2.13 2.03 

16 Apache Usergrid 1.16 1.16 1.16 

MedAE =  2.06 
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4.7 Evaluation of Roberta-Roberta-Adam 
 

Roberta- Roberta- Adam is blend of two models, one model implied to work as tokenizer and the 

other model is implied to predict story points on the basis on previous model output. The optimizer 

used here is ADAM optimizer, other hype parameters settings are set as default settings like other 

models under experiment. See table 4.5 

 

Table 4.5 Roberta as tokenizer and Roberta as classifier with Adam optimizer 

S.No Repository Project Name Epoch 10 Epoch 20 Best 

1 Appcelerator Appcelerator Studio 1.75 

 

2.21 

 

1.75 

2 Appcelerator Aptana Studio 3.35 

 

3.44 

 

3.35 

3 Atlassian Bamboo 0.88 

 

0.82 

 

0.82 

4 Atlassian Clover 3.58 

 

3.84 

 

3.58 

5 Lsstcorp Data Management 6.35 

 

6.64 

 

6.35 

6 Dura Space DuraCloud 

 

0.81 

 

0.81 0.81 

7 Atlassian JIRA Software 

 

1.91 

 

1.58 1.58 

8 Apache Mesos 1.21 

 

1.21 

 

1.21 

9 Moodle Moodle 

 

6.11 

 

6.48 6.11 

10 Mulesoft Mule 2.62 2.54 2.54 

11 Mulesoft Mule Studio 4.46 4.46 4.46 
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12 Spring Spring XD 1.77 1.77 1.77 

13 Talendforge Talend Data Quality 2.81 2.81 2.81 

14 Talendforge Talend ESB 1.04 1.04 1.04 

15 Appcelerator Titanium SDK/CLI 2.64 2.64 2.64 

16 Apache Usergrid 1.91 1.91 1.91 

MedAE = 2.22 

 

4.8   Comparative Analysis of Various Methods  

To demonstrate our performance superiority, we compare the GPT2-CNN Model with 5 approaches. 

It contains comparison of different models. The top results are bold. This analysis includes regression 

evaluation techniques. See table 4.6  

Table 4.6 Comparison between all models and state-of-the-art model 

S.No Repository 
Project 

Name 

D
ee

p
-S

E
 

G
P

T
2

-

C
N

N
(A

d
a

m
) 

G
P

T
2

-

C
N

N
 

G
P

T
2

- 

L
S

T
M

 

G
P

T
2

-

L
S

T
M

_
C

N
N

 

R
o
b

er
ta

-

R
o
b

er
ta

 
1 

Appcelerato

r 

Appcelerato

r Studio 
5 1.39 1.41 1.30 1.30 1.75 

2 
Appcelerato

r 

Aptana 

Studio 
8 3.53 3.55 3.61 3.61 3.35 

3 Atlassian Bamboo 2 0.76 0.76 0.75 0.75 0.82 

4 Atlassian Clover 2 3.62 3.71 3.52 3.61 3.58 

5 Lsstcorp 

Data 

Managemen

t 

4 5.97 5.98 6.07 6.33 6.35 

6 Dura Space DuraCloud 1 0.77 0.76 0.70 0.75 0.81 

7 Atlassian 
JIRA 

Software 
3 1.77 1.94 2.18 2.09 1.58 
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8 Apache Mesos 3 1.10 1.14 1.27 1.23 1.21 

9 Moodle Moodle 8 5.38 5.41 6.48 6.48 6.11 

10 Mulesoft Mule 5 2.48 2.54 2.46 2.46 2.54 

11 Mulesoft Mule Studio 5 3.78 3.77 3.58 3.57 4.46 

12 Spring Spring XD 3 1.68 1.68 1.73 1.71 1.77 

13 Talendforge 
Talend Data 

Quality 
5 3.36 3.36 3.29 3.29 2.81 

14 Talendforge Talend ESB 2 0.82 0.84 0.84 0.78 1.04 

15 
Appcelerato

r 

Titanium 

SDK/CLI 
5 2.16 2.15 2.14 2.03 2.64 

16 Apache Usergrid 3 1.11 1.15 1.16 1.16 1.91 

MedAE 2.33 1.96 2.04 2.16 2.06 2.22 

4.9 Summary 
 

The experimentation carried out lead our research to show good results as compared to other 

approaches especially DEEP-SE. The median mean absolute error MedAE of DEEP-SE is 2.33 and 

our gpt2-CNN model achieves MedAE of 1.96 which shows that our model outperforms the previous 

model.  Our research comprises of executing different machine learning model, and then learning the 

best model which has given good results as solution to problem of story point estimation. The 

experimentation involved the use of building five(5) models and comparing their performance on the 

story point dataset.  
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Chapter 5 

Conclusion and Future Work 

5.1    Conclusion 

This chapter, briefly summarizes the efforts, limitations, and recommendations for future studies. After 

explaining the conceptual approach, conducting experiments, and reviewing the findings the final 

observations and expositions are discussed. The goal of the project is to create a hybrid model that 

performs better than cutting-edge approaches. In previous studies deep learning models are utilized for 

estimation of agile projects using story point but no other study found with a novel hybrid model 

comprising of GPT2 – CNN; the transformer is used to perform word embeddings and neural network 

is used for the classification and predictions of story points. In this paper, we introduce GPT2-CNN, a 

unique and portable deep learning model for improving story points predictions. The suggested 

techniques provide quick inference with less memory consumption. To assess GPT2-CNN settings, 

we undertook numerous tests. The proposed GPT2-CNN is shown to be efficient and effective when 

compared to previous state-of-the-art work through quantitative and qualitative results. 

5.2    Limitations  

By learning many samples, the methodology based on deep neural algorithms can lessen the effect of 

the complicated story point estimation in agile story point estimation. However, the dataset is crucial, 

as the existing dataset's coverage is still constrained. Deep learning-based techniques, put more 

emphasis on improving full integration of the story point estimation model. Therefore, maximizing the 

features which can bear good generalization performance. Estimation of story point only relies on the 

user stories data is not sufficient therefore, gathering the data which has more meaningful relationship 

will help the model to generalize more. The deep learning models have a mechanism that is not 

interpretable by humans easily so defining a good metric is also limitation to this study. 

5.3    Future Work 

The deep learning and machine models can be trained using perception-related loss function and 

introduce factors that are consistent with human interpretation, which will make the network more 

effective across wider range of scenarios. The interpretability of model results is truly dependent on 

the observer who will generalize the estimations. If the results are not interpreted well then project will 

get affected.  This area of explainable AI must be addressed for further research. Explaining how model 
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generalize its behavior in terms of calculations and refinement of hidden states will allow humans to 

fully visualize the output. 

Furthermore, in light of the challenge of effectively handling the reduction of intricate data 

complexities while simultaneously prioritizing computing efficiency, researchers may enhance the use 

of the data employed for modeling purposes. Simultaneously, the use of gradual reinforcement learning 

approaches is becoming recognized as a feasible approach. This strategy framework focuses on 

enhancing real-time operational efficiency, hence driving progress in research related to the technical 

field of story point estimation. Domain experts can come forward to help researchers with the 

exploration of user requirement gathering and enable researchers to find ways to better estimations. 

Since the data collected is not refined and employing any powerful model will not yield any better 

results until data is large and robust. 
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