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Abstract

A very important and useful parameter in graph theory is the metric dimension

of a graph that has many applications in image processing, pattern recognition,

networking, chemistry, mastermind games, robot navigation and combinatorial op-

timization, to name a few. In this thesis, we study certain graph classes with respect

to their metric dimension.

The purpose of this research is two fold. First, we want to know that how the value

of the metric dimension is affected by making a change in the graph? Secondly, we

want to construct certain extension of graphs such that the metric dimension of the

resulting graph is not changed or there is a minimum change in the metric dimension

of resulting graphs. This construction is useful to expand the existing network with

minimum cost.

We investigate the metric dimension of s-crown graph. It can be seen that an s-

crown graph denoted by Crs constitutes a family of graph with constant metric

dimension and β(Crs) = 2. We determine the upper bounds for the metric di-

mensions of certain extensions of antiprism and Möbius ladder, denoted by A(n, 2)

and M ′
n respectively. The upper bounds are also found for the metric dimension of

barycentric subdivision and corona product of Möbius ladder with complete graph

K1. We find that all the classes of graph we have studied, have bounded metric

dimensions.
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Introduction

The concept of resolving set for graphs was first introduced by Slater in [31] with

different terminology. He referred the resolving set as locating set, minimum resolv-

ing set as reference set and cardinality of reference set as location number. Harary

and Melter [14] introduced this concept independently and used the term metric

dimension instead of location number. It has wide applications in different areas

of research. Its application in chemistry were discussed in [8]. These concepts are

also used in image processing and in pattern recognition problems. The problem of

finding metric dimension in graphs is NP -complete [12].

This thesis is devoted to the study of some classes of graphs with respect to the

nature of their metric dimension. It consists of five chapters. The first chapter is

devoted to some basic concepts and introduction to the terminologies which will be

used in subsequent chapters. Some common classes of graph and basic operations

on graphs are also introduced in this chapter.

Distance is the basic concept in understanding the resolvability in graphs. The

second chapter deals with the study about distances in graphs and its different in-

variants. Some useful and known results are also presented in this chapter.

The third chapter includes the concept and a brief history of resolvability in graphs

and metric dimension. Some known results on metric dimension are also included

in this chapter. Further, few famous classes of graphs are discussed under the pa-

rameter of metric dimension.

The fourth chapter contains the main results of this thesis. We investigate the

metric dimension of s-crown graph. We also determine the upper bounds for the

metric dimensions of certain extensions of antiprism and Möbius ladder, denoted

by A(n, 2) and M ′
n respectively. The upper bounds are also found for the metric

dimension of barycentric subdivision of antiprism and corona product of Möbius

ladder with complete graph K1. We shall find that all the classes of graph that are

discussed in this chapter have bounded metric dimension. The fifth chapter is the



conclusion and contains some open problems that are arising from the text for the

future research in this direction.



Contents

1 Preliminaries and basic concepts 1

1.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Some common graph classes . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Graph operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Connectivity in graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Planarity in graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Distance in Graphs 18

2.1 Distance and its related parameter . . . . . . . . . . . . . . . . . . . 18

2.2 Center and periphery of a graph . . . . . . . . . . . . . . . . . . . . . 20

2.3 Boundary vertex and interior vertex of a graph . . . . . . . . . . . . . 24

3 Resolvability in graphs and some known results 27

3.1 Resovability in graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Some known results on metric dimension . . . . . . . . . . . . . . . . 29

4 Metric dimension of certain extensions of regular graphs 34

4.1 Metric dimension of s-crown Crs . . . . . . . . . . . . . . . . . . . . 35

4.2 Metric dimension of certain extension of antiprism . . . . . . . . . . . 37

4.3 Metric dimension of barycentric subdivision of antiprism . . . . . . . 40

4.4 Metric dimension of corona product of Möbius ladder and complete
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Chapter 1

Preliminaries and basic concepts

In this chapter, we discuss the basic graph theoretic terminologies with examples

and very basic results on graphs which are needed for the subsequent chapters. It

also consists of some common classes of graphs and operation on graphs. We refer

to Chartrand [10] for graph theoretic terminologies used in this chapter.

In mathematics, graph theory is the study of graphs, which are mathematical struc-

tures, used to model pair-wise relations between objects. Graphs can be used to

model many types of relations and processes in physical, biological, social and in-

formation systems. In computer science, graphs are used to represent networks of

communication, data organization, computational devices and the flow of compu-

tation etc. Graph theory is also used to study molecules in chemistry and physics.

Since it has a very close connection with other sciences, therefore it is categorized in

different branches. Chemical graph theory, topological graph theory, spectral graph

theory to name a few that are to be discussed in this section.

• Chemical graph theory is the topology branch of mathematical chemistry which

applies graph theory to mathematical modeling of chemical phenomena.

• Spectral graph theory is the study and exploration of graphs through the char-

acteristic polynomials, eigenvalues and eigenvectors of matrices associated with

the graph, such as its adjacency matrix or Laplacian matrix.
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• Topological graph theory is the study of embedding of graphs in surfaces,

graphs as topological spaces and the methods of embedding graphs into topo-

logical spaces so that certain graph-theoretic properties are maintained.

• Metric graph theory is a branch of graph theory in which we study the prop-

erties of graphs with respect to the distance related parameters.

• Algebraic graph theory is the application of abstract algebra (sometimes as-

sociated with matrix groups) to graph theory. Matrices and other algebraic

properties can be used to prove many interesting results about graphs.

• Extremal graph theory studies extremal (maximal or minimal) graphs which

satisfy a certain property. Extremality can be taken with respect to different

graph invariants, such as order, size or girth to name a few. It also studies

how global properties of a graph influence local substructures of the graph.

1.1 Basic Concepts

A graph G is a triple consisting of a vertex set V (G), an edge set E(G), and a

relation that associates with each edge two vertices (not necessarily distinct) called

its endpoints. The number of vertices in a graph is called order of G, denoted by n,

and the number of edges in a graph is called size of G, denoted by m. If a vertex

set and edge set of a graph are finite then the graph is called finite graph, otherwise

infinite graph.

An edge whose endpoints are same is called a loop while the edges having the same

pair of endpoints are called multiple or parallel edges. A graph consists of exactly

one vertex is called a trivial graph. A graph having no loops and multiple edges is

called a simple graph. Two vertices u and v are said to be adjacent or neighbors if

there is an edge between u and v, written as uv ∈ E(G) and set of all neighbours of

a vertex v is called neighbourhood of v in G. In Fig. 1.1, we can see that the neigh-

bourhood of v5 is: Nv5 = {v2, v4, v6}. Similarly, two edges are said to be adjacent if

they have a common endpoint. If there is an edge e between two vertices u and v

then we say that e is incident to its endpoints u and v.
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The number of edges incident to a vertex v is known as degree of v, except that

each loop at v counts twice. The degree of a vertex is denoted by d(v). The sum

of degrees of every vertex of a graph is called the total degree of a graph. A ver-

tex having 0 degree is called an isolated vertex and a vertex of degree 1 is called a

pendant vertex or a leaf. The minimum degree among the vertices of a graph G is

called minimum degree of G, denoted by δ(G), and the maximum degree among the

vertices of G is called maximum degree of G, denoted by ∆(G). Mathematically, we

have

δ(G) = min{d(v) : v ∈ V (G)}

∆(G) = max{d(v) : v ∈ V (G)}

We illustrate the above concepts by an example. Consider the graph in Fig. 1.1.

v1

v3

v4

v5

v6

v2

e6

e5

e4

e3

e2

e1

e7

Figure 1.1: A graph G

Here G is a multiple graph of order 6 and size 7. In this graph, v1 is an isolated

vertex, e7 is a loop while e3 and e4 are multiple edges. The maximum and minimum

degree of G are 4 and 0 respectively.

A graph G is regular if every vertex of G has same degree. In other words, G

is regular if and only if ∆(G) = δ(G). A graph is called k-regular if the degree of

its each vertex is k. A 3-regular graph is called a cubic graph. A 2-regular and a

3-regular graphs are shown in Fig.1.2.

One of the useful result in counting problems is the “First Theorem of Graph
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G: H:

Figure 1.2: A 2-regular and a 3-regular graph

Theory” or the “Handshaking Lemma”. This theorem shows the relation between

the size of a graph and the total degree of a graph.

Theorem 1.1.1. [10] Let G be a graph of size m, then∑
v∈V (G)

d(v) = 2m

The following results are immediate consequences of Theorem 1.1.1.

Corollary 1.1.2. [10] Every graph contains an even number of vertices of odd de-

gree.

Corollary 1.1.3. [11] Let G be a k-regular graph with n vertices, then G has nk
2

edges.

A walk W in G is a sequence of vertices in G such that consecutive vertices in

the sequence are adjacent. A u − v walk is a walk that starts from a vertex u and

ends at a vertex v. We can express W as W : u = v0, v1, ..., vk = v, where k ≥ 0.

A walk with no repeated edge is called a trail. A u− v walk or trail is open if u 6= v

and it is closed if u = v. A u−v walk with no repeated vertex is called a u−v path.

On the other hand, a simple graph G whose vertices can be listed in a sequence such

that two vertices are consecutive in a list if and only if they are adjacent in G and

no vertex repeats itself in the sequence, such a graph is called path. A path consists

of n vertices is denoted by Pn and it has n − 1 edges. The length of walk, trail or
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P1

P5P4

P3P2

Figure 1.3: Paths Pi (1 ≤ i ≤ 5)

path is the number of edges in it.

A circuit is a closed trail of length three or more. Hence no edge is repeated in

a circuit but vertices can be repeated. A cycle is a circuit with no repeated vertex,

except for the first and last. We can also say that cycle is a closed path. The length

of cycle is the number of edges in it. A cycle of odd length is called odd cycle while

a cycle of even length is called even cycle. A graph with no cycle is called acyclic

graph while a connected graph having exactly one cycle is unicyclic graph.

C5C3 C4

Figure 1.4: Cycles C3, C4 and C5

Let G and H be two graphs such that V (H) ⊆ V (G) and E(H) ⊆ E(G), then H

is a subgraph of G written as H ⊆ G. If V (H) ⊂ V (G) or E(H) ⊂ E(G), then H

is proper subgraph of G. A subgraph H is a spanning subgraph of G if H has same

vertex set as G. A subgraph H is induced subgraph of G if for any u, v ∈ V (H) and

uv ∈ E(G), there exist uv ∈ E(H). A list of subgraphs of a graph G such that each

edge of G appears in exactly one subgraph in the list is called decomposition of a

graph G.
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G:

g

f

e

b

d

c

a

g

e

b

d

c

g

f

e

b

d

c

Induced subgraph of G:Spanning subgraph of G:

a a

Figure 1.5: Subgraphs of a graph G

A graph G is connected if for every pair of distinct vertices, say u and v, G contains a

u−v path otherwise G is disconnected. Let G be a connected graph and u, v ∈ V (G),

the distance from u to v is the length of shortest path from u to v, written as d(u, v).

The diameter of G that is denoted by diam(G) is max
u,v∈V (G)

d(u, v).

Two graphs G1 and G2 are said to be isomorphic, denoted by G1
∼= G2, if there

exists a bijection f between their vertex sets such that two vertices are adjacent in

G1 if and only if their images under f are adjacent in G2. In other words, G1
∼= G2

if there exists a bijection f : V (G1)→ V (G2) such that an edge xy ∈ E(G1) if and

only if f(x)f(y) ∈ E(G2).

The order and size of two isomorphic graphs are always same.

Theorem 1.1.4. [10] If two graph G1 and G2 are isomorphic, then the degrees of

the vertices of G1 are the same as the degrees of the vertices of G2.

Let G be a simple graph, the complement G of G is a simple graph with vertex

set V (G) such that uv ∈ E(G) if and only if uv /∈ E(G). In other words, a graph

H is said to be a complement of G if H has same vertex set as G and two distinct

vertices of H are adjacent if and only if they are not adjacent in G. If a graph G and

its complement G are isomorphic to each other, then G is self-complementary. A
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set of pairwise adjacent vertices is called a clique in a graph while a set of pairwise

nonadjacent vertices is called an independent set or stable set.

Theorem 1.1.5. [11] If a graph G is disconnected, then its complement G is con-

nected.

If two graphs are isomorphic under a function f , then their complements are also

isomorphic.

Theorem 1.1.6. [10] Two graph G1 and G2 are isomorphic if and only if their

complements G1 and G2 are isomorphic.

1.2 Some common graph classes

A complete graph with n vertices denoted by Kn is a simple graph in which each

pair of distinct vertices is adjacent. The size of Kn is

(
n

2

)
. Every complete graph

with n vertices is (n− 1)-regular.

K5K3 K4K2K1

Figure 1.6: Complete graphs Ki (1 ≤ i ≤ 5)

A graph with no edge is said to be an empty graph. The complement of Kn denoted

by Kn is an empty graph with n vertices.

A simple graph whose vertex set V (G) can be partitioned into two sets X and Y,

called partite sets, such that every edge of G has one endpoint in X and other

endpoint in Y, is called a bipartite graph.

The next theorem gives a useful characterization of bipartite graph.

Theorem 1.2.1. [11] A graph G is bipartite if and only if G has no odd cycle.
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v5

v4

v2

v3

v1

v8

v5

v7

v6
v1 v3 v6 v8

v2 v4 v7

G:
G:

Figure 1.7: A graph G and its bipartition

A bipartite graph with partite set X and Y is called complete bipartite if every

vertex of X is adjacent to every vertex of Y. Sometimes it is also referred as biclique

and is denoted by Kr, s, where r and s are the cardinalities of X and Y. If either r

or s is 1, then it is referred as a star.

K4,4K1,3

Figure 1.8: Complete bipartite graphs

An acyclic graph is called a forest. An acyclic connected graph is called a tree.

A caterpillar is a tree in which the removal of its pendant vertices produces a path

called the spine of the caterpillar. In Fig. 1.9, T1 andT3 are caterpillars. It can be

seen that every path and star is a caterpillar.

In the sequel, we describe the important properties of trees.

Theorem 1.2.2. [10] A graph G is a tree if and only if there is a unique path

between every two vertices of G.

Since trees are acyclic, therefore trees have at least one pendant vertex. The

next two theorems use the acyclic property of a tree.

8



T1:
T2:

T3:

Figure 1.9: Trees

Theorem 1.2.3. [11] Every tree is bipartite.

Theorem 1.2.4. [10] Every non trivial tree has at least two pendant vertices.

We have observed that number of edges in a tree is one less than the number of

its vertices. We can see in Fig. 1.9, T1 has 8 vertices and 7 edges, T2 has 15 vertices

and 14 edges and T3 has 16 vertices and 15 edges.

Theorem 1.2.5. [10] Every tree with n vertices has n− 1 edges.

1.3 Graph operations

A new graph can be produced by performing different operations on graphs. Graph

operations are widely classified into unary and binary operations. Unary operation

produces a new graph from one graph. For example, addition or deletion of a vertex

or an edge in the existing graph creates a new graph. On the other hand, binary

operations produce a new graph from two initial graphs. Some commonly used

9



graph operations will be discussed in this section.

One of the basic operation in graph theory is edge contraction. A contraction of

edge e with endpoints u and v is a replacement of vertices u and v with a single

u v w
eG: G|e:

u ve
G-e:

Figure 1.10: Subgraphs produced by contraction and deletion of edge e in G

vertex w. All the edges that were incident to u and v are now incident to w except

the edge e. The resulting graph, denoted by G|e, has one less edge than the original

graph. The deletion of an edge e in a graph G produces a subgraph G − e which

consists of all the vertices and edges of G except the edge e. The contraction and

deletion of edge e in G are shown in Fig. 1.10. Similarly, the deletion of a vertex v

in a graph G produces a subgraph G− v which consists of all the vertices and edges

of G except the vertex v and the edges that are incident to v.

For a graph G, the k-th power Gk of G is a graph that has vertex set V (G) and

every two vertices that are at a distance k in G are adjacent in Gk. We can define

a square of a graph G, denoted by G2, is a graph with vertex set V (G) and every

two vertices that are at a distance 2 in G are adjacent in G2. For a graph G with

diameter k, Gk is a complete graph. In Fig.1.11, we can see that a graph H has

diameter 2 and its square H2 is a complete graph K7.

The disjoint union of two graphs G and H, denoted by G ∪H is a graph obtained

by taking the union of graphs G and H with disjoint vertex sets V (G) and V (H).

The union of two graphs is always a disconnected graph. While join of two graphs

G and H denoted by G+H consists of G∪H and all the edges joining every vertex

of G to every vertex of H. The join of two graph is shown in Fig. 1.12.
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G: G
2
:
 

H:
H

2
: 

Figure 1.11: Square of graphs

G H G+H

Figure 1.12: Join of two graphs G+H

For a graph G, the line graph of G, written L(G) is a graph in which the edges of G

represents its vertices and two vertices in L(G) are adjacent if there corresponding

edges have a common endpoint in G.

G:

H:

L(G):

L(H):

Figure 1.13: Graphs and their corresponding line graphs
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The Cartesian product of two graphs G and H is a graph,written G�H whose vertex

set is the cartesian product V (G)×V (H), and two vertices (u, u′) and (v, v′) in G�H

P5

K2

K2 P5

Figure 1.14: Cartesian product of K2 and a path

are adjacent if either u = v and u′ is adjacent to v′ in H or u′ = v′ and u is adjacent

to v in G. The cartesian product obeys commutative and associative law.

The Cartesian product of K2 and a path is a ladder graph. The Cartesian product

of two paths is called a grid graph.

P6

P4

P4

P6

Figure 1.15: Cartesian product of two paths P4�P6

The corona product of two graphs G and H is a graph,written G�H which is the

disjoint union of one copy of G and |V (G)| copies of H(|V (G)| is the order of G)

such that each vertex of the copy of G is adjacent to all vertices of a separate copy

of H. It is neither commutative nor associative.

12



G: H:

G H GH

Figure 1.16: Corona product of graphs

The operation of subdivision is used to generate a simple graph from any graph.

The barycentric subdivision of a graph is a subdivision in which a new vertex of

degree two is added to the interior of each edge.

Figure 1.17: Barycentric subdivision of a graph

Following are the properties of barycentric subdivision of a graph.

• The barycentric subdivision is used to transform a multigraph into a simple

graph.

• The barycentric subdivision of any graph is a bipartite graph.

• The barycentric subdivision of any graph yields a loopless graph.

• The barycentric subdivision of any loopless graph yields a simple graph.

13



1.4 Connectivity in graphs

In a connected graph G, a vertex v is said to be cut-vertex of G if G− v is discon-

nected. Consider a graph in Fig.1.18, the vertices b, c and f are the cut-vertices of

G:

f

eb
d

c

a

G-c:

f

e

b

d
a

Figure 1.18: The graph G and G− c

G but there is no cut vertex in G − c. Similarly, an edge e is said to be cut-edge

or bridge in G if G − e is disconnected. A connected graph having bridge contains

cut-vertices as well. The following facts about cut-vertices were established in the

following theorem.

Theorem 1.4.1. [10] Let G be a connected graph and a bridge is incident to a vertex

v. Then v is a cut-vertex of G if and only if deg(v) ≥ 2.

The following is an immediate consequence of Theorem 1.4.1.

Corollary 1.4.2. [10] Let T be a nontrivial tree and v is not the pendant vertex in

T , then v is a cut-vertex of T .

Another consequence of Theorem 1.4.1 is stated below.

Corollary 1.4.3. [10] Let a graph G of order three or more is connected and G

contains a bridge, then G contains a cut-vertex.

A nontrivial connected graph is said to be non-separable if it contains no cut-

vertices. For example, K2 is a non-separable graph.

Let we have a set U of vertices of a graph G such that G− U is disconnected, then

U is called a vertex-cut in a graph G. A vertex-cut of minimum cardinality in a

graph is called minimum vertex-cut.
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The vertex-connectivity or connectivity of a graph G, denoted by κ(G) is the mini-

mum cardinality among all the subsets U of the vertex set of G such that G− U is

either disconnected or trivial. For an n-vertex graph G,

0 ≤ κ(G) ≤ n− 1.

A set E of edges of a graph G such that G − E is disconnected, then E is called

an edge-cut in a graph G. An edge-cut of minimum cardinality in a graph is called

minimum edge-cut. An edge-cut E of a connected graph G is minimal if no proper

subset of E is an edge-cut of G. If G is a connected graph and E is a minimal

edge-cut of G, then G−E contains exactly two components H1 and H2. This means

that E contains all those edges of G joining H1 and H2.

The edge-connectivity of a graph G, denoted by λ(G) is the minimum cardinality

among all the subsets E of the edge set of G such that G−E is either disconnected

or trivial. For an n-vertex graph G,

0 ≤ λ(G) ≤ n− 1.

The relationship between connectivity, edge-connectivity and minimum degree of a

graph is given in the following theorem.

Theorem 1.4.4. [10] Let G be a graph, then we have

κ(G) ≤ λ(G) ≤ δ(G).

A property of a cubic graph in term of connectivity is stated in the next theorem.

Theorem 1.4.5. [10] Let G be a cubic graph, then we have κ(G) = λ(G).

1.5 Planarity in graphs

Let G be a graph such that G can be drawn in a plane without crossing any pair of

its edges, then G is called a planar graph. If a graph is not planar, then it is called

a non-planar graph. A graph that is drawn in the plane in which no two edges of

a graph cross each other is called a plane graph. A complete graph K4 is a planar

15



K4:

b

d c

a

a

b

c
d

Figure 1.19: K4 and its planar drawing

K3, 3 :
K5 :

Figure 1.20: Non-planar graphs K5 and K3,3

graph. K4 and its plane graph are shown in Fig. 1.19.

Path, cycle, star and tree are some well-known classes that are planar but there

are some common classes of graphs that are nonplanar that are discussed in the

following theorems.

Theorem 1.5.1. [10] The complete graph K5 is nonplanar.

Theorem 1.5.2. [10] The complete bipartite graph K3,3 is nonplanar.

A plane graph divides the plane into connected pieces called regions. In Fig.

1.21, a plane graph H divides the plane into four regions R1, R2, R3 and R4. The

region which is unbounded in a plane graph is called the exterior region. R4 is the

exterior region in Fig. 1.21. In a plane graph, a subgraph induced by the edges and

vertices that are incident to a region R is called the boundary of R. Leonhard Euler

presented a very useful result, known as Euler Identity, and it is stated as:

Theorem 1.5.3. [10](The Euler Identity) Let G be a connected plane graph having

order n, size m and region r, then

16



R3

R1

R2
R4

R1

R2 R3

G:

Figure 1.21: A plane graph and its regions

n−m+ r = 2.

The Euler Identity has many interesting consequences which are to be discussed

in the following theorems.

Theorem 1.5.4. [10] Let G be a planar graph having order n ≥ 3 and size m, then

m ≤ 3n− 6.

The following theorem characterizes the planar graphs in terms of its forbidden

subgraphs.

Theorem 1.5.5. [10] A graph is planar if and only if it does not contain K5 or K3,3

as a subgraph.
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Chapter 2

Distance in Graphs

In this chapter, we discuss the distance in graphs, its variants with examples and

their illustration through different graphs-theoretic parameters. Some important

properties of graphs related to different distance related parameters are also pre-

sented in this chapter. All the graphs studies in this thesis are simple, finite and

connected.

2.1 Distance and its related parameter

Distance and its related parameters such as radius, eccentricity and diameter etc.

are most commonly used invariants of a graph. Let G be a connected graph and

u, v ∈ V (G), the distance from u to v is the length of shortest path from u to v,

written as d(u, v). The distance d(u, v) is also called a u− v geodesic.

w

u

v

Figure 2.1: Distance between vertices in a graph
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In Fig. 2.1, the distance between u and v denoted by d(u, v) is 4 which is shown in

dotted line and the distance between the vertices u and w is 2.

The distance function d satisfies the properties of a metric over a vertex set V (G)

and satisfies the following axioms:

For any u, v, w ∈ V (G) of a connected graph G,

• d(u, v) ≥ 0 for all u, v ∈ V (G).

• d(u, v) = 0 if and only if u = v.

• d(u, v) = d(v, u) for all u, v ∈ V (G).

• d(u,w) ≤ d(u, v) + d(v, w) for all u, v, w ∈ V (G).

Thus (V (G), d) is a metric space.

The distance from v to a vertex u which is farthest from v in G is called the eccen-

tricity of v written e(v), that is,

e(v) = max{d(u, v) : u ∈ V (G)}.

The maximum eccentricity among the vertices of G is the diameter of G and the

minimum eccentricity is its radius, written diam(G) and rad(G), respectively. Math-

ematically,

diam(G) = max{e(v) : v ∈ V (G)},
rad(G) = min{e(v) : v ∈ V (G)}.

The graph shown in Fig. 2.2 has diameter 6 and its radius is 3.

In graphs theory, we can not write diameter in terms of radius and vice versa in

general. But somehow we can relate the radius and diameter which is stated in the

following theorem.

Theorem 2.1.1. [10] Let G be a nontrivial connected graph, then we have

rad(G) ≤ diam(G) ≤ 2rad(G).
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6 6

55

44

5 5

4

3

Figure 2.2: The eccentricities of the vertices of a graph

From the Fig. 2.2, we can also observe that the eccentricities of adjacent vertices

differ by at most 1. This fact is elaborated in the following theorem and it is true

for every connected graph G.

Theorem 2.1.2. [10] Let G be a connected graph and uv ∈ G, then we have

|e(u)− e(v)| ≤ 1.

The following result is an immediate consequence of Theorem 2.1.2.

Theorem 2.1.3. [10] Let G be a connected graph and the vertices u and v are

adjacent in G, then for every vertex w of G

|d(u,w)− d(v, w)| ≤ 1.

2.2 Center and periphery of a graph

In this section, we discuss the center and periphery of a graph and some known

results about them.

For a vertex v in G, if e(v) = rad(G), then v is called central vertex of G. While

the subgraph induced by the central vertices of G is referred as center of G denoted

by Cen(G). A graph G whose every vertex is a central vertex is called self-centered

and we have Cen(G) ∼= G.

For n ≥ 3, if G ∼= Cn, then G is called self-centered [10].
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5 5

54

43

4 5

3

3

G: Cen(G):

Figure 2.3: A graph and its center

Figure 2.4: Self-centered graphs C3, C4 andC5

Stephen Hedetniemi[10] gave a result regarding the center of a graph which is stated

in the following theorem.

Theorem 2.2.1. [10] Every graph is the center of some graph.

A vertex v in a connected graph G whose eccentricity is equal to the diameter

of G is referred as peripheral vertex. A subgraph induced by the peripheral vertices

of G is called periphery of G, written as Per(G).

5 5

54

43

4 5

3

3

G: Per(G):

Figure 2.5: A graph and its periphery
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The next theorem gives the characterization of periphery graphs.

Theorem 2.2.2. [10] A nontrivial graph G is the periphery of some graph if and

only if every vertex of G has eccentricity 1 or no vertex of G has eccentricity 1.

According to Theorem 2.2.2, we can give the following remark.

Remark 2.2.1. [10] A star of order 3 or more is not the periphery of any graph.

Let u, v be two vertices in a connected graph G such that d(u, v) = e(v), then u

is called the eccentric vertex of v. Further, if a vertex w in a graph G is an eccentric

vertex of some vertex of G, then w is an eccentric vertex of a graph G.

u

w

4

4

3

4

3 3
G:

44

4 4

v x

Figure 2.6: An eccentric vertex in a graph

Consider a graph in Fig. 2.6 in which all the vertices of G are labelled with their

eccentricities. Here e(u) = 3 and we can see that d(u, v) = 3 and also d(u,w) = 3,

it follows that v and w are the eccentric vertices of u in G. Further, we can observe

that e(x) = 4 = diam(G), so x is the peripheral vertex in G. Since e(w) = 4 and

d(w, x) = 4, it follows that x is an eccentric vertex of w. From this observation, we

establish a result in the following remark.

Remark 2.2.2. [10] Every peripheral vertex of a graph is an eccentric vertex.

Let G be a connected graph, if every vertex of G is an eccentric vertex then G

is referred as an eccentric graph. An eccentric graph is shown in Fig. 2.7.

A subgraph of a graph G induced by the set of eccentric vertices of G is called the

eccentric subgraph of G, denoted by Ecc(G). A graph with its eccentric subgraph is
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4

3

2

3

3

G:
4

3

2

2

2

Figure 2.7: An eccentric graph

shown in Fig. 2.8. If every vertex of G is an eccentric vertex, then Ecc(G) ∼= G. For

example, in Fig. 2.7, Ecc(G) ∼= G. Is every graph an eccentric subgraph of some

3 3

3

G: 3 2
2

3
g

f

e

b
d

c

a

g

f

d

c

a
Ecc(G):

Figure 2.8: A graph and its eccentric subgraph

graph? The answer of this question is given in the following theorem.

Theorem 2.2.3. [10] A nontrivial graph G is the eccentric subgraph of some graph

if and only if every vertex of G has eccentricity 1 or no vertex of G has eccentricity

1.

The concept of status was introduced by Harary[30]. Let G be a connected

graph, the sum of the distances from vertex v to every other vertex of G is called

the status of a vertex v, denoted by s(v).

The minimum status of a graph G is the value of the minimum status among the

vertices of G, denoted by ms(G) and the total status, denoted by ts(G) of a graph

G is the sum of all the status values. The set of vertices having minimum status in

G is called median, denoted by M(G).
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G:

y

wv

x

u

6

5

6

6

5

Figure 2.9: A graph whose vertices are labelled with their respective status

Consider the graph G shown in Fig. 2.9, the vertices of G are labelled with their

respective status. The minimum status of G is 5 while the total status of G is 28.

The set M(G) = {u,w} is the median of G.

2.3 Boundary vertex and interior vertex of a graph

Let G be a connected graph and u, v ∈ G. A vertex v is a boundary vertex of a

vertex u if d(u,w) ≤ d(u, v) for each neighbour w of v. If a vertex v in a graph G is

a boundary vertex of some vertex of G, then v is a boundary vertex of G.

G:

g

f

e

b

d

c

a

Figure 2.10: A graph G

In Fig. 2.10, the neighbours of vertex f are b, c and e. We calculate the distance

from a to f and to its neighbours that are d(a, f) = 2, d(a, b) = 1, d(a, c) = 2 and

d(a, e) = 2. Since the distances from a to all neighbours of f are less or equal to 2,
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so f is a boundary of a vertex a.

Some useful properties of boundary vertices are given in the following theorems.

Theorem 2.3.1. [10] Let v be a cut-vertex in a connected graph G, then v is not a

boundary vertex of G.

Theorem 2.3.2. [10] Let v be a vertex in a nontrivial connected graph G. Every

vertex which is distinct from v is a boundary vertex of v if and only if e(v) = 1.

In a graph G, a vertex v is called complete vertex (extreme or simplicial vertex)

if a subgraph of G induced by the neighbours of v is complete. Every pendant vertex

in a graph is complete. In a graph G shown in Fig. 2.11, v is a complete vertex in

G since the neighbours of v induced a subgraph K3.

G:
v

Figure 2.11: A complete vertex v in G

The next theorem gives a characterization of a vertex v to be complete.

Theorem 2.3.3. [10] In a connected graph G, a vertex v is a boundary vertex of

every vertex distinct from v if and only if v is a complete vertex of G.

Let u, v, w be the distinct vertices in a graph G. A vertex w is said to lie between

u and v if d(u, v) = d(u,w) + d(w, v). A vertex v is an interior vertex of G if there

exist two distinct vertices x and y, other than v such that v lies between x and y. A

subgraph induced by the set of interior vertices of G is called interior of G, denoted

by Int(G).

An interior vertex of a graph G is not a boundary vertex of G and vice versa. This

observation is true for any connected graph and is stated in the following theorem.

25



G:

v

u

v

u

Int(G):

Figure 2.12: A graph and its interior graph

Theorem 2.3.4. [10] Let v be a vertex of a connected graph G, then v is an interior

vertex of G if and only if it is not a boundary vertex of G.
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Chapter 3

Resolvability in graphs and some

known results

This chapter includes the discussion about resolvability in graphs and its known

results.

Slater introduced the concept of resolving sets and metric dimension in [31] after

getting motivation from the problem of uniquely determining the position of an in-

truder in a network. This concept was further studied independently by Harary and

Melter in [14]. Slater represented the metric dimension of a graph as its location

number. He used this concept to the placement of a smallest number of loran or

sonar detecting devices in a network in order to uniquely determine the location of

each vertex in the network in terms of its distances to the devices in the set.

3.1 Resovability in graphs

Consider a connected graph G and a vertex v ∈ G. Let W = {w1, w2, ...., wk} be

an ordered subset of vertices of G, then the representation of v with respect to W

is the k-vector r(v|W ) = (d(v, w1), d(v, w2), ...., d(v, wk)). For any pair of vertices

u, v ∈ G, if r(u|W ) = r(v|W ) implies u = v, then W is called a resolving set or

locating set for G. In other words, W is called a resolving set for G if the represen-
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tation of any pair of vertices of G with respect to W is distinct.

G:

v3

v5
v7

v1

v2

v6
v4

Figure 3.1: A graph G

Consider the graph G shown in Fig. 3.1. If we choose W = {v1, v6}, then r(v2|W ) =

r(v7|W ) = (1, 1) and r(v3|W ) = r(v4|W ) = (2, 1). Thus W is not a resolving set

for the vertices of G. But if we choose W ′ = {v1, v3, v6}, then the representations of

vertices of G with respect to W ′ are

r(v1|W ′) = (0, 2, 1), r(v2|W ′) = (1, 1, 1), r(v3|W ′) = (2, 0, 1),

r(v4|W ′) = (2, 1, 1), r(v5|W ′) = (3, 2, 2), r(v6|W ′) = (1, 1, 0),

r(v7|W ′) = (1, 2, 1).

We can see that the representation of every vertex of G with respect to W ′ is dis-

tinct, thus W ′ is a resolving set for the vertices of G.

A resolving set of minimum cardinality for a graph G is called metric basis for G.

The cardinality of a metric basis is referred as metric dimension or location number

denoted by dim(G) or β(G).

Again consider the graph G in 3.1, if we choose W ′′ = {v5, v7}, then the representa-

tions of vertices of G with respect to W ′′ are

r(v1|W ′′) = (3, 1), r(v2|W ′′) = (3, 2), r(v3|W ′′) = (2, 2),

r(v4|W ′′) = (1, 2), r(v5|W ′′) = (0, 3), r(v6|W ′′) = (2, 1),

r(v7|W ′′) = (3, 0).

Since W ′′ is the minimum resolving set for the vertices of G, therefore W ′′ is the

metric basis for G and β(G) = 2.

Let G be a family of simple connected graphs and G = (Gn)n≥1 depending on n as

follows: the order |V (Gn)| = ϕ(n) and lim
n→∞

ϕ(n) =∞. We say that G has bounded
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metric dimension if there exists a constant C > 0 such that β(Gn) ≤ C for every

n ≥ 1; the metric dimension of G is unbounded otherwise. If all graphs in G have

the same metric dimension (which does not depend on n), G is called a family of

graph with constant metric dimension [21]. A graph is said to be k-dimensional if

its metric dimension is k [5].

3.2 Some known results on metric dimension

Let G be a connected graph of order two or more, we can think a resolving set of G

as a set W ⊆ V (G) so that each vertex in G is uniquely determined by its distances

to the vertices of W . For every ordered set W ⊆ V (G), the only vertex of G whose

representation with respect to W is 0 in its i− th coordinate is wi. So the vertices

of W necessarily have distinct representations, therefore we need to examine the

vertices of V (G) \W . This implies that the metric dimension of G is at most n− 1.

It follows that

1 ≤ β(G) ≤ n− 1.

One of the important and very useful property in finding metric dimension is given

in the following theorem.

Theorem 3.2.1. [16] Let G be a connected graph and W be a resolving set for G.

For any u, v ∈ V (G), if d(u,w) = d(v, w) for every vertex w ∈ V (G) \ {u, v}, then

{u, v} ∩W 6= ∅.

The following theorems give a complete characterization of graphs having metric

dimension 1, n− 1 and n− 2, respectively.

Theorem 3.2.2. [8] Let G be a connected graph of order n, β(G) = 1 if and only

if G ∼= Pn.

Theorem 3.2.3. [8] For a connected graph G of order two or more, β(G) = n− 1

if and only if G ∼= Kn.

Theorem 3.2.4. [8] Let G be a connected simple graph of order n ≥ 4, β(G) = n−2

if and only if G ∼= Kr,s, r, s ≥ 1, G ∼= Kr + Ks, r ≥ 1, s ≥ 2 or G ∼= Kr + (K1 ∪
Ks), r, s ≥ 1.
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The properties of simple connected graphs with metric dimension 2 are presented

in next two theorems.

Theorem 3.2.5. [26] Let G be a simple connected graph with metric dimension 2

and the metric basis in G be {v1, v2} ⊆ V (G), then the degrees of v1 and v2 are at

most 3 and there exists a unique path between v1 and v2.

Theorem 3.2.6. [26] Let G be a simple connected graph with metric dimension 2,

then G can not have the following:

• K5 as a subgraph.

• K5 − e as a subgraph, where e is an edge.

• K3,3 as a subgraph.

• The Petersen graph as a subgraph.

Moreover, we also know the diameter and maximum degree of G, thus bounds

for the metric dimension can be deduced.

Theorem 3.2.7. [10] Let G be a nontrivial connected graph of order two or more,

then

dlog3(∆ + 1)e ≤ β(G) ≤ n− diam(G).

Cycles with n(≥ 3) vertices constitute a family of graphs with metric dimension 2.

The prisms denoted by Dn are the trivalent plane graphs obtained by the Cartesian

product of the path P2 with a cycle Cn; they also constitute a family of 3-regular

graphs with constant metric dimension. The metric dimension for the Cartesian

product of path and cycle was determined in [6]. It was proved that [6]

β(Pm�Cn)=

{
2, if n is odd;

3, otherwise.

This implies that

β(Dn)=

{
2, if n is odd;

3, otherwise.
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The antiprism denoted by An (n ≥ 3) is a plane graph, consists of an outer n-cycle

y1, y2, ..., yn, an inner n-cycle x1, x2, ..., xn, and a set of n spokes xiyi and xi+1yi,

where n + i is taken modulo n. In [21], Javaid et al. proved antiprisms An consti-

tutes a family of regular graphs with constant metric dimension for every n ≥ 3.

This result is established in the following theorem.

Theorem 3.2.8. [21] Let An (n ≥ 3) be the antiprism, then

β(An) = 3

In [27], Ali et al. studied the extensions of antiprism. These extensions of

antiprism are denoted by Hn and Rn. The graph Hn can be produced from the

graph An by deleting the edges yiyi+1 from An. For each i = 1, 2, ..., n, we introduce

new vertices ci and di for yi and xi, respectively. For each i = 1, 2, ..., n, introduce

new edges xici, yidi, cidi and xici, where n+ i is taken modulo n.

Theorem 3.2.9. [27] Let Hn be a graph. For n ≥ 6, we have

β(Hn) = 3.

The graph Rn can be produced from the graph An by deleting the edges yiyi+1

from An. For each i = 1, 2, ..., n, we introduce new vertices ci and di for yi and xi

respectively. For each i = 1, 2, ..., n, introduce new edges xici, yidi, cidi, didi+1 and

xici, where n+ i is taken modulo n.

Theorem 3.2.10. [27] Let Rn be a graph. For n ≥ 6, we have

β(Rn) = 3.

Another antiprism related graph which is known as generalized antiprism was

studied by Naeem et al. [29]. A generalized antiprism Am
n can be obtained by the

generlized prism Cm�Pn by adding edges {vi,j+1vi+1,j : 1 ≤ i ≤ m − 1, 1 ≤ j ≤
n − 1} ∪ {vm,j+1v1,j : 1 ≤ j ≤ n − 1}. Let V (Am

n ) = V (Cm�Pn) and E(Am
n ) =

E(Cm�Pn) ∪ {vi,j+1vi+1,j : 1 ≤ i ≤ m − 1, 1 ≤ j ≤ n − 1} ∪ {vm,j+1v1,j : 1 ≤ j ≤
n− 1} be the edge set of Am

n , where i is taken modulo m. The metric dimension of

generalized antiprism is given in the following theorem.
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Theorem 3.2.11. [29] Let Am
n be the generalized antiprism with n ≥ 6, we have

β(Am
n )=

{
3, if 2 ≤ m ≤ 5;

≥ 4, if m ≥ 6.

The flower snark Jn is a cubic graph with 6n edges and its order is 4n. It can

be constructed in the following way:

• First, build n copies of the star K1,3. Denote the central vertex of each star by

bi and the outer vertices by ai, ci and di. This results in a disconnected graph

on 4n vertices with 3n edges (biai, bici and bidi for 1 ≤ i ≤ n).

• Construct the n-cycle (a1a2 . . . ana1). This adds n edges.

• Finally construct the 2n-cycle (c1c2 . . . cnd1d2 . . . dnc1). This adds 2n edges.

It was proved in [15] that the flower snarks constitute a family of cubic graphs with

constant metric dimension 3.

The quasi flower snark denoted by Gn is a nontrivial simple connected cubic graph,

where V (Gn) = {ai, bi, ci, di : 0 ≤ i ≤ n−1} and E(Gn) = {aiai+1, bibi+1, cici+1, aidi,

bidi, cidi : 0 ≤ i ≤ n − 1}, the indices are taken modulo n. The metric dimension

of some rotationally-symmetric graphs are given in [29], that are stated in the next

two theorem.

Theorem 3.2.12. [29] Suppose Gn be the quasi flower snark with n ≥ 4, then we

have

β(Gn)=

{
3, if n is odd;

≤ 4, otherwise.

Theorem 3.2.13. [29] Suppose C2
n�Pt denotes the Cartesian product of square cycle

and path. Then for every n ≥ 5,

β(C2
n�Pt)=

{
3, when n ≡ 0, 2, 3 (mod 4);

≤ 4, otherwise.
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The metric dimensions of a connected graph G and its Cartesian product with

K2 are related in the following way.

Theorem 3.2.14. [8] Suppose G be a nontrivial simple connected graph, then

β(G) ≤ β(G�K2) ≤ β(G) + 1.

The Möbius ladder Mn is a cubic circulant graph. It is obtained from even

cycle by adding edges connecting opposite pair of vertices in the cycle. Imran et al.

investigated the metric dimension of Möbius ladders in [1] and it has been shown

that β(Mn) = 3 except when n ≡ 2 (mod 8). The metric dimension of barycentric

subdivision of Möbius ladder SMn has been studied in [30] that is presented in this

theorem.

Theorem 3.2.15. [30] Let SMn be the barycentric subdivision of Möbius ladder,

then for every positive even integer n ≥ 8, we have

β(SMn) = 3
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Chapter 4

Metric dimension of certain

extensions of regular graphs

A fundamental and most widely studied question in graph theory is the following;

How the value of a graph-theoratic parameter is affected by making a small change

in a graph?

To answer this question and to know whether is it possible to expand the existing

graphs (networks) with minimum possible change in their metric dimension, we

study the metric dimension of certain extension of graphs.

It is well-known fact that if an edge is added to a graph G, then the metric dimension

of the new graph G′ = G+ e is given by

β(G) ≤ β(G+ e) ≤ β(G) + 1.

However, when a vertex is added to a graph, then the metric dimension of the

resulting graph may remain the same or can decrease or increase significantly.

In this thesis, we study the effect of adding set of vertices or set of edges in the

graph on the metric dimension of graph. In this chapter, we determine the metric

dimension of s-crown graph which is an extension of the cycle. We also determine

the upper bounds for the metric dimension of extension of antiprism, barycentric

subdivision of antiprism, extension of Möbius ladders and corona product of Möbius

ladders with complete graph K1.
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4.1 Metric dimension of s-crown Crs

The class of s-crown graphs was introduced and constructed in [13]. An s-crown de-

noted by Crs is a connected, undirected and plane graph with no loop. The vertex set

V (Crs) of s-crown is the disjoint union of the sets O = {oj} (outer vertices), I = {ij}
(inner vertices) and M = {mjk} (vertices along the cycle or mid vertices). The edge

set E(Crs) = {ijmj−1,2, ijmj1, ojmj1, ojmj2,mj1mj−1,2,mj1mj,2 : j = 1 . . . s}, the

vertex indices are taken modulo s. The s-crown graph denoted by Crs is a certain

extension of the cycle graph Cn.

o5

o4

o3

o2

o1

i5

i4

i3

i2

i1
m51

m41
m31

m21

m11

m52

m42

m32

m22

m12

Figure 4.1: 5-Crown Cr5

Theorem 4.1.1. Let Crs be an s-crown graph. Then for any positive integer s ≥ 2,

we have

β(Crs) = 2.

Proof. We discuss the representations of V (Crs) in the following cases.

Case(1). We denote W = {i1, o s
2
} ⊆ V (Crs) be the resolving set for the case when

s ≡ 0 (mod 2). Then we have s = 2k (k ≥ 1).
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The representations of the outer vertices are:

r(oj|W )=


(2j, s− 2j + 1), 1 ≤ j ≤ s

2
− 1;

(s, 0), j = s
2
;

(2s− 2j + 2, 2j − s+ 1), s
2

+ 1 ≤ j ≤ s.

The representations of the inner vertices are:

r(i1|W ) = (0, s).

r(ij|W )=

{
(2j − 1, s− 2j + 2), 2 ≤ j ≤ s

2
;

(2s− 2j + 3, 2j − s), s
2

+ 1 ≤ j ≤ s.

The representations of the mid vertices are:

r(mj1|W )=


(2j − 1, s− 2j + 1), 1 ≤ j ≤ s

2
;

(s, 2), j = s
2

+ 1;

(2s− 2j + 2, 2j − s), s
2

+ 2 ≤ j ≤ s.

The representations of the mid vertices are:

r(mj2|W )=


(2j, s− 2j), 1 ≤ j ≤ s

2
− 1;

(s, 1), j = s
2
;

(2s− 2j + 1, 2j − s+ 1), s
2

+ 1 ≤ j ≤ s− 1;

(1, s), j = s.

Case(2). We denote W = {i1, i s+1
2
} ⊆ V (Crs) be the resolving set for the case

when s ≡ 1 (mod 2). Then we have n = 2k + 1 (k ≥ 1).

The representations of the outer vertices are:

r(oj|W )=

{
(2j, s− 2j + 1), 1 ≤ j ≤ s+1

2
− 1;

(2s− 2j + 2, 2j − s+ 1), s+1
2
≤ j ≤ s.

The representations of the inner vertices are:

r(i1|W ) = (0, s, )

.
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r(ij|W )=


(2j − 1, s− 2j + 2), 2 ≤ j ≤ s+1

2
− 1;

(s, 0), j = s+1
2

;

(2s− 2j + 3, 2j − s), s+1
2

+ 1 ≤ j ≤ s.

The representations of the mid vertices are:

r(mj1|W )=


(2j − 1, s− 2j + 1), 1 ≤ j ≤ s+1

2
− 1;

(s, 1), j = s+1
2

;

(2s− 2j + 2, 2j − s), s+1
2

+ 1 ≤ j ≤ s.

The representations of the mid vertices are:

r(mj2|W )=


(2j, s− 2j), 1 ≤ j ≤ s+1

2
− 1;

(2s− 2j + 1, 2j − s+ 1), s+1
2
≤ j ≤ s− 1;

(1, s), j = s.

It can be seen that every vertex has distinct representation with respect to the

set W in both cases implying that β(Crs) ≤ 2.

Conversely, we show that β(Crs) ≥ 2. On contrary, suppose β(Cs) = 1. Then by

Theorem 3.2.2, we get a contradiction. Thus we have β(Crs) ≥ 2. Hence β(Crs) = 2,

which completes the proof.

4.2 Metric dimension of certain extension of an-

tiprism

The antiprism denoted by An is a 6-regular graph. For n ≥ 3, it consists of an

outer cycle y1, y2, . . . , yn and an inner cycle x1, x2, . . . , xn and a set of n spokes

xiyi and xi+1yi i = 1, 2, . . . , n with indices taken modulo n. The metric dimension

of antiprism An has been determined by Javaid et al. in [21]. We extend the

antiprism by adding edges yiyi+2, xixi+2 in the edge set E(An). We denote such

extension of antiprism by A(n, 2). The vertex set of A(n, 2) will be the vertex set of

An and the edge set of A(n, 2) will be E(An ∪ {yiyi+2, xixi+2}.
In the next theorem, we prove that four vertices are sufficient to resolve all the

vertices of A(n, 2).
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Figure 4.2: An extension of antiprism A(16, 2)

Theorem 4.2.1. Let A(n, 2) be a graph. Then for n ≥ 13

β(A(n, 2)) ≤ 4.

Proof. We denote W = {y1, y2, y3, yl+1} be a resolving set for n ≡ 1 (mod 2) and

W = {y1, y2, yl+2, yl+d l
2
e+2} be a resolving set for n ≡ 0 (mod 2).

The representation of V (A(n, 2)) can be given in the following cases.

Case(1). When n ≡ 1 (mod 2) which can also be written as n = 2l + 1, where l is

a positive integer and l ≥ 6. The representations of the vertices on the outer cycle

are:

r(y1|W ) = (0, 1, 1, b l
2
c), r(y2|W ) = (1, 0, 1, d l

2
e).
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r(y2i+1|W )=


(i, i, i− 1, d l

2
e − i+ 1), 1 ≤ i ≤ d l

2
e;

(l − d l
2
e, l − d l

2
e, d l

2
e, 2d l

2
e − l), i = d l

2
e+ 1;

(n− l − i, n− l − i, n− l − i+ 1, i− d l
2
e − 1), d l

2
e+ 2 ≤ i ≤ l.

r(y2i|W )=


(i, i− 1, i− 1, d l

2
e − i+ 2), 2 ≤ i ≤ d l

2
e;

(i− 1, i− 1, i− 1, i− d l
2
e), i = d l

2
e+ 1;

(n− l − i, n− l − i, n− l − i+ 1, i− d l
2
e − 1), d l

2
e+ 2 ≤ i ≤ l.

The representations of vertices on the inner cycle are:

r(x2i+1|W )=


(i+ 1, i, i, d l

2
e − i+ 2), 1 ≤ i ≤ d l

2
e;

(l − i+ 2, l − i+ 2, d l
2
e+ 1, 1), i = d l

2
e+ 1;

(n− l − i+ 1, n− l − i+ 1, n− l − i+ 2, i− d l
2
e),

d l
2
e+ 2 ≤ i ≤ l.

r(x2i|W )=


(i+ 2, i+ 2, i, d l

2
e − i+ 3), 2 ≤ i ≤ d l

2
e+ 1;

(n− l − i+ 1, n− l − i+ 2, n− l − i+ 2, i− d l
2
e − 1),

d l
2
e+ 2 ≤ i ≤ l.

It can be seen that every vertex has distinct representation with respect to W

giving that β(A(n, 2)) ≤ 4.

Case(2). When n ≡ 0 (mod 2) which can also be written as n = 2l where l is a

positive integer and l ≥ 7. The representations of the vertices on the outer cycle are:

r(y1|W ) = (0, 1, b l
2
c, b l

4
c), r(x1|W ) = (1, 2, d l

2
e, d1

2
b l

2
ce),

r(x2|W ) = (1, 1, d l + 1

2
e, d l + 1

4
e).

r(y2i+1|W )=



(i, i, d l
2
e − i+ 1, i+ 3), 1 ≤ i ≤ d1

2
b l+1

2
ce;

(i, i, d l
2
e − i+ 1, l − i− 2), d1

2
b l+1

2
ce+ 1 ≤ i ≤ d l

2
e;

(l − i, l − i+ 1, i− d l
2
e, l − i− 2), d l

2
e+ 1 ≤ i ≤ l − 3;

(d l
2
e − i+ 6, d l

2
e − i+ 7, i− d l

2
e, i− d l

2
e − 3),

i = l − 1, l − 2.
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r(y2i|W )=


(i, i− 1, l − d l

2
e − i+ 1, i+ 2), 1 ≤ i ≤ d1

2
b l+1

2
ce;

(i, i− 1, l − d l
2
e − i+ 1, l − i− 2), d1

2
b l+1

2
ce+ 1 ≤ i ≤ d l

2
e;

(l − i+ 1, l − i+ 1, i− d l+1
2
e, l − i− 2), d l

2
e+ 1 ≤ i ≤ l − 2;

(l − i+ 1, l − i+ 1, i− d l
2
e, i− l + 2), i = l − 1, l.

r(x2i+1|W )=



(i+ 1, i, b l
2
c − i+ 2, i+ 3), 1 ≤ i ≤ d l+1

4
e;

(i+ 1, i, b l
2
c − i+ 2, l − i− 1), d l+1

4
e+ 1 ≤ i ≤ b l

2
c;

(l − i+ 1, l − i+ 1, i− b l
2
c, l − i− 3), i = d l

2
e, l ≡ 1 (mod 2);

(l − i+ 1, l − i+ 2, i− b l
2
c, l − i− 1), d l

2
e+ 1 ≤ i ≤ l − 2;

(l − i+ 1, l − i+ 2, i− b l
2
c, l − i+ 1), i = l − 1.

r(x2i|W )=


(i, i, l − d l+1

2
e − i+ 3, i+ 3), 2 ≤ i ≤ d l+1

4
e;

(i, i, l − d l+1
2
e − i+ 3, l − i− 1), d l+1

4
e+ 1 ≤ i ≤ d l+1

2
e;

(l − i+ 2, l − i+ 2, i− d l
2
e, l − i− 1), d l+1

2
e+ 1 ≤ i ≤ l − 2;

(l − i+ 2, l − i+ 2, i− d l
2
e, l − i+ 3), i = l − 1, l.

Again all the vertices have distinct representation, which implies that β(A(n, 2)) ≤
4.

4.3 Metric dimension of barycentric subdivision

of antiprism

The barycentric subdivision of antiprism denoted by S(An) can be obtained by in-

serting a new vertex in the interior of each edge of antiprism. The vertex set of S(An)

is V (S(An)) = {ui, vi, wi, xi, yi, zi} = V (An)∪ {wi, xi, yi, zi; 1 ≤ i ≤ n} and the edge

set of S(An) is E(S(An)) = {viwi, wivi+1, uizi, ziui+1, vixi, xiui, uiyi, yivi+1; 1 ≤ i ≤
n}, the vertex indices are taken modulo n.

Theorem 4.3.1. Let S(An) be a graph. Then for n ≥ 11, we have

β(S(An)) ≤ 4.

Proof. Let W = {x1, y1, xdn
2
e, ydn

2
e} be a resolving set for n ≥ 11. We give the rep-

resentations of V(S(An)) in the following way.
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Figure 4.3: Barycentric subdivision of antiprism S(A16)

The representations of the vertices on the outer cycle are:

r(v1|W ) = (1, 3, 2dn
2
e − 1, 2bn

2
c+ 1).

r(vi|W )=



(2i− 1, 2i− 3, n− 2i+ 2, n− 2i+ 4), 2 ≤ i ≤ dn
2
e;

(n, n, 3, 1), i = dn
2
e+ 1, dn

2
e 6= bn

2
c;

(2n− 2i+ 3, 2n− 2i+ 5, 2i− 2dn
2
e+ 1, 2i− 2dn

2
e − 1),{

dn
2
e+ 2 ≤ i ≤ n, dn

2
e 6= bn

2
c;

dn
2
e+ 1 ≤ i ≤ n, dn

2
e = bn

2
c.

and

r(w1|W ) = (2, 2, 2dn
2
e − 2, 2dn

2
e).
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r(wi|W )=



(2i, 2i− 2, n− 2i+ 1, n− 2i+ 3), 2 ≤ i ≤ bn
2
c;

(2dn
2
e, 2dn

2
e − 2, 2, 2), i = bn

2
c+ 1, dn

2
e 6= bn

2
c;

(2n− 2i+ 2, 2n− 2i+ 2, 2i− 2dn
2
e − 2, 2i− 2dn

2
e),

i = n
2

+ 1 where n
2

= dn
2
e = bn

2
c;

(2n− 2i+ 2, 2n− 2i+ 4, 2i− 2dn
2
e − 2, 2i− 2dn

2
e),

bn
2
c+ 2 ≤ i ≤ n.

The representations of the vertices on the inner cycle are:

r(ui|W )=


(2i− 1, 2i− 1, 2dn

2
e − 2i+ 1, 2dn

2
e − 2i+ 1),

1 ≤ i ≤ dn
2
e;

(2n− 2i+ 3, 2n− 2i+ 3, 2i− 2dn
2
e+ 1, 2i− 2dn

2
e+ 1),

dn
2
e+ 1 ≤ i ≤ n.

r(zi|W )=



(2i, 2i, 2dn
2
e − 2i, 2dn

2
e − 2i), 1 ≤ i ≤ dn

2
e − 1;

(2i, 2i, 2i− 2dn
2
e+ 2, 2i− 2dn

2
e+ 2), i = dn

2
e = bn

2
c;

(2n− 2i+ 2, 2n− 2i+ 2, 2i− 2dn
2
e+ 2, 2i− 2dn

2
e+ 2),{

dn
2
e ≤ i ≤ n, dn

2
e 6= bn

2
c;

dn
2
e+ 1 ≤ i ≤ n, dn

2
e = bn

2
c.

The representations of the vertices xi
′s and yi

′s are:

r(x1|W ) = (0, 2, 2dn
2
e, 2dn

2
e).

r(xi|W )=


(2i, 2i− 2, n− 2i+ 3, n− 2i+ 3), 2 ≤ i ≤ dn

2
e − 1;

(2dn
2
e, 2dn

2
e − 2, 0, 2), i = dn

2
e;

(2n− 2i+ 4, 2n− 2i+ 4, 2i− 2bn
2
c, 2i− 2dn

2
e), dn

2
e+ 1 ≤ i ≤ n.

r(y1|W ) = (2, 0, 2dn
2
e − 2, 2dn

2
e).

r(yi|W )=


(2i, 2i, n− 2i+ 1, n− 2i+ 3), 2 ≤ i ≤ dn

2
e − 1;

(2dn
2
e, 2dn

2
e, 2, 0), i = dn

2
e;

(2i− 2bn
2
c, 2i− 2dn

2
e, 2i− 2bn

2
c, 2i− 2bn

2
c), dn

2
e+ 1 ≤ i ≤ n.

There is no pair of vertices having same representation with respect to W . Therefore

42



we have, β(S(An)) ≤ 4.

4.4 Metric dimension of corona product of Möbius

ladder and complete graph K1

The Möbius ladder denoted by Mn is a cubic circulant graph with an even number

of vertices. It consists of an n-cycle and the edges (called rungs) connecting opposite

pair of vertices in the cycle. In [1], Imran et al. proved that β(Mn) = 3 when n 6≡ 2

(mod 8) and 3 ≤ β(Mn) ≤ 4 otherwise. The corona product of Möbius ladders with

complete graph K1 denoted by Mn � K1 can be obtained by attaching a pendant

vertex to every vertex of Möbius ladder Mn.
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v3
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v1
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w5

w4

w3

Figure 4.4: Graph of M12 �K1

Theorem 4.4.1. Let Mn � K1 be the corona product of Möbius ladder Mn with
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complete graph K1. Then for every positive even integer n ≥ 8, we have

β(Mn �K1) ≤ 4.

Proof. We denote W = {v1, v2, vl−b l
2
c+1, vl+1} ⊆ V (Mn�K1) to be the resolving set.

Then the representations of V (Mn �K1) can be given in the following cases.

Case(1). When n ≡ 0 (mod 4). Then we have n = 4k(k ≥ 2).

The representations of the vertices on the cycle are:

r(v1|W ) = (0, 1, b l
2
c, 1).

r(vi|W )=



(i− 1, i− 2, b l
2
c − i+ 1, i), 2 ≤ i ≤ b l

2
c;

(i− 1, i− 2, 0, i− 1), i = b l
2
c+ 1;

(b l
2
c, b l

2
c, 1, l − i+ 1), i = b l

2
c+ 2;

(l − i+ 2, l − i+ 3, i− b l
2
c − 1, l − i+ 1), b l

2
c+ 3 ≤ i ≤ l + 1;

(i− l, i− l − 1, l + b l
2
c − i+ 2, i− l − 1), l + 2 ≤ i ≤ l + b l

2
c;

(b l
2
c, b l

2
c, 1, b l

2
c), i = l + b l

2
c+ 1;

(n− i+ 1, n− i+ 2, i− l − b l
2
c, n− i+ 2), l + b l

2
c+ 2 ≤ i ≤ n.

The representations of the pendant vertices are:

r(w1|W ) = (1, 2, b l
2
c+ 1, 2).

r(wi|W )=



(i, i− 1, b l
2
c − i+ 2, i+ 1), 2 ≤ i ≤ b l

2
c;

(i, i− 1, 1, i), i = b l
2
c+ 1;

(b l
2
c+ 1, b l

2
c+ 1, 2, l − i+ 2), i = b l

2
c+ 2;

(l − i+ 3, l − i+ 4, i− b l
2
c, l − i+ 2), b l

2
c+ 3 ≤ i ≤ l + 1;

(i− l + 1, i− l, l + b l
2
c − i+ 3, i− l), l + 2 ≤ i ≤ l + b l

2
c;

(b l
2
c+ 1, b l

2
c+ 1, 2, b l

2
c+ 1), i = l + b l

2
c+ 1;

(n− i+ 2, n− i+ 3, i− l − b l
2
c+ 1, n− i+ 3), l + b l

2
c+ 2 ≤ i ≤ n.

Case(2). When n ≡ 2 (mod 4). Then we have n = 4k + 2 (k ≥ 2).

The representations of the vertices on the cycle are:
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r(v1|W ) = (0, 1, b l
2
c+ 1, 1).

r(vi|W )=



(i− 1, i− 2, b l
2
c − i+ 2, i), 2 ≤ i ≤ b l

2
c+ 1;

(i− 1, i− 2, 0, i− 2), i = b l
2
c+ 2;

(l − i+ 2, l − i+ 3, i− b l
2
c − 2, l − i+ 1), b l

2
c+ 3 ≤ i ≤ l + 1;

(i− l, i− l − 1, l − i+ 6, i− l − 1),

l + 2 ≤ i ≤ l + b l
2
c+ 1;

(n− i+ 1, n− i+ 2, i− l − b l
2
c − 1, n− i+ 2), l + b l

2
c+ 2 ≤ i ≤ n.

The representations of the pendant vertices are:

r(w1|W ) = (1, 2, b l
2
c+ 2, 2).

r(wi|W )=



(i, i− 1, b l
2
c − i+ 3, i+ 1), 2 ≤ i ≤ b l

2
c+ 1;

(i, i− 1, 1, i− 1), i = b l
2
c+ 2;

(l − i+ 3, l − i+ 4, i− b l
2
c − 1, l − i+ 2), b l

2
c+ 3 ≤ i ≤ l + 1;

(i− l + 1, i− l, l − i+ 7, i− l), l + 2 ≤ i ≤ l + b l
2
c+ 1;

(n− i+ 2, n− i+ 3, i− l − b l
2
c, n− i+ 3), l + b l

2
c+ 2 ≤ i ≤ n.

It can be seen that every vertex has distinct representation with respect to the

set W implying that β(Mn �K1) ≤ 4.

4.5 Metric dimension of a certain extension of

Möbius ladders

This extension of Möbius ladder can be obtained by joining the vertices of a Möbius

ladders at a distance two along the principal cycle, either clockwise or counter clock-

wise. We do not join u and v if a rung is counted in d(u, v) = 2. We denote such

graphs by M ′
n. Let u and v be two vertices in Mn and d(u, v) = 2 along a principal

cycle then these two vertices u and v are adjacent in M ′
n which is shown in Fig. 4.5.
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In the next theorem, we determine an upper bound of the metric dimension of such

graphs.

Figure 4.5: The extension of Möbius ladders M ′
18

Theorem 4.5.1. Let M ′
n be a certain extension of Möbius ladder defined above.

Then for every positive even integer n > 16, we have

β(M ′
n) ≤

{
4, if n ≡ 0 (mod 8);

5, otherwise.

Proof. We denote W = {v1, v2, vl+1, vl+3} to be a resolving set for n ≡ 0 (mod 8).

We can write n = 8l where l > 2. Suppose W = {v1, v2, vd l
2
e, vl+1, vl+3} be a re-

solving set for n ≡ 2, 4, 6 (mod 8), which can also be written as n = 8l + 2, n =

8l + 4, n = 8l + 6, respectively where l ≥ 2. The representation of V(M ′
n) can be

given in the following cases.

Case(1). When n ≡ 0 (mod 8). Then we have n = 8l (l > 2). The representation

46



of the vertices are the followings.

r(v1|W ) = (0, 1, 1, 2).

r(v2i+1|W )=



(i, i, i+ 1, i), 1 ≤ i ≤ l
4
− 1;

(i, i, i, i), i = l
4
;

( l
2
− i+ 1, l

2
− i+ 2, l

2
− i, l

2
− i+ 1), l

4
+ 1 ≤ i ≤ l

2
;

(i− l
2

+ 1, i l
2

+ 1, i− l
2
, i− l

2
− l), l

2
+ 1 ≤ i ≤ bl + l

2
− 1c;

(l − i, l − i+ 1, l − i, i− l
2
− 1), i = bl + l

2
− 1c+ 1;

(l − i, l − i+ 1, l − i+ 1, l − i+ 1), i = bl + l
2
− 1c+ 2;

(l − i, l − i+ 1, l − i+ 1, l − i+ 2), bl + l
2
− 1c+ 3 ≤ i ≤ l − 1.

r(v2|W ) = (1, 0, 2, 2).

r(v2i|W )=



(i, i− 1, i+ 1, i), 2 ≤ i ≤ l
4
;

(i, i− 1, i− 1, i), i = l
4

+ 1;

( l
2
− i+ 2, l

2
− i+ 2, l

2
− i+ 1, l

2
− i+ 2), l

4
+ 2 ≤ i ≤ l

2
;

(2, 1, 1, 1), i = l
2

+ 1;

(i− l
2

+ 1, i l
2
, i− l

2
, i− l

2
− l), l

2
+ 2 ≤ i ≤ 1

2
dl + l

2
e;

(l − i+ 1, l − i+ 1, l − i+ 2, i− l
2
− 1),

i = 1
2
dl + l

2
e+ 1, 1

2
dl + l

2
e+ 2;

(l − i+ 1, l − i+ 1, l − i+ 2, l − i+ 3), 1
2
dl + l

2
e+ 3 ≤ i ≤ l.

Case(2). When n ≡ 2 (mod 8). Then we have n = 8l + 2 (l ≥ 2).

r(v1|W ) = (0, 1, b l
4
c, 1, 2).
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r(v2i+1|W )=



(i, i, b l
4
c − i+ 2, i+ 1, i), 1 ≤ i ≤ b l

4
c;

(i, i, 1, i− 1, i), i = b l
4
c+ 1;

(d l
2
e − i+ 1, d l

2
e − i+ 1, i− b l

4
c − 1, d l

2
e − i, d l

2
e − i+ 1),

b l
4
c+ 2 ≤ i ≤e l

2
d−1;

(2, 1, b l
4
c, 1, 1), i = d l

2
e;

(i− d l
2
e+ 2, i− d l

2
e+ 1, l − i− 3, i− d l

2
e+ 1, i− d l

2
e),

d l
2
e+ 1 ≤ i ≤ d l

2
e+ b l

4
c − 1;

(b l
4
c, b l

4
c+ 1, 2, b l

4
c+ 1, b l

4
c), i = d l

2
e+ b l

4
c;

(l − i, l − i+ 1, i− d l
2
e − b l

4
c − 1, l − i+ 1, l − i+ 2),

d l
2
e+ b l

4
c+ 1 ≤ i ≤ l − 1.

r(v2|W ) = (1, 0, b l
4
c+ 1, 2, 2).

r(v2i|W )=



(i, i− 1, b l
4
c − i+ 2, i+ 1, i), 2 ≤ i ≤ b l

4
c;

(i, i− 1, 1, i− 1, i), i = b l
4
c+ 1;

(d l
2
e − i+ 1, d l

2
e − i+ 2, i− b l

4
c − 2, d l

2
e − i, d l

2
e − i+ 1),

b l
4
c+ 2 ≤ i ≤e l

2
d;

(2, 2, b l
4
c, 1, 0), i = d l

2
e+ 1;

(i− d l
2
e+ 1, i− d l

2
e+ 1, l − i− 2, i− d l

2
e, i− d l

2
e − 1),

d l
2
e+ 2 ≤ i ≤ d l

2
e+ b l

4
c;

(b l
4
c, b l

4
c, 2, b l

4
c+ 1, b l

4
c), i = d l

2
e+ b l

4
c+ 1;

(l − i+ 1, l − i+ 1, i− d l
2
e − b l

4
c, l − i+ 2, l − i+ 3),

d l
2
e+ b l

4
c+ 2 ≤ i ≤ l.

Case(3). When n ≡ 4 (mod 8). Then we have n = 8l + 4 (l ≥ 2).

r(v1|W ) = (0, 1, b l
4
c, 1, 2).
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r(v2i+1|W )=



(i, i, b l
4
c − i, i+ 1, i), 1 ≤ i ≤ b l

4
c;

(i, i, 1, i− 1, i), i = b l
4
c+ 1;

( l
2
− i+ 1, l

2
− i+ 2, i− b l

4
c, l

2
− i, l

2
− i+ 1),

b l
4
c+ 2 ≤ i ≤ l

2
;

(i− l
2

+ 1, i− l
2

+ 1, l − i− b l
4
c, i− l

2
, i− l

2
− 1),

l
2

+ 1 ≤ i ≤ l
2

+ b l
4
c;

(b l
4
c, b l

4
c+ 1, i− l

2
− b l

4
c+ 1, b l

4
c+ 1, b l

4
c),

i = l
2

+ b l
4
c+ 1;

(l − i, l − i+ 1, i− l
2
− b l

4
c+ 2, l − i+ 1, l − i+ 2),

d l
2
e+ b l

4
c+ 2 ≤ i ≤ l − 1.

r(v2|W ) = (1, 0, b l
4
c, 2, 2).

r(v2i|W )=



(i, i− 1, b l
4
c − i+ 1, i+ 1, i), 2 ≤ i ≤ b l

4
c;

(i, i− 1, 1, i, i), i = b l
4
c+ 1;

( l
2
− i+ 2, l

2
− i+ 2, i− b l

4
c, l

2
− i+ 1, l

2
− i+ 2),

b l
4
c+ 2 ≤ i ≤ l

2
;

(2, 1, b l
4
c+ 1, 1, 1), i = l

2
+ 1;

(i− l
2

+ 1, i− l
2
, l − i− 3, i− l

2
, i− l

2
− 1),

l
2

+ 2 ≤ i ≤ l
2

+ b l
4
c;

(b l
4
c+ 1, b l

4
c+ 1, 2, b l

4
c+ 1, b l

4
c), i = l

2
+ b l

4
c+ 1;

(b l
4
c, b l

4
c, 3, b l

4
c+ 1, b l

4
c+ 1), i = l

2
+ b l

4
c+ 2;

(l − i+ 1, l − i+ 1, i− l
2
− b l

4
c+ 1, l − i+ 2, l − i+ 3),

l
2

+ b l
4
c+ 3 ≤ i ≤ l − 1;

(1, 1, b l
4
c+ 1, 2, 3), i = l.

Case(4). When n ≡ 6 (mod 8). Then we have n = 8l + 6 (l ≥ 2).

r(v1|W ) = (0, 1,
l + 1

4
, 1, 2).
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r(v2i+1|W )=



(i, i, l+1
4
− i, i− 1, i), 1 ≤ i ≤ l+1

4
− 1;

( l+1
4
, l+1

4
, 1, l+1

4
, l+1

4
), i = l+1

4
;

(d l
2
e − i+ 1, d l

2
e − i+ 1, i− l+1

4
+ 1, d l

2
e − i, d l

2
e − i+ 1),

l+1
4

+ 1 ≤ i ≤e l
2
d−1;

(2, 1, l+1
4
, 1, 1), i = d l

2
e;

(i− d l
2
e+ 2, i− d l

2
e+ 1, d l

2
e+ l+1

4
− i, i− d l

2
e+ 1, i− d l

2
e),

d l
2
e+ 1 ≤ i ≤ d l

2
e+ l+1

4
− 2;

( l+1
4
, l+1

4
, 1, l+1

4
, l+1

4
− 1), i = d l

2
e+ l+1

4
− 1;

( l+1
4
− 1, l+1

4
, 2, l+1

4
, l+1

4
), i = d l

2
e+ l+1

4
;

(l − i, l − i+ 1, i− d l
2
e − l+1

4
+ 2, l − i+ 1, l − i+ 2),

d l
2
e+ l+1

4
+ 1 ≤ i ≤ l − 1.

r(v2|W ) = (1, 0,
l + 1

4
− 1, 2, 2).

r(v2i|W )=



(i, i− 1, l+1
4
− i, i+ 1, i), 1 ≤ i ≤ l+1

4
− 1;

( l+1
4
, l+1

4
− 1, 0, l+1

4
, l+1

4
), i = l+1

4
;

( l+1
4
, l+1

4
, 1, l+1

4
− 1, l+1

4
), i = l+1

4
+ 1;

(d l
2
e − i+ 1, d l

2
e − i+ 2, i− l+1

4
, d l

2
e − i, d l

2
e − i+ 1),

l+1
4

+ 2 ≤ i ≤e l
2
d;

(i− d l
2
e+ 1, i− d l

2
e+ 1, d l

2
e+ l+1

4
− i+ 1, i− d l

2
e, i− d l

2
e − 1),

d l
2
e+ 1 ≤ i ≤ d l

2
e+ l+1

4
− 1;

( l+1
4
, l+1

4
, 2, l+1

4
, l+1

4
− 1), i = d l

2
e+ l+1

4
;

(l − i+ 1, l − i+ 1, i− d l
2
e − l+1

4
+ 2, l − i+ 2, l+1

4
),

i = d l
2
e+ l+1

4
+ 1;

(l − i+ 1, l − i+ 1, i− d l
2
e − l+1

4
+ 2, l − i+ 2, l − i+ 3),

d l
2
e+ l+1

4
+ 2 ≤ i ≤ l − 1;

(1, 1, l+1
4
, 2, 3), i = l.

It can be seen that no two vertices have same representation. This implies that

β(M ′
n) ≤ 4 if n ≡ 0 (mod 8) and β(M ′

n) ≤ 5 if n ≡ 2, 4, 6 (mod 8).
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Chapter 5

Conclusion and Open Problems

A fundamental and most studied question in graph theory is the following: How the

value of a parameter is affected by making a small change in the graph?

In this thesis, we have discussed the metric dimension of s-crowns, certain extensions

of antiprism and Möbius ladder. We have proved that the s-crowns Crs constitutes

a family of graph with constant metric dimension and we have β(Cn) = β(Crs) = 2.

We have studied the upper bounds for the metric dimension of extension of antiprism

denoted by A(n, 2) is 4 for n ≥ 13. We have also determined that for n > 16, the

the upper bounds for the metric dimension of extension of Möbius ladder denoted

by M ′
n is 4 for n ≡ 0 (mod 8) and 5 for n ≡ 2, 4, 6 (mod 8). We further studied

the barycentric subdivision of antiprism denoted by S(An), for n ≥ 11 and deduced

that the upper bound for the metric dimension of these graphs is 4. We have also

studied the corona product of Möbius ladder and complete graph K1 denoted by

Mn � K1 and concluded that β(Mn � K1) ≤ 4 for n ≥ 4. It can be noted that

these graphs have bounded metric dimensions. Also the metric dimensions of these

graphs do not depend upon the number of vertices they have.

Although we were able to find the upper bounds in most cases, however the results

obtained show that we can expand the existing networks with minimum cost if we

use the extensions describe above and there will be no significant change in the

metric dimension of extension of regular graphs.

We close the discussion by raising questions that naturally arise from the text.
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Open Problem 1: Determine the exact value for the metric dimension of extension

of antiprism A(n, 2) and extension of Möbius ladder Mn
′.

Open Problem 2:Determine the exact value for the metric dimension of barycen-

tric subdivision of antiprism S(An).

Open Problem 3: Determine the exact value for the metric dimension of corona

product of Möbius ladder and complete graph K1 denoted by Mn �K1.
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of regular graphs with constant metric dimension, Acta Math. Scientia,

33(2013), 187− 206.

[16] M. Imran, A. Q. Baig, A. Ahmad, Families of plane graphs with constant metric

dimension, Utilitas Math., 88(2012), 43− 57.

[17] M. Imran, A. Q. Baig, S. A. Bokhary, I. Javaid, On the metric dimension of

circulant graphs, Appl. Math Lett., 25(2012), 320− 325.

[18] M. Imran, A. Q. Baig, M. K. Shafiq, I. Tomescu, On metric dimension of

generalized Petersen graphs P (n, 3), Ars Combin., 117(2014), 113− 130.

[19] M. Imran, S. A. Bokhary, A. Q. Baig, On families of convex polytopes with

constant metric dimension, Comput. Math. Appl., 60(2010), 2629− 2638.

[20] H. Iswadi, E. T. Baskoro, R. Simanjuntak, A. N. M. Salman, The metric di-

mension of graphs with pendant edges, J. Combin. Math. Combin. Comput.,

65(2008), 139− 146.

54



[21] I. Javaid, M. T. Rahim, K. Ali, Families of regular graphs with constant metric

dimension, Utilitas Math., 75(2008), 21− 33.

[22] I. Javaid, S. Ahmad, M. N. Azhar, On the metric dimension of generalized

Petersen graphs, Ars Combin., 105(2012), 171− 182.

[23] I. Javaid, M. Salman, M. A. Chaudhary, S. A. Aleem, On the metric dimension

of the generalized Petersen graphs, Quaestiones Math., 36(3)(2013), 421−−435.

[24] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Disc. Appl.

Math., 70(1996), 217− 229.

[25] S. Khuller, B. Raghavachari, A. Rosenfeld, Localization in graphs, Technical

Report CS-TR-3326, University of Maryland at College Park, 1994.

[26] G. Sughakara, A. R. H. Kumar, Graphs with metric dimension two-a character-

ization, Advances and Applications in Discrete Mathematics, 4(2)(2009), 169−
186.

[27] M. Ali, G. Ali and M. T. Rahim, On metric dimension of two constructed

families from antiprism graph, Math. Sci. Lett., 2(2013), 1− 7.

[28] R. A. Melter, I. Tomescu, Metric bases in digital geometry, Computer Vision,

Graphics, and Image Processing, 25(1984), 113− 121.

[29] R. Naeem, M. Imran, Metric dimension and exchange property for resolving sets

in rotationally-symmetric graphs, Appl. Math. Inf. Sci., 8(4)(2014), 1665−1674.

[30] R. Naeem, Some advancement in metric dimension and exchange property for

resolving sets, M. Phil Thesis, NUST, Islamabad, (2013).

[31] P. J. Slater, Leaves of trees, Congr. Numer., 14(1975), 549− 559.
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