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Chapter 1

Introduction

After the invention of calculus by I. Newton (1642-1727) and G.W. Leibnitz (1646-

1716), differential equations came into existence. Differential equations are one of the

most important discipline of mathematics and many real-world problems are expressed

in the form of differential equations (ordinary differential equations (ODEs) and par-

tial differential equations (PDEs)). In 17th century Newton write down some basic

laws of nature in term of differential equations. There are also many other well-known

mathematicians who worked alot in the field of differential equations, some of them

are Cauchy, Liouvillie, Gronwall, Lyapunov, Birkoff etc. [1, 2].

The hard but necessary aspect of differential equations is to find out their solu-

tions. There are different methods for finding solutions of differential equations but

these methods did not work for all type of differential equations (i.e. they are bounded

to some class of ODEs and PDEs). Also the study of algebraic properties of system

of differential equations are very difficult task. In 19th century Marius Sophus Lie (A

Norwegian Mathematician) was the first who invented an outstanding technique to find

solutions of differential equations. The analysis of Lie unified three main branches of

mathematics (Analysis, Geometry and Algebra). According to Lie a unified approach

must be constructed that contains all the classical methods for solving differential equa-

tions [3, 4, 5, 6, 7, 8].

Lie acquired the idea of transformations groups from the Galois theory which re-

lates permutations groups with solutions of algebraic equations. Lie used his concept
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on solutions of differential equations and proved that there are transformations groups

related to solutions of differential equations. Further to this, Lie devised group of con-

tinuous transformations (called Lie group, which are mathematical tools for solution of

differential equations), and proved that if differential equation is invariant under one-

parameter Lie group of point transformation then its order can be decreased by one.

Positive aspect of Lie technique is that it is used for all kind of differential equations.

Later on Lie’s techniques are used for linearization process, to find out the invariants

corresponding to differential equations and group classification [2]. These observations

made by Lie were very useful and thus established a new method for solving differential

equations called "symmetry methods for differential equations". A symmetry of system

of differential equations is transformation group (depends on continuous parameters,

real or complex), that maps solutions into solutions. Translation, rotation and scaling

are the basic example of Lie groups [1, 7].

Those symmetries which are non-continuous are known as "discrete symmetries".

Discrete point symmetry has a lot of importance in mathematics and physics. It can be

use in computational methods to increase their efficiency, also discrete point symmetry

is used for some numerical methods to improve their accuracy, and from the existing

known solutions we can generate new solutions with the help of discrete point symme-

tries [9, 10, 11, 12]. Many methods have been developed for finding these symmetries,

in which Peter E. Hydon technique for finding discrete symmetries of differential equa-

tions, having a finite dimensional Lie algebra of infinitesimal generators of its Lie group

of point symmetries are perfect [9, 10, 11, 13, 14]. With the help of this technique all

the discrete symmetries of differential equation could be found. His method is based on

the observation that every point symmetry yields an automorphism of the Lie algebra

of the Lie point symmetry.

In Chapter 2, we give some basic definitions, theorems and methods necessary for

finding Lie point symmetries of differential equations. In Chapter 3, method for find-

ing discrete symmetries of differential equations is explained, and discrete symmetries

of some first order differential equations are obtained. In last chapter there is brief

summary of the thesis.
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Chapter 2

Symmetry Methods for Differential
Equations

We begin this chapter with some basic definitions and theorems. A discussion on some

principles which are helpful while finding the Lie point symmetries for differential

equations is also presented in this chapter.

2.1 One Parameter Point Transformation Group

While solving a differential equation one may simplify the equation by changing the

variables,

x̌ = x̌(x, v), v̌ = v̌(x, v), (2.1)

where x̌ and v̌ are continuous functions.

The transformation (2.1) maps a point (x, v) into point (x̌, v̌), so it is called a point

transformation [15].

In symmetry, we take invertible point transformation that must depend on at least one

parameter α.

x̌ = x̌(x, v, α), v̌ = v̌(x, v, α), (2.2)

where (x̌ and v̌) are infinitely differentiable w.r.t x and v.

Consider the point transformation (2.2) defined for x̌ and v̌ lies on region D ⊂ R2 that

depends on α ∈ S ⊂ R with composition φ(α, δ).
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We call such transformations a one-parameter group of transformations if the following

holds:

1. x̌(x, v, α) = x and v̌(x, v, α) = v at α = 0.

2. ˇ̌x = ˇ̌x(x̌, v̌, δ) = ˇ̌x(x, v, φ(α, δ)), similarly ˇ̌v = ˇ̌v(x, v, φ(α, δ)).

Now we define one-parameter Lie transformation group and their infinitesimal trans-

formations [4, 8].

2.1.1 One-Paramter Lie Transformation Group

A transformation

x̌ = x̌(x, v, α), v̌ = v̌(x, v, α),

is one-parameter Lie transformation group if holds the above conditions given for one-

parameter group as well as the following :

1. For a continuous parameter α, α = 0 yields to an identity element e.

2. x̌ and v̌ are analytic in α and are continuously differentiable w.r.t x and v in S

(S ⊂ R).

3. The composition function φ(α, δ) is analytic in α and δ.

2.1.2 Infinitesimal Transformation

Consider one-parameter Lie group of transformations

v̌ = z(v, α). (2.3)

Using Tylor expansion near α = 0, we can write eqn.(2.3) as

v̌ = v + α
∂z(v, α)

∂α
|α=0 +

α2

2

∂2z(v, α)

∂α2
|α=0 + · · · ,

let us consider

∂z(v, α)

∂α
|α=0= ξ(v). (2.4)
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The transformation v̌ = v + αξ(v) is the infinitesimal transformation of Lie group.

This relation defined in eqn.(2.4) is used in "Lie First Fundamental Theorem" which

describes a method for re-parametrization of one-parameter group of transformation

that are in standard forms.

2.1.3 First Fundamental Theorem of Lie

There exists a parametrization τ(α) such that the Lie group of transformations (2.3)

is equal to the solution of an IVP for a system of first-order ODE stated by

dv̌

dτ
= ξ(v), (2.5)

with v̌ = v when τ = 0 [4]. In particular

τ(α) =

∫ α

0

γ(α
′
)dα

′
, (2.6)

where

γ(α) =
∂φ(a, b)

∂b

∣∣∣∣
(a,b)=(α,α−1)

, γ(0) = 1. (2.7)

2.1.4 Infinitesimal Generators

In light of the above Lie’s theorem, we define "Infinitesimal Generator also called Lie

symmetry vector field" as [4, 16]:

Definition 2.1.1. The infinitesimal generator of one-parameter Lie group of transfor-

mation (2.3) is given by

X = ξ(v) · ∇ =
n∑
i=1

ξi(v) · ∂
∂vi

, (2.8)

where ∇ represent gradient.

∇ = (
∂

∂v1

,
∂

∂v2

, ...,
∂

∂vn
)t and ξ(v) = (ξ1, ξ2, ..., ξn),
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For differential equation

G(x) = G(x1, x2, ..., xn), (2.9)

we write

XG(x) = ξ(v).∇G(x) =
n∑
i=1

ξi(v).
∂G(x)

∂vi
. (2.10)

With the help of Theorem 2.1.1 [4, 16], we can define a relation between one-parameter

Lie group of transformations and its generators.

Theorem 2.1.1. The one-parameter Lie group of transformation (2.3) can be expressed

as

v̌ = eαXv = v + αXv +
α2

2
X2v + · · · = [1 + αX +

α2

2
X2 + ...]v.

This implies

v̌ =
∞∑
m=0

αm

m!
Xmv. (2.11)

where X is defined by eqn.(2.8) and Xm = XXm−1, m = 1, 2, · · · .

2.2 Extension or Prolongation of Lie Group of Point
Transformation and Their Generators

Using eqn.(2.2) and eqn.(2.4) we can write

ξ =
∂x̌

∂α
|α=0 and η =

∂v̌

∂α
|α=0, (2.12)

and

X = ξ
∂

∂x
+ η

∂

∂v
. (2.13)

If we want to apply eqn.(2.2) to the differential equation [15],

G(x, v, v
′
, v
′′
, ..., vn) = 0, v

′
=
dv

dx
, (2.14)
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and want to know how transformation be prolonged to derivatives, we must transform

first the derivatives by defining

v̌
′

=
dv̌(x, v, α)

dx̌(x, v, α)
=
v
′
(∂v̌
∂v

) + ∂v̌
∂x

v′(∂x̌
∂v

) + ∂x̌
∂x

= v̌
′
(x, v, v

′
, α).

Similarly, we can find

v̌
′′

=
dv̌
′
(x, v, v

′
, α)

dx̌(x, v, α)
= v̌

′′
(x, v, v

′
, v
′′
, α),

and so on

v̌(n) =
dv̌n−1(x, v, v

′
, v
′′
, · · · , vn−1, α)

dx̌(x, v, α)
= v̌(n)(x, v, v

′
, v
′′
, · · · , v̌(n), α). (2.15)

These are the transformed derivatives with respect to transformed variables.

From the above relations, we can write

x̌ = x+ αξ(x, v) + · · · = x+ αXx+ · · · .

v̌ = v + αη(x, v) + · · · = v + αXv + · · · .

v̌
′

= v
′
+ αη

′
(x, v) + · · · = v

′
+ αXv

′
+ · · · .

...

v̌(n) = v(n) + αη(n)(x, v) + · · · = v(n) + αXv(n) + · · · , (2.16)

where η, η′ , η′′ , · · · , η(n) are defined by

η =
dv̌

dα
, η

′
=
dv̌
′

dα
, η

′′
=
dv̌
′′

dα
, · · · , η(n) =

dv̌n

dα
, at α = 0. (2.17)

By using eqn.(2.15) and eqn.(2.16), we have

v̌(n) = v(n) + α(
dη(n−1)

dx
− v(n) dξ

dx
), (2.18)

where

d

dx
=

∂

∂x
+ v

′ ∂

∂v
+ v

′′ ∂

∂v′
+ · · ·+ v(n) ∂

∂v(n−1)
.
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Similarly, from eqn.(2.16) and eqn.(2.18), we have

η(n) =
dη(n−1)

dx
− v(n) dξ

dx
. (2.19)

From the above eqn.(2.19), we can compute the components of extended generators of

any order, i.e.

η
′

=
dη0

dx
− v′ dξ

dx
= ηx + v

′
(ηv − ξx)− v

′2
ξv. (2.20)

Similarly,

η
′′

=
dη
′

dx
− v′′ dξ

dx
= ηxx + (2ηxv − ξxx)v

′ − (ηvv − 2ξxv)(v
′
)2

−ξvv(v
′
)3 + (ηv − 2ξx − 3ξvv

′
)v
′′
, (2.21)

and so on.

Eqn.(2.13) is a point transformation generator and prolongation of generatorX is given

by

X[n] = ξ
∂

∂x
+ η

∂

∂v
+ η

′ ∂

∂v′
+ · · ·+ η(n) ∂

∂v(n)
. (2.22)

2.3 Multi-Parameter Group of Transformation and
Their Infinitesimal Generators

Let the group of transformations [1, 4, 15]

x̌ = x̌(x, v, αM), v̌ = v̌(x, v, αM), M = 1, 2, · · · , r, (2.23)

depends on more than one parameter say r-parameters αM , satisfying all the properties

of a group, then its general infinitesimal transformation can be written in the form

XM = ξM(x, v)
∂

∂x
+ ηM(x, v)

∂

∂v
, (2.24)
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where

ξM(x, v) =
∂x̌

∂αM
|α=0, ηM(x, v) =

∂v̌

∂αM
|α=0. (2.25)

If Xl and Xm be two generators, then their commutator is defined by

[Xl,Xm] = XlXm −XmXl. (2.26)

The commutator relation defined by eqn.(2.24) satisfies the properties [9, 15] :

1. [Xl,Xm] = −[Xm,Xl],

2. [aXl + bXm,Xn] = a[Xl,Xn] + b[Xm,Xn], a,b are scalers,

3. [[Xl,Xm],Xn] + [[Xm,Xn],Xl] + [[Xn,Xl],Xm] = 0.

2.3.1 Lie Second Fundamental Theorem

The commutator of any two infinitesimal generators of an r-parameter Lie group of

point transformations is also an infinitesimal generator.

In particular

[Xl,Xm] =
r∑
p=1

Cp
lmXp, (2.27)

where the coefficient Cp
lm, l,m = 1, · · · , r are constants, known as "Structure con-

stants" [4].

2.3.2 Lie Third Fundamental Theorem

The structure constants defined in eqn.(2.27) satisfy the relation

Cp
lm = −Cp

ml, (2.28)
r∑

γ=1

[Cγ
lmC

δ
γn + Cγ

mnC
δ
γl + Cγ

nlC
δ
γm]. (2.29)
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2.4 Lie Algebra

A Lie algebra L is vector space over some field on which relation [ , ] is defined having

following features :

1. [Xl,Xm] ∈ L, ∀ Xl,Xm ∈ L.

2. [Xl,Xm] = −[Xm,Xl], ∀ Xl,Xm ∈ L.

3. [aXl+bXm,Xn] = a[Xl,Xn]+b[Xm,Xn], ,∀ Xl,Xm,Xn ∈ L and a,b are scalars.

4. [[Xl,Xm],Xn] + [[Xm,Xn],Xl] + [[Xn,Xl],Xm] = 0, ∀ Xl,Xm,Xn ∈ L.

Lie algebra is said to be real/complex if the field is of real/complex number, and the

vector fieldXl,Xm are generators of Lie algebra. Lie algebra is called finite dimensional

if its generators are finite otherwise infinite dimensional [9, 15].

2.5 Lie Point Symmetries of ODEs

We have defined important definitions and theorems necessary for defining an impor-

tant theorem [7, 15] and use it to find Lie point symmetries of differential equations.

Theorem 2.5.1. An ODE

G(x, v, v
′
, v
′′
, · · · , v(n)) = 0,

admits a group of symmetries with generator X iff

X[n]G |G=0≡ 0. (2.30)

We write X[n]G ≡ 0 rather than X[n]G = 0 because we focus on that with respect

to all variables (x, v, v
′
, v
′′
, · · · , v(n−1)) this equation has to be satisfied. At G = 0

shows that the maximum derivative v(n) is to replaced with (x, v, v
′
, v
′′
, · · · , v(n−1)).
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Example 2.5.1.

G(x, v, v
′
, v

′′
) = v

′′
+ v = 0. (2.31)

Solution: Applying the condition given in eqn.(2.30) on the given differential

equation (2.31),

X[2](v
′′

+ v) |v′′+v=0= 0. (2.32)

From eqn.(2.19) putting value of η′′ and then substituting v′′ = −v and simplify, we

get

ηxx + (2ηxv − ξxx)v
′
+ (ηvv − 2ξxv)v

′2 − ξvvv
′3

+(ηv − 2ξx − 3ξvv
′
)(−v) + η = 0. (2.33)

Now comparing the coefficients of v′0 , v′1 , v′2 , v′3 .

v
′0

; ηxx + (2ξx − ηv)v + η = 0, (2.34)

v
′1

; 2ηxv − ξxx + 3ξvv = 0, (2.35)

v
′2

; ηvv − 2ξxv = 0, (2.36)

v
′3

; ξvv = 0. (2.37)

Eqn.(2.37) gives

ξ = a1(x)v + a2(x). (2.38)

From eqn.(2.36)

η = a
′

1(x)v2 + a3(x)v + a4(x). (2.39)
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Eqn.(2.35) implies that

2(2a
′′

1(x)v + a
′

3(x))− a′′1(x)v − a′′2(x) + 3a1(x)v = 0. (2.40)

Now comparing the coefficients of v0, v1.

v0; 2a
′

3(x)− a′′2(x) = 0, (2.41)

v1; a
′′

1(x) + a1(x) = 0. (2.42)

Eqn.(2.41) implies

a1(x) = c1 cosx+ c2 sinx. (2.43)

Eqn.(2.34) implies

a
′′′

1 (x)v2 + a
′′

3(x)v + a
′′

4(x) + (−2a
′

1(x)v − a3(x) + 2a
′

1(x)v

+2a
′

2(x)v + a
′

1(x)v2 + a3(x) + a4(x)) = 0 (2.44)

Comparing coefficients of v0, v1, v2, we have

v0; a
′′

4(x) + a4(x) = 0, (2.45)

v1; a
′′

3(x) + 2a
′

2(x) = 0, (2.46)

v2; a
′′′

1 (x) + a
′

1(x) = 0. (2.47)

Simplifying eqns.(2.45), (2.46) and (2.47), we get

a4(x) = c3 cosx+ c4 sinx, (2.48)

a2(x) = c5 cos 2x+ c6 sin 2x+ c7, (2.49)

a3(x) = c6 cos 2x− c5 sin 2x+ c8. (2.50)
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So ξ, η and X becomes

ξ = (c1 cosx+ c2 sinx)v + c5 cos 2x+ c6 sin 2x+ c7, (2.51)

η = (c2 cosx− c1 sinx)v2 + (c6 cos 2x− c5 sin 2x+ c8)v

+c3 cosx+ c4 sinx, (2.52)

and

X = ((c1 cosx+ c2 sinx)v + c5 cos 2x+ c6 sin 2x+ c7)
∂

∂x
+((c2 cosx− c1 sinx)v2 + (c6 cos 2x− c5 sin 2x+ c8)v

+c3 cosx+ c4 sinx)
∂

∂v
,

(2.53)

where ci are constants.

Consider c1 = 1 and ci = 0 , i 6= 1, we have

X1 = v cosx
∂

∂x
− v2 sinx

∂

∂v
,

Similarly, consider c2 = 1 , ci = 0, i 6= 2, we get

X2 = v sinx
∂

∂x
+ v2 cosx

∂

∂v
,

similarly, we can find

X3 = cosx
∂

∂v
, X4 = sinx

∂

∂v
,

X5 = cos 2x
∂

∂x
− v sin 2x

∂

∂v
,

X6 = sin 2x
∂

∂x
+ v cos 2x

∂

∂v
,

X7 =
∂

∂x
, X8 = v

∂

∂v
.
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Lie algebras corresponding to above generators are :

[X1,X3] = −1

2
[X5 + X7], [X1,X4] = −1

2
[3X8 + X6], [X1,X5] = −X2, [X1,X6] = X1,

[X1,X7] = −X2, [X1,X8] = X1, [X2,X3] = −1

2
[X6 + 3X8], [X2,X4] =

1

2
[X5 −X7],

[X2,X5] = −X1, [X2,X6] = −X2, [X2,X7] = −X1, [X2,X8] = −X2, [X3,X5] = −X4,

[X3,X6] = X3, [X3,X7] = X4, [X3,X8] = X3, [X4,X5] = −X3, [X4,X6] = −X3,

[X4,X7] = X3, [X4,X8] = X4, [X5,X6] = X7, [X5,X7] = 2X6, [X5,X8] = X3,

[X6,X7] = −2X5,

and others [Xl,Xm] = 0.
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Chapter 3

Discrete Symmetries of First Order
Differential Equations

Introduction

Discrete symmetries are those point symmetries of a differential equation which are

not continuous [9, 10, 11].

In this chapter, we discuss and explain method in detail which help in finding dis-

crete symmetries of differential equations. Finding discrete symmetries of differential

equations was not an easy task. Peter E. Hydon was the first to developed an indirect

method with the help of which discrete symmetries of the differential equations hav-

ing finite dimensional Lie algebra of infinitesimal generators of its Lie group of point

symmetries could be found. So far his method is used to find the discrete symmetries

of second order or higher order differential equations [9, 10, 11].

Our main aim is to find the discrete symmetries of first order differential equations

using Peter E. Hydon method. We know that the first order differential equations have

infinite many symmetries. Therefore, we consider a specific subgroup of symmetries

from these infinite symmetries and find out the discrete symmetries corresponding to

that subgroup.

15



3.1 Determining Equations for Discrete Symmetries

We start this section by recalling some important definitions and theorems [9, 10, 11].

Let us consider an ODE

v(n) = w(x, v, v
′
, · · · , v(n−1)). (3.1)

A one-parameter Lie group of point symmetry is denoted by

λ : (x, v) 7−→ (x̌(x, v), v̌(x, v)), (3.2)

and its infinitesimal generator is given by

X = ξ(x, v)
∂

∂x
+ η(x, v)

∂

∂v
. (3.3)

If {Xl}rl=1 is the basis for Lie algebra L of all infinitesimal generators of one-parameter

Lie group of point symmetries of ODE (3.1), then we have

λl : (x, v) 7−→ (eαXlx, eαXlv), (3.4)

to represent the one-parameter Lie group.

Theorem 3.1.1. If G(x, v) is an infinitely differentiable function, then for one-parameter

Lie group of point symmetries λ(α) with generator (3.3), we have

G(x̌, v̌) = G(eαXlx, eαXlv) = eαXlG(x, v) = λlG(x, v). (3.5)

Theorem 3.1.2. Suppose that the Lie algebra L of infinitesimal generators of one-

parameter Lie group of point symmetries of the differential equation (3.1) has a basis

{Xl}rl=1. If the point transformation (3.2) is a symmetry of ODE (3.1), then the point

transformation

λ̌l(α) = λλlλ
−1, (3.6)

is also symmetry for each α. Also, if {Xl}rl=1 is a basis for L, then {λXlλ
−1}rl=1 is also

a basis for L for arbitrary λ.
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From the above theorems we know that both the generators {Xl}rl=1 and {X̌l}rl=1

are basis of some Lie algebra L, so we can write each Xl as a linear combination of X̌l,

and the structure constants are defined by the transformation

Xl 7−→ X̌l.

If

[Xl,Xm] = Cp
lmXp, (3.7)

then,

[X̌l, X̌m] = Cp
lmX̌p. (3.8)

We can generalize the above results with the help of following lemma as [9, 10, 11]:

Lemma 3.1.1. Every point symmetry of a differential equation (3.1) induces an au-

tomorphism of the Lie algebra L of generator of one-parameter Lie group of point

symmetries of the differential equation.

For each λ, there exists a constant N ×N non-singular matrix (bpl ) such that

Xl = bpl X̌p. (3.9)

All the structure constants are preserved by this automorphism.

Finding Lie Groups of a Differential Equation Corresponding to
Some Generators

Consider the first order differential equation v′ = f(x) with generators

X1 =
∂

∂v
, X2 =

1

f(x)

∂

∂x
.

Using eqns.(2.12), one can find the corresponding Lie groups.

First we find the Lie group corresponding to X1 = ∂
∂v
.
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Here ξ = 0 and η = 1.

As

ξ =
∂x̌

∂α
|α=0

⇒ x̌ = x, as x̌(0) = x.

Similarly

η =
∂v̌

∂α
|α=0= 1

⇒ v̌ = v + α as v̌(0) = v.

∴ λ1(α); (x̌, v̌) = (x, v + α).

Similarly, for

X2 =
1

f(x)

∂

∂x
,

we have

λ2(α); (x̌, v̌) =

(
x+

1

f(x)
α, v

)
.

3.2 Peter E. Hydon for Finding Discrete Symmetries

In this method there are two steps. In the first step, let us apply the Lemma 3.1.1 to

obtain the following first-order PDEs which every point symmetry (3.2) of the ODE

(3.1) should satisfy [13, 14]:

Xlx̌ = bpl X̌px̌, l = 1, 2, · · · , R

= bpl λXpλ
−1x̌, ∵ X̌ = λXλ−1

= bpl λXpx

= bpl λξp(x, v)

= bpl ξp(x̌, v̌).
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This implies that

Xlx̌ = bpl ξ̌p. (3.10)

Similarly, we can write

Xlv̌ = bpl η̌p. (3.11)

Combining eqn.(3.10) and eqn.(3.11) make a system of equations (first-order PDEs).

This system can be solved by using characteristic equations to get (x̌, v̌) in terms of

x, v, bpl and some other constants or functions (unknown). All the point symmetries

should satisfy the above system. However there are also certain solutions of the system

which are not point symmetries. Note that, the solution of this system always contains

the trivial symmetry (x̌, v̌) = (x, v) corresponding to bpl = δpl .

In the second step, we check that which of these solutions are point symmetries of

the ODE, and so we can separate point symmetry and non-point symmetry solution

of the general solution of the system of PDEs.

With the help of this two-step method we can find all the point symmetries of

differential equation (3.1). Also we know about the Lie-point symmetries, so any sym-

metries other than Lie-point symmetries are known as discrete symmetries of eqn.(3.1).

Now, writing eqn.(3.10) in matrix form as:
X1x̌

X2x̌
...

Xnx̌

 =


b1

1 b2
1 · · · bn1

b1
2 b2

2 · · · bn2
...

... . . . ...
b1
n b2

n · · · bnn




ξ̌1

ξ̌2
...
ξ̌n

 . (3.12)

Similarly, eqn.(3.11) can be written as
X1v̌

X2v̌
...

Xnv̌

 =


b1

1 b2
1 · · · bn1

b1
2 b2

2 · · · bn2
...

... . . . ...
b1
n b2

n · · · bnn




η̌1

η̌2
...
η̌n

 . (3.13)

19



From eqn.(3.12) and eqn.(3.13), we can write
X1x̌ X1v̌

X2x̌ X2v̌
...

...
Xnx̌ Xnv̌

 =


b1

1 b2
1 · · · bn1

b1
2 b2

2 · · · bn2
...

... . . . ...
b1
n b2

n · · · bnn




ξ̌1 η̌1

ξ̌2 η̌2
...

...
ξ̌n η̌n

 . (3.14)

Eqn.(3.14) is known as system of determining equations. Note that eqn.(3.14) gives a

set of first order linear and un-coupled system of PDEs. Further, if there is a complex

valued parameter in the symmetry condition, then this method gives all the complex

discrete symmetries of the given differential equation.

3.3 Modification in Method

In this section, we explain the modification in the method that is to be made.

3.3.1 Abelian Lie Algebra

For abelian Lie algebra it is easy to work in canonical coordinates system. This is

specifically effective when the dimension of Lie algebra is low. Because, as the dimen-

sion increases many unknown constants bpl are to be considered there, due to which it

can be difficult to solve the determining equations [10].

Use of Canonical Coordinates

Canonical coordinates s(x, v) and t(x, v) satisfy

X1s = 0, X1t = 1, (3.15)

so that

X1 =
∂

∂s
= ∂s.
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Since, š = s(x̌, v̌) and ť = t(x̌, v̌), if dim(L) = 1, then from eqn.(3.14) we have

[X1š,X1ť] = [b1
1][1, 0], (3.16)

⇒ X1š = b1 6= 0, X1ť = 0,

⇒ ∂š

∂s
= b1

1. ⇒ ∂ť

∂s
= 0.

⇒ š = b1
1s+ l(t), ť = m(t), (3.17)

is the general solution for some function l and m. Symmetry condition on the trans-

formation decide that which functions l,m and constant (b1
1 ) are permissible.

3.3.2 Non-abelian Lie Algebra

If L is not abelian, then at least some of the equation

[Xl,Xm] = XlXm −XmXl = Cp
lmXp,

are non-trivial. Also, since the generator λXlλ
−1 satisfy the same commutator relation

as the generator Xl. That is

[X̌l, X̌m] = Cp
lmX̌p.

From eqn.(3.7), eqn.(3.8) and eqn.(3.9), we have

Cn
ijb

i
lb
j
m = Cp

lmb
n
p , (3.18)

where the indices are from 1 to dim(L). Since, we know that the structure constants

are anti-symmetric in the lower indices, that is

Cp
lm = −Cp

ml.

Therefore,

Cp
ll = 0.
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If we have dim(L) = r, then there will be r3 equations, but since Cp
lm = −Cp

ml and

CP
ll = 0. Therefore, we have only r2(r−1)

2
equations. So we focus on the eqn.(3.18) with

l < m.

Before we solve the system given by eqn.(3.14), we can simplify it using these con-

straints on the matrix B, which makes the system easier to solve [10].

Note that computer algebra is to be used when the number of equations is too large.

Let us consider an example in detail to understand the above process.

Example 3.3.1. Consider the differential equation

v
′′

= 0. (3.19)

with

X1 =
∂

∂x
, (3.20)

X2 =
∂

∂v
, (3.21)

X3 = x
∂

∂v
. (3.22)

Here

[X1,X2] = 0⇒ Cp
12 = 0. (3.23)

[X1,X3] = X2 ⇒ C2
13 = 1, C2

31 = −1. (3.24)

[X2,X3] = 0⇒ Cp
23 = 0. (3.25)

So here the non-zero structure constants are C2
13 = 1, C2

31 = −1.

Now we solve the equation

Cn
ijb

i
lb
j
m = Cp

lmb
n
p , where i, j, l,m, n = 1, 2, 3. (3.26)

Since l < m to get distinct equations, here (l,m) = (1, 2), (1, 3), (2, 3).

Taking n = 3, so

C3
ij = 0, i, j = 1, 2, 3. (3.27)
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So eqn.(3.26) reduced to

Cp
lmb

3
p = 0, (3.28)

C1
lmb

3
1 + C2

lmb
3
2 + C3

lmb
3
3 = 0. (3.29)

When (l,m) = (1, 2), then eqn.(3.29) is satisfied.

For (l,m) = (1, 3), eqn.(3.29) becomes

C1
13b

3
1 + C2

13b
3
2 + C3

13b
3
3 = 0, (3.30)

⇒ b3
2 = 0 ∵ C2

13 = 1, C1
13 = 0 = C3

13. (3.31)

For (l,m) = (2, 3) eqn.(3.29) is true.

Now fix n = 1, then

C1
ij = 0. (3.32)

The constraints eqn.(3.26) reduced to,

Cp
lmb

1
p = 0, (3.33)

C1
lmb

1
1 + C2

lmb
1
2 + C3

lmb
1
3 = 0. (3.34)

Eqn.(3.34) is true for (l,m) = (1, 2).

Putting (l,m) = (1, 3) in eqn.(3.34),

C1
13b

1
1 + C2

13b
1
2 + C3

13b
1
2 = 0, (3.35)

⇒ b1
2 = 0 ∵ C1

13 = 0 = C3
13, C

2
13 = 1. (3.36)

Similarly, eqn.(3.34) is true when (l,m) = (2, 3).

Consider n = 2, then

C1
ij = 0, (i, j) 6= (1, 3), (3, 1). (3.37)

Therefore eqn.(3.26) is reduced to no-linear equations

C2
13b

1
l b

3
m + C2

31b
3
l b

1
m = Cp

lmb
2
p, (3.38)

(1)b1
l b

3
m + (−1)b3

l b
1
m = C1

lmb
2
1 + C2

lmb
2
2 + C3

lmb
2
3, (3.39)

b1
l b

3
m − b3

l b
1
m = C1

lmb
2
1 + C2

lmb
2
2 + C3

lmb
2
3. (3.40)
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Eqn.(3.40) is true for (l,m) = (1, 2).

By putting (l,m) = (1, 3), in eqn.(3.40), we have

b1
1b

3
3 − b3

1b
1
3 = C1

13b
2
1 + C2

13b
2
2 + C3

13b
2
3, (3.41)

⇒ b1
1b

3
3 − b3

1b
1
3 = b2

2. (3.42)

Similarly, eqn.(3.40) is true for (l,m) = (2, 3).

Now we are able to write B = (bpl ) as

B =


b1

1 b2
1 b3

1

b1
2 b2

2 b3
2

b1
3 b2

3 b3
3

 =


b1

1 b2
1 b3

1

0 b2
2 0

b1
3 b2

3 b3
3

 , (3.43)

with condition

b1
1b

3
3 − b3

1b
1
3 = b2

2, (3.44)

because B is non-singular.

3.3.3 For Finding Inequivalent Discrete Symmetries

By equivalent symmetries of the differential equation, we mean that two point symme-

tries λ and λ̌ of given differential equation is equivalent if there exist an X ∈ L such

that λ̌ = eαXλ [9, 13].

Note that, if the Lie algebra is abelian (i.e. all the structural constants are zero),

then there are no constraints, also majority of the Lie algebra exists are of non-linear

type and by finding the matrices B = bpl that satisfy the constraints, we can simplify

the problem of finding all symmetries.

In this section, our main focus is to obtain set of in-equivalent discrete symme-

tries, so that we can find out one-parameter Lie groups. Let us define some important

matrices notation and Lemmas that are used in next section [13].

(C(m))|pl = Cp
lm, (3.45)
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and

A(m,α) =
∞∑
n=0

αn

n!
(C(m))n = exp(αC(m)). (3.46)

Lemma 3.3.2.

1. If the automorphism of Lie algebra L induced by λ is given by λ = eαXl for a

given α, then B = A(m,α), where Xl is basis element of L.

2. If the induced automorphism of the point symmetries λ and λ̌ are denoted by ma-

trices B and B̌ respectively, then the induced automorphism of the point symmetry

λ̌ ◦ λ is denoted by B̌B.

3. If λ and λ̌ = eαXλ induces automorphism with matrices B and B̌, then

B̌ = A(1, α1)A(2, α2), · · · , A(R,αR)B, (3.47)

for some parameters αn and R is the dim(L).

We can find out the in-equivalent discrete symmetries by simplifying the system

(3.14) for in-equivalent matrices. If C(m) is non-zero for some α, then we can find Lie

point symmetries generated by Xl as, first of all replace the matrix B by A(m,α)B

or BA(m,α) and then assign a value to each α in the new matrix to simplify the

entry, that is to create zeros in the matrix B. This helps in simplifying the determining

equations and non-linear constraints. Also note that, each matrix A(m,α) is used only

once. Conversely, if C(m) = 0 for some m, then A(m,α) is the identity matrix for all

α. Such symmetries induces a non-trivial automorphism of L, and can be find out if

the determining equations have been solved.

3.3.4 Algorithm for Finding Discrete Symmetries of Differen-
tial Equations

Once we know the Lie algebra of point symmetries of a differential equation, we can

compute discrete symmetries by using the following steps:
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1. Specify Lie point symmetries of the given differential equations.

2. Simplify the non-linear constraints.

3. Each A(j, α) should be simplified when Lie algebra is non-abelian.

4. Write down the simplified matrix B.

5. Solve determining equations to obtain general solution.

6. Factor out discrete symmetries from general solution.

3.4 Problems

Now we consider some problems of first order differential equations and try to obtain

its discrete symmetries using the above method.

3.4.1 Problem 1

Consider the first order differential equation

v
′
= f(x), (3.48)

with

X1 =
∂

∂v
, X2 =

1

f(x)

∂

∂x
.

Here

[X1,X2] = 0,

so the system of determining eqn.(3.14) becomes,[
X1x̌ X1v̌
X2x̌ X2v̌

]
=

[
b1

1 b2
1

b1
2 b2

2

] [
ξ̌1 η̌1

ξ̌2 η̌2

]
, (3.49)

⇒
[
X1x̌ X1v̌
X2x̌ X2v̌

]
=

[
b1

1 b2
1

b1
2 b2

2

] [
0 1
1

f(x)
0

]
=

[
b21
f(x)

b1
1

b22
f(x)

b1
2

]
. (3.50)
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This implies that

X1x̌ =
b21
f(x)

, (3.51)

X1v̌ = b1
1, (3.52)

X2x̌ =
b22
f(x)

, (3.53)

X2v̌ = b1
2. (3.54)

Solving eqn.(3.51) and eqn.(3.53), we get

x̌ = b2
2x+

b2
1

f(x)
v + c1, (3.55)

similarly, using eqn.(3.52) and eqn.(3.54), we have

v̌ = b1
1v +

∫
b1

2f(x)dx+ c2. (3.56)

∴ (x̌, v̌) =

(
b2

2x+
b2

1

f(x)
v + c1, b

1
1v +

∫
b1

2f(x)dx+ c2

)
, (3.57)

is the general solution of determining equation (3.50).

By definition eqn.(3.57) is the symmetry of eqn.(3.48) if and only if

v̌′ = f(x̌). (3.58)

Now

v̌′ =
dv̌

dx̌

=
d(b1

1v +
∫
b1

2f(x)dx+ c2)

d(b2
2x+

b21
f(x)

v + c1)

=
b1

1v
′
+ b1

2f(x)

b2
2 + b2

1
d
dx

( v
f(x)

)

=
b1

1f(x) + b1
2f(x)

b2
2

=
f(x)(b1

1 + b1
2)

b2
2 + b2

1
d
dx

( v
f(x)

)
.
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So, eqn.(3.58) becomes

f(x)(b1
1 + b1

2)

b2
2 + b2

1
d
dx

( v
f(x)

)
= f(b2

2x+
b2

1

f(x)
v + c1), (3.59)

is the symmetry condition.

The symmetry condition eqn.(3.59) is satisfied if c1 = 0 = b1
2 = b2

1, b
2
2 = 1 = b1

1.

Therefore, the discrete symmetry of the given differential equation is

λ(x̌, v̌) = (x, v + c2) (3.60)

This result is exhaustive. Any other discrete symmetry λ̌(x̌, v̌) of the given differential

equation can be obtained by using the discrete symmetry λ(x̌, v̌) as:

λ̌ = eαXλ,

where X is the infinitesimal generator from Lie algebra of infinitesimal generators of

one-parameter Lie groups of point symmetries of the equation.

3.4.2 Problem 2

Taking first order differential equation

v
′
= f(v), (3.61)

with

X1 =
∂

∂x
, X2 = f(v)

∂

∂v
. (3.62)

Here

[X1,X2] = 0.

So the system of determining equation (3.14) becomes[
X1x̌ X1v̌
X2x̌ X2v̌

]
=

[
b1

1 b2
1

b1
2 b2

2

] [
1 0
0 f(v)

]
, (3.63)
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⇒
[
X1x̌ X1v̌
X2x̌ X2v̌

]
=

[
b1

1 b2
1f(v)

b1
2f(x) b2

2f(v)

]
. (3.64)

Eqn.(3.64) gives

X1x̌ =b1
1, (3.65)

X1v̌ =b2
1f(v), (3.66)

X2x̌ =b1
2, (3.67)

X2v̌ =b2
2f(v). (3.68)

Solving eqn.(3.65) and eqn.(3.67), we get

x̌ = b1
1x+

∫
b1

2

f(v)
dv + c1, (3.69)

similarly, from eqn.(3.66) and eqn.(3.68), we have

v̌ = b2
2v + b2

1f(v)x+ c2. (3.70)

Therefore, the general solution of eqn.(3.64) is given by

(x̌, v̌) =

(
b1

1x+

∫
b1

2

f(v)
dv + c1, b

2
2v + b2

1f(v)x+ c2

)
. (3.71)

Eqn.(3.71) is the symmetry of eqn.(3.61) if and only if

v̌′ = f(v̌). (3.72)

Now

v̌′ =
dv̌

dx̌

=
d(b2

2v + b2
1f(v)x+ c2)

d(b1
1x+

∫ b12
f(v)

dv + c1)

⇒ v̌′ =
f(v)(b2

2 + b2
1)

b1
1 + b1

2

.
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Also since v̌′ = f(v̌). So eqn.(3.72) becomes

f(v̌) =
f(v)(b22+b21)

b11+b12
,

⇒ f(b2
2v + b2

1f(v)x+ c2) =
f(v)(b22+b21)

b11+b12
,

is the symmetry condition, and it is satisfied only if b2
2 = 1 = b1

1, b
2
1 = 0 = b1

2 = c2.

Therefore,

λ(x̌, v̌) = (x, v), (3.73)

is the only discrete symmetry of the differential equation (3.61) up to equivalence.

This result is exhaustive and by using the result λ̌ = eαXλ, we can find out other

discrete symmetries λ̌(x̌, v̌) of the differential equation, where X is the infinitesimal

generator from Lie algebra of infinitesimal generators of one-parameter Lie groups of

point symmetries.

3.4.3 Problem 3

Consider the first order differential equation

v
′
= xv, (3.74)

with

X1 =
1

x

∂

∂x
, X2 = e

x2

2
∂

∂v
. (3.75)

Here

[X1,X2] = X2,

⇒ C2
12 = 1 and C2

21 = −1,

are the only non-zero structure constants (i.e., the algebra is non-abelian).

Now we solve

Cn
ijb

i
lb
j
m = Ck

lmb
n
k , i, j, k, l,m, n = 1, 2. (3.76)
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Consider n = 1, we have

C1
ij = 0,

so eqn.(3.76) becomes

Ck
lmb

1
k = 0, (3.77)

⇒ C1
lmb

1
1 + C2

lmb
1
2 = 0. (3.78)

Taking (l,m) = (1, 2), so that eqn.(3.78) implies that

C1
12b

1
1 + C2

12b
1
2 = 0, (3.79)

⇒ b1
2 = 0 ∵ C1

12 = 0, C2
12 = 1. (3.80)

When n = 2, then

C2
ij = 0, (i, j) 6= (1, 2), (2, 1). (3.81)

Eqn.(3.76) becomes

C2
12b

1
l b

2
m + C2

21b
2
l b

1
m = Ck

lmb
2
k, (3.82)

⇒ b1
l b

2
m − b2

l b
1
m = C1

lmb
2
1 + C2

lmb
2
2, ∵ C2

12 = 1, C2
21 = −1. (3.83)

For (l,m) = (1, 2), eqn.(3.83) becomes

b1
1b

2
2 = b2

2, ∵ b2
1 = 0 = C1

12, C
2
12 = 1, (3.84)

⇒ b1
1 = 1, b2

2 6= 0. (3.85)

Putting value of b1
1 and b1

2 in matrix B, so it becomes

B =

[
b1

1 b2
1

b1
2 b2

2

]
=

[
1 b2

1

0 b2
2

]
. (3.86)

Now we have to find the inequivalent matrix. First we find C(m) and A(m,α), as by

definition

C(m)lp = Cp
lm, and A(m,α) = eαC(m). (3.87)

So,

C(1) =

[
C1

11 C2
11

C1
21 C2

21

]
=

[
0 0
0 −1

]
. (3.88)

31



And

A(1, α) = exp(αC(1)) = exp

([
0 0
0 −α

])
,

⇒ A(1, α) =

[
1 0

0 1− α + α2

2

]
. (3.89)

Similarly,

C(2) =

[
C1

12 C2
12

C1
22 C2

22

]
=

[
0 1
0 0

]
, (3.90)

and

A(2, α) =

[
1 α
0 1

]
. (3.91)

Now

A(1, α)B =

[
1 0

0 1− α + α2

2

] [
1 b2

1

0 b2
2

]
=

[
1 b2

1

0 b2
2(1− α + α2

2
)

]
, (3.92)

choosing α = α1 = 1± i, so that 1− α + α2

2
= 0.

∴ A(1, α1) =

[
1 b2

1

0 0

]
. (3.93)

A(2, α)A(1, α1)B =

[
1 α
0 1

] [
1 b2

1

0 0

]
=

[
1 b2

1

0 0

]
. (3.94)

A(2, α)A(1, α1)B = B̌ is the required inequivalent matrix. Now our next goal is to find

the solution by using determining equations, i.e.[
X1x̌ X1v̌
X2x̌ X2v̌

]
=

[
1 b2

1

0 0

][ 1
x

0

0 e
x2

2

]
,

⇒
[
X1x̌ X1v̌
X2x̌ X2v̌

]
=

[
1
x

b2
1e

x2

2

0 0

]
. (3.95)
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Eqn.(3.95) implies that

X1x̌ =
1

x
, (3.96)

X1v̌ = b2
1e

x2

2 , (3.97)

X2x̌ = 0, (3.98)

X2v̌ = 0. (3.99)

Simplifying eqn.(3.96) and eqn.(3.98), we get

x̌ = x+ c1, (3.100)

similarly using eqn.(3.97) and eqn.(3.99), we have

v̌ = b2
1e

x2

2 + c2. (3.101)

∴ (x̌, v̌) = (x+ c1, b
2
1e

x2

2 + c2), (3.102)

is the general solution of eqn.(3.95).

For the transformations given by eqn.(3.102) to be a symmetry of the eqn.(3.74), we

must have

v̌′ = x̌v̌. (3.103)

Now,

v̌′ =
dv̌

dx̌

=
d(b2

1e
x2

2 + c2)

d(x+ c1)

= b2
1xe

x2

2 . (3.104)
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So, eqn.(3.103) becomes

b2
1xe

x2

2 = (x+ c1)(b2
1e

x2

2 + c2)

b2
1xe

x2

2 = b2
1xe

x2

2 + xc2 + c1e
x2

2 + c1c2, (3.105)

is the symmetry condition.

The symmetry condition given by eqn.(3.105) is satisfied if b2
1 = 1 and c1 = 0 = c2.

So, discrete symmetry of differential equation (3.74) is

(x̌, v̌) = (x, e
x2

2 ). (3.106)

34



Chapter 4

Summary

Peter E. Hydon’s method is used to find the discrete symmetries of the differential

equations having order≥ 2, but here we use it for differential equations of first order.

Basically this method consists of two major steps, i.e. finding solutions of the deter-

mining equations and apply the symmetry condition on that solution. His method

is available for abelian and non-abelian Lie algebra. For abelian Lie algebra one can

use canonical coordinates while in other case one can use the non-linear constraints

equations and then solve the system by using in-equivalent matrices. As first order

differential equations have infinite dimensional Lie algebra, we considered a subgroup

from these infinite dimensional Lie algebra and find out its discrete symmetries. With

the help of his method we can not only reduce the equations to simple forms but also

can find all the discrete symmetries of the given differential equations.
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