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Abstract

This dissertation investigates the slip and radiation effects for the flow and

heat transfer analysis of a Walters-B fluid. It is assumed that flow impinges

obliquely on a stretching surface. The mathematical model is developed by uti-

lizing conservation laws of mass, momentum and energy. Similarity variables

are invoked to transform partial differential equations into ordinary differen-

tial equations. The obtained nonlinear problems are solved by implementing

two different numerical methods namely, a hybrid numerical method and a

Legendre wavelet spectral collocation method. The velocity overshoot pre-

dicted through the hybrid solution is controlled by the combination of Legen-

dre wavelet spectral collocation method and shooting method. The results are

presented in graphs and tables and are discussed for the influence of pertinent

parameters.



Preface

In the past two decades the non-Newtonian fluids received considerable impor-

tance due to their practical applications in industry and technology. Different

constitutive relationships have been proposed to discuss the important char-

acteristics exhibited by the non-Newtonian fluids. Among these the Walters-B

fluid [1] is a subclass of the viscoelastic fluids. The governing equations of

Walters-B fluid are nonlinear and have one order more than the Navier-Stokes

equations. Furthermore, the leading order derivative term vanishes at the

starting point of the integration. This complexity challenged mathematicians

to develop methods that overcome this difficulty. Beard and Walters [1] solved

the problem of the stagnation point flow by using perturbation method. They

presented a two term solution of the problem and overshoot in the velocity is

predicted by the perturbation solution for the first time. Frater [2] suggested

that this overshoot in the boundary layer is due to the approximate solution.

Ariel [3] proposed a hybrid numerical method that combines the features of

finite difference and shooting methods to solve the stagnation point flow of

Walters-B fluid. In another paper Ariel [4] implemented generalized Gear’s

method and reported the same solution. Labropulu et. al. [5-10] solved differ-

ent aspects of the boundary layer flow of Walters-B fluid using hybrid method.

In a recent article Hussian et. al. [11] discussed the oblique stagnation point

flow in Walters-B fluid towards a stretching sheet. In present dissertation we

extended the problem of Hussain et. al. [11] by incorporating slip [12] and

radiation effects [13]. Both hybrid method proposed by Ariel [3] and Legendre

wavelet spectral collocation method [14] together with shooting method [15]

are utilized to obtain the solution. The dissertation is structured as follow:

In chapter 1 basic definitions, governing equations and numerical methods are

presented. Chapter 2 is denoted for the detailed review of the paper by Hus-

sain et. al. [11]. The slip and radiation effects are presented in Chapter 3

using hybrid numerical method. In Chapter 4 the Legendre wavelets spectral

collocation method is implemented to discuss the slip and radiation effects for

stagnation point flow of a Walters-B fluid past a stretching sheet.
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Chapter 1

Fundamentals of fluid mechanics

1.1 Introduction to fluid mechanics

Fluid mechanics deals with the study of all fluids under static and dynamic

situations. It deals with a relationship between forces, motions and statical

conditions in a continuous material. The fluid mechanics study involves many

fields that have no clear boundaries between them. Researchers distinguish

between orderly and chaotic flow as the laminar and the turbulent flow. The

objective of present chapter is to introduce the readers with the basic concepts

of fluid mechanics. These basic details are vital in studying the fluid flow phe-

nomenon presented in this dissertation.

1.2 Fundamental concepts

1.2.1 Flow

When a force acts on a substance, it undergoes deformation. If the deformation

of substance takes place continuously, then the phenomenon is called a flow.

1.2.2 Fluid

If a substance deforms continuously under the effect of tangential forces (shear

stresses) then substance is called a fluid. All liquids, gases, plasmas and to

some extent plastic solids are fluids.
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1.2.3 Pressure

Force per unit area acting normal to the surface is called pressure. It is a

scalar quantity. Mathematically

p =
Fn
A

=
dFn
dA

, (1.1)

where Fn is the magnitude of the normal direction force and A is the cross

sectional area. No change occurs in pressure by changing the orientation of

surface elements.

1.2.4 Density

Density is the mass per unit volume of a substance at a given pressure and

temperature. It is denoted by ρ and in mathematical terms can be written as

ρ =
m

V
. (1.2)

The SI unit of density is kg
m3 .

1.2.5 Stress

If a body for example fluid, is deformable then the stress is the internal force

acting on that deformable body. Quantitatively, stress is the amount of average

force per unit area of a control volume within the deformable body.

Shear stress

The stress applied in tangential direction is called tangential or shear stress.

Normal stress

The stress applied in normal direction is the normal or tensile stress.

1.2.6 Viscosity

When a stress is applied to a deformable body it deforms and resists the applied

stress. This resistance is known as viscosity. Viscosity is used to measure the

degree of internal friction in the fluid.
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Dynamic viscosity

Dynamic viscosity also known as absolute viscosity is the ratio of shear stress

τ to the rate of deformation ∂u/∂y. Mathematically,

µ =
τ

∂u/∂y
. (1.3)

The unit of dynamic viscosity is kg
ms

.

Kinematic viscosity

Kinematic viscosity also known as relative viscosity is rate at which momentum

is transferred through a fluid. It is the ratio of absolute viscosity µ to the

density ρ and is denoted by ν. Mathematically,

ν =
µ

ρ
. (1.4)

The unit of kinematic viscosity is m2

s
.

1.2.7 Boundary layer

The boundary layer is a very thin layer of the fluid over the surface. The

resistance or viscosity is maximum near the surface. As one moves away from

the surface the effect of viscosity reduces and after a thin region above the

surface this effect is negligible. Layer of the fluid inside the boundary layer

moves faster than that near to the surface. At the top of the boundary layer

the velocity of fluid particles is same as that of velocity of fluid particles outside

the boundary layer. This velocity is called free stream velocity.

1.2.8 Boundary layer thickness

The distance from the surface to the fluid layer that attains a free stream

velocity is termed as boundary layer thickness. It is denoted by δ.

1.2.9 Stagnation point

If there exists a point in the flow field where the velocity of the fluid becomes

zero is called a stagnation point.
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1.2.10 Newtonian fluids

Fluids in which shear stress is directly and linearly proportional to the defor-

mation rate are called Newtonian fluids. For unidirectional flow,

τ = µ
du

dy
. (1.5)

This law is known as Newton’s law of viscosity. Water, oil and air are some

examples of such fluids. It is important to mention that for Newtonian fluids

viscosity is constant.

1.2.11 Non-Newtonian fluids

If the relation between the shear stress and deformation rate is non linear, we

call the fluid as non-Newtonian fluid. In mathematical terms,

τ = k

(
du

dy

)n
, (1.6)

where k is consistency index and n is flow behavior index. Eq. (1.6) can be

written as

τ = k

(
du

dy

)n−1
du

dy
= η

du

dy
, (1.7)

where η is apparent viscosity. Tooth paste, shampoo, blood, paint, gel etc. are

some examples of non-Newtonian fluids. The viscosity for a non-Newtonian

fluid is not constant and is a function of shear stress.

1.2.12 Viscoelastic fluids

Viscoelastic fluids are the materials that exhibit both viscous and elastic char-

acteristics when undergoing deformation. Honey and all polymer solutions are

examples of the viscoelastic fluids.

1.2.13 Prandtl number

The Prandtl number is a dimensionless number defined as the ratio of viscous

diffusivity to thermal diffusivity, i.e. the Prandtl number is given as

Pr =
ν

α
=
µcp
k
, (1.8)

where cp is the specific heat and k is the thermal conductivity.
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1.3 Classification of fluid flows

In every fluid some parameters associated with it vary when fluid is moving.

The variation in the parameters may be with respect to time or space coor-

dinates. Based on these variations in the parameters we can classify the fluid

flows.

1.3.1 Steady flow

If the flow parameters or properties do not vary with respect to time, we say

flow is steady.

1.3.2 Unsteady flow

If the flow parameter or properties are function of time and change when time

changes, we call the flow as unsteady.

1.3.3 Uniform flow

If the flow properties remain constant along the flow path, we say that flow is

uniform.

1.3.4 Non-uniform flow

If the flow properties are different at different points of space, we say that flow

is non-uniform.

1.3.5 Laminar flow

If a fluid is flowing in such a way that each particle of fluid has a definite path

and the path of particles do not intersect we call it as a laminar flow.

1.3.6 Turbulent flow

As the speed of fluid flow increases the intersection between different layers

occurs and thus smoothness of layers is destroyed and flow becomes turbulent.
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1.3.7 Rotational flow

If the particles of the fluid are in angular motion we say that flow is rotational.

For such flow

∇×V 6= 0, (1.9)

where V is velocity field.

1.3.8 Irrotational flow

If there is no angular motion present we say that flow is irrotational. For such

flow

∇×V = 0. (1.10)

1.3.9 Incompressible flow

If the volume of given fluid particles remain constant i.e. the density of the

fluid is constant, the flow is classified as incompressible flow. Generally, all

liquids are incompressible fluids.

1.3.10 Compressible flow

If the volume of the fluid particles varies with space and time i.e. the density

is function of space and time and no more constant, the flow is said to be

compressible. All gases are compressible fluids.

1.4 Assumptions for fluid flow

To study a fluid flow one has to make some basic assumptions which as a result

turn into equations. The analysis of any problem in fluid mechanics necessarily

has the following assumptions.

1. Conservation of mass

2. Conservation of momentum

3. Conservation of energy

it is not necessary to consider all the basic laws to study one specific problem.

Moreover, in certain situations one has to bring additional relations describing

physical properties of fluids under certain given conditions.
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1.4.1 Conservation of mass (continuity equation)

The law of conservation of mass for compressible flow is given by

∂ρ

∂t
+∇ · (ρV) = 0, (1.11)

for steady and incompressible flow conservation of mass is given by

∇ ·V = 0. (1.12)

In Cartesian coordinates, the component form of the continuity equation is

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (1.13)

in which u, v, w are the velocity components in x, y,z directions respectively.

1.4.2 Conservation of momentum

The conservation of momentum is expressed by the relation

ρ

[
∂V

∂t
+ (V · ∇)V

]
= −∇p+∇ ·T + ρb, (1.14)

where p is the pressure, T is the Cauchy stress tensor and b is the body force

per unit volume. In absence of body forces the momentum equations for a

viscous fluid in Cartesian coordinates are

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
, (1.15)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
, (1.16)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= −∂p

∂z
+ µ

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
. (1.17)
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1.4.3 Conservation of energy

Law of conservation of energy is given by

ρcp

[
∂T

∂t
+ (V · ∇)T

]
= k ∇2T +∇ · q + τ : ∇V +Q, (1.18)

where T is the temperature, k is thermal conductivity, q is the radiative heat

flux, cp is the specific heat and Q is the heat source or sink. In component

form the heat equation becomes

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

k

ρcp

(
∂2T

∂x2
+
∂2T

∂y2

)
− 1

ρcp

∂qr
∂y

+
2µ

ρcp

{(
∂u

∂x

)2

+

(
∂v

∂y

)2}
+

µ

ρcp

{(
∂u

∂y
+
∂v

∂x

)2}
+

Q

ρcp
(T − T∞), (1.19)

where qr is the radiative heat flux, T and T∞ respectively are fluid temperatures

within the boundary layer and in the free stream.

1.5 Boundary conditions

Boundary conditions are very important to discuss the mathematical solution

of the equations governing a particular flow problem. Boundary condition is

a set of conditions that must be satisfied at the region in which a system of

differential equations is to be solved.

1.5.1 No-slip boundary condition

If a fluid is flowing over a solid surface, the no slip boundary condition states

that the fluid will have zero velocity relative to the boundary i.e. there is no

relative motion between fluid and the solid surface.

1.5.2 Slip boundary condition

Slip boundary condition states that the fluid velocity at the surface is propor-

tional to the shear stress at the surface. Mathematically,

µvs = bτs, (1.20)

where b is the slip length. vs and τs are velocity and shear stress at the surface

respectively. The slip length b is the distance inside the surface where the

velocity is zero.
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1.6 Method used for solution

Here we will explain numerical techniques we have used to solve the governing

equations in next chapters.

1.6.1 Shooting method

Shooting method [15] is one of the iterative techniques used for boundary value

problems. First we reduce boundary value problem into a system of first order

initial value problems. A guess is made for the missing initial condition then

we find the solution of initial value problem instead of boundary value problem.

Let us consider a second order boundary value problem.

d2y

dx2
= f(x, y,

dy

dx
), (1.21)

with boundary condition

y(0) = 0, y(L) = A, (1.22)

where f is an arbitrary function and data is prescribed at x = 0 and x = L.

To solve the boundary value problem we reduce it into a system of first order

differential equations as

dy

dx
= u,

du

dx
= f(x, y, u), (1.23)

with initial conditions

y(0) = 0, y′(0) = u(0) = s, (1.24)

where s denotes the missing initial condition which will be assigned an initial

value. If we denote the solutions of initial value problem as y(x, s) and u(x, s),

we can search the value of s such that

y(L, s)− A = 0 = φ(s). (1.25)

Here one can use Newton’s formula to find the value of s as follow

s(n+1) = s(n) − φ(s(n))
dφ(s(n))

ds

, (1.26)

which implies that

s(n+1) = s(n) − y(L, s(n))− A
∂y(L,s(n))

∂s

. (1.27)
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To find the derivative of y w.r.t. s we differentiate the system of equations

w.r.t s and get
dY

dx
= U,

dU

dx
=
∂f

∂y
Y +

∂f

∂u
U, (1.28)

where

Y =
∂y

∂s
, U =

∂u

∂s
, (1.29)

initial condition becomes

Y (0) = 0, U(0) = 1. (1.30)

The solution of Eq. (1.21) with boundary condition (1.22) can therefore be

obtained by applying the following steps:

1. We choose the initial guess for the missing initial condition (1.24) and

denote it by s(1).

2. We solve the system of Eqs. (1.23) subject to initial conditions (1.24)

from x = 0 to x = L.

3. We Integrate the system of Eqs.(1.28) subject to initial condition (1.30)

from x = 0 to x = L.

4. Substituting the value of y(L, s(1)) obtained by step (2) and Y (L, s(1))

obtained by step (3) into Eq. (1.29) as

s(2) = s(1) − y(L, s(1))− A
∂y(L,s(1))

∂s

, (1.31)

so next approximation of missing initial condition s(2) is obtained.

5. We repeat steps until value of s is in specified degree of accuracy.

1.6.2 Hybrid numerical method

This hybrid numerical method was introduced by P.D. Ariel [3] in 1992 for

computing the flow of viscoelastic and second-order fluids. This method is a

combination of finite difference technique and the shooting method [15]. Here

10



we applied this method to obtain the numerical solution to the flow problem

of the Walters-B fluid. A classical example of this method is the analysis

of the two-dimensional flow of Walters-B fluid at a stagnation point given by

Beard and Walters [1]. The governing equation of motion in form of non-linear

ordinary differential equation in F is

F ′′′ + FF ′′ − F ′2 + 1 +K(FF iv − 2F ′F ′′′ + F ′′2) = 0, (1.32)

with the boundary conditions

F (0) = 0, F ′(0) = 0, F ′(∞) = 1, (1.33)

Beard and Walters [1] investigated the solution of the problem (1.32) by as-

suming

F = F0 + kF1. (1.34)

The differential equations obtained for both F0 and F1 are of third order and

their solution can be obtained by using the any standard integration technique.

It was observed that the velocity in the boundary layer exceeds the mainstream

velocity. Due to phenomenon of overshoot in velocity this problem attracted

considerable attention and has been attempted by different researchers using

different numerical techniques. Frater [2] argued that the velocity overshoot

is due to seeking a regular perturbation solution for the problem. He did

not present the velocity profiles in his work, so that the question of velocity

overshoot in boundary layer remained unanswered. Further it can be seen that

there is a singularity at y = 0. Secondly, the initial value problem becomes

highly unstable numerically for K → 0 so simple integration techniques cannot

be applicable. In 1992 P.D. Arial [3] solved the problem (1.32) by using a

hybrid method which combines the finite difference technique and the shooting

method [15]. The central difference technique is used to increase the accuracy

of the solution.

Let us assume

F ′′(0) = s, (1.35)

then equation (1.32) can be treated as an initial value problem and value of s

can be obtained by shooting method such that (1.33) is satisfied. We find the

values of F ′′′(0) which is extra condition to solve the Eq. (1.32) by substituting

the initial condition in (1.32), we get

F ′′′(0) = −(1 +Ks2), (1.36)
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Let

y1 = F, y2 = F ′, y3 = F ′′, y4 = y′3 = F ′′′, y′′3 = F iv, (1.37)

then Eqs. (1.32)- (1.33) can be written as

y′3 + y1y3 − y2
2 + 1 +K(y1y

′′
3 − 2y2y

′
3 − y2

3) = 0, (1.38)

y1(0) = 0, y2(0) = 0, y3(0) = s, y′3(0) = −(1+Ks2), y2(∞) = 1. (1.39)

Let us introduce a mesh defined yi = ih, i = 1, 2, .....N . We will replace

the 1st and 2nd derivatives in Eq. (1.38) by following the central difference

formulas

y′3 =
yj+1

3 − yj−1
3

h
y′′3 =

yj+1
3 − 2yj3 + yj−1

3

h2
, (1.40)

which leads the system of equations

yj+1
3 =

(
1 +

2K

h
yj1− 2Kyj2

)−1[
yj−1

3 − 2h
[
yj1y

j
3 + 1− (yj2)2

]
−K

(
2yj1

yj−1
3 − 2yj3

h

+2yj2y
j−1
3 + 2h(yj3)2

)]
, (1.41)

yj+1
2 = yj2 +

1

2
h(yj3 + yj+1

3 ), (1.42)

yj+1
1 = yj1 +

1

2
h(yj2 + yj+1

2 ), (1.43)

boundary conditions (1.33) becomes

y0
1 = 0 y0

2 = 0 yN2 = 1. (1.44)

We obtain the value of y1
3 by expending y1

3 in Taylor Series around y = 0. We

have
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y1
3 = y0

3 + h(y0
3)′ +

h2

2!
(y0

3)′′ + ......., (1.45)

or

y1
3 = F ′′(0) + hF ′′′(0) +

h2

2!
F iv(0) + ...... (1.46)

To obtain the value of F iv(0) we differentiate Eq. (1.32) and set y = 0. We

have

F iv(0) = 0, (1.47)

therefore

y1
3 = s− h(1 + ks2). (1.48)

Now we first choose an approximate value of F ′′(0) = s and y1
3 is calculated

from Eq. (1.48). Then y1
2 and y1

1 are calculated from Eqs. (1.42) and (1.43).

Then y2
3 is calculated from Eq. (1.43). Then y2

2 andy2
1 are calculated from

Eqs. (1.42) and (1.43). Repeat the cycle until the values of y1, y2, and y3 have

been calculated at all the mesh points. The values of s is modified by using

the secant method defined by

sn+1 = sn +
(
1− F ′(∞, sn)

) sn − sn−1

F ′(∞, sn)− F ′(∞, sn−1)
. (1.49)

This process is repeated so that we can get a solution of desired accuracy.

1.6.3 Legendre wavelet spectral collocation method

This is an iterative method for solving differential equations with initial values

on large intervals. In this method, we extend the Legendre wavelet suitable for

large intervals and then the Legendre-Gauss collocation points of the Legendre

wavelets are derived. The iterative spectral method converts the differential

equation to a set of algebric equations. By solving these algebric equations we

get an approximate solution for the differential equation.

Let us consider the initial value problem

F
(
x, y(x), y′(x), ....., y(l−1)(x), y(l)(x)

)
= 0, x ∈ [0, T ), (1.50)
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with the initial conditions

y(x0) = y0, ......, y
(l−1)(x0) = y

(l−1)
0 , (1.51)

on large domain [0,T). Discrete wavelet transform is defined as

ψm,n(t) = a−m/2ψ(a−mt− nb), (1.52)

where am is the scale and namb is the shift for any m,n ∈ Z and ψ is derived

from Legendre polynomial. ψm,n(t) depends on five arguments (k, T, n,m, t),

T is large integer, m is order of the Legendre polynomial, t stands for the

normalized time.

k = 1, 2, ...., T, n = 1, 2, ......, 2k−1T. (1.53)

We define the Legendre wavelets on the intervals [0,T) by

ψm,n(t) =

{
(m+

1

2
)1/22k/2Lm(2kt− 2n+ 1),

n− 1

2k−1
≤ t <

n

2k−1
,

0, otherwise (1.54)

Lm(t) is mth-order Legendre polynomial with orthogonal weight function

w(t) = 1. By recursive formulas Legendre polynomials are obtained.

L0(t) = 1,

L1(t) = t,

Lm+1(t) =
2m+ 1

m+ 1
tLm(t)− m

m+ 1
Lm−1(t), m = 1, 2, 3..... (1.55)

Legendre-Gauss collocation points x0 < x1 < x2.... < xm−1 are roots of the

Lm(x) in (−1, 1) and{wj}m−1
j=0 are corresponding weights and

wj =
2

(1− x2
j)(L

′
M(xj))2

, j = 0, 1, ....,M − 1. (1.56)
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Any function f(x) can be extended in term of Legendre wavelets as

f(x) =
∞∑
n=1

∞∑
m=0

yn,mψn,m(x) (1.57)

where yn,m can be approximated to

yn,m '
M−1∑
j=0

w̄jf(xnj)ψn,m(xnj), (1.58)

where

w̄j =
wj
2k
, xnj =

xj
2k

+
2n− 1

2k
, (1.59)

j = 0, 1, .......M − 1, n = 1, 2, ....., 2k−1T. (1.60)

so Eq.(1.55) becomes

f(x) '
∞∑
n=1

∞∑
m=0

M−1∑
j=0

w̄jf(xnj)ψn,m(xnj)ψn,m(x), (1.61)

since
∞∑
n=1

∞∑
m=0

ψn,m(x)ψn,m(t) = δ(x− t), (1.62)

is identity so truncating M − 1, 2k−1 T and introducing

Inj(x) =
M−1∑
m=0

w̄jψn,m(xnj)ψn,m(x), (1.63)

we have

f(x) '
2k−1T∑
n=1

M−1∑
j=0

Inj(x)f(xnj). (1.64)

Solving IVPs on a large domain

Consider the problem (1.48) with initial condition (1.49). We divide the

interval [0,T) into subintervals given by[
n− 1

2k−1
,

n

2k−1

)
, (1.65)
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for n = 1, 2, ....., 2k−1T. As a result, x ∈
[
n−1
2k−1 ,

n
2k−1

)
implies that

ψpj(x) = 0 for any p 6= n. (1.66)

Thus, Ipj(x) = 0 for all p 6= n. Consequently, the Legendre wavelet interpolant

approximation to the function y on the nth subinterval follows (1.64) and is

given by

y(x) ' Yn(x)

=
2k−1T∑
p=1

M−1∑
j=0

Ipj(x) ypj(x) (1.67)

=
M−1∑
j=0

Inj(x) ynj(x), for x ∈
[
n− 1

2k−1
,

n

2k−1

)
. (1.68)

We define

Y (s)
n (x) =

M−1∑
j=0

I
(s)
nj (x) ynj(x), s = 1, 2, .......m. (1.69)

Applying the points { xnj | n = 1, 2, ......, 2k−1T, j = l......,M − 1} into

Eq. (1.48) we obtain

F

(
xnj, Yn(xnj), Y

′
n(xnj), ......, Y

(l−1)
n (xnj), Y

l
n(xnj)

)
= 0, (1.70)

moreover, for the nth subinterval the initial conditions for any s = 0, ...., l− 1

can be written as follow

lim
x→
(

(n−1)/2k−1
)− Y (s)

n (x)− Y (s)
n

(
n− 1

2k−1

)
= 0. (1.71)

Equations (1.70) and (1.71) give a system of M algebric equations. By solving

this system of algebric equations we obtain { ynj | n = 1, 2, ......, 2k−1T,

j = 0......,M − 1}. We obtain the approximate solution on the nth subinterval

by substituting ynj into Eq. (1.67).

We start the procedure by setting n = 1 and the initial conditions (1.51) are

used to obtain the approximate solution for the first subinterval
[
0, 1/2k−1

)
.

We obtain the initial conditions for second subinterval from equation (1.71).
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Consequently, an approximate solution for the second subinterval is computed.

Similar procedure is followed to compute the approximate solution for all subin-

tervals. Finally, the approximate solution for the initial value problem (1.50)

with initial conditions (1.51) on the whole domain [0, T) is obtained and is

given by

y(x) '
2k−1T∑
n=1

Yn(x) =
2k−1T∑
n=1

M−1∑
j=0

Inj(x) ynj(x). (1.72)
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Chapter 2

Hybrid numerical method in

stagnation-point flow of a viscoelastic

fluid

This chapter contains the details of the steady, incompressible two-dimensional

oblique stagnation-point flow of Walters-B fluid over a stretching plate dis-

cussed by Labropulu et al. [11]. The behavior inside the boundary layer of

Walters-B fluid for various values of the viscoelastic parameter is investigated.

The governing partial differential equations are reduced into a system of cou-

pled dimensionless ordinary differential equations by using similarity transfor-

mations. A numerical solution of the governing equations is obtained by using

a hybrid numerical method [3] which combines the features of finite difference

and shooting methods.

2.1 Formulation of mathematical equations

Consider the steady, incompressible two-dimensional oblique stagnation-point

flow of Walters-B fluid towards a stretching surface at ȳ = 0. Cartesian coor-

dinates are (x̄, ȳ) such that the x̄-axis being along the surface and the ȳ-axis

perpendicular to the surface. The constitutive equation for Walters-B fluid is

T = −pI + τ , (2.1)

where τ is the extra stress tensor defined by [1]

τ = µA1 − k0τ̄ , (2.2)
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in which k0 is fluid viscoelasticity and first Rivilin-Ericksen tensor A1 is defined

as

A1 = L + LT, (2.3)

in which

L = grad V̄, (2.4)

and

τ̄ =
∂A1

∂t
+ (V̄ · ∇̄)A1 −A1L− LTA1 + (∇̄ · V̄)A1, (2.5)

Substituting (2.2) - ( 2.5) in (2.1) we have

T = −pI +µA1− k0

(
∂A1

∂t
+ (V̄ · ∇̄)A1−A1L− LTA1 + (∇̄ · V̄)A1

)
. (2.6)

For two dimensional flow we have the following velocity field

V̄ = [ū(x̄, ȳ), v̄(x̄, ȳ), 0]. (2.7)

Substituting (2.6) and (2.7) into Eqs. (1.11) and (1.13), one obtains the fol-

lowing equations in component form

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0, (2.8)

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= −1

ρ

∂p̄

∂x̄
+ ν∇̄2ū− k0

ρ

[
∂

∂x̄

[
2ū
∂2ū

∂x̄2
+ 2v̄

∂2ū

∂x̄∂ȳ
+ 4

(
∂ū

∂x̄

)2

+

2
∂v̄

∂x̄

(
∂v̄

∂x̄
+
∂ū

∂ȳ

)]
+
∂

∂ȳ

[(
ū
∂

∂x̄
+v̄

∂

∂ȳ

)(
∂v̄

∂x̄
+
∂ū

∂ȳ

)
+2

∂ū

∂x̄

∂ū

∂ȳ
+2

∂v̄

∂x̄

∂v̄

∂ȳ

]]
, (2.9)

ū
∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
= −1

ρ

∂p̄

∂ȳ
+ ν∇̄2v̄ − k0

ρ

[
∂

∂x̄

[(
ū
∂

∂x̄
+ v̄

∂

∂ȳ

)(
∂v̄

∂x̄
+
∂ū

∂ȳ

)
+

2
∂ū

∂x̄

∂ū

∂ȳ
+ 2

∂v̄

∂x̄

∂v̄

∂ȳ

]
+

∂

∂ȳ

[
2ū

∂2v̄

∂x̄∂ȳ
+ 2v̄

∂2v̄

∂ȳ2
+ 4

(
∂v̄

∂ȳ

)2

+ 2
∂ū

∂ȳ

(
∂v̄

∂x̄
+
∂ū

∂ȳ

)]]
.

(2.10)

In term of the stream function ψ̄(x̄, ȳ)
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ū =
∂ψ̄

∂ȳ
, v̄ = −∂ψ̄

∂x̄
, (2.11)

Eqs. (2.9) and (2.10) takes the form

ψ̄ȳψ̄x̄ȳ − ψ̄x̄ψ̄ȳȳ = −1

ρ
p̄x̄ + ν[ψ̄x̄x̄ȳ + ψ̄ȳȳȳ]−

k0

ρ

[
13ψ̄x̄ȳψ̄x̄x̄ȳ + ψ̄ȳψ̄x̄x̄x̄ȳ − ψ̄x̄ψ̄x̄x̄ȳȳ

+4ψ̄x̄x̄ψ̄x̄x̄x̄− 2ψ̄x̄ȳȳψ̄x̄x̄− 3ψ̄ȳȳψ̄x̄x̄x̄ + 3ψ̄ȳȳψ̄x̄ȳȳ + ψ̄ȳψ̄x̄ȳȳȳ − ψ̄ȳȳȳȳψ̄x̄ + ψ̄ȳȳȳψ̄x̄ȳ

]
,

(2.12)

−ψ̄ȳψ̄x̄x̄+ψ̄x̄ψ̄x̄ȳ = −1

ρ
p̄ȳ−ν[ψ̄x̄x̄x̄+ψ̄x̄ȳȳ]−

k0

ρ

[
ψ̄x̄ȳψ̄x̄x̄x̄−ψ̄ȳψ̄x̄x̄x̄x̄+13ψ̄x̄ȳψ̄x̄ȳȳ−

ψ̄ȳψ̄x̄x̄ȳȳ + 3ψ̄x̄x̄ψ̄x̄x̄ȳ + ψ̄x̄ψ̄x̄x̄x̄ȳ + ψ̄x̄ψ̄x̄ȳȳȳ − 2ψ̄x̄x̄ȳψ̄ȳȳ − 3ψ̄ȳȳȳψ̄x̄x̄ + 4ψ̄ȳȳψ̄ȳȳȳ

]
.

(2.13)

For the present flow the appropriate boundary conditions are

ψ̄ = 0
∂ψ̄

∂ȳ
= cx̄ at ȳ = 0, (2.14)

ψ̄ = ax̄ȳ +
1

2
bȳ2 as ȳ →∞, (2.15)

where a, b and c are constants. It is important to mention that boundary

condition (2.15) is given by Stuart [16], Tamada [17] and Dorrepaal [18]. In-

troducing the dimensionless variables

x = x̄

√
c

ν
, y = ȳ

√
c

ν
, ψ =

ψ̄

ν
, p =

1

ρνc
p̄. (2.16)

We obtain the transformed system of equations as follows

ψxxxx+ψyyyy +2ψxxyy +ψxψyyy +ψxψxxy−ψyψxxx−ψyψxyy +We

[
−2ψyψxxxyy
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+2ψxψxxyyy − ψyψxyyyy + ψxψyyyyy − ψyψxxxxx + ψxψxxxxy

]
= 0, (2.17)

We = k0c
ρν

is Weissenberg number. The boundary conditions are

ψ = 0
∂ψ

∂y
= x at y = 0, (2.18)

ψ =
a

c
xy +

1

2
γy2 as y →∞, (2.19)

where γ = b/c is freestream shear stress of fluid.

2.1.1 Transformation from PDE to ODE

Following Tamada [17] and Dorrepaal [18] we assume that

ψ(x, y) = xF (y) +G(y), (2.20)

where F (y) and G(y) respectively are normal and tangential components of

the flow. Substituting (2.20) into Eq. (2.17) and eliminating like powers of x

we have

−F ′(y)F ′′(y)) + F (y)F ′′′(y) + F iv(y) +We
[
− F ′(y)F iv(y) + F (y)F v(y)

]
= 0,

(2.21)

−G′(y)F ′′(y) + F (y)G′′′(y) +Giv(y) +We
[
−G′(y)F iv(y) + F (y)Gv(y)

]
= 0.

(2.22)

Integrating (2.21) and (2.22) w.r.t. y

F ′′′(y) + F (y)F ′′(y)− [F ′(y)]2 +We
[
F (y)F iv(y)− 2F ′(y)F ′′′(y) + [F ′′(y)]2

]
+c1 = 0, (2.23)

G′′′(y)+F (y)G′′(y)−F ′(y)G′(y)+We
[
F (y)Giv(y)−F ′(y)G′′′(y)+F ′′(y)G′′(y)

−F ′′′(y)G′(y)
]

+ c2 = 0. (2.24)
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Incorporating the free stream conditions, integrating constants are evaluated

and resulting equations are given by

F ′′′(y)+F (y)F ′′(y)−[F ′(y)]2+
a2

c2
+We

[
F (y)F iv(y)−2F ′(y)F ′′′(y)+[F ′′(y)]2

]
= 0,

(2.25)

G′′′(y)+F (y)G′′(y)−F ′(y)G′(y)+We
[
F (y)Giv(y)−F ′(y)G′′′(y)+F ′′(y)G′′(y)

−F ′′′(y)G′(y)
]

= Aγ, (2.26)

where A = F (∞) − y∞ ∗ a/c is a constant describing the boundary layer

displacement. Now introducing

G′(y) = γH(y), (2.27)

Eq. (2.26) can be written as

H ′′(y)+F (y)H ′(y)−F ′(y)H(y)+We
[
F (y)H ′′′(y)−F ′(y)H ′′(y)+F ′′(y)H ′(y)

−F ′′′(y)H(y)
]

= A. (2.28)

The boundary conditions now take the form

F (0) = 0, F ′(0) = 1, F ′(∞) =
a

c
, (2.29)

G(0) = 0, G′(0) = 0, G′′(∞) = γ, (2.30)

H(0) = 0, H ′(∞) = 1, (2.31)

2.1.2 Skin friction

The shear stress for Walters-B fluid is given by [1]

τ 12 = µ(ūȳ + v̄x̄)− ko
[
ū(ūx̄ȳ + v̄x̄x̄) + v̄(ūȳȳ + v̄x̄ȳ)− 2ūx̄v̄x̄ − 2ūȳv̄ȳ

]
, (2.32)

in terms of stream function it takes the form
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τ 12 = µ(ψ̄ȳȳ − ψ̄x̄x̄)− ko
[
ψ̄ȳ(ψ̄x̄ȳȳ − ψ̄x̄x̄x̄)− ψ̄x̄(ψ̄ȳȳȳ − ψ̄x̄x̄ȳ) + 2ψ̄x̄ȳψ̄x̄x̄

+2ψ̄ȳȳψ̄x̄ȳ

]
. (2.33)

Skin friction at the wall is defined as

Cf =
τ 12|y=0

ρ(cx̄)2
. (2.34)

Using (2.16) we have

RexCf =

[
(ψyy − ψxx)−We[ψy(ψxyy − ψxxx)− ψx(ψyyy − ψxxy) + 2ψxyψxx

+2ψyyψxy]

]
y=0

, (2.35)

where Rex = c x̄2

ν
is the local Reynolds number. By using (2.20) in (2.35) we

have

RexCf = xF ′′(0) +G′′(0)−We
[
3xF ′(0)F ′′(0) + F ′′(0)G′(0)− xF (0)F ′′′(0)

−F (0)G′′′(0) + 2F ′(0)G′′(0)
]
. (2.36)

By using (2.29) - (2.31) we have

RexCf = x(1− 3We)F ′′(0) + (1− 2We)G′′(0), (2.37)

or

RexCf = x(1− 3We)F ′′(0) + (1− 2We)γH ′(0). (2.38)

2.2 Numerical results and discussion

The hybrid numerical method discussed in detail in section 1.6.1 is imple-

mented in Mathematica to obtain the solution of Eqs. (2.25) and (2.26) subject

to boundary conditions (2.29) and (2.30). In order to investigate the influence

of the emerging parameters on the velocity profile, graphical results are dis-

played in Figs. 2.1-2.7. The numerical data of F ′′(0) for various values of
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Weissenberg number We and the stretching parameter a/c are shown in Table

2.1. It is observed that F ′′(0) decreases for a/c < 1. An opposite behavior

in the case of a/c > 1 is observed for all values of Weissenberg number We.

The influence of Viscoelastic and stretching parameters on H ′(0) are given in

Table 2.2. The table shows that for a/c < 1, the values of H ′(0) decreases

by increasing We and for a/c > 1, the value of H ′(0) increases by increas-

ing We. An increase in H ′(0) is observed by increasing a/c for fixed value of

We. Figure 2.1 describes the change in horizontal velocity component F ′(y)

in response to parameter We when a/c = 1.2. As expected, the velocity of

the fluid increases by increasing the Weissenberg number We due to increased

effective viscosity. It is also interesting to note that the velocity overshoot

within the boundary layer is observed for We ≥ 0.2 and the solution cannot

be obtained for We > 0.3257864. However, for a/c < 1 an opposite trend

is presented in Figure 2.2 i.e. the velocity of fluid decreases with an increase

in We. The velocity of the fluid undershoots inside the boundary layer for

We ≥ 0.2. Figure 2.3 illustrates the influence of stretching parameter a/c

on the velocity profile when We = 0.1. It is observed that amplitude of the

velocity increases for a/c > 1 within the boundary layer and opposite trend

is observed for 0 < a/c < 1. In other words assisting flow has greater values

than opposing flow within the boundary layer region. Figure 2.4 describes the

effect of Weissenberg We on H ′(y) when a/c = 1.2. It is found that H ′(y)

decreases by increasing We. Moreover, one can easily observe that there ex-

ist small oscillations in the velocity that vanish at the infinity. An opposite

trend is observed in Figure 2.5 for a/c = 0.5 i.e. H ′(y) increases by increasing

We. The graphical presentation of streamline patterns for oblique flow is ana-

lyzed in Figure 2.6 and 2.7 for γ = 20 and γ = −20, respectively. For γ = 20

streamlines are inclined leftwards while the streamlines are inclined rightwards

for γ = −20.

Table 2.1: Influence of We and a/c on F ′′(0).

We a/c = 0.1 a/c = 0.5 a/c = 1.1 a/c = 1.2

0.0 - 0.969372 - 0.667351 0.164288 0.337735

0.05 - 0.997195 - 0.696776 0.176481 0.364668

0.1 - 1.027268 - 0.729988 0.191789 0.399246

0.2 - 1.095630 - 0.810187 0.239295 0.514011

0.3 - 1.177780 - 0.914228 0.352166 0.911348
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Table 2.2: Influence of We and a/c on H ′(0).

We a/c = 0.1 a/c = 0.5 a/c = 1.1 a/c = 1.2

0.0 0.226050 0.786921 1.006500 1.049188

0.05 0.211284 0.767119 1.029299 1.055435

0.1 0.189237 0.749586 1.033345 1.063717

0.2 0.147573 0.707326 1.045012 1.080598

0.3 0.110617 0.648268 1.050152 1.085944
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Figure 2.1: Effects of We on F ′(y) when a/c = 1.2.
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Chapter 3

Slip and radiation effects for

two-dimensional oblique stagnation

point flow towards a stretching surface

in a viscoelastic fluid by using hybrid

method

The aim of this chapter is to extend the analysis carried out in previous chapter

for the slip and radiation effects. A numerical solution is obtained by using

the hybrid numerical method [3] and shooting method [15]. Numerical and

graphical results for different parameters are presented and discussed in detail.

3.1 Mathematical formulation

3.1.1 Slip condition

The flow analysis here is governed by the same set of equations (2.25), (2.26)

and (2.28) described in detail in previous chapter. However, the no-slip con-

dition is replaced with the Navier [12] slip condition which states that the

velocity at the surface proportionally relates to the shear stress at the surface,

mathematically for the present flow situation we can write

ū = cx̄+
l

µ
τ 12|ȳ=0, (3.1)

where l is the slip length. In terms of dimensionless variables (2.16) we get
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ψy = x+ β

(
(ψyy − ψxx)−We[ψy(ψxyy − ψxxx)− ψx(ψyyy − ψxxy) + 2ψxyψxx

+2ψyyψxy]

)
y=0

, (3.2)

where β = l
√

c
ν

is the slip parameter. Substituting Eq. (2.51) in (3.2) and

eliminating like powers of x we have

F ′(0) = 1 + β
[
F ′′(0)− 3WeF ′(0)F ′′(0)

]
, (3.3)

or

F ′(0) =
1 + βF ′′(0)

1 + 3βWeF ′′(0)
. (3.4)

G′(0) = βG′′(0)− βWe
[
F ′′(0)G′(0) + 2F ′(0)G′′(0)

]
, (3.5)

or

G′(0) =
βG′′(0)

1 + βWeF ′′(0)

[
1− 2We

(
1 + βF ′′(0)

1 + 3βWeF ′′(0)

)]
. (3.6)

F (0) = 0, F ′(0) =
1 + βF ′′(0)

1 + 3βWeF ′′(0)
, F ′(∞) =

a

c
, (3.7)

G(0) = 0, G′(0) =
βG′′(0)

1 + βWeF ′′(0)

[
1− 2We

(
1 + βF ′′(0)

1 + 3βWeF ′′(0)

)]
,

G′′(∞) = γ. (3.8)

3.1.2 Energy equation

Equation that governs heat transfer with radiation effects and heat source/sink

in absence of viscous dissipation is given by

ū
∂T

∂x̄
+ v̄

∂T

∂ȳ
=

k

ρcp

∂2T

∂ȳ2
− 1

ρcp

∂qr
∂ȳ

+
Q

ρcp
(T − T∞), (3.9)

with

T = Tw at ȳ = 0, T → T∞ at ȳ →∞, (3.10)
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where T , Tw and T∞ respectively are the fluid temperatures inside the bound-

ary layer, at the wall and far away from stretching sheet. k, cp, qr and Q

respectively are thermal conductivity, specific heat constant, radiative heat

flux and heat source/sink. Q > 0 represents the heat source and Q < 0

represents the heat sink. Using Rossland approximation

qr =
−4σ∗

3k∗
∂T 4

∂ȳ
, (3.11)

in above Eq. σ∗ and k∗ respectively are the Stefan Boltzmann constant and

the mean absorption coefficient. Taylor series of T 4 is given by

T 4 = 4T 3
∞T − 3T 4

∞. (3.12)

Let α = k/ρcp and using (3.11) and (3.12) in (3.9) we have

ū
∂T

∂x̄
+ v

∂T

∂ȳ
= α

∂2T

∂ȳ2
+

1

ρcp

16σ∗T 3
∞

3k∗
∂2T

∂ȳ2
+

Q

ρcp
(T − T∞), (3.13)

ū
∂T

∂x̄
+ v

∂T

∂ȳ
=

(
α +

1

ρcp

16σ∗T 3
∞

3k∗

)
∂2T

∂ȳ2
+

Q

ρcp
(T − T∞). (3.14)

In term of dimensionless variables it can be written as

cψy
∂T

∂x
− cψx

∂T

∂y
=

(
α +

1

ρcp

16σ∗T 3
∞

3k∗

)
∂2T

∂y2

c

ν
+

Q

ρcp
(T − T∞). (3.15)

Introducing the transformation

T = T∞ + θ(y)(Tw − T∞). (3.16)

Using (2.20) and (3.16) into (3.15) we have

−F (y)θ′(y)(Tw−T∞) =

(
α+

1

ρcp

16σ∗T 3
∞

3k∗

)
1

ν
θ′′(y)(Tw−T∞) +

Q

cρcp
(T −T∞),

(3.17)

−µcp
k
F (y)θ′(y) = θ′′(y) +

16σ∗T 3
∞

3k∗k
θ′′(y) +

µcp
k

Q

cρcp
θ(y), (3.18)
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−Pr F (y) θ′(y) = θ′′(y) +Nr θ′′(y) + Pr λ θ(y), (3.19)

where Pr = µcp
k

, Nr = 16σ∗T 3
∞

3k∗k
and λ = Q

cρcp
are Prandtl number, radiation

parameter and the dimensionless heat source or sink parameter respectively.

(1 +Nr) θ′′(y) + Pr F (y) θ′(y) + Pr λ θ(y) = 0, (3.20)

θ′′(y) +
Pr

1 +Nr
F (y) θ′(y) +

Pr

1 +Nr
λ θ(y) = 0, (3.21)

θ′′(y) + Preff F (y) θ′(y) + Preff λ θ(y) = 0, (3.22)

where Preff = Pr
1+Nr

is the effective Prandtl number [20]. The Transformed

boundary conditions are

θ(0) = 1 θ(∞) = 0. (3.23)

The physical quantity of interest is the local Nusselt number defined as

Nux =
x̄qw

k(Tw − T∞)
, (3.24)

where qw is local heat flux defined by

qw = −k
(

1 +
16σ∗T 3

∞
3kk∗

)(
∂T

∂ȳ

)
ȳ=0

. (3.25)

Using (2.16) and (3.16), then simplifying we have

Re−1/2
x Nu∗x = −θ′(0), (3.26)

where Nu∗x = Nux/(1 +Nr) is the effective local Nusselt number.

3.2 Numerical results and discussion

Slip and radiation effects for oblique stagnation-point flow of Walters-B fluid

over a stretching surface are analyzed using a hybrid numerical method. The

numerical and graphical results are presented in this section. Table 3.1 presents
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the influence of Weissenberg number We, stretching parameter a/c and the

slip parameter β on F ′′(0). It is clear from the table that F ′′(0) increases by

increasing the Weissenberg number and stretching parameter while decreases

by increasing the slip β. The influences of Weissenberg number We, stretch-

ing parameter a/c, slip parameter β, effective Prandtl number Preff and heat

source/sink parameter λ on the effective local Nusselt number −θ(0) are dis-

cussed in Table 3.2. It is found that the value of effective local Nusselt number

decreases by increasing heat source/sink parameter while other parameters

show opposite effects. Figures 3.1 depicts the effect of Weissenberg number

We on the velocity F ′(y) when a/c = 1.2 and β = 1. An increase in Weis-

senberg number We enhances the velocity. Moreover, the presence of slip alters

the velocity of the fluid. Figure 3.2 exhibits the nature of F ′(y) against We for

0 < a/c < 1. The fluid velocity and the momentum boundary layer thickness

reduces with increasing We. Effects of stretching parameter a/c on F ′(y) are

shown in Figure 3.3. The velocity profile increases for a/c > 1 while decreases

in the case a/c < 1. Figures 3.4 and 3.5 are plotted to see the variation of

velocity profile against slip parameter β for a/c > 1 and 0 < a/c < 1 respec-

tively. We noted that the velocity increases by increasing the slip parameter

β in case of a/c > 1 while in case of 0 < a/c < 1, the observations are quite

opposite i.e. the velocity decreases by increasing β. The variation of H ′(0)

for changing Weissenberg number We in the presence of the slip is shown in

Figure 3.6. It is evident that the velocity is larger when We increases. It is

also interesting to observe that the shear velocity overshoots when We > 0.1.

The graphical representation of effects of Weissenberg number We on tempera-

ture is discussed in Figure 3.7. The temperature profile and thermal boundary

layer thickness increases by increasing We . Figure 3.8 analyze the effects of

stretching parameter a/c on the temperature profiles. The temperature profile

and the thermal boundary layer thickness reduce with increase of a/c. The

temperature profile for various values of slip parameter β is discussed in Figure

3.9. We observe that temperature increases for higher values of slip parame-

ter β. Figure 3.10 presents the effects of effective Prandtl number Preff on

temperature profile. This figure shows that temperature is a decreasing func-

tion of the effective Prandtl number Preff . In fact, the thermal diffusivity is

decreased for large effective Prandtl number which corresponds to decrease in

the temperature of the fluid. In order to see the response of temperature for

various values of heat source/sink, Figure 3.11 is interpreted. With increase

of heat source, the rate of heat transfer from sheet to source becomes larger
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which increases the temperature. However, the temperature decreases in case

of heat sink. The graphical analysis of stream function for changing We are

shown in Figure 3.12. The solid lines correspond to We = 0.1 while dashed

lines represent the stream lines for We = 0.3. In this case stagnation-point

moves rightwards by increasing We. Streamlines pattern for various values of

parameters β are shown in the Fig. 3.13. An increment in the slip param-

eter β moves stagnation-point leftwards. Streamlines for changing stretching

parameter a/c are shown in Fig. 3.14. Stagnation-point moves rightwards by

increasing a/c.
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Table 3.1: Influence of F ′′(0) for various values of We, a/c and β.

We a/c β F ′′(0)

0.1 1.2 0.5 0.241033

0.0 0.184738

0.1 0.241033

0.2 0.355157

0.3 0.771702

0.1 -0.647023

0.5 -0.453582

1.1 0.116202

1.2 0.241033

0.0 0.399251

0.5 0.241033

1 0.173351

2 0.111267

5 0.053748
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Table 3.2: Influence of −θ′(0) for various values of We, a/c, β, Preff and λ.

We a/c β Preff λ −θ′(0)

0.1 1.2 0.5 2 0.2 1.050671

0.0 1.050422

0.1 1.050671

0.2 1.053434

0.3 1.075769

0.1 0.537222

0.5 0.725719

1.1 1.007645

1.2 1.050671

0.0 1.025031

0.5 1.050671

1 1.061183

2 1.070603

5 1.079149

0.5 0.549541

1 0.749232

2 1.050671

5 1.647305

-1 1.815617

-0.5 1.533860

0.0 1.202865

0.5 0.791830

1 0.228288
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Figure 3.1: Effects of We on F ′(y) when a/c = 1.2 in the case of slip.
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Figure 3.2: Effects of We on F ′(y) when a/c = 0.5 in the case of slip.
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Figure 3.3: Effects of a/c on F ′(y) in the case of slip.
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Figure 3.5: Effects of β on F ′(y) when a/c = 0.5.
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Figure 3.6: Effects of We on H ′(y) in the case of slip.
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Figure 3.9: Effects of β on temperature θ(y).
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Figure 3.12: Streamlines pattern for various values of We in the case of slip.
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Figure 3.13: Streamlines pattern for various values of a/c in the case of slip.

-40 -20 0 20 40

0

1

2

3

4

5

6

x

y

We=0.2, a�c = 1.2, Γ=20

-20

-10
0

10

20

Β=0

Β=1

Figure 3.14: streamlines pattern for various values of β in the case of slip.
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Chapter 4

A Legendre wavelet spectral

collocation method for

two-dimensional oblique stagnation

point flow of Walters-B fluid with heat

transfer

In this chapter the details of slip and radiation effects in two-dimensional

oblique stagnation-point flow due to a stretching surface in Walters-B fluid

are discussed. The governing transformed ordinary differential equations dis-

cussed in chapter 3 are solved numerically by using Legendre wavelet spectral

collocation method (LWSM) [14] explained in section (1.6.3) in combination

with the shooting method [15] explained in section (1.6.1). Numerical and

graphical results are presented and discussed for various values of emerging

parameters.

4.1 Solution by the Legendre wavelet spectral

collocation method

Consider the boundary value problem

F ′′′ + FF ′′ − F ′2 +
a2

c2
+We

[
FF iv − 2F ′F ′′′ + F ′′2

]
= 0, (4.1)

F (0) = 0, F ′(0) =
1 + βF ′′(0)

1 + 3βWeF ′′(0)
, F ′(∞) =

a

c
. (4.2)
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First boundary value problem is converted into initial value problem by using

shooting method assuming

F ′′(0) = s , (4.3)

Differentiating (4.1) - (4.3) w.r.t. s we get

Z ′′′+ZF ′′+FZ ′′−2F ′Z ′+We
[
ZF iv +FZiv−2Z ′F ′′′−2F ′Z ′′′+2F ′′Z ′′

]
= 0,

(4.4)

Z(0) = 0, Z ′(0) =
β(1− 3We)(

1 + 3βWeF ′′(0)
)2 , Z ′′(0) = 1. (4.5)

The approximate solution of the resulting initial value problem (4.1)-(4.5), we

divide the domain 0 < y < T into subintervals given by[
n− 1

2k−1
,

n

2k−1

)
, (4.6)

for n = 1, ......, 2k−1T . The Legendre wavelet interpolation approximation to

the functions F (y) and Z(y) on the nth subinterval by following Eq. (1.72) is

given by

F (y) '
2k−1T∑
n=1

Fn(y) =
2k−1T∑
n=1

M−1∑
j=0

Inj(y) F (ynj), (4.7)

Z(y) '
2k−1T∑
n=1

Zn(y) =
2k−1T∑
n=1

M−1∑
j=0

Inj(y) Z(ynj), (4.8)

and

Fm(y) '
2k−1T∑
n=1

Fm
n (y) =

2k−1T∑
n=1

M−1∑
j=0

Imnj(y) F (ynj), (4.9)

Zm(y) '
2k−1T∑
n=1

Zm
n (y) =

2k−1T∑
n=1

M−1∑
j=0

Imnj(y) F (ynj). (4.10)

Applying the points ynj |n = 1, ..., 2k−1T, j = 3, ...,M − 1 into Eqs. (4.1) and

(4.4)

F ′′′n + FnF
′′
n − F ′2n +

a2

c2
+We

[
FnF

iv
n − 2F ′nF

′′′
n + F ′′2n

]
= 0, (4.11)

Z ′′′n + ZnF
′′
n + FnZ

′′
n − 2F ′nZ

′
n +We

[
ZnF

iv
n + FnZ

iv
n − 2Z ′nF

′′′
n
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−2F ′nZ
′′′
n + 2F ′′nZ

′′
n

]
= 0, (4.12)

with the initial conditions in the first subinterval are

F1(0) = 0, F ′1(0) =
1 + βF ′′1 (0)

1 + 3βWeF ′′1 (0)
, F ′′1 (0) = s, (4.13)

Z1(0) = 0, Z ′1(0) =
β(1− 3We)(

1 + 3βWeF ′′1 (0)
)2 , Z ′′1 (0) = 1. (4.14)

We set n = 1 and choose an approximate value for s. Then the initial value

problem (4.11) and (4.12) with the initial conditions (4.13) and (4.14) are

solved in the first subinterval [0, 1/2k−1). Initial conditions for the second

subinterval are evaluated from the first subinterval and solution for second

subinterval is obtained. The process continues till the last subinterval. The

values of s are modified with the zero finding algorithm defined as

sn+1 = sn − F ′(∞, sn)− a/c
Z ′(∞, sn)

. (4.15)

4.2 Numerical results and discussion

The boundary layer stagnation point flow problem discussed in chapter 3 us-

ing a hybrid numerical method is revisited and solved by an iterative Legendre

wavelet spectral collocation method in combination with the shooting method

in this chapter. The anomalies associated with the velocity profile for large

Weissenberg number have been addressed. The overshoot/undershoot in the

velocity profiles for large Weissenberg number is controlled through the imple-

mentation of the proposed method. In tables 4.1 and 4.2 the numerical values

of the missing boundary conditions are provided. Table 4.3 is presented to

show the influence of We, a/c and slip parameter β on the numerical values

of F ′′(0). Numerical values of θ′(0) for different values of emerging parameters

are given in table 4.4. It is evident from the table 4.4 that heat transfer rate

increases with parameters We, a/c, β and Preff and decreases with λ. Fig-

ure 4.1 is displayed to show the influence of We on the velocity profile F ′(y).

This figure depicts that no overshoot in velocity is observed. Furthermore,

the results are also evaluated for We > 0.3257864. In Figure 4.2 in the case

of a/c < 1 no undershoot is observed in the velocity profile for large We as

predicted in previous studies in the case of no-slip. Figures 4.3 and 4.4 are

presented to show the influence of We on H ′(y). The oscillations observed in
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Figures 2.4 and 2.5 are controlled in the free stream. Effects of Weissenberg

number in presence of slip are discussed in Figures 4.5 and 4.6. In the presence

of slip overshoot/undershoot in the velocity is controlled. The slip effects on

the velocity profile F ′(y) are shown in the Figures 4.7 and 4.8. These figures

elucidate that the large values of slip dominates the effects of free stream ve-

locity and for the full slip case there will be no variation in the velocity. The

effects of We on H ′(y) in presence of slip are discussed in Figure 4.9. No

oscillation is observed in presence of slip. Figures 4.10-4.17 are made to com-

pare the two numerical solution discussed in Chapter 3 and 4. These figures

clearly illustrate that our numerical scheme controls the overshoot/undershoot

in the velocity. The residual errors for different We are presented in Figures

4.18-4.20. It is evident that our results are within an accuracy of 10−6.

Table 4.1: Influence of F ′′(0) for different values of We and a/c.

We a/c = 0.1 a/c = 0.5 a/c = 1.1 a/c = 1.2

0.0 -0.969478 -0.667284 0.164293 0.337744

0.05 -0.997033 -0.696570 0.176353 0.364366

0.1 -1.026342 -0.728904 0.191053 0.397446

0.2 -1.091446 -0.804906 0.233221 0.496825

0.3 -1.168468 -0.901446 0.312576 0.708356

0.35 -1.213554 -0.960658 0.390439 0.965354

Table 4.2: Influence of H ′(0) for different values of We and a/c.

We a/c = 0.1 a/c = 0.5 a/c = 1.1 a/c = 1.2

0.0 0.235161 0.782688 1.02620 1.04918

0.05 0.211202 0.766367 1.02995 1.05658

0.1 0.185209 0.746639 1.03469 1.06012

0.2 0.129112 0.740619 1.06060 1.12485

0.3 0.066623 0.681716 1.10580 1.23018

0.35 0.039690 0.562384 1.13379 1.28813
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Table 4.3: Influence of F ′′(0) for various values of We, a/c and β.

We a/c β F ′′(0)

0.1 1.2 0.5 0.240334

0.0 0.184739

0.1 0.240334

0.2 0.346492

0.3 0.626779

0.35 1.043361

0.1 -0.646816

0.5 -0.453255

1.1 0.115923

1.2 0.240334

0.0 0.397442

0.5 0.240334

1 0.172973

2 0.111109

5 0.053710
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Table 4.4: Influence of −θ′(0) for various values of We, a/c, β, Preff and λ.

We a/c β Preff λ −θ′(0)

0.1 1.2 0.5 2 0.2 1.050579

0.0 1.050406

0.1 1.050579

0.2 1.109237

0.3 1.624092

0.35 2.116743

0.1 0.502232

0.5 0.723799

1.1 1.007576

1.2 1.050579

0.0 1.024890

0.5 1.050579

1 1.060978

2 1.070634

5 1.080384

0.5 0.576741

1 0.755698

2 1.050579

5 1.646832

-1 1.815485

-0.5 1.533712

0.0 1.202735

0.5 0.791887

1 0.229412
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Figure 4.1: Effects of We on F ′(y) when a/c = 1.2.
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Figure 4.2: Effects of We on F ′(y) when a/c = 0.5.
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Figure 4.3: Effects of We on H ′(y) when a/c = 1.2.
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Figure 4.4: Effects of We on H ′(y) when a/c = 0.5.
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Figure 4.5: Effects of We on F ′(y) when a/c = 1.2 in the case of slip.
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Figure 4.6: Effects of We on F ′(y) when a/c = 0.5 in the case of slip.
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Figure 4.7: Effects of β on F ′(y) when a/c = 1.2.
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Figure 4.8: Effects of β on F ′(y) when a/c = 0.5.
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Figure 4.9: Effects of We on H ′(y) when a/c = 1.2 in the case of slip.

Figure 4.10: Comparison of methods for We = 0.0 when a/c = 1.2.
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Figure 4.11: Comparison of methods for We = 0.1 when a/c = 1.2.

Figure 4.12: Comparison of methods for We = 0.2 when a/c = 1.2.
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Figure 4.13: Comparison on methods for We = 0.3 when a/c = 1.2.

Figure 4.14: Comparison on methods for We = 0.0 when a/c = 0.5.
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Figure 4.15: Comparison on methods for We = 0.1 when a/c = 0.5.

Figure 4.16: Comparison on methods for We = 0.2 when a/c = 0.5.
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Figure 4.17: Comparison on methods for We = 0.3 when a/c = 0.5.
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Figure 4.18: Graph of residual error for We = 0.1 and a/c = 1.2.
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Figure 4.19: Graph of residual error for We = 0.2 and a/c = 1.2.
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Figure 4.20: Graph of residual error for We = 0.3 and a/c = 1.2.
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Chapter 5

Conclusions

The slip and radiation effects for the oblique stagnation-point flow over a

stretching sheet for Walters-B fluid is investigated using two numerical tech-

niques namely, a hybrid numerical method and a Legendre wavelet spectral

collocation method. The main findings of current analysis are as under:

1. Increase in viscoelastic parameter We results in an increase in the veloc-

ity for the case a/c > 1 and decrease in velocity for the case 0 < a/c < 1.

2. An increase in We enhances the temperature. The thermal boundary

layer thickness is also increased.

3. Velocity of fluid increases by increasing stretching ratio parameter a/c.

4. Temperature and corresponding thermal boundary layer thickness de-

crease by increasing a/c.

5. Velocity and temperature increases for large values of slip.

6. An increase in effective Prandtl number Preff diminishes the temperature

and corresponding thermal boundary layer thickness.

7. An increase in λ increases the temperature and the corresponding ther-

mal boundary layer thickness.
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