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ABSTRACT

Azoospermia is one of the major causes of male infertility and is described as the

absence of spermatozoa in the ejaculate. Azoospermia is the cause of infertility in

more than one percent of males in the general population whereas 10\%–15\% of

infertile men are affected by this problem. It is classified into two types i.e. obstructive

azoospermia (OA) and non-obstructive azoospermia (NOA). NOA is the most

prevalent kind of azoospermia and affects approximately 60\% of azoospermic males.

It is caused by spermatogenesis failure due to different factors. There is no proper

treatment available for NOA, however, sperm can be retrieved in some cases for in-

vitro fertilization. This process is very expensive and has a very low success rate.

Treatment options are urgently needed to increase sperm production and for targeting

underlying causes. Multiple studies to understand the disease mechanism and improve

the sperm retrieval rate have been reported; however, they reveal a comparatively low

success rate. Studies have identified a number of genes important for

spermatogenesis. Among the most important genes, Nuclear receptor subfamily 5,

group A, member 1 (NR5A1, also known as steroidogenic factor 1[SF-1]) is important.

NR5A1 is a nuclear hormone receptor, that plays a crucial role in regulating steroid

hormone biosynthesis by targeting different genes in humans. Some transcription

factors, cofactors, and transcription co-activators participate with NR5A1 in regulating

NR5A1 target genes. Mutations identified in the NR5A gene have been acknowledged

as being causally associated with Non-Obstructive Azoospermia (NOA). Some studies

support the association of NR5A1 mutations with NOA and some conflict its

association with NOA. Datasets from different platforms, one NGS dataset

(GSE216907), and 2 micro-array datasets (GSE45885 and GSE 45887) were used in

the current study for gene expression analysis of important genes associated with NOA.

In the dataset, GSE45885, 839 genes demonstrated differential expression, while

GSE45887 displayed 772 differentially expressed genes, and GSE216907 exhibited

1168 genes with differential expression. The number of common differentially

expressed genes in the three datasets was 16. The common DEGs were used for

pathway enrichment analysis and the HedgeHog Signaling pathway was identified as

important with P-value 0.04. However, the expression of NR5A1, target genes of

NR5A1, and its regulating cofactors are normal in the used datasets. This study also

demonstrates the interaction profile of NR5A1 with its target genes and with cofactors



at the molecular level. The protein structures of NR5A1 and interacting partners were

docked using the High Ambiguity Driven protein–protein DOCKing (HADDOCK) server.

The binding affinity and interaction profile of NR5A1 protein with all interacting partners

were analyzed. The NR5A1 protein shows interaction with all its target proteins,

cofactors, and coactivators. NR5A1 shows the strongest interaction with CTNNB1

among all interacting proteins. The identified mutations of NR5A1 were searched in the

interacting residues of NR5A1 with their interacting partners. From the identified

mutations in different studies, only one mutation was present in the interacting residue

and is present in only 0.4\% of the azoospermic cases used in that study. This study

suggests that the mutations identified are not in the interacting residues of NR5A1, and

the expression profile of NR5A1 and its interacting residues is also normal in the NGS

dataset used in this study. The findings that negate the link between NR5A1 mutations

and NOA are supported by this study.
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Chapter 1

INTRODUCTION

1.1 Male Infertility

The current definition of infertility (medical definition) is the inability to get

conceived after 12 months of unprotected genitals through the fertile phase of the

menstrual cycles [1]. Large population surveys have estimated that marital

infertility affects 70 million people worldwide [2]. Additionally, according to the

WHO, 9% of couples globally suffer from fertility issues, and 50% of these cases

are due to male factors [3]. In accordance with the current US figures collected in

surveys up to 12% of males are infertile [4]. Studies also demonstrate that the

chance of cancer increases in men with symptoms of the medical condition. Men

with septic semen parameters have a 20 times higher chance of developing

testicular cancer [5]. Male infertility and risk for prostate cancer are related [6].

Many kinds of abnormalities are found in sperm causing male infertility including

Oligospermia, Globozospermia, Asthenozospermia, Azoospermia, Aspermia, etc.

1.2 Azoospermia

One out of six couples experience infertility issues with male infertility as

the underlying cause in 50% of the cases [7]. Azoospermia is one of the major

causes of male infertility and is described as the absence of spermatozoa in the

ejaculate. It is classified into two types i.e. obstructive azoospermia (OA) and

non-obstructive azoospermia (NOA). Azoospermia is the cause of infertility in

more than one percent of males in the general population whereas 10%–15%

of infertile men are affected by this problem [8].

3



Chapter 1 1.2 Azoospermia

A 40% rate of obstructive azoospermia is found in males with azoospermia

[9]. Several genitourinary tract infections that result in blockage can be the

cause of OA. These include the naturally occurring bilateral absence of the vas

deferens, blockage of the ejaculatory and epididymal conduits, and atresia of

the seminal vessels. Treatments in pelvic and inguinal regions resulting in

complete congestion, such as a bilateral vasectomy, can all lead to OA [10].

Spermatogenesis is normal in most of the cases with OA. As a result, surgical

removal of the obstruction using procedures like vasovasostomy or

vasoepididymostomy is mostly used as part of therapy options for OA [11].

The most common type of azoospermia is non-obstructive azoospermia

and affects approximately 60% of azoospermic males. The major cause of

NOA is sper-matogenesis failure due to primary testicular failure and testicular

failure. Pituitary or hypothalamic dysfunction could be the cause. NOA in most

cases has an idiopathic pathogenesis. Both OA and NOA are important

medical disorders that need to be treated. This study focuses on addressing

NOA. NOA is more challenging to manage and treat due to the unknown

impact on sperm production in the testes and the larger patient population.

1.2.1 Etiology

NOA is classified on the basis of underlying causes. NOA can be due to tes-

ticular failure (primary testicular failure), pre-testicular failure (secondary testicular

failure), and idiopathic. Testicular failure affects 10% of total infertile men and is

characterized by increased luteinizing hormone (LH) and follicle-stimulating hor-mone

(FSH) levels, and smaller testis [11]. Pre-testicular failure (epigenetic hypogo-

nadotropic hypogonadism) is characterized by decreased LH and FHS, and the small

size of the testis [11]. The one with the inconclusive picture of testicular failure is also

known as idiopathic. Idiopathic testicular failure is characterized by an increased level

of FSH with a normal testicle size, normal FSH level with a small testicle size,
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Chapter 1 1.2 Azoospermia

or normal FSH with a normal testicle size. For example, testis maturation arrest in

some cases is characterized by normal LH, FSH, and testicles and is caused due

to some genetic abnormalities. [12]. Abnormal spermatozoa synthesis because of

chro-mosomal dysfunctions as in Klinefelter syndrome or Y chromosome micro-

deletions of sub-regions AZFa, AZFb, or AZFc also leads to NOA [13].

1.2.2 Pathophysiology

Pre-testicular and testicular NOA are the two types depending on the

causing factors as shown in Figure 1.1. Pretesticular failure can be by birth

or acquired and is due to the following factors:

• Pituitary Tumors: Pituitary tumors such as prolactinomas may be the causing

factor of NOA. Prolactinomas cause excessive production of prolactin, a hor-

mone in females responsible for milk production. [14]. Gonadotropin-releasing

(GnRH) hormone is produced less when prolactin is produced, which in turn

reduces the LH and FSH production from the pituitary glands. LH and FSH are

essential for stimulating the testicles to produce testosterone and spermatozoa,

resulting in impaired sperm production leading to azoospermia [15].

• Kallmann Syndrome: This is a condition in which failure to release

GnRH hormone causes a defect at the hypothalamus level. It results

from the failure of GnRH-releasing neurons to migrate.

Primary testicular failure presenting 10% of infertile men, with increased LH and FSH

levels is caused by many factors. Mumps is a respiratory disorder caused by the

mumps virus that has a linkage to the testis. The mumps virus harms seminiferous

tubules and the interstitium of the testis, resulting in the lack of spermatogenic cells

[16]. Primary testicular failure due to ganodotoxic drugs or treatments like chemother-

apy or radiotherapy because almost 5-% of males are affected with cancer during their

lifetime [17]. In some cases, genetic defects such as Klinefelter syndrome, are char-

5



Chapter 1 1.2 Azoospermia

acterized by reduced testosterone levels, tight testicles, diminished penis

size, and reduced hair growth on the body.

Figure 1.1. Pathophysiology of NOA Testicular and Pre-testicular origins of NOA.
The figure is adapted from [18].

1.2.3 Epidemiology

Almost 15% of all couples experience infertility. Approximately 10 to 15% of

infertile men and about 1% of all males suffer from azoospermia [19]. The majority of

patients of azoospermia (around 600000) in the US have NOA [20]. In comparison with

the non-azoospermic population, males with azoospermia have a higher risk of

developing cancer. On average, 5% to 8% of testicular cancer patients will experience

azoospermia. [21]. Azoospermia is mostly treated in medical centers and not reported

in developing countries because of expensive or inaccessible therapy. Therefore, the

exact ratio and cases of azoospermia are unknown [22].

1.2.4 Risk Factors

Obstructive azoospermia is due to blockage and in most cases, spermato-

genesis occurs normally. However, non-obstructive azoospermia has an idiopathic

6



Chapter 1 1.2 Azoospermia

pathogenesis with more cases between the age of 23-35 years. The risk factors as-

sociated with non-obstructive azoospermia are varied [23] as shown in Figure 1.2.

Using chemical substances for treating conditions like cancer (Chemotherapy). Radi-

ation therapy used for tumor shrinkage increases the risk of developing azoospermia.

Testicular injury, heavy metal exposure, surgery in the reproductive area performed

with the wrong technique, and exposure to high temperature for a long time. The use of

recreational drugs such as some narcotics also increases the risk for azoospermia.

Sometimes infections such as mumps also result in azoospermia.

Figure 1.2. Risk Factors associated with NOA Different risk factors
associated with nonobstructive azoospermia.

1.2.5 Symptoms

Azoospermia is a condition that is diagnosed when a couple is struggling with

infertility. A number of symptoms are associated with NOA varying with the causing

factor. The main symptom of the disease is the absence of sperm in the ejaculate. Men

with NOA caused due to hormonal imbalance may experience conditions like reduced

body and facial hair. Mood swings due to hormonal imbalance and erectile

7
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dysfunction can also be the sign of NOA. Testis size is also affected in

NOA causing discomfort or swelling around the testicles.

1.2.6 Diagnosis

There are a number of symptoms that indicate azoospermia, but the true

causes are revealed by the medical tests and therapies. Semen analysis is the

basic approach for diagnosing azoospermia. Patient’s medical history (medical

treatments or pro-cedures), and blood tests for confirming the percentages of LH

and FSH hormones. Testicular biopsy also contributes to diagnosing azoospermia.

In men with NOA without a previous infertility record, karyotype and Y chro-

mosome microdeletion (YCMD) testing are recommended [24]. Karyotype analysis is

capable of identifying both structural and functional chromosomal abnormalities that

are affecting up to 19% of NOA cases. Among karyotype abnormalities, Klinefelter

syndrome is the most prevalent (47, XXY; occurs in 1/600 men). An increasing num-

ber of X chromosomes is associated with decreased spermatogenesis. In 10-20% of

azoospermic men, abnormalities in AZF regions (AZFa, AZFb, AZFc) are identified

using sequence-tagged sites (STS) PCR amplification. For epigenetic NOA patients,

the most prevalent variation is Kallmann syndrome. Kallmann syndrome results in

insufficient LH and FSH hormone production due to a decrease in GnRH. For diag-

nosing such cases specific genetic testing based on the mode of inheritance of KAL1,

FGFR1, and other genes is required.

1.3 Methodologies used in Current Research

The increasing cases of azoospermia, make it more important to use new tech-

niques and technologies that help early diagnosis and treatment of NOA. Advanced

high throughput sequencing (HTS) techniques play an important role in finding out the

potential causal agents. Analyzing these technologies in parallel and comparing

8
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the results can help in finding potential therapeutic targets. A couple of

these tech-niques include

1.3.1 Microarray Analysis

microarray technology is capable of immediately detecting a wide range of

different compounds in a sample. Therefore, the use of microarray technology has

become very common in high-throughput applications. Large-scale genetic testing,

gene expression profiling, comparative genomic hybridization, and resequencing

are a few examples of the numerous uses of microarray technology. The

development of microarray technology involved an extensive combination of many

different scien-tific and technological fields. The fields include optics,

microfabrication, chemistry, microfluidics, enzymology, and mechanics. RNA

microarrays developed in the late 1990s are effective instruments for analyzing

gene expression. microarrays can be sub-categorized as follows:

1. Spotted microarray in contrast to oligonucleotide arrays, which generate

probes directly on the array, use specific sequences called probes (to

detect expression) that are printed on a glass or plastic slide.

2. As compared to one color microarray in which one type of sample is

hybridized on the array, two-color microarrays with two types of

sample are hybridized sequentially on the microarray.

With the passage of time, microarrays have significantly improved, from initial arrays.

The initial arrays were capable of holding a few hundred or thousand expressed se-

quence tags (ESTs). The latest microarrays are now capable of holding millions of

probes covering the entire genome, including exons, introns, miRNAs, long coding

RNAs, and other transcriptome variants [25]. A quickly evolving topic, microarray data

evaluation has been applied to solve a number of issues. It is used for finding

differentially expressed genes, developing prognostic or diagnostic predictors, and

9
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detecting data clusters. Data exploration, quality assurance, normalization,

statistical analysis, and examination of biological significance or pathways are

the steps involved in the analysis process. A number of tools are available for

analyzing microarray data, ranging from free software to paid products.

1.3.2 Next generation sequencing

High throughput sequencing (HTS), also referred to as next-generation se-

quencing (NGS), is used to sequence DNA and RNA as well as find variations and

mutations. With the use of NGS, a significant number of genes, maybe even an entire

genome, can be easily sequenced. This technology combines the benefits of many

sequencing chemistries, platforms, and bioinformatics techniques. By utilizing this

combination, NGS makes it possible to sequence many DNA or RNA sequences in

parallel, irrespective of their length, or even complete genomes, in a relatively short

amount of time. After Sanger sequencing, it represents an innovative development in

sequencing technology. NGS includes a number of essential steps in the sequencing

procedure. The steps for NGS, as shown in Figure 1.3, include samples for sequencing,

culture growth, DNA extraction, DNA quality control, library preparation, pooling and

loading, template generation and sequencing, followed by bioinformatics anal-ysis, and

annotation and interpretation of variations and mutations. Numerous uses for the

sequence modifications and mutations discovered using NGS include disease

diagnosis, prognosis, therapeutic discoveries, and patient follow-up [26].

1.3.3 Protein-protein interactions

PPIs (protein-protein interactions) are crucial for cell function at the molecu-lar

level. For discovering more about residue interactions, binding area, and structural

flexibility, understanding the molecular processes of PPIs is essential. The growing

PDB library serves as proof of the advancements in the analysis of single protein

structures. The structural description of protein complexes is still difficult, among
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Figure 1.3. NGS Workflow A generalized NGS workflow starting from
specimen leading towards bioinformatics analysis including different
techniques. The workflow is adapted from [27].

other things. It is demonstrated by the fact that if the molecular complex has a signifi-

cant molecular weight, it is either challenging or impossible to collect and evaluate the

essential data using NMR spectroscopy. Presently, in silico protein-protein docking is

the only technique available for the comprehensive study of large protein complexes.

This method uses the unbound (free-form) protein structures, obtained experimentally

or by comparative modeling, to estimate the most likely protein alignments in a com-

plex. The following list shows the list of software packages that have been developed

for predicting protein-protein interactions. The majority of these packages are based on

their energetic and/or geometrical characteristics.

• ClusPro

• GRAMM-X

• HDOCK

11
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• DOCKSCORE

• HawkDock

• ZDOCK

HADDOCK (High Ambiguity-Driven DOCKing), a recently created tool, uses a novel

way to dock the provided proteins based on nuclear magnetic resonance (NMR) (and

non-NMR) empirical information. If experimental data are not available, HADDOCK

can also use an ab initio technique in addition to data-driven dockings [28].
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Chapter 2

LITERATURE REVIEW

Spermatogenesis failure, which results in no sperm in the ejaculate,

is NOA. The subsequent part describes a brief review of previous NOA

research papers. Sev-eral studies have been performed for microarray and

NGS dataset analysis of NOA patients. These studies were focused on

understanding the expression profiles of dif-ferentially expressed genes and

finding the disease bio-markers. The purpose of this chapter is to provide a

summary of the important findings from earlier research studies on NOA.

2.1 Spermatogenesis and NOA

The association between spermatogenesis and NOA could provide the

answer to one of the most basic queries about NOA. Spermatogenesis itself is a

very com-plex process in which spermatogonia (male germ cells) are developed

into mature sperm cells in different stages. Normal spermatogenesis is carried out

with the help of different cells i.e. Leydig cells and Sertoli cells. Spermatogenesis

takes place in-side seminiferous tubules and involves a pattern of mitotic, meiotic,

and post-meiotic divisions. Following are the steps of spermatogenesis [29]:

• Spermatogonial Phase: Spermatogonial stem cells, which are located

on the outermost layer of the tubules that contain seminiferous tissue,

divide during mitosis to form spermatogonia. These spermatogonia

will later develop into primary spermatocytes in some cases.

• Meiotic phase: Consists of the two phases of cell division known as meiosis I

and meiosis II, which is when primary spermatocytes go through this process.

13



Chapter 2 2.1 Spermatogenesis and NOA

Secondary spermatocytes originate during meiosis I, while haploid

spherical spermatids are generated during meiosis II.

• Post-meiotic phase: Round spermatids go through morphological

changes to become elongated spermatids. The shape of the cell modifies

during this phase, and the size of the cell decreases. Spermatids also go

through spermiogenesis, which comprises the production of the

acrosome, flagellum (tail), and nucleus condensation.

• Sperm maturation: Elongated spermatids (also known as immature sperm

cells), transit from the adluminal region of the seminiferous tubules toward

the lumen, undergoing more maturation along the path. In this procedure,

extra cytoplasm is eliminated, and the acrosome continues to grow.

• Sperm Release: When sperm reach their full maturity, they are

eventually re-leased into the epididymis, where they complete their

development, become motile (able to swim), and fertilize an egg.

NOA is due to spermatogenesis failure or disruption that can occur at

various stages during spermatogenesis.

• Spermatogonial Phase: Spermatogonial stem cell abnormalities or

defects in their development might cause insufficient generation of

spermatocytes, which can result in NOA.

• Meiotic phase: NOA can result from meiotic arrest, which occurs when sperma-

tocytes are not able to move through meiosis I or meiosis II. This may be due to

epigenetic mutations of other factors having an impact on meiotic division.

• Post-Meiotic Phase: Sperm that are deformed or ineffective can be

produced as a result of deficiencies in spermatid enlargement and

spermiogenesis, which contribute to NOA [30].
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Chapter 2 2.2 Existing Bio-markers

2.2 Existing Bio-markers

Semen analysis or testicular biopsy can be performed that acts as a bio-

marker for NOA. The study of results of a testicular biopsy clarifies symptoms of

NOA. NOA is a condition caused due to many factors that interfere with the levels

of hormones such as LH, FSH, Inhibin B, and Anti-Müllerian Hormone (AMH). The

profiles of these hormones of NOA are a potential bio-marker. For example, a

reduced level of inhibin B is an indication of spermatogenesis failure and NOA [31].

Different studies have been performed using bioinformatics tools to find out

molecular bio-markers associated with NOA. Previous studies show that a number

of epigenetic mutations and abnormalities have been associated with NOA. These

mutations or abnormalities may be involved in spermatogenesis, testicular growth,

hormone regulation, and other processes.

Different genes play significant roles in the extremely complex process

of spermatogenesis. Mutations in these genes may also cause

spermatogenesis failure leading to NOA. A number of genes are very important

in this regard including SYCP3, STAG3, SPATA20, SPACA4, NR5A1, TEX11,

etc [32]. The meiotic arrest is a condition in which spermatogenesis is stopped

during the meiosis step. This step involves the process of cell division that

results in the generation of mature sperm. Mutations in the SYCP3 and SYCP2

genes have been identified in this condition [33]. Variations in these genes are

found to be an effective risk for spermatogenesis failure leading to NOA.

2.3 Microarray associated findings for NOA

The molecular biology and genomics fields use the efficient method of mi-

croarray analysis to evaluate the expression level of thousands of genes at once. It

offers information on how certain genes are expressed in various conditions or tissues.

In scientific areas like gene expression profiling, bio-marker development, disease
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Chapter 2 2.4 High throughput sequencing associated finding for NOA

categorization, and pathway analysis, this method has been extensively

used. Many studies have been performed to deeply study the gene

expression levels in NOA using microarray.

Jie Lian and his colleagues in 2009 performed a study in which miRNA ex-

pression profiles were looked at in the testes of individuals with non-obstructive

azoospermia (NOA) and healthy, using microarray technologies. In NOA patients,

154 miRNAs showed differential lower expression, whereas 19 showed elevated

ex-pression, indicating altered microRNA expression. RT-PCR studies on a few

specific miRNAs, such as miR-302a, miR-491-3p, miR-520d-3p, and miR-383,

evidenced these findings. Numerous miRNA clusters, including those with the

potential to cause cancer, were lowly expressed in NOA patients. [34].

Genomic integrity maintenance depends on DNA repair mechanisms.

An-other was carried out to assess the relationship between NOA and the DNA

re-pair genes (322 genes). The relationship between the DNA repair genes

RAD23B, OBFC2A, PMS1, UBE2V1, ERCC5, SMUG1, RFC4, PMS2L5,

MMS19, SHFM1, INO80, PMS2L1, CHEK2, TRIP13, and POLD4 has been

revealed by this work. The expression of RAD23B, OBFC2A, PMS1, UBE2V1,

ERCC5, SMUG1, RFC4, PMS2L5, MMS19, SHFM1, and INO80 was elevated

compared in six human sam-ples with various NOA. The expression profiles of

PMS2L1, CHEK2, TRIP13, and POLD4 were down-regulated [35].

2.4 High throughput sequencing associated finding for NOA

Genetic research and application have been revolutionized by the use of the

intense Next-generation sequencing (NGS), a sequencing methodology. Millions of

DNA fragments may be rapidly and simultaneously sequenced with NGS, enabling

genetic data analysis at a scale and depth that have never been achievable previously.

Our knowledge of the genetic causes of NOA has considerably improved because of

NGS. Several studies have been performed to date for the identification of ge-
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netic variants, mutations, and genes linked to NOA. Next-generation

sequencing has provided new insights into the fundamental causes of NOA.

Govindkumar et al., 2019, conducted a study in which NGS profiles

of 8 NOA were studied and identified 19 genes FAM71F1, CAPN11, BTG4,

OAZ3, AKAP4, CHRNB3, CCDC83, PDHA2, PDCL2, ADAM29, SPATA3,

SPERT, UBQLN3, SPAC A4, FBXO39, GGN, H1FNT, ZCCHC13 and

POU5F2 therapeutic target genes for NOA [36].

In China, a study was conducted in 2019 in which NGS was performed

on 34 NOA patients. This research screened and found low-frequency

mutations of the genes involved with azoospermia. This data was utilized to

create a database of single nucleotide variations (SNVs) linked to NOA. [37].

M Cerván Martín and his colleagues performed a study on 715 men

with different types of male infertility disorders of which 505 were suffering

from NOA. This study concluded that PIN1 gene polymorphism plays a

crucial role in the de-velopment of single-cell-only syndrome, responsible for

most of the cases of male infertility [38].

2.5 Genes important for Normal Spermatogenesis

Spermatogenesis is a very complex process consisting of different

stages. Normal spermatogenesis is carried out with the help of several

genes playing their role in different stages. Some of the important genes

with their role in spermatogenesis are described below.

(A) Anti-Mullerian Hormone

Anti-Mullerian hormone (AMH) also known as Mullerian inhibiting sub-

stance or factor plays an important role in spermatogenesis. AMH is a glycoprotein

that is secreted by Sertoli cells and is responsible for Mullerian duct regression in

male embryos. The role of AMH is not confirmed in adult males [39]. Sertoli cells
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formed during embryonic development determine the quantity of germ cells

in adults. In studies on factors affecting male fertility, AMH has recently

attained more attention [40].

(B) Wilms’ tumour 1

Wilms’ tumour 1 (WT1) is a transcriptional regulator and is involved in several

processes in vertebrates. WT1 is important for the development of some organs

includ-ing kidneys, gonads, and heart [41]. Previous studies suggest that Wt1 is

necessary in mice during the early stage of gonad growth and development [42].

Additionally, immunohistochemistry studies demonstrated that WT1 protein is strongly

expressed in the Sertoli cells associated with early spermatogonia [43]. This suggests

expression pattern of WT1 has a key role in normal spermatogenesis.

(C) Nuclear receptor subfamily 5 group A member 1

Nuclear receptor subfamily 5 group A member 1 (NR5A1) is a

nuclear hor-mone receptor, that plays a crucial role in regulating steroid

hormone biosynthesis by targeting different genes in humans [44]. NR5A1

targets several genes including AMH, STAR, MC2R, etc [44]. Some

transcription cofactors such as SOX9 [45], WT1 [46], GATA4, and

transcription co-activators including CTNNB1 [47] probably in-teract with

NR5A1 and help in regulating NR5A1 target genes as shown in figure 2.1.

2.6 Association of NR5A1 with Spermatogenesis

Several factors including varicoceles, hormonal imbalance, testicular trauma,

anatomical abnormalities of reproductive systems, chromosomal abnormalities, and Y

chromosome microdeletions have been associated with male infertility. Thousands of

genes taking place in spermatogenesis, testicular development, and endocrine regu-

lation of testicular function are considered as the etiology of the disease. At least 15%
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Figure 2.1. Target gene and co-factors of NR5A1

of infertile men are presented with defects in such genes [48].NR5A1 is among the

genes that proved to be associated with male infertility by biological and functional

evidence and is replicated in numerous independent studies [49]. NR5A1(Nuclear

receptor subfamily 5 group A member 1, NM_004959.5) is located on chromosome

9q33, spanning about 30 kb long, and consisting of 7 exons (1 non-coding exon fol-

lowed by 6 coding exons) [50]. The steroidogenic factor 1 (SF1) protein, encoded by

the NR5A1gene, plays a pivotal role in steroidogenesis, sexual and adrenal de-

velopment, and reproduction [51]. It is expressed in Sertoli and Leydig cells of the

developing testis and Sertoli cells of the prepubertal and adult testis. Attempts to

identify mutations of the NR5A1gene revealed several point mutations, which impair its

function, leading to severe spermatogenic failure and male infertility.

2.7 Mutational Analysis of NR5A1

Currently, more than 188 different mutations in NR5A1 have been described,

and they are scattered throughout all the protein domains [52]. These are found in a

wide range of infertile phenotypes, including 46 XY disorders of sex develop-

ment(DSD), cryptorchidism, non-obstructive azoospermia, and oligospermia patients.
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Moreover, case-control association studies between polymorphisms and

different types of male infertility have also been conducted in diverse

populations, generat-ing different outcomes [53].

Researchers have different opinions on the association of NR5A1 mutations

with spermatogenic failure leading to azoospermia. NR5A1 mutations associated with

spermatogenic failure were first identified in 2010. It has been shown that missense

mutations are present in the hinge region and proximal ligand-binding domain of

NR5A1. These mutations may lead to the complete absence of spermatogenesis or a

progressive decline in the quality and quantity of spermatozoa leading to azoosper-mia

[54]. Another study in 2015 found that missense mutations in NR5A1 lead to

azoospermia or severe oligozoospermia in about 1% of Caucasian men [55]. In 2018 a

study conducted in India in which NR5A1 was sequenced in 502 infertile men versus

427 fertile men as controls. This study concluded that NR5A1 mutations are not

associated with male infertility in Indian men [56]. Later on in 2021, a study was

conducted in Vietnam that aimed to identify the single nucleotide polymorphism (SNP)

associated with male infertility in the NR5A1 gene in a Vietnamese cohort of 202

infertile men and 199 healthy controls. However, no association was established

between NR5A1 rs1110061 and male infertility [53].

2.8 Study Rationale

NOA is a very complex disease because it is caused by spermatogenesis fail-

ure. Spermatogenesis failure itself is a very complicated process involving differ-ent

stages. There may be many reasons causing spermatogenesis failure leading to NOA,

representing that several genes have an important role in this. Previous studies have

identified several genes that are up-regulated, down-regulated, or even deleted in

some cases. Mutations in spermatogenesis-associated genes are also reported to

cause azoospermia. A key obstacle in finding a successful treatment for NOA is the

variation in the expression pattern of these transcripts, which varies depending on the
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underlying etiology.

2.9 Proposed Solution

The identification of the most important genes for spermatogenesis and

their expression profile in different datasets of NGS and microarray. Functional

annotation of significant genes and their reported mutations from literature.

Network analysis of the most important genes for identifying their interacting

partners. PPI analysis of interacting genes to produce a better understanding at

the molecular level and to observe the impact of mutated residues in interactions.

2.10 Objectives

• Using bioinformatics analysis, including microarray and Next-

generation se-quencing, for identifying expression patterns of

important genes, through exten-sive analysis using various samples of

NOA patients, to establish their relevant correlations with NOA.

• Using literature for identifying genes and their mutations associated with

azoosper-mia, and output expression files from different technologies to

correlate expres-sion levels.

• Network analysis of selected genes to identify the known interacting

partners, because proteins always work in groups. Performing PPIs of

interacting part-ners to deeply understand the interaction at the

molecular level and the impact of identified mutations in interaction.
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MATERIALS AND METHODS

This section of the thesis looks into how several high-throughput

methods, such as microarray and RNA-Seq, are utilized to detect

differentially expressed genes. Finding a relation between over-expressed

and under-expressed genes to pinpoint the interacting residues is a further

objective. This may aid in producing meaningful therapeutic results.

3.1 Data Collection

The analysis began with the collection of NOA-related datasets. Numerous

freely accessible sources were explored to find datasets for microarray and RNA-seq

research. Microarray and RNA-seq datasets were accessed by GEO https://www.

ncbi.nlm.nih.gov/geoand Array Express https://www.ebi.ac.uk/arrayexpress/. While

selecting datasets, the following parameters were taken into account.

1. The dataset was searched by entering the term "Azoospermia" in the search bar.

2. The dataset comprised "Homo-sapiens" and the samples were not

taken from cell lines.

3. The dataset included samples from both the control and disease groups.

4. Dataset containing any medication, antibody, or small molecule should

be elim-inated.

From the aforementioned databases, two microarray datasets and one mRNA-

seq dataset were obtained. Local or Pakistani datasets were not accessible in open

repositories. The diversity of the research sample area is demonstrated by the fact that
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Chapter 3 3.2 MicroArray Data Analysis

the datasets selected are from different parts of the world. Summary of the

datasets that were selected and presented in Tables 3.1 and 3.2.

Table 3.1. Microarray Datasets

Accession No. Platform No. of Samples Region
GSE45885 Affymetrix 31 Norway
GSE45885 Affymetrix 20 Norway

Table 3.2. Next generation sequencing Dataset

Accession No. Platform No. of Samples Region
GSE216907 Illumina Hiseq 2000 10 India

3.2 MicroArray Data Analysis

The initial step is to analyze the datasets using microarrays to

identify differ-entially expressed genes. Secondary datasets were gathered

from above mentioned freely accessible web repositories. For microarray

analysis, the recently published maEndToEnd pipeline using R language is

employed [57]. Figure 3.1 depicts the microarray procedure.

Figure 3.1. Generalized methodology of Microarray analysis
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3.2.1 R Software

R serves as a programming language and an entirely free statistical

analy-sis software. R Studio is a free and open-source R development

environment. R Studios’ most recent version, 4.2.1, was used for analysis.

Bioconductor is a popu-lar bioinformatics package that offers tools for the

evaluation and interpretation of high-throughput genomics data. BiocManager

was employed to install the very latest version of Bioconductor, 3.1.7.

3.2.2 Uploading Raw Data

The data was gathered with ArrayExpress the package of Bioconductor using

getAE and getGSE methods. IDF, ADF, SDRF, and CEL files were among those down-

loaded files. CEL files contain values of gene expression, whereas IDF and SDRF files

contain additional details. The IDF file provides the title, description, submitter contact

information, and protocols for the experiment. The SDRF file contains critical information

about the experimental samples, such as their experimental group(s).

3.2.3 Storing Data in ExpressionSet

Downloaded files provide information about samples, experiments, and expres-

sion values. Once the data is imported, an Expressionset is created using Bioconduc-

tor’s biobase function, and these data are saved in the ExpressionSet. ExpressionSet’s

data consists of assayData, metaData, and experimentData. Sample identifiers are

displayed in columns, while microarray probes are displayed in rows, in AssayData.

Metadata is made up of two types of data: featureData and phenoData. Experiment-

Data contains the description of the experiment. In the phenoData database, samples

are grouped in columns and their descriptions are in rows. Both AssayData and Fea-

tureData contain similar row information as well as freely assignable columns. The

metadata also includes gene annotation for the features.
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3.2.4 Quality Control

From raw data, once the ExpressionSet is generated, the quality of raw

data is assessed using plots that include boxplot, PCA (Principal Component

Analysis) plots, and RLE (Relative Log Expression) plots. The function (log2) of the

biobase package was used for turning data into a logarithmic scale for checking

the quality of the data. Quality control is an essential component in upholding data

standards. Outliers were detected using the package array quality metrics, and

once they were detected, normalization and summarization were carried out to

remove biases. It produced a number of charts and an HTML report.

(A) Principle Component Analysis

Principal component analysis is a statistical approach used to reduce the

size of a large dataset [58]. The PCA plot clearly differentiates between groups.

The dataset includes samples (NOA and normal samples). Along the x and y axes,

the PCA image depicts the relationship between Principal Component 1 and

Principal Component 2 based on the raw log2 data. Each point represents a

sample, with the color indicating either the sample is healthy or has NOA.

(B) Boxplot

An example of a graph that shows the intensity value distribution of a sample of

data is a boxplot. It also identifies any outliers that might have an impact on the mean

of the entire set of data. Samples are shown on the horizontal axis, while scaled

intensity levels derived from log2 transformed data are shown on the y-axis [59]. Each

box represents a single sample. If the intensity value distribution of each sample differs

from the others, the data must be normalized for sample comparison.
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(C) Relative Log Expression

Relative log expression (RLE) is the median of each gene’s log intensity over

all arrays. The rma function of the oligo package does RLE in addition to the other

operations. The intensity distribution around the median for each sample is shown on

the RLE plot. Each sample is represented by a box in the plot. The vertical axis shows

the scaled log2 converted intensity values, and the horizontal axis shows the samples.

3.2.5 Data Preprocessing

Preprocessing of the data comprises of the following steps:

• Background adjustment

• Calibration

• Summarization

• Annotation

(A) Background Adjustment and Calibration

The intensity of every feature on microarray chips is calculated using a com-

puter scanner. These scanners, which were subjected to various sorts of noise both

within and between arrays, used a multitude of programs to measure fluorescence

intensity. It was required to account for probe intensities produced by non-specific

hybridization due to the noise this induced in the data. To obtain ambient strength for

each feature on the microarray chip and to get rid of these disruptions, background

correction is required. It is called calibration to normalize each feature’s intensity value

across the array so that they can be compared to one another.

26



Chapter 3 3.2 MicroArray Data Analysis

(B) Summarization

On the microarray chip, each transcript is represented by several

probes cre-ated especially for the Affymetrix technology. To determine an

accurate and single-intensity value for each gene, several probe results must

be combined, calibrated, and normalized into a single-intensity measurement.

After summarization, each transcript or gene will have only one intensity value.

(C) Robust Multichip Average

There are many software available for pre-processing microarray data, albeit

the methods change depending on the stage. A versatile algorithm in the oligo pack-

age is called Robust Multichip Average (RMA). Oligo implements the microarray

background correction, calibration, and summary in a single step. Data is calibrated

using quantile normalization, and deconvolution to correct for background. The RMA

algorithm of the oligo package is used to summarize the data.

3.2.6 Quality Evaluation of Calibrated Data

After pre-processing, calibrated data was examined to confirm data quality

once again. PCA plot and heat map were used to evaluate the quality. Following

that, the calibrated data PCA plot and the raw data PCA plot were compared.

(A) HeatMap

A heatmap is used to group samples depending on the phenotype.

Additionally, it determines the separation between each sample and shows the

outcomes according to that separation. Each cell in the heatmap represents the

level of a gene’s expression in a specific sample or situation [60]. The samples in

this plot can be divided into two categories, such as NOA and normal.
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3.2.7 Filtering Low Intensity Features

Microarray data contain representations of the overwhelming majority of the

probes in the background intensity range. There is not much variance shown by

these probes. As a result, exhibits low intensity and minimal fluctuation. They could

con-sequently be categorized as genes with differential expression because their

intensity value is so low that it rarely even falls within the detection range. To

extract the genuine differentially expressed genes, Limma proposes deleting these

data. The row medians of expression data were calculated, and a histogram was

created to weed out low expression levels.

3.2.8 Annotation of Filtered Features

The next stage is to annotate or label genes with existing information, such as

gene names, gene symbols, and so on. AnnotationDbi from Bioconductor is used to

an-notate transcripts in expression data. Annotation databases such as

"hugene10sttranscri ptcluster.db" are available from Bioconductor for each platform.

3.2.9 Fitting Linear model on Data

To analyze differentially expressed features between samples with NOA and

normal samples, a linear model was fitted to the expression data for each gene.

Limma software is used for model fitting. The goal of limma is to find similarities

between the two groups. Limma acquires knowledge of variance across genes using

Empirical Bayes and other techniques and allows analysis for small numbers of arrays

through t-statistics. We generate design and contrast matrices for the variables of

interest before fitting the linear model to the data. To determine whether the design

matrix was effectively constructed, with the appropriate normal or diseased assigned

to each sample. The rows of the design matrix contain information on the samples,

and the columns indicate the variables used in linear models. The numbers 0 and 1

represent the assignment of samples to variables. A linear model with adequate

contrasts for
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the test hypothesis was fitted to each gene using the design matrix. In our

instance, we utilized the limma function makeContrasts to generate a contrast

matrix of "NOA-Normal" data by comparing NOA and Normal samples. The

data was then fitted with linear models using contrasts. Using the fit() method

to locate genes with significant differential expression. A table with the gene

symbol, gene name, log2FC, original p.value, changed p.value, test statistics

(t), and B statistics is generated as output with this process.

3.2.10 Filtering out Deferentially expressed Genes

It is necessary to filter the list of DEGs created one step prior to excluding

genes whose expression varies significantly between NOA and normal. Genes

with log2FC greater than 1 and less than -1 with p-vales less than 0.5 were filtered

as DEGs. The expression of a gene is considered to be "over-expressed" if its

log2FC is greater than 1 and "under-expressed" if its log2FC is less than -1.

3.2.11 Graphical Representation of DEGs

For visualization DEGs, volcano, and enhanced volcano plots were

used. These plots clearly show over and under-expressed genes and even

genes that are not sig-nificant or with low log2FC values. Each dot on the

plot represents a separate gene. These graphs display the -log10 p-values

for the genes along with their log2 fold changes on the horizontal axis.

3.3 Next Generation Sequencing (RNA Seq)

Data from NGS are analyzed using a web server named Galaxy (https://usegala

xy.org/). Many tools and procedures for evaluating NGS data are available through the

open-source web server Galaxy. Throughout the analysis, using an online server helps to

save lots of memory and processing time. For the analysis of NGS data, we made
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use of a pipeline that was published in Nature Methods in 2016 [35]. The appendix

portion contains the source code. Figure 3.2 shows the general NGS procedure.

Figure 3.2. Generalized methodology of NGS analysis

3.3.1 Galaxy Pipeline

Galaxy has a straightforward yet effective user interface that handles all

tool updates automatically. It can be accessed by the URL

https://usegalaxy.eu/login. On high-throughput data, like RNAseq [61], it is used

to perform complex-level analysis. For these jobs, Galaxy offered a variety of

tools, including FastQC, RseQC, HISAT2, and StringTie. Users of the Galaxy

interface have access to 250 GB of data storage for high-throughput analysis.

3.3.2 Importing Raw Reads in Galaxy

Data is first imported into Galaxy from other databases, such as the European

Nucleotide Archive (ENA). Numerous options are available to import data from other

databases in Galaxy. Data was imported via the EBI SRA option in Galaxy. One can

access data in Galaxy by entering the samples’ accession numbers through the EBI
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SRA. In our case, the downloaded data also contains the Fasta-formatted

raw readings of the mRNA from each sample.

3.3.3 Preprocessing Raw Data

Many biological and experimental imperfections may be present in the data

obtained from high-throughput sequencing. These artifacts include adapter

contami-nation, GC content, over-representative regions, total base count, etc.

These artifacts must be removed before continuing with the next step since they

can bias our find-ings or result in erroneous positive results. The following steps

are taken during the pre-processing of raw data to eliminate these biases.

(A) Quality Assessment of Raw Data

The reliability of the raw data must first be assessed. FastQC, a tool,

was used to evaluate the quality of the raw data. FastQC offers a thorough

quality check report for data that addresses many topics, including:

1. Basic data statistics, such as file type, file name, total sequencing,

encoding, and GC content.

2. Per base sequence quality is described by a quality score, with a

score of >28 indicating good quality.

3. A quality score map for each sequence describes the distribution of

scores across all sequences.

4. Per base sequence content.

5. GC content per sequence describes how many GCs are there in a sequence.

6. Based on the per base N content.

7. Sequence length distribution, which is the distribution of the length of

the se-quence across all sequences.
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8. Sequence duplication level, i.e. how many reads in this data are duplicated.

9. Over-represented sequences, which are single sequences that are

over-represented due to a biological effect or contamination.

10. Adapter content, i.e. whether or not adapter sequences employed in

the experi-ment for hybridization are present.

(B) Preprocessing of Raw Reads

The FastQC report’s artifacts list identifies the places that require attention,

such as adapter sequences, overrepresented regions, low quality, etc. FastP, another

technique, was used to eliminate these noises. FastP is a pre-processing program that

may be used in one step and offers a variety of choices, such as trimming low-quality

bases, adapter removal, analysis of over-represented regions, etc.

(C) Quality Check after Preprocessing

FastQC reports on pre-processed measurements were used to

assess data qual-ity. Because pre-processing enhanced data quality, these

measurements were sub-jected to extra analysis.

3.3.4 Alignment to Reference Genome

To determine where raw readings are located, transcripts are aligned with a

reference genome in a process known as alignment. The alignment is done using

HISAT2 (Galaxy Version 2.2.1+galaxy1), which is a quick and accurate tool. The most

recent version of the human reference genome in Galaxy, "Human CHM13 2.0 (T2T

Consortium Jan.2022)," is the reference genome utilized for the read alignment. The

information for the paired-end data strand was selected as "Forward(FR)". The number

of transcripts that are aligned to the reference genome is listed in the report of

alignment that HISAT2 prints after alignment. After alignment to the reference
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genome, raw fasta reads are transformed into BAM (Binary Alignment Map)

file format.

3.3.5 Identification and Removal of Duplicate Reads

The final result can be affected by duplicate reads that may be due to ex-

perimental or biological artifacts. To examine the differential expression of genes,

biological duplicates are required. To avoid false positive results, duplicates created by

the PCR (Polymerase Chain Reaction) must be removed. Duplicates are found using

MarkDuplicates (Galaxy Version 2.18.2.3), and they are removed using RmDup

(Galaxy Version 2.0.1). Default values are used for both tools. MarkDuplicates uses a

flag that RmDup can recognize to mark the repeated readings. RmDup recognizes

these duplicates and removes them from the aligned BAM file.

3.3.6 Transcript Assembly and Quantification

StringTie (Galaxy Version 2.2.1+galaxy0) was used to assemble and

quantify RNA sequence reads in BAM files. StringTie is an efficient and fast

aligner. It has also the option of de Novo transcript assembly. We utilized

the following StringTie input options:

1. Does the input contain long reads? No

2. Enter the strand information Forward(FR).

3. Use a reference file to assist with assembly. Use GTF or GFF3 as a reference.

4. The file CHM13-T2T-v2.0.gff3 is a reference file.

5. Only use reference transcripts? Yes

6. Differential expression output files? Ballgown

7. Availability of output coverage file? Absolutely
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8. Output of the gene abundance estimation file?

Yes String tie generates the following output:

• A gtf file with assembled transcripts

• Gene abundances in tabular format

• The ballgown requires five files as input, which it utilizes to estimate

differential expression.

3.3.7 Differentially Expressed Genes

The following five files are produced by StringTie and Tablemaker

that can be imported into Ballgown:

1. e_data.ctab: This file contains exon-level expression measurements of

the data.One row is dedicated per exon while the columns contain

e_id, chr, start, end, etc. The file also contains the following

quantification information for each sample:

• rcount: Number of overlapping reads in exon.

• ucount: Number of uniquely mapped and overlapped exon.

• mrcount: Number of reads that overlap exon after multi-mapping

correc-tion.

• cov: Per-base read coverage average.

• cov sd: Standard Deviation of read coverage.

• mcov: Per-base average of read coverage in multi-mapped reads.

• mcov sd:Multi-map-corrected per-base coverage standard deviation.

2. i_data.ctab: This file contains intron expression levels. Each row represents

a single intron, and columns comprise i_id, chr, strand, start, end, and so on.
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3. t_data.ctab:Transcript concentrations are present in this file. Each row repre-

sents a transcript, and the columns contain the following information:

• t_id: Transcript ID

• t_name: Cufflinks-generated Transcript ID

• num_exon: the number of exons in the transcript;

• length: the length of the transcript;

• gene_id: the ID of the gene relating to the specific transcript;

• gene_name: the transcript’s HUGO gene name.

4. FPKM: Cufflinks estimates FPKM values for the transcript.

5. e2t.ctab: A table having two columns, e_id and t_id, that link exons to

tran-scripts. The file should have the same ids as the e_data.ctab and

t_data.ctab tables.

6. i2t.ctab: A table containing two columns, i_id and t_id, that connect

introns to their respective transcripts. The file should have the same

ids as the i_data.ctab and t_data.ctab tables.

For statistical analysis, Differential expression analysis, and visualization

of assembled transcripts, Ballgown which is an R-programming

Bioconductor tool, is used. Stringtie’s output files are imported, and the

following information is necessary so that DEGs have to be obtained.

• Phenotypic data: Information about the samples.

• Expression data: Information on the size of the intron, exon, or

both. The sample contains transcripts and genes.

• Genomic data: Information regarding gene and transcript

coordinates as well as exons.
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The following step involves seeing distributed FPKM data that have

been stan-dardized for library size. A linear model is employed to

calculate differential expression.

3.3.8 Graphical Representation of DEGs

For visualization DEGs, volcano, and enhanced volcano plots were

used, which clearly show over and under-expressed genes and even genes

that are not sig-nificant or with low log2FC values. Each dot on the plot

represents a separate gene. These graphs display the -log10 p-values for

the genes along with their log2 fold changes on the horizontal axis.

3.4 Network Analysis

After differential gene expression analysis, common differentially genes be-

tween all the datasets were found. The common differentially genes were used for

pathway enrichment analysis. The pathway with a significant P-value Hedgehog

Sig-naling Pathway in our study with a p-value of 0.04 was used for network

analysis to identify the most important genes in the pathway. Cytoscape is an

open-source platform for visualizing, analyzing, and modeling complex networks

was used for network analysis. Centrality measures, such as betweenness, and

closeness centrality, were used to identify the most important nodes in the network.

(A) Betweenness Centrality

Betweenness centrality quantifies the importance of a node in a network based

on its position as a bridge or intermediary between other nodes. Nodes with high be-

tweenness centrality lie on many of the shortest paths between pairs of nodes in the

network. Betweenness centrality is often used to identify nodes that are critical for

maintaining network connectivity or for controlling the flow of information in vari-
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ous applications, including social networks, transportation networks, and

biological networks.

(B) Closeness Centrality

Closeness centrality is a measure that assesses how quickly information or

influence can spread from a node to all other nodes in the network. It quantifies

how "close" a node is to all other nodes in terms of geodesic distance, where

geodesic distance is the shortest path length between nodes. Closeness centrality

is used to identify nodes that can rapidly disseminate information or influence

throughout the network. It’s particularly relevant in situations where quick

communication or the efficient transfer of resources is essential.

3.5 Protein Selection

Protein was selected based on interactions performed using STRING database, a

biological database, and web resource for known protein-protein interactions freely

available at https://string-db.org/. The following steps were used for protein selection:

1. Searched for important genes on the basis of their association with azoospermia and

spermatogenesis from literature and expression profiles in the used datasets.

2. Mutations in identified genes leading to azoospermia were also

searched in literature and used for further analysis. The expression

profiles of selected genes were then searched in the used datasets.

3. Interaction analysis of the selected genes was performed using the STRING

database and only genes with known interactions were kept for further analysis.

The selected genes were used for further analysis i.e. protein-protein interaction

and later on genes were filtered on the basis of protein structural availability.
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Figure 3.3. Generalized Workflow of protein-protein interaction

Selected genes were looked up in PROTEIN DATA BANK (PDB) freely available at

https://www.rcsb.org/. The model with high resolution and no mutations was selected for for

remaining steps. Uniprot for used for functional analysis domain study. Position-specific

Blastp was used to search the sequence, and the percentage of identity was verified. Here

prprotein models with percentage identity above 99% were used as it is, models with

identity in range 75%-98% were modeled using SWISS-MODEL, models with similarity

percentage range between 55%-74% were modeled using trRosetta and proteins which

showed similarity less than 55% were filtered.

3.6 Protein-protein Interactions

Predictions about the binding affinities of the proteins and interacting

residues are possible from protein-protein interaction. Despite the fact that there

are other PPI interaction web servers available, studies continually place

HADDOCK as one of the finest PPI programs in terms of quality, usability, and

effectiveness. The docking workflow employed in research is shown in Figure 3.3.
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(A) Prediction of Protein Binding Areas

Protein interface residues were computer-generated using SPPIDER

web server available at https://sppider.cchmc.org/. It appears to provide

more accurate interpretations of the interface residues that can be used for

docking than High Ambi-guity Driven biomolecular DOCKing (HADDOCK).

(B) Docking Analysis

After preparing the required files and predicting interacting residues,

protein-protein interaction is performed with the help of HADDOCK. Two

protein structures were given as input along with the list of interacting

residues. The resulting protein-protein complexes are analyzed on the basis

of different factors and scoring functions including:

• HADDOCK SCORE: The projected protein-protein complex’s overall quality

is indicated by the HADDOCK score, an aggregate value. It is used to rank

and choose the most advantageous docking poses and is derived from

several energy components and phrases. The lower the HADDOCK the

more biologically relevant and energetically favourable will be the interaction.

• Cluster Size: HADDOCK groups the resulting positions based on their struc-tural

similarity after completing docking calculations. The number of poses that make

up a certain cluster is referred to as the cluster size. This knowledge aids in

locating the most prevalent and possibly stable binding mechanisms.

• RMSD from the Overall Lowest-Energy Structure: Root Mean Square

Devia-tion, or RMSD, is a metric used to compare or contrast the

structural similari-ties or differences between two protein conformations.

The average deviation (measured in angstroms) between each position

and the cluster’s lowest-energy stance is given by this word in the context

of HADDOCK. It aids in evaluating a cluster’s structural diversity.
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• Van der Waals energy: Describes how strongly atoms in a docked complex

in-teract with one another. It contributes to the total binding energy and

represents the attractive and repulsive forces between unbounded atoms.

Complex stability is influenced by favorable van der Waals interactions.

• Electrostatic Energy: Electrostatic energy explains the electrostatic

interactions between charged atoms or groups in the complex, such

as attracting (such as Coulombic) and repulsive forces. It adds to the

overall binding energy in a manner similar to van der Waals energy.

• Desolvation energy: During docking, when molecules are in close range

to one another, this phrase refers to the energy needed to dislodge water

molecules from the binding interface. It consists of both positive and

negative contribu-tions, the latter of which carries desolvation liabilities.

• Restraints Violation Energy: HADDOCK uses practical or bioinformatics-

derived information to direct the docking computations, such as NMR-

derived distance restraints or other interaction data. The degree to which

the generated postures adhere to these limitations is measured by the

restraints violation energy. Better interaction is indicated by lower values.

• Buried Surface Area: During complex formation, the interacting molecules that

become inaccessible to the solvent are referred to as buried surface area. A

more stable interaction is represented by a greater buried surface area.

• Z-Score: The Z-Score is a statistical metric used to compare a given

docking score to a variation in scores for random or loose configurations.

Higher Z-scores indicate more significant and advantageous binding, and

they are used to determine the importance of the HADDOCK score.

When employing the HADDOCK algorithm to study protein-protein interactions, the above-

mentioned numerous energy components and metrics are essential for assessing

40



Chapter 3 3.6 Protein-protein Interactions

and choosing the most biologically pertinent docking poses and complexes.

(C) Complex Refinement

In order to increase the precision of protein-protein and protein-ligand com-

plex predictions, HADDOCK offers the option for water-based refinement. Haddock’s

top cluster of protein complexes was submitted to the refinement website for water-

based refinements. In HADDOCK, the full refinement stage, which occurs later in the

docking process, is when water-based refinement often enters the picture. Incor-

porating water into the computations seeks to more accurately mimic the biological

setting and increase the predictability of protein-protein interactions. A more explicit or

implicit model of the solvent (water) is provided in water-based refining. This indi-cates

that the calculations account for the interactions between and among the water

molecules and the proteins. The refinement process involves the following steps:

• Input files (Protein Complex)

• Access to HADDOCK Refinement Server

• Upload input files

• Solvent selection (water)

• Job Submission

• Result download and Analysis

(D) Prodigy Analysis

For the advancement of treatments and the comprehension of biological pro-

cesses and illnesses, it is essential to know the structural properties of protein-protein

interactions. A vital part of this is the accurate prediction of the binding strength for a

protein-protein complex [62]. Haddock provides a webserver known as Pro-tein

Binding Energy Prediction (PRODIGY) Prodigy webserver is used for finding
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binding affinity and binding residues between protein-protein complexes given

the 3D structure based on different parameters. The best protein-protein

complex from the refinement outputs is submitted as input with default

parameters. The parameters used for analyzing the prodigy results include:

• Binding affinity assumption (G) expressed in kcal mol-1: This is a

prediction of how the Gibbs free energy (G) will change when the two

proteins attach to one another. It is measured in kilocalories per mole

(kcal/mol) units. The thermodynamic stability of protein-protein

complexes is frequently evaluated using the constant G.

• Kd (M) at °C: The equilibrium constant for the breakdown of a complex into

its individual proteins is represented by the dissociation constant (Kd). It is

measured in molarity units (M) and frequently calculated using the

temperature and G value. Stronger binding is indicated by a lower Kd.

• Interacting Contacts (ICs): The amount of interactions or relationships be-tween

the two proteins within a given distance threshold (5.5 angstroms) is presumably

revealed by this. It can further be categorized based on the proper-ties of

interacting residues such as charged-charged, and charged-polar.

• Non-interacting surface (NIS): As the name indicates it represents the

per-centage of polar and apolar non-interacting residues.
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RESULTS

The results of the methods used to identify variations in gene

expression are presented in this portion of the thesis. Additionally, it analyzes

the connection between up-regulated and down-regulated genes, shows the

interacting residues between af-fected proteins, and assesses the likelihood of

substantial therapeutic improvements. Results include microarray analysis,

RNA-Seq analysis, network analysis, and protein-protein interaction analysis.

4.1 Microarray Analysis

After data is extracted from Array Express and GEO, processing is

performed using appropriate tools. The analysis includes pre-processing of

the data, normaliza-tion, background adjustment, and detection of DEGs.

All the datasets are of Affymetrix microarrays.

4.1.1 GSE-45885

(A) Pre-Processing of Raw Data

Pre-processing of microarray data generated the normalized, calibrated, sum-

marized, and annotated data. In this normalized data, samples in the data are com-

pared with each other. The variation between normal and disease is represented by

the PCA plot, Figure 4.1a shows NOA samples as orange crosses and control and

normal samples as blue boxes, where PC1 exhibits 39.1% variation and PC2 exhibits

14.3% variation. Figure 4.1b shows a normalized boxplot of the dataset with sam-ples

on the y-axis and log2 intensity values on the x-axis. Boxplot of the normalized data

plotted to find out whether the data normalized correctly or not. Each sample
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in the box plot is represented by each box whereas, bars on both sides of the boxes

show upper and lower quantiles. As the median values of the samples coincide with

each other, it shows data is normalized and samples are compared with each other.

Relative Log Expression is another quality check procedure, through which median log-

transformed values are plotted in order to check inter-sample median distribution. In

the RLE plot represented in Figure 4.2a, the x-axis describes samples and the y-axis

describes log2 expression values. The median of each sample is around 0 and shows

the median coincide with each other. Extended lines at each end of the box describe

the distribution of data. Both the histogram and bar plot describe the distribution of

median intensities and p-values respectively. The X-axis of the histogram as shown in

Figure 4.2b shows the median intensity and the y-axis represents the density of probes

or genes at a given intensity. There are a few bars on the left side with low intensity, we

used a 4 cutoff threshold which is standard to remove these values from the data. The

bar plot in Figure 4.3 shows the frequency of the p-value in which the x-axis represents

p-values and the y-axis shows a number of genes. Most of the genes are significant

with a low p-value. Heatmap as shown in Figure4.4a is used to illustrate sample

clustering with each other. Both phenotypes cluster into two different clusters

representing that samples of normal have a high correlation with each other.

(B) Differential Expressed Genes and Visualization

After DEGS analysis, volcano and enhanced volcano plots are used for visu-

alization. The threshold for filtering genes was p-value less than 0.05 and log2FC ±1.

Gene distribution according to log2FC on the horizontal axis and p-value (-log10) on

the vertical axis is displayed in Figure 4.4b. Each dot stands for a unique gene. Genes

present in the grey area are non-significant. Blue-dotted genes are filtered through just

the p-value threshold. Same as blue-dotted genes, green-dotted genes only passed

the LogFC threshold. Genes represented with red dots are significant genes with low

p-values i.e. less than 0.05 and log2 fold change greater than ±1. These genes passed
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through both cutoff values. Highlighted genes less than 1 log2FC are down-

regulated genes and genes with greater than 1 log2FC are up-regulated

genes. A total of 883 differentially expressed genes passed out through

both thresholds. The top 10 Filtered DEGs are listed in Table 4.1.

(a) PCA plot of GSE-45885

(b) Boxplot of GSE-45885

Figure 4.1. PCA and Boxplot of Dataset GSE-45885
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(a) RLE plot of GSE-45885

(b) Histogram of GSE-45885

Figure 4.2. Quality Assessment of Dataset GSE-45885
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Figure 4.3. P-value Distribution Graph of Dataset GSE-45885
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(a) HeatMap of GSE-45885

(b) Enhanced Volcano plot of GSE-45885

Figure 4.4. Visualization of Dataset GSE-45885
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Table 4.1. Top 10 DEGs of Dataset GSE45885

PROBE ID SYMBOL GENE NAME log2FC P-value adj. P-value
8087881 MIRLET7G microRNA let-7g 1.810552564 3.93E-12 9.16E-08
7971661 MIR15A microRNA 15a 2.321978085 6.59E-11 7.67E-07
8153273 MROH5 maestro heat like repeat family member 5 (gene/pseudogene) -1.244966667 4.86E-08 0.00021734
8048350 PLCD4 phospholipase C delta 4 -1.190788111 5.94E-08 0.00021734
7900488 MIR30E microRNA 30e 1.706107373 7.00E-08 0.00021734
7906527 ATP1A4 ATPase Na+/K+ transporting subunit alpha 4 -1.849361041 7.47E-08 0.00021734
8043639 FER1L5 fer-1 like family member 5 -2.235849415 1.01E-07 0.000260554
8014298 HEATR9 HEAT repeat containing 9 -1.375539888 1.51E-07 0.000350827
7911767 MMEL1 membrane metalloendopeptidase like 1 -1.499232822 3.28E-07 0.000549306
7973629 REC8 REC8 meiotic recombination protein -1.337024926 3.63E-07 0.000549306
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4.1.2 GSE-45887

(A) Pre-Processing of Raw Data

Pre-processing of microarray data generated the normalized, calibrated, sum-

marized, and annotated data. In this normalized data, samples in the data are com-

pared with each other. The variation between normal and disease is represented by the

PCA plot, Figure 4.5a shows NOA samples as orange crosses and control and normal

samples as blue boxes, where PC1 exhibits 44% variation and PC2 exhibits 14.1%

variation. Figure 4.5b shows a normalized boxplot of the dataset with sam-ples on the

y-axis and log2 intensity values on the x-axis. Boxplot of the normalized data plotted to

find out whether the data normalized correctly or not. Each sample in the box plot is

represented by each box whereas, bars on both sides of the boxes show upper and

lower quantiles. As the median values of the samples coincide with each other, it

shows data is normalized and samples are compared with each other. Relative Log

Expression is another quality check procedure, through which median log-transformed

values are plotted in order to check inter-sample median distribution. In the RLE plot

represented in Figure 4.6a, the x-axis describes samples and the y-axis describes log2

expression values. The median of each sample is around 0 and shows the median

coincide with each other. Extended lines at each end of the box describe the

distribution of data. Both the histogram and bar plot describe the distribution of median

intensities and p-values respectively. The X-axis of the histogram as shown in Figure

4.6b shows the median intensity and the y-axis represents the density of probes or

genes at a given intensity. There are a few bars on the left side with low intensity, we

used a 4 cutoff threshold which is standard to remove these values from the data. The

bar plot in Figure 4.7 shows the frequency of the p-value in which the x-axis represents

p-values and the y-axis shows a number of genes. Most of the genes are significant

with a low p-value. Heatmap as shown in Figure 4.8a is used to illustrate sample

clustering with each other. Both phenotypes cluster into two different clusters
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representing that samples of normal have a high correlation with each other.

(B) Differential Expressed Genes and Visualization

After DEGS analysis, volcano and enhanced volcano plots are used for visu-

alization. The threshold for filtering genes was p-value less than 0.05 and log2FC ±1.

Gene distribution according to log2FC on the horizontal axis and p-value (-log10) on

the vertical axis is displayed in Figure 4.8b. Each dot stands for a unique gene. Genes

present in the grey area are non-significant. Blue-dotted genes are filtered through just

the p-value threshold. Same as blue-dotted genes, green-dotted genes only passed

the LogFC threshold. Genes represented with red dots are significant genes with low

p-values i.e. less than 0.05 and log2 fold change greater than ±1. These genes passed

through both cutoff values. Highlighted genes less than 1 log2FC are down-regulated

genes and genes with greater than 1 log2FC are up-regulated genes. A total of 772

differentially expressed genes passed out through both thresholds. The top 10 Filtered

DEGs are listed in Table 4.2.
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(a) PCA plot of GSE-45887

(b) Boxplot of GSE-45887

Figure 4.5. PCA and Boxplot of Dataset GSE-45887
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(a) RLE plot of GSE-45887

(b) Histogram of GSE-45887

Figure 4.6. Quality Assessment of Dataset GSE-45887
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Figure 4.7. P-value Distribution Graph of Dataset GSE-45887
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(a) HeatMap of GSE-45887

(b) Enhanced Volcano plot of GSE-45887

Figure 4.8. Visualization of Dataset GSE-45887
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Table 4.2. Top 10 DEGs of Dataset GSE45887

PROBEID SYMBOL GENENAME log2FC P.Value adj.P.Val
8087881 MIRLET7G microRNA let-7g 1.873159046 2.57E-09 5.82E-05
7971661 MIR15A microRNA 15a 2.26066658 2.63E-08 0.000297782
7900488 MIR30E microRNA 30e 1.664081679 1.55E-06 0.010210371
7906527 ATP1A4 ATPase Na+/K+ transporting subunit alpha 4 -1.691674474 2.03E-06 0.010210371
8156521 MIRLET7F1 microRNA let-7f-1 1.130795034 8.74E-06 0.017797315
8153273 MROH5 maestro heat like repeat family member 5 (gene/pseudogene) -1.199332484 9.06E-06 0.017797315
8043639 FER1L5 fer-1 like family member 5 -2.202215685 1.06E-05 0.017797315
8067942 MIR99A microRNA 99a 2.625447662 1.26E-05 0.017797315
8014298 HEATR9 HEAT repeat containing 9 -1.236875639 1.29E-05 0.017797315
8048350 PLCD4 phospholipase C delta 4 -1.186656337 1.40E-05 0.017797315
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4.2 Next Generation Sequencing

After the retrieval of data from GEO, analysis is performed with the help of

an appropriate tool in the Galaxy server to identify DEGs. The analysis includes

pre-processing of the data, transcript analysis, and identification of DEGs.

4.2.1 GSE-216907

(A) Pre-processing of Transcript Data

There are 10 samples total in this collection, 8 of which are from NOA pa-tients

and 2 from healthy individuals. The analysis of the raw data was done in Galaxy, and

global read trimming was done at 13 on the front. After pre-processing the raw data,

the transcript data was analyzed using Ballgown in R. The median distribution of FPKM

values for each sample is displayed in Figure 4.9a as a box plot of log2 transformed

FPKM (fragments per kilobase of exon model per million reads mapped). This shows

that the median of each sample is around 2. The whiskers depict the distribution of the

data, while the dots stand in for any outliers that were found. A vi-sualization graph

used in particular for assessing the similarity or dissimilarity across samples based on

their genetic or molecular profiles is the Multi-Dimensional Scaling (MDS) plot. MDS as

shown in Figure 4.9b enables to visualization of relationships between samples in a

lower-dimensional environment and aids in the reduction of the dimensionality of

complicated data. Transcript length distribution is shown in Figure 4.10. The horizontal

axis shows transcript length in base pairs, and the vertical axis shows frequency. Right-

handed long tail and positively skewed distribution are seen. There are a maximum of

100bp-long transcripts available. The frequency distribution of genes’ log2 fold change

values is shown in Figure 4.11a. Values for the fold change are shown on the

horizontal axis, while values for the frequency of the differential expression are shown

on the vertical axis. The physiologically important genes are filtered out using a cutoff

value of ± 1.
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(B) Visualization of DEGs

After DEGS analysis, volcano and enhanced volcano plots are used for visu-

alization. The threshold for filtering genes was p-value less than 0.05 and log2FC ±1.

Gene distribution according to log2FC on the horizontal axis and p-value (-log10) on

the vertical axis is displayed in Figure 4.11b. Each dot stands for a unique gene.

Genes present in the grey area are non-significant. Blue-dotted genes are filtered

through just the p-value threshold. Same as blue-dotted genes, green-dotted genes

only passed the LogFC threshold. Genes represented with red dots are significant

genes with low p-values i.e. less than 0.05 and log2 fold change greater than ±1.

These genes passed through both cutoff values. Highlighted genes less than 1 log2FC

are down-regulated genes and genes with greater than 1 log2FC are up-regulated

genes. Top 10 Filtered DEGs are listed in Table 4.3.
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(a) Boxplot of GSE-216907

(b) MDS plot of GSE-45887

Figure 4.9. Quality Assessment of Dataset GSE-216907
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Figure 4.10. Distribution of transcript length of GSE-216907
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(a) Distribution of Differential expression values of GSE-216907

(b) Distribution of Differential expression values of GSE-216907

Figure 4.11. Visualizing DEGs of Dataset GSE-216907
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Table 4.3. Top 10 DEGs of Dataset GSE216907

geneNames id fc pval log2FC
NCBP2 CHM13_G0040959 1.741204457 0.007286019 0.800085618
ZBTB33 CHM13_G0059303 3.347407604 0.007329783 1.743044234
MSTRG.4586 CHM13_G0045374 2.428623477 0.007403865 1.280138838
NEURL1 CHM13_G0007311 0.285658292 0.007544465 -1.807637686
STK3 CHM13_G0054442 2.377639905 0.007662791 1.249530235
PPP2R5C CHM13_G0017583 1.614613461 0.007667801 0.691188824
MSTRG.747 CHM13_G0006928 2.61754958 0.007716862 1.388216864
MT-ATP6 CHM13_G0057522 37.92169194 0.007862422 5.244951429
HAT1 CHM13_G0032869 3.854962557 0.007906715 1.946716848
TAOK3 phospholipase C delta 4 -1.186656337 1.40E-05 1.984795929
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Chapter 4 4.3 Network Analysis

4.3 Network Analysis

Network analysis was performed using the pathway of 16 common

differen-tially expressed genes using Cytoscape. The significant nodes were

identified on the basis of betweenness centrality and closeness centrality. As

shown in Figure 4.12 the most important nodes identified on the basis of

betweenness centrality include SMO, COS2, and PTCH1 proteins.

Figure 4.12. Important Nodes identified on basis of Betweenness Centrality

On the other hand, the most important nodes identified using closeness cen-

trality include EN complex, BMP4, and SPOP proteins as shown in Figure 4.13.

4.4 Protein Selection

The proteins selected on the basis of their association with azoospermia

from the literature review and their expression values are presented in Table 4.4.

Network analysis performed on selected proteins using STRING database, a

biological database, and web resource for known protein-protein interactions freely
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Chapter 4 4.4 Protein Selection

Figure 4.13. Important Nodes identified on basis of Closeness Centrality

Table 4.4. List of Genes for PPI Analysis

Gene-ID Gene-Name log2FC Expression
CCNG1 Cyclin G1 1.845241283 Up-regulated
SYCP3 Synaptonemal Complex Protein 3 0.293490419 Normal
TEX11 Testis Expressed 11 0.368793257 Normal
SYCE1 synaptonemal complex (SC) central element 1 0.112801709 Normal
NR5A1 Nuclear Receptor Subfamily 5 Group A Member 1 0.08869329 Normal
ZMYND15 zinc finger MYND-type containing 15 -1.901059618 Down-regulated
UBQLN3 ubiquilin 3 -2.760846572 Down-regulated
THEG Testicular Haploid Expressed Gene -2.004005676 Down-regulated
STPG1 Sperm Tail PG-Rich Repeat Containing 1 -1.245574217 Down-regulated
SPEM1 spermatid maturation 1 -2.204479872 Down-regulated
SPATA32 Spermatogenesis Associated 32 -2.234732231 Down-regulated
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available at https://string-db.org/. The network analysis results of CCNG1, SYCP3,

TEX11, SYCE1, and NR5A1 generated using STRING are shown in Figure 4.15.

Nodes represent the query proteins in red color and edges represent protein-

protein associations with different colors for different types of interactions (known

interac-tions, predicted, and others) as presented in Figure4.14.

Figure 4.14. Edge colors for different Interaction types
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(a) Network Analysis of CCNG1

(b) Network Analysis of SYCP3

(c)Network Analysis of TEX11

(d) Network Analysis of SYCE1

Figure 4.15. Network analysis results of CCNG1, SYCP3, TEX11 and
SYCE1 from STRING Database
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The network analysis results of NR5A1, ZMYND15, UBQLN3, and

THEG generated using STRING are shown in Figure 4.16. Nodes represent

the query pro-teins in red color and edges represent protein-protein

associations with different colors for different types of interactions (known

interactions, predicted, and others) as pre-sented in Figure 4.14.
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(a) Network Analysis of NR5A1

(b) Network Analysis of ZMYND15

(c) Network Analysis of UBQLN3

(d) Network Analysis of THEG

Figure 4.16. Network analysis results of NR5A1, ZMYND15, UBQLN3 and
THEG from STRING Database
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The network analysis results of STPG1, SPEM1, and SPATA32

generated using STRING are shown in Figure 4.17. Nodes represent the

query proteins in red color and edges represent protein-protein

associations with different colors for different types of interactions (known

interactions, predicted, and others) as presented in Figure 4.14.

(a) Network Analysis of STPG1

(b) Network Analysis of SPEM1

(c)Network Analysis of SPATA32

Figure 4.17. Network analysis results of STPG1, SPEM1, and SPATA32
from STRING Database
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4.5 Protein-protein Interaction

Predictions about the binding affinities of the proteins and interacting residues

are possible from protein-protein interaction. Despite the fact that there are other PPI

interaction web servers available, studies continually place HADDOCK as one of the

finest PPI programs in terms of quality, usability, and effectiveness.

The proteins with known interactions were aligned with another requirement

for performing interactions as described above and only a few genes meeting the

criteria were selected as displayed in Table 4.5. NR5A1 is associated with normal

spermatogenesis and mutations in NR5A1 have been reported to be associated

with Azoospermia. There is a conflict between the association of NR5A1 mutations

with azoospermia. NR5A1 regulates its target protein AMH with the help of its

transcrip-tional co-factors SOX9, WT1, and co-activator CTNNB1. The structures

of NR5A1, AMH, SOX9, CTNNB1, and WT1 are presented in Figure 4.18.

Table 4.5. Proteins filtered for HADDOCK Interaction protein-protein Analysis

Gene ID Gene Name log2FC Expression
NR5A1 Nuclear Receptor Subfamily 5 Group A Member 1 0.08869329 Normal
CTNNB1 Catenin Beta 1 0.332850661 Normal
AMH Anti-Müllerian hormone -0.88427359 Normal
SOX9 SUMO-conjugating enzyme UBC9 -1.425957221 Normal
WT1 Wilms’ tumour suppressor gene 1 -0.735163824 Normal
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(a)Structure of NR5A1

(b) Structure of AMH

(c) Structure of SOX9

(d) Structure of CTNNB1

(e)Structure of WT1

Figure 4.18. Protein structures of NR5A1, AMH, SOX9, CTNNB1 and WT1
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4.5.1 Protein Binding Areas

The list of interacting residues for each of the selected proteins was gener-

ated using the SPPIDER (Species and Proteins Profile-based Infrared Database

and Enhanced Retrieval) webserver. The PDB file for each protein was given input

and SPPIDER generated the list of interacting residues for further analysis.

4.5.2 Docking Analysis

After preparing the required files and predicting interacting residues,

protein-protein interaction was performed with the help of HADDOCK. Two

protein struc-tures were given as input along with the list of interacting

residues. The resulting protein-protein complexes are analyzed on the basis

of different factors as discussed in Section 3.5(B) of Chapter 3.

When employing the HADDOCK algorithm to study protein-protein

interac-tions, the above-mentioned numerous energy components and

metrics are essential for assessing and choosing the most biologically

pertinent docking poses and com-plexes. The evaluation parameter scores

for the top clusters of all complexes are given in Table 4.6.

Table 4.6. The statistics of the top and most reliable clusters according to
HADDOCK before Refinement.

Protein-Protein Complex NR5A1-AMH NR5A1-SOX9 NR5A1-CTNNB1 NR5A1-WT1
HADDOCK score -84.5 +/- 3.1 -103.4 +/- 16.4 -100.5 +/- 18.1 -100.4 +/- 24.8
Cluster size 9 5 20 6
RMSD from the overall 12.5 +/- 0.7 1.6 +/- 1.3 16.5 +/- 0.1 9.9 +/- 0.2lowest-energy structure
Van der Waals energy -56.7 +/- 6.4 -72.7 +/- 9.8 -80.3 +/- 4.2 -61.4 +/- 9.5
Electrostatic energy -308.3 +/- 11.3 -217.0 +/- 36.9 -317.2 +/- 71.1 -278.9 +/- 56.6
Desolvation energy -10.0 +/- 2.8 -19.9 +/- 2.1 -20.1 +/- 2.0 -17.4 +/- 1.8
Restraints violation energy 438.6 +/- 60.3 326.0 +/- 112.0 633.2 +/- 98.2 342.5 +/- 94.2
Buried Surface Area 2271.4 +/- 258.7 2044.4 +/- 257.0 2936.1 +/- 208.0 2212.2 +/- 229.9
Z-Score -1.9 -1.3 -1.3 -2.1
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The chart of the PPI scores of the top clusters of most probable

complexes of NR5A1 with AMH and CTNNB1 respectively interacting

partners is shown in Figure 4.19.

(a) Top Cluster scores of NR5A1-AMH

(b) Top 10 Cluster scores of NR5A1-CTNNB1

Figure 4.19. Top Cluster scores of NR5A1 with AMH and CTNNB1
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The chart of the PPI scores of the top clusters of most probable

complexes of NR5A1 with SOX9 and WT1 respectively interacting partners

is shown in Figure 4.20.

(a) Top Cluster scores of NR5A1-SOX9

(b) Top Cluster scores of NR5A1-WT1

Figure 4.20. Top Cluster scores of NR5A1 with SOX9 and WT1
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4.5.3 Complex Refinement

HADDOCK provides the option for water-based refinement to improve the

accuracy of protein-protein complex predictions. Refinement of the protein-protein

complex is performed to more accurately mimic the biological setting and increase

the predictability of the interaction. A more explicit or implicit model of the solvent

(water) is provided in water-based refining. This indicates that the calculations ac-

count for the interactions between and among the water molecules and the

proteins. HADDOCK recommended using the first complex from the top cluster as

the most credible input for refinement analysis. The evaluation is performed on the

basis of the same parameters as for prior complexes. The underlying Table 4.7

displays the statistical parameters for analyzing the refinement results.

Table 4.7. The statistics of the most reliable clusters according to
HADDOCK after Refinement.

Protein-Protein Complex NR5A1-AMH NR5A1-SOX9 NR5A1-CTNNB1 NR5A1-WT1
HADDOCK score -138.7 +/- 4.1 -161.2 +/- 3.3 -209.7 +/- 3.8 -117.8 +/- 6.8
Cluster size 20 20 20 20
RMSD from the overall lowest-energy structure 2.6 +/- 0.0 0.5 +/- 0.3 0.5 +/- 0.3 0.6 +/- 0.3
Van der Waals energy -68.8 +/- 1.7 -82.5 +/- 3.0 -94.2 +/- 6.5 -48.8 +/- 1.8
Electrostatic energy -296.8 +/- 24.3 -248.4 +/- 27.8 -549.3 +/- 53.4 -353.5 +/- 17.6
Desolvation energy -10.5 +/- 4.2 -29.1 +/- 3.0 -5.7 +/- 1.7 1.7 +/- 3.5
Restraints violation energy 0.0 +/- 0.0 0.0 +/- 0.0 0.0 +/- 0.0 0.0 +/- 0.0
Buried Surface Area 2164.0 +/- 52.6 2301.5 +/- 47.0 3300.6 +/- 64.6 2147.0 +/- 60.1
Z-Score 0.0 0.0 0.0 0.0

4.5.4 Prodigy Analysis

Haddock Prodigy webserver is used for finding binding affinity and binding

residues between the complex proteins of the protein complex based on different

parameters. The best protein-protein complex from the refinement outputs is submit-

ted as input with default parameters. The parameters used for analyzing the prodigy

results are discussed in section 3.5(D) of chapter 3. The underlying Table 4.8 displays

the statistical results for prodigy analysis of the protein-protein complexes:
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Table 4.8. Prodigy statistical parameters for all complexes

Protein-protein complex NR5A1-AMH NR5A1-SOX9 NR5A1-CTNNB1 NR5A1-WT1
G (kcal mol-1) -9.7 -10.3 -11.6 -9.7
Kd (M) at °C 1.4e-07 5.4e-08 6.7e-09 1.5e-07
ICs charged-charged 12 14 14 11
ICs charged-polar 13 12 22 11
ICs charged-apolar 21 26 31 16
ICs polar-polar 1 1 6 6
ICs polar-apolar 13 11 17 16
ICs apolar-apolar 16 13 20 8
NIS charged 22.62 26.24 25.7 27.1
NIS apolar 48.52 44.11 42.31 40.81

The results of the HADDOCK prodigy analysis were downloaded,

Pymol tool was used to see the 3D structures of the protein complexes in

different forms. The prodigy results of NR5A1 with other proteins are

presented in Figure 4.21 with light blue and light pink colors representing

the two proteins and dark regions representing their interacting areas.
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(a) Protein complex of NR5A1 and AMH

(b) Protein complex of NR5A1 and SOX9

(c)Protein complex of NR5A1 and WT1

(d) Protein complex of NR5A1 and CTNNB1

Figure 4.21. Protein Complex o NR5A1 with other Proteins
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The information regarding the association of identified mutation in

NR5A1 with the interacting residues is presented in table 4.9. Three mutations

reported in one study were found to be present in the interacting residue

positions of NR5A1. These mutations were associated with spermatogenesis

failure due to different factors. Only one mutation (identified as p.Asp257Asn)

out of these, present in 0.4% (4 out of 270) samples was associated with

azoospermia. The mutations identified in other studies were not in the

interacting region of NR5A1 with its interacting partners used in this study.

Table 4.9. Mutations at Interacting Residues

Mutations Identified Reference NR5A1-AMH NR5A1-SOX9 NR5A1-CTNNB1 NR5A1-WT1
p.Gly123Ala (c.368G>C) Bashamboo et al. (2010) No No No No
p.Pro129Leu(c.386C>T) Bashamboo et al. (2010) No No No No
p.Pro131Leu(c.392C>T) Bashamboo et al. (2010) No No No No
p.Arg191Cys (c.571C>T) Bashamboo et al. (2010) No No No No
p.Gly212Ser (c.634G>A) Bashamboo et al. (2010) No No No No
p.Asp238Asn(c.712G>) Bashamboo et al. (2010) No No No No
p.Pro97Thr(c.467C>A) Zare-Abdollahi D, Safari S, Mirfakhraie R, et al. No No No No
p.Glu237Lys(c.709G>A) Zare-Abdollahi D, Safari S, Mirfakhraie R, et al. No No No No
P.Gly146Ala(c.437G>C) Andrologia vol. 50,3 (2018) No No No No
p.Thr75Thr(c.225G>C) Ropke et al. (2013) No No No No
p.Pro125Pro(c.375G>A) Ropke et al. (2013) No No No No
p.Gly146Ala(c.437G>C) Ropke et al. (2013) No No No No
p.Gly165Arg(c.493G>C) Ropke et al. (2013) No No No No
p.Pro210Pro(c.630G>A) Ropke et al. (2013) No No No No
p.Val240Val(c.720G>A) Ropke et al. (2013) No No No No
p.Asp257Asn(c.769G>A) Ropke et al. (2013) No Yes No No
p.Ile323Thr(c.968T>C) Ropke et al. (2013) No No No No
p.Cys422Cys(c.1266C>T) Ropke et al. (2013) No No No No
p.Lys440Lys(c.1320G>A) Ropke et al. (2013) Yes Yes No No

The list of interacting residues (the residues between a distance of 5Å upon

protein-protein complex formation) for NR5A1 in all the complexes is provided in

Table A.1 in the Appendix portion. The highlighted residues with green and pink

colors are the two common interacting residues in all the complexes.
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DISCUSSION

Azoospermia is one of the major causes of male infertility and is described

as the absence of spermatozoa in the ejaculate. It is classified into two types i.e.

obstructive azoospermia (OA) and non-obstructive azoospermia (NOA).

Azoospermia is the cause of infertility in more than one percent of males in the

general population whereas 10%–15% of infertile men are affected by this problem

[8]. NOA is the most prevalent kind of azoospermia and affects approximately 60%

of azoospermic males. It is caused by spermatogenesis failure due to different

factors. There is no proper treatment available for NOA, however, sperm can be

retrieved in some cases for in-vitro fertilization. This process is very expensive and

has a very low success rate. Treatment options are urgently needed to increase

sperm production and for targeting underlying causes.

This work aims to demonstrate relevant associations between NR5A1

mu-tations, spermatogenesis failure, and NOA. Differential expression analysis

(DEA) was performed on datasets generated from different platforms like

Microarray and NGS. The purpose of DEA was to analyze gene expression

patterns of patients with spermatogenesis failure causing NOA. The selected

genes were also searched in the literature. Network analysis of selected genes

was performed and interactions were verified from the literature. The protein

structures of selected proteins were docked using the HADDOCK server. The

binding affinity and interaction profile of all inter-acting partners were analyzed.

Three datasets were selected for the analysis. These three datasets

included one RNA-seq dataset and two microarray datasets. Using logFC ±1 and

0.05 as the p-value, DEGs were marked in microarray and mRNA seq datasets.

Since RNA-seq is more precise than microarrays, it has been selected as the
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best method for determining gene expression. After identifying genes based on

their association with azoospermia, target identification for protein-protein

interactions was performed. Different criteria were set for selecting the list of

proteins for PPI. The first was selecting significant genes on the basis of network

analysis using the STRING database. Only proteins exhibiting known interactions

were selected. The interactions of selected proteins were verified from the literature.

The second criterion was the availability of 3D structures of selected proteins. In

order to find the 3D structures of selected proteins, the UniProt database was used,

and particular entries with zero mutations were chosen for all proteins. The fasta

sequence was then used to find proteins with similar amino acid sequences in PSI-

Blast. The protein that aligned most optimally was selected. The proteins with

greater than 98% were used as it is. The protein structures with percentage identity

between 75% to 97% were modeled on SWISS-MODEL (a fully automated protein

homology modeling web server). The protein structures with percentage identity

between 65% to 74% were modeled on trRosetta (algorithm for predicting fast and

accurate protein structures). The remaining proteins with known interaction but a

similarity percentage less than 65% were filtered.

None of the selected genes could pass the first criterion as protein A for

interacting however were present as protein B except NR5A1. From the literature,

it was verified that NR5A1 is one of the most important genes among therapeutic

target genes of NOA. Different studies identified mutations in NR5A1 associated

with azoospermia. STRING networking database was used and NCOA2, NROB1,

AMH, SOX9, GATA4, and WT1 were selected on the basis of their expression

level in our datasets and known interactions with NR5A1. NR5A1 also exhibited

known interaction with one of its co-activator genes CTNNB1. The proteins

meeting the second criterion were NR5A1, AMH, SOX9, WT1, and CTNNB1.

NR5A1 is a nuclear hormone receptor, that plays a crucial role in regulat-

ing steroid hormone biosynthesis by targeting different genes in humans. Some
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transcription cofactors and transcription co-activators participate with NR5A1 in

regulating NR5A1 target genes. Previous studies indicate that AMH is one of the

NR5A1-mediated target genes. SOX9 and WT1 are identified as transcription

cofac-tors interacting with NR5A1 to help in regulating NR5A1 target genes. In

addition to this CTNNB1 is also identified as one of the transcription co-activators

that helps in regulating NR5A1-mediated target genes. Researchers have different

opinions on the association of NR5A1 mutations with NOA. Some studies say that

mutations in NR5A1 are the cause of NOA and some say that mutations in NR5A1

are not associated with NOA. We performed PPI of NR5A2 with interacting

partners and searched for if the identified mutation are present in the interacting

residues or not. The protein structures of NR5A1 and interacting partners were

docked using the HADDOCK web server. The HADDOCK results were analyzed

and the first complex from the top cluster was used for performing refinement

analysis. After refinement, Prodigy analysis was performed to find the binding

affinity and binding residues of the protein-protein complexes using Prodigy

webserver. The binding affinity and in-teraction profile of NR5A1 protein with all

interacting partners were analyzed. The interaction residues were also checked for

identified mutations. The current study pro-posed that the NR5A1 protein shows

interaction with all its target proteins, cofactors, and coactivators. NR5A1 shows

the strongest interaction with CTNNB1 among all interacting proteins. Only one

mutation from the identified mutations was present in the interacting residues

present only 0.4% of the azoospermic cases used in that study.

This study suggests that the mutations identified are not in the interacting

residues of NR5A1, and the expression profile of NR5A1 and its interacting

residues is also normal in the NGS dataset used in this study. This study supports

the studies that contradict the association of NR5A1 mutations with NOA.
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Appendix A

Interacting Residues of NR5A1 in all Complex

Table A.1. Interacting Residues of NR5A1 in All Complexes

NR5A1 Residue NR5A1 Residue NR5A1 Residue NR5A1 Residue
-AMH Number -SOX9 Number -CTNNB1 Number -WT1 Number
GLY 413 HIS 439 ASP 414 GLN 357
ASP 380 GLU 435 LEU 402 SER 346
ALA 458 TYR 438 GLY 413 ASP 380
ASN 444 TYR 438 THR 296 GLN 417
LYS 382 LEU 456 ASP 414 SER 342
LEU 442 PHE 383 LEU 402 LEU 343
LEU 442 ASP 257 ALA 399 SER 346
ARG 427 LEU 442 ASP 414 SER 346
LEU 420 LYS 459 ARG 427 LEU 379
GLU 445 MET 455 LEU 421 GLN 432
LYS 434 LEU 442 LYS 434 LEU 381
GLN 417 ALA 458 GLN 417 GLN 417
PHE 416 LYS 459 LEU 402 SER 378
TYR 438 MET 431 GLU 225 LEU 421
PHE 383 GLU 445 LYS 396 SER 342
ASN 444 TYR 436 ALA 458 LEU 379
LYS 459 PRO 259 GLU 395 LYS 382
PHE 383 MET 431 LEU 456 GLN 417
LEU 420 LYS 440 ALA 399 LEU 381
GLY 443 GLU 435 GLU 225 GLN 432
GLN 457 GLU 445 MET 431 GLN 432
HIS 439 ASP 380 ARG 427 SER 342
GLY 413 MET 431 GLU 395 LEU 343
GLN 394 GLN 299 ARG 427 LYS 382
HIS 441 LYS 440 ASP 403 LEU 421
ASP 414 GLN 457 LEU 406 HIS 439
HIS 439 ARG 427 LEU 379 GLN 417
ASP 414 ALA 458 GLN 418 LEU 349
GLN 457 HIS 439 VAL 424 GLU 353
GLN 418 HIS 439 LYS 396 ASP 380
GLN 418 GLY 443 CYS 412 LEU 442
PHE 383 LEU 343 LYS 459 LEU 421
TYR 438 LEU 456 LYS 391 LEU 421
ARG 448 GLY 341 LEU 456 ASN 398
GLY 443 GLN 432 GLY 413 GLN 357
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LYS 440 GLN 457 ARG 427 GLN 418
ASP 414 HIS 439 ASN 222 LEU 420
LEU 442 TYR 438 GLN 417 SER 342
LEU 442 LEU 343 GLU 435 GLY 413
SER 378 GLY 341 LEU 406 ASN 398
HIS 439 GLU 435 MET 431 LEU 420
GLN 417 THR 338 LYS 459 GLN 417
LYS 382 ALA 340 ARG 427 LEU 381
GLN 417 ALA 340 HIS 411 SER 346
LEU 442 LYS 459 GLU 225 LEU 343
LEU 381 LEU 442 LYS 391 GLU 425
PHE 416 ASN 300 MET 431 VAL 424
LYS 440 MET 431 LYS 434 GLU 435
GLN 417 GLU 435 LYS 459 VAL 424
ASP 380 TYR 436 LYS 459 LYS 382
HIS 441 LYS 434 TYR 438 ARG 350
LEU 442 GLU 445 LEU 421 LEU 421
TYR 438 PHE 262 GLU 425 GLU 435
TYR 438 LYS 434 GLU 435 PHE 416
LYS 382 LYS 459 ALA 399 TYR 438
GLU 395 LEU 379 ALA 428 VAL 424
ASN 398 GLU 435 ALA 399 LEU 421
GLN 457 TYR 438 ASN 300 ASN 398
GLN 417 GLU 445 LYS 396 GLU 425
LEU 421 MET 431 PHE 383 GLN 418
TYR 438 GLY 341 VAL 424 ASP 380
GLY 443 ARG 427 ARG 350 GLU 425
ASN 444 ASN 300 ALA 400 GLN 394
LEU 456 MET 431 ASN 222 GLU 435
LYS 391 LEU 456 ALA 458 GLN 417
GLN 457 THR 338 ASN 398 ASP 380
LEU 442 GLU 445 VAL 424 ARG 350
LYS 459 GLN 339 GLN 417 LEU 354
LEU 421 GLN 339 GLU 395
VAL 424 SER 378 ARG 427
TYR 438 ASN 444 LEU 421
LEU 421 HIS 439 LYS 434
LEU 442 HIS 439 CYS 412
LEU 379 LEU 343 GLU 395
PHE 383 TRP 302 TYR 404
LEU 442 TYR 438 LEU 406

GLN 432 VAL 424
ASP 403
GLY 413
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GLN 457
GLY 413
LEU 456
ALA 393
ASP 403
ALA 399
GLN 457
LEU 402
ARG 427
GLU 435
MET 431
GLN 299
ASP 392
GLU 395
GLN 417
ASN 222
LEU 401
ASN 300
ASP 414
LYS 391
GLU 395
TYR 438
GLN 418
PRO 224
LYS 396
MET 431
MET 455
PHE 416
ALA 428
LYS 434
PHE 383
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