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Abstract

Sophus Lie introduced a powerful method based on the Lie algebra of vector fields to over-
come the problems of finding the exact solutions of nonlinear ordinary as well as partial
differential equations. In this thesis we find the Lie algebra of Lie point symmetries of a
class of nonlinear partial differential equations, in particular, Manakov system and a system
of coupled nonlinear Schrödinger equations. Using similarity transformations of the admit-
ted Lie point symmetries of these equations, we apply group reduction to obtain their exact
solutions. Furthermore, these solutions are classified into distinct conjugate classes using
optimal subalgebras. Besides, we apply the group foliation approach based on the invariants
and differential invariants of the Lie symmetries to determine larger classes of exact solutions
which have important physical characteristics. The group foliation approach provides better
results as compared to the symmetry reduction approach in the sense that the former gives
similarity as well as nonsimilarity solutions while the later only yields similarity solutions.
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Chapter 1

Fundamentals of Symmetry Analysis

1.1 Introduction

In our daily life, we come across several scientific real world phenomena, like motion of a pen-
dulum, heat flow across a metal rod, waves generated on the sea level etc. Depending on the
nature of phenomena, we investigate and formulate models, in terms of ordinary differential
equations (ODEs) and partial differential equations (PDEs). Mathematicians are often inter-
ested in finding analytic or numerical solutions, whereas engineers, physicists and scientists
compare them with experimental results. Till now, many techniques have been developed
to determine analytic solutions of nonlinear ODEs and PDEs, but it is very difficult to solve
them generally. To overcome problems of finding analytic solutions, Sophus Lie [5] intro-
duced a powerful method to circumvent the difficulties in solving nonlinear ODEs and PDEs.

Sophus Lie was inspired by Sylows lecture on the use of group theory to obtain solvability
of algebraic equations. In 1869-70, Lie discovered far reaching technique intended to solve
large variety of ODEs. Lie observed invariance under continuous deformations of the depen-
dent and independent variables. Further he introduced groups of continuous transformations
(Lie groups) and developed several methods of change of variables. The idea of Lie groups
led him to construct roots for new branch of mathematics, which is known as Symmetry
Analysis. In this chapter, we briefly explain basics of symmetry analysis namely manifold,
vector field, flow, prolongation, Lie group, orbit, Lie algebra, adjoint representation and
group foliation for differential equations.

1.2 Manifold

The basic idea of a manifold is to introduce local objects, that will support a differential
process and then to patch these objects together smoothly. Manifold plays a key role in the
study of topology, symmetry analysis, geometry and so on. It is an object which locally looks
like open subset of Euclidean space Rn, but its global topology is quite complicated. Several
manifolds are realized as a subset of Euclidean space so in general it is an abstraction [1].

Definition 1.2.1. An n-dimensional manifold is a set M , together with a countable collec-
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tion of subsets Uα ⊂ M, called coordinate charts, and one-to-one functions χα : Uα → Vα

onto connected open subsets Vα ⊂ Rn, called local coordinate maps, which satisfy the
following properties

(1) The coordinate charts cover M

∪α|Uα = M. (1.1)

(2) On the overlap of any pair of coordinate charts Uα ∩Uβ the composite map

χβ • χ−1α : χα(Uα ∩Uβ)→ χβ(Uα ∩Uβ), (1.2)

is a smooth ( infinitely differentiable ) function.

(3) If x ∈ Uα, x̃ ∈ Uβ are distinct points of M, then there exist open subsets W ⊂ Vα,
W̃ ⊂ Vβ with χα(x) ∈ W,χβ(x̃) ∈ W̃ , satisfying χ−1α (W ) ∩ χ−1β (W̃ ) = ∅.

Example 1.2.1. The basic n-dimensional manifold is Euclidean space Rn itself and any
subset Rm of Euclidean space is also m-dimensional manifold which is covered by a single
coordinate chart U = Rn, with a local coordinate map such as ϕ = 1 : Rn → Rn.

Example 1.2.2. The special orthogonal group SO(2), is a collection of 2 × 2 invertible
matrices, whose determinant is 1. It is a group under matrix multiplication. It also carries
the structure of a manifold whose dimension is that of the dimension of a real line R .

1.3 Vector Field and Flow

Tangent vector fields are fundamental in the study of geometric objects. Prior to seeing
the concept of a vector field we look at curve on the manifold. A curve C on a smooth
manifold M is parametrized by a smooth map χ : I → M , where I is a sub-interval of real
numbers. In local coordinates x = (x1, x2, . . . , xm), a curve is defined by m smooth functions
ψ(ζ) = (ψ1(ζ), ψ2(ζ), ...., ψm(ζ)) where ζ is real variable, the term smooth means that we
have tangent defined at every point which varies continuously from point to point.

Example 1.3.1. If M = R2,

σ(ζ) = (ζ, eζ), (1.3)

therefore σ(ζ) : I →M is a smooth curve on M , where I = R and

σ̇(ζ) = (1, eζ), (1.4)

the dot over σ shows derivative w.r.t ζ and σ̇ is not equal to zero at any ζ ∈ R.

Tangent Vector: A tangent vector to a manifold M on a parametrized curve C is the
derivative at each point x = ψ(ζ) of the curve which is denoted by

v |x=
dψ

dζ
= ψ̇1(ζ)

∂

∂x1
+ ψ̇2(ζ)

∂

∂x2
+ ....+ ψ̇m(ζ)

∂

∂xm
. (1.5)
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Example 1.3.2. Tangent vector to a circular helix

ψ(ζ) = (cos ζ, sin ζ, ζ), (1.6)

in R3, with coordinates (x, y, z), is

ψ̇(ζ) = − sin ζ
∂

∂x
+ cos ζ

∂

∂y
+

∂

∂z
,

= −y ∂
∂x

+ x
∂

∂y
+

∂

∂z
,

at the point (x, y, z) = ψ(ζ).

The collection of all feasible curves passing through a point x and all collection of tangent
vectors to these curves is called a tangent space to M at point x, where it is denoted by TM|x.
If m is dimension of the manifold M then the tangent vector space is also m-dimensional.
Generally if these tangent spaces glued together then they form a tangent bundle. The
collection of all the tangent spaces to all the points x ∈ M, is called tangent bundles which
is represented as

TM = ∪αTM |x . (1.7)

The tangent spaces join together in a smooth manner, so that if ψ(t) is a smooth curve then
the tangent vectors ψ̇(t) ∈ TM |ψ(t), will vary from point to point (means smooth). This
makes tangent bundle TM , a 2m-dimensional manifold.

Definition 1.3.1. If at each point x ∈ M of a manifold there assigned a tangent vector
v |x∈ TM |x, then this field is called a vector field. In local coordinates (x1, x2, ...., xn), a
vector field is represented as

v |x=
∑

%i(x)
∂

∂xi
, i = 1, 2, ...., n, (1.8)

each %i(x) for i = 1, ..., n is a smooth function of x.

Example 1.3.3. Consider the velocity field of a steady fluid flow in an open subset M ⊂ R3.
Then the vector v |(x,y,z) at each point (x, y, z) ∈M , be the velocity of the particles passing
through the point (x, y, z).

Integral Curve: An integral curve is defined as a parametrized curve ψ : I → M of
a vector field v whose tangent vector at any point coexist with the value of v at the same
point

ψ̇(ζ) = v |ψ(ζ), ∀ ζ ∈ I ⊂ R. (1.9)

A flow is basically generated by a vector field. Where in local coordinates,x = ψ(ζ) =
(ψ1(ζ), ψ2(ζ), · · · , ψn(ζ)) must be the solution to the autonomous system of ODEs

dxi

dζ
= %i(x), i = 1, 2, . . . n, (1.10)

where %i(x) are the coefficients of v at x. Also a maximal integral curve is a curve that is
not contained in any longer curve.
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Definition 1.3.2. If v is a vector field and ϕ(ζ, x) is a parametrized maximal integral curve
passing through x in M , then we call ϕ flow generated by v.

The flow of a vector field has the following properties.

(a) ϕ(δ, (ϕ(ζ, x)) = ϕ((δ + ζ), x),
where δ, ζ ∈ R in a sense that both the sides are defined.

(b) ϕ(0, x) = x,
where ϕ(0, x) gives the initial conditions for the integral curves.

(c)
d

dζ
ϕ(ζ, x) = v |ϕ(ζ,x), ∀ ζ. (1.11)

This property simply shows that v is a tangent to the curve ϕ(ζ, x) for some fixed x. The
vector field is called an infinitesimal generator of the action, since by Taylor series in
local coordinates

ϕ(ζ, x) = x+ ζ%(x) +O(%2), (1.12)

here % = (%(1), %(2), . . . , %i) are the coefficients of v. We represent infinitesimal generator by
X. If ϕ(ζ, x) is one parameter group of transformation, its infinitesimal generator is obtained
by specializing equation (1.11) at ζ = 0

v |x=
d

dζ
|ζ=0 ϕ(ζ, x). (1.13)

For the computation of one parameter group which is generated by a given vector field or
flow, we use the exponentiation of v. The notation is given by

exp (ζv)x ≡ ϕ(ζ, x), (1.14)

where

exp (0v)x = x. (1.15)

Example 1.3.4. The group of rotation in a plane is defined as

ϕ
(
ζ, (x, y)

)
=
(
x cos ζ − y sin ζ, x sin ζ + y cos ζ

)
. (1.16)

Here we have a 2-diminsional manifold and ζ ∈ R. Then by using exponential notation
(1.14)

ϕ
(
δ, ϕ(ζ, (x, y))

)
=
(
(x cos ζ − y sin ζ)(cos δ)− (x sin ζ + y cos ζ)(sin δ),

(x cos ζ − y sin ζ)(sin δ) + (x sin ζ + y cos ζ)(cos δ)
)
, (1.17)

ϕ
(
δ, ϕ(ζ, (x, y))

)
=
(
x cos (ζ + δ)− y sin (ζ + δ), x sin (ζ + δ) + y cos (ζ + δ)

)
, (1.18)

ϕ
(
δ, ϕ(ζ, (x, y))

)
= ϕ((δ + ζ), (x, y)), (1.19)
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where ζ, δ ∈ R. In above equation both sides are defined for all values of ζ and δ, where
(ζ + δ) belongs to R

ϕ
(
0, (x, y)

)
= (x, y), (1.20)

the last relation show initial condition for the integral curve

d

dζ
ϕ
(
ζ, (x, y)

)
=
(
− x sin ζ − y cos ζ, x cos ζ − y sin ζ

)
, (1.21)

an infinitesimal generator X = v |x for (1.16) is

X = %(x, y)∂x + φ(x, y)∂y, (1.22)

here ∂x = ∂
∂x

, now to onward we use subscript for partial derivatives, by using exponential
notation (1.14) the equation (1.11) takes the form

d

dζ
(exp(ζv)x) = v |exp(ζv)x, (1.23)

at ζ = 0, by applying (1.13) we get

%(x, y) = −y and φ(x, y) = x, (1.24)

which satisfies the conditions of flow. The Fig. 1.1 shows the rotational flow in x, y plane.

Example 1.3.5. A particular case of a translation group in R2 is given as

ϕ (ζ, (x, y)) = (x+ ζ, y + ζ). (1.25)

The flow is shown in the Fig. 1.2. Note that the corresponding vector field is

X = ∂x + ∂y, (1.26)

indicating a translational flow at 45◦ to the horizontal axis.

Example 1.3.6. Consider a group of scaling in a plane

ϕ (ζ, (x, y)) = (eζx, eζy). (1.27)

Its infinitesimal generator is

X = %(x, y)∂x + φ(x, y)∂y, (1.28)

according to equation (1.13).

%(x, y) =
d

dζ
|ζ=0 (eζx) = x, (1.29)

φ(x, y) =
d

dζ
|ζ=0(e

ζy) = y. (1.30)

Thus we get
X = x∂x + y∂y, (1.31)

which is an infinitesimal generator of the given group of transformation representing a uni-
form scaling.
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Figure 1.1: Rotational flow around a line per-
pendicular to plane.

Figure 1.2: Translational flow along y = x
line.

Lie Brackets: There is an important operation among vector fields which is to take their
commutator or Lie brackets. Basically a Lie bracket is an operator that will assign, to
any two vectors or infinitesimals generator X1 and X2 on a manifold M , a third vector or
infinitesimals generator. It is denoted as

[X1,X2] = X1X2 −X2X1, (1.32)

where [X2,X1] = −[X1,X2].

Example 1.3.7. Consider two infinitesimal generators in R3

X1 = ∂t, X2 = t∂x + ∂u, (1.33)

where the first vector field shows a translational flow in t direction and X2 is a combination
of rotation and translation known as Galelian boost. Then the Lie bracket is

[X1,X2] = X1X2 −X2X1, (1.34)

= ∂t(t∂x + ∂u)− (t∂x + ∂u)(∂t), (1.35)

= ∂x. (1.36)

The above vector field shows the translational flow in x direction.

1.4 Prolongation

For finding the symmetries of differential equations, we have to prolong our basic space
X × V, which is a space of independent and dependent variables [1]. Our basic infinitesi-
mal generator contains only derivatives of independent and dependent variables ( not the
derivatives of dependent variables w.r.t independent variables), as we are interested in higher
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order differential equations so we have to prolong our infinitesimal generator. If we have an
mth order differential equations, for the purpose of finding symmetries, we must prolong our
infinitesimal generator upto order m, so that it contains derivatives of dependent variables
upto order m. To understand the prolongation, we start with the prolongation of a real
valued function g(x). If g(x) is a smooth function of x = (x1, x2, ....., xp), where p is the
number of independent variables, then the kth order partial derivatives of g are

pk =
(p+ k − 1)!

(p− 1)!k!
, (1.37)

where pk shows how many number of kth order derivative are there, for instance if we have
p = 2 means two independent variables and we need 2nd order derivative. So we get three
2nd order derivatives. We use following multi-index notation for these derivatives

∂Lg(x) =
∂kg(x)

∂xl1∂xl2 · · · ∂xlk
, L = (l1, l2 · · · , lk), (1.38)

where L is unordered k tuple of integers and the entries 1 ≤ lk ≤ p indicate which derivatives
are being taken. The order of multi index is denoted by ∗L ≡ k, shows how many derivatives
are being taken. Further, if g : X → V is a function from X w Rp to V w Rq, so
u = g(x) = (g(x)1, g(x)2, · · · , g(x)q) there are q·k numbers uβL = ∂Lg

β(x) needed to represent
all the different kth order derivatives of elements of g at x. Let we have Vk ≡ Rq·pk be the
Euclidean space of this dimension, for instance, suppose p, k = 2 and q = 1, so q · pk
= 3 where pk is obtained from (1.37), thus V2 is equivalent to R3 dimensional Euclidean
space, provided with the coordinates uβL corresponding to β = 1, 2, · · · , q. Furthermore, set
V (m) = V × V1 · · · × Vm to be Cartesian product space. Where V × V1 · · · × Vm represents
all the derivatives of the functions u = g(x) of all orders from 0 to m.

Example 1.4.1. If p = 2, q = 2, then X w R2 has coordinates (x1, x2) = (x, y) and V w R2

has the coordinates (u1, u2) = (u, v). The space V1 is isomorphic to R4 with coordinates
(ux, uy, vx, vy) since these represents all the first order derivatives of u, v with respect to x
and y. Similarly, V2 w R6 has coordinates (uxx, uxy, uyy, vxx, vxy, vyy) represents the second
derivatives of u, v. Finally, the space V (2) = V × V1 × V2 w R12.

If we have a smooth function u = g(x), such that g : X → V , then there is an induced
function u(n) = pr(n)g(x), called the nth prolongation of g, which is given by equation

uβL = ∂Lg
β(x).

A nth order jet space, is a total space X × V n whose coordinates shows independent and
dependent variables which also includes the derivatives of dependent variables upto mth
order, where mth order jet space is

Mm = M × V 1 × V 2 × ...V m,

of M , where M ⊂ X×V because we are often interested in some open subset M of the space,
instead of the differential equations defined over all of X×V . As we can prolong a function,
we can also prolong its infinitesimal generator. The general formula for the prolongation of
infinitesimal generator can be obtained by using the following Theorem [1].
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Theorem 1.4.1. Let

X =

p∑
i=1

%i(r, s)
∂

∂ri
+

q∑
β=1

ηβ(r, s)
∂

∂sβ
,

be an infinitesimal defined on an open subset M ⊂ X × V, the m-th prolongation of X in

Pr(m)X = X +

q∑
β=1

∑
L

ηβ[L](r, s
(m))

∂

∂sβL
, (1.39)

defined on the corresponding jet space M (m) ⊂ X×V (m), the second summation being over all
(unordered) multi-indices L = (l1, l2, · · · , lk), with 1 6 lk 6 p, 1 6 k 6 m. The coefficients
functions φβ[L] of Pr(m) are given by the following formula

ηβ[L](r, s
(m)) = DL

(
ηβ −

p∑
i=1

%isβi

)
+

p∑
i=1

%isβL,i, (1.40)

here sβi = ∂sβ/∂ri, and sβJ,i = ∂sβi /∂r
i

Here DL is total derivative operator, it is given by the formula

Di =
∂

∂ri
+

q∑
β=1

∑
L

sβL,i
∂

∂sβL
, (1.41)

where L = (l1, l2, ...., lk) and

sβL,i =
∂sβL
∂ri

=
∂ksβ

∂ri∂xl1 ....∂xlk
. (1.42)

In (1.41) the sum is over all L’s of order 0 ≤ ∗L ≤ m, m is the highest derivative. The
explicit form of total derivative for higher order, in multi index notation for L = (l1, l2, ...., lk)
is kth order, with 0 ≤ Lk ≤ p for each k, then Lth total derivative is

DL = Dl1Dl2 · · ·Dlk .

For m = 1 the equation (1.40) is valid, now for finding coefficients of higher order prolonga-
tion, we use the following relation

ηβ[Lk] = Dk(η
β
[L])−

p∑
i=1

%iuβL,i, (1.43)

= DkDL(ηβ −
p∑
i=1

%iuβi ) +

p∑
i=1

%iuβL,ik, (1.44)

here uβL,ik =
∂2uβL
∂xi∂xk

.
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Example 1.4.2. If we have two independent variables and one dependent variable, i.e.,
p = 2 and q = 1, with coordinates (t, x, u), there are two total derivatives Dt, Dx, with

Dt =∂t + ut∂u + utt∂ut + utx∂ux + uttt∂utt + · · · ,
Dx =∂x + ux∂u + utx∂ut + uxx∂ux + uxxx∂uxx + · · · .

Example 1.4.3. Suppose we have p = 2, q = 2, in the prolongation formula, if we consider
a PDE involving functions u = f(x, t) and v = g(x, t), an infinitesimal generator on X×V w
R2 × R2 takes the form

X = %(t, x, u, v)∂t + τ(t, x, u, v)∂x + η1(t, x, u, v)∂u + η2(t, x, u, v)∂v. (1.45)

By using equation (1.39) we can find first prolongation of X, which is

Pr(1)X = X+η1[t](t, x, u, v)∂ut +η1[x](t, x, u, v)∂ux +η2[t](t, x, u, v)∂vt +η2[x](t, x, u, v)∂vx , (1.46)

for finding the expressions for ηβ[L] we use equation (1.40)

η1[t] = Dt(η
1 − %ut − τux) + %utt + τutx,

= (∂t + ut∂u + vt∂v + utt∂ut + utx∂ux + vtt∂vt + vtx∂ux)(η
1 − %ut − τux) + %utt + τutx,

= η1t + ut(η
1
u − %t) + vtη

1
v − u2t%u − utvt%v − uxτt + uxvtτv − uxutτu. (1.47)

η1[x] = Dx(η
1 − %ut − τux) + %utx + τuxx,

= (∂x + ux∂u + vx∂v + utx∂ut + uxx∂ux + vtx∂vt + vxx∂vx)(η
1 − %ut − τux) + %uxt + τuxx,

= η1x + ux(η
1
u − %x) + vxη

1
v − u2x%u − uxvx%v − uxτx + uxvxτv − uxutτu, (1.48)

where η1x = ∂η1

∂x
. Similarly we can get η2[t], η

2
[x] in the same manner. Now we can prolong our

X to the second order, which is given by

Pr(2)X = X + Pr(1)X + η1[tt]∂utt + η1[tx]∂utx + η1[xx]∂uxx + η2[tt]∂vtt + η2[tx]∂vtx + η2[xx]∂vxx . (1.49)

We can use equation (1.40) to find η1[tt], η
1
[tx], η

1
[xx], η

2
[tt], η

2
[tx], η

2
[xx]. The explicit expression for

η1[tt] is given as

η1[tt] = Dt(η
1
[t] − %utt − τutx) + %uttt + τuttx,

= η1tt + ut(2η
1
tu − %tt) + 2vtη

1
tv + u2t (η

1
uu − 2%tu)− utvt(2η1uv − 2%t,v)− 2utuxτtu

− 2uxvtτtv − u3t%uu − 2u2tvt%uv − u2tvt%uv − u2tuxτuu − 2utuxvtτuv − uxτtt + v2t η
1
vv

− utv2t %vv − uxv2t τvv + utt(ηu − 2%t)− 3uttut%u − 2uttvt%v − uttuxτu − 2utxτt − 2utxutτu

− 2utxvtτv + vtt(ηv − ut%v − uxτv). (1.50)

In above expression η1tt =
∂2η1

∂t∂t
. We get other expressions for η1[tx], η

1
[xx], η

2
[tt], η

2
[tx], η

2
[xx] in the

same way.
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1.5 Lie Group

A group G is an algebraic structure which consists of a set of elements equipped with some
operations that will combine two elements to form a third element. These operations satisfy
some conditions that are called group axioms, which are

a. closure property.

b. associative property.

c. identity element exists.

d. inverse element exists.

If a group also satisfies an additional property

e. commutative property, i.e., A+B = B+A, or AB=BA,

then the group is said to be an abelian group. An n parameter Lie group is a group G,
which carries the structure of an n-dimensional smooth manifold in such a way that both
the group operation

m : G×G→ G, m(g, h) = g ∗ h, g, h ∈ G, (1.51)

and the inversion

ι : G→ G, ι(g) = g−1, g ∈ G, (1.52)

are the smooth maps between manifolds.

Example 1. A simple example of Lie group is G = R, with obvious manifold structure and
the group operation is addition m(a, b) = a + b and inverse(a) = −a for all a, b ∈ R. Then
G is an abelian Lie group.

1.6 Orbit

An orbit of a group is a minimal nonempty group invariant subset of manifold M . Simply
if O ⊂ M is an orbit provided it satisfies the following conditions.

(a) If x ∈ O, g ∈ G and g · x is defined, then g · x ∈ O.

(b) If Õ ⊂ O and Õ satisfies (a) then either Õ = O or Õ is empty.

We now explain the definition of group orbits by considering a few examples

Example 1.6.1. Consider group of translations in R.
Let G = R, defined as

ϕ(ζ, x) = x+ ζ, x ∈ R, ζ ∈ R. (1.53)

This is a global group action. The orbits of above transformation are straight lines.

Example 1.6.2. Consider a group of rotation in R2, defined as

ϕ(ζ, (x, y)) = (x cos ζ − y sin ζ, y cos ζ + x sin ζ). (1.54)

The orbits are circles which are invariant subset of our manifold shown in the Figure (1.1)

10



1.7 Lie Algebra

A Lie algebra is basically a tangent space associated to a Lie group. Prior to define Lie
algebra we introduce some basic concepts of Lie group. Let G be a Lie group then for any
element a ∈ G, the left multiplication map is

La : G −→ G, (1.55)

defined as

La(b) = a · b, b ∈ G, (1.56)

is a diffeomorphism, with inverse

La−1 = (La)
−1. (1.57)

A vector field v on G is called left invariant if it is unaffected by the left multiplication of
any group element, i.e.,

dLa(v|b) = v |La(b)= v |a·b, ∀a, b ∈ G. (1.58)

The right invariant is also given in the same manner dRa(v|b) = v |b·a.

Definition 1.7.1. The Lie algebra of a Lie group is denoted by g and it is defined as the
vector space of all the left invariant vector fields on G.

Any left (right) invariant vector field at identity is uniquely determined.

Definition 1.7.2. A Lie algebra g is a vector space equipped with the bracket operation
[.,.]:g× g→ g

satisfying the following axioms

(a) which is bilinear

[cv + c′v′,w] = c[v,w] + c′[v′,w], (1.59)

[v, cw + c′w′] = c[v,w] + c′[v,w′], for any constant c, c′ ∈ R.

(b) antisymmetric

[v,w] = −[w,v]. (1.60)

(c) Jacobi identity

[u, [v,w] + [v, [w,u] + [w, [u,v] = 0, (1.61)

for all u,v,w,v′,w′ in g.
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Example 1.7.1. Consider the two parameter group A(1) of the affine transformation x→
ax+ b on the line x ∈ R. The group multiplication law is given by (a, b).(c, d) = (ac, ad+ b)
and the identity element is e = (1, 0). The right translation is R(a,b)(c, d) = (c, d).(a, b) =
(ac, bc + d). A basis for the right Lie algebra a(1)R corresponding to the coordinate basis
∂
∂a
|e, ∂∂b |e of TA(1)|e is therefore

v1 = dR(a,b)[
∂

∂a
|e] = a

∂

∂a
+ b

∂

∂b
,

v2 = dR(a,b)[
∂

∂b
|e] =

∂

∂b
,

where their commutation relation is [v1,v2] = −v2.

The appropriate way to show the structure of a given Lie algebra is to display it in its
tabular form. If we have m dimensional Lie algebra g, and X1,X2, . . . ,Xm form the basis
for g, then there commutator table will be the m×m table, where the (i, j)-th entry of the
table shows the Lie brackets [Xi,Xj].

Example 1.7.2. Suppose we have a four dimensional Lie algebra

X1 = ∂x, X2 = ∂t, (1.62)

X3 = t∂x + ∂u, X4 = x∂x + 3t∂t − 2u∂u. (1.63)

The procedure to find the Lie brackets is given in Section (1.3), where the non zero Lie
brackets are

[X1,X4] = X1, [X2,X3] = X1,

[X2,X4] = 3X2, [X3,X4] = −2X3.

The remaining commutator relations are

[X1,X1] = [X1,X2] = [X1,X3] = 0,

[X2,X1] = [X2,X2] = [X3,X3] = 0,

the commutator table is given in Table (1.1)

Xi X1 X2 X3 X4

X1 0 0 0 X1

X2 0 0 X1 3X2

X3 0 −X1 0 −2X3

X4 −X1 −3X2 2X3 0

Table 1.1: Commutator Table
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1.7.1 Solvable Lie Algebras

Definition 1.7.3. A gk is a k dimensional solvable algebra if there exist a chain of subalge-
bras

g(1) ⊂ g(2) ⊂ ......g(k−1) ⊂ g(k) = g(k), (1.64)

such that g(a) is a dimensional Lie algebra and g(a−1) is a normal subalgebra of g(a), a =
1, 2, ......, k.

Definition 1.7.4. A subalgebra l ⊂ g is called normal subalgebra or ideal of g if [X,Y] ∈ l
for all X ∈ l , Y ∈ g.

If an algebra g satisfies [Xa,Xb] = 0, for all Xa,Xb ∈ g. Then g is called Abelian algebra.

Example 1.7.3. Suppose we have a four dimensional Lie algebra

X1 = −y∂x + x∂y, X2 = ∂x,

X3 = ∂y, X4 = x∂x + y∂y.

The commutator relations are given as

[X1,X2] = 0, [X1,X4] = 0, [X2,X3] = 0, (1.65)

[X1,X2] = −X3, [X1,X3] = X2, [X2,X4] = X2, [X3,X4] = X3, (1.66)

the Table (1.3) shows all the Lie brackets of the Lie algebra.

X1 X2 X3 X4

X1 0 −X3 X2 0
X2 X3 0 0 X2

X3 −X2 0 0 X3

X4 0 −X2 −X3 0

Table 1.2: Commutator Table

The four dimensional subalgebra is g(4) it self, next we have to choose a three dimensional
subalgebra which is normal, if we choose

g(3) = {X1,X2,X3} (1.67)

then we have to check weather it is normal subalgebra or not, from the Definition (1.7.4)

{X1,X2,X3} ∈ l ⊂ g(4), (1.68)

[X1,X2] = −X3 ∈ l, [X1,X3] = X2 ∈ l, where {X1,X2,X3,X4} ∈ g(4), (1.69)
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hence g(3) is normal subalgebra of g(4). Similarly

[X2,X1] = X3 ∈ l, [X2,X4] = X2 ∈ l, (1.70)

so g(2) = {X2,X3} is a two dimensional normal subalgebra, also g(1) = {X1} is one dimen-
sional normal subalgebra

g(4) = {X1,X2,X3,X4}, g(3) = {X1,X2,X3}, g(2) = {X2,X3}, g(1) = {X2},

therefore, there exist a chain of subalgebras

g(1) ⊂ g(2) ⊂ g(3) ⊂ g(4) = g(4),

as all the subalgebras are the normal, so this is a solvable algebra.

Example 1.7.4. Suppose we have a three dimensional Lie algebra

X1 = (1 + x2)∂x + xy∂y, X2 = xy∂x + (1 + y2)∂y, X3 = y∂x − x∂y.

In this algebra we have

g(3) = [X1,X2,X3],

only three dimension normal subalgebra but no normal subalgebra of two-dimension. There-
fore no chain of algebra exist, so it is not a solvable algebra.

In the next chapters, we shall discuss the group invariant solutions of the system of
differential equations (DEs). Therefore we need systematic and effective means for the
classification of these solutions. So we need adjoint representation which leads to the optimal
system of group invariant solutions from which every other such solution can be derived.

1.8 Adjoint Representation

If we have a full symmetry group G of a system of DEs, then for each r parameter subgroup
H of the group G there will be a family of group invariant solutions. There are almost an
infinite number of such subgroups and normally it is not feasible to list all possible group
invariant solutions. Therefore to classify the group invariant solutions we need to classify
the subgroups of the symmetry group G under conjugation, thus we can study the conjugacy
map a→ gag−1 on the Lie group.

Let G be a Lie group. For every g ∈ G, group conjugation is Kg(a) ≡ gag−1, where
a ∈ G determines the diffeomorphism on G, besides this Kg ·Kg′ = KgKg′ and Ke = 1, so
Kg determines a global action on G itself, with each conjugacy map h 7−→ ghg−1 being a
group homomorphism. The differential dKg without difficulty is seen to preserve the right
invariance and hence detemines a linear map on Lie algebra of Lie group G, called the adjoint
representation.
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On Lie algebra of a Lie group its adjoint representation is often reconstructed from its
infinitesimal generators. If X generates one parameter subgroup exp(εX), then we suppose
Ad X is the vector field on g generating a one parameter group of adjoint representation

AdX|Y ≡
d

dε
|ε=0 Ad((exp(εX)), X ∈ g. (1.71)

The basic property is that the infinitesimal adjoint action agrees with the Lie bracket on g.
So

Ad(exp(εX))Y =
∞∑

m=0

εm

m!
(adX)mY, (1.72)

= Y − ε[X, Y ] +
ε2

2
[X, [X, Y ]]− · · · . (1.73)

we now illustrate it using an example.

Example 1.8.1. The Lie algebra spanned by

X1 = ∂x, X2 = ∂t, (1.74)

X3 = t∂x + ∂u, X4 = x∂x + 3t∂t − 2u∂u, (1.75)

generates the symmetry group of the Korteweg-de Vares equation. The adjoint represen-
tation is computed by using the condition (1.72). For instance we take Ad(exp(εX2))X4,
therefore we use (1.72)

Ad(exp(εX2))X4 = X4 − ε[X2,X4] +
ε2

2
[X2, [X2,X4]]− · · · , (1.76)

where the commutator relation of X2 and X4 in the above equation is given below

[X2,X4] = 3X2, [X2, [X2,X4]] = 0, (1.77)

so by substituting the above relations in equation (1.76) the adjoint representation is

Ad(exp(εX2))X4 = X4 − 3εX2. (1.78)

Similarly we can find Ad(exp(εX4))X2 by employing the condition (1.72), which is given as

Ad(exp(εX4))X2 = X2 − ε[X4,X2] +
ε2

2
[X4, [X4,X2]]− · · · , (1.79)

the commutator relations in above equation is given below

[X4,X2] = −3X2, [X4, [X4,X2]] = 9X2, (1.80)

when we put (1.80) in the equation (1.79) the equation (1.79) gets the following form

Ad(exp(εX4))X2 =X2 + 3εX2 +
(ε3)2

2
X2 + · · · , (1.81)

=X2(1 + 3ε+ (3ε)2/2! + (3ε)3/3! + · · · , (1.82)

=e3εX2 (1.83)

In this manner, we constructed the Table (2) of adjoint representation
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AdXi X1 X2 X3 X4

X1 X1 X2 X3 X4 − εX1

X2 X1 X2 X3 − εX1 X4 − 3εX2

X3 X1 X2 + εX1 X3 X4 + 2εX3

X4 eεX1 e3εX2 e−2εX3 X4

Table 1.3: Adjoint representation

Definition 1.8.1. Let G be a Lie group. An optimal system of r parameter subgroups is a
list of conjugacy in-equivalent r parameter subgroups with the property that any subgroup
is conjugate to precisely one subgroup in the list. Similarly, a list of r parameter subalgebars
forms an optimal system if ever r parameter subalgebras of g is equivalent to a unique
member of the list under some element of the adjoint representation.

So the classification of one dimensional subalgebra is essentially the same as classfiying
the orbits of the adjoint representation. Although some techniques are available to find
optimal system but we follow as given in [1]. We take a general element X in g, subjecting it
to various adjoint representation transformations and simplify it as much as possible. Where
each one dimensional subalgebra is determined by a non zero vector in g.

1.9 Group Foliation for PDE

The group foliation approach is a powerful technique to solve nonlinear PDEs in an algo-
rithmic manner. The concept of group foliation first brought up by Sophus Lie [5] developed
by Vessiot [11] and L.V. Ovsiannikov [6] amelioration in its modern form. If we have second
order nonlinear partial differential equation which admits Lie algebra. One can construct
group foliation by using any admitted Lie point symmetry. We use finite dimensional algebra
for group foliation. The main idea of foliation is that we can transform the original PDE
into a system of first order PDEs, then by using an ansatz this system is reduced to an
over determined algebraic equations and by solving them, we can get the exact solutions of
original PDE. The group foliation approach contains following few algorithmic steps:

1. Find all Lie piont symmetries of PDE.

2. Find functionally independent invariants and differential invariants.

3. Construct group resolving equations and solve.

4. Solve parametric ODEs and get exact solutions.

Briefly these steps are performed as follows
Step 1: Suppose we have a second order nonlinear PDE with two independent variables
and one dependent variable

M̃(t, x, u, ut, ux, utt, utx, uxx) = 0. (1.84)
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Then for finding the symmetries of M̃ we need infinitesimal generator X. The explicit form
of infinitesimal generator is given by

X = %1(t, x, u)∂t + %2(t, x, u)∂x + η(t, x, u)∂u, (1.85)

Then by applying Theorem (2.1.1) we will obtain the symmetries of the PDE M̃

PrmXM̃(t, x, u, ut, ux, utt, utx, uxx) = 0, (1.86)

Suppose the dimension of this symmetry group G is finite, i.e., dim G <∞. So the infinites-
imal generators Xi, i = 1, 2, . . . , n, are finite. Moreover by using any of the admitted Lie
point symmetry of the PDE M̃ we can construct group foliation approach.

Step 2: Now we dig out the invariants which are obtained by using the following condi-
tion

Xϕ = 0, (1.87)

where ϕ is function of t, r, u. The condition (1.87) gives us first order PDE and by solving
the PDE we will obtain the invariant. Our next task is to find differential invariants, there-
fore we first prolong the infinitesimal generator, for one dependent variable the first order
prolongation is given below

Pr(1)X = X + η[t]∂t + η[x]∂x, (1.88)

where η[t], η[x] are calculated by using the equation (1.42). We shall obtain differential in-
variants by using the following condition

Pr(1)Xψ = 0, (1.89)

here ψ is function of t, r, u, ut and ur. The invariants and differential invariants are basically
new independent and dependent variable respectively.

Step 3: Now by using these new variables, we can transform our original PDE M̃ into
system of first order PDEs, which is known as group resolving equations. This system of
first order PDE is relatively easy to solve.

Step 4: The solution of group resolving equations lead us to a set of parametic ODEs.
By solving these parametric ODEs we will obtain the exact solution of the original PDE M̃.
In chapter 4 we will see group foliation in detail and find exact solutions of some nonlinear
PDEs.
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Chapter 2

Symmetry Reduction

2.1 Infinitesimal Invariance

The power of Lie group lies in the crucial observation that one can replace the complicated,
nonlinear conditions for invariance of a subset or function under the group transformations
themselves by an equivalent linear condition of infinitesimal invariance under the corre-
sponding infinitesimal generators of group action. Let M̃ represents a system of m-th order
differential equations in p, q, independent variables and dependent variables, respectively

M̃l(r, s
(m)) = 0, l = 1, 2, ..., n, (2.1)

involving r = (r1, r2, ..., rp), s = (s1, s2, ..., sq) and derivatives of s with respect to r up
to order m. The functions M̃(r, s(m)) = (M̃1(r, s

(m)), M̃2(r, s
(m)), ..., M̃l(r, s

(m))) are assumed
to be smooth, so M̃(r, s(m)) seen to be a smooth map from space X × V m to l dimension
Euclidean space

M̃ : X × V m → Rl.

The differential equation itself tells where the map M̃ vanishes on X × V m, and thus deter-
mines a subvariety

= = ((r, s(m)) : M̃(r, s(m)) = 0) ⊂ X × V m, (2.2)

of the jet space [1].

Definition 2.1.1. Suppose we have a system of DE M̃l of order m, then a local group of
transformation G which is acting on some open subset M ⊂ X × V of the space of the
independent and dependent variables for the system of DE M̃l, carries the property that
whenever u = g(x) is a solution of the system of DE (M̃l), and whenever g(x) · f is defined
for f ∈ G, then u = f · g(x) is also a solution of the system of DE then this group is known
as symmetry group.

In other words symmetry group can transform solution of a system of DE into other
solution. For instance we take a simple example, suppose we have a ordinary differential
equation

y′′ = 0, (2.3)
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then the group translation

(x, y) −→ (x+ ζ, y), ζ ∈ R, (2.4)

is a symmetry group. Since y = f(x+ ζ, y) is a solution to the ordinary differential equation
(2.3) whenever y = f(x, y). For finding the infinitesimal condition for a symmetry group G
to be a symmetry group of a given system of DEs, we need a maximal rank condition for
the system of DEs. To apply the latter theorem for finding the infinitesimal condition for a
symmetry group G, we need a maximal rank condition for the system of DEs.

Definition 2.1.2. Suppose

M̃l(r, s
(m)) = 0, l = 1, 2, . . . , n, (2.5)

be a system of DEs. The system is said to be of maximal rank if the l × (p + qpm) where
qp(m) = q + qp1 + qp2 + · · ·+ qpk , Jacobian matrix

JM̃l(r, s
(m)) =

(
∂M̃l

∂rp
,
∂M̃l

∂sqL

)
, (2.6)

of M̃ w.r.t all the variables (r, s(m)) is of rank l whenever M̃(r, s(m)) = 0.

Example 2.1.1. Suppose a first order DE

M̃(x, y, y′) = (y − x)y′ + y + x = 0, (2.7)

the Jacobian matrix is

JM̃ =

(
∂M̃
∂x

,
∂M̃
∂y

,
∂M̃
∂y′

)
, (2.8)

=(1 + y′, 1 + y′, y − x), (2.9)

which is of rank 1 every where.

Theorem 2.1.1. Suppose

M̃l(r, s
(m)) = 0 l = 1, 2, ..., n, (2.10)

is a system of differential equations of maximal rank defined over M ⊂ X × V . If G is a
local group of transformations acting on M , and

PrmX[M̃l(r, s
(m))] = 0, l = 1, 2, ..., n, whenever M̃l(r, s

(m)) = 0, (2.11)

for every infinitesimal generator X of G, then G is a symmetry group of system.
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Suppose we have an ODE or PDE, first we can identify a linear subvariety in X × V m

determined by vanishing of M̃l(r, s
(m)). Then we have

X =

p∑
i=1

%i(r, s)
∂

∂ri
+

q∑
β=1

ηβ(r, s)
∂

∂sβ
, (2.12)

be an infinitesimal generator on M ⊂ X×V . Now calculate all possible coefficient functions
of %i and φβ, so that the corresponding one parameter group is a symmetry group of the
ODE or PDE. By using the Theorem (1.4.1), we should prolong our infinitesimal generator
to the order of equation

Pr(m)X = X +

q∑
β=1

∑
L

ηβ[L](r, s
(m))

∂

∂sβL
, (2.13)

by employing the prolongation in Theorem (2.1.1) and comparing the monomials, we get an
over determined system of linear PDEs. Then we can obtain the values of %i and ηβ. Let us
elaborate it briefly with an example.

Example 2.1.2. Consider we have system of ODEs

uxx = −(u2 + v2)u, (2.14)

vxx = −(u2 + v2)v, (2.15)

the above system contains only one independent variable x and two dependent variables u
and v. If p, q, represents number of independent and dependent variables, respectively, here
p = 1 and q = 2. The system of ODEs (2.14)-(2.15) are of second order, i.e., m = 2, thus
it can be identified with subvariety in X × V 2, determined by vanishing of M̃(t, u(2), v(2))1 =
uxx + (u2 + v2)u = 0, M̃(t, u(2), v(2))2 = vxx + (u2 + v2)v = 0. The Jacobian matrix

JM̃1
=

(
∂M̃1

∂x
,
∂M̃1

∂u
,
∂M̃1

∂v
;
∂M̃1

∂ux
,
∂M̃1

∂vx
;
∂M̃1

∂uxx
,
∂M̃1

∂vxx

)
, (2.16)

JM̃1
= (0, 3u2 + v2, 2uv; 0, 0, 1, 1). (2.17)

Similarly the Jacobian matrix for JM̃2
is

JM̃2
= (0, 2uv, 3v2 + u2; 0, 0, 1, 1). (2.18)

from (2.17) and (2.18), it is clear that the system (2.14),(2.15) has rank 2. So it satisfies
maximal rank condition. The infinitesimal generator for the system of ODEs (2.14),(2.15)
is

X = %(x, u, v)∂x + η1(x, u, v)∂u + η2(x, u, v)∂v, (2.19)
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on M ⊂ X × V . Further we want to find all possible coefficient functions %, η1 and η2 such
that it correspond to symmetry group of the given system of equations. Then for applying
infinitesimal criteria, we have to find second prolongation of infinitesimal generator X

Pr(2)X = X + η1[x]∂ux + η2[x]∂vx + η1[xx]∂uxx + η2[xx]∂vxx , (2.20)

the coefficients η1[x] and η2[x] are calculated by using the equation (1.40). The explicit form

η1[x] is given below

η1[x] = Dx(η
1 − %ux) + %uxx, (2.21)

= Dxη
1 − uxDx%, (2.22)

= η1x + (η1u − %x)ux + η1vvx − %vuxvx − %uu2x, (2.23)

similarly expression for η2[x] is

η2[x] = η2x + (η2v − %x)vx + η2uux − %uuxvx − %vv2x, (2.24)

we can use equation (1.43) to calculate η1[xx] and η2[xx], where the explicit form is given as

η1[xx] = D2
x(η

1 − %ux) + %uxxx, (2.25)

= η1xx + (2η1xu − %xx)ux + (η1uu − 2%xu)u
2
x − %uuu3x − 2%uvu

2
xvx

− %vvuxv2x + (2η1uv − 2%xv)uxvx + η1vvv
2
x − 3%uuxuxx − %vuxvxx

− 2%vuxxvx + 2η1xvvx + η1uuxx + η1vvxx − 2%xuxx. (2.26)

In the same manner we can obtain the expression for η2[xx]. Now we will compute symmetry

group of the system of equations (2.14)-(2.15). by using Theorem (2.1.1). Further, we can
first apply the infinitesimal generator (2.20) on the system ODEs (2.14)-(2.15). If we apply
infinitesimal generator (2.20) on the equation (2.14), the term φ1

[xx]∂uxx when applies on uxx
gives us φ1

[xx] and the terms η1∂u, η
2∂v gives 3u2η1, v2η1 and 2uvη2, respectively. Similarly

we obtain the following equations

η1[xx] = −3u2η1 − v2η1 − 2uvη2,

η2[xx] = −2uvη1 − u2η2 − 3v2η2, (2.27)

which is satisfied whenever uxx = −(u2 + v2)u, vxx = −(u2 + v2)v. When we substitute the
formula (2.23), (2.24), (2.26) into (2.27), this will lead us into a number of linear PDEs for
the coefficient functions %, η1, η2 of infinitesimal generator called the determining equations.
Following are the determining equations for the system of ODEs (2.14)-(2.15), which we
obtain by using MAPLE

η1u = −%x, (2.28)

η1v = (%xu+ η1)/v, (2.29)

η1x = 0, %u = 0, %v = 0, (2.30)

%xx = 0, (2.31)

η2v = (%xu
2 − %xv2 − η1u)/v. (2.32)
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If we look at equations (2.30.2) and (2.30.3), they require that % be just a function of x,
where equation (2.31) shows that % is linear in x. Next equation (2.30.1) shows that η1 does
not depend on x and by equation (2.28)

η1u(u, v) = −c1, η1(u, v) = −c1u+ f(v),

for certain function f . We get the value of function f by substituting φ1 in equation (2.29).
Now by substituting values of % and η1 in the remaining equation (2.32), we get the coefficient
functions of our required system of ordinary differential equations

% = c1x+ c2, (2.33)

η1 = −c1u+ c3v, (2.34)

η2 = −c1v − c3u, (2.35)

where c1, c2, c3 are arbitrary constants. Thus the infinitesimal symmetries of the system are

X1 = ∂x, X2 = x∂x − u∂u − v∂v, X3 = v∂u − u∂v. (2.36)

2.2 Symmetry Reduction

Often we are interested in the solutions of nonlinear ODE and PDEs, therefore, we use many
analytical techniques to solve nonlinear ODEs and PDEs, like inverse scattering transform
method, Lax pair formalism, bi Hamiltonian approach, conservation laws, non-local method,
Fourier transformation and Ad-hoc methods (tanh, ... etc.). It is convenient to deal with
lower order differential equations as compared to higher order. It is important to reduce
the order of differential equations. If an ODE is invariant under one parameter group of
transformations, then the order of the ODE can be reduced by one. For reduction of order
of an m-th ODE, one need a solvable algebra. If we have ζ parameter Lie group of trans-
formations, where ζ = 2 and m ≥ 2, we can reduce order of ODE by two. In general, it is
not necessarily true that the order can be reduced by more than one. However, an ODE is
reduced by order k, if we have ζ-dimensional Lie algebra of infinitesimals of an admitted ζ
parameter group that has a k dimensional solvable subalgebra. The knowledge of a group of
symmetries of a higher order ordinary differential equation has much the same consequences
as the knowledge of a similar symmetry group of a system of first order ODEs. Where for
the system of first order ODE, if we have one parameter group of symmetry, we can reduce
it to one fewer equation. The invariance of an m-th order under one parameter group of
symmetry, allows to reduce the order of one of the equations by one in the system.

In PDEs the group reduction follows through the reduction of independent variables. If
a PDE admits one-parameter group of symmetry, then we can reduce its one independent
variable. Also the system of PDEs is reduced into one fewer independent variable. For
multi-parameter group of symmetry, we need a solvable Lie algebra. We can reduce the
order of PDE by more then one (here order means the number of independent variables ),
but there is no general algorithm at present. As the reduced equations arise from invariants
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and differential invariants of the infinitesimal, so the solutions of the reduced equations
are the solution of given PDE. For the reduction of PDE, we must have p − s number of
functionally independent invariants, where s is the dimension of the orbits, whereas, we can
always replace a higher order system by an equivalent first order system. In group reduction
we can first find out the point transformation by using the Theorem (2.1.1). Then by using
these transformations we can reduce order of given ODE. There are two ways to find the
invariant transformations, by using canonical coordinate and by differential invariants. We
explain both procedures below

2.2.1 Reduction through canonical coordinates

Suppose we have a nonlinear ODE

y(m) = F (x, y, y′, ...., ym−1). (2.37)

Let an infinitesimal generator is

X = %(x, y)∂x + η(x, y)∂y, (2.38)

where % and φ are functions of x and y, then we can calculate canonical coordinates u(x, y)
and v(x, y) satisfying the condition

Xu = 0, Xv = 1.

Following theorem explains how the reduction is carried out in a consistent way.

Theorem 2.2.1. Suppose a non trivial one-parameter Lie group of transformation, with
infinitesimal generator (2.38), is admitted by an mth-order ODE (2.37), m ≥ 2. Let u(x, y)
and v(x, y) be corresponding canonical coordinates satisfying Xu = 0,Xv = 1. Then the
nth-order ODE (2.37) reduces to an (m− 1)th order ODE

dm−1z

drm−1
= F (r, z,

dz

dr
, . . . ,

dm−2z

drm−2
),

where

du

dt
= z.

For second order ODE, we have

y′ =
ux − tx

du

dt

ty
du

dt
− uy

, (2.39)

y′′ =
d2u

dt2
G+H, (2.40)
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where G and H are function of u, t,
du

dt
and G =

1

j
and H = −k

j
, where the values of j and

k is given below

j =
uytx − uxty
(tx + tyy′)3

, (2.41)

k =
1

(tx + tyy′)3
[(y′)3(tyuyy − uytyy) + (y′)2(2tyuxy + txuyy − 2uytxy − uxtyy)+ (2.42)

(y′)(2txuxy + tyuxx − 2uxtxy − uytxx) + (txsxx − uxtxx)]. (2.43)

Since t and u are canonical coordinates, so it follows that uytx − uxty 6= 0, therefore j 6= 0.
We can substitute above relations into any given second order ODE, this will reduce order
of the equation.

Example 2.2.1.
y′′ = xyy′, (2.44)

The infinitesimal generator of equation (2.44) is

X = −1

2
x∂x + y∂y. (2.45)

The canonical coordinates corresponding to (2.45) are given by

t(x, y) = −2ln(x), u(x, y) = yx2, (2.46)

by using (2.39) and (2.40), we obtain

y′ =
−(2(x2y + z))

x3
− 2

x

du

dt
, (2.47)

y′′ =

(
4

x4

)
d2u

dt2
− 1

2x

[
10y′ +

8y

x

]
. (2.48)

Consequently
du

dt
= v,

d2u

dt2
= v′. (2.49)

By putting the above relations in equation (2.44), we obtain the following reduced equation

v′ + v(4 + v) = 0. (2.50)

2.2.2 Reduction through invariants and differential invariants

An mth order ordinary differential equation (2.37) is represented by the surface

F (x, y, y′, y′′, ...., ym) = ym − f(x, y, y′, y′′, ......, ym−1) = 0, (2.51)

admits one parameter group of point transformation iff the surface is invariant

Pr(m)XF = 0, when F = 0, (2.52)
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where Pr(m)X denoted the mth prolongation of our infinitesimal generator. It follows that
F (x, y, y′, y′′, ...., ym) is some function of group’s invariant

φ(x, y), ψ1(x, y, y
′), ......, ψk(x, y, y

′, ..., ym). (2.53)

Now by applying the infinitesimal generator X upon φ we get

Xφ(x, y) = 0, (2.54)

which leads us to first order PDE by solving this we get invariants.

Pr(k)Xψl(x, y, y′, ..., yl) = 0, k = 1, 2, 3, ..., n, l = 1, 2, 3, ..., n, (2.55)

above condition will give differential invariants with
∂vl
∂yl
6= 0. Here ψl(x, y, y′, ..., yl) is

integration constant of characteristic equations

dx

%(x, y)
=

dy

φ(x, y)
= ... =

dyl

φk(x, y, y′, ..., yl)
, (2.56)

where φl is given in Section (1.6). By using any set of invariants (2.53), the equation (2.51)
becomes

H(φ, ψ1, ψ2, ..., ψn) = 0, (2.57)

from a feasible choice of invariants and differential invariants we can reduce order of ODE.
Whereas differential invariants are calculated by any choice of invariants φ(x, y) and ψ(x, y, y′)

dψ

dφ
=

∂ψ
∂x

+ y′ ∂ψ
∂y

+ y′′ ∂ψ
∂y′

∂φ
∂x

+ y′ ∂φ
∂y

, (2.58)

then constructively the reduced equation (2.57), in terms of differential invariants is an
(n− 1)th order ODE

dn−1ψ

dφn−1
= I

(
φ, ψ,

dψ

dφ
, ....,

dn−2ψ

dφn−2

)
, (2.59)

for some function I of φ, ψ, dψ/dφ, ..., dn−2ψ/dφn−2.

Example 2.2.2. Suppose that
y′′ = xyy′, (2.60)

which admints a Lie point symmetry

X = −1

2
x∂x + y∂y.

The invariants and differential invariants are

φ(x, y) = x2y,

ψ(x, y) = x3y′,
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by using relation (2.59), we obtain

dψ

dφ
=

3x2y′ + x3y′′

2xy + x2y′
. (2.61)

By substituting above relation in equation (2.44 ), we get the following reduced equation

3ψ′ − ψ − 3 = 0, (2.62)

here prime shows the derivative w.r.t φ.

2.2.3 Korteweg de Vries equation

In the start of this chapter, we see infinitesimal criteria, find symmetries of ODEs and apply
reduction procedure. Now we will apply the same criteria on Korteweg de Vries equation,
which is a nonlinear partial differential equation. We will find out the symmetries of this
equation, after that we see how the reduction take place in PDE.

Example 2.2.3. Consider the Korteweg de Vries equation

ut + uxxx + uux = 0, (2.63)

which is a 3rd order PDE. The infinitesimal generators of Korteweg de Vries equation is
following

X = %(t, x, u)∂t + τ(t, x, u)∂x + η(t, x, u)∂u. (2.64)

Its first order prolongation is

Pr(1)X = X + η[t](t, x, u)∂ut + η[x](t, x, u)∂ux . (2.65)

Since the Korteweg-de Vries is 3rd order PDE, so we take 3rd order prolongation

Pr(3)X = X + Pr(1)X + Pr(2)X + η[ttt]∂uttt + η[ttx]∂uttx + η[txx]∂utxx + η[xxx]∂uxxx . (2.66)

When we apply the infinitesimal generator (2.66) on equation (2.63), then by Theorem (2.1.1)
we get

η[t] = −η[xxx] − ηux − η[x]u, (2.67)

from equations (1.40) and (1.43), we can get the relations η[t], η[x] and η[xxx]. By using
MAPLE we get determining equations which are

%u = 0, (2.68)

%x = 0, (2.69)

%tt = 0, (2.70)

τu = 0, (2.71)

τtt = 0, (2.72)

τx =
1

3
%t, (2.73)

η =
−2

3
%tu+ τt. (2.74)
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Equation (2.69) show that % is neither function of u nor function of x, also it is linear in t
which is seen in equation (2.70). The equation (2.71) specifies that τ is not function of u,
according to equation (2.73)

τ(t, x) =
1

3
c1x+ f(t), (2.75)

by substituting the value of τ(t, x) in the equation (2.72) we get following relation

f(t),tt = 0, f(t) = c3t+ c4, (2.76)

this relation gives τ(t, x). Now when we put above relations in equation (2.74), we get
φ(t, x, u). We get the following coefficient functions for Korteweg de Vries equation

%(t, x, u) = c1t+ c2, (2.77)

τ(t, x, u) =
1

3
c1x+ c3t+ c4, (2.78)

η(t, x, u) = −2

3
c1u+ c3, (2.79)

for some arbitrary constants c1, c2, c3, c4. By comparing constants we get the following sym-
metries

X1 = ∂x, X2 = t∂x + ∂u, X3 = ∂t, X4 = x∂x + 3t∂t − 2u∂u. (2.80)

In order to reduce Korteweg de Vries equation, we use any of the admitted symmetry. For
reduction we need appropriate variables, which are functionally independent invariant and
differential invariant. Now we use one of the symmetry and reduce our PDE.
Lets start with the infinitesimal generator X1, which is space translation. By using the
condition (2.54), we obtain the following invariant

r = t, ψ(r) = u(x, t),

by using above relation, Korteweg de Vries equation completely converts in to simple 1st
order ODE which is

ψ′ = 0, where ψ′ =
dψ

dr
, (2.81)

from above equation we see that the Korteweg de Vries is reduced into one fewer variable
and obtained a simple ODE, by solving it we get u(t, x) = c, which is a trivial solution
of Korteweg de Vries equation. The infinitesimal generator X2, which is a Galilean boost,
holds the following invariant

r = t, ψ(r) +
x

t
= u(x, t),

these invariants reduce Korteweg de Vries equation into a 1st order ODE

ψ′(r) +
ψ(r)

r
= 0, ψ′(r) =

dψ

dr
, (2.82)
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we can solve the reduced equation easily and get ψ = c1/r. The resulting solution of Korteweg
de Vries equation is

u(t, x) =
c1 + x

t
.

In the same way we can reduce Korteweg de Vries equation, by using other symmetries
and obtain similarity solutions.
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Chapter 3

Manakov System: Exact Solution by
Group Reduction

3.1 Introduction

Rogue wave solutions are the solutions of nonlinear Schrödinger equation (NLSE) and its
generalization in higher dimensions which are like waves that are generated abruptly and
from nowhere that suggested their other names as monster waves, killer or freak waves. This
area of research has flourished over the past few years with a search for new solutions of
coupled nonlinear Schrödinger equations (CNSEs) as such behaviors arise in several branches
of applied sciences for example study of plasmas, fiber optics, condensates, to name a few.

A Manakov system is a system of coupled nonlinear Schrödinger equations, it is investi-
gated by S. V. Manakov [30]. E. V. Zakharov and E. I. Schulman [12] proved the integrability
of CNSEs. Moreover O. C. Wright [21, 22] gives the elliptic solutions as well as modulation
instability in a defocussing coupled nonlinear Schrödinger system. The periodic solutions
and their modulations of the Manakov system is given by A. M. Kamchatnov [8]. D F
Parker [18] obtained the dark and bright solitions. A. Sciarrino and P. Winternitz [7] found
symmetries and solutions of the vector nonlinear Schrödinger equations (VNSEs). The char-
acterization of breather and Rogue wave and modulation instability of CNSEs is given by
N. Vishnu Priya, M. Senthivelan [18]. The Manakov system

ι̇ut + uxx + 2(σ1|u|2 + σ2|v|2)u = 0,

ι̇vt + vxx + 2(σ1|u|2 + σ2|v|2)v = 0, (3.1)

which is comprised of a system of two semi-linear PDEs with cubic nonlinearty. Here u(t, x)
and v(t, x) carry the representation of two waves which are complex functions whose physical
meaning depends on a particular context and σi = ±1, (i = 1, 2). The Manakov system is
completely integrable in the sense that it has infinitely many conservation laws besides it
admits a Lax pair and a bi-Hamiltonian structure. The above system is well studied and its
solutions are obtained from various approaches. The solutions of Manakov system include
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two important types that include Rogue waves and breather solutions both of which arise in
different experimental and physical settings.
We use symmetry reduction approach to obtain invariant solutions of the system (3.1).
The symmetry analysis of the Manakov system is carried out in several papers where the
algebra of Lie point symmetries is given. Our goal is to exploit full set of symmetries to
obtain invaiant solutions of (3.1) by integrating the reduced ODEs corresponding to Lie
point symmetries.

3.2 Symmetry Analysis

First we investigate the Lie point symmetries of the Manakov system (3.1).

ι̇ut + uxx + 2(σ1|u|2 + σ2|v|2)u = 0,

ι̇vt + vxx + 2(σ1|u|2 + σ2|v|2)v = 0, (3.2)

where u(t, x) and v(t, x) define two interacting waves represented by two complex functions.
It is more convenient to work in polar coordinates, therefore we introduce

u = ρ(t, x)eι̇φ(t,x), (3.3)

v = τ(t, x)eι̇ψ(t,x), (3.4)

where ρ = |u| and τ = |v|, determine the strength or amplitude of the two waves, respectively.
Similarly φ and ψ correspond to two phases of the waves. When we substitute (3.3), (3.4)
in the system of equations (3.2), we get the following equations

eι̇φ(ρxx − ρφt − ρφ2
x + 2(σ1ρ

2 + σ2τ
2)ρ) + ι̇(ρt + 2ρxφx + ρφxx)e

ι̇φ = 0, (3.5)

eι̇ψ(τxx − τψt − τψ2
x + 2(σ1ρ

2 + σ2τ
2)τ) + ι̇(τt + 2τxψx + τψxx)e

ι̇ψ = 0. (3.6)

The transformation gives rise to a system of four second-order PDEs by comparing real and
imaginary parts

ρxx − ρφt − ρφ2
x + 2(σ1ρ

2 + σ2τ
2)ρ = 0,

τxx − τψt − τψ2
x + 2(σ1ρ

2 + σ2τ
2)τ = 0,

ρt + 2ρxφx + ρφxx = 0,

τt + 2τxψx + τψxx = 0. (3.7)

The space M ⊂ X × V of all independent and dependent variables is a zero-order jet space,
here t and x are the independent variables and ρ, φ, τ and ψ are the dependent variables.
The infinitesimal generator for p = 2 and q = 4 where p, q represents number of independent
and dependent variables respectively, is given as

X = %1∂t + %2∂x + η1∂ρ + η2∂τ + η3∂φ + η4∂ψ, (3.8)

where %1, %2, η1, η2, η3, η4 are functions of t, x, ρ, τ, φ, ψ. The first order prolongation of the
infinitesimal generator X is

Pr(1)X = X + η1[x]∂ρx + η1[t]∂ρt + η2[x]∂τx + η2[t]∂τt + η3[x]∂φx + η3[t]∂φt + η4[x]∂ψx + η4[t]∂ψt , (3.9)
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since the system (3.7) is of second order, so we require second order prolongation of infinites-
imal generator given by

Pr(2)X = Pr(1)X + η1[xx]∂ρxx + η1[xt]∂ρxt + η1[tt]∂ρtt + η2[xx]∂τxx + η2[xt]∂τxt + η2[tt]∂τtt

+ η3[xx]∂φxx + η3[xt]∂φxt + η3[tt]∂φtt + η4[xx]∂ψxx + η4[xt]∂ψxt + η4[tt]∂ψtt , (3.10)

next employ Theorem (2.1.1) on the reduced system (3.7)

ρxx − ρφt − ρφ2
x + 2(σ1ρ

2 + σ2τ
2)ρ = 0, (3.11)

τxx − τψt − τψ2
x + 2(σ1ρ

2 + σ2τ
2)τ = 0, (3.12)

ρt + 2ρxφx + ρφxx = 0, (3.13)

τt + 2τxψx + τψxx = 0. (3.14)

The term η1[xx]∂ρxx in (3.10) involves partial derivative w.r.t ρxx, when applies on equation

(3.11), it will give η1[xx], also when η3[x]∂φx ,η
3
[t]∂φt , η

1∂ρ applies on equation (3.11), it will give

η1φt, ρη
3
[t], 3σ1ρ

2η1, σ2(η
1τ 2), 2ρφxη

3
[x] and η1φ2

x. Similarly we get 2ρτη2 by applying (3.10)

on equation (3.11). In the same manner we applied (3.10) on equations (3.12), (3.13), (3.14)
and got the following system of equations

η1[xx] − η1φt − ρη3[t] − η1φ2
x − 2ρφxη

3
[x] + 2(3σ1ρ

2η1 + (σ1η
1τ 2 + 2σ2ρτη

2)) = 0, (3.15)

η2[xx] − η2ψt − τη4[t] − η2ψ2
x − 2τψxη

4
[x] + 2(σ1(η

2ρ2 + 2ρτη1) + 3σ2τ
2η2) = 0, (3.16)

η1[t] + 2η1[x]φx + 2η3[x]ρx + η1φxx + ρη3[xx] = 0, (3.17)

η2t + 2η2[x]ψx + 2η4[x]τx + η2ψxx + τη4[xx] = 0. (3.18)

The explicit form η1[t], η
1
[x], η

2
[t], η

1
[x], η

3
[t], η

1
[x], η

4
[t], η

4
[x], η

1
[xx], η

2
[xx], η

3
[xx] and η4[xx] can be obtained

from equation (1.40) and (1.43). By comparing monomials we obtain the determining equa-
tions

%1φ = 0, %1ψ = 0, %1ρ = 0, %1τ = 0, %1x = 0, (3.19)

%1tt = 0, %2φ = 0, %2ψ = 0, %2ρ = 0, %2τ = 0, (3.20)

%2tt = 0, (3.21)

%2x =
1

2
%1t , (3.22)

η3φ = −η3ψ, η3ρ =
−η3ττ
ρ

, η3t = 0, η3x =
1

2
(%2t ), η3ψψ = −φ3

ττ, (3.23)

η3ψτ =
η3ψ
τ
, η3ττ = 0, η4φ =

−η3ψρ2σ1
τ 2σ2

, (3.24)
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η4ψ = (η3ψρ
2σ1)/(τ

2σ2), (3.25)

η4ρ = (η3τρσ1)/(τσ2), (3.26)

η4τ = (−η3τρ2σ1)/(τ 2σ2), η4t = 0, η4x =
1

2
%2t , (3.27)

η3x =
1

2
%2t , (3.28)

η4x =
1

2
%2t , (3.29)

η2 = (2φ3
ψρ

2σ1 − %1t τ 2σ2)/(2τσ2), (3.30)

η1 =
1

2
ρ(2φ3

ψ − %1t ). (3.31)

The process of finding the determining PDEs is very time taking, there are several software’s
to compute the determining PDEs. Here we use MAPLE to get these determining equations.
By looking on equation (3.19), we conclude that %1 is not functions of φ, ψ, ρ, τ and x, now
by using equation (3.20.1) we get

%1 = c1t+ c2. (3.32)

Similarly from equation (3.20.2), we conclude that %2 is not functions of φ, ψ, ρ and τ so they
are only function of t, x. If we observe equation (3.21), it will indicate that

%2 = f1(x)t+ f2(x), (3.33)

on substituting the above value in equation (3.22) we get

f1 = c3, f2 =
1

2
c1x+ c4, (3.34)

thus we obtain

%2 =
1

2
c1x+ c3t+ c4, (3.35)

, by substituting the values of %1, %2 in the remaining determining PDEs, we get

η1 = −τ(c5 sin(ψ)− c6 cos(ψ)) cos(φ) + sin(ψ) sin(φ)c6τ + cos(ψ) sin(φ)c5τ − (1/2)ρc1,

(3.36)

η2 =
1

2

(−2ρσ1(c6 cos(ψ)− c5 sin(ψ)) cos(φ)− 2 cos(ψ) sin(φ)c5ρσ1 − 2 sin(ψ) sin(φ)c6ρσ1 − c1τσ2)
σ2

,

(3.37)

η3 =
(τ(sin(ψ)c6 + c5 cos(ψ)) cos(φ)− cos(ψ) sin(φ)c6τ + sin(ψ) sin(φ)c5τ + ρ(c3x+ c7))

ρ
,

(3.38)

η4 = c3x+
σ1ρ(−c6 sin(−ψ + φ) + c5 cos(−ψ + φ))

(τσ2)
+ c8, (3.39)
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where c1, c2, c3, c4, c5, c6, c7 and c8 are arbitrary constants. Therefore the Lie algebra of
infinitesimal generators of the Manakov system (3.1) is spanned by eight vector fields

X1 = ∂x, X2 = ∂t, (3.40)

X3 = ∂φ, X4 = ∂ψ, (3.41)

X5 = 2t∂t + x∂x − ρ∂ρ − τ∂τ , (3.42)

X6 = 2t∂x + x∂φ + x∂ψ, (3.43)

X7 = cos(φ− ψ)(τ∂ρ −
σ1
σ2
ρ∂τ ) + sin(φ− ψ)(

τ

ρ
∂φ −

σ1ρ

σ2τ
∂ψ) , (3.44)

X8 = − sin(φ− ψ)(τ∂ρ −
σ1
σ2
ρ∂τ ) + cos(φ− ψ)(

τ

ρ
∂φ +

σ1ρ

σ2τ
∂ψ). (3.45)

The symmetry transformation generated by the infinitesimal generators: X1 = ∂x, which
is space translation (x̃ = x + ζ), X2 = ∂t is time translations (t̃ = t + ζ), where the
infinitesimal generators (3.41.1), (3.41.2) are phase translation (φ̃ = φ + ζ), (ψ̃ = ψ +
ζ) respectively, Galilean boost (3.42) with simultaneous phase transformations (x̃ = x +
2ζt, φ̃ = φ + ζx, ψ̃ = ψ + ζx), where the infinitesimal generator (3.43) is inhomogeneous
scaling with transformations (t̃ = e2ζt, x̃ = eζx, ρ̃ = e−ζρ, τ̃ = e−ζτ). where we have the
following decomposition of Lie algebra R4⊕ d1⊕K1⊕U2, or equivalently four translations,
an inhomongeneous scaling transformation, one dilation and two phase translations. The
action of underlying Lie group for R4 ⊕ d1, on the solutions of Manakov system is given by

φ(t, x) −→ φ(e2ε5t+ ε1, e
ε5x+ ε2) + ε3 ,

ψ(t, x) −→ ψ(e2ε5t+ ε1, e
ε5x+ ε2) + ε3 ,

ρ(t, x) −→ e−ε5ρ(e2ε5t+ ε1, e
ε5x+ ε2) ,

τ(t, x) −→ e−ε5τ(e2ε5t+ ε1, e
ε5x+ ε2) .

The symmetry X6 corresponds to a Galilean boost transformation whose action is

φ(t, x) −→ φ(t, x+ 2ε6t) + ε6x+ ε26t,

ψ(t, x) −→ ψ(t, x+ 2ε6t) + ε6x+ ε26t,

ρ(t, x) −→ ρ(t, x+ 2ε6t),

τ(t, x) −→ τ(t, x+ 2ε6t).

To investigate the structure of the Lie algebra we use the commutator table. The Lie
algebra spanned by X1 = ∂x, X2 = ∂t, X3 = ∂φ, X4 = ∂ψ, X5 = 2t∂x + x∂φ + x∂ψ,
X6 = 2t∂t + x∂x − ρ∂ρ + τ∂τ , generates the symmetry group of the polar reduced system
(3.7). Our next task is to find the exact solution, so we perform group reduction.
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3.3 Group Reduction of Manakov System

We discuss the group reduction of the polar reduced Manakov system

ρxx − ρφt − ρφ2
x + 2(σ1ρ

2 + σ2τ
2)ρ = 0,

τxx − τψt − τψ2
x + 2(σ1ρ

2 + σ2τ
2)τ = 0,

ρt + 2ρxφx + ρφxx = 0,

τt + 2τxψx + τψxx = 0, (3.46)

to find the exact solutions. Therefore we use the admitted Lie point symmetries which are

X1 = ∂x, X2 = ∂t, X3 = ∂φ, X4 = ∂ψ,

X5 = 2t∂t + x∂x − ρ∂ρ − τ∂τ , X6 = 2t∂x + x∂φ + x∂ψ,

X7 = cos(φ− ψ)(τ∂ρ −
σ1
σ2
ρ∂τ ) + sin(φ− ψ)(

τ

ρ
∂φ −

σ1ρ

σ2τ
∂ψ) ,

X8 = − sin(φ− ψ)(τ∂ρ −
σ1
σ2
ρ∂τ ) + cos(φ− ψ)(

τ

ρ
∂φ +

σ1ρ

σ2τ
∂ψ). (3.47)

1.Space Translation:
We start the reduction using the infinitesimal generator X1 = ∂x which is a space translation
symmetry. Now we find the invariants by using the condition

Xϕ = 0, (3.48)

here X = X1 and ϕ(t, x, ρ, τ, φ, ψ), so we get

ϕx = 0. (3.49)

The equation (3.49) is 1st order PDE which has infinite many solution, so on solving it we
get

t, ρ, τ, φ, ψ, (3.50)

which are invariants, by giving them new names we get

r = t, M1(r) = ρ, M2(r) = φ, M3(r) = τ, M4(r) = ψ, (3.51)

these are basically similarity variables. Now by using the similarity variable and applying
the chain rule the system (3.14), can be reduced to

M1M
′
2 − 2(σ1M

2
1 + σ2M

2
3 )M1 = 0, (3.52)

M3M
′
4 − 2(σ1M

2
1 + σ2M

2
3 )M3 = 0, (3.53)

M ′
1 = 0, (3.54)

M ′
3 = 0, (3.55)
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the above system is 1st order ODEs, which is quite simple and easy to solve. So from
the equations (3.54) and (3.55) of the above system, we conclude that both M1 and M3 are
independent of time, they can be integrated easily and we get M1 = c1,M3 = c2. Furthermore
on substituting the values of M1,M3 in the remaining equations (3.52) and (3.53) and by
solving we obtain

M2 = 2(σ1c
2
1 + σ2c

2
2)t+ c3, (3.56)

M4 = 2(σ1c
2
1 + σ2c

2
2)t+ c4, (3.57)

where c1, c2, c3, c4 are arbitrary constants. Now by substituting the values of M1,M2,M3,M4

in the relation (3.51), we obtain

ρ = c1, φ = 2(σ1c
2
1 + σ2c

2
2)t+ c3, (3.58)

τ = c2, ψ = 2(σ1c
2
1 + σ2c

2
2)t+ c4, (3.59)

which is the solution of the polar reduced system (3.11)-(3.14). Where ρ, τ are amplitude of
two interacting waves and φ, ψ are the phases of the waves. Now put the values of ρ, τ, φ, ψ
in the relations (3.3), (3.4), we obtain

u(t, x) = c1e
2ι̇(σ1c21+σ2c

2
2)t+c3 ,

v(t, x) = c2e
2ι̇(σ1c21+σ2c

2
2)t+c4 , (3.60)

which is exact solution of the Manakov system (3.14).

2. Time Translation:
Similarly for t−translation, the infinitesimal generator is X2 = ∂t. Now again we will apply
the condition (3.48) and we get the following invariants

x, ρ, τ, φ, ψ, (3.61)

therefore the similarity variables are

r = x, M1(r) = ρ, M2(r) = φ, M3(r) = τ, M4(r) = ψ. (3.62)

Now by using the similarity transformation the system of equations (3.11)-(3.14) reduces to

M ′′
1 −M1M

′
2 + 2(σ1M

2
1 + σ2M

2
3 )M1 = 0, (3.63)

M ′′
3 −M3M

′
4 + 2(σ1M

2
1 + σ2M

2
3 )M3 = 0, (3.64)

2M ′
1M

′
2 +M1M

′′
2 = 0, (3.65)

2M ′
3M

′
4 +M3M

′′
4 = 0, (3.66)

which is system of 2nd order ODEs and it has eight Lie point symmetries. We obtain time
independent solutions from this system. The above system can be solved if we assume one
of the function as constant, for example M1 = c1, in which case the last two equations of
reduced system give

M2(r) = c2r + c3, M4(r) = ± c2r + c4, (3.67)
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by using above values in the remaining equations of the system (3.63)-(3.66), we get

M3 = ±
√
−2σ2(2c21σ1 − c22)

2σ2
,

the resulting solution of Manakov system is

u(t, x) = c1e
(ι̇(c2x+c3)),

v(t, x) = ±
√
−2σ2(2c21σ1 − c22)

2σ2
e(±ι̇(c2x+c4)). (3.68)

Similarly the choice of M1(r) = c1r also led us to explicitly solve the system (3.63)-(3.66)
and we obtain

M3(r) = ∓
√
−σ2σ1rc1
σ2

, M2(r) = c2, M4(r) = c3 (3.69)

We obtain the following solution of Manakov system

u(t, x) = c1xe
ι̇c2 ,

v(t, x) = ±
√
−σ2σ1xc1
σ2

eι̇c4 . (3.70)

where an extra care is required to interpret the above solutions.

Furthermore if we take M1(r) = c1r
2 and solved the system (3.63)-(3.66), we obtained

M4(r) = arctan (c1
√
σ1r

3) + c3, M2(r) = c2, M3(x) = ±
√
−σ2(c21r6σ1 + 1)

σ2r
, (3.71)

and

M4(r) = − arctan (c1
√
σ1r

3) + c3, M2(r) = c2, M3(x) = ±
√
−σ2(c21r6σ1 + 1)

σ2r
, (3.72)

Therefore we yield two more exact solutions of Manakov system

u(t, x) = c1x
2eι̇c2 , v(t, x) = ±

√
−σ2(c21x6σ1 + 1)

σ2x
e(ι̇(arctan (c1

√
σ1x3)+c3)), (3.73)

u(t, x) = c1x
2eι̇c2 , v(t, x) = ±

√
−σ2(c21x6σ1 + 1)

σ2x
e(ι̇(− arctan (c1

√
σ1x3)+c3)). (3.74)

Another similar result is obtained for M1 = c1/r, we obtain the following result

M4(r) = c3, M2(x) = c2, M3(x) = ±
√
−σ2(c21σ1 + 1)

σ2r
, (3.75)
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by putting these results in the relations (3.3),(3.4), we obtain another solution of Manakov
system.

u(t, x) =
c1
x
e(ι̇c2),

v(t, x) = ±
√
−σ2(c21σ1 + 1)

σ2x
e(ι̇c2). (3.76)

Next we use the scaling symmetry to get exact solution.
3. Scaling:
The scaling symmetry has more significance as it will give us nontrivial results. The in-
teracting waves which are generated from the solutions of Manakov system, depends on
the amplitude. So the scaling symmetry will give us such solutions in which ρ and τ both
are functions of t and x. Now we find the similarity variables corresponding to the scaling
symmetry, therefore we use the condition (3.48) and we get

X5ϕ = 0,

(2t∂t + x∂x − ρ∂ρ − τ∂τ )(ϕ) = 0,

2tϕt + xϕx − ρϕρ − τϕτ = 0, (3.77)

now we use characteristic method to solve the above first order PDE

dt

2t
=
dx

x
=

dρ

−ρ
=

dτ

−τ
=
dφ

0
=
dψ

0
, (3.78)

dt

2t
=
dx

x
,
dρ

−ρ
=
dφ

0
,
dτ

−τ
=
dφ

0
, (3.79)

1

2
ln t = lnx, (3.80)

so we get following invariants

x√
t
, ρ, φ, τ, ψ, (3.81)

where the similarity variables are following

s =
1

2
ln t, r =

x√
t
, M1(r) =

√
t ρ, M2(r) = φ, M3(r) =

√
t τ, M4(r) = ψ, (3.82)

similarly by using similarity transformation, the system of equations (3.11)-(3.14) reduces
into ODEs

2M ′′
1 +M1(rM

′
2 − 2M ′2

2 + 4σ1M
2
1 + 4σ2M

2
3 ) = 0, (3.83)

2M ′′
3 +M3(rM

′
4 − 2M ′2

4 + 4σ1M
2
1 + σ24M

2
3 ) = 0, (3.84)

2M3M
′′
4 + (4M ′

4 − r)M ′
3 −M3 = 0, (3.85)

2M1M
′′
2 + (4M ′

2 − r)M ′
1 −M1 = 0, (3.86)
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where the derivative is with respect to similarity variable r. The above system has four Lie
point symmetries.

In order to obtain other solutions we assume that either M1 or M3 is constant. Thus
consider M1 = c2, by solving system (3.7) we get

M4 =
r2

4
+ c1, M2 =

r2

4
+ c3, M3 = ±

√
−σ1
σ2

c2 , (3.87)

which directly gives us a non-trivial solution

ρ =
c2√
t
, φ =

x2

4t
+ c3, (3.88)

τ = ±
√
−σ1
σ2

c2√
t
, ψ =

x2

4t
+ c1. (3.89)

Thus the solution of Manakov system is

u(t, x) =
c2√
t
eι̇(x

2/4t+c3),

v(t, x) = ±
√
−σ1
σ2

c2√
t
eι̇(x

2/4t+c1) , (3.90)

where c1, c2, c3 are arbitrary constants.
Interpretation.
Note that the solution (3.90) of Manakov system (3.7) is such that the waves are equivalent
up to a phase difference, i.e.,

v(t, x) = ±
√
−σ1
σ2

eι̇(c1−c3)u(t, x), (3.91)

Therefore, if we assume that c1 = c3 the above solution becomes the solution of scalar non-
linear Schrödinger equation as in the case v = ku, the first equation in the Manakov system
converts into a single PDE while the other equation is vacuous. We now discuss the analytic
property of this solution in both cases

Case 1. (c1 = c3) in the case we obtain

u(t, x) =
c2√
t
eι̇(x

2/4t+c3), (3.92)

which satisfies a cubically semi-linear Schröndiger equation which is given below

ι̇ut + uxx+ | u |= 0, (3.93)

the above solution can be interpreted in two ways.
(a) If we assume that a wave is continuum of tiny localized particles whose locations
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are described by x, then the motion of particle at some fixed location x = k1 can be
described easily. In particular we obtain

u(t, k) =
c2√
t
eι̇(k

2
1/4t+c3), (3.94)

which has two orthogonal modes corresponding to cos and sin whose graphs are shown
in Figure (3.1), (c3 is assumed zero with out loss of generality ). The sinusoidal motion
of a localized particle at x = k1, starts abruptly while decaying uniformly as time
progresses till it evaporates at infinity.
(b) We can also consider graph of function u(x) at particular instant and simulate
the corresponding function over an entire range of t, given by

u(x) = c2e
ι̇(x2+c3), (3.95)

As before the above wave comprises of two modes we take the sin mode to describe
the behavior of the wave. For instance we take four graphs corresponding to the values
t = 2, 3.5, 4.512, indicating that the waves start abruptly while disperse away at the
asymptotic limit t→∞ as depicted in Figure (3.2- 3.5), where we have assumed that
c3 = 0. The contribution of nonzero values of the constant c3 is merely to translate
the value

Figure 3.1: The motion of sin-wave particles in opposite phases. The sinusoidal motion start
abruptly and decays as t→∞.
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Figure 3.2: Wave at t = 2 Figure 3.3: Wave at t = 3.5

Figure 3.4: Wave at t = 4.5 Figure 3.5: Wave at t = 12

Similarly if M1 or M3 is a multiple of r, the integration gives

M1 = c1r, M2 = (1/6)r2 + c2, (3.96)

M3 =

√
−σ2(36c21σ1 + 1))

6σ2
r, M4 = (1/6)r2 + c3, (3.97)

where the ρ = c1x/t and

√
−σ2(36c21σ1 + 1))x

6σ2t
are the amplitudes of both the interacting

waves which is nontrivial and also depends on both t and x. It is physically very important.
The values of M1,M2,M3,M4 directly give us a non-trivial solution of system of equations
(3.11)-(3.14), which is given below

φ =
x2

6t
+ c2, ψ =

x2

6t
+ c3, (3.98)
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where φ, ψ represents the phase of the waves. Thus the exact solution of Manakov system is

u(t, x) =
c1x

t
e(ι̇(

x2

6t
+c2)),

v(t, x) =

√
−σ2(36c21σ1 + 1))x

6σ2t
e(ι̇(

x2

6t
+c3)), (3.99)

which under the action of four translations give us a general solution

u(t, x) =
c2(x+ c̃1)

t+ c̃2
e(ι̇((x+c̃1)

2/6(t+c̃2)+c3)),

v(t, x) = ±
√
−σ2(1 + 36c22σ1)(x+ c̃1)

6σ2(t+ c̃2)

(x+ c̃1)

(t+ c̃2)
e(ι̇((x+c̃1)

2/6(t+c̃2)+c1)) . (3.100)

The two interacting sin waves, i.e., sin((x+ c̃1)
2/6(t+ c̃2) + c1) is given in Figure (3.1). For

c̃1 = 1, c̃2 = 1, c3, c2 = 1 and σ1 = 1, σ2 = −1, the particle or waves gain stability from
instability, here c̃1 corresponds to the translation of x also c̃2 is time translation factor. In
order to integrate reduced system of ODEs we employ non-classical approaches.
4. Galileo Boost:
The symmetry X6 induces the similarity variables

s =
x

t
, r = t, M4(r) =

4ψt− x2

4t
, M1(r) = ρ, M2(r) =

4φt− x2

4t
, M3(r) = τ , (3.101)

which reduces system (3.14) into a system of four first order ODEs

M ′
2 − 2(M2

1 +M2
3 ) = 0, (3.102)

M ′
4 − 2(M2

1 −M2
3 ) = 0, (3.103)

2rM ′
1 +M1 = 0, (3.104)

2rM ′
3 +M3 = 0, (3.105)

where the derivative is with respect to similarity variable r. The above system can be
integrated easily and we obtain a solution

M4 = 2(σ1c
2
1 + σ2c

2
2) ln(r) + c3, M1 =

c1
r
, (3.106)

M2 = 2(σ1c
2
1 + σ2c

2
2) ln(r) + c4, M3 =

c2
r
, (3.107)

which in terms of the original variables gives us

φ(t, x) =
1

4t

(
(c21 + c22) t ln(t) + 4c3t+ x2

)
, ρ(t, x) =

c1√
t
, (3.108)

ψ(t, x) =
1

4t

(
(c21 − c22) t ln(t) + 4c4t+ x2

)
, τ(t, x) =

c2√
t
. (3.109)
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Thus the exact solution of Manakov system is

u(t, x) =
c1√
t
eι̇(

1
4t((c21+c22) t ln(t)+4c3t+x2)),

v(t, x) =
c2√
t
eι̇(

1
4t((c21−c22) t ln(t)+4c4t+x2)). (3.110)

If we take the combinations of the infinitesimal generators, for instance take X1 + cX2,
which admits traveling wave structure, where c is any arbitrary constant. The invariants for
∂t + c∂x are

r = (x− c1t), M1(r) = ρ, M2(r) = φ, (3.111)

M3(r) = τ, M4(r) = ψ, (3.112)

here r is our new independent variable, M1,M2,M3,M4 are our similarity variables. Using
these variables and applying chain rule, we get the following reduced system

M ′′
1 + cM1M

′
2 −M1M

′2
2 + 2(σ1M

2
1 + σ2M

2
3 )M1 = 0, (3.113)

M ′′
3 + cM3M

′
4 −M3M

′2
4 + 2(σ1M

2
1 + σ2M

2
3 )M3 = 0, (3.114)

− cM ′
1 + 2M ′

1M
′
2 +M1M

′′
2 = 0, (3.115)

− cM ′
3 + 2M ′

3M
′
4 +M3M

′′
4 = 0. (3.116)

Take M1 = c1 and put in the equations (3.115)-(3.114), then on integration, we get the
following solution

M2 = c2(x− ct) + c3, M3 =

√
−2σ2(2c21σ1 − c22 + c2c))

2σ2
, M4 = c2(x− ct) + c4, (3.117)

ci, i = (1, .., 4) all are constants. The exact solution of Manakov system is obtained by
substituting Mi, i = (1, 4) in the relations (3.111)-(3.112).

u(t, x) = c1e
(ι̇(c2(x−ct)+c3)),

v(t, x) =

√
−2σ2(2c21σ1 − c22 + c2c))

2σ2
e(ι̇(c2(x−ct)+c4)) (3.118)

If we choice M1 as a function of r, we get the solution of the equations (3.115)-(3.112) which
is given as

M1 = c1r, M2 =
1

2
cr + c2, (3.119)

M3 = ±
√
−2σ2(8c21r

2σ1 + c2)

4σ2
, M4 =

1

2
cr + arctan (

2c1
√

2σ1r

c
) + c3, (3.120)

and

M1 = c1r, M2 =
1

2
cr + c2, (3.121)

M3 = ±
√
−2σ2(8c21r

2σ1 + c2)

4σ2
, M4 =

1

2
cr − arctan (

2c1
√

2σ1r

c
) + c3, (3.122)

42



Thus the Solution of Manakov system is

u(t, x) = c1(x− ct)e(ι̇(
1
2
c(x−ct)+c2)), (3.123)

v(t, x) = ±
√
−2σ2(8c21(x− ct)2σ1 + c2)

4σ2
e(ι̇(

1
2
c(x−ct)+arctan (

2c1
√
σ12(x−ct)
c

)+c3)) (3.124)

and

u(t, x) = c1(x− ct)e(ι̇(
1
2
c(x−ct)+c2)),

v(t, x) = ±
√
−2σ2(8c21(x− ct)2σ1 + c2)

4σ2
e(ι̇(

1
2
c(x−ct)−arctan (

2c1
√
σ12(x−ct)
c

)+c3)). (3.125)

3.4 Optimal Subalgebras of CNSEs

The propagation of pulses in birefringent fibers and fiber optics can also be described by
the CNSEs. Where several versions of CNSEs show the propagation of nonlinear waves in
optical fibers. A set of CNSEs is a basic mathematical model in different branches of physics.
In previous section we discuss the importance of CNSEs, now we focus on a particular case
of CNSEs

ι̇ux +
1

2
utt + 2(|u|2 + h|v|2)u = 0,

ι̇vx −
1

2
vtt + 2(|u|2 + h|v|2)v = 0, (3.126)

where u(t, x) and v(t, x) are complex functions, also h = 1, 2, 2
3
. For h = 2 the CNSEs

describes propagation of waves at different carrier wavelength in two mode optical fibers
[30], also for h = 2

3
two modes in fibers with strong birefringance [31]. For convenience we

will work in polar coordinates therefore we introduce

u = ρeι̇φ, v = τeι̇ψ, (3.127)

where ρ, τ determines amplitude of waves and φ, ψ represents phase of the waves. When we
put relation (3.127) in the CNSEs (3.126) we get

1

2
ρtt − ρφx −

1

2
ρφ2

t + (ρ2 + hτ 2)ρ = 0,

− 1

2
τtt − τψx +

1

2
τψ2

t + (ρ2 + hτ 2)τ = 0,

ρx + ρtφt +
1

2
ρφtt = 0,

τx − τtψt −
1

2
τψtt = 0. (3.128)

The CNSEs admits the following symmetries

X1 = ∂t, X2 = ∂x, (3.129)

X3 = ∂φ, X4 = ∂ψ, (3.130)

X5 = x∂t + t∂φ − t∂ψ, (3.131)

X6 = t∂t + 2x∂x − ρ∂ρ − τ∂τ . (3.132)
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The optimal system gives us all the linear combinations of infinitesimal generators that will
generate different conjugacy classes. For this purpose we first construct the commutator
table, we follow the procedure as discuss in Section (1.7). We calculate the Lie brackets by
using the relation (1.32), where all the non zero Lie brackets are given below

[X2,X5] = X1, [X2,X6] = 2X2, [X5,X6] = −X5,

[X1,X5] = X3 −X4, [X1,X6] = X2,

the commutator relations between the infinitesimal generators is shown in Table (3.1). Next

Commutator Table

Xi X1 X2 X3 X4 X5 X6

X1 0 0 0 0 X3 −X4 X1

X2 0 0 0 0 X1 2X2

X3 0 0 0 0 0 0
X4 0 0 0 0 0 0
X5 −X3 + X4 −X1 0 0 0 −X5

X6 −X1 −2X2 0 0 X5 0

Table 3.1: Commutator table

we will find out the adjoint representation which is given in Section (1.8). To compute the
adjoint representation, we use the relation (1.72) in conjunction with the commutator Table
(3.1). For instance

Ad(exp(εX2))X4 = X4 − ε[X2,X4] +
1

2
(ε)2[X2, [X2,X4]]− · · · , (3.133)

= X4. (3.134)

Similarly if we take Ad(exp(εX5))X2

Ad(exp(εX6))X2 = X2 + ε[X6,X2] +
1

2
(ε)2[X6, [X6,X2]]− · · · , (3.135)

from the Table (3.1) we know that

[X6,X2] = −X1, [X6, [X6,X2]] = X3 −X4, (3.136)

remaining all other terms in the series (3.135) are zero, so we get

Ad(exp(εX2))X4 = X4 − ε[X2,X4] +
1

2
(ε)2[X2, [X2,X4]], (3.137)

Ad(exp(εX2))X4 = X4 + εX1 +
ε2

2
X3 −X4. (3.138)

In the same manner, we construct the Table (3.2) with the (i, j)-th entry indicatesAd(exp(εXi))Xj.
Now using the symmetry algebra of g of the reduced system of equations (3.7), whose ad-
joint representation is given in Table (3.2), we can find an optimal system [1]. Here we are
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Adjoint representation

Ad(Xi) X1 X2 X3 X4 X5 X6

X1 X1 X2 X3 X4 X5 − ε(X3 −X4) X6 − εX1

X2 X1 X2 X3 X4 X5 − εX1 X6 − 2εX2

X3 X1 X2 X3 X4 X5 X6

X4 X1 X2 X3 X4 X5 X6

X5 X1 + ε(X3 −X4) X2 + εX1+ X3 X4 X5 X6 + εX5

ε2

2
(X3 −X4)

X6 eεX1 e2εX2 X3 X4 e−εX5 X6

Table 3.2: Adjoint representation table

considering the symmetry algebra of the system (3.7) whose adjoint representation is given
in Table (3.2).
Case 1:
Suppose we have a non zero vector

X = a1X1 + a2X2 + a3X3 + a4X4 + a5X5 + a6X6, (3.139)

we have to simplify as many of the coefficients ai as possible through sensible applications
of adjoint maps to X. Consider first that a6 6= 0,if necessary scale X, take a6 = 1

X = a1∂t + a2∂x + a3∂φ + a4∂ψ + a5(x∂t + t(∂φ − ∂ψ)) + t∂t + 2x∂x − ρ∂ρ − τ∂τ , (3.140)

using Table (3.2), if we act on X by Ad(exp(−a5X5)), the coefficient of X5 vanishes

X′ =Ad(exp(−a5X5))X, (3.141)

=X + a5[X5,X] +
a25
2

[X5, [X5,X]] + · · · , (3.142)

to compute Lie brackets we use the relation (1.32) and we get

[X5,X] =[x∂t + t∂φ − t∂ψ, a1∂t + a2∂x + a3∂φ + a4∂ψ + a5(x∂t + t(∂φ − ∂ψ))+ (3.143)

t∂t + 2x∂x − ρ∂ρ − τ∂τ ], (3.144)

=x(a5∂φ + a5∂ψ) + x∂t − a1∂t − a2∂φ + a2∂ψ − t∂φ + t∂ψ − 2x∂t (3.145)

=− x∂t − t∂φ + t∂ψ − a1∂t − a2∂φ + a2∂ψ, (3.146)

=−X5 − a1X1 − a2X3 + a2X4. (3.147)

the remaining Lie bracket relation in the series (3.141) is given below

[X5, [X5,X]] = −a1X3 + a1X4, [X5, [X5, [X5,X]]] = 0, (3.148)
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now put the relations (3.147) and (3.148) in the equation (3.141), we get

X′ =X + a5[X5,X] +
(a5)

2

2
[X5, [X5,X]], (3.149)

=a1∂t + a2∂x + a3∂φ + a4∂ψ + a5(x∂t + t(∂φ − ∂ψ)) + t∂t + 2x∂x − ρ∂ρ−

τ∂τ + a5(−x∂t − t∂φ + t∂ψ − a1∂t − a2∂φ + a2∂ψ) +
(a5)

2

2
(−a1∂φ + a1∂ψ), (3.150)

=a1X1 + a2X2 + a3X3 + a4X4 + a5X5 + X6 − a5X5 − a1a2X2 − a2a5(X3− (3.151)

X4)− a1a25/2(X3 −X4), (3.152)

=a1X1 + a′2X2 + a′3X3 + a′4X4 + X6, (3.153)

here (a1 − a1a5) = a′3, (a3 − a2a5 − a1a22/2) = a′3 and (a4 − a2a5 − a1a22/2) = a′4 so

X′ = a1X1 + a′2X2 + a′3X3 + a′4X4 + X6, (3.154)

for certain scalars a′3, a
′
4 depending on a1, a2, a3, a4. Now acting on X′ by Ad(exp(a1/2)X1)

a2 will make the coefficient of X2 vanish

X′′ =Ad(exp(a2/2)X1)X
′, (3.155)

=X′ − a2
2

[X1,X
′] +

(a2/2)2

2!
[X1, [X1,X

′]]− · · · , (3.156)

again use the relation (1.32) to calculate [X2,X
′]

[X1,X
′] =[∂t, a1∂t + a2∂x + a′3∂φ + a′4∂ψ + t∂t + 2x∂x − ρ∂ρ − τ∂τ ], (3.157)

=∂t, (3.158)

=X1, (3.159)

[X1, [X1,X
′]] =0, (3.160)

put the values of [X1,X
′], [X1, [X1,X

′]] in equation (3.155) and we get X′′

X′′ =X′ − a1X1, (3.161)

=a1X1 + a′3X3 + a′4X4 + X6. (3.162)

Furthermore, we will cancel the remaining coefficient of X1, by act on X′′ byAd(exp((a1/2)X1)),

X′′′ =Ad(exp((a1/2)X1))X
′′, (3.163)

=X′′ − a1
2

[X1,X
′′] +

(a1/2)2

2!
[X1, [X1,X

′′]]− · · · , (3.164)

where the Lie bracket [X1,X
′′] is calculated below

[X1,X
′′] =[∂x, a1∂x + a′3∂φ + a′4∂ψ + t∂t + 2x∂x − ρ∂ρ − τ∂τ ], (3.165)

=2∂x, (3.166)

=2X1, (3.167)

46



similarly [X1, [X1,X
′′]] = 0. Thus by using the values of [X1,X

′′] and [X1, [X1,X
′′]] in

equation (3.163), we obtain

X′′′ =X′′ − a1/2[X1,X
′′], (3.168)

=a′3X3 + a′4X4 + X6. (3.169)

So every one dimensional subalgebra generated by X with a6 6= 0 is equivalent to the subal-
gebra spanned by a′3X3 + a′4X4 + X6.

Case 2:
The remaining one dimensional subalgebras are spanned by vectors of the above form with
a6 = 0. Now take a5 6= 0

X = a1X1 + a2X2 + a3X3 + a4X4 + a5X5, (3.170)

so we scale to make a5 = 1

X = a1∂t + a2∂x + a3∂φ + a4∂ψ + x∂t + t(∂φ − ∂ψ), (3.171)

next act on X by Ad(exp(a1X2)), so that the coefficient of X1 will vanish

X′ =Ad(exp(a1X2)X, (3.172)

=X− a1[X2,X] +
a21
2

[X2, [X2,X]] + · · · , (3.173)

calculate the commutator relations [X2,X], [X2, [X2,X]] by using (1.32)

[X2,X] =[∂x, a1∂t + a2∂x + a3∂φ + a4∂ψ + x∂t + t(∂φ − ∂ψ, (3.174)

=∂x, (3.175)

=X1, (3.176)

[X2, [X2,X]] =0, (3.177)

substitute values of [X2,X], [X2, [X2,X]] in equation (3.172), thus we obtain

X′ =X− a1[X2,X], (3.178)

=a1∂t + a2∂x + a3∂φ + a4∂ψ + x∂t + t(∂φ − ∂ψ)− a1∂t, (3.179)

=a2∂x + a3∂φ + a4∂ψ + x∂t + t(∂φ − ∂ψ), (3.180)

=a2X2 + a3X3 + a4X4 + X5, (3.181)

where X is equivalent to X′. We can further act on X′ by Ad(exp(a3X1))to vanish the
coefficient of X3

X′′ =Ad(exp(a3X1))X
′, (3.182)

=X′ − a3[X1,X
′] +

(a3)
2

2
[X1, [X1,X

′]] + · · · , (3.183)
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further calculate Lie brackets take place in equation (3.182) which is given below

[X1,X
′] =[∂t, a2∂t + a3∂φ + a4∂ψ + x∂t + t(∂φ − ∂ψ)], (3.184)

=∂φ − ∂ψ, (3.185)

=X3 −X4, (3.186)

where [X1, [X1,X]] = 0. Therefore relation (3.182) gives us

X′′ =X′ − a3[X1,X
′], (3.187)

=a2∂x + a3∂φ + a4∂ψ + x∂t + t(∂φ − ∂ψ)− a3∂φ + a3∂ψ, (3.188)

=a2∂x + a′4∂ψ + x∂t + t(∂φ − ∂ψ), (3.189)

where a′4 = (a4 − a3). So X5 + a2X2 + a′4X4 is the optimal subalgebra.

Case 3:
Next moving to column three and four of the Table (3.2), we see that there is no linear
combination of any symmetry generator, so moving forward to column two of the (3.2), we
have a combination of X2 + εX1 + ε2/2(X3 −X4). Therefore we take a2 6= 0, so we assume
a2 = 1

X = a1X1 + a2X2 + a3X3 + a4X4, (3.190)

now act on X by Ad(exp((−a1/a2)X5)), so that the coefficient of X1 will vanish and we
obtain X2 + a′3X3 + a′4X4. Similarly from column one of Table (3.2), we get X1 + ζX3. The
complete set of optimal system of one dimensional subalgebras to be those spanned by

X6 + ζX3 + δX4, ζ = 0, δ = 0, ζ, δ ∈ R, (3.191)

X5 + ζX2 + δX4, ζ = 0,±1, δ = 0,±1 (3.192)

X2 + ζX3 + δX4, ζ = 0, ζ, δ = ±1, (3.193)

X1 + ζX2 + δX3, ζ = 0,±1, δ = 0,±1. (3.194)

Now we can use the optimal subalgebra to get exact solution of the system (3.126). Here we
use X5 + X4, the invariants are

r = x, M1(r) = ρ, M2(r) = φ− t2

2x
, (3.195)

M3(r) = τ, M4(r) = ψ +
t2

2x
− t

x
, (3.196)

by using the above similarity variables the CNSEs (3.126) reduces to a system of ODEs

2rM ′
1 +M1 = 0, (3.197)

2rM ′
3 +M3 = 0, (3.198)

M ′
1 −M2

1 − 2M2
3 = 0, (3.199)

M ′
4 −M2

1 − 2M2
3 +

1

2r2
= 0, (3.200)

48



by solving the above system we get the following solution

M1 =

√
c1
r
, M3 = (c1 + 2c2) ln(r) + c4, (3.201)

M2 =

√
c2
r
, M4 = (c1 + 2c2) ln(r)− 1

r
+ c3, (3.202)

by putting the above values in relation (3.195) we get

ρ =

√
c1
x
, φ = (c1 + 2c2) ln(x) + c4 +

t2

2x
, (3.203)

τ =

√
c2
x
, ψ = (c1 + 2c2) ln(x)− (t− 1)2

2x
, (3.204)

so the exact solution of the CNSEs (3.126) is

u =

√
c1
x
eι̇((c1+2c2) ln(x)+c4+

t2

2x
),

v =

√
c2
x
eι̇(c1+2c2) ln(x)− (t−1)2

2x
), (3.205)

from the above solution we see that the amplitude of the waves decay as x increases, where
we see that phase of these waves have nontrivial dependence on x and t.
In next chapter we will apply the group foliation approach to get solutions of Manakov
system.
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Chapter 4

Manakov System: Exact Solution by
Group Foliation

4.1 Introduction

In this chapter we will construct the group foliation technique by using admitted finite
dimensional Lie point symmetry group for PDEs. In finite dimensional symmetry group,
i.e., dim G < ∞, S. C. Anco and S. Liu [27], S. C. Anco and S. Ali and T. Wolf [28],
S. C. Anco and W. Feng and T. Wolf [29] made a lot of contributions. Where in infinite
dimensional symmetry group, i.e., dim G = ∞, Y. Nutku, M.B. Sheftel [10], P. Winternitz
[14] successfully developed the group foliation approach.

Generally a group foliation technique can transform a given nonlinear PDE into an equiv-
alent system of PDEs. This system is so called group-resolving equations, where the indepen-
dent variables consist of invariants and the dependent variables are differential invariants of a
given one dimensional group of point transformations. As the group-resolving equations are
obtained from the invariants and differential invariants so the solutions obtained from these
equations are invariant. The splendid thing about foliation is, it gives us all similarity as
well as non similarity solutions. Each solution of the group-resolving equations geometrically
corresponds to an explicit one-parameter family of exact solutions of the original nonlinear
PDE, such that the family is closed under the given one dimensional symmetry group acting
in the solution space of the PDE.

Basically Group foliation is a geometrical generalization of symmetry reduction. In group
foliation method, we can foliate the solution space of the equations into orbits, by choosing
a finite-dimensional symmetry group of the foliation. We can determine each orbit by the
automorphic system coupled to the original equations. The automorphic equations are ob-
tained from the invariants and differential invariants. The automorphic property states that
by an appropriate symmetry transformation each solution can be obtained from any other
solution. The symmetry reduction is the standard method for obtaining exact solutions of
PDEs in symmetry group analysis. This method can only give invariant solutions, while
the drawback of this method is that many invariant solutions and noninvariant solutions are
lost. In the applications of physics noninvariant solutions are very important. Where the
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similarity solutions provide insight into asymptotic behavior, critical dynamic and blow-up
behavior. Now we restate group foliation approach in simple algorithmic steps.

4.2 Symmetries and Group Foliation

Following are the algorithmic steps of group foliation technique:

1. Find all Lie piont symmetries of PDE.

2. Find functionally independent invariants and differential invariants.
(New independent and dependent variables.)

3. Construct group resolving equations and solve.
(System of first order PDEs.)

4. Solve parametric ODEs and get solutions.

These are the four basic steps. Now we can construct group foliation method for a class of
semi-linear reaction diffusion equations

ut = urr +mr−1ur + (p− kuq)u, k = constant 6= 0, p = constant, (4.1)

where u depends on t and r. In equation (4.1), q is nonlinear power and it is neither 0
nor −1. Where m is the coefficient of spatial derivative. The number of independent and
dependent variables in equation (4.1) are two and one respectively. The first task is to find
symmetry structure of this group of equations. The infinitesimal generator for this class of
equations is

X = %1(t, r, u)∂t + %2(t, r, u)∂x + η(t, r, u)∂u, (4.2)

The prolongation of infinitesimal equation is given in Section (1.4). Now we apply the
Therorem (2.1.1) on equation (4.1), thus obtain the following three cases

Case 1:
If we select all values of m, q and p, following are the determining equations

%1r = 0, %1t = 0, %1u = 0, (4.3)

%2 = 0, η = 0, (4.4)

in above relations it is seen that η and %2 is zero and %1 is not function of t,r and u,
so it is a constant. Thus the Infinitesimal generator is

X = ∂t. (4.5)
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Case 2:
For m = 0, the equation(4.1) becomes

ut = urr + (p− kuq)u. (4.6)

The determining equations of (4.6) are

%1r = 0, %1t = 0, %1u = 0, (4.7)

%2r = 0, %2t = 0, %2u = 0, (4.8)

η = 0, (4.9)

we use MAPLE to get determining equations. Now by simple observation we can say
that both %1 and %2 are not function of t, r and u, they are arbitrary constants. Where
φ is zero, so there arise two generators

X1 = ∂t, X2 = ∂r. (4.10)

Case 3:
If we have p = 0 only, the equation (4.1), gets the form

ut = urr +mr−1ur − kuq+1. (4.11)

Similarly, we get the following generators

X1 = ∂t, X2 = 2t∂t + r∂r − (2/q)∂u, (4.12)

moreover, now we explain how the group resolving equations are constructed in detail.

4.2.1 Group resolving equations and Integration

If we look at the infinitesimal generators of the reaction diffusion equation, i.e., Xi, i = 1, 2,
the time translation generator is obtained in all cases. While it is natural to use time
translation infinitesimal generator for the construction of group foliation. Now by using
time translation symmetry

X = ∂t, (4.13)

we can set up the system of group resolving equations for the reaction diffusion equation
(4.1). Therefore we first obtain the invariants of the infinitesimal generator (4.13) in terms
of t,r and u

Xϕ = 0, where ϕ(t, r, u), (4.14)

ϕt = 0, (4.15)

by solving the first order PDE (4.15) by characteristic method. We get two functional
independent invariants

r, u, (4.16)
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and by giving them new names

x = r, v = u, (4.17)

we get new independent variables x, v, also the new independent variables satisfy the follow-
ing condition

Xtransx = Xtransv = 0. (4.18)

To find the differential invariants, we have to prolong our infinitesimal generator (4.13) up
to order one, i.e., Pr1. The infinitesimal generator (4.13) is in its simple form, so

Pr1X = X, (4.19)

to determine the differential invariants we use the following condition

Pr(1)XtransΞ = 0, (4.20)

here Ξ(t, r, u, ut, ur). The differential invariants for the infinitesimal generator (4.13) are

ut, ur, (4.21)

by giving these differential invariants new names we obtain new dependent variables that
are

G = ut, H = ur, (4.22)

these differential invariants satify the condition

Pr(1)XtransG = Pr(1)XtransH = 0. (4.23)

Also x and v are independent while G,H are related by equality of mixed derivatives (r, t)
on ut and ur, which gives

DtH = DrG, (4.24)

since Dt and Dr are total derivative operator with respect to t and r, which are

Dt = ∂t + ut∂t,

Dr = ∂r + ur∂r, (4.25)

where x and v are our new independent variables, also G and H are our new dependent
variables which are functions of x and v. Now we substitute G = G(x, v) and H = H(x, v),
so the relation (4.24) becomes

GHv = Gx +HGv. (4.26)

The reaction-diffusion equation (4.1) is related by v, G and H

G = DrH +mx−1H + (p− kvq)v, (4.27)
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we will reach at a system of first-order PDE, by using the relation (4.17), (4.22) into equation
(4.24 and (4.27) combined with the chain rule

Gx +HGv −GHv = 0, (4.28)

G−Hx −HHv −
mH

x
= (p− kvq)v, (4.29)

This system of first-order PDE are so called time translation group resolving system for the
reaction diffusion equation. The solution spaces of the system (4.28),(4.29) and equation
(4.1) are related by a group invariant mapping that is defined through the invariants and
differential invariants. The group resolving system is consistent to the original reaction
diffusion equation in a way the degree of freedom of both are the same. The number of
independent and dependent variable in reaction diffusion equation is three and there is only
one equation so the degree of freedom is two. Where in group resolving system the number
of independent and dependent variables are four and the number of equations are two so the
degree of freedom is again two.

Now we have to find the exact solutions of the system of nonlinear PDEs (4.28),(4.29) for
(G(x, v), H(x, v)), where it is well suited to solve it by separation of variable ansatz. First
the terms (p − kuq)u in reaction diffusion equation (4.1) taking part only as an inhomoge-
neous term in equation (4.29). Although in system of PDEs (4.28) and (4.29), there are
no derivatives involved with respect to v into the linear terms, i.e., G,Gx, Hx and mHx/x.
By careful observance, in the homogeneous equation (4.28), the nonlinear terms have skew
symmetric form which is HGv −GHv. Where in the non homogeneous equation (4.29), the
nonlinear term has the symmetric form HHv = (H2/2)v. On the base of these properties,
the group resolving system have solutions of the form

G = g1(x)v + g2(x)va, H = h1(x)v + h2(x)va, (4.30)

where a is not equal to zero. The ansatz (4.30) is separation ansatz. In the equations (4.28)
and (4.29), the linear terms which are G,Gx, H/x and Hx will contain the same powers va,
v that appears both in G and H. Besides in homogeneous equation (4.28), due to identities
the nonlinear terms HGv − GHv will only produce the power va. Therefore the equation
can be satisfied by having coefficients of va and v separately vanish. Similarly in the non
homogeneous equation (4.29), the nonlinear term HHv will induce the powers v2a−1, va and
v. As we know that q 6= 0 and a 6= 0, so the coefficients va and v of equation(4.29) be
satisfied by separately vanish them in homogeneous term kvq+1 will be balance if we have
the term containing v2a−1. Therefore by comparing the powers of v, va and v2a−1, we obtain
following over determined system of five algebraic differential equations in the course of

g1(x), g2(x), h1(x) and h2(x). By using the relation a = (1 +
q

2
), we can solve the system by
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careful analysis.

g′1 = 0,

h1g2a− h2g1a− h1g2 + h2g1 + g′2 = 0,

h22a− k = 0,

h1h2a+ h2h1 + h′2 + h2m− g2 = 0,

h21 + h′1 + g1 + p−mh1 = 0. (4.31)

These over determined equations are reduced form of equation (4.28) and (4.29).
If we have q 6= 0, then the separation ansatz (4.30) gives us to the solutions of translation
group resolving system (4.28) and (4.29).

Case 1:
If we have m = 0, q = 2, p = 0 and k > 0, then the system (4.31) gets the form

g′1 = 0, (4.32)

h1g2 − h2g1 + g′2 = 0, (4.33)

2h22 − k = 0, (4.34)

3h1h2 + h′2 − g2 = 0, (4.35)

h21 + h′1 + g1 = 0, (4.36)

from equation (4.34), we obtain h2 = ±
√
k

2
. Put the value of h2 in remaining equations

and by applying simple integration techniques, we obtain

g1 = 0, h1 =
1

x+ c1
, g2 = ±

√
k

2

(
1

x+ c1

)
, (4.37)

Now substitute the values of g1(x), g2(x), h1(x) and h2(x) in (4.30), as a result we
obtain the following solution of time translation group resolving equations

G(x, v) = ±
√
k

2

(
1

x+ c

)
v2, (4.38)

H(x, v) =
v

x+ c
±
√
k

2
v2, (4.39)

where c is arbitrary constant. We get two parametric ODEs by replacing G, H in
equations (4.38) and (4.39)

ut = ±
√
k

2

(
1

r + c

)
u2, (4.40)

ur =
u

r + c
±
√
k

2
u2, (4.41)

55



the solution of the parametric ODEs give us

u(t, x) =

(
±

(√
k

2

(
r + c

2
− (t+ c1)

(r + c)

)))−1
, (4.42)

which is exact solution of the reaction diffusion equation (4.1).

Case 2:
If we have m = 0, q = 2, p > 0 and k > 0, then we have the following system of ODEs

g′1 = 0, (4.43)

h1g2 − h2g1 + g′2 = 0, (4.44)

2h22 − k = 0, (4.45)

3h1h2 + h′2 − g2 = 0, (4.46)

h21 + h′1 + g1 + p = 0, (4.47)

the equation (4.45) easily gives us value of h2 = ±
√
k

2
, by substituting the value of h2

in remaining equations, we obtain over determine equations and by simple applying
integration techniques, we can get

g1(x) = −(3/2)p, h1 =

√
p

2
tanh

(√
p

2
(x+ c)

)
, g2 = ±3

2

√
pk tanh

(√
p

2
(x+ c)

)
,

(4.48)

next by substitute values of h1, h2, g1 and g2 in relation (4.30), we obtain

G(x, v) = −3

2
pv ± 3

2

√
pk tanh

(√
p

2
(x+ c)

)
v2,

H(x, v) =

√
p

2
tanh

(√
p

2
(x+ c)

)
v ±

√
k

2
v2, (4.49)

which are solutions of time translation group resolving equations. In order to get
parametric ODEs we replace G(x, v), H(x, v) in above equations by the differential
invariants as mention in equation (4.22), therefore we obtain

ut = −3

2
pu± 3

2

√
pk tanh

(√
p

2
(r + c)

)
u2, (4.50)

ur =

√
p

2
tanh

(√
p

2
(x+ c)

)
u±

√
k

2
u2, (4.51)

thus we obtain the following exact solution of reaction diffusion equation by solving
above parametric equations

u(t, r) =

sinh(

√
p

2
(r + c1))

(

√
p

k
)(cosh(

√
p

2
(r + c1)))± exp (

−3p(t+ c1)

2
)

, (4.52)

where c, c1 are arbitrary constant.
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4.3 Group Foliation of Manakov system

In this section we construct the group foliation approach to reduce Manakov system

ρxx − ρφt − ρφ2
x + 2(σ1ρ

2 + σ2τ
2)ρ = 0,

τxx − τψt − τψ2
x + 2(σ1ρ

2 + σ2τ
2)τ = 0,

ρt + 2ρxφx + ρφxx = 0,

τt + 2τxψx + τψxx = 0. (4.53)

This reduced system inherits eight Lie point symmetries which are given in (3.47). We use
time translation symmetry

Xtrans = ∂t, (4.54)

to construct group resolving system. For this purpose, we shall find the functionally inde-
pendent invariants of the corresponding infinitesimal generator, which are obtained by using
the condition

Xtransϕ = 0,

where ϕ is function of (t, x, ρ, τ, φ, ψ), which leads us to first order PDE

ϕt = 0, (4.55)

by solving above PDE, we obtain the invariants of the corresponding infinitesimal generator

x, ρ, τ, φ, ψ. (4.56)

For the construction of group resolving system, we also need differential invariants. So we
use the following condition

Pr(1)XtransΘ = 0, (4.57)

here Θ(t, x, ρ, τ, φ, ψ, ρt, ρx, τt, τx, φt, φx, ψt, ψx). As our infinitesimal generator is in its normal
form, so the first order prolongation Pr(1)Xtrans = Xtrans, therefore we obtain the following
differential invariants

ρt, ρx, τt, τx, (4.58)

φt, φx, ψt, ψx, (4.59)

by using (4.56), we obtain the following group foliation variables

r = x, s = ρ, (4.60)

where r and s are mutually independent, also they are our new independent variables. The
group foliation variables r and s satisfy the condition

Xtransr = Xtranss = 0. (4.61)
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We will give the differential invariants new name G,H, J,K, L,M, P and Q, also these vari-
ables are our new dependent variables for group resolving equations

G = ρt, H = ρx, J = τt, K = τx, (4.62)

L = φt, M = φx, P = ψt, Q = ψx, (4.63)

these variables satisfy the condition

Pr(1)XtransG = Pr(1)XtransH = Pr(1)XtransJ = Pr(1)XtransK = 0,

Pr(1)XtransL = Pr(1)XtransM = Pr(1)XtransP = Pr(1)XtransQ = 0, (4.64)

where G,H, J,K, L,M, P and Q are related by equality of mixed derivatives of t, x, on ρt, ρx,
τt, τx, φt, φx, ψt and ψx, from integrability condition we know that

ρtx = ρxt, τtx = τxt, φtx = φxt, ψtx = ψxt, (4.65)

which gives

DxG = DtH, (4.66)

DxJ = DtK, (4.67)

DxL = DtM, (4.68)

DxP = DtQ, (4.69)

where (ρt, ρx) = (G,H), (τt, τx) = (J,K), (φt, φx) = (L,M) and (ψt, ψx) = (P,Q). Here
Dt, Dx are total derivative w.r.t t, x, which are given as

Dt = ∂t + ρt∂ρ + τt∂τ + φt∂φ + ψt∂ψ, (4.70)

Dx = ∂x + ρx∂ρ + τt∂τ + φt∂φ + ψt∂ψ. (4.71)

As we discuss in Section (1.8) that in group foliation, we will enlarge the space of independent
and dependent variables. So in the sense

(t, x) → (r, s), (4.72)

(ρ, τ) → (G,H, J,K), (4.73)

(φ, ψ) → (L,M,P,Q), (4.74)

our space of independent and dependent variables are enlarged. Initially we have two inde-
pendent and four dependent variables, after using group foliation variables we got two inde-
pendent and eight dependent variables. Now we put G(r, s), H(r, s), J(r, s), K(r, s), L(r, s),
M(r, s), P (r, s) and Q(r, s) into equations (4.66), (4.67), (4.68), (4.69) and use the relation
(4.60), combined by chain rule, we get four first order PDEs.

Gr +HGs −GHs = 0,

Jr +HJs −GKs = 0,

Lr +HLs −GMs = 0,

Pr +HPs −GQs = 0. (4.75)
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Furthermore the new variables r, s, G,H, J,K, L,M, P and Q are related through the reduced
system (4.53) by

Dr(H)− sL− sM2 + 2s3 + 2sτ 2 = 0,

Dr(K)− τP − τQ2 + 2s2τ − 2τ 3 = 0,

G+ 2HM + sDr(M) = 0,

L+ 2KQ+ τDr(Q) = 0, (4.76)

by applying total derivative, we arrive at a system of first order PDEs

Gr +HGs −GHs = 0, (4.77)

Jr +HJs −GKs = 0, (4.78)

Lr +HLs −GMs = 0, (4.79)

Pr +HPs −GQs = 0, (4.80)

Hr +HHs − sL− sM2 + 2s3 + 2sτ 2 = 0, (4.81)

Kr +HKs − τP − τQ2 + 2s2τ − 2τ 3 = 0, (4.82)

G+ 2HM + sMr + sHMs = 0, (4.83)

L+ 2KQ+ τQr + τHQs = 0. (4.84)

These differential equations are called time translation group resolving equation, with r, s are
independent variables and G,H, J,K, L,M, P,Q are the dependent variables. In equations
(4.81), (4.82), we see that the problematic nonlinear terms of the reduced system (4.53)
becomes linear, also the second order system is transformed into first order. The time
translation group resolving system inherits two symmetries

X1 = ∂r, X2 = −2Q∂P + ∂Q. (4.85)

The solution of Manakov system consist of amplitudes and phases of waves which are
obtained in the form ρ, τ and φ, ψ respectively, so there arises different cases. If we take
amplitudes of the wave as constant and check the behavior of the phases. So for this purpose
we treat τ as constant, therefore J = 0, K = 0. Then the equations (4.77)- (4.84), becomes

Gr +HGs −GHs = 0, (4.86)

Lr +HLs −GMs = 0, (4.87)

Pr +HPs −GQs = 0, (4.88)

Hr +HHs − sL− sM2 + 2s3 + 2sc21 = 0, (4.89)

− c1P − c1Q2 + 2s2c1 − 2c31 = 0, (4.90)

G+ 2HM + sMr + sHMs = 0, (4.91)

L+Qr + c1HQs = 0. (4.92)

Equation (4.90), is an algebraic equation from which we obtain P , where it is some function
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of Q. Now substitute P = Q2 − 2s2 + 2c21 in equations (4.86) - (4.92), we obtain

Gr +HGs −GHs = 0, (4.93)

Lr +HLs −GMs = 0, (4.94)

4sH − 2QQsH − 2QQr −GQs = 0, (4.95)

Hr +HHs − sL− sM2 + 2s3 + 2sc21 = 0, (4.96)

G+ 2HM + sMr + sHMs = 0, (4.97)

L+Qr + c1HQs = 0. (4.98)

Case 1:

Now our next task is to find out the exact solution of the above system of nonlinear
PDEs, it is suitable to use a simple separation of variable ansatz. The linear terms
in equations (4.93), (4.94), (4.95), (4.96), (4.91),and (4.92) contain derivative w.r.t r
only, i.e., Gr, Lr, Hr,Mr, Qr, Q,G and L. The nonlinear term HGs −GHs in equation
(4.86) shows that G and H have same behavior. So by investigating these properties,
we suggest that the group resolving system have the solution of the form

G = sg1(r) + g2(r), H = sh1(r) + h2(r), (4.99)

L = sl1(r) + l2(r), M = sm1(r) +m2(r), (4.100)

Q = sq1(r) + q2(r). (4.101)

The terms Gr, Lr, Hr,Mr, and Qr contain s2, s, where the terms Q,G,L and M contain
s3, s2, s. where the nonlinear term HGs − GHs contain s2, s, s0, the nonlinear terms
in equations (4.94), (4.95) and (4.96) also contains s2, s, s0. Therefore by comparing
the powers of s3, s2, s, s0, we obtain over determined system of algebraic differential
equations

h1g2 − h2g1 − g′2 = 0, (4.102)

g′1 = 0, (4.103)

m1g2 − l′2 − l1h2 = 0, (4.104)

l′1 + l1h1 −m1g1 = 0, (4.105)

2q1q2h2 + q1g2 + 2q2q
′
2 = 0, (4.106)

2q2q
′
1 + 2q21h2 + 2q1q2h1 − 4h2 + 2q1q

′
2 + q1g1 = 0, (4.107)

2q21h1 − 4h1 + 2q1q
′
1 = 0, (4.108)

h1h2 + h′2 = 0, (4.109)

h21 + h′1 − l2 + 2c21 −m2
2 = 0, (4.110)

m2
1 − 2 = 0, (4.111)

l1 + 2m2m1 = 0, (4.112)

2m2h2 + g2 = 0, (4.113)
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m′2 + 2m2h1 + g1 + 3m1h2 = 0, (4.114)

3m1h1 +m′1 = 0, (4.115)

2q2 + q1h2 + q′2 = 0, (4.116)

2q1 + q′1 + q1h1 = 0. (4.117)

By solving these equations we get

g1(r) = 0, g2(r) = 0,

h1(r) = 0, h2(r) = 0,

l1(r) = −2c2c3, l2(r) = 2c21 − c22,
m1(r) = c3, m2(r) = c2,

q1(r) = 0, q2(r) = 0. (4.118)

Now when we put these values in equations (4.99), (4.100) and (4.101) we obtained

G = 0, H = 0,

L = s(−2c2c3) + 2c21 − c22, M = sc3 + c2,

Q = 0, P = −2c21 + 2s2. (4.119)

Where G,H,L,M,P, and Q are the solution of time translation group resolving system.
Furthermore, when we substitute the values ofG,H,L,M,Q in equations (4.62), (4.63),
obtain six parametric ODEs

ρt = 0, ρx = 0, (4.120)

φt = ρ(−2c2c3) + 2c21 − c22, φx = ρc3 + c2, (4.121)

ψt = −2c21 + 2ρ2, ψx = 0, (4.122)

These parametric ODEs are easily solved by simple integration techniques, by solving
the parametric ODEs, we obtain

ρ = c4, φ = −tc22 + (−2c3C4t+ x)c2 + 2tc21 + c3c4x+ c6, (4.123)

τ = c1, ψ = −2c21x+ 2c24x+ c5, (4.124)

where the values of ρ, τ, φ and ψ satisfies the reduced system (4.53). The exact solution
of Manakov system is given as

u(t, x) = c4e
ι̇(−tc22+(−2c3c4t+x)c2+2tc21+c3c4x+c6),

v(t, x) = c1e
ι̇(−2c21x+2c24x+c5). (4.125)

Case 2:

If we look at the system of nonlinear differential equations (4.93) - (4.97), the linear
terms in equations (4.93), (4.94), (4.95), (4.96), (4.91) and (4.92) contain derivative
w.r.t r only, i.e., Gr, Lr, Hr,Mr, Qr, Q,G and L. The nonlinear term HGs − GHs in
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equation (4.86) shows that G and H have same behavior. So by investigating these
properties, it is suitable to use a simple separation of variable ansatz

G = rg1(s) + g2(s), H = rh1(s) + h2(s), (4.126)

L = rl1(s) + l2(s), M = rm1(s) +m2(s), (4.127)

Q = rq1(s) + q2(s). (4.128)

The linear terms Gr, Lr, Hr,Mr, Qr, Q,G and L contain r2, r, r0, where the nonlinear
term 2QQsH in equation (4.95) contains r3, the other nonlinear terms in equations
(4.94), (4.95) and (4.96) also contains r2, r, r0. Therefore by comparing the powers of
r3, r2, r, r0, we obtain over determined system of algebraic differential equations

g1 + h2g
′
2 − g2h′2 = 0, (4.129)

g2h
′
1 − h2g′1 + g1h

′
2 − h1g′2 = 0, (4.130)

h1g
′
1 − g1h′1 = 0, (4.131)

l1 + l′2h2 −m′2g2 = 0, (4.132)

m′2g1 +m′1g2 − l′1h2 − l′1h1 = 0, (4.133)

m′1g1 − l′1h1 = 0, (4.134)

2q1q2 + q′2g2 − 4h2s+ 2q2q
′
2h2 = 0, (4.135)

4h1s− q′2g1 − 2q1q
′
2h2 − 2q2q

′
2h1 − 2q21 − 2q2q

′
1h2 − q′1g2 = 0, (4.136)

2q1q
′
1h1 = 0, (4.137)

2q2q
′
1h1 + q′1g1 + 2q1q

′
1h2 + 2q1q

′
2h1 = 0, (4.138)

2s3 − l2s+ h2h
′
2 −m2

2s+ 2c21s+ h1 = 0, (4.139)

h1h
′
2 − l1s− 2m1m2s+ h2h

′
1 = 0, (4.140)

m2
1s− h1h′1 = 0, (4.141)

2m2h2 +m′2h2s+ sm1 + g2 = 0, (4.142)

2m2h1 + 2m1h2 + g1 +m′2h1s+m′1h2s = 0, (4.143)

sm′1h1 + 2m1h1 = 0, (4.144)

q′2h2 + q1 + 2q2 = 0, (4.145)

2q1 + q′1h2 + q′2h1 = 0, (4.146)

q′1h1 = 0. (4.147)

by solving above ODEs, we get the following

g1(s) = 0, g2(s) = 0,

h1(s) = 0, h2(s) = 0,

l1(s) = 0, l2(s) = 2c21 + s2,

m1(s) = 0, m2(s) = s,

q1(s) = 0, q2(s) = 0. (4.148)
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Now when we put these values in equations (4.126), (4.127) and (4.128) we obtained

G = 0, H = 0, L = 2c21 + s2, (4.149)

M = s, P = −2c21 + 2s2, Q = 0. (4.150)

Now substitute the values of G,H,L,M,Q in equations (4.62), (4.63), we obtain six
parametric ODEs

ρt = 0, ρx = 0, (4.151)

φt = 2c21 + ρ2, φx = ρ, (4.152)

ψt = −2c21 + 2ρ2, ψx = 0, (4.153)

on solving these parametric ODEs, we will obtain the solution of reduced system (4.53)

ρ = c2, φ(t, s) = (2c21 + c22)t+ c2x+ c4, (4.154)

τ = c1, ψ(t, s) = −2c21t+ 2c22t+ c33, (4.155)

where φ and ψ are the phase of two different waves. The exact solution of Manakov
system (3.1) is

u(t, x) = c2e
ι̇((2c21+c

2
2)t+c2x+c4),

v(t, x) = c1e
ι̇(−2c21t+2c22t+c3). (4.156)

Case 3:

Solving the system (4.93)-(4.98), we obtain

ρt = c2ρ
3, ρx = 0, (4.157)

τt = 0, τx = 0, (4.158)

φt = 2c27 − ρ4(c2x− c3)2 + 2ρ2, φx = −ρ2(c2x− c3), (4.159)

ψt = −c21 − 2c2 + 2ρ2, ψx = c1, (4.160)

where by integrating (4.158), we get τ(t, x) = c7. Here c7 is an arbitrary constant, we
get the following results by solving remaining equations

ρ =
1√

(−2c2t+ c4)
, (4.161)

φ =
(−c2x2 + 2c3x)

(−4c2t+ 2c4) + 2c27t
− (1/2)c23

(c2(−2c2t+ c4))
− ln (2c2t− c4)

c2
+ c6, (4.162)

ψ = c1x− 2c27t− c21t−
ln (2c2t− c4)

c2
+ c5. (4.163)

Therefore we found an other exact solution of Manakov system

u(t, x) =
1√

(−2c2t+ c4)
e
(ι̇(

(−c2x2 + 2c3x)

(−4c2t+ 2c4) + 2c27t
−

(1/2)c23
(c2(−2c2t+ c4))

−
ln (2c2t− c4)

c2
+c6))

,

v(t, x) = c7e
(ι̇(c1x−2c27t−c21t−

ln (2c2t− c4)
c2

+c5))

. (4.164)

63



Note that in the above solution the first wave has time dependent amplitude while other
wave has fixed amplitude. We have applied group foliation approach to successfully
obtain exact solution of Manakov system in a few cases described above.
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Chapter 5

Conclusion

Lie group analysis is one of the feasible way of providing a possibility for various classes of
exact solutions or exact solutions to be specified. The classical method of finding the exact
solution of differential equations is symmetry reduction. The symmetry reduction gives us
reduced equations of a given PDEs which may be intractable to solve. While the exact
solutions which are obtained from symmetry reduction has limited class, a large class of
solutions are lost when the space of independent and dependent variables are reduced.

Group foliation is a power full technique to unveil the solution of nonlinear PDEs. It
involves algorithmic steps of construction of group resolving equation by means of using group
foliation variables, solving the parametric ODEs. The main aim of the group foliation is to
find all invariant and noninvariant solutions of PDEs. It is a better approach as compared
to the symmetry reductions because in it we enlarge the space (independent and dependent
variables), therefore we get more information.

65



Bibliography

[1] P. J. Olver, Applications of Lie groups to differential equations, Springer, New York
(2000).

[2] G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer-Verlag,
New York (1989).

[3] G. W. Bluman and S. C. Anco, Symmetry and integration methods for differential equa-
tions, Springer (2008).

[4] G. W. Bluman, A. F. Cheviakov and S. C. Anco, Applications of Symmetry Methods to
Partial Differential Equations (2010).
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