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Abstract

The most important things which are studied in fluid dynamics are fluid’s velocity,

temperature, pressure and momentum. The current systemic study is associated

with the study of viscous flow in ciliated tube with permeable walls and entropy

generation analysis. Initially, the mathematical model of copper nanofluids with

Pure water as the base fluid, has been formulated in the form of non-linear partial

differential equations. These are then transformed to a system of ordinary differen-

tial equations using the dimensionless variables and the conditions of low Reynolds

number and long wavelength approximation. Exact solutions have been evaluated

for the transformed ODEs for temperature, velocity and pressure gradient. The

graphs are also plotted for better understanding and analysis of the solution.
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Chapter 1

Introduction

In past decades, nano�uids have been receiving much attention in science, engineering, medical

(targeted drug delivery) and industry since its discovery owing to its enhanced thermal conduc-

tivity and heat transfer characteristics which makes them a promising heat exchangers, cooling

devices and solar collectors in heat transfer application. Nano�uids are fabricated by dispersing

of nanoparticles (Al2O3, CuO, TiO2 and CNT etc) in base �uids, such as water, ethylene glycol

and oil etc. Some investigators [1-3] are considering carbon nanotubes (CNT) in synthesizing

the nano�uids due to its high thermal conductivity in comparison to other nanoparticles. CNTs

are basically being used in the form of single-wall CNT, double-wall CNT and multi-wall CNT.

Xie and Chen [4] have reviewed on the preparation techniques, the experimental and theoreti-

cal studies on the heat transfer characteristics of CNT nano�uids have concluded that thermal

conductivity of CNTs, interfacial thermal resistance between the CNT and the matrix, and dis-

persion status of the CNTs in the base �uid have signi�cant e¤ects on the thermal transport in

the CNT nano�uids due to the complex morphologies and surface chemistry of the suspended

CNTs. Another review on CNT nano�uids has been presented by Murshed and Castro [5]

and concluded that nano�uids containing multi-wall carbon nanotubes (MWCNT) are found to

exhibit higher conductivity and heat capacity compared to base ionic liquids. Recently, much

attention has been focused on the study of CNT in nano�uids: Halelfadl et al. [6], Saida et al.

[7], Hordy et al. [8], Yadav et al.[9], Walvekara et al. [10] and Xing et al. [11] have discussed the

e¢ ciency, stability and thermos-physical property of CNTs. Very recently akbar and Butt[12]

presented "CNT suspended nano�uid analysis in a �exible with ciliated walls".
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In past decades, much attention was focused on natural propulsion mechanisms (Lardner and

Shack [13], Sleigh [14 & 15] and Blake [16 &17]) by the expulsion of mucus from the lungs due

to hair-like structures, called cilia, that cover the inner layer of the mammalian trachea. They

propel a relatively larger volume of �uid during the e¤ective stroke when compared with the

recovery stroke and therefore create a net �uid transport in the direction of the e¤ective stroke.

In same fashion, Khaderi et al. [18] studied the breaking of symmetry in micro�uidic propulsion

driven by arti�cial cilia. Khaderi et al. [19] further reported for micro�uidic propulsion by the

metachronal beating of magnetic arti�cial cilia, a numerical analysis and Khaderi and Onck

[20] extended their earlier work for the �uid structure interaction of three-dimensional magnetic

arti�cial cilia.

The �rst law of thermodynamics states that the energy is conserved however the second law

states that there is entropy due to irreversibility of natural process [21]. Since the quality of

energy (exergy) decreases due to entropy. So that to maintain the energy quality, it is required

to control the entropy generation during the convective �uid �ow. A study of entropy generation

in convective heat transfer for di¤erent �ow con�gurations: pipe �ow, boundary layer over �at

plate, single cylinder in cross-�ow, �ow in the entrance region of a �at rectangular duct has

been studied by Bejan [22] and derived a non-dimensional number (Bejan Number) which is the

ratio of the entropy generation due to the heat transfer to the total entropy generation. Further

Bejan [23] extended his study for counter �ow heat exchangers for gas-gas applications. Bejan

[24] again introduced the new thermodynamics of �nite-size devices and �nite-time processes

to minimize the entropy generation. Baytas [25] incorporated the Darcy�s law in his study and

discussed the entropy generation for natural convection in an inclined porous cavity. In addition

to above studies, Tasmin et al. [26] generalized for hydromagnetic e¤ect for entropy generation

in porus channel. Mahmud and Fraser [27] extended for entropy generation in a square porous

cavity with magnetohydordymics free convection. Earlier works in this context involved the

study of natural convection heat transfer mechanism with porosity and magnetohydrodynamics

e¤ects. But in past few decades the application of nano�uids in convective heat transfer is more

attractive for researchers to study the entropy generation. Further analysis related to the topic

can be seen through Refs. [28-36].

In all above investigations, there is no study of combined e¤ects of CNT-nano�uids, entropy
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generation and cilia motion, which is an essential application in manufacturing the micro�uidic

devices and arti�cial cilia. In continuation of above studies, a mathematical model to study

the entropy generation, heat transfer and metachronal wave propulsion due to beating cilia is

investigated in this thesis. So we organized thesis as follows: In chapter 2 presented the basic

de�nitions. In chapter 3 CNT suspended nano�uid analysis in a �exible tube with ciliated

walls is presented. Chapter 4 presents a study of entropy generation and heat transfer of

CNT-nano�uids in �ow driven by beating cilia through porous medium.
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Chapter 2

Preliminaries

2.1 Fluid

Fluid is a substance which deforms continuously under the action of shearing forces, no matter

how small they may be. Basically �uids are divided into two groups.

(1) Liquids (2) Gases

2.2 Fluid Mechanics

The study of the behaviors of �uids such as liquids and gases at rest or in motion is called �uid

mechanics. It is divided into following sub-categories.

(1) Fluid statics (2) Fluid kinematics (3) Fluid dynamics

2.2.1 Fluid Statics

The study of �uids at rest is called �uid statics.

2.2.2 Fluid Kinematics

The study of �uids in motion without considering any kind of force which causes the motion is

called Fluid kinematics.
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2.2.3 Fluid Dynamics

The study of �uids in motion considering forces which are acting on the �uids is called �uid

dynamics or �uid kinetics. In this sense we can de�ne �uid as the substance which deforms

continuously under the action of shearing forces.

2.3 Viscosity (Dynamic Viscosity)

It is physical property of the �uid associated with shearing deformation of �uid particles under

the action of applied forces. In short, it can be de�ned as the internal resistance to the �ow

of �uid. It can also be de�ned as the ratio between shear stress � and velocity gradient or

deformation rate du=dy . Mathematically written as

� =
�
du
dy

: (2.1)

It�s S.I unit is Pascal-second (pa.s) or kg/m.s.

2.4 Types of Fluids

Following are the main types of �uids. (1) Ideal �uids (2) Real �uids (3) Incompressible �uids

(4) Compressible �uids

2.4.1 Ideal Fluids

Those �uids which have zero viscosity (�) are called ideal �uids, i.e

� = 0:

2.4.2 Real Fluids

Those �uids which have non-zero viscosity (�) are called real �uids, i.e

� 6= 0:
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For example: Honey, ketchup etc.

2.4.3 Incompressible Fluids

Incompressible �uid is a �uid that does not change the volume of the �uid due to external

pressure is called incompressible �uids. For example, water, oil etc.

2.4.4 Compressible Fluids

If the volume of �uid changes due to external pressure is called compressible �uids. For example,

the air �owing up to 120 mile/hour.

2.5 Newton�s Law of Viscosity

The relation between shear stress and shear rate is de�ned as Newton�s law of viscosity, shear

stress is directly proportional to shear rate. Mathematically

� = �
du

dy
; (2.2)

here � is the shear stress, � is constant of proportionality known as dynamic viscosity and

du=dy is the deformation rate.

2.5.1 Newtonian Fluids

Those �uids which obey the Newton�s law of viscosity are called Newtonian �uids.

Note: Water and most gases are Newtonian.

2.5.2 Non-Newtonian Fluids

Those �uids which do not obey the Newton�s law of viscosity are called non-Newtonian �uids.

In Newtonian �uids, the shear stress � is linearly proportional to shear rate du=dy, while

in non-Newtonian �uids the shear stress � is non-linearly proportional to shear rate du=dy.

Mathematically

� = K

�
du

dy

�n
: (2.3)
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Here "K" is consistency index and "n" is �ow behaviors index. If n=1 and K=� then it

represents Newtonian �uids.

The general mathematical form of non-Newtonian �uid is

� = �
du

dy
; (2.4)

here

� = �

�
du

dy

�n�1
; (2.5)

known as apparent viscosity. Here in non-Newtonian �uids, the viscosity (apparent) is depen-

dent on shear stress, but in Newtonian �uids the dynamic viscosity (�) is independent of shear

stress and is constant.

2.6 Time Independent Fluids

2.6.1 Plastics

Plastics for which shear stress much reach to a minimum value before the �ow commences,

thereafter, shear stress increases with the rate of shear strain. For example: Sewage sludge,

Toothpaste etc.

2.6.2 Pseudoplastics (Shear Thinning)

Those �uids for which the apparent viscosity (�) decreases with increasing deformation rate.

Examples are cement, blood etc.

Note: For pseudoplastics n < 1 in Eq. 2.5.

2.6.3 Dilatent (Shear Thickening)

Those substance in which apparent viscosity (�) increases with decreasing deformation rate.

Examples are butter, quicksand etc.

Note: For dilatent n > 1 in Eq. 2.5.
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2.7 Time Dependent Fluids

2.7.1 Thixotropic

Fluids for which apparent viscosity (�) decreases with time under constant applied shear stress

are called thixotropic �uids. For example, Paints.

2.7.2 Rheopectic

Fluids for which apparent viscosity (�) increases with time under constant applied shear stress

are called rheopectic �uids. Examples are printer ink, gypsum paste, lubricants etc.

2.7.3 Density

The density of a �uid is de�ned as its mass per unit volume. It is denoted by the Greek symbol,

�. If the density is constant (most liquids), the �ow is incompressible. If the density varies

signi�cantly (e.g some gas �ows), the �ow is compressible.

2.8 Methods of Description (Motion of Fluid Particle)

A �uid consists of countless particles, whose relative positions are never �xed. Whenever a �uid

is in motion, these particles move along certain lines, depending upon the type of �uid as well

as shape of the path through which the �uid particles move. For mathematical analysis of the

�uid motion, following two methods are commonly used:

1. Langrangian method. 2. Eulerian method.

2.8.1 Langrangian Method

This method deals with the study of �ow pattern of the individual particles. In this method,

the particle traced the path under consideration with the passage of time.

2.8.2 Eulerian Method

This method deals with the study of �ow pattern of all the particles at �xed section. The path

traced by all the particles at �xed section and time are studied by this method.
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2.9 Types of Flow

2.9.1 Uniform Flow

The �ow in which the velocity of �uid particles at all sections of the channel is same is called

uniform �ow. Flow through a pipe having has same diameter at both ends is the example of

uniform �ow.

2.9.2 Non-uniform Flow

The �ow in which the velocity of �uid particles at all sections of the channel is not same is

called non-uniform �ow. �ow through a pipe which has di¤erent diameters at the end points is

an example of non-uniform �ow.

2.9.3 Laminar Flow

A �ow in which each �uid particle has de�nite path and path of individual particles do not

cross each other.

2.9.4 Turbulent Flow

A �ow in which each �uid particles moves in random motion.

2.9.5 Steady Flow (Time Independent Flow)

The �ow in which the velocity of �uid particles at every point does not change with time is

called steady �ow.

2.9.6 Unsteady Flow (Time Dependent Flow)

The �ow in which the velocity of �uid particles at any point changes with time is called unsteady

�ow.

2.9.7 Incompressible Flow

The �ow in which the density remains constant is called incompressible �ow.

i.e � =constant.
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2.9.8 Compressible Flow

The �ow in which the density is not constant is called compressible �ow.

i.e � 6=constant.

2.9.9 Irrotational Flow

Irrotational �ow is that type of �ow in which the �uid particles do not rotate about their own

axis. Mathematically, it is de�ned as

r�V = 0: (2.6)

2.9.10 Rotational Flow

Rotational �ow is a �ow in which the �uid particles also rotate about their own axis, while

�owing. Mathematically, it can be de�ned as

r�V 6= 0: (2.7)

2.10 Flow Patterns

We de�ne �ow patterns such as, streamlines, pathlines and streaklines in this section.

2.10.1 Streamline

Streamline is a curve that is instantaneously tangent to the velocity vector. In unsteady �ow,

the streamlines pattern change with time, while in steady �ow, the streamlines are �xed in

space.

2.10.2 Stream Function ( )

It describes the form of �ow pattern. It is a mathematical expression that describes the �ow �eld

in terms of either mass �ow rate for compressible �uids, or volume �ow rate for incompressible
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�uids. For steady-state two dimensional �ow �eld, we may write

 = f (x; y) (2.8)

here  is a stream function and x; y are coordinates of the points.

For incompressible �ow, the continuity equation is expressed as

r:V = 0;

using the velocity �eld

V = [u (x; y) ; v (x; y) ; 0]

we have
@u

@x
+
@v

@y
= 0:

This equation is satis�ed identically if a function ( ) is de�ned as

u =
@ 

@y
; v = �@ 

@x
:

2.11 One-dimensional Flow

One dimensional �ow is that type of �ow which depends only on one space variable.

For example: (1)
�!
V = ax2i+ bxj:

(2) The steady �ow between two concentric rotating cylinders depend only on r-component

of velocity.

2.12 Two-dimensional Flow

That type of �ow which depends on any two space variables.

For example:
�!
V = axi� byj: or �!V = (ax+ t)i� by2j:
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2.13 Volume Flow Rate

The �ow rate or discharge �ow rate of a �uid is the volume of �uid which passes through a

surface per unit time. Symbolically, it is represented by Q. It can be expressed in either terms

of cross sectional area and velocity, or volume and time. Mathematically can be written as

Q =
V

t
; (2.9)

or

Q = �!v � a: (2.10)

Here V is the Volume of �uid, t is time, �!v is the velocity of the �uid and a is the area of

the cross section of the space the �uid is moving through.

2.14 Continuity Equation

Continuity equation is constructed by Law of conservation of mass. The well known continuity

equation is
@�

@t
+r:

�
�
�!
V
�
= 0: (2.11)

For incompressible �uid it becomes

r:�!V = 0:

2.15 Momentum Equation

The momentum equation is a statement of Newton�s Second Law and relates the sum of the

forces acting on an element of �uid to its acceleration or rate of change of momentum. Mathe-

matically it can be expressed as follows

�
D
�!
V

Dt
= r:S + �b; (2.12)

here D
Dt is material derivative, S is stress tensor and b is body forces.
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2.16 Energy Equation

The well known energy equation is

�cp
DT

Dt
= Kr2T + tr(�L): (2.13)

Here cp is the speci�c heat, K is thermal conductivity, T is the temperature, � is tensor and

L is disssipation term.

2.17 Nano�uids

Nano�uids are potential heat transfer �uids with enhanced thermophysical properties and heat

transfer performance which can be applied in many devices for better performances (i.e. energy,

heat transfer and other performances). Nano�uids are the class of �uids which consist of base

�uids along with suspended nanoparticles having nanometer size and having diameter less than

100nm:

2.18 Nanoparticles

Nanoparticles are used in nano�uids. They actually made up of metals (Cu; Al; Ag), oxides

ceramics(Al2O3; CuO), nitride ceramics (AlN; SiN), carbide ceramics(SiC; tiC) and carbon

nanotubes.

2.19 Base Fluids

Common base �uids are water, oil and ethylene glycol.

2.20 Carbon Nanotubes

Carbon nanotubes (CNTs) are hollow cylindrical nanostructures with the walls formed by

thick sheets of carbon. They have a very small diameter-to-length ratio. Aside from their

extraordinary thermal conductivity, electrical and mechanical properties, carbon nanotubes
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�nd applications as additives to various structural materials including car parts. Nanotubes

are classi�ed as single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs) :

Single-walled nanotubes have a diameter close to 1 nanometer, and a tube length that can

be millions times longer. The structure of a (SWNT ) may be imagined by wrapping a one-

atom-thick layer of graphite into seamless cylinder. Electrical conductivity of (SWNTs) can

be show metallic or semiconducting behavior. A useful application of (SWNTs) is in the

development of the �rst intermolecular �eld-e¤ect transistors. The multi-walled nanotubes are

multiple concentric nanotubes precisely nested within one another and their individual shells

described as (SWNTs).

2.21 Cilia

Cilia are hair-like structures that protrude from the surfaces of certain organisms and deform in a

wavelike fashion to transport �uids. They are present in almost all groups of the animal kingdom

because their motility plays a crucial role in certain physiological processes such as respiration,

reproduction, locomotion and circulation. These hair-like appendages beat or move in a whip-

like asymmetric manner consisting of an e¤ective stroke and recovery stroke. Moreover, when a

group of cilia operate together, they beat with a constant phase-lag with their neighbors. This

leads to the formation of metachronal waves which are known to enhance the �uid �ow due to

cilia.

2.22 Grashof Number

The Grashof number is a dimensionless number, denoted by Gr, which is de�ned as the ratio

of the buoyancy force to the viscous force (�) acting on a �uid. Mathematically

Gr =
Buoyancy force
Viscous force

:
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2.23 Hartmann Number

The Hartmann number is a dimensionless number, denoted by M , which is de�ned as the ratio

of the electromagnetic force to the viscous force (�) acting on a �uid. Mathematically

M =
Electromagnetic force

Viscous force
:

2.24 Reynolds Number

Reynolds number is used to check whether the �ow is laminar or turbulent, denoted by Re. It

is the ratio of inertial force to Viscous force. Mathematically

Re =
�uL

�
; (2.14)

here u is the mean �ow velocity of �uid, L is diameter of pipe, � is the density of �uid and �

is the �uid viscosity.

2.25 Prandtl Number

Prandtl number Pr is de�ned as the ratio of momentum di¤usivity to thermal di¤usivity.

Mathematically it can be expressed as

Pr =
�

�
=
cp�

k
; (2.15)

as

� =
�

�
; � =

k

�cp
:

Here � is the thermal di¤usivity, � is the dynamic viscosity, k is the thermal conductivity, cp is

the speci�c heat and � is the density of �uid.
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2.26 Eckert Number

Eckert number Ec is dimensionless number. It is de�ned as

Ec =
u2

cp�T
; (2.16)

here u is the local �ow velocity, cp is the speci�c heat and �T is the di¤erence between wall

temperature and local bulk temperature.

2.27 Brinkman Number

Brinkman number (Br) is dimensionless number related to the ratio of heat produced by viscous

dissipation and heat transported by moleculer conduction. It can also be de�ned as

Br =
�u2

k (Tw � T0)
= Pr :Ec: (2.17)

Here � is the dynamic viscosity, u is the �ow velocity, k is the thermal conductivity, T0 is the

bulk �uid temperature, Tw is the wall temperature, Pr is the Prandtl number and Ec is the

Eckert number.

2.28 Darcy Number

Darcy number (Da) is dimensionless number de�ned as the ratio of permeability of the medium

to cross-sectional area (commonly the diameter squared) :

Mathematically

Da =
K

d2
; (2.18)

here K is the permeability of the medium and d is diameter.
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Chapter 3

CNT Suspended Nano�uid Analysis

in a Flexible Tube with Ciliated

Walls

3.1 Introduction

This chapter is carried out to analyze the e¤ect of heat transfer in a �exible tube with ciliated

walls and carbon nanotubes. The problem has been formulated in the form of non linear

partial di¤erential equations, which are then reduced to ordinary di¤erential equation form using

the dimensionless variables and the condition of low Reynold�s number and long wavelength

approximation. Exact solutions have been obtained for velocity, temperature, pressure gradient

and graphs for velocity, temperature and pressure gradient have been plotted for better analysis
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of the solution and physical interpretation.

Fig. 3.1: Geometry of the problem

3.2 Formulation of the Problem

Here we consider an axisymmetric vertical tube �lled with an incompressible two dimentional

and two directional carbon nanotubes suspended nano�uid. Length of the tube is L. The inner

surface of the tube is ciliated and the �ow is generated due to collective beating of cilia. We

choose a cylindrical coordinate system ( �R; �Z), where �Z- axis lies along the centerline of the

tube and �R- axis is normal to it. Cilia deform in a wave-like fashion, an in�nite symplectic

metachronal wave train is produced which travels with a velocity c along the wall of the tube.

Keeping in view the geometry of the metachronal wave pattern, it is assumed that the

envelope of cilia tips can be expressed mathematically in the following form [13� 15]

�R = H = f
�
�Z; t
�
= a+ a� cos

�
2�

�

�
�Z � ct

��
; (3.1a)

which can also be taken as the equation for the extensible boundary of the �ow channel. Based
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upon di¤erent patterns of cilia motion observed by Saleigh [14; 15], the cilia tips can be con-

sidered to move in elliptical paths such that the horizontal positions of the cilia tips can be

written as [13� 15]
�Z = g

�
�Z; �Z0; t

�
= a+ a�� sin

�
2�

�

�
�Z � ct

��
; (3.1b)

here a denotes the mean radius of the tube, � is the non-dimensional measure with respect to the

cilia length, � and c are the wavelength and wave speed of the metachronal wave respectively. �Z0

is the reference position of the particle and � is the measure of the eccentricity of the elliptical

motion. If no slip condition is applied, then the initial velocities of the transporting �uid are

just those caused by the cilia tips, which can be given as:

�W0 =
@Z

@�t

����
�Z0

=
@g

@�t
+
@g

@ �Z

@ �Z

@�t
=
@g

@�t
+
@g

@ �Z
�W0: (3.2a)

U0 =
@R

@�t

����
�Z0

=
@f

@�t
+
@f

@ �Z

@ �Z

@�t
=
@f

@�t
+
@f

@ �Z
�W0: (3.2b)

Eqs. (3:1) and (3.2) together imply:

�W0 =
�2�

�

�
��ac cos

�
2�
�

� �
�Z � c�t

��
1� 2�

�

�
��a cos

�
2�
�

� �
�Z � c�t

�� ; (3.3a)

U0 =
2�
�

�
�ac sin

�
2�
�

� �
�Z � c�t

��
1� 2�

�

�
��a cos

�
2�
�

� �
�Z � c�t

�� : (3.3b)

The governing equations for the �ow of an incompressible nano�uid can be written as

1
�R

@
�
�R �U
�

@ �R
+
@ �W

@ �Z
= 0; (3.4)

�nf

�
�U
@ �U

@ �R
+ �W

@ �U

@ �Z

�
= �@

�P

@ �R
+ �nf

@

@ �R

�
2
@ �U

@ �R

�
+ �nf

2
�R

�
@ �U

@ �R
�
�U
�R

�
+�nf

@

@ �Z

��
@ �U

@ �R
+
@ �W

@ �Z

��
; (3.5)

�nf

�
�U
@ �W

@ �R
+ �W

@ �W

@ �Z

�
= �@

�P

@ �Z
+ �nf

@

@ �Z

�
2
@ �W

@ �Z

�
+ �nf

1
�R

@

@ �R

�
�R

�
@ �U

@ �Z
+
@ �W

@ �R

��
��B2o �W + �nfg�

�
T � T0

�
; (3.6)
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�
�cp
�
nf

�
�U
@T

@ �R
+ �W

@T

@ �Z

�
= knf

�
@2T

@ �R2
+
1
�R

@T

@ �R
+
@2T

@ �Z2

�
+Q0: (3.7)

In the wave frame coordinates system
�
�R; �Z

�
; �ow between the two tubes is unsteady. It

becomes steady in a reference frame (�r; �z) moving with the same speed as the wave moves in

the �Z�direction. The transformations between the two frames are:

�r = �R; �z = �Z � c�t; u = U; �w = �W � c; p (z; r; �t) = �P
�
Z;R; �t

�
(3.8)

The �ow Eqs. (3.4) to (3.7) after using the above transformation can be written as follows

1

�r

@ (�r�u)

@�r
+
@ �w

@�z
= 0; (3.9)

�nf

�
�u
@�u

@�r
+ �w

@�u

@�r

�
= �@�p

@�r
+ �nf

@

@�r

�
2
@�u

@�r

�
+ �nf

2

�r

�
@�u

@�r
� �u

�r

�
+�nf

@

@�z

��
@�u

@�r
+
@ �w

@�z

��
; (3.10)

�nf

�
�u
@ �w

@�r
+ �w

@ �w

@�z

�
= �@�p

@�z
+ �nf

@

@�z

�
2
@ �w

@�z

�
+ �nf

1

�r

@

@�r

�
�r

�
@�u

@�z
+
@ �w

@�r

��
��B2o ( �w + c) + �nfg�

�
T � T0

�
; (3.11)

(�cp)nf

�
v
@T

@�r
+ w

@T

@�z

�
= knf

�
@2T

@�r2
+
1

�r

@T

@�r
+
@2T

@�z2

�
+Q0: (3.12)

here �r and �z are the coordinates. �z is taken as the center line of the tube and �r transverse to

it, �u and �w are the velocity components in the �r and �z directions respectively, T is the local

temperature of the �uid, p is pressure, Bo is magnetic �eld. Further, �nf is the e¤ective density,

�nf is the e¤ective dynamic viscosity, (�cp)nf is the heat capacitance, �nf is the e¤ective thermal

di¤usivity, and knf is the e¤ective thermal conductivity of the nano�uid, which are de�ned as
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(see refs. [1]).

�nf = (1� �) �f + ��s; �nf =
�f

(1� �)2:5
; �nf =

knf
(�cp)nf

;

(�cp)nf = (1� �) (�cp)f + � (�cp)s ;

knf = kf

0@(1� �) + 2�kCNT
kCNT�kf log

�
kCNT+kf

2kf

�
(1� �) + 2�kf

kCNT�kf log
�
kCNT+kf

2kf

�
1A ; (3.13)

where � is the solid volume fraction of the Carbon nanotube. We introduce the following

non-dimensional variables:

r =
�r

a
; z =

�z

�
; w =

�w

c
; u =

��u

ac
; p =

a2p

c��f
; � =

a

�
; � =

�
�T � �T0

�
�T0

; t =
c�t

�
;

M2 =
�B20a

2

�f
; Gr =

�nfg�a
2 �T0

c�f
; � =

Q0a
2

kf �T0
: (3.14)

Making use of these variables de�ned above in Eqs. (3.9) to (3.12) and using the assumptions

of low Reynolds number and long wavelength, the non-dimensional governing equations after

dropping the dashes can be written as:

@p

@r
= 0; (3.15)

dp

dz
=

1

(1� ')2:5
1

r

@

@r

�
r
@w

@r

�
�M2 (w + 1) +Gr�; (3.16)

1

r

@

@r

�
r
@�

@r

�
+ �

0@(1� �) + 2�kf
kCNT�kf log

�
kCNT+kf

2kf

�
(1� �) + 2�kCNT

kCNT�kf log
�
kCNT+kf

2kf

�
1A = 0; (3.17)

here M; � and Gr are the Hartmann number, heat absorption parameter and Grashof number

respectively. The non-dimensional boundary conditions on the ciliated walls are given as:

@w

@r
= 0;

@�

@r
= 0 at r = 0; (3.18a)

w =
�2���� cos (2�z)
1� 2���� cos (2�z) � 1; � = 0; at r = h (z) = 1 + � cos (2�z) : (3.18b)

here � is the wave number.
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3.3 Solutions of the Problem

Since Eqs. (3.15) to (3.17) with boundary conditions (3.18a) and (3.18b) are linear with variable

coe¢ cients so their exact solutions for velocity, temperature and pressure gradient can be

evaluated by using Mathematica and can be written as follows:

w (r; z) = 1

4M4(1��)
5
4

8>><>>:
�M2(1� �) 52

�
Gr

kf
knf

�
�
r2 � h2

�
+ 4

�
M2 + dp

dz

��
� 4Gr kfknf �+

4I0
�
M(1��)

5
4 r
��
Gr

kf
knf

�(2���� cos(2�z)�1)+M2(1��)
5
2 (2����(M2+ dp

dz ) cos(2�z)�
dp
dz )

�
I0
�
M(1��)

5
4 h
�
(2���� cos(2�z)�1)

9>>=>>; ;

(3.19)

� (r; z) =
1

4

0@(1� �) + 2�kf
kCNT�kf log

�
kCNT+kf

2kf

�
(1� �) + 2�kCNT

kCNT�kf log
�
kCNT+kf

2kf

�
1A�h2 � r2� �; (3.20)

The �ow rate is given by [34]

Q = 2

h(z)Z
0

rwdr; (3.21)

this implies that

dp

dz
=

�16h
�
2���� cos (2�z)

�
Gr

kf
knf

� +M
4
(1� �)

5
2

�
�Gr kfknf �

�
I1

�
M(1� �)

5
4h
�

+

24 M(1� �) 52 (2���� cos (2�z)� 1) I0
�
M(1� �) 54h

�
�
M2(1� �) 52

�
8M2

�
F + h2

�
�Grh4 kfknf �

�
+ 8Grh

2 kf
knf

�
�
35

8h2M3(1��)
15
4 (1�2���� cos(2�z))I2

�
M(1��)

5
4 h
� : (3.22)

where the mean �ow rate F is given as follows [34]

F = Q� 1
2

�
1 +

�2

2

�
: (3.23)

Integrating Eq. (3.22) over the interval [0; 1], we can �nd the pressure rise given by the expres-

sion:

�P =

1Z
0

dp

dz
dz: (3.24)
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3.4 Results and Discussion

Pictorial representation of the exact solutions, obtained in the previous section, is presented

here for clear analysis of the velocity, temperature, pressure gradient and pressure rise. Figs.

3:2(a) display the e¤ect of Hartmann number on the velocity pro�le. It can be observed that

the velocity is symmetric with its center at the center of the tube, and that maximum velocity

exists at the center of the tube and it starts decreasing near the ciliated walls. It is also noted

that the change in Pure water is more than that of Cu-water as the Hartmann number increases

for the single walled carbon nanotubes. Fig. 3:2(b) exhibits that as the velocity pro�le is directly

proportional to the �ow rate Q, change in velocity is rapid at the center of the tube and very

sluggish near the walls. It is also seen that with an increase in �ow rate velocity pro�le increases

for single walled carbon nanotubes.

E¤ect of increase in the physical parameters � and z is shown in Figs. 3:3(a) and 3.3(b). It

is seen that the temperature is directly proportional to � and inversely proportional to z: The

rate of change of temperature in case of Pure water is observed to be very speedy in comparison

of Cu-water. Also we see that there is a rise in temperature for heat absorption parameter � as

compared to coordinate parameter z. Temperature is greater in the center of the tube and it

starts decreasing near the walls where it is a¤ected with the metachronal waves of cilia.

The pressure gradient is represented in Figs. 3.4(a) to 3.4(d) with respect to the axial

distance in variation of the Hartmann number and the Grashof number. The graphical illus-

tration depicts that the pressure gradient is directly proportional to the Hartmann number and

inversely proportional to the Grashof number. It also implies that the pressure gradient is more

in case of the Pure water as compared to the Cu-water for single walled carbon nanotube. The

variation in the graphs can be seen more rapid at z = 0:5; where the graphs are also symmetric.

In Figs. 3.5(a) to 3.5(d); we have shown the pressure rise against the �ow rate Q for di¤erent

values of Hartmann number M and the non-dimensional cilia length � with respect to Q. It

can be seen that pressure rise is directly proportional to the Hartmann number in the pumping

region (�P > 0) and inversely proportional to the Hartmann number in the augmented pumping

region (�P < 0). Free pumping region holds for �P = 0: Also we note that the pressure rise

increases rapidly in case of Cu-water than that of Pure water.

Figs. 3.6(a) to 3.6(d) is the representation of the streamlines for both pure and Cu-water
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in case of Single wall carbon nanotube. We see that as the base �uid changes from pure water

to Cu-water, the trapped bolus inside the streamlines decreases in size.

Table. 1. Shows the numerical values of velocity pro�le for SWCNT with the variation of

di¤erent �ow parameters.

3:2 (a) 3:2 (b)

Figs. 3:2(a; b). Velocity pro�le w (r; z) against the radial distance r:
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3:3 (a) 3:3 (b)

Figs. 3:3(a; b): Temperature pro�le � (r; z) against the radial axis r:

3:4 (a) 3:4 (b)

Figs. 3:4(a; b). Pressure gradient dp
dz along the tube axis z:
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3:5 (a) 3:5 (b)

Figs. 3:5(a; b):. Pressure rise �P against the �ow rate Q:

3.6 (a) 3.6 (b)

Figs. 3.6(a; b): Streamlines for velocity pro�le w (r; z) in comparison between pure H2O and

Cu-H2O with the interaction of SWCNT.
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3.5 Conclusion

Carbon nanotubes suspended nano�uid analysis in a �exible tube with ciliated walls is pre-

sented. The analysis of the exact solutions highlights the following aspects.

1) It has been observed that the velocity is symmetric at the center of the tube, and that

maximum velocity exists at the center of the tube and it starts decreasing near the ciliated

walls.

2) It is also noted that the change in Pure water is greater than that of Cu-water as the

Hartmann number increases.

3) The �ow rate gives the same physical in�uence on velocity pro�le.

4) It is also noted that the rate of temperature change in the case of Pure water is observed

to be very fast in comparison with Cu-water.

5) It is also observed that the pressure gradient is greater in case of the Pure water as

compared to the Cu-water.

6) As the base �uid changes from Pure water to Cu-water, the trapped bolus inside the

streamlines increases in size.
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w (r; z) for SWCNT

Q M G � (r = 0) (r = 0:25) (r = 0:5)

0.3 2 0.5 0.3 0.448954 0.346236 0.0301363

0.4 0.689394 0.569486 0.200482

0.5 0.929834 0.792735 0.370827

1 0.968022 0.819977 0.372998

3 0.872505 0.751464 0.367044

5 0.729404 0.646104 0.354192

1 0.729435 0.646127 0.354194

3 0.729559 0.646217 0.354204

5 0.729683 0.646307 0.354214

0 0.54174 0.500762 0.325823

0.1 0.599364 0.546548 0.336522

0.2 0.66348 0.596171 0.34612

Table 1. Numerical values of the velocity for single-wall CNT with � = 0:1; � = 0:1; � = 0:2;

� = 0:5; z = 0:5.
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Chapter 4

A Study of Entropy Generation and

Heat Transfer for CNT Suspended

Nano�uid in a Porous Ciliated Tube

with Permeable Walls

4.1 Introduction

This chapter investigates the entropy generation and convective heat transfer of nano�uids

fabricated by the dispersion of single-wall carbon nanotubes (SWCNT) nanoparticles in water

as base �uid. The steady �ow is induced by Metachronal wave propulsion due to beating cilia.

The �ow regime is cylindrical porous tube. The �ow is restricted under the low Reynolds number

and long wavelength approximations. Cilia boundary conditions for velocity components are

employed to �nd the analytical solutions. The impacts of pertinent physical parameters on

temperature pro�le, velocity pro�le, pressure, entropy, Bejan number and stream lines are

computed numerically. A comparative study between SWCNT nano�uids and Pure water is

also computed.
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4.2 Formulation of the Problem

We consider an incompressible nano�uid in a circular tube with the interaction of single wall

carbon nanotube and entropy generation. Inner surface of the circular tube is ciliated with

metachronal waves and the �ow occurs due to collective beating of cilia. Walls of the tubes

are permeable. We represent the geometry of the problem in the cylindrical coordinate system

cylindrical
�
R;Z

�
see Fig.4.1.

Fig. 4.1. Geometery of the problem.

Envelopes of the cilia tips and velocities of the transporting �uid caused by the cilia tips can

be expressd mathematically as de�ned in Eqs. (3:1) and (3:2).

Following same pattern as done in chapter 3, �ow equations in moving frame can be written

as follows:
1

r

@ (ru)

@r
+
@w

@z
= 0; (4.1)
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The viscous dissipation term � can be obtained from equations of motion [33], i.e,

� = �nf
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We introduce the following non-dimensional variables:

r =
r

a
; z =

z

�
; w =

w

c
; u =

� u

ac
; p =

a2 p

c��f
; � =

a

�
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�
T � T0

�
T0

;

t =
ct

�
; D1 =

K

a2
; Pr =

�cp
k
; Ec =

c2

cpT0
; Br = Ec Pr : (4.6)

here � is the volume fraction of the carbon nanotube, Pr; Br are the Prandtl and Brinkman

number respectively.

Using the above transformation and using the assumptions of long wavelength and low

Reynolds number approximation, the above Eqs. (4:1) and (4:2) takes the form:

@p

@r
= 0; (4.7)

dp

dz
=
�nf
�f

1

r

@

@r

�
r
@w

@r

�
� 1

D1

�nf
�f

(w + 1) (4.8)

knf
kf

1

r

@

@r

�
r
@�

@r

�
+Br

�
�nf
�f

��
@w

@r

�2
= 0: (4.9)

The non-dimensional boundary conditions for permeable walls [35] are de�ned as follows:

@w

@r
= 0;

@�

@r
= 0 at r = 0; (4.10)
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w = �1� �2���� cos (2�z)
1� 2���� cos (2�z) �

p
D1
a1

@w

@r
; � = 0; at r = h (z) = 1 + � cos (2�z) : (4.11)

4.3 Analytic Solutions

Solving Eqs (4:7) to (4:9) together with the boundary conditions in Eqs (4:10) to (4:11),

velocity of �uid �ow is

w (r; z) = �1�D1P +
1

�1 + 2���� cos (2�z)

8<: a1
p
A
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�
hp
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�I0� rp
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�9=; : (4.12)

Temperature of the �uid �ow is

� (r; z) = �
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here

A =
�nf
�f

; P =
dp

dz
; k1 =

a1

I1

�
hp
AD1

�
(�1 + 2���� cos (2�z))

: (4.14)

The �ow rate is given by

Q = 2

Z h(z)

0
rwdr; (4.15)

here Q [34] is given as follows

Q = F +
1

2

�
1 +

�2

2

�
: (4.16)

Using Eq. (4.12) in eq. (4.15), then solving for dp
dz we get

dp

dz
= �

1 + F
h2
+ 2Ak1

p
D1

h�2h���� cos(2�z)
D1

: (4.17)

Integrating the Eq. (4:17) over the interval [0; 1] ; we can �nd the pressure rise as follows

�P =

1Z
0

dp

dz
dz: (4.18)
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4.4 Entropy Generation

The dimensional volumetric entropy generation [33] is de�ned as

S
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Dimesionless form of the entropy generation is given as:

Ns =

�
knf
kf

��
@�

@r

�2
+ �0Br

�
�nf
�f

��
@w

@r

�2
; (4.20)

here

Br =
c2�f

kfT 0
; �0 =

�0

T 0
:

Eq. (4:20) consists of two parts, in which the �rst part is the entropy generation due to �nite

temperature di¤erence (Nscond) and the second part is the entropy generation due to viscous

e¤ects (Nsvisc) : The Bejan number [28] is de�ned as

Be =
Nscond

Nscond +Nsvisc
: (4.21)

Be =

�
knf
kf

� �
@�
@r

�2�
knf
kf

� �
@�
@r

�2
+ �0Br

�
�nf
�f

� �
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�2 : (4.22)

4.5 Results and Discussion

In this section, the graphical explanation of the analytical expressions for velocity, temperature,

pressure gradient, pressure rise, Entropy generation, Bejan number and stream lines is expressed

with respect to certain changes in the physical parameters through the illustrations (Figs.

4:2 to 4:11). A comparative study for Pure water and SWNT-water is also depicted through

the numerical results.

Figs. 4.2 (a and b) represent the change in the velocity pro�le of the �uid �ow with respect to

slip parameter (a1) and Darcy number (D1). It is observed that velocity is directly proportional

to both the physical parameters that means we increase the magnitude of the above parameters,

the velocity pro�le will also increase. It attains its maximum values at the center of the tube
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and decreases near the boundary of the tube. We also note that the change in the velocity

pro�le with respect to slip parameter (a1) is greater as compared to Darcy number (D1). It is

further revealed that the variation in velocity pro�le for SWCNT- nano�uids is more than Pure

water at �xed values of other parameters.

The e¤ects of Brinkman number (Br) and Darcy number (D1) are shown in the Figs. 4.3(a

and b). It can be seen that temperature is directly proportional in both cases. The rate of

temperature change in case of SWCNT-nano�uids is observed to be very fast in comparison

with Pure water. The temperature is maximum at the center of the tube and it starts decreasing

towards the boundary walls.

Figs. 4.4 (a to d) illustrate the pressure gradient against the axial tube length. Figs. 4.4

(a and b) represent the change in the pressure gradient pro�le of the �uid �ow with respect to

slip parameter (a1) and Darcy number (D1): It is found that the pressure gradient is inversely

proportional to slip parameter (a1): If we increase the parameter D1; the change in pro�le is

also going to increase near the walls while the pro�le is decreasing near the center of the tube.

It is clearly pointed out from Figs. 4.4 (c and d) that pressure gradient is inversely proportional

to �ow rate (Q) while directly proportional to eccentricity of the elliptical motion (�) . It is also

revealed that the variation in pressure gradient pro�le with respect to �ow rate (Q) is greater

as compared to elliptical motion (�). In all the cases, the maximum pressure gradient lies at

center of tube length (z = 0:5). Pressure gradient is less for SWCNT-nano�uids in comparison

to base �uid.

The variation of pressure rise against the �ow rate is shown in Figs. 4.5(a-c) under the

in�uence of slip parameter (a1), Darcy number (D1) and eccentricity of the elliptical motion

(�). It is noticed that pressure for Pure water is more than that of SWCNT nano�uids. Fig.

4.5(a) depicts that pressure diminishes with increasing the magnitude of slip parameter. Fig.

4.5(b) reveals that the pressure increases with increasing the value of Darcy number in the

pumping region (�p > 0), reverse trend is noticed in augmented pumping region (�p < 0) and

constant value at free pumping region (�p = 0). There is no valuable e¤ect of eccentricity of

the elliptical motion on pressure.

The variation in entropy generation (Ns) against the radial coordinate (r) is illustrated

through the Figs. 4.6(a and b) under the in�uence of Brinkman number (Br) and Darcy
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number (D1). It is found that the curves are parabolic upward. It is also observed that entropy

generation enhances with increasing the magnitude of both parameters i.e. Brinkman number

and Darcy number. It is further depicted that attains its maximum value at the walls and

minimum value at the center of the tube. The interesting observation is that the change in for

the case SWCNT-nano�uids with changes in is slightly di¤er from Pure water.

The changes in Bejan number (Be) against the radial coordinate (r) are observed with

e¤ects of Brinkman number (Br) and Darcy number (D1) through the Figs. 4.7(a and b). It is

remarked that the changing nature is parabolic i.e. at zero radial deformation, it is minimum

and when it moves positive or negative directions, value of Bejan number (Be) increases. It

can also be seen that is directly proportional to Bejan number (Be) and the changes in Bejan

number (Be) are greater in SWCNT-nano�uids as compared to Pure water.

A very interesting pumping phenomenon named as trapping and de�ned as the process of

circulation of stream lines at some particular value of �ow rate. The stream lines in the wave

frame (obeying the Cauchy-Riemann equations w = 1
r
@ 
@r and u = �

1
r
@ 
@z ) are plotted through

Figs. (4.8 to 4.11) to study the impacts of Darcy number (D1) and slip parameter (a1) on

trapping phenomenon for SWCNT-nano�uids and also base �uid. For Pure water the graphs

are shown in Figs. 4.8(a to c) and for SWCNT-nano�uids the graphs are plotted in Figs. 4.9(a

to c) with variation of Darcy number. It is predicted that with increment in Darcy number,

the trapped bolus inside the streamlines are going to decreases in size in case of Pure water

as well as for SWCNT- nano�uids. But when we compare the size of boluses for pure water

and SWCNT- nano�uids, trapped bolus is smaller in size for Pure water than that of SWCNT-

nano�uids.

The e¤ects of slip parameter (a1) on streamlines for Pure water and SWCNT-nano�uids

are drawn through the Figs. 4.10(a to c) and Figs. 4.11(a to c) respectively. It is revealed that

with increases, the value of slip parameter, the trapped bolus inside the streamlines enhances

in size while the number of bolus reduces in both cases (Pure water and SWCNT-nano�uids).
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4.2 (a) 4.2 (b)

Figs. 4.2. Velocity pro�le (axial velocity against the radial coordinate).

4.3 (a) 4:3 (b)

Figs. 4.3: Temperature pro�le � (r; z) against the radial axis r:
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4.4 (a) 4.4 (b)

4.4 (c) 4.4 (d)

Figs. 4.4. Pressure gradient along the tube length.
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4.5 (a) 4.5 (b)

4.5 (c)

Figs. 4.5: Pressure rise �P against the �ow rate Q:
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4:6 (a) 4:6 (b)

Figs. 4.6: Entropy generation Ns against the radial axis r:

4.7 (a) 4:7 (b)

Figs. 4.7: Bejan number Be against the radial axis r:
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4.8 (a) 4.8 (b) 4.8 (c)

Figs. 4.8: Streamlines for velocity pro�le w (r; z) for Pure water with varying D1 = 0:2; 0:4; 0:6.

Other parameters are a1 = 0:2; � = 0:4; � = 0:3; � = 0:3; � = 0:3; Q = 2:

4.9 (a) 4.9 (b) 4.9 (c)

Figs. 4.9: Streamlines for velocity pro�le w (r; z) for SWCNT with varying D1 = 0:2; 0:4; 0:6.

Other parameters are a1 = 0:2; � = 0:4; � = 0:3; � = 0:3; � = 0:3; Q = 2:
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4.10 (a) 4.10 (b) 4.10 (c)

Figs. 4.10: Streamlines for velocity pro�le w (r; z) for Pure water with varying a1 = 0:1; 0:2; 0:3.

Other parameters are D1 = 0:4, � = 0:4; � = 0:3; � = 0:3; � = 0:3; Q = 2:

4.11 (a) 4.11 (b) 4.11 (c)

Figs. 4.11: Streamlines for velocity pro�le w (r; z) for SWCNT with varying a1 = 0:1; 0:2; 0:3.

Other parameters are D1 = 0:4, � = 0:4; � = 0:3; � = 0:3; � = 0:3; Q = 2:
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4.6 Conclusion

The e¤ects of pertinent physical parameters on entropy generation and heat transfer of CNT

nano�uids in �ow driven by metachronal wave generated by beating of cilia are computed and

discussed in details. On the basis of above discussion, some novel �ndings are summarized as:

1. Velocity �eld enhances with increasing the magnitude of slip parameter and Darcy number

and it is more for SWCNT- nano�uids than that of Pure water.

2. Pressure gradient is increasing function directly proportional to eccentricity of the ellip-

tical motion whereas decreasing nature with �ow rate.

3. Temperature goes up with increasing the magnitude of Brinkman number and Darcy

number. The temperature is higher for SWCNT nano�uids in comparison to Pure water.

4. The entropy generation enhances with rising the value of both parameters Brinkman

number and Darcy number. It is more for SWCNT nano�uids.

5. The changes in Bejan number is parabolic in nature with radial deformation and it elabo-

rates with increasing the value of both parameters Brinkman number and Darcy number.

6. Bejan number is more for SWCNT-nano�uids as compared to Pure water.

7. The size of trapped bolus expands with increasing the value of slip parameter whereas it

contracts with increasing the Darcy number.

8. The Size of trapped bolus for Pure water is smaller than that of the SWCNT-nano�uids.
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