
Differential Quadrature Method for
Non-linear Fractional Partial

Differential Equations

Muhammad Umair
Regn.#00000172902

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

in
Mathematics

Supervised by: Dr Umer Saeed

Department of Mathematics

School of Natural Sciences
National University of Sciences and Technology

H-12, Islamabad, Pakistan
2019

Dedicated to
My beloved parents and respected teachers.

i

Acknowledgements

All praise to Almighty Allah and His beloved Prophet Hazrat Muhammad

(P.B.U.H.). I would like to express my sincere gratitude to my thesis advisor Dr.

Umer Saeed, whose guidance, continuous encouragement and support right from the

start to the end enabled me to successfully complete this work. His constructive re-

marks during the meetings we held together helped me in understanding the problems

and the relevant concepts. His guidance helped me in all the time of research and

writing of this thesis. I could not have imagined having a better advisor and mentor

for this work. Besides my advisor, I would like to express my sincere appreciation

to the members of the mathematics department of SNS, especially to Dr. Mujeeb-

ur-Rehman and Dr. Muhammad Asif Farooq for their valuable guidance and helpful

suggestions in every aspect from the very beginning onwards. Also I would like to

thank my college life teachers Mr. Khurram Shehzad and Mr. Muhammad Aslam

Shakir for their prayers and motivation. There are no words to thank my parents who

supported me over the years and always inspired me. I am extremely grateful to my

beloved sisters and elder brothers Saif-ur-Rehman and Shafqat Rasool for their love,

prayers, support and sacrifices for educating and preparing me for my future. I expand

my thanks to Dr. Mobina Hashmi who shared her residence with me during my stay

in Islamabad, and extended brotherly love towards me. These acknowledgments would

not be complete without mentioning my friends: Muhammad Aleem, Zeshan Zulifqar,

Mohsin Nawaz, Zain-ul-Abdeen, Muhammad Asif Ijaz, Fazal Abbas, Amir Rahim and

M. Huzaifa Yaseen. I would like to thank them for their support and encouragement. I

am pleased to have such jolly fellows who have always brought smile to my face. Thank

you.

ii

Abstract

This thesis presents the modified cubic B-splines and polynomial based differential

quadrature method. We extend the differential quadrature method (DQM) for solving

time and space fractional non-linear partial differential equations on a semi infinite

domain. The fractional derivative of Lagrange polynomial is the big hurdle in classical

DQM. To overcome this problem, we represent the Lagrange polynomial in terms of

shifted Legendre polynomial. We construct a transformation matrix, which transforms

the Lagrange polynomial into shifted Legendre polynomial of arbitrary order. We

obtain the new weighting coefficients matrices for space fractional derivatives by shifted

Legendre polynomials and use these in conversion of a non-linear fractional partial

differential equation into a system of fractional ordinary differential equations (ODEs).

Adam Bashforth Moulton predictor-corrector approach is implemented to solve the

reduced system of fractional order, α, ODEs. A very small number of grid points leads

very accurate results while adopting the proposed scheme. Comparison analysis of the

proposed method with some well known methods and with exact solutions are provided.

Convergence analysis for the proposed method is also discussed. Many engineers can

utilize the present method for solving their non-linear time and space fractional models.

iii

Contents

1 Introduction 1

1.1 Approximation of derivatives by DQM 3

1.2 Determination of weighting coefficients 4

2 B-Splines Differential Quadrature Method 10

2.1 Splines . 10

2.2 B-Splines . 11

2.2.1 Properties of B-Splines functions 12

2.2.2 Types of B-splines functions . 12

2.3 Modified cubic B-splines DQM . 14

2.4 Determination of weighting coefficients using B-splines 15

2.5 The procedure of implementation of DQM 18

2.6 Application of the modified cubic B-splines DQM 19

2.6.1 Generalized Fitzhugh-Nagumo equations 21

2.6.2 Numerical solutions of Burgers’ equation 24

2.6.3 Numerical solutions of non-linear generalized Burger-Fisher equa-

tion . 27

3 A Modified Method for Solving Non-linear Time and Space Fractional

Partial Differential Equations 31

3.1 Preliminaries . 32

iv

3.2 Development of the proposed method 33

3.2.1 Transformation matrices . 34

3.2.2 Weighting coefficient matrices for fractional derivatives 35

3.3 The procedure of implementation . 37

3.4 Convergence analysis . 38

3.5 Application . 40

3.5.1 Fractional Burgers’ equation . 41

3.5.2 Fractional order Huxley equation 41

3.5.3 Generalized fractional Burger-Fisher equation 46

4 Conclusion 51

Bibliography 58

v

List of Figures

2.1 Comperison of numerical and exact solutions of equation (2.23) with

absolute error L∞ for ∆t = 0.05, ρ = 3/4, −2 upto time t=5. 22

2.2 Comparison of the obtained results and exact solutions of problem (3.33)

along with absolute error L∞ for ∆t = 0.05, ρ = 1/2, 3/4 upto time t=5. 25

3.1 Numerical results of equation (3.29) by proposed scheme at x = 0.5 and

n̂ = 5, 7, h = 0.01 for different values of α and β. 42

3.2 Numerical results of Example (3.31) by proposed scheme at x = 0.5 and

n̂ = 5, h = 0.01 for different values of α and β. 45

3.3 Numerical results of Example (3.33) by present method for different

values of α, β1 and β2 at x = 0.5, h = 0.0025, n̂ = 5, 7. 48

vi

List of Tables

2.1 Values of Φi(w) at knot points 15

2.2 Values of Φ′i(w) at knot points . 15

2.3 Values of Φ′′i (w) at knot points . 16

2.4 Comparison of numerical and exact solutions at ρ = 0.75, h=0.05 and

n̂ = 40 for different values of x and t. 23

2.5 Comparison between numerical and exact solutions with ρ = −2, h=0.05

and n̂ = 40. 24

2.6 Max absolute error L∞ of problem (2.25) at different time t with ρ =

1/2, 3/4 and h = 0.05. 26

2.7 Numerical results of equation (2.27) at different values of α, β and time

t by present method. 27

2.8 Comparison of solutions by present method and exact solutions for h =

0.002 and n̂ = 5. 28

2.9 Numerical results of equation (2.29) for γ = 1 and δ = ρ at different

times t. 29

2.10 Numerical results of equation (2.29) for h = 0.005, n̂ = 7, γ = 2 and

δ = ρ = 1. 30

3.1 Numerical results of problem (3.29) by proposed scheme at different

values of α, β1 and β2, with h = 0.002, n̂ = 5. 43

3.2 Numerical results of equation (3.31) by proposed method at different

values of α, and β, with h = 0.005, n̂ = 7. 44

vii

3.3 Comparison between solutions of problem (3.31) by present method with

exact solutions and Haar wavelet method at β = 2 and h = 0.01, n̂ = 5 . 46

3.4 Numerical results of problem (3.33) at different values of α, β1 and β2

with h = 0.005, n̂ = 7, γ = 2 and δ = ρ = 1. 48

3.5 Comparison of the solutions obtained by present method, variational

iteration method, differential transformation method and exact solutions

for integer values of α, β1, and β2 with h = 0.01, n̂ = 5, γ = 1 and

δ = ρ = 0.001. 49

3.6 Comparison of the obtained results and the results by reduced differ-

ential transformation method at integer values of α, β1 and β2 with

h = 0.01, n̂ = 5, γ = 2 and δ = ρ = 0.001. 49

3.7 Comparison between solutions by proposed method and Homotopy per-

turbation method (HPM) for different values of δ and ρ, at integer values

of α, β1 and β2 with h = 0.01, n̂ = 5, γ = 2. 50

viii

Chapter 1

Introduction

Fractional calculus is the field of mathematics in which non-integer order derivatives

and integrals are involved. Fractional order partial and ordinary differential equa-

tions are widely used in various fields of engineering and sciences. These equations

are significantly served as a tool for the mathematical formulation of various scientific

and engineering problems involving functions of several variables. The solutions of

these differential equations are very applicable due to their practical significance and

paramount role in the field of science. During some last decades a number of appli-

cations of fractional calculus have been appeared, specially in the biological disease

problems and bioengineering [1, 2], chemical reactions, underwater flow problems in

fluid dynamics [3], signal processing [4], viscoelasticity theory [5, 6], fractional quantum

mechanics, robotics and electronics [7, 8, 9] etc. Several methods have been developed

and many approaches are utilized to obtain the solutions of fractional differential equa-

tions. Some of these methods include the homotopy perturbation transform techique

[10], the Haar wavelet picard method [11, 12], Adomian decomposition method (ADM)

[13, 14, 15, 16] etc.

In this work, we describe a numerical method for both integer and fractional order

partial differential equations (PDEs). There are many theoretical results available in

the literature about the existence and uniqueness of the solutions of non-linear partial

differential equations. Partial differential equations that model the daily life problems

are mostly non-linear in nature. Due to the non-linear inherent nature of these prob-

1

lems, the analytic solutions of corresponding partial differential equations are not easy

to find. There are many challenges regarding to these equations which are either very

tough to solve explicitly or have no solution at all. There are limited class of simple

specific non-linear differential equations that can be solved analytically. In some cases,

the existence of the analytic solutions of partial differential equations can be confirmed

but they are not known or can not be found in closed form. Sometimes, the solutions

are known in complex closed form or in the form of infinite series along with compli-

cated coefficients involving complex integrals which are very difficult to evaluate such

as Fourier series, Laplace transform etc. Therefore, the methods which are used to

find the analytic form of solutions are very complicated and costly in the sense of com-

putations and efforts. To overcome these hurdles, numerous numerical techniques are

developed and implemented to figure out the solutions of one and higher dimensional

PDEs. In numerical schemes, the basic idea is to discretize the whole domain into finite

discrete points called the grid points, mesh points, or nodes. Then we approximate

the solution at these nodal points and on the boundary points of the given domain.

The competence of a numerical technique bank on a number of aspects such as ease of

implementation of the algorithm, efficiency and accuracy of the results, computational

labor, convergence, stability and the versatility of the method to handle the variety

of problems etc. Numerical techniques like spectral method [17], finite difference [18],

finite element [19], finite volume [20] and Adomian decomposition [21] methods have

attained a lot of attention.

Finite difference and finite element are predominant techniques in solving PDEs. In fi-

nite difference method, the derivative of an unknown function is approximated by sums

and differences of the function values at some nodal points. The given PDE gets reduce

to system of algebraic equations. Suitable differencing schemes need to be chosen for

different problems. The step size in nodes determines the accuracy of the technique.

In case of one dimensional problem, the technique is quite efficient but its formulation

for more than one dimensional problems is a laborious task. More research needs to

be carried out for the development of efficient schemes for solving higher dimensional

PDEs owing to their vast applicability and significance.

2

In recent few years, differential quadrature method (DQM) has become progressively

popular numerical scheme to solve a verity of linear and non-linear PDEs . The main

idea about DQM was initially originated by R.E Bellman [22] in 1972 and later on fur-

ther modifications for this technique were carried out by Quan and Chang [23]. Bellman

[22] et al. followed the idea of conventional integral quadrature and introduced the idea

of DQM. It is a high order numerical discretization scheme in comparison of lower or-

der methods like finite difference and finite element methods, because DQM needs a

considerably less nodal points. Consequently, differential quadrature method is very

economical in terms of storage space requirement and CPU time. Basically, differen-

tial quadrature method is identical to pseudo spectral (collocation) techniques. But,

it directly calculates the function values at nodes rather than calculating the spectral

variables. In differential quadrature method, the spatial derivative of an unknown func-

tion is approximated in a particular direction using the weighted sum of all function

values at nodes. The most significant step while employing DQM is the determination

of weighting coefficients. This method requires considerably less formulation and pro-

gramming efforts and is also capable to handle a variety of different types of boundary

conditions. It comprises of very well refined mathematical techniques. The involved

mathematical techniques are explicit and easy to grasp. We can successfully utilize the

differential quadrature method for a variety of problems especially the non-linear ones

occurring in the fields of engineering and applied science. For detailed study, we refer

the reader to [22].

1.1 Approximation of derivatives by DQM

In this section, we describe the DQM for one dimensional partial differential equations.

Bellman [22] et al. initially considered a one dimensional problem. Assuming an

unknown function u(x, t) which is sufficiently smooth over the given entire domain.

The partial derivative of u at a particular point of the domain xq with respect to

x can be taken as a linear sum of all the function values along the mesh line [24].

Discretizing the given domain [a, b] in n̂ grid points i.e (n̂− 1) sub-intervals such that

3

a = x1, x2, · · · , xn̂ = b, the first and second order partial derivatives of u at a particular

grid point xq can be approximated as

ux(xq, t) =
n̂∑
`=1

Ω̂
(1)
q` u(x`, t),

uxx(xq, t) =
n̂∑
`=1

Ω̂
(2)
q` u(x`, t),

(1.1)

for q = 1, 2, · · · , n̂, where Ω̂
(1)
q` and Ω̂

(2)
q` for q, ` = 1, 2, · · · , n̂ represent the weights cor-

responding to the first and second order derivatives and u(x`, t) denotes the function

values at `th node x`. The foremost task which is of paramount, is the determination

of the weights. Once these weights are obtained, we can approximate the deriva-

tives at all discrete points. DQ method is drafted in such a way that the given PDE

gets reduce to a system of first order ODEs. The resulting system of ODEs is then

solved by implementing some suitable numerical techniques such as strong stability-

preserving Runge-Kutta method (SSP-RK43), Adam Bashforth Moulton predictor-

corrector method, Runge Kutta method of order 4 (RK-4) etc. In the present work,

we have utilized both the RK-4 and Adam-Bashforth predictor-corrector approaches

to solve the reduced system of differential equations.

1.2 Determination of weighting coefficients

Numerous approaches are available in the literature given by the researchers to compute

these weights, which are based on the different selection of test functions. These ap-

proaches include Bellman’s approach [24], Chang Shu’s approach [22], Quan & Chang

approach [23] etc. These test functions include the Lagrange interpolation cosine func-

tions, Lagrange interpolation polynomials, Legendre polynomials etc. In recent few

years, some researchers have used B-splines [25, 26, 27, 28], Sinc functions [23, 29]

and the radial basis functions [30], as test functions for the determination of weights.

Bellman [24] with his associates suggested two approaches to calculate the weights for

first order derivatives. In his first approach, he solved an algebraic system by using

4

following test functions as trial functions

gκ = xκ, κ = 0, 1, 2 · · · , n̂− 1, (1.2)

these are actually n̂ test functions. From equation (1.1) the weights Ω̂
(1)
q` , q and ` are

taken from 1 to n̂. So, there are n̂× n̂ number of weights. When we apply n̂ nodes on

n̂ test functions, we get n̂× n̂ algebraic equations for Ω̂
(1)
q` as

n̂∑̀
=1

Ω̂q` = 0,

n̂∑̀
=1

Ω̂q` x` = 1,

n̂∑̀
=1

Ω̂q`.x
p
` = p.xp−1

` , p = 2, 3, · · · , n̂− 1, q = 1, 2, · · · n̂.

(1.3)

The matrix obtained from system (1.3) is of Vandermonde form i.e each row with terms

of geometric progression, so the system (1.3) has unique solution. For large value of

n̂, the obtained matrix becomes ill-conditioned and it becomes very tedious task to

compute the weights. Therefore, for this approach the nodes n̂ can’t be taken large

and is usually restricted to be less than 13 [22].

In the other approach, the following functions are used as test functions

gκ(x) =
Hn̂(x)

(x− xκ)H(1)
n̂ (xκ)

, κ = 1, 2, · · · , n̂, (1.4)

where Hn̂(x) and H
(1)
n̂ (xκ) denotes the n̂th degree Legendre polynomials and its first

order derivative, respectively. In this approach, the roots of shifted Legendre poly-

nomials are taken as the coordinates of the mesh points and the following algebraic

formulations are obtained to compute Ω̂q` as

Ω̂q` =
Hn̂(xq)

(xq − x`)H(1)
n̂ (x`)

, for q 6= `,

Ω̂qq =
1− 2xq

2xq(xq − 1)
, for q = `.

(1.5)

From equation (1.5), one can easily compute the weights. Bellman’s second approach

is not as economical as first approach, because we can not choose the coordinates of

5

mesh points arbitrarily. This approach looks like a special case. Various efforts have

been made to overcome these drawbacks. Quan and Chang [23] have suggested an

approach in which they used Lagrange interpolated polynomials as trial functions to

compute the weights Ω̂q`. The Lagrange interpolated polynomials are given as

gκ(x) =
N(x)

(x− xκ)N (1)(xκ)
, κ = 1, 2, · · · , n̂, (1.6)

where

N(x) =
n̂∏
p=1

(x− xp),

and

N (1)(xq) =
n̂∏

κ=1,κ6=q

(xq − xκ).

By using equation (1.6), the explicit formulations for weights are

Ω̂q` =
1

(x` − xp)

n̂∏
p=1,p 6=q

(xq − xp)
(x` − xp)

, for q 6= `.

Ω̂qq =
n̂∑

p=1,p 6=q

1

(xq − xp)
, for q = `.

(1.7)

Equation (1.7) overcomes the disadvantage of restricting the choice and number of

nodes. Another breakthrough in the determination of weights was achieved by Shu [22].

He concluded that all the available schemes to compute the weights can be generalized

under the analysis of a linear vector space and the analysis of higher order polynomial

approximation. From the properties of linear vector space, if one basis satisfies a linear

operator then all the other basis do the same i.e each base will produce the same

weighting coefficients. He observed that the following relation holds

n̂∑
`=1

Ω̂
(1)
q` = 0, or Ω̂(1)

qq = −
n̂∑

`=1,`6=q

Ω̂q`.

6

Shu [22] has also proposed a general formulation to find the weights corresponding to

second and higher order derivatives. These can be obtained by using the following

explicit relations as

Ω̂
(γ)
q` = γ

[
Ω̂

(1)
q` Ω̂(γ−1)

qq −
Ω̂

(γ−1)
q`

(xq − x`)

]
, for q 6= `,

Ω̂(γ)
qq = −

n̂∑
`=1,` 6=q

Ω̂
(γ)
q` , for q = `,

(1.8)

where q, ` = 1, 2, · · · , n̂, γ = 2, 3, · · · , n̂. Also Ω̂
(γ−1)
q` and Ω̂

(γ)
q` are the weights corre-

sponding to (Ω̂− 1)th and Ω̂th order partial derivatives.

Multiplication of matrices approach

Another simple and easy approach available in literature for the determination of

weighting coefficients, named as multiplications of matrices approach.

By the differential operator, we have

∂2g

∂x2
=

∂

∂x

[
∂g

∂x

]
. (1.9)

For our convenience, we use the simple notation ∂2g
∂x2

as g′′x and ∂g
∂x

as g′x. When we

apply the differential quadrature approximation on left side of equation (1.9), we have

g
′′

x(xq) =
n∑
`=1

Ω̂
(2)
q` g(x`), q = 1, 2, 3, · · · , n̂ (1.10)

Again by differential quadrature approximation, the right side of equation (1.9) is

g
′′

x(xq) =
n̂∑
p=1

Ω̂(1)
qp g

′

x(xp), q = 1, 2, 3, · · · , n̂. (1.11)

=
n̂∑
p=1

Ω̂(1)
qp

n̂∑
`=1

Ω̂
(1)
p` g(x`),

=
n̂∑
`=1

[
n̂∑
p=1

Ω̂(1)
qp Ω̂

(1)
p`

]
g(x`). (1.12)

7

By the comparison of equation (1.10) and (1.12), we have

Ω̂
(2)
q` =

n̂∑
`=1

Ω̂(1)
qp Ω̂

(1)
p` . (1.13)

If we define two matrices as

[Ω(1)] =



Ω̂
(1)
11 Ω̂

(1)
12 · · · Ω̂

(1)
1n̂

Ω̂
(1)
21 Ω̂

(1)
22 · · · Ω̂

(1)
2n̂

...
...

Ω̂
(1)
n̂1 Ω̂

(1)
n̂2 · · · Ω̂

(1)
n̂n̂


, [Ω(2)] =



Ω̂
(2)
11 Ω̂

(2)
12 · · · Ω̂

(2)
1n̂

Ω̂
(2)
21 Ω̂

(2)
22 · · · Ω̂

(2)
2n̂

...
...

Ω̂
(2)
n̂1 Ω̂

(2)
n̂2 · · · Ω̂

(2)
n̂n̂


,

then from equation (1.13), we have[
Ω(2)

]
=
[
Ω(1)

] [
Ω(1)

]
. (1.14)

Equation (1.14) shows that the weights for second order partial derivative can be

calculated by the matrices product of weights of first order derivatives. In the same

way, for the p(th) order derivative of g(x), we can write

∂pg

∂xp
=

∂

∂x

[
∂(p−1)g

∂x(p−1)

]
(1.15)

Let
[
Ω(p)

]
and

[
Ω(p−1)

]
are matrices of weighting coefficients for pth and (p−1)th order

derivatives respectively, we have the following recurrence relation from the application

of differential quadrature approximation to equation (1.15) as[
Ω(p)

]
=
[
Ω(1)

] [
Ω(p−1)

]
, p = 2, 3, · · · , n̂− 1. (1.16)

Although the relation (1.16) looks simple, but there are more arithmetic operations

involved as compared to the expression for weighting coefficients in Shu’s recurrence

formula. We can see that for the computation of each weighting coefficients by relation

(1.16), there are n̂ multiplications and (n̂− 1) additions, i.e total (2n̂− 1) arithmetic

operations. While Shu’s recurrence formula involves only two multiplications, one

subtraction and one division, i.e total 4 arithmetic operations for the computation of

8

each off-diagonal coefficient, whereas the computation of every diagonal coefficient from

Shu’s recurrence formula, there are (n̂−2) subtractions. Therefore, the total arithmetic

operations involved in Shu’s recurrence formula are substantially less than that of

equation (1.16). So, when we increase the number of nodes the computation of weights

through Shu’s recurrence formula ought to be inexpensive and more accurate because

of smaller rounding off errors as compared to equation (1.16). From the practical

application it is concluded that this may effect the accuracy of the numerical solutions.

In this work, first we used the modified cubic B-splines functions as trial functions

to compute the weights for DQ method. We employed the modified cubic B-splines

DQM to solve the integer order non-linear partial differential equations. We considered

Fitz Nagumo, generalized Burger-Fisher and Burgers’ equations as test problems for

application purpose. We also proposed a method based on differential quadrature

method for both time and space fractional linear or non-linear PDEs. The brief details

about this work is discussed in next coming chapters. In Chapter 2, the brief discussion

is given about the computation of weighting coefficients through B-splines and the

modified cubic B-splines differential quadrature method along with its applications.

Chapter 3 is related to the development of differential quadrature method for non-

linear space and time fractional PDEs. Finally in Chapter 4, some concluding remarks

about the work are given in details.

9

Chapter 2

B-Splines Differential Quadrature
Method

2.1 Splines

Spline is a function which is formulated piecewise from a polynomial function. To

approximate the solutions of PDEs, the piecewise polynomial functions have become

essential tools. Piecewise polynomial approximations served highly accurate approxi-

mations. But, while employing piecewise polynomials the most important requirement

is the smoothness of approximating curve at the nodes. Furthermore, for smooth graph

of interpolant not only the continuity but also continuous differentiability of the polyno-

mial is required on the given interval. Spline functions are the piecewise polynomials

having high degree of smoothness. B-splines are basis of vector space comprises of

spline functions and have minimal support.

In this chapter, we employed differential quadrature method using third degree B-

splines as basis functions. To demonstrate the significant importance of B-splines as

basis functions, we have explained B-spline functions of different degrees with their

characteristic properties. Some times ago, days before the innovation of computer

modeling, spline curves were used in shipbuilding industries by naval architects. In

early 1890’s the word spline was meant by a stretchable or adjustable ruler. In mathe-

matics, spline refers to a numeric function which is piecewise defined by a polynomial

and having a high degree of smoothness at the joining points. On interpolation with a

10

spline yields similar results to interpolation with high degree polynomials while avoid-

ing instabilities due to Runge’s phenomenon.

2.2 B-Splines

The idea of B-spline was first introduced by Schoenberg [31] in 1946, who employed an-

alytic functions while facing the problem of approximations of equidistance data. The

basis splines written as B-splines are the smooth piecewise polynomial functions. B-

splines are the spline functions with minimal support having particular degree, smooth-

ness and domain partition. Schumacker [32] gave the first definition of B-splines by

employing the idea of divided difference, after this Carl de Bore [33] independently de-

rived a recursive relation to determine B-spline functions by applying Leibniz theorem.

Consider an interval [a, b] and suppose Q = {wλ}∞λ=1 be a sequence of non-decreasing

real numbers such that a = x0 and b = xn̂. These wλ ′s are known as knots. The

sequence Q named as knot sequence is the defining feature of the basis functions. The

semi open interval [wλ, wλ+1) is named as the λth knot span. The knot sequence Q

is supposed to be uniform or non-uniform depending upon the knot vectors, whether

they are equally spaced or not. A pth degree B-spline function covers (p + 1) knot

vectors or p intervals. B-spline functions defined over uniform knot sequence are said

to be uniform B-spline functions. The zeroth degree B-spline for a non-decreasing knot

sequence {wλ}∞λ=1 is defined as [33]

B̄λ,0 =

{
1, if wλ < w < wλ+1

0, otherwise. (2.1)

We can see that the zeroth degree B-spline is just a step function. From Carl de Boor

[33] recursive formula, the λth B-spline of pth degree can be computed by [33]

B̄λ,p = Wλ,p B̄λ,p−1 + (1−Wλ+1,p) B̄λ+1,p−1, (2.2)

Wλ,p =
w − wλ

wλ+p − wλ
,

where w is a parameter variable. The relation (2.2) shows that we can stably evaluated

the higher degree B-spline functions as a linear combinations of lower degree B-splines.

11

2.2.1 Properties of B-Splines functions

We selected B-splines as the basis functions. Some significant properties of B-splines

are given [32, 33, 34] as

1. B̄λ,p(w) is a degree p polynomial in w.

2. ∀ λ, p and w, B̄λ,p(w) is non-negative.

3. For p > 0, B̄λ,p(w) is non-zero polynomial on semi open interval [wλ, wλ+p+1).

4. B̄λ,p(w) = 0 if w does not belong to open interval (wλ, wλ+p+1),

where λ = 0, 1, 2, 3, · · · , n̂− 1.

5. For p > 0, B̄λ,p(w) is a linear combination of two basis functions having degree

(p− 1).

6. The relative spacing between the knots is due to the factor that influence the shape

of the basis function B̄λ,p(w). There is no effect on the shape of basis function and

B-spline curves by translating or scaling.

7. On combining of all non-zero pth degree B-splines results in unity i.e
+∞∑
−∞

B̄λ,p(w) = 1.

This could be easily prove by using recurrence formula and definition of B̄q,0(w).

8. For a given knot sequence, B-splines are linearly independent if B-splines of degree

p are not vanishing over a particular knot sequence.

9. For (n̂+ 1) control points, B-splines B̄λ,p(w), λ = 0, 1, 2, 3, · · · , n̂ form a basis of all

splines of degree p.

10. B̄λ,p(w) = B̄λ+1,p(w+∆w) = B̄λ+1,p(w+2∆w) and so on, where ∆w is the distance

between two consecutive nodal points, i.e every function possess the same shape.

For further details about B-spline functions and their properties we refer the reader

Schumaker [32], Carl D. Boor [33] and P. M Prenter [34].

2.2.2 Types of B-splines functions

We start by considering a uniform knot sequence with step size ∆w = h. First degree

B-splines are termed as linear B-splines. The explicit form of first degree B-splines is

12

given by

B̄λ,1(w) =


(w−wλ)

(wλ+1−wλ)
, w ∈ [wλ, wλ+1),

(wλ+2−w)

(wλ+2−wλ+1)
, w ∈ [wλ+1, wλ+2),

0, otherwise.

(2.3)

B-splines of degree one resemble with a Tent or Hat function, and are non-zero for

consecutive two intervals.

Quadratic B-splines

B-splines of degree two are termed as quadratic B-splines and can be calculated by

linear B-spline in Carl D. Boor [33] recursive formula. Explicitly, the quadratic B-

splines are written as

B̄λ,2(w) =
1

2h


(w−wλ)2

h
, w ∈ [wλ, wλ+1),

(w − wλ)(wλ+2 − w) + (wλ+3 − w)(w − wλ+1), w ∈ [wλ+1, wλ+2),
(wλ+3−w)2

h
, w ∈ [wλ+2, wλ+3),

0, otherwise.
(2.4)

Cubic B-splines

Third degree B-splines are termed as cubic B-splines and are defined at the knots as

[25]

B̄λ,3(w) =
1

h3


(w − wλ−2)3, w ∈ [wλ−2, wλ−1),

(w − wλ−2)3 − 4(w − wλ−1)3, w ∈ [wλ−1, wλ),

(wλ+2 − w)3 − 4(wλ+1 − w)3, w ∈ [wλ, wλ+1),

(wλ+2 − w)3, w ∈ [wλ+1, wλ+2),
0, otherwise.

(2.5)

13

Quartic and Quintic B-splines

B-splines of degree four and degree five are termed as quartic B-splines and quintic

B-splines functions [35] respectively. They are written in explicit form as [36]

B̄λ,4 =
1

h4



(w − wλ−2)4, w ∈ [wλ−2, wλ−1),

(w − wλ−2)4 − 5(w − wλ−1)4, w ∈ [wλ−1, wλ),

(w − wλ−2)4 − 5(w − wλ−1)4 + 10(w − wλ)4, w ∈ [wλ, wλ+1),

(wλ+3 − w)4 − 5(wλ+2 − w)4, w ∈ [wλ+1, wλ+2),

(wλ+3 − w)4, w ∈ [wλ+2, wλ+3),
0, otherwise.

(2.6)

B̄λ,5 =
1

h5



(w − wλ−3)5, w ∈ [wλ−3, wλ−2),
(w − wλ−3)5 − 6(w − wλ−1)5, w ∈ [wλ−2, wλ−1),
(w − wλ−3)5 − 6(w − wλ−2)5 + 15(w − wλ)5, w ∈ [wλ−1, wλ),
(wλ+3 − w)5 − 6(wλ+2 − w)5 + 15(wλ+1 − w)5, w ∈ [wλ, wλ+1),
(wλ+3 − w)5 − 6(wλ+2 − w)5, w ∈ [wλ+1, wλ+2),
(wλ+3 − w)5, w ∈ [wλ+2, wλ+3),
0, otherwise.

(2.7)

2.3 Modified cubic B-splines DQM

The cubic B-splines basis functions are modified into another set of basis functions to

accommodate the boundary conditions effectively. This modification is done in such a

way that the basis functions are exactly equal the number of points in whole domain.

The modified cubic B-splines basis functions are given as [26]

Φ1(w) = B̄1(w) + 2B̄0(w),

Φ2(w) = B̄2(w)− B̄0(w),

Φκ(w) = B̄κ(w), κ = 3, 4, · · · , n̂− 2,

Φn̂−1(w) = B̄n̂−1(w)− B̄n̂+1(w),

Φn̂(w) = B̄n̂(w) + 2B̄n̂+1(w),

(2.8)

14

where Φ1,Φ2, · · · ,Φn̂ form a basis over interval [a, b] and B̄r
′s, r = 0, 1, 2, · · · , n̂ + 1,

are cubic B-splines functions. Φ`(w), ` = 1, 2, · · · , n̂, and its evaluated derivatives at

nodal points are given Table (2.1), (2.2) and (2.3).

Table 2.1: Values of Φi(w) at knot points
w Φ1 Φ2 Φ3 · · · Φn̂−2 Φn̂−1 Φn̂

w1 6 1
w2 0 4 1
w3 1 4 1
... · · · · · · · · ·

wn̂−2 1 4 1
wn̂−1 1 4 0
wn̂ 1 6

Table 2.2: Values of Φ′i(w) at knot points
w Φ′1 Φ′2 Φ′3 · · · Φ′n̂−2 Φ′n̂−1 Φ′n̂
w1 −6/h 6/h 0
w2 −3/h 0 3/h
w3 −3/h 0 3/h
... · · · · · · · · ·

wn̂−2 −3/h 0 3/h
wn̂−1 −3/h 0 3/h
wn̂ −6/h 6/h

2.4 Determination of weighting coefficients using B-
splines

Consider the interval [a, b] be the domain under consideration. Dividing it into a grid

of uniform length h = xq+1 − xq, where xq and xq+1 are two consecutive grid points in

the mesh sequence, for q = 1, 2, · · · , n̂. From differential quadrature method, the mth

order partial derivative approximation of a function u with respect to x at a particular

15

Table 2.3: Values of Φ′′i (w) at knot points
w Φ′′1 Φ′′2 Φ′′3 · · · Φ′′n̂−2 Φ′′n̂−1 Φ′′n̂
w1 0 0 0
w2 6/h2 −12/h2 6/h
w3 6/h2 −12/h2 6/h2

... · · · · · · · · ·
wn̂−2 6/h2 −12/h2 6/h2

wn̂−1 6/h2 −12/h2 6/h2

wn̂ 0 0 0

point xq is given as [22]

u(m)
x (xq, t) =

n̂∑
`=1

Ω̂
(m)
q` u(x`, t), q = 1, 2, · · · , n̂. (2.9)

The weights corresponding to the first order derivatives are calculated using modified

cubic B-spline basis functions Φp(w) as

Φ
′

p(wλ) =
n̂∑
`=1

Ω̂
(1)
λ` Φ(w`), λ, p = 1, 2, · · · , n̂. (2.10)

For wλ = w1, on the boundary point w1, equation (2.10) becomes

Φp
′
(w1) =

n̂∑
`=1

Ω̂
(1)
1` Φ(w`), p = 1, 2, · · · n̂. (2.11)

From equation (2.11), we get the following tridiagonal system as

6 1
0 4 1

...
1 4 1

1 4 0
1 6





Ω̂
(1)
11

Ω̂
(1)
12

Ω̂
(1)
13
...

Ω̂
(1)
1n̂−1

Ω̂
(1)
1n̂


=



−6/h
6/h
...
...
0
0
0


. (2.12)

The solution of above system provides us the required weighting coefficients[
Ω̂

(1)
11 Ω̂

(1)
12 · · · Ω̂

(1)
1n̂−1 Ω̂

(1)
1n̂

]T
, the above tridiagonal system (2.12) can be solved

16

easily by applying the "Thomas Algorithm " [37] in MATLAB. Similarly, we can also

find the weighting coefficients for second knot point wλ = w2, the approximation is

given as

Φ
′

p(w2) =
n̂∑
`=1

Ω̂
(1)
2` Φ(w`), p = 1, 2, · · · n̂. (2.13)

This will give us the following tridiagonal system as

6 1
0 4 1

...
1 4 1

1 4 0
1 6





Ω̂
(1)
21

Ω̂
(1)
22

Ω̂
(1)
23
...

Ω̂
(1)
2n̂−1

Ω̂
(1)
2n̂


=



−3/h
0

3/h
...
0
0


. (2.14)

By solving the above tridiagonal system (2.14) for Ω̂
(1)
2n̂ , we get the second column of

weighting coefficients matrix. The weighting coefficients Ω̂
(1)
λ` for λ = 3, 4, ..., (n̂ − 1)

can be computed in same way. On boundary w = wn̂, we have

6 1
0 4 1

...
1 4 1

1 4 0
1 6





Ω̂
(1)
n̂1

Ω̂
(1)
n̂2

Ω̂
(1)
n̂3
...

Ω̂
(1)
n̂n̂−1

Ω̂
(1)
n̂n̂


=



0
0
0
...

−6/h
6/h


. (2.15)

Hence, by following above procedure for λ = 1, 2, · · · , n̂, we can find the weighting

coefficients for each wλ. Further, Shu’s recurrence formula [22] or multiplication of

matrices approach [22] given in Chapter 1 can be used to determine the weighting

coefficients for second and higher order derivatives.

In particular, for n̂ = 7 we have computed the following matrices of weights, Ω̂7×7 for

17

first and second derivative approximations as

Ω̂
(1)
7×7 =



−7.6076 9.6461 −2.5846 0.6923 −0.1846 0.0461 −0.0076
−2.7846 −1.2923 5.1692 −1.3846 0.3692 −0.0923 0.0153

0.7461 −4.4769 −0.0923 4.8461 −1.2923 0.3230 −0.0538
−0.2000 1.2000 −4.8000 0 4.8000 −1.2000 0.2000

0.0538 −0.3230 1.2923 −4.8461 0.0923 4.4769 −0.7461
−0.0153 0.0923 −0.3692 1.3846 −5.1692 1.2923 2.7846

0.0076 −0.0461 0.1846 −0.6923 2.5846 −9.6461 7.6076


,

Ω̂
(2)
7×7 =



28.9384 −73.3846 66.1846 −30.1846 11.3538 −3.5999 0.6923
28.9384 −50.1230 7.1999 22.9846 −12.7384 4.7076 −0.9692

5.6769 19.6615 −50.1230 13.0153 19.6615 −10.2461 2.3538
−5.1230 16.3384 13.8461 −50.1230 13.8461 16.3384 −5.1230

2.3538 −10.2461 19.6615 13.0153 −50.1230 19.6615 5.6769
−0.9692 4.7076 −12.7384 22.9846 7.2000 −50.1230 28.9384

0.6923 −3.5999 11.3538 −30.1846 66.1846 −73.3846 28.9384


.

2.5 The procedure of implementation of DQM

In this section, the implementation procedure for linear and non-linear partial differ-

ential equations (PDEs) is described. We consider the general form of second order

non-linear partial differential equation as

ut(x, t) = F (x, t, uγ(x, t), ux(x, t), uxx(x, t)) , (x, t) ∈ ς × [0, T ∗] , (2.16)

u(x, 0) = ψ(x), x ∈ [a, b],

where ς = [a, b] and γ ∈ Z. The first and second order spatial derivative approximations

at a point xq by differential quadrature method is given by

ux(xq, t) =
n̂∑
`=1

Ω̂
(1)
q` u(x`, t),

uxx(xq, t) =
n̂∑
`=1

Ω̂
(2)
q` u(x`, t), q = 1, 2, · · · , n̂,

(2.17)

where n̂ is the total number of grid points. We calculate the weights Ω̂q` by using

modified cubic B-splines as discussed in previous section. First we use the differential

18

quadrature approximations (2.17) of spatial derivatives in equation (2.16) to obtain

the system of non-linear ordinary differential equations as

du(xq, t)

dt
∼= F

(
xq, t, u

γ(xq, t),
n̂∑
`=1

Ω̂
(1)
q` u(x`, t),

n̂∑
`=1

Ω̂
(2)
q` u(x`, t)

)
, (x, t) ∈ ς × [0, T ∗] ,

(2.18)
u(xq, 0) = ψ(xq), q = 1, 2, · · · , n̂,

where ς = [a, b] and γ ∈ Z. Equation (2.18) is the system of n̂ non-linear ordinary

differential equations with n̂ number of unknowns. The system (2.18) can be solved by

using any suitable numerical method. We utilize the Runge Kutta (RK-4) method of

order 4 to solve this system. The description of method is given below.

Dividing [0, T ∗] into m̂ sub-intervals, the step size h =
T ∗

m̂
and tk = kh, k = 0, 1, 2, · · · , m̂.

The procedure of discretization by RK-method for system (2.18) is described as follows

[38]

u(xq, tk+1) = u(xq, tk) +
1

6
(Kq

1 + 2Kq
2 + 2Kq

3 +Kq
4) , (2.19)

where

Kq
1 =hgq

(
tk, {ui(tk)}n̂i=1

)
,

Kq
2 =hgq

(
tk +

h

2
,

{
ui(tk) +

Ki
1

2

}n̂
i=1

)
,

Kq
3 =hgq

(
tk +

h

2
,

{
ui(tk) +

Ki
2

2

}n̂
i=1

)
,

Kq
4 =hgq

(
tk + h,

{
ui(tk) +Ki

3

}n̂
i=1

)
,

with the initial conditions

uq(t0) = ψ(xq), q = 1, 2, · · · , n̂.

2.6 Application of the modified cubic B-splines DQM

For the sake of application of the modified cubic B-splines differential quadrature

method, we consider some well known non-linear PDEs such as Fisher type reaction dif-

fusion equation, Fitzhugh-Nagumo equation with time dependent coefficients, parabolic

19

equation and Burgers’ equations . These PDEs model the scientific and engineering

problems. For example, Fitzhugh-Nagumo equation has many applications in auto-

catalytic chemical reactions, propagation of flame, neurophysiology, nuclear reactor

theory and logistic population growth [39]. The formation structure of Burgers’ equa-

tion is same as the 1-D Navier-Stoke’s equations excluding the stress term. Therefore,

Burgers’ equation supports us in modeling the various fluid mechanics problems as

well as in general transport and wave mechanics. Various numerical techniques have

been used to solve these models. We solved these partial differential equations by using

modified cubic B-splines DQM and the obtained results along with maximum absolute

errors L∞ are displayed with the help of tables and figures. The numerical results are

compared with exact solutions to demonstrate the accuracy and efficiency of proposed

scheme.

We discuss a family of non-linear partial differential equations [40]

∂u

∂t
= β

∂2u

∂x2
+ g(u), x ∈ (−∞,∞), t ≥ 0. (2.20)

Equation (2.20) is one dimensional Fisher type reaction diffusion equation (FRDE),

with β > 0 is a diffusion coefficient and g(u) is non-linear reaction term. For β = 1, we

solve the equation (2.20) with different non-linear reaction terms. For example, setting

g(u) = −u(1− u)(γ − u), equation (2.20) becomes Fitzhugh-Nagumo equation

∂u

∂t
=
∂2u

∂x2
− u(1− u)(γ − u), (2.21)

where 0 < γ < 1. In [27] R. Jiwari et. al proposed the polynomial based DQM to

determine the numerical solution of equation (2.21). S. Abbasbandy [41] find out the

solition solution of equation (2.21) by using the Homotopy analysis method.

If we set γ = −1 then equation (2.21) will become the Newell Whitehead equation [42].

∂u

∂t
=
∂2u

∂x2
+ u(1− u2). (2.22)

Newell Whitehead equation describe the envelop of modulated roll solution in system

along with too large unbounded space direction.

20

2.6.1 Generalized Fitzhugh-Nagumo equations

Example 1. Consider the non-linear Fitzhugh-Nagumo equation [27]

ut = uxx − u(1− u)(ρ− u), (x, t) ∈ ϑ× [0, T], (2.23)

with the initial and the boundary conditions

u(x, 0) = ξ(x) :=
1+tanh

(x/2√2
)

2
, x ∈ [a, b].

u(a, t) = η1(t) :=

1+tanh


(
a− 2ρ−1√

2
t
)/

2
√

2


2

,

u(b, t) = η2(t) :=

1+tanh


(
b− 2ρ−1√

2
t
)/

2
√

2


2

,

where ϑ = [a, b] and ρ is constant. The exact solution of equation (2.23) is given in

[27]. Applying modified cubic B-splines differential quadrature method on equation

(2.23), we have the following first order non-linear system of ODEs as

du(xq, t)

dt
=

n̂−1∑
`=2

Ω̂
(2)
q` u(x`, t)−u(xq, t) (1− u(xq, t)) (ρ− u(xq, t)) +

(
Ω̂

(2)
q1 η1 + Ω̂

(2)
qn̂ η2

)
,

(2.24)
u(xq, 0) = ξ(xq), q = 2, 3, ... , n̂− 1.

Equation (2.24) is the system of n̂− 2 equations with same number of unknowns. This

system is solved by RK-4 method in MATLAB. Table (2.4) and (2.5) lists the numerical

results and Figure (2.1) represents the comparison of solutions and maximum absolute

error of equation (2.23) at a = −b = −10, ρ = 3/4, −2. From Table (2.4), (2.5) and

Figure (2.1) we can see that the obtained results are very closed to the exact solutions

that demonstrates the accuracy of the method.

Example 2. Consider the non-linear Fitzhugh-Nagumo equation with time dependent

coefficients [27]

ut = cos(t)uxx − cos(t)ux − 2 cos(t) [u(1− u)(ρ− u)] , (x, t) ∈ ϑ× [0, T], (2.25)

with the initial and the boundary conditions

u(x, 0) = ζ(x) :=
ρ+ρ tanh(x2 ρ)

2
, x ∈ [a, b],

21

−10
−5

0
5

10

0

2

4

6
0

0.2

0.4

0.6

0.8

1

xt

u(
x,

t)

(a) Numerical solution when ρ = 3/4

−10
−5

0
5

10

0

2

4

6
0

0.2

0.4

0.6

0.8

1

xt

u(
x,

t)

(b) Exact solution when ρ = 3/4

−10
−5

0
5

10

0

2

4

6
0

0.2

0.4

0.6

0.8

1

xt

u(
x,

t)

(c) Numerical solution when ρ = −2

−10
−5

0
5

10

0

2

4

6
0

0.2

0.4

0.6

0.8

1

xt

u(
x,

t)

(d) Exact solution when ρ = −2

−10
−5

0
5

10

0

2

4

6
0

1

2

3

4

5

6

x 10
−5

xt

A
bs

ol
ut

e
E

rr
or

(e) Absolute error L∞ when ρ = 3/4

−10
−5

0
5

10

0

2

4

6
0

0.5

1

1.5

2

x 10
−3

xt

A
bs

ol
ut

e
E

rr
or

(f) Absolute error L∞ when ρ = −2

Figure 2.1: Comperison of numerical and exact solutions of equation (2.23) with abso-
lute error L∞ for ∆t = 0.05, ρ = 3/4, −2 upto time t=5.

22

Table 2.4: Comparison of numerical and exact solutions at ρ = 0.75, h=0.05 and n̂ = 40
for different values of x and t.

x t uDQM uExact EDQM

−8.0 0.2 0.0033 0.0033 1.8914e−5

0.4 0.0031 0.0031 1.8831e−5

0.6 0.0030 0.0029 1.8262e−5

0.8 0.0028 0.0028 1.7476e−5

1.0 2.3 0.5327 0.5329 2.7504e−5

2.5 0.5203 0.5205 1.7665e−4

2.7 0.5079 0.5080 7.7467e−5

2.9 0.4955 0.4955 2.2042e−5

5.0 1.5 0.9588 0.9593 4.2554e−4

2.0 0.9553 0.9541 4.7304e−4

3.0 0.9413 0.9418 5.7775e−4

5.0 0.9068 0.9076 8.1806e−4

u(a, t) = σ1(t) :=
ρ+ρ tanh(1

2
(a−(3−ρ) sin(t))ρ)

2
,

u(b, t) = σ2(t) :=
ρ+ρ tanh(1

2
(b−(3−ρ) sin(t))ρ)

2
,

where ϑ = [a, b] and ρ is constant. The exact solution of equation (2.25) is given in

[27]. Similarly, by following the procedure of implementation, we apply the modified

cubic B-splines differential quadrature method on equation (2.25) to get the reduced

system of non-linear ODEs as

du(xq, t)

dt
= cos(t)

(
n̂−1∑
`=2

Ω̂
(2)
q` u(x`, t)−

n̂−1∑
`=2

Ω̂
(1)
q` u(x`, t)− 2 (u(xq, t) (1− u(xq, t)) (ρ− u(xq, t)))

)
+ cos(t)

(
Ω̂

(2)
q1 σ1(t) + Ω̂

(2)
qn̂ σ2(t)− Ω̂

(1)
q1 σ1(t)− Ω̂

(1)
qn̂ σ2(t)

)
,

(2.26)

with initial conditions

u(xq, 0) = ζ(xq), q = 2, 3, ... , n̂− 1.

23

Table 2.5: Comparison between numerical and exact solutions with ρ = −2, h=0.05
and n̂ = 40.

x t uDQM uExact EDQM

−9.0 0.2 0.00284 0.00283 1.3188e−5

1.5 0.06849 0.06824 2.4734e−4

2.0 0.20406 0.20359 4.6615e−4

3.0 0.75629 0.75695 6.5612e−4

1.0 2.0 0.99663 0.99668 5.3528e−5

2.5 0.99903 0.99904 1.6339e−5

3.0 0.99972 0.99972 5.5109e−6

4.0 0.99997 0.99997 2.0748e−7

4.0 2.0 0.99959 0.99960 5.3941e−6

2.5 0.99988 0.99988 1.8429e−6

3.0 0.99996 0.99996 8.9423e−7

5.0 0.99999 0.99999 8.0263e−8

We solved the system (2.26) by using Runge Kutta (RK-4) method and the computed

numerical results with a = −b = −10 , at ρ = 3/4 and ρ = 1/2 are shown in Table

(2.6) and Figure (2.2). The maximum absolute error is also reported in Table (2.6)

at different values of time t with ρ = 3/4. Figure (2.2) is interpreting the comparison

between numerical and exact solutions with ρ = 3/4 and ρ = 1/2.

2.6.2 Numerical solutions of Burgers’ equation

For g(u) = −αux, equation (2.20) becomes

∂u

∂t
= β

∂2u

∂x2
− αu∂u

∂x
, (x, t) ∈ D × [0, T], (2.27)

where α and β are arbitrary constants and D = {x : 0 < x < 1}. Equation (2.27) is

well known Burgers’ equation [28].

Example 3. Consider Burgers’ equation (2.27) with α = β = 1 over the region [0, 1],

with the initial and boundary conditions

24

−10
−5

0
5

10

0

2

4

6
0

0.1

0.2

0.3

0.4

0.5

xt

u(
x,

t)

(a) Numerical solution when ρ = 1/2

−10
−5

0
5

10

0

2

4

6
0

0.1

0.2

0.3

0.4

0.5

xt

u(
x,

t)

(b) Exact solution when ρ = 1/2

−10
−5

0
5

10

0

2

4

6
0

0.2

0.4

0.6

0.8

xt

u(
x,

t)

(c) Numerical solution when ρ = 3/4

−10
−5

0
5

10

0

2

4

6
0

0.2

0.4

0.6

0.8

xt

u(
x,

t)

(d) Exact solution when ρ = 3/4

−10
−5

0
5

10

0

2

4

6
0

0.5

1

1.5

2

2.5

x 10
−3

xt

A
bs

ol
ut

e
E

rr
or

(e) Absolute error L∞ when ρ = 1/2

−10
−5

0
5

10

0

2

4

6
0

0.5

1

1.5

2

x 10
−3

xt

A
bs

ol
ut

e
E

rr
or

(f) Absolute error L∞ when ρ = 3/4

Figure 2.2: Comparison of the obtained results and exact solutions of problem (3.33)
along with absolute error L∞ for ∆t = 0.05, ρ = 1/2, 3/4 upto time t=5.

25

Table 2.6: Max absolute error L∞ of problem (2.25) at different time t with ρ =
1/2, 3/4 and h = 0.05.

T ρ = 0.75 ρ = 0.50
L∞ L∞

0.2 3.0058e−5 2.9193e−5

0.5 5.4611e−5 5.2827e−5

1.0 7.8140e−5 9.4866e−5

1.5 8.1858e−5 1.1720e−4

2.0 8.2123e−5 1.0419e−4

3.0 2.2241e−5 1.7875e−5

5.0 1.1022e−3 1.8567e−3

u(x, 0) = h(x) :=
(c+ 2β tanh(x))

α
,

u(0, t) = g1(t) :=
(c+ 2β tanh(−ct))

α
,

u(1, t) = g2(t) :=
(c+ 2β tanh(1− ct))

α
.

The exact solution of equation (2.27) is given in [28]. By applying the MCB-DQ method

on equation (2.27), we have following system of ODEs

du(xq, t)

dt
=β

(
n̂∑
`=2

Ω̂
(2)
q` u(x`, t)+Ω̂

(2)
q1 g1(t) + Ω̂

(2)
qn̂ g2(t)

)
− αu(xq, t)

(
n̂∑
`=2

Ω̂
(1)
ql u(x`, t)

)
− αu(xq, t)

(
Ω̂

(1)
q1 g1(t) + Ω̂

(1)
qn̂ g2(t)

)
,

(2.28)

with initial conditions

u(xq, 0) = h(xq), q = 2, 3, ... , n̂− 1.

The system (2.28) is solved by RK-4 method and the obtained results with maximum

absolute error L∞ are listed in Table (2.7) at different values of α, β and time t, with

n̂ = 21, c = 0.1 and ∆t = 0.01.

Example 4. In this example, problem (2.27) is solved with different initial and bound-

ary conditions as

26

Table 2.7: Numerical results of equation (2.27) at different values of α, β and time t
by present method.

‖E(u)‖∞

α β t = 0.1 t = .25 t = 0.5

1 0.01 3.20e−5 7.77e−5 1.53e−4

0.001 4.49e−7 9.06e−7 1.67e−6

0.0001 2.07e−8 2.37e−8 3.03e−8

0.0001 1.99e−9 1.99e−9 2.01e−9

0.1 0.01 3.20e−4 7.77e−4 1.53e−4

0.001 4.49e−6 9.06e−6 1.67e−5

0.0001 2.07e−7 2.37e−7 3.03e−7

0.0001 1.99e−8 1.99e−8 2.01e−8

u(x, 0) = 2x, x ∈ [0, 1],

u(0, t) = 0, and u(1, t) = 2/1 + 2t, t ∈ [0, T].

The exact solution of equation (2.27) is given in [43]. The obtained numerical results

are displayed in Table (2.8) for different values of x and t with n̂ = 5 and ∆t = 0.002.

Table (2.8) lists the comparison of solutions of Example (4) along with the maximum

absolute error L∞.

2.6.3 Numerical solutions of non-linear generalized Burger-Fisher
equation

When we set g(u) = δuγux + ρu(uγ − 1) and β = 1, the equation (2.20) becomes the

generalized non-linear Burger-Fisher equation [44] as

∂u

∂t
− ∂2u

∂x2
+ δuγ

∂u

∂x
+ ρu(uγ − 1) = 0, (x, t) ∈ ϑ× [0, T ∗]. (2.29)

27

Table 2.8: Comparison of solutions by present method and exact solutions for h = 0.002
and n̂ = 5.

x t uDQM uExact EDQM

0.01 0.2 0.1428571 0.1428571 5.2096e−11

0.5 0.0999999 0.1000000 1.5280e−11

0.8 0.0769230 0.0769230 6.8731e−12

0.3 0.3 0.3749999 0.3750000 1.0266e−11

0.7 0.2499999 0.2500000 2.9664e−11

0.9 0.2142857 0.2142857 1.8838e−11

0.7 0.3 0.8750000 0.8750000 2.5090e−10

0.6 0.6363636 0.6363636 8.9339e−11

0.9 0.5000000 0.5000000 4.0757e−11

0.9 0.5 0.90000000 0.9000000 7.1191e−11

0.7 0.7500000 0.7500000 3.9697e−11

0.9 0.6428571 0.6428571 2.4301e−11

A significant amount of research work has been done for the analysis of Burgers’ and

Burger-Fisher equations. A number of techniques have been followed by different math-

ematicians and physicists to solve Burger-Fisher equations. D. Kaya and E. L Sayed

[45] studied the explicit solutions of Burger-Fisher equation. To solve this equation

Wazwaz [46] manifested the tanh method. Somalian [47] presented the variational iter-

ative method to find the solutions of Burger-Fisher equation. We also have solved some

examples of Burger-Fisher equation with different values of parameters by MCB-DQ

method.

Example 5. Consider the generalized form of Burger-Fisher equation (2.29), with the

following initial and boundary conditions

28

u(x, 0) = h(x) =

(
1

2
− 1

2
tanh

(
δγx

2(1 + ρ)

))γ−1

, 0 ≤ x ≤ 1,

u(0, t) = ξ1(t) =

(
1

2
− 1

2
tanh

(
δγ

2(1 + ρ)

[
−

(
δ2 + ρ(1 + γ)2

δ(1 + γ)

)
t

]))γ−1

,

u(1, t) = ξ2(t) =

(
1

2
− 1

2
tanh

(
δγ

2(1 + ρ)

[
1−

(
δ2 + ρ(1 + γ)2

δ(1 + γ)

)
t

]))γ−1

.

where α, δ and γ are the constants. The exact solution of equation (2.29) is given in

[44]. By applying the MCB-DQ method, we have the following system of non-linear

ODEs as

du(xq, t)

dt
=

n̂−1∑
`=2

Ω̂
(2)
q` u(x`, t) + δuγ(xq, t)

[
n̂−1∑
`=2

Ω̂
(1)
q` u(x`, t) + Ω̂

(1)
q1 ξ1(t) + Ω̂

(1)
qn̂ ξ2(t)

]
+

δu(xq, t) (uγ(xq, t)− 1) +
(

Ω̂
(2)
q1 ξ1(t) + Ω̂

(2)
qn̂ ξ2(t)

)
,

(2.30)

u(xq, 0) = h(xq), q = 2, 3, ..., n̂− 1.

The obtained system (2.30) is solved by RK-4 method and the computed results are

displayed in Table (2.9) and (2.10) for different values of α, γ and δ.

Table 2.9: Numerical results of equation (2.29) for γ = 1 and δ = ρ at different times
t.

‖E(u)‖∞

t δ = ρ = 0.001 δ = ρ = 0.01 δ = ρ = 0.1 δ = ρ = 0.5 δ = ρ = 1.0

0.2 3.6637e−14 3.6422e−11 3.6207e−8 4.3946e−6 3.3677e−14

0.4 3.7747e−14 3.8382e−11 3.8860e−8 5.0658e−6 4.0978e−5

0.6 4.9515e−14 5.0171e−11 5.0694e−8 6.4112e−6 4.6139e−5

0.8 6.1395e−14 6.2064e−11 6.2578e−8 7.5903e−6 6.6005e−5

1.0 7.3274e−14 7.3971e−11 7.4420e−11 5.5740e−6 4.1786e−5

29

Table 2.10: Numerical results of equation (2.29) for h = 0.005, n̂ = 7, γ = 2 and
δ = ρ = 1.

x t uDQM uExact EDQM

0.1 0.2 0.77019 0.77028 9.0827e−5

0.4 0.83338 0.83349 1.0217e−4

0.6 0.88317 0.88327 9.6179e−5

0.8 0.92023 0.92031 8.0058e−5

0.4 0.1 0.69914 0.69920 6.1122e−5

0.3 0.77365 0.77374 9.1177e−5

0.6 0.86243 0.86253 1.0084e−4

0.9 0.92178 0.92186 7.9749e−5

0.8 0.2 0.69118 0.69122 3.9896e−5

0.5 0.80028 0.80034 6.5851e−5

0.7 0.85749 0.85755 6.7374e−5

0.9 0.90135 0.90141 5.9434e−5

30

Chapter 3

A Modified Method for Solving
Non-linear Time and Space Fractional
Partial Differential Equations

In this chapter, we extend the differential quadrature method (DQM) for solving time

and space fractional non-linear PDEs on a semi infinite domain. Fractional order partial

and ordinary differential equations are extensively used in various fields of engineering

and sciences. During some last decades a number of applications of fractional calculus

have been appeared, specially in the biological disease problems and bioengineering

[1, 2], chemical reactions, underwater flow problems in fluid dynamics [3], signal pro-

cessing [4], viscoelasticity theory [5, 6], fractional quantum mechanics, robotics and

electronics [7, 8, 9] etc. Several methods have been developed and many approaches

are utilized to obtain the solutions of these fractional differential equations.

In the present work, we have proposed a method based on differential quadrature

method (DQM) for both time and space fractional PDEs. The Lagrange interpola-

tion polynomials are used as test functions, but the fractional derivative of Lagrange

polynomials is a big hurdle in classical DQM. To overcome this problem, we represent

the Lagrange polynomials in terms of shifted Legendre polynomials by constructing a

transformation matrix which transforms the Lagrange polynomials into shifted Legen-

dre polynomials of arbitrary order. Transformation matrices are also used to represent

the Caputo fractional derivative of Lagrange polynomials in terms of Caputo fractional

31

derivative of shifted Legendre polynomials. We obtain the new weighting coefficients

matrices for space fractional derivatives by shifted Legendre polynomials and use these

in conversion of a non-linear fractional PDEs into a system of non-linear fractional

ODEs. For the system of non linear time fractional ODEs, we utilize the Adam Bash-

forth Moulton predictor-corrector approach [48]. Comparison analysis of the proposed

method with some well known methods is also provided. We have also discussed the

convergence analysis for the proposed method. Many engineers can utilize the present

technique for solving their non-linear time and space fractional models.

3.1 Preliminaries

Our main focus is to derive the weighting coefficients matrices for the approximations

of fractional derivatives. Some basic definitions of fractional integrals and differential

operators are used in the derivation of weighting coefficient matrices which are as

follows [49]

Riemann Liouville differential and integral operator of order α

Let q be an integer such that q − 1 < α < q and h ∈ ACq[a1, a2]. The left and right

Riemann Liouville fractional order, α, derivative is

xD
α
a1
h(x) =

1

Γ(q − α)

dq

dxq

x∫
a1

(x− ς)q−α−1h(ς)dς, (3.1)

xD
α
a2
h(x) =

(−1)q

Γ(q − α)

dq

dxq

a2∫
x

(ς − x)q−α−1h(ς)dς, (3.2)

where a1 ≤ x ≤ a2, q = dαe and h ∈ ACq[a1, a2]. The left and right Riemann Liouville

fractional integral operator are

xD
−α
a1
h(x) =

1

Γ(α)

x∫
a1

(x− ς)α−1h(ς)dζ, (3.3)

xD
−α
a2
hx) =

1

Γ(α)

a2∫
x

(ς − x)α−1h(ς)dς, (3.4)

32

where a1 ≤ x ≤ a2, q = dαe and α ∈ R+.

Caputo differential operator of order α

The left and right Caputo fractional differential operator are

C
xD

α
a1
h(x) =

1

Γ(q − α)

x∫
a1

(x− ς)q−α−1h(q)(ς)dς, (3.5)

C
xD

α
a2
h(x) =

(−1)q

Γ(q − α)

a2∫
x

(ς − x)q−α−1h(q)(ς)dς, (3.6)

where a1 ≤ x ≤ a2, q = dαe and α ∈ R+.

3.2 Development of the proposed method

We propose a numerical scheme for solving non-linear fractional order PDEs.

Consider the following general form of non-linear fractional PDE as

tD
αu(x, t) = F

(
x, t, uγ(x, t), xD

β1u(x, t), xD
β2u(x, t)

)
, (x, t) ∈ ϑ× [0, T ∗] ,

(3.7)
u(x, 0) = ψ(x),

where ϑ = [a, b], 0 < α, β1 ≤ 1, 0 < β2 ≤ 2 and γ ∈ Z. Assuming a function u such

that it satisfies the equation (3.7), and is sufficiently smooth that it allows us to write

the following approximation

xD
βu(xp, t) ∼=

n̂∑
q=1

Ω̂(β)
pq u(xq, t), p = 1, 2, 3, ..., n̂, (3.8)

where Ω̂
(β)
pq are the weights for β order derivative approximation. Our main target is

to compute these coefficients. First we construct the transformation matrices which

transform the Lagrange polynomials into shifted Legendre polynomials and then with

the help of these matrices we compute the weighting coefficients.

33

3.2.1 Transformation matrices

The Lagrange interpolation of a function u is given by

u(x, t) =
n̂∑
q=1

u(xq, t)lq(x), (3.9)

where

lq(x) =
n̂−1∏

l=0,l 6=q

x− xl
xq − xl

. (3.10)

The fractional derivatives of lq(x) are very difficult to calculate, so we represent the

Lagrange polynomials in terms of shifted Legendre polynomials. The transformation

matrices are constructed for this purpose. The Lagrange polynomials lq(x) can be

expressed by shifted Legendre polynomials as

lq(x) =
n̂−1∑
p=0

CqpĤp(x), q = 0, 1, 2, ..., n̂− 1, (3.11)

where

Ĥp(x) =

p∑
r=0

(−1)r+p
Γ(r + p+ 1)

Γ(r − p+ 1) (p!)2 x
r. (3.12)

In vector form

L = Cn̂×n̂ Ĥ,

where

L =
[
l0(x), l1(x), l2(x), · · · ln̂−2(x), ln̂−1(x)

]T
,

Ĥ =
[
f0(x), f1(x), f2(x), · · · fn̂−2(x), fn̂−1(x)

]T
,

and

Cn̂×n̂ =



ς0,0 ς0,1 ς0,2 · · · ς0,n̂−2 ς0,n̂−1

ς1,0 ς1,1 ς1,2 · · · ς1,n̂−2 ς1,n̂−1

ς2,0 ς2,1 ς2,2 · · · ς2,n̂−2 ς2,n̂−1
...

...
...

...
ςn̂−2,0 ςn̂−2,1 ςn̂−2,2 · · · ςn̂−2,n̂−2 ςn̂−2,n̂−1

ςn̂−1,0 ςn̂−1,1 ςn̂−1,2 · · · ςn̂−1,n̂−2 ςn̂−1,n̂−1


.

34

For the present method, the collocation points are taken as xk =
k − 1

n̂− 1
, where k =

1, 2, ..., n̂. Using these points in (3.11), we have

Ln̂×n̂ = Cn̂×n̂ Ĥn̂×n̂, (3.13)

where

Ln̂×n̂ =


l0(x1) l0(x2) l0(x3) · · · l0(xn̂−1) l0(xn̂)
l1(x1) l1(x2) l1(x3) · · · l1(xn̂−1) l1(xn̂)
l2(x1) l2(x2) l2(x3) · · · l2(xn̂−1) l2(xn̂)

...
...

...
...

ln̂−1(x1) ln̂−1(x2) ln̂−1(x3) · · · ln̂−1(x
n̂−1) ln̂−1(x

n̂
)

 ,
and

Ĥn̂×n̂ =



f0(x1) f0(x2) f0(x3) · · · f0(xn̂−1) f0(xn̂)
f1(x1) f1(x2) f1(x3) · · · f1(xn̂−1) f1(xn̂)
f2(x1) f2(x2) f2(x3) · · · f2(xn̂−1) f2(xn̂)

...
...

...
...

fn̂−2(x1) fn̂−2(x2) fn̂−2(x3) · · · fn̂−2(x
n̂−1) fn̂−2(x

n̂
)

fn̂−1(x1) fn̂−1(x2) fn̂−1(x3) · · · fn̂−1(xn̂−1) fn̂−1(xn̂)


.

We can calculate the matrices Ln̂×n̂ and Ĥn̂×n̂ from equations (3.10) and (3.12), we get

the transformation matrices Cn̂×n̂ as Cn̂×n̂ = Ln̂×n̂(Ĥn̂×n̂)−1. In particular for n̂ = 7

and x` =
`− 1

n̂− 1
, ` = 1, 2, · · · , n̂, we have the following transformation matrix C as

C7×7 =



0.0488 −0.1464 0.1940 −0.2249 0.1870 −0.1280 0.0701
0.2571 −0.5142 0.5142 0 0.3506 0.5142 −0.4207
0.0321 −0.0321 −0.8035 0.6750 −0.2805 −0.6428 1.0519
0.3238 0 0.1904 0 0.8883 0 −1.4025
0.0321 0.0321 −0.8035 0.6749 −0.2805 0.6428 1.0519
0.2571 0.5142 0.5142 0 −0.3506 −0.5142 −0.4207
0.0488 0.1464 0.1940 0.2250 0.1870 0.1285 0.0701


.

3.2.2 Weighting coefficient matrices for fractional derivatives

Applying the Caputo fractional differential operator on equation (3.9), we have

xD
β
0u(x, t) =

n̂∑
q=1

u(xq, t) xD
β
0 lq(x). (3.14)

35

By using equation (3.11), we get

xD
β
0u(x, t) =

n̂∑
q=1

u(xq, t) xD
β
0

[
n̂−1∑
p=0

CqpĤp(x)

]
, (3.15)

or

xD
β
0 u(x, t) =

n̂∑
q=1

[
n̂−1∑
p=0

Cqp xD
β
0 Ĥp(x)

]
u(xq, t). (3.16)

From equation (3.8) and (3.16), we can write the expression for weighting coefficients

matrices Ω̂β
n̂×n̂ as

Ω̂β
qk =

n̂−1∑
p=0

Cqp xD
β
0 Ĥp(xk), k = 1, 2, 3, · · · , n̂, (3.17)

where

xD
β
0 Ĥp(x) =

p∑
r=0

(−1)r+p
Γ(r + p+ 1) Γ(r + 1)

Γ(r − p+ 1) Γ(r + 1− β) (p!)2 x
r−β.

In particular, for n̂ = 7 and the collocation points x` =
`− 1

n̂− 1
, ` = 1, 2, · · · , n̂, we have

the following matrices of weighting coefficients for different values of β as

Ω̂
0.87

7×7 =



0 0 0 0 0 0 0
−1.6918 −4.3451 10.6364 −7.3527 3.7299 −1.1277 0.1511
−0.2749 −2.4291 −0.9675 5.1855 −1.9772 0.5296 −0.0663
−0.3468 0.4298 −3.7442 1.2917 2.8974 −0.5947 0.0668
−0.1453 −0.6235 1.8742 −6.1157 3.6478 1.4889 −0.1263
−0.2982 0.8976 −3.2509 6.2756 −10.5268 6.2977 0.6049

0.4597 −4.3969 13.6196 −24.4387 27.4568 −23.2333 10.5327


,

Ω̂
1.785

7×7 =



0 0 0 0 0 0 0
33.7604 −77.7742 58.8352 −20.9247 7.8848 −2.0275 0.2460
9.3751 3.7565 −35.1861 19.9513 4.1619 −2.4661 0.4074
6.6003 −12.9015 38.4270 −70.8470 45.9116 −8.0845 0.8941
5.6870 −14.7665 26.3135 −9.6999 −30.3347 24.2257 −1.4251
2.5293 3.1640 −27.7276 62.1810 −51.8979 −2.8330 −14.5841
17.9737 −110.2912 324.0292 −550.2484 589.2497 −360.2572 99.5442


.

36

3.3 The procedure of implementation

In this section, we describe the implementation of method for non-linear space and

time fractional partial differential equations. The approximation of space fractional

derivative of u by DQ method is given as

xD
βu(xp, t) ∼=

n̂∑
q=1

Ω̂(β)
pq u(xq, t), p = 1, 2, · · · , n̂, (3.18)

where n̂ are the collocation points taken as x` =
`− 1

n̂− 1
, ` = 1, 2, · · · , n̂, in the interval

[a, b]. The weighting coefficients Ω̂
(β)
pq can be obtained easily from equation (3.17). The

first step of the proposed method is to use equation (3.18) in equation (3.7) to obtain

the system of αth order ODEs as

tD
αu(xp, t) ∼= F

(
xp, t, u

γ(xp, t),
n̂∑
q=1

Ω̂(β1)
pq u(xq, t),

n̂∑
q=1

Ω̂(β2)
pq u(xq, t)

)
, (x, t) ∈ ϑ× [0, T ∗] ,

(3.19)
u(xp, 0) = ψ(xp), p = 1, 2, · · · , n̂,

where ϑ = [a, b], 0 < α, β1 ≤ 1, 1 < β2 ≤ 2 and γ ∈ Z. Equation (3.19) is the system

of n̂ number of non-linear fractional order, α, ODEs with n̂ number of unknowns,

{u(xi, t)}n̂i=1. The second step is to use the suitable method to solve fractional order,

α, system (3.19). In the present work, we utilize both the Runge Kutta (RK-4) and

Adam Bashforth Moulton predictor-corrector methods when α = 1 and 0 < α < 1,

respectively.

In case when 0 < α < 1, we will utilize the Adam Bashforth Moulton predictor-

corrector method [50] for solving the system of fractional ODEs. This technique is

followed by two basic steps, first is predictor in which a roughly approximation of the

required quantity is predicted by an explicit method and then the predicted value is

refined by the corrector step, which is an implicit method. Dividing [0, T ∗] into m̂

sub-intervals, the step size h =
T ∗

m̂
and tk = kh, k = 0, 1, 2, · · · , m̂. The procedure

of implementation of the Adam Bashforth Moulton predictor-corrector method for the

system (3.19) is as follows

37

Predictor value

The predictor values for fractional system of ODEs (3.19) are

uP (tn+1, xj) = u
(j)
0 +

1

Γ(α)

n∑
i=0

bi,n+1F

(
xj, ti, u(xj, ti),

n̂∑
k=1

Ω̂
(β1)
jk u(ti, xj),

n̂∑
k=1

Ω̂
(β2)
jk u(ti, xj)

)
,

where

bi,n+1 = hα

α
((n− i+ 1)α − (n− i)α).

Corrector value

With the help of above predictor values, the corrector values are obtained as

u(tn+1, xj)

= u
(j)
0 +

hα

Γ(α + 2)
F

(
tn+1, xj, u

P (tn+1, xj),
n̂∑
k=1

Ω̂
(β1)
jk uP (tn+1, xk),

n̂∑
k=1

Ω̂
(β2)
jk uP (tn+1, xk)

)

+
hα

Γ(α + 2)

n∑
k=0

ak,n+1F

(
tn+1, xj, u

P (tn+1, xj),
n̂∑
k=1

Ω̂
(β1)
jk uP (tn+1, xk),

n̂∑
k=1

Ω̂
(β2)
jk uP (tn+1, xk)

)
,

where

ak,n+1 =

{
nα+1 + (n+ 1)α(α− n), if k = 0,
(n− k)(α+1) + (n+ 2− k)(α+1) − 2(n+ 1− k)(α+1), if 1 ≤ k ≤ n.

From the mathematical analysis of this technique in [48], the order of convergence is

K = min(2, α + 1).

3.4 Convergence analysis

In this section, we explain the truncation error bound for any arbitrary fractional order

derivative of an unknown function g(x) by using present method.

Theorem 3.4.1. [43] Consider {xp}n̂p=1 are distinct n̂ nodes in an interval [a, b] and

suppose a one dimensional continuous function g(x) such that g ∈ C n̂[a, b]. Then for

38

the fractional derivative of g(x), xD
αg(x), i − 1 < α < i, i = 1, 2, the truncation

error Ti is given by

|Ti| ≤
1

(n̂− 2 + i)!
ei,

where n̂ = 1, 2, 3, ..., n̂ are the grid points and ei are positive constants for i = 1, 2.

Inequality shows that the absolute error approaches to zero when n̂→∞.

Proof. The Lagrange interpolation of function g is given by

g(x) =
n̂∑
j=1

li(x)g(xj) +
gn̂(η(x))

n̂!

n̂∏
i=1

(x− xi), (3.20)

where η ∈ [a, b], and lj(x) =
n̂∏

p=0,p 6=j

(x−xp)

(xj−xp)
.

Taking fractional derivative of (3.20) and using DQ method, we have

∂αg(xk)

∂xα
=

n̂∑
j=1

a
(α)
jk g(xj) + Ti, (3.21)

with Ti = 1
n̂!

∂α

∂xα

(
gn̂(η(x))q(x)

)
x=xk

, the truncation error and q(x) =
n̂∏
i=1

(x− xi). From

Leibnitz formula [48], we have

xD
α
a [gf](x) =

bαc∑
r=0

(
α
r

)
(Dr

ag) (x)
(
Dα−r
a f

)
(x) +

∞∑
r=bαc+1

(
α
r

)
(Dr

ag) (x)
(
Ir−αa f

)
(x).

(3.22)

In truncation error Ti for i = 1, we get 0 < α ≤ 1, and

T1 =
1

n̂!

[(
α
0

)
q(x)|x=xk

∂αgn̂(η(x))

∂xα

∣∣∣∣
x=xk

+
∞∑
r=1

(
α
r

)
dr

dxr
q(x)

∣∣∣∣
x=xk

Jr−α gn̂(η(x))
∣∣
x=xk

]
.

(3.23)

Also, for i = 2, we have 1 < α ≤ 2, and

T2 =
1

n̂!

[(
α
0

)
q(x)|x=xk

∂αgn̂(η(x))

∂xα

∣∣∣∣
x=xk

+

(
α
1

)
d

dx
q(x)

∣∣∣∣
x=xk

∂α−1gn̂(η(x))

∂xα−1

∣∣∣∣
x=xk

]

+
1

n̂!

∞∑
r=2

(
α
r

)
dr

dxr
q(x)

∣∣∣∣
x=xk

Jr−α gn̂(η(x))
∣∣
x=xk

.

(3.24)

39

At grid points q(xi) = 0, i = 0, 1, 2, ..., n̂, the equation (3.23) and (3.24) will reduce

to

T1 =
1

n̂!

n̂∑
r=1

(
α
r

)
dr

dxr
q(x)

∣∣∣∣
x=xk

Jr−α gn̂(η(x))
∣∣
x=xk

, (3.25)

T2 =
1

n̂!

[(
α
1

)
d

dx
q(x)

∣∣∣∣
x=xk

∂α−1gn̂(η(x))

∂xα−1

∣∣∣∣
x=xk

+
∞∑
r=2

(
α
r

)
dr

dxr
q(x)

∣∣∣∣
x=xk

Jr−α gn̂(η(x))
∣∣
x=xk

]
.

(3.26)

Since g(x) is continuous on [a, b] so bounded i.e
∣∣gn̂(x)

∣∣ ≤ H, H > 0,

and
∣∣∣∣ ∂α−1gn̂(η(x))

∂xα−1

∣∣∣
x=xk

∣∣∣∣ = K > 0. Also, q(x) =
n̂∏
i=1

(x− xi) is differentiable in [a,b], so

max
∣∣∣ drdxr q(x)

∣∣
x=xk

∣∣∣ = M > 0, r, k = 1, 2, ..., n̂. Then the equation (3.25) and (3.26)

will take the form as follows

T1 ≤
1

(n− 1)!

n̂∑
r=1

|αCr|M
Hr−α

Γ(r − α + 1)
, (3.27)

T2 ≤
1

n!

[
|αC1|MK + (n̂− 1)

n̂∑
r=2

|αCr|M
Hr−α

Γ(r − α + 1)

]
. (3.28)

Since
n̂∑
r=1

|αCr|M Hr−α

Γ(r−α+1)
> 0, K > 0, M > 0, let

n̂∑
r=1

|αCr| Hr−α

Γ(r−α+1)
M = e1 > 0, and

|αC1|MK + (n̂− 1)
n̂∑
r=2

|αCr|M Hr−α

Γ(r−α+1)
= e2 > 0.

Thus from (3.27) and (3.28), we have

|Ti| ≤
1

(n̂− 2 + i)!
ei.

This inequality shows that for the fractional derivative of g(x), the truncation error is

reciprocal to n̂, as n̂→∞, |Ti| → 0.

3.5 Application

For the sake of application of the proposed method we consider the fractional Huxley,

fractional Burger and generalized fractional Burger-Fisher equations as test problems.

40

3.5.1 Fractional Burgers’ equation

Consider the one dimensional non-linear space and time fractional Burgers’ equation

C
t D

αu(x, t) = C
xD

β2 u(x, t)− u C
xD

β1 u(x, t), (x, t) ∈ τ × [0, T ∗] , (3.29)

u(x, 0) = ϕ(x) := 2x,

u(0, t) = ϕ1(t) := 0, u(1, t) = ϕ2(t) :=
2

1 + 2t
,

where τ = (a, b), 0 < α, β1 ≤ 1, 0 < β2 ≤ 2. Exact solution of equation (3.29) with

α = β1 = 1 and β2 = 2 is given in [43]. Applying the proposed method on (3.29), we

get the following system of non-linear fractional ODEs in time as

C
t D

αu(xq, t) =
n̂−1∑
`=2

Ω̂
(β2)
q` u(x`, t)− u(xq, t)

(
n̂−1∑
`=2

Ω̂
(β1)
q` u(x`, t) + Ω̂

(β1)
q1 ϕ1(t) + Ω̂

(β1)
qn̂ ϕ2(t)

)
+ Ω̂

(β2)
q1 ϕ1(t) + Ω̂

(β2)
qn̂ ϕ2(t), q = 1, 2, · · · , n̂.

(3.30)

The obtained system (3.30) is solved by using Adam Bashforth Moulton predictor-

corrector method in MATLAB, and the obtained results are displayed in Table (3.1)

at different values of α, β1 and β2 which shows that the numerical solutions uMDQM

converges to the exact solutions uExact as α, β1 and β2 approaches to 1 and 2 respec-

tively. We also plot the exact solutions and the obtained solutions by proposed method

at x = 0.5 in Figure (3.1) with n̂ = 5 and h = 0.01 at different values of α, β1 and β2

and observe that the obtained results are in quite good agreement with exact solutions.

We can also have more accurate results by increasing n̂ and with smaller values of step

size h as mentioned in above theorem.

3.5.2 Fractional order Huxley equation

Consider the following general form of non-linear fractional Huxley equation

tD
αu(x, t) = xD

βu(x, t)− u(u− 1)(γ − u), (x, t) ∈ ϑ× [0, T ∗], (3.31)

u(x, 0) := ϕ(x) =

(
1 + tanh(x/2

√
2)

2

)
, 0 ≤ x ≤ 1,

u(0, t) := µ1(t) =

(
1 + tanh(t/4)

2

)
, u(1, t) := µ2(t) =

1

2

(
1 + tanh

{
1

2
√

2
− t

4

})
,

41

0 0.5 1 1.5 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

u(
1/

2,
t)

Numerical solutions at n̂ = 5 and h= 0.01

Numerical solution at α=1, β
1
=0.65, β

2
=1.63

Numerical solution at α=1, β
1
=0.83, β

2
=1.85

Numerical solution at α=1, β
1
=0.91, β

2
=1.93

Numerical solution at α=1, β
1
=1, β

2
=2

Exact solution at α=1, β
1
=1, β

2
=2

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

t

u(
1/

2,
t)

Numerical solutions at n̂ = 5 and h= 0.01

Numerical solution at α=0.70, β

1
=1, β

2
=2

Numerical solution at α=0.80, β
1
=1, β

2
=2

Numerical solution at α=0.90, β
1
=1, β

2
=2

Numerical solution at α=1, β
1
=1, β

2
=2

Exact solution at α=1, β
1
=1, β

2
=2

0 0.5 1 1.5 2
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

u(
1/

2,
t)

Numerical solutions at n̂ = 5 and h= 0.01

Numerical solution at α=0.75, β

1
=0.65, β

2
=1.60

Numerical solution at α=0.80, β
1
=0.75, β

2
=1.70

Numerical solution at α=0.85, β
1
=0.83, β

2
=1.80

Numerical solution at α=0.93, β
1
=0.91, β

2
=1.90

Numerical solution at α=1, β
1
=1, β

2
=2

Exact solution at α=β
1
=1, β

2
=2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

u(
x,

0.
75

)

Numerical solutions at n̂ = 7 and h= 0.01

Numerical solution at α=80, β
1
=0.75, β

2
=1.70

Numerical solution at α=85, β
1
=0.83, β

2
=1.80

Numerical solution at α=93, β
1
=0.91, β

2
=1.90

Numerical solution at α=1, β
1
=1, β

2
=2

Exact solution at α=1, β
1
=1, β

2
=2

Figure 3.1: Numerical results of equation (3.29) by proposed scheme at x = 0.5 and
n̂ = 5, 7, h = 0.01 for different values of α and β.

42

Table 3.1: Numerical results of problem (3.29) by proposed scheme at different values
of α, β1 and β2, with h = 0.002, n̂ = 5.

x t α = 0.90, β1 = 0.83, β2 = 1.85 α = 0.95, β1 = 0.91, β2 = 1.93 α = β1 = 1, β2 = 2

uMDQM uMDQM uMDQM uExact EMDQM

0.01 0.2 0.1625298 0.1517983 0.1428571 0.1428571 5.2096e−11

0.5 0.1205965 0.1093150 0.0999999 0.1000000 1.5280e−11

0.8 0.0948358 0.0848730 0.0769230 0.0769230 6.8731e−12

0.3 0.3 0.4277532 0.3992321 0.3749999 0.3750000 1.0266e−11

0.7 0.2982079 0.2716698 0.2499999 0.2500000 2.9664e−11

0.9 0.2579223 0.2336828 0.2142857 0.2142857 1.8838e−11

0.7 0.3 0.9126574 0.8927542 0.8750000 0.8750000 2.5090e−10

0.6 0.6773933 0.6555298 0.6363636 0.6363636 8.9339e−11

0.9 0.5365901 0.5167735 0.5000000 0.5000000 4.0757e−11

0.9 0.5 0.9152454 0.9071864 0.90000000 0.9000000 7.1191e−11

0.7 0.7646254 0.7568029 0.7500000 0.7500000 3.9697e−11

0.9 0.6563434 0.6490557 0.6428571 0.6428571 2.4301e−11

where 0 < α ≤ 1, 1 < β ≤ 2, ϑ ∈ [0, 1], t ∈ [0, T ∗], T ∗ > 0, and γ is constant.

The exact solutions of (3.31), when α = 1 and β = 2 is given in [51]. By using DQM

approximation (3.18) in problem (3.31), we obtain the following non-linear system of

fractional order ODEs as

tD
αu(xj, t) =

n̂−1∑
k=2

Ω̂
(β)
jk u(xk, t) + Ω̂

(β)
j1 µ1(t) + Ω̂

(β)
jn̂ µ2(t) + u(xj, t) (u(xj, t)− 1) (γ − u(xj, t)) ,

(3.32)
u(xj, 0) = ϕ(xj), j = 2, 3, · · · , n̂− 1.

We solved the problem (3.31) for γ = 1, and the results are shown with the help

of Figures and Tables. Table (3.2) lists the obtained numerical results at different

values of α and β, which demonstrate that the obtained results by proposed method

are converging to the exact solutions when α and β approach to 1 and 2 respectively.

Figure (3.2) is used to plot the exact solutions at α = 1, β = 2 along with the obtained

numerical solutions, at x = 0.5 and for different values of α and β. In Table (3.3),

we compare the obtained results with the results by Haar wavelet method [52] and

exact solutions. Where EMDQM and EHW represents the absolute error by modified

differential quadrature and Haar wavelet methods respectively. From the numerical

results displayed in Table (3.2) and (3.3), we can claim that our results are in quite

43

Table 3.2: Numerical results of equation (3.31) by proposed method at different values
of α, and β, with h = 0.005, n̂ = 7.

x t α = 0.80, β = 1.81 α = 0.90, β = 1.92 α = 1, β = 2,

uMDQM uMDQM uMDQM uExact uError

0.1 0.2 0.49639 0.49405 0.49268 0.49267 7.7390e−6

0.5 0.46065 0.45740 0.45533 0.45529 3.8524e−5

0.7 0.43656 0.43298 0.43068 0.43062 5.8182e−5

0.9 0.41262 0.40881 0.40637 0.40629 7.6717e−5

0.4 0.1 0.56161 0.55896 0.55789 0.55794 4.9156e−5

0.3 0.54114 0.53626 0.53313 0.53316 2.9097e−5

0.6 0.50678 0.50025 0.49571 0.49571 1.9417e−6

0.9 0.47106 0.46358 0.45834 0.45830 3.2893e−5

0.8 0.2 0.61695 0.61517 0.61430 0.61436 5.7539e−5

0.4 0.59473 0.59213 0.59037 0.59041 4.5690e−5

0.6 0.57141 0.56827 0.56600 0.56603 3.2970e−5

0.8 0.54744 0.54391 0.54130 0.54132 1.9607e−5

good agreement with the exact solutions and better than Haar wavelet method.

44

0 0.2 0.4 0.6 0.8 1
0.45

0.5

0.55

0.6

t

u(
1/

2,
t)

Numerical solutions at n̂ = 5 and h= 0.01

Numerical solution at α=1, β=1.55

Numerical solution at α=1, β=1.67

Numerical solution at α=1, β=1.78

Numerical solution at α=1, β=1.90

Numerical solution at α=1, β=2

Exact solution at α=1, β=2

0 0.2 0.4 0.6 0.8 1
0.45

0.5

0.55

0.6

t

u(
1/

2,
t)

Numerical solutions at n̂ = 5 and h= 0.005

Numerical solution at α=0.67, β=2

Numerical solution at α=0.77, β=2

Numerical solution at α=0.87, β=2

Numerical solution at α=1, β=2

Exact solution at α=1, β=2

0 0.2 0.4 0.6 0.8 1
0.45

0.5

0.55

0.6

t

u(
1/

2,
t)

Numerical solutions at n̂ = 5 and h= 0.01

Numerical solution at α=0.73, β=1.62

Numerical solution at α=0.78, β=1.80

Numerical solution at α=0.85, β=1.90

Numerical solution at α=1, β=2

Exact solution at α=1, β=2

0 0.2 0.4 0.6 0.8 1
0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

x

u(
x,

0.
66

)

Numerical solutions at n̂ = 5 and h= 0.01

Numerical solution at α=0.85, β=1.60

Numerical solution at α=0.90, β=1.75

Numerical solution at α=0.95, β=1.88

Numerical solution at α=1, β=2

Exact solution at α=1, β=2

Figure 3.2: Numerical results of Example (3.31) by proposed scheme at x = 0.5 and
n̂ = 5, h = 0.01 for different values of α and β.

45

Table 3.3: Comparison between solutions of problem (3.31) by present method with
exact solutions and Haar wavelet method at β = 2 and h = 0.01, n̂ = 5 .

t x uMDQM uExact EMDQM EHW

0.4 0.03125 0.455669 0.455641 2.8118e−5 9.5553e−5

0.28125 0.499707 0.499718 1.0838e−5 3.7861e−3

0.53125 0.543754 0.543800 4.6144e−5 1.2628e−2

0.71875 0.576400 0.576453 5.3785e−5 2.2813e−2

0.96875 0.618842 0.618930 8.8005e−5 4.9314e−2

0.6 0.03125 0.431016 0.430968 4.8723e−5 1.8745e−4

0.28125 0.474750 0.474740 1.0495e−5 6.3583e−3

0.53125 0.518878 0.518903 2.5337e−5 2.0833e−2

0.71875 0.551837 0.551870 3.3259e−5 3.7170e−2

0.96875 0.595011 0.595080 6.9748e−5 8.8748e−2

1.0 0.03125 0.382834 0.382747 8.6744e−5 4.2376e−4

0.28125 0.425334 0.425282 5.2244e−5 1.0439e−2

0.53125 0.468969 0.498952 1.7370e−5 3.2187e−2

0.71875 0.502067 0.502058 9.2660e−6 5.6207e−2

0.96875 0.546091 0.546120 2.9612e−5 1.7284e−1

3.5.3 Generalized fractional Burger-Fisher equation

Consider the generalized form of fractional Burger-Fisher equation [44]

∂αu

∂tα
− ∂β1u

∂xβ1
+ δuγ

∂β2u

∂xβ2
+ ρu(uγ − 1) = 0, (x, t) ∈ ϑ× [0, T ∗], (3.33)

subject to the initial and boundary conditions

u(x, 0) = h(x) =

(
1

2
− 1

2
tanh

(
δγx

2(1 + ρ)

))γ−1

0 ≤ x ≤ 1,

u(0, t) = ξ1(t) =

(
1

2
− 1

2
tanh

(
δγ

2(1 + ρ)

[
−

(
δ2 + ρ(1 + γ)2

δ(1 + γ)

)
t

]))γ−1

,

u(1, t) = ξ2(t) =

(
1

2
− 1

2
tanh

(
δγ

2(1 + ρ)

[
1−

(
δ2 + ρ(1 + γ)2

δ(1 + γ)

)
t

]))γ−1

,

where 0 < α, β2 ≤ 1, 1 < β1 ≤ 2, ϑ = [0, 1], t ∈ [0, T ∗], T ∗ > 0, and ρ, γ, δ are

constants. The exact solution of problem (3.33), when α = β2 = 1 and β1 = 2 is given

in [44]. We solve problem (3.33) in similar way by using derivative approximations

46

(3.18), we have the following non-linear system of fractional order ODEs

tD
αu(xj, t) =

n̂−1∑
k=2

Ω̂
(β1)
jk u(xk, t) + δuγ(xj, t)

[
n̂−1∑
k=2

Ω̂
(β2)
jk u(xk, t) + Ω̂

(β2)
j1 ξ1(t) + Ω̂

(β2)
jn̂ ξ2(t)

]
+ δu(xj, t) (uγ(xj, t)− 1) +

(
Ω̂

(β1)
j1 ξ1(t) + Ω̂

(β1)
jn̂ ξ2(t)

)
,

(3.34)

with the initial conditions

u(xj, 0) = h(xj), j = 2, 3, · · · , n̂− 1.

The system (3.34) is solved by Adam Bashforth Moulton predictor-corrector method

in MATLAB, and the obtained results are displayed below with the help of Figures

and Tables. Table (3.4) lists the numerical solutions of equation (3.33) by proposed

scheme at different values of α, β1 and β2. We also compared the obtained re-

sults with the exact solutions, the variational iteration method [53], the differential

transformation method [53] and the homotopy perturbation method [44] as shown

in Table (3.5), (3.6), and (3.7) by choosing different values of δ, ρ and γ. Where

EMDQM , EHPM , EV IM and ERDTM in the following tables presents the absolute error

by modified differential quadrature method, homotopy perturbation method, variation

iteration method and reduced differential transformation method respectively. Figure

(3.3) demonstrate the solutions of problem (3.33) by proposed scheme at different val-

ues of α, β1 and β2. It can be observed from Table (3.4) and Figure (3.3), that our

results are converging to the exact solutions as α, β1 and β2 approach to the integer

values.

47

Table 3.4: Numerical results of problem (3.33) at different values of α, β1 and β2 with
h = 0.005, n̂ = 7, γ = 2 and δ = ρ = 1.

x t α = 0.71, β2 = 0.76, β1 = 1.73 α = 0.85, β2 = 0.83, β1 = 1.88 α = β2 = 1, β1 = 2,

uMDQM uMDQM uMDQM uExact EMDQM

0.1 0.2 0.77306 0.77135 0.77019 0.77028 9.0827e−5

0.4 0.83231 0.83263 0.83338 0.83349 1.0217e−4

0.6 0.87956 0.88133 0.88317 0.88327 9.6179e−5

0.8 0.91518 0.91786 0.92023 0.92031 8.0058e−5

0.4 0.1 0.71416 0.70671 0.69914 0.69920 6.1122e−5

0.3 0.77798 0.77542 0.77365 0.77374 9.1177e−5

0.6 0.85532 0.85842 0.86243 0.86253 1.0084e−4

0.9 0.90924 0.91550 0.92178 0.92186 7.9749e−5

0.8 0.2 0.69863 0.69512 0.69118 0.69122 3.9896e−5

0.5 0.79849 0.79906 0.80028 0.80034 6.5851e−5

0.7 0.85179 0.85434 0.85749 0.85755 6.7374e−5

0.9 0.89323 0.89714 0.90135 0.90141 5.9434e−5

0 0.5 1 1.5 2

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Numerical solutions at n̂ = 5 and h= 0.004 and δ = ρ = 1

t

u(
0.

5,
t)

Numerical solution at α=0.65, β
1
=1, β

2
=2

Numerical solution at α=0.76, β
1
=1, β

2
=2

Numerical solution at α=0.88, β
1
=1, β

2
=2

Numerical solution at α=1, β
1
=1, β

2
=2

Exact solution at α=1, β
1
=1, β

2
=2

0 0.5 1 1.5 2

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Numerical solutions at n̂ = 5 and h= 0.004 and δ = ρ = 1

u(
0.

5,
t)

t

Numerical solution at α=0.65, β
1
=0.67, β

2
=1.63

Numerical solution at α=0.70, β
1
=0.73, β

2
=1.76

Numerical solution at α=0.80, β
1
=0.87, β

2
=1.93

Numerical solution at α=1, β
1
=1, β

2
=2

Exact solution at α=1, β
1
=1, β

2
=2

Figure 3.3: Numerical results of Example (3.33) by present method for different values
of α, β1 and β2 at x = 0.5, h = 0.0025, n̂ = 5, 7.

48

Table 3.5: Comparison of the solutions obtained by present method, variational itera-
tion method, differential transformation method and exact solutions for integer values
of α, β1, and β2 with h = 0.01, n̂ = 5, γ = 1 and δ = ρ = 0.001.

x t uMDQM uExact EMDQM EV IM ERDTM

0.01 0.02 0.500003751 0.500003751 7.7715e−16 2.5031e−3 0.4999e−5

0.04 0.500008752 0.500008752 1.1102e−16 2.5081e−3 0.4999e−5

0.06 0.500013754 0.500013754 6.6613e−16 2.5131e−3 1.4999e−5

0.08 0.500018755 0.500018755 1.3322e−15 2.5181e−3 1.9999e−5

0.04 0.02 0.500000001 0.500000001 3.6637e−15 9.9962e−3 0.4997e−5

0.04 0.500005002 0.500005002 1.1102e−15 1.0001e−2 0.4997e−5

0.06 0.500010004 0.500010004 1.5543e−15 1.0006e−2 1.4997e−5

0.08 0.500015004 0.500015005 4.1078e−15 1.0011e−2 1.9997e−5

0.08 0.02 0.499995001 0.499995001 7.3829e−15 1.9989e−2 0.4995e−5

0.04 0.500000002 0.500000002 3.2196e−15 1.9984e−2 0.9995e−5

0.06 0.50005004 0.500005004 9.9920e−16 1.9989e−2 1.4995e−5

0.08 0.500010005 0.500010005 5.3290e−15 1.9994e−2 1.9995e−5

Table 3.6: Comparison of the obtained results and the results by reduced differential
transformation method at integer values of α, β1 and β2 with h = 0.01, n̂ = 5, γ = 2
and δ = ρ = 0.001.

x t uMDQM uExact EMDQM ERDTM

0.01 0.02 0.7071126744 0.7071126745 2.3569e−11 4.7133e−6

0.04 0.7071197462 0.7071197462 2.3571e−11 9.4271e−6

0.06 0.7071268179 0.7071268179 2.3572e−11 1.4142e−5

0.08 0.7071338895 0.7071338895 2.3573e−11 1.8855e−5

0.04 0.02 0.7071091389 0.7071091389 8.2493e−11 4.7117e−6

0.04 0.7071162107 0.7071162107 8.2498e−11 9.4260e−6

0.06 0.7071232824 0.7071232825 8.2502e−11 1.4140e−5

0.08 0.7071303540 0.7071303541 8.2506e−11 1.8854e−5

0.08 0.02 0.7071044248 0.7071044249 1.3556e−10 4.7104e−6

0.04 0.7071114966 0.7071149678 1.3356e−10 9.4241e−6

0.06 0.7071185684 0.7071185685 1.3557e−10 1.4138e−5

0.08 0.7071256401 0.7071256402 1.3358e−10 1.8852e−5

49

Table 3.7: Comparison between solutions by proposed method and Homotopy pertur-
bation method (HPM) for different values of δ and ρ, at integer values of α, β1 and β2

with h = 0.01, n̂ = 5, γ = 2.

x t EMDQM EHPM EMDQM EHPM EMDQM EHPM
δ = ρ = 0.01 δ = ρ = 0.01 δ = ρ = 0.1 δ = ρ = 0.1 δ = ρ = 0.5 δ = ρ = 0.5

0.1 0.2 1.6259e−11 6.2800e−11 1.6727e−8 4.3262e−8 2.3450e−6 1.8855e−5

0.4 3.7143e−11 5.0800e−11 3.8063e−8 4.7133e−6 5.2087e−6 1.8855e−5

0.6 5.8025e−11 1.6380e−10 5.9367e−8 4.7133e−6 7.9431e−6 1.8855e−5

0.8 7.8908e−11 3.0250e−10 8.0622e−8 4.7133e−6 1.0484e−6 1.8855e−5

0.4 0.2 5.3265e−13 3.5000e−10 6.3662e−11 4.7133e−6 2.5227e−6 1.8855e−5

0.4 2.0351e−11 6.0200e−10 2.1286e−8 4.7133e−6 3.1657e−6 1.8855e−5

0.6 4.1235e−11 1.6560e−9 4.2618e−8 4.7133e−6 5.9999e−6 1.8855e−5

0.8 6.2119e−11 2.7100e−9 6.3914e−8 4.7133e−6 8.6860e−6 1.8855e−5

0.8 0.2 1.2698e−11 6.6990e−9 1.2385e−8 4.7133e−6 1.3719e−6 1.8855e−5

0.4 1.2209e−12 2.6960e−9 1.8453e−8 4.7133e−6 5.7731e−7 1.8855e−5

0.6 1.5140e−11 1.3110e−9 1.6074e−8 4.7133e−6 2.5120e−6 1.8855e−5

0.8 2.9060e−11 5.3200e−9 3.0290e−8 4.7133e−6 4.3839e−6 1.8855e−5

50

Chapter 4

Conclusion

This thesis revolves about the modified cubic B-splines and polynomial based differ-

ential quadrature methods for the numerical approximations of some very important

non-linear integer and fractional order PDEs. Weights required for the approximations

of the spatial derivatives, which are involved in given partial differential equations are

determined by using cubic B-splines and shifted Legendre polynomials. We have em-

ployed the modified cubic B-splines DQM to solve the integer order non-linear partial

differential equations. The differential quadrature method reduces the given non-linear

partial differential equation into a system of non linear ODEs. The resulting system

of non-linear ODEs is solved by RK-4 method in MATLAB. For the sake of applica-

tion, we considered Fitz Nagumo, generalized Burger-Fisher and Burgers’ equations.

Comparison of the obtained results with exact values is also provided to show the effi-

ciency and effectiveness of the method. We also presented an efficient numerical scheme

for non-linear space and time fractional partial differential equations. The fractional

derivatives of Lagrange polynomials lq(x) are represented in terms of fractional deriva-

tive of shifted Legendre polynomials by constructing transformation matrices Cn̂×n̂.

We derived and constructed the matrices of weighting coefficients Ω̂n̂×n̂ for Caputo

fractional, β, order derivatives.

We successfully used these matrices to solve the time and space fractional non-linear

generalized Burger-Fisher and Huxley equations. Adam Bashforth Moulton predictor-

corrector approach is implemented to solve the reduced system of fractional order,

51

α, ODEs. We observed that the obtained results of time and space fractional non-linear

problems converge to the exact solution of integer order problem, when fractional val-

ues of α, β1 and β2 approaches to the integer values as shown in Figures (3.1), (3.2),

(3.3) and Tables (3.1), (3.2) and (3.4). The obtained results by present method are

also compared with some earlier work present in literature. The reported results in

Tables (3.5), (3.6) and (3.7) show that the results obtained by proposed technique are

in quite good agreement with the exact solutions and are better than the reduce dif-

ferential transform method, variation iteration method and Haar wavelet method. For

the proposed method, we require a few number of grid points, thus less computational

work and very low data complexity leads to minimizing errors. Different types of time

and space fractional PDEs can be easily handled by the presented technique.

52

Bibliography

[1] Q. S Zeng, G. Y Cao and X. J Zhu. The effect of the fractional-order controller’s

orders variation. In proceedings of the 1st International conference on machine

Learning and Cybernetics, 1:367–372, 2002.

[2] R. L Magin and M. Ovadia. Modeling the cardiac tissue electrode interface using

fractional. Journal of Vibration and Control, 14:1431–144, 2008.

[3] R. Singh and S. Manoj. Fractional calculus applied in solving instability phenom-

ena in fluid dynamics. International journal of civil engineering and technology,

6:34–44, 2015.

[4] Z. Z Yang and J. L Zhou. An improved design for the IIR-type digital fractional

order differential filter. In proceedings of the international seminar on future Bio-

Medical information engineering (FBIE 08), 473–476, 2008.

[5] C. A Bavastri, J. J De Espindola and E. M De Oliveira Lopes. Design of opti-

mum systems of viscoelastic vibration absorbers for a given material based on the

fractional calculus model. Journal of Vibration and Control, 14:1607–1630, 2008.

[6] N. Heymans. Dynamic measurements in long-memory materials fractional calculus

evaluation of approach to steady state. Journal of Vibration and Control, 14:1587–

1596, 2008.

[7] B. T Krishna and K. V. V. S Reddy. Active and passive realization of fractance

device of order 1/2. Active and Passive Electronic Components, 2008.

53

[8] Y. Pu, X. Yuan, K. Liao, J. Zhou, N. Zhang, X. Pu and Y. Zeng. A recursive

two-circuits series analog fractance circuit for any order fractional calculus. Inter-

national Society for Optics and Photonics, 6027:509–519, 2006.

[9] J. A. T Machado, M. F Lima and M. Cris. Experimental signal analysis of robot

impacts in a fractional calculus perspective. Journal of Advanced Computational

Intelligence and Intelligent Informatics, 11:1079–1085, 2007.

[10] G. Aguilar et al. Homotopy perturbation transform method for nonlinear differen-

tial equations involving to fractional operator with exponential kernel. Advances

in Difference Equations, 2017.

[11] U. Saeed and M. U Rehman. Haar wavelet picard method for fractional nonlinear

partial differential equations. Applied Mathematics and Computation, 310–322,

2015.

[12] I. Celik. Haar wavelet method for solving generalized burgers-huxley equation.

Arab Journal of Mathematical Sciences, 18:25–37, 2012.

[13] I. Hashim and M. S. M Noorani. Solving the generalized burgers-huxley equation

using the Adomian decomposition method. Applied Mathematics and Computa-

tion, 43:1404–1411, 2006.

[14] N. A. H Ismail, K. Raslan, and A. A. A Rabboh. Adomian decomposition method

for burger’s-huxley and burger’s-fisher equations. Applied Mathematics and Com-

putation, 291–301, 2004.

[15] I. Hashim and B. Batiha. A note on the adomian decomposition method for the

generalized huxley equation. Applied Mathematics and Computation, 181:1439–

1445, 2006.

[16] S. L Lili, L. Xiaoyan and J. Wei. Adomians method applied to solve ordinary and

partial fractional differential equations. Journal of Shanghai Jiaotong University

(Science), 22:371–376, 2017.

54

[17] C. Canuto, Q. Hussaini, Z. Alfio, M. Youssuff and A. Thomas. Spectral methods,

2006.

[18] J. W Thomas. Numerical partial differential equations: finite difference methods,

22, 2013.

[19] O. C Zienkiewicz and L. Robert. The finite element method, volume 36, 1977.

[20] Z. J Wang. Spectral (finite) volume method for conservation laws on unstructured

grids, Basic formulation. Journal of computational physics, 178:210–251, 2002.

[21] G. Adomian. A review of the decomposition method and some recent results for

nonlinear equations. Mathematical and Computer Modeling, 13:17–43, 1990.

[22] C. Shu. Differential Quadrature and Its Application in Engineering. Springer-

Verlag London Berlin Heidelberg, 2000.

[23] C. T Chang and J. R Quan. New insights in solving distributed system equa-

tions by the quadrature method-II. numerical experiments. Elsevier, 13:1017–

1024, 1989.

[24] R. Bellman and B. G Kashef. Differential quadrature: A technique for the rapid

solution of nonlinear partial differential equations. Journal of Computational

Physics, 10:40–52, 1972.

[25] R. C Mittal. Numerical solutions of nonlinear Burgers’ equation with modi-

fied cubic B-splines collocation method. Applied Mathematics and Computation,

218:7839–7855, 2012.

[26] G. Arora. Numerical solution of Burgers’ equation with modified cubic b-spline

differential quadrature method. Applied Mathematics and Computation, 224:166–

177, 2013.

[27] R. Jiwari. Polynomial differential quadrature method for numerical solutions of

the generalized fitzhugh nagumo equation with time dependent coefficients. Ain

Shams Engineering, 5:1343–1350, 2014.

55

[28] R. C Mittal and R. Jiwari. A differential quadrature method for numerical solu-

tions of Burgers’ type equations. International Journal of Numerical Methods for

Heat and Fluid Flow, 22:880–895, 2014.

[29] E. N Aksan and T. Ozis. A finite element approach for solution of Burgers’ equa-

tion. Applied Mathematics and Computation, 139:417–428, 2003.

[30] Y. L Wu and C. Shu. Integrated radial basis functions-based differential quadra-

ture method and its performance. International Journal for numerical methods in

fluids, 53:969–984, 2007.

[31] I. J Schoenberg. On cubic Spline Interpolation at Equidistant nodes. Mathematics

research center, university of wisconsin, 1971.

[32] L. L Schumaker. Spline functions basic theory. Cambridge University Press, 2007.

[33] C. de Boor. A practical guide to Splines. Springer, 2001.

[34] P. M Prenter. Splines and Variational methods. Willey, 1989.

[35] A. Korkmaz. Quartic B-spline differential quadrature method. International jour-

nal of nonlinear science, 11:403–411, 2011.

[36] B. Saka and D. Idris. Galerkin method for the numerical solution of the RLW equa-

tion using quintic B-splines. Journal of Computational and Applied Mathematics,

190:532–547, 2006.

[37] C. Pozrikidis. Numerical computation in science and engineering. Oxford univer-

sity press New York, 6, 1998.

[38] R. L Burden and J. D Faires. Numerical analysis. Cengage Learning, 9, 2010.

[39] A. H Bhrawy. A Jacobi–Gauss–Lobatto collocation method for solving generalized

Fitzhugh-Nagumo equation with time-dependent coefficients. Elsevier, 222:255–

264, 2013.

56

[40] G. Arora and B. K Singh. A numerical scheme to solve fisher-type reaction-

diffusion equations. Mathematics in Engineering, Science and Aerospace, 5:153–

164, 2014.

[41] S. Abbasbandy. Soliton solutions for the fitzhugh-nagumo equation with the ho-

motopy analysis method. Elsevier, 32:2706–2714, 2008.

[42] R. Ezzati and K. Shakibi. Using Adomian’s decomposition and multiquadric quasi-

interpolation methods for solving newell-whitehead equation. Elsevier, 3:1043–

1048, 2011.

[43] U. Saeed, M. U Rehman and Q. Din. Differential quadrature method for nonlinear

fractional partial differential equations. Engineering Computations, 35:2349–2366,

2018.

[44] M. M Rashidi and D. D Ganji. Explicit analytical solutions of the generalized

burger and burger-fisher equations by homotopy perturbation method.Wiley Inter

Science, 409–417, 2008.

[45] D. Kaya and S. M El-Sayed. A numerical simulation and explicit solutions of

the generalized burgers-fisher equation. Applied Mathematics and Computation,

19:847–898, 2004.

[46] A. MWazwaz. The tanh method for generalized forms of nonlinear heat conduction

and Burger−Fisher equations. Applied Mathematics and Computation, 152:403–

416, 2004.

[47] A. A Soliman. A numerical simulation and explicit solutions of KDV-Burgers’ and

lax’s seventh-order KDV equations. Chaos Solitons Fractals, 29:294–302, 2006.

[48] K. Diethelm, A. D Freed and J. F Neville. Detailed error analysis for a fractional

adams method. Numerical Algorithms, 36:31–52, 2004.

[49] A. G Anastassiou. On right fractional calculus. Chaos, Solitons and Fractals, 365–

376, 2009.

57

[50] K. Diethelm, J. F Neville and A. D Freed. A predictor-corrector approach for the

numerical solution of fractional differential equations, 2001.

[51] X. W Zhou. Exp-function method for solving huxley equation. Hindawi Publishing

Corporation, 2008.

[52] S. S Ray and A. K Gupta. On the solution of Burgers–Huxley and Huxley equation

using wavelet collocation method. CMES, 6:409–424, 2013.

[53] A. Kurnaz and D. Kocacoban. A better approximation to the solution of Burger-

Fisher equation. Proceedings of the World Congress on Engineering, 1, 2011.

58

	Binder1.pdf
	scan 1
	scan 2

