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Introduction

Banach showed that every contraction on a complete metric space (U, d) has a unique

�xed point. A number of authors introduced various contractive type conditions in order

to generalize Banach �xed point theorem. Rhoades has given a comparison of various

contractive type conditions, considered by di�erent authors. Rhoades pointed out that

some contractive conditions are equivalent, some depend upon others whereas some are

independent.

Nadler extended Banach contraction principle to multi-valued mappings by general-

izing the de�nition of contraction from single-valued to multi-valued mappings. Since

then, many authors extended contractive type conditions from single-valued to multi-

valued mappings.

In this dissertation, we de�ne some new contractive type conditions in order to gen-

eralize and unify some existing contractive type conditions and prove some �xed point

theorems. In Chapter one, basic de�nitions and results are given, which are needed for

subsequent chapters. In Chapter two, we obtain some �xed point theorems for single-

valued as well as multi-valued mappings by using new contractive conditions. In Chapter

three, we extend some results of Chapter two to partially ordered metric space, whereas

in Chapter four, we de�ne another contractive condition and obtain some �xed point

theorems for pre-ordered metric spaces.
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Chapter 1

Preliminaries

In this chapter, we recall some de�nitions and results which are needed in the sequel.

In the last section of this chapter, we de�ne a new contractive condition. We use this

contractive condition in the subsequent chapters.

Throughout this dissertation, It is assume that (U, d) be a metric space, N(U) denotes

the set of each nonempty subsets of U , B(U) denotes the set of each nonempty bounded

subsets of U and CB(U) denotes the set of each nonempty closed and bounded subsets

of U .

1.1 Some basic de�nitions and results

De�nition 1.1.1. Let U be a nonempty set. A relation � on U is called partial ordering

if it is re�exive, antisymmetric and transitive, i.e., for each u1, u2, u3 ∈ U , we have

(i) u1 � u1;

(ii) u1 � u2 and u2 � u1, then u1 = u2;

(iii) u1 � u2 and u2 � u3, then u1 � u3.

A set together with a partial order is a partially ordered set. A relation � on U is called

pre-ordering, if it is re�exive and transitive.

Example 1.1.2. Let U 6= ∅ and P (U) is the power set of U . Then the set inclusion ⊆ is

a partial ordering on P (U).
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Example 1.1.3. Let U = R2. De�ne � on R2 by (u1, v1) � (u2, v2) if and only if u1 ≤ u2

and v1 ≤ v2. Then � is a partial ordering on R2.

De�nition 1.1.4. For a set A ⊆ (U, d), the distance of x ∈ U from A is de�ned by

D(x,A) = inf{d(x, a) : a ∈ A}.

Example 1.1.5. Let U = [0, 1] be endowed with the usual metric d and A = U ∩ Q.

Then D(u,A) = 0 for each u ∈ U .

De�nition 1.1.6. A set B ⊆ (U, d) is called bounded if and only if

δ(B) = sup{d(a, b) : a, b ∈ B} is �nite. δ(B) is called diameter of the set B.

Example 1.1.7. Let U = [0, 1] be endowed with the usual metric d and A = U ∩ Q.

Then δ(A) = 1.

De�nition 1.1.8. For A,B ⊆ (U, d), we de�ne

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}, (1.1.1)

and

H(A,B) = max{sup
a∈A

D(a,B), sup
b∈B

D(b, A)}. (1.1.2)

Theorem 1.1.9. H(A,B) is a metric on CB(U).

Remark 1.1.10. Note that (CB(U), H) is complete if and only if (U, d) is complete.

De�nition 1.1.11. Let T : U → U be a mapping. Fixed point of T is a point u ∈ U

when u = Tu. Coincidence point of T, S : U → U is a point u ∈ U when Su = Tu.

Moreover, if u = Su = Tu then u is a common �xed point of T and S.

Example 1.1.12. Let U = [0,∞). De�ne Ti : U → U for i = 1, 2, 3 as follows.

• T1u = u+ 1 for each u ∈ U . Then T1 has no �xed point.

• T2u = u
2
for each u ∈ U . Then T2 has a unique �xed point, i.e., u = 0.

• T3u = u for each u ∈ U . Then each point of U is a �xed point of T3, i.e., T3 has

in�nitely many �xed points.
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The following theorem, usually know as Banach �xed point theorem, was �rst ap-

peared in Banach's doctoral thesis [1].

Theorem 1.1.13 (Banach [1]). Let T : U → U be a mapping and d be complete. Assume

that there exists α ∈ [0, 1) such that

d(Tu, Tv) ≤ αd(u, v), ∀ u, v ∈ U. (1.1.3)

Then T has a unique �xed point.

Nadler [11] extended Banach �xed point theorem to multi-valued mappings in the

following way.

Theorem 1.1.14 (Nadler [11]). Let T : U → CB(U) be a mapping and d be a complete.

Assume that their exists α ∈ [0, 1) such that

H(Tu, Tv) ≤ αd(u, v), ∀ u, v ∈ U. (1.1.4)

Then T has a �xed point.

De�nition 1.1.15 (Berinde et al. [2]). We say that two self mappings S and T on (U, d)

are weakly compatible if they commute at their coincidence points, i.e., TSu = STu

whenever Su = Tu.

De�nition 1.1.16 (Kamran [8]). Let T : U → B(U) be a mapping. Then a mapping

f : U → U is said to be T -weakly commuting at u ∈ U if ffu ∈ Tfu.

1.2 Contractive type mappings

In this section we consider various contractive type conditions de�ned by di�erent authors.

Throughout this section T is a mapping from U into U .

Banach used the contractive condition given in (1.1.3) on the mapping T .

Following condition for contraction was introduced by Kannan [9]. There exists a real

number α ∈ [0, 1
2
) such that

d(Tu, Tv) ≤ α(d(u, Tu) + d(v, Tv)), ∀ u, v ∈ U. (1.2.1)
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Another condition is due to Bainchini [3] which states that there exists a real number

α ∈ [0, 1) such that

d(Tu, Tv) ≤ αmax{d(u, Tu), d(v, Tv))}, ∀ u, v ∈ U. (1.2.2)

Following condition was given by Reich [14]. There exist nonnegative real numbers a, b, c

satisfying a+ b+ c < 1 such that

d(Tu, Tv) ≤ ad(u, Tu) + bd(v, Tv) + cd(u, v), ∀ u, v ∈ U. (1.2.3)

Chatterjea [4] introduced that there exists a real number α ∈ [0, 1
2
) such that

d(Tu, Tv) ≤ α(d(u, Tv) + d(v, Tu)), ∀ u, v ∈ U. (1.2.4)

Following condition is due to Hardy and Rogers [7]. There exist nonnegative real numbers

a, b, c satisfying a+ 2b+ 2c < 1 such that

d(Tu, Tv) ≤ ad(u, v)+b(d(u, Tu)+d(v, Tv))+c(d(v, Tu)+d(u, Tv)), ∀ u, v ∈ U. (1.2.5)

Following conditions are mentioned by Rhoades [15]. There exists a real number α ∈ [0, 1)

such that

d(Tu, Tv) ≤ αmax

{
d(u, v),

d(u, Tu) + d(v, Tv)

2
,
d(v, Tu) + d(u, Tv)

2

}
, ∀ u, v ∈ U.

(1.2.6)

There exists a real number α ∈ [0, 1) such that

d(Tu, Tv) ≤ αmax

{
d(u, v), d(u, Tu), d(v, Tv)),

d(v, Tu) + d(u, Tv)

2

}
, ∀ u, v ∈ U.

(1.2.7)

Rhoades [15] gave a comparison of above contraction conditions along with other con-

tractive conditions. Now looking at the above contractive conditions, we introduce the

following.

De�nition 1.2.1. Let R+ = [0,∞). A mapping T : U → U is said to be a φ-contraction,

if there exists a mapping φ : R+
4 → R+ such that

d(Tu, Tv) ≤ φ

(
d(u, v), d(u, Tu), d(v, Tv),

d(v, Tu) + d(u, Tv)

2

)
, ∀ u, v ∈ U. (1.2.8)

Note that the contractive conditions (1.1.3) and (1.2.2) − (1.2.7) can be obtained

from (1.2.8) for di�erent choices of function φ. For example, (1.2.5) follows from (1.2.8)

by taking φ(u1, u2, u3, u4) = au1 + b(u2 + u3) + cu4, where a, b, c are nonnegative real

numbers such that a+ 2b+ c ∈ [0, 1).
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Chapter 2

Fixed point theorems for φ-contractions

Banach contraction principle [1] says that every contraction T on a complete metric

space U = (U, d) has a unique �xed point. Also, starting from any u0 ∈ U the sequence

of iterates T nu0 converges to unique �xed point of T . A number of authors generalized

Banach contraction principle by introducing various contractive conditions. In Section

2.1 of this chapter, we prove a �xed point theorem for φ-contraction whereas in Section

2.2, we extend the result of section one to multi-valued mappings.

2.1 Single-valued φ-contractions

Let ψ : [0,∞) → [0,∞) be a nondecreasing mapping such that
∑∞

n=1 ψ
n(t) < ∞ for all

t ≥ 0 and ψ(t) < t for all t > 0. By Φ we denote the family of functions φ : R+
4 → R+ =

[0,∞) satisfying the following conditions:

(i) φ is continuous and nondecreasing in each coordinate;

(ii) let u1, u2 ∈ R+ such that if u1 < u2 and u1 ≤ φ(u2, u2, u1, u2) then u1 ≤ ψ(u2).

Further if u1 ≥ u2 and u1 ≤ φ(u1, u2, u1, u1) then u1 = 0;

(iii) if u ∈ R+ such that u ≤ φ(0, 0, u, 1
2
u) or u ≤ φ(0, u, 0, 1

2
u) or u ≤ φ(u, 0, 0, u) then

u = 0.

Example 2.1.1. Let φ1(u1, u2, u3, u4) = αmax{u1, u2, u3, u4}, where α ∈ [0, 1). Clearly φ

is continuous and nondecreasing in each coordinate. If u1 < u2 and u1 ≤ φ(u2, u2, u1, u2),
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then u1 ≤ αu2. If u1 ≥ u2 and u1 ≤ φ(u1, u2, u1, u1), then u1 ≤ αu1 which implies u1 = 0.

If u ≤ φ(0, 0, u, 1
2
u), then u ≤ αu which implies u = 0. Similarly, for u ≤ φ(0, u, 0, 1

2
u)

and u ≤ φ(u, 0, 0, u), we have u = 0. Taking ψ(t) = αt implies φ1 ∈ Φ.

Example 2.1.2. Let φ2(u1, u2, u3, u4) = αu4, where α ∈ [0, 1). Clearly φ is continuous

and nondecreasing in each coordinate. If u1 < u2 and u1 ≤ φ(u2, u2, u1, u2), then u1 ≤

αu2. If u1 ≥ u2 and u1 ≤ φ(u1, u2, u1, u1), then u1 ≤ αu1 which implies u1 = 0. If

u ≤ φ(0, 0, u, 1
2
u), then u ≤ (α/2)u which implies u = 0. Similarly, for u ≤ φ(0, u, 0, 1

2
u)

and u ≤ φ(u, 0, 0, u), we have u = 0. Taking ψ(t) = αt implies φ2 ∈ Φ.

Example 2.1.3. Let φ3(u1, u2, u3, u4) = αmax{u1, u2, u3}, where α ∈ [0, 1). Clearly φ is

continuous and nondecreasing in each coordinate. If u1 < u2 and u1 ≤ φ(u2, u2, u1, u2),

then u1 ≤ αu2. If u1 ≥ u2 and u1 ≤ φ(u1, u2, u1, u1), then u1 ≤ αu1 which implies u1 = 0.

If u ≤ φ(0, 0, u, 1
2
u), then u ≤ αu which implies u = 0. Similarly, for u ≤ φ(0, u, 0, 1

2
u)

and u ≤ φ(u, 0, 0, u), we have u = 0. Taking ψ(t) = αt implies φ3 ∈ Φ.

Example 2.1.4. Let φ4(u1, u2, u3, u4) = αmax{u2, u3}, where α ∈ [0, 1). Clearly φ is

continuous and nondecreasing in each coordinate. If u1 < u2 and u1 ≤ φ(u2, u2, u1, u2),

then u1 ≤ αu2. If u1 ≥ u2 and u1 ≤ φ(u1, u2, u1, u1), then u1 ≤ αu1 which implies u1 = 0.

If u ≤ φ(0, 0, u, 1
2
u), then u ≤ αu which implies u = 0. Similarly, for u ≤ φ(0, u, 0, 1

2
u)

and u ≤ φ(u, 0, 0, u), we have u = 0. Taking ψ(t) = αt implies φ4 ∈ Φ.

Example 2.1.5. Let φ5(u1, u2, u3, u4) = αu1, where α ∈ [0, 1). Clearly φ is continuous

and nondecreasing in each coordinate. If u1 < u2 and u1 ≤ φ(u2, u2, u1, u2), then u1 ≤

αu2. If u1 ≥ u2 and u1 ≤ φ(u1, u2, u1, u1), then u1 ≤ αu1 which implies u1 = 0. If

u ≤ φ(u, 0, 0, u), then u ≤ αu, which implies u = 0. Similarly, for u ≤ φ(0, u, 0, 1
2
u) and

u ≤ φ(0, 0, u, 1
2
u), we have u = 0. Taking ψ(t) = αt implies φ5 ∈ Φ.

Example 2.1.6. Let φ6(u1, u2, u3, u4) = α
2
(u2 + u3), where α ∈ [0, 1). Clearly φ is

continuous and nondecreasing in each coordinate. If u1 < u2 and u1 ≤ φ(u2, u2, u1, u2),

then u1 ≤ α
2
(u2+u1) < αu2. If u1 ≥ u2 and u1 ≤ φ(u1, u2, u1, u1), then u1 ≤ α

2
(u2+u1) ≤

αu1 which implies u1 = 0. If u ≤ φ(0, 0, u, 1
2
u), then u ≤ α

2
u which implies u = 0.

Similarly, for u ≤ φ(0, u, 0, 1
2
u) and u ≤ φ(u, 0, 0, u), we have u = 0. Taking ψ(t) = αt

implies φ6 ∈ Φ.
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Example 2.1.7. Let φ7(u1, u2, u3, u4) = αmax{u1, 12(u2 + u3), u4}, where α ∈ [0, 1).

Clearly φ is continuous and nondecreasing in each coordinate. If u1 < u2 and u1 ≤

φ(u2, u2, u1, u2), then u1 ≤ αu2 (note that since u1 < u2 so u1+u2 < 2u2 =⇒ 1
2
(u1+u2) <

u2). If u1 ≥ u2 and u1 ≤ φ(u1, u2, u1, u1), then u1 ≤ αu1 (note that since u1 ≥ u2 so

2u1 ≥ u1 + u2 =⇒ u1 ≥ 1
2
(u1 + u2)) which implies u1 = 0. If u ≤ φ(0, 0, u, 1

2
u), then

u ≤ α
2
u which implies u = 0. Similarly, for u ≤ φ(0, u, 0, 1

2
u) and u ≤ φ(u, 0, 0, u), we

have u = 0. Taking ψ(t) = αt implies φ7 ∈ Φ.

Example 2.1.8. Let φ8(u1, u2, u3, u4) = au1 + b(u2 + u3) + cu4, where a, b, c are non-

negative real numbers such that a + 2b + c ∈ [0, 1). Clearly φ is continuous and

nondecreasing in each coordinate. If u1 < u2 and u1 ≤ φ(u2, u2, u1, u2), then u1 ≤

au2 + b(u2 + u1) + cu2 < (a + 2b + c)u2. If u1 ≥ u2 and u1 ≤ φ(u1, u2, u1, u1), then

u1 ≤ au1+b(u2+u1)+cu1 ≤ (a+2b+c)u1 which implies u1 = 0. If u ≤ φ(0, 0, u, 1
2
u), then

u ≤ (b + c
2
)u which implies u = 0. Similarly, for u ≤ φ(0, u, 0, 1

2
u) and u ≤ φ(u, 0, 0, u),

we have u = 0. Taking ψ(t) = (a+ 2b+ c)t implies φ8 ∈ Φ.

Example 2.1.9. Let φ9(u1, u2, u3, u4) = au2+bu3+cu1, where a, b, c are nonnegative real

numbers such that a + b + c ∈ [0, 1). Clearly φ is continuous and nondecreasing in each

coordinate. If u1 < u2 and u1 ≤ φ(u2, u2, u1, u2), then u1 ≤ au2+bu1+cu2 < (a+b+c)u2.

If u1 ≥ u2 and u1 ≤ φ(u1, u2, u1, u1), then u1 ≤ au2+bu1+cu1 ≤ (a+b+c)u1 which implies

u1 = 0. If u ≤ φ(0, 0, u, 1
2
u), then u ≤ a(0) + b(u) + c(0) which implies u = 0. Similarly,

for u ≤ φ(0, u, 0, 1
2
u) and u ≤ φ(u, 0, 0, u), we have u = 0. Taking ψ(t) = (a + b + c)t

implies φ9 ∈ Φ.

We are now in a position to state and prove our �rst result.

Theorem 2.1.10. Let T : U → U be a φ-contraction and d be complete. Then T has a

unique �xed point whenever φ ∈ Φ.

Proof. Let {un} be a sequence in U such that un+1 = Tun for each n ∈ N ∪ {0}. If

uN+1 = uN for some N ∈ N∪{0}. Then uN is a �xed point. Suppose un+1 6= un for each
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n ∈ N ∪ {0}. From (1.2.8), we have

d(un+1, un+2) = d(Tun, Tun+1)

≤ φ
(
d(un, un+1), d(un, Tun), d(un+1, Tun+1),

d(un+1, Tun) + d(un, Tun+1)

2

)
= φ

(
d(un, un+1), d(un, un+1), d(un+1, un+2),

d(un+1, un+1) + d(un, un+2)

2

)
. (2.1.1)

By triangular inequality, we have

d(un, un+2) ≤ d(un, un+1) + d(un+1, un+2). (2.1.2)

We claim that d(un+1, un+2) < d(un, un+1) for each n ∈ N ∪ {0}. Suppose on contrary

that d(un+1, un+2) ≥ d(un, un+1) for some n ∈ N∪{0}. From (2.1.2), we get d(un, un+2) ≤

2d(un+1, un+2). Since φ is nondecreasing, by using these in (2.1.1), we have

d(un+1, un+2) ≤ φ(d(un+1, un+2), d(un, un+1), d(un+1, un+2), d(un+1, un+2)). (2.1.3)

By (2.1.3) and property (ii) of Φ, we have

d(un+1, un+2) = 0.

A contradiction to our assumption that un+1 6= un for each n ∈ N∪{0}. Thus d(un+1, un+2)

< d(un, un+1) for each n ∈ N ∪ {0}. From (2.1.2), we have d(un, un+2) < 2d(un, un+1).

Using it in (2.1.1), we have

d(un+1, un+2) ≤ φ(d(un, un+1), d(un, un+1), d(un+1, un+2), d(un, un+1)). (2.1.4)

By (2.1.4) and property (ii) of Φ, we have

d(un+1, un+2) ≤ ψ(d(un, un+1)), ∀ n ∈ N ∪ {0}.

Continuing in the same way, we get

d(un+1, un+2) ≤ ψn+1(d(u0, u1)), ∀ n ∈ N ∪ {0}. (2.1.5)
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Let n > m. Then we have

d(um, un) ≤ d(um, um+1) + d(um+1, um+2) + · · ·+ d(un−1, un)

≤ ψm(d(u0, u1)) + ψm+1(d(u0, u1)) + · · ·+ ψn−1(d(u0, u1))

=
n−1∑
i=m

ψi(d(u0, u1)).

Therefore {un} is a Cauchy sequence in U . By completeness of U , there exists u∗ ∈ U

such that un → u∗ as n→∞. From (1.2.8), we have

d(un+1, Tu
∗) = d(Tun, Tu

∗)

≤ φ
(
d(un, u

∗), d(un, Tun), d(u∗, Tu∗),

d(u∗, Tun) + d(un, Tu
∗)

2

)
= φ

(
d(un, u

∗), d(un, un+1), d(u∗, Tu∗),

d(u∗, un+1) + d(un, Tu
∗)

2

)
. (2.1.6)

Letting n→∞ in (2.1.6), we have

d(u∗, Tu∗) ≤ φ

(
0, 0, d(u∗, Tu∗),

0 + d(u∗, Tu∗)

2

)
. (2.1.7)

By property (iii) of Φ, we have d(u∗, Tu∗) = 0. Hence Tu∗ = u∗. Suppose that u∗ and v∗

be two distinct �xed points of T . Then from (1.2.8), we have

d(Tu∗, T v∗) ≤ φ

(
d(u∗, v∗), d(u∗, Tu∗), d(v∗, T v∗),

d(v∗, Tu∗) + d(u∗, T v∗)

2

)
.

It implies that

d(u∗, v∗) ≤ φ(d(u∗, v∗), 0, 0, d(u∗, v∗)). (2.1.8)

By (2.1.8) and property (iii) of Φ, we have d(u∗, v∗) = 0. A contradiction to our assump-

tion. Hence T has a unique �xed point.

As a consequence of our result we have the following corollaries.

Corollary 2.1.11 (Banach [1]). Let T : U → U be a mapping and d be complete.

Assume that there exists α ∈ [0, 1) such that

d(Tu, Tv) ≤ αd(u, v), ∀ u, v ∈ U.

Then T has a unique �xed point.
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Proof. Let φ(u1, u2, u3, u4) = φ5(u1, u2, u3, u4) = αu1, where α ∈ [0, 1). From (1.2.8), we

have

d(Tu, Tv) ≤ αd(u, v), ∀ u, v ∈ U.

Therefore by Theorem 2.1.10, T has a unique �xed point.

Corollary 2.1.12 (Kannan [9]). Let T : U → U be a mapping and d be complete.

Assume that there exists α ∈ [0, 1/2) such that

d(Tu, Tv) ≤ α(d(u, Tu) + d(v, Tv)), ∀ u, v ∈ U.

Then T has a unique �xed point.

Proof. Let φ(u1, u2, u3, u4) = φ6(u1, u2, u3, u4) = β
2
(u2 + u3), where β ∈ [0, 1). From

(1.2.8), we have

d(Tu, Tv) ≤ β

2
(d(u, Tu) + d(v, Tv)) = α(d(u, Tu) + d(v, Tv)), ∀ u, v ∈ U.

Therefore by Theorem 2.1.10, T has a unique �xed point.

Corollary 2.1.13 (Bainchini [3]). Let T : U → U be a mapping and d be complete.

Assume that there exists α ∈ [0, 1) such that

d(Tu, Tv) ≤ αmax{d(u, Tu), d(v, Tv)}, ∀ u, v ∈ U.

Then T has a unique �xed point.

Proof. Let φ(u1, u2, u3, u4) = φ4(u1, u2, u3, u4) = αmax{u2, u3}, where α ∈ [0, 1). From

(1.2.8), we have

d(Tu, Tv) ≤ αmax{d(u, Tu), d(v, Tv))}, ∀ u, v ∈ U.

Therefore by Theorem 2.1.10, T has a unique �xed point.

Corollary 2.1.14 (Reich [14]). Let T : U → U be a mapping and d be complete. Assume

that there exist nonnegative real numbers a, b, c, satisfying a+ b+ c < 1 such that

d(Tu, Tv) ≤ ad(u, Tu) + bd(v, Tv) + cd(u, v), ∀ u, v ∈ U.

Then T has a unique �xed point.
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Proof. Let φ(u1, u2, u3, u4) = φ9(u1, u2, u3, u4) = au2 + bu3 + cu1, where a, b, c are non-

negative real numbers satisfying a+ b+ c ∈ [0, 1). From (1.2.8), we have

d(Tu, Tv) ≤ ad(u, Tu) + bd(v, Tv) + cd(u, v), ∀ u, v ∈ U.

Therefore by Theorem 2.1.10, T has a unique �xed point.

Corollary 2.1.15 (Chatterjea [4]). Let T : U → U be a mapping and d be complete.

Assume that there exists α ∈ [0, 1/2) such that

d(Tu, Tv) ≤ α(d(v, Tu) + d(u, Tv)), ∀ u, v ∈ U.

Then T has a unique �xed point.

Proof. Let φ(u1, u2, u3, u4) = φ2(u1, u2, u3, u4) = βu4, where β ∈ [0, 1). From (1.2.8), we

have

d(Tu, Tv) ≤ β

2
(d(v, Tu) + d(u, Tv)) = α(d(v, Tu) + d(u, Tv)), ∀ u, v ∈ U.

Therefore by Theorem 2.1.10, T has a unique �xed point.

Corollary 2.1.16 (Handy [7]). Let T : U → U be a mapping and d be complete. Assume

that there exist nonnegative real numbers a0, b0, c0, satisfying a0 + 2b0 + 2c0 ∈ [0, 1) such

that

d(Tu, Tv) ≤ a0d(u, v) + b0(d(u, Tu) + d(v, Tv)) + c0(d(v, Tu) + d(u, Tv)), ∀ u, v ∈ U.

Then T has a unique �xed point.

Proof. Let φ(u1, u2, u3, u4) = φ8(u1, u2, u3, u4) = au1 + b(u2 + u3) + cu4, where a, b, c are

nonnegative real numbers satisfying a+ 2b+ c ∈ [0, 1). From (1.2.8), we have

d(Tu, Tv) ≤ ad(u, v) + b(d(u, Tu) + d(v, Tv)) +
c

2
(d(v, Tu) + d(u, Tv)), ∀ u, v ∈ U.

Let c = 2c1, then

d(Tu, Tv) ≤ ad(u, v) + b(d(u, Tu) + d(v, Tv)) + c1(d(v, Tu) + d(u, Tv)), ∀ u, v ∈ U.

Therefore by Theorem 2.1.10, T has a unique �xed point.
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Corollary 2.1.17. Let T : U → U be a mapping and d be complete. Assume that there

exists α ∈ [0, 1) such that

d(Tu, Tv) ≤ αmax

{
d(u, v),

d(u, Tu) + d(v, Tv)

2
,
d(v, Tu) + d(u, Tv)

2

}
, ∀ u, v ∈ U.

Then T has a unique �xed point.

Proof. Let φ(u1, u2, u3, u4) = φ7(u1, u2, u3, u4) = αmax{u1, 12(u2 + u3), u4}, where α ∈

[0, 1). From (1.2.8), we have

d(Tu, Tv) ≤ αmax

{
d(u, v),

d(u, Tu) + d(v, Tv)

2
,
d(v, Tu) + d(u, Tv)

2

}
, ∀ u, v ∈ U.

Therefore by Theorem 2.1.10, T has a unique �xed point.

Corollary 2.1.18. Let T : U → U be a mapping and d be complete. Assume that there

exists α ∈ [0, 1) such that

d(Tu, Tv) ≤ αmax

{
d(u, v), d(u, Tu), d(v, Tv),

d(v, Tu) + d(u, Tv)

2

}
, ∀ u, v ∈ U.

Then T has a unique �xed point.

Proof. Let φ(u1, u2, u3, u4) = φ1(u1, u2, u3, u4) = αmax{u1, u2, u3, u4}, where α ∈ [0, 1).

From (1.2.8), we have

d(Tu, Tv) ≤ αmax

{
d(u, v), d(u, Tu), d(v, Tv),

d(v, Tu) + d(u, Tv)

2

}
, ∀ u, v ∈ U.

Therefore by Theorem 2.1.10, T has a unique �xed point.

Corollary 2.1.19. Let T : U → U be a mapping and d be complete. Assume that there

exists α ∈ [0, 1) such that

d(Tu, Tv) ≤ αmax{d(u, v), d(u, Tu), d(v, Tv))}, ∀ u, v ∈ U.

Then T has a unique �xed point.

Proof. Let φ(u1, u2, u3, u4) = φ3(u1, u2, u3, u4) = αmax{u1, u2, u3}, where α ∈ [0, 1).

From (1.2.8), we have

d(Tu, Tv) ≤ αmax{d(u, v), d(u, Tu), d(v, Tv))}, ∀ u, v ∈ U.

Therefore by Theorem 2.1.10, T has a unique �xed point.
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Example 2.1.20. Let U = [1,∞) be endowed with the usual metric d. De�ne T : U → U

by Tu =
√
u for each u ∈ U . Consider φ(u1, u2, u3, u4) = 1

2
u1. Clearly φ ∈ Φ. Now for

each u, v ∈ U , we have

|
√
u−
√
v| = |(

√
u−
√
v)×

√
u+
√
v√

u+
√
v
| = |u− v|√

u+
√
v
≤ 1

2
|u− v|.

Therefore by Theorem 2.1.10, T has a unique �xed point.

Theorem 2.1.21. Let T, S : U → U are mappings such that TU ⊆ SU . Assume that

SU is complete subspace of U and there exists φ ∈ Φ such that

d(Tu, Tv) ≤ φ

(
d(Su, Sv), d(Su, Tu), d(Sv, Tv),

d(Sv, Tu) + d(Su, Tv)

2

)
, ∀ u, v ∈ U.

(2.1.9)

Then T and S have a coincidence point. Moreover, if T and S are weakly compatible,

then T and S have a unique common �xed point.

Proof. Let u0 ∈ U . As TU ⊆ SU , we can choose a sequence {Tun} with initial point

u0 such that Sun+1 = Tun for each n ∈ N ∪ {0}. Suppose that Sun 6= Sun+1 for each

n ∈ N ∪ {0}, for otherwise, un is a coincidence point of T and S. From (2.1.9), we have

d(Sun+1, Sun+2) = d(Tun, Tun+1)

≤ φ
(
d(Sun, Sun+1), d(Sun, Tun), d(Sun+1, Tun+1),

d(Sun+1, Tun) + d(Sun, Tun+1)

2

)
= φ

(
d(Sun, Sun+1), d(Sun, Sun+1), d(Sun+1, Sun+2),

d(Sun+1, Sun+1) + d(Sun, Sun+2)

2

)
. (2.1.10)

By triangular inequality, we have

d(Sun, Sun+2) ≤ d(Sun, Sun+1) + d(Sun+1, Sun+2). (2.1.11)

We claim that d(Sun+1, Sun+2) < d(Sun, Sun+1) for each n ∈ N ∪ {0}. Suppose on

contrary that d(Sun+1, Sun+2) ≥ d(Sun, Sun+1) for some n ∈ N ∪ {0}. From (2.1.11),

we get d(Sun, Sun+2) ≤ 2d(Sun+1, Sun+2). Since φ is nondecreasing, by using these in

(2.1.10), we have

d(Sun+1, Sun+2) ≤ φ(d(Sun+1, Sun+2), d(Sun, Sun+1), d(Sun+1, Sun+2), d(Sun+1, Sun+2)).

(2.1.12)
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By (2.1.12) and property (ii) of Φ, we have

d(Sun+1, Sun+2) = 0.

A contradiction to our assumption that Sun+1 6= Sun for each n ∈ N ∪ {0}. Thus

d(Sun+1, Sun+2) < d(Sun, Sun+1) for each n ∈ N ∪ {0}. From (2.1.11), we have

d(Sun, Sun+2) < 2d(Sun, Sun+1). Using it in (2.1.10), we have

d(Sun+1, Sun+2) ≤ φ(d(Sun, Sun+1), d(Sun, Sun+1), d(Sun+1, Sun+2), d(Sun, Sun+1)).

(2.1.13)

By (2.1.13) and property (ii) of Φ, we have

d(Sun+1, Sun+2) ≤ ψ(d(Sun, Sun+1)), ∀ n ∈ N ∪ {0}.

Continuing in the same way, we get

d(Sun+1, Sun+2) ≤ ψn+1(d(Su0, Su1)), ∀ n ∈ N ∪ {0}. (2.1.14)

Let n > m. Then we have

d(Sum, Sun) ≤ d(Sum, Sum+1) + d(Sum+1, Sum+2) + · · ·+ d(Sun−1, Sun)

≤ ψm(d(Su0, Su1)) + ψm+1(d(Su0, Su1)) + · · ·+ ψn−1(d(Su0, Su1))

=
n−1∑
i=m

ψi(d(Su0, Su1)).

Therefore {Sun} is a Cauchy sequence in SU . By completeness of SU , there exist u∗, z∗ ∈

U such that z∗ = Su∗ and

lim
n→∞

Tun = lim
n→∞

Sun+1 = Su∗ = z∗.

From (2.1.9), we have

d(Sun+1, Tu
∗) = d(Tun, Tu

∗)

≤ φ
(
d(Sun, Su

∗), d(Sun, Tun), d(Su∗, Tu∗),

d(Su∗, Tun) + d(Sun, Tu
∗)

2

)
= φ

(
d(Sun, Su

∗), d(Sun, Sun+1), d(Su∗, Tu∗),

d(Su∗, Sun+1) + d(Sun, Tu
∗)

2

)
. (2.1.15)
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Letting n→∞ in (2.1.15), we have

d(Su∗, Tu∗) ≤ φ

(
0, 0, d(Su∗, Tu∗),

0 + d(Su∗, Tu∗)

2

)
. (2.1.16)

By property (iii) of Φ, we have d(Su∗, Tu∗) = 0 which implies Tu∗ = Su∗. Therefore u∗

is a coincidence point of T and S. Now we assume that T and S are weakly compatible.

Then Tz∗ = TSu∗ = STu∗ = Sz∗. From (2.1.9), we have

d(z∗, T z∗) = d(Tu∗, T z∗)

≤ φ
(
d(Su∗, Sz∗), d(Su∗, Tu∗), d(Sz∗, T z∗),

d(Sz∗, Tu∗) + d(Su∗, T z∗)

2

)
= φ(d(z∗, T z∗), 0, 0, d(z∗, T z∗)). (2.1.17)

By property (iii) of Φ, we have d(z∗, T z∗) = 0 this implies z∗ = Tz∗. Hence z∗ = Tz∗ =

Sz∗. So T and S have a common �xed point. Suppose that z∗ and v∗ be two distinct

common �xed points of T and S. Then from (2.1.9), we have

d(Tz∗, T v∗) ≤ φ

(
d(Sz∗, Sv∗), d(Sz∗, T z∗), d(Sv∗, T v∗),

d(Sv∗, T z∗) + d(Sz∗, T v∗)

2

)
.

It implies that

d(z∗, v∗) ≤ φ (d(z∗, v∗), 0, 0, d(z∗, v∗)) . (2.1.18)

By property (iii) of Φ, we have d(z∗, v∗) = 0. A contradiction to our assumption. Hence

T and S have a unique common �xed point.

The following corollary can be obtained by the above Theorem.

Corollary 2.1.22. Let T, S : U → U are mappings with TU ⊆ SU . Assume that SU is

a complete subspace of U and for each u, v ∈ U , there exists α ∈ [0, 1) such that

d(Tu, Tv) ≤ αmax

{
d(Su, Sv), d(Su, Tu), d(Sv, Tv),

d(Sv, Tu) + d(Su, Tv)

2

}
.

Then T and S have a coincidence point. Moreover, if T and S are weakly compatible,

then T and S have a unique common �xed point.

Proof. Let φ(u1, u2, u3, u4) = φ1(u1, u2, u3, u4) = αmax{u1, u2, u3, u4}, where α ∈ [0, 1).

From (2.1.9), we have

d(Tu, Sv) ≤ αmax

{
d(u, v), d(u, Tu), d(v, Sv),

d(v, Tu) + d(u, Sv)

2

}
,
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for each u, v ∈ U , where α ∈ [0, 1). Therefore by Theorem 2.1.21, T and S have a

coincidence point. Moreover, if T and S are weakly compatible then T and S have a

unique common �xed point.

2.2 Multi-valued φ-contractions

Nadler [11] extended Banach contraction principle to multi-valued mappings. Consequen-

tially, many authors extended contractive conditions (1.1.3) and (1.2.2) − (1.2.7) from

single-valued to multi-valued mappings. In this section, we extend Theorems 2.1.10 and

2.1.21 to multi-valued mappings.

By ΦB we denote the family of functions φ : R+
4 → R+ = [0,∞) satisfying the

following conditions:

(i) φ is continuous and nondecreasing in each coordinate;

(ii) let u1, u2 ∈ R+ such that if u1 < u2 and u1 ≤ φ(u2, u2, u1, u2) then u1 ≤ ψ(u2).

Further if u1 ≥ u2 and u1 ≤ φ(u1, u2, u1, u1) then u1 = 0;

(iii) if u ∈ R+ such that u ≤ φ(0, 0, u, 1
2
u) or u ≤ φ(0, u, 0, 1

2
u) then u = 0.

Note that the functions φ1 to φ9 given in Section 2.1, belong to the family of functions

ΦB.

Theorem 2.2.1. Let T : U → B(U) be a mapping and d be complete. Assume that

there exists φ ∈ ΦB such that

δ(Tu, Tv) ≤ φ

(
d(u, v), D(u, Tu), D(v, Tv),

D(v, Tu) +D(u, Tv)

2

)
,∀ u, v ∈ U. (2.2.1)

Then T has a �xed point.

Proof. Let {un} be a sequence in U such that un+1 ∈ Tun for each n ∈ N ∪ {0}. If

uN+1 = uN for some N ∈ N∪{0}. Then uN is a �xed point. Suppose un+1 6= un for each
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n ∈ N ∪ {0}. From (2.2.1), we have

d(un+1, un+2) ≤ δ(Tun, Tun+1)

≤ φ
(
d(un, un+1), D(un, Tun), D(un+1, Tun+1),

D(un+1, Tun) +D(un, Tun+1)

2

)
≤ φ

(
d(un, un+1), d(un, un+1), d(un+1, un+2),

d(un+1, un+1) + d(un, un+2)

2

)
. (2.2.2)

By triangular inequality, we have

d(un, un+2) ≤ d(un, un+1) + d(un+1, un+2). (2.2.3)

We claim that d(un+1, un+2) < d(un, un+1) for each n ∈ N ∪ {0}. Suppose on contrary

that d(un+1, un+2) ≥ d(un, un+1) for some n ∈ N∪{0}. From (2.2.3), we get d(un, un+2) ≤

2d(un+1, un+2). Since φ is nondecreasing, by using these in (2.2.2), we have

d(un+1, un+2) ≤ φ(d(un+1, un+2), d(un, un+1), d(un+1, un+2), d(un+1, un+2)). (2.2.4)

By (2.2.4) and property (ii) of ΦB, we have

d(un+1, un+2) = 0.

A contradiction to our assumption that un+1 6= un for each n ∈ N∪{0}. Thus d(un+1, un+2)

< d(un, un+1) for each n ∈ N ∪ {0}. From (2.2.3), we have d(un, un+2) < 2d(un, un+1).

Using it in (2.2.2), we have

d(un+1, un+2) ≤ φ(d(un, un+1), d(un, un+1), d(un+1, un+2), d(un, un+1)). (2.2.5)

By (2.2.5) and property (ii) of ΦB, we have

d(un+1, un+2) ≤ ψ(d(un, un+1)), ∀ n ∈ N ∪ {0}.

Continuing in the same way, we get

d(un+1, un+2) ≤ ψn+1(d(u0, u1)), ∀ n ∈ N ∪ {0}. (2.2.6)
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Let n > m. Then we have

d(um, un) ≤ d(um, um+1) + d(um+1, um+2) + · · ·+ d(un−1, un)

≤ ψm(d(u0, u1)) + ψm+1(d(u0, u1)) + · · ·+ ψn−1(d(u0, u1))

=
n−1∑
i=m

ψi(d(u0, u1)).

Therefore {un} is a Cauchy sequence in U . By completeness of U , there exists u∗ ∈ U

such that un → u∗ as n→∞. From (2.2.1), we have

δ(un+1, Tu
∗) ≤ δ(Tun, Tu

∗)

≤ φ
(
d(un, u

∗), D(un, Tun), D(u∗, Tu∗),

D(u∗, Tun) +D(un, Tu
∗)

2

)
≤ φ

(
d(un, u

∗), d(un, un+1), D(u∗, Tu∗),

d(u∗, un+1) +D(un, Tu
∗)

2

)
. (2.2.7)

Letting n→∞ in (2.2.7), we have

δ(u∗, Tu∗) ≤ φ

(
0, 0, D(u∗, Tu∗),

0 +D(u∗, Tu∗)

2

)
≤ φ

(
0, 0, δ(u∗, Tu∗),

δ(u∗, Tu∗)

2

)
. (2.2.8)

By (2.2.8) and property (iii) of ΦB, we have δ(u
∗, Tu∗) = 0. Hence Tu∗ = {u∗}. Moreover,

u∗ is a �xed point.

The following corollaries reduce from our result.

Corollary 2.2.2. Let T : U → B(U) be a mapping and d be complete. Assume that

there exists α ∈ [0, 1/2) such that

δ(Tu, Tv) ≤ α(D(v, Tu) +D(u, Tv)),∀ u, v ∈ U.

Then T has a �xed point.

Proof. Let φ(u1, u2, u3, u4) = φ2(u1, u2, u3, u4) = βu4, where β ∈ [0, 1). From (2.2.1), we

have

δ(Tu, Tv) ≤ β

2
(D(v, Tu) +D(u, Tv)) = α(D(v, Tu) +D(u, Tv)), ∀ u, v ∈ U.

Therefore by Theorem 2.2.1, T has a �xed point.
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Corollary 2.2.3. Let T : U → B(U) be a mapping and d be complete. Assume that

there exists α ∈ [0, 1) such that

δ(Tu, Tv) ≤ αmax

{
d(u, v), D(u, Tu), D(v, Tv),

D(v, Tu) +D(u, Tv)

2

}
,∀ u, v ∈ U.

Then T has a �xed point.

Proof. Let φ(u1, u2, u3, u4) = φ1(u1, u2, u3, u4) = αmax{u1, u2, u3, u4}, where α ∈ [0, 1).

From (2.2.1), we have

δ(Tu, Tv) ≤ αmax

{
d(u, v), D(u, Tu), D(v, Tv),

D(v, Tu) +D(u, Tv)

2

}
,∀ u, v ∈ U.

Therefore by Theorem 2.2.1, T has a �xed point.

Example 2.2.4. Let U = {(0, 0), (0, 1), (−1
4
, 2
3
)} be endowed with metric d de�ne by

d(u, v) = max{|u1 − v1|, |u2 − v2|} for each u, v ∈ U . De�ne T : U → B(U) by

Tu =

{(0, 1)} if u 6= (0, 0);

{(0, 1), (−1
4
, 2
3
)} if u = (0, 0).

(2.2.9)

Consider φ(u1, u2, u3, u4) = 2
3

max{u1, u2}. Now we discuss (2.2.1) by following cases:

(i) Consider u = v = (0, 1). Then Tu = Tv = {(0, 1)}. Also, we have δ(Tu, Tv) =

0, d(u, v) = 0, D(u, Tu) = 0. Thus (2.2.1) is satis�ed because 0 = 2
3
(0).

(ii) Consider u = v = (0, 0). Then Tu = Tv = {(0, 1), (−1
4
, 2
3
)}. Also, we have

δ(Tu, Tv) = 1/3, d(u, v) = 0, D(u, Tu) = 2/3. Thus (2.2.1) is satis�ed because

1
3
< 2

3
(2
3
).

(iii) Consider u = v = (−1
4
, 2
3
). Then Tu = Tv = {(0, 1)}. Also, we have δ(Tu, Tv) = 0,

d(u, v) = 0, D(u, Tu) = 1/3. Thus (2.2.1) is satis�ed because 0 < 2
3
(1
3
).

(iv) Consider u = (−1
4
, 2
3
) and v = (0, 1). Then Tu = Tv = {(0, 1)}. Also, we have

δ(Tu, Tv) = 0, d(u, v) = 1/3, D(u, Tu) = 1/3. Thus (2.2.1) is satis�ed because

0 < 2
3
(1
3
).

(v) Consider u = (0, 0) and v = (−1
4
, 2
3
). Then Tu = {(0, 1), (−1

4
, 2
3
)} and Tv = {(0, 1)}.

Also, we have δ(Tu, Tv) = 1/3, d(u, v) = 2/3, D(u, Tu) = 2/3. Thus (2.2.1) is

satis�ed because 1
3
< 2

3
(2
3
).
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(vi) Consider u = (0, 0) and v = (0, 1). Then Tu = {(0, 1), (−1
4
, 2
3
)} and Tv = {(0, 1)}.

Also, we have δ(Tu, Tv) = 1/3, d(u, v) = 1, D(u, Tu) = 2/3. Thus (2.2.1) is

satis�ed because 1
3
< 2

3
(1).

Hence by Theorem (2.2.1), T has a �xed point.

Theorem 2.2.5. Let f : U → U be a single-valued mapping and T : U → B(U) be a

multi-valued mapping such that TU ⊆ fU . Assume that fU is a complete subspace of

U and there exists φ ∈ ΦB such that

δ(Tu, Tv) ≤ φ

(
d(fu, fv), D(fu, Tu), D(fv, Tv),

D(fv, Tu) +D(fu, Tv)

2

)
,∀ u, v ∈ U.

(2.2.10)

Then T and f have a coincidence point, say w. Moreover, if f is T -weakly commuting at

w and ffw = fw, then T and f have a common �xed point.

Proof. Let u0 ∈ U . As TU ⊆ fU , we can choose a sequence {Tun} with initial point

u0 such that fun+1 ∈ Tun for each n ∈ N ∪ {0}. Suppose that fun 6= fun+1 for each

n ∈ N ∪ {0}, for otherwise, un is a coincidence point of T and f . From (2.2.10), we have

d(fun+1, fun+2) = δ(Tun, Tun+1)

≤ φ
(
d(fun, fun+1), D(fun, Tun), D(fun+1, Tun+1),

D(fun+1, Tun) +D(fun, Tun+1)

2

)
≤ φ

(
d(fun, fun+1), d(fun, fun+1), d(fun+1, fun+2),

d(fun+1, fun+1) + d(fun, fun+2)

2

)
. (2.2.11)

By triangular inequality, we have

d(fun, fun+2) ≤ d(fun, fun+1) + d(fun+1, fun+2). (2.2.12)

We claim that d(fun+1, fun+2) < d(fun, fun+1) for each n ∈ N ∪ {0}. Suppose on

contrary that d(fun+1, fun+2) ≥ d(fun, fun+1) for some n ∈ N ∪ {0}. From (2.2.12),

we get d(fun, fun+2) ≤ 2d(fun+1, fun+2). Since φ is nondecreasing, by using these in

(2.2.11), we have

d(fun+1, fun+2) ≤ φ(d(fun+1, fun+2), d(fun, fun+1), d(fun+1, fun+2), d(fun+1, fun+2)).

(2.2.13)
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By (2.2.13) and property (ii) of ΦB, we have

d(fun+1, fun+2) = 0.

A contradiction to our assumption that fun+1 6= fun for each n ∈ N ∪ {0}. Thus

d(fun+1, fun+2) < d(fun, fun+1) for each n ∈ N ∪ {0}. From (2.2.12), we have

d(fun, fun+2) < 2d(fun, fun+1). Using it in (2.2.11), we have

d(fun+1, fun+2) ≤ φ(d(fun, fun+1), d(fun, fun+1), d(fun+1, fun+2), d(fun, fun+1)).

(2.2.14)

By (2.2.14) and property (ii) of ΦB, we have

d(fun+1, fun+2) ≤ ψ(d(fun, fun+1)), ∀ n ∈ N ∪ {0}.

Continuing in the same way, we get

d(fun+1, fun+2) ≤ ψn+1(d(fu0, fu1)), ∀ n ∈ N ∪ {0}. (2.2.15)

Let n > m. Then we have

d(fum, fun) ≤ d(fum, fum+1) + d(fum+1, fum+2) + · · ·+ d(fun−1, fun)

≤ ψm(d(fu0, fu1)) + ψm+1(d(fu0, fu1)) + · · ·+ ψn−1(d(fu0, fu1))

=
n−1∑
i=m

ψi(d(fu0, fu1)).

Therefore {fun} is a Cauchy sequence in fU . By completeness of fU , there exist u∗, z∗ ∈

U such that z∗ = fu∗ and

lim
n→∞

fun+1 = fu∗ = z∗.

From (2.2.10), we have

δ(fun+1, Tu
∗) ≤ δ(Tun, Tu

∗)

≤ φ
(
d(fun, fu

∗), D(fun, Tun), D(fu∗, Tu∗),

D(fu∗, Tun) +D(fun, Tu
∗)

2

)
≤ φ

(
d(fun, fu

∗), d(fun, fun+1), D(fu∗, Tu∗),

d(fu∗, fun+1) +D(fun, Tu
∗)

2

)
. (2.2.16)
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Letting n→∞ in (2.2.16), we have

δ(fu∗, Tu∗) ≤ φ

(
0, 0, D(fu∗, Tu∗),

D(fu∗, Tu∗)

2

)
≤ φ

(
0, 0, δ(fu∗, Tu∗),

δ(fu∗, Tu∗)

2

)
. (2.2.17)

By property (iii) of ΦB, we have δ(fu
∗, Tu∗) = 0. This implies Tu∗ = {fu∗}. Therefore

u∗ is a coincidence point of T and f . By assumption we have fu∗ = ffu∗ ∈ Tfu∗ which

implies that z∗ = fz∗ ∈ Tz∗.

The following corollary can be obtained by the above Theorem.

Corollary 2.2.6. Let f : U → U and T : U → B(U) be mappings. Assume that

TU ⊆ fU and there exists α ∈ [0, 1/2) such that

δ(Tu, Tv) ≤ α(D(fu, Tu) +D(fv, Tv)), ∀ u, v ∈ U.

If fU is a complete subspace of U , then T and f have a coincidence point, say u. Moreover,

if f is T -weakly commuting at u and ffu = fu, then T and f have a common �xed point.

Proof. Let φ(u1, u2, u3, u4) = φ6(u1, u2, u3, u4) = β
2
(u2 + u3), where β ∈ [0, 1). From

(2.2.10), we have

δ(Tu, Tv) ≤ β

2
(D(fu, Tu) +D(fv, Tv)) = α(D(fu, Tu) +D(fv, Tv)),

for each u, v ∈ U , where α ∈ [0, 1
2
). Therefore by Theorem 2.2.5, T and f have a

coincidence point, say u. Moreover, if f is T -weakly commuting at u and ffu = fu, then

T and f have a common �xed point.

By ΦCB we denote the family of functions φ : R+
4 → R+ = [0,∞) satisfying the

following conditions:

(i) φ is continuous and nondecreasing in each coordinate;

(ii) let u1, u2, w ∈ R+ such that if u1 < u2, u1 < qw, where q > 1 and w ≤ φ(u2, u2, u1, u2)

then w ≤ ψ(u2). Further if u1 ≥ u2, u1 ≤ qw, where q > 1 and w ≤ φ(u1, u2, u1, u1)

then w = 0;

(iii) if u ∈ R+ such that u ≤ φ(0, 0, u, 1
2
u) or u ≤ φ(0, u, 0, 1

2
u) then u = 0.
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The functions φ1 to φ9 given in Section 2.1, are contained in the family of ΦCB.

We need following lemma to prove our next result.

Lemma 2.2.7. Let B ∈ CB(U). Then for each u ∈ U with D(u,B) > 0 and p > 1 there

exists an element b ∈ B such that

d(u, b) < pD(u,B). (2.2.18)

Proof. It is given that D(u,B) > 0. Choose

ε = (p− 1)D(u,B).

Then by using de�nition of D(u,B), it follows that there exists b ∈ B such that

d(u, b) < D(u,B) + ε = pD(u,B).

Theorem 2.2.8. Let T : U → CB(U) be a mapping and d be complete. Assume that

there exists φ ∈ ΦCB such that

H(Tu, Tv) ≤ φ

(
d(u, v), D(u, Tu), D(v, Tv),

D(v, Tu) +D(u, Tv)

2

)
, ∀ u, v ∈ U.

(2.2.19)

Then T has a �xed point.

Proof. Let u0 ∈ U . Since Tu0 6= ∅, there exists u1 ∈ Tu0. Suppose u0 6= u1, for otherwise,

u0 is a �xed point. From (2.2.19), we have

H(Tu0, Tu1) ≤ φ

(
d(u0, u1), D(u0, Tu0), D(u1, Tu1),

D(u1, Tu0) +D(u0, Tu1)

2

)
.

(2.2.20)

For p > 1, there exists u2 ∈ Tu1. Suppose u1 6= u2, for otherwise, u1 is a �xed point.

Then we have

0 < d(u1, u2) < pH(Tu0, Tu1). (2.2.21)

From (2.2.20), we have

H(Tu0, Tu1) ≤ φ

(
d(u0, u1), d(u0, u1), d(u1, u2),

0 + d(u0, u2)

2

)
. (2.2.22)
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By triangular inequality, we have

d(u0, u2) ≤ d(u0, u1) + d(u1, u2). (2.2.23)

We claim that d(u1, u2) < d(u0, u1). Suppose on contrary that d(u1, u2) ≥ d(u0, u1).

Then from (2.2.23), we have d(u0, u2) ≤ 2d(u1, u2). Using these in (2.2.22), we have

H(Tu0, Tu1) ≤ φ(d(u1, u2), d(u0, u1), d(u1, u2), d(u1, u2)). (2.2.24)

By property (ii) of ΦCB, we have H(Tu0, Tu1) = 0. A contradiction to (2.2.21). Hence

d(u1, u2) < d(u0, u1). From (2.2.22), we have

H(Tu0, Tu1) ≤ φ(d(u0, u1), d(u0, u1), d(u1, u2), d(u0, u1)). (2.2.25)

By property (ii) of ΦCB, we have

H(Tu0, Tu1) ≤ ψ(d(u0, u1)). (2.2.26)

From (2.2.21) and (2.2.26), we have

d(u1, u2) < pψ(d(u0, u1)). (2.2.27)

Since ψ is strictly increasing, we have

ψ(d(u1, u2)) < ψ(pψ(d(u0, u1))). (2.2.28)

Thus we have p1 = ψ(pψ(d(u0,u1)))
ψ(d(u1,u2))

. Again from (2.2.19), we have

H(Tu1, Tu2) ≤ φ

(
d(u1, u2), D(u1, Tu1), D(u2, Tu2),

D(u2, Tu1) +D(u1, Tu2)

2

)
.

(2.2.29)

For p1 > 1, there exists u3 ∈ Tu2. Suppose u2 6= u3, for otherwise, u2 is a �xed point.

Then we have

0 < d(u2, u3) < p1H(Tu1, Tu2). (2.2.30)

From (2.2.29), we have

H(Tu1, Tu2) ≤ φ

(
d(u1, u2), d(u1, u2), d(u2, u3),

0 + d(u1, u3)

2

)
. (2.2.31)

By triangular inequality, we have

d(u1, u3) ≤ d(u1, u2) + d(u2, u3). (2.2.32)
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We claim that d(u2, u3) < d(u1, u2). Suppose on contrary that d(u2, u3) ≥ d(u1, u2).

Then from (2.2.32), we have d(u1, u3) ≤ 2d(u2, u3). Using these in (2.2.31), we have

H(Tu1, Tu2) ≤ φ(d(u2, u3), d(u1, u2), d(u2, u3), d(u2, u3)). (2.2.33)

By property (ii) of ΦCB, we have H(Tu1, Tu2) = 0. A contradiction to (2.2.30). Hence

d(u2, u3) < d(u1, u2). From (2.2.31), we have

H(Tu1, Tu2) ≤ φ(d(u1, u2), d(u1, u2), d(u2, u3), d(u1, u2)). (2.2.34)

By property (ii) of ΦCB, we have

H(Tu1, Tu2) ≤ ψ(d(u1, u2)). (2.2.35)

From (2.2.30) and (2.2.35), we have

d(u2, u3) < p1ψ(d(u1, u2)) = ψ(qψ(d(u0, u1))). (2.2.36)

Since ψ is strictly increasing, we have

ψ(d(u2, u3)) < ψ2(pψ(d(u0, u1))). (2.2.37)

Thus we have p2 = ψ2(pψ(d(u0,u1)))
ψ(d(u2,u3))

. Continuing in this way, we get a sequence {un} in U

such that un+1 ∈ Tun, un 6= un+1 and d(un+1, un+2) < d(un, un+1) for each n ∈ N ∪ {0}.

Further, we have

d(un, un+1) < ψn−1(pψ(d(u0, u1))), ∀ n ∈ N. (2.2.38)

Let n > m. Then we have

d(um, un) ≤ d(um, um+1) + d(um+1, um+2) + · · ·+ d(un−1, un)

< ψm−1(d(u0, u1)) + ψm(d(u0, u1)) + · · ·+ ψn−2(d(u0, u1))

=
n−2∑

i=m−1

ψi(d(u0, u1)).

Therefore {un} is a Cauchy sequence in U . By completeness of U , there exists u∗ ∈ U
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such that un → u∗ as n→∞. From (2.2.19), we have

D(un+1, Tu
∗) ≤ H(Tun, Tu

∗)

≤ φ
(
d(un, u

∗), D(un, Tun), D(u∗, Tu∗),

D(u∗, Tun) +D(un, Tu
∗)

2

)
≤ φ

(
d(un, u

∗), d(un, un+1), D(u∗, Tu∗),

d(u∗, un+1) +D(un, Tu
∗)

2

)
. (2.2.39)

Letting n→∞ in (2.2.39), we have

D(u∗, Tu∗) ≤ φ(0, 0, D(u∗, Tu∗), D(u∗, Tu∗)). (2.2.40)

By property (iii) of ΦCB, we have D(u∗, Tu∗) = 0. By closedness of U , we have u∗ ∈

Tu∗.

The following corollaries are immediately follow form our above result.

Corollary 2.2.9 (Nadler [11]). Let T : U → CB(U) be a mapping and d be complete.

Assume that their exists α ∈ [0, 1) such that

H(Tu, Tv) ≤ αd(u, v), ∀ u, v ∈ U.

Then T has a �xed point.

Proof. Let φ(u1, u2, u3, u4) = φ5(u1, u2, u3, u4) = αu1, where α ∈ [0, 1). From (2.2.19), we

have

H(Tu, Tv) ≤ αd(u, v), ∀ u, v ∈ U.

Therefore by Theorem 2.2.8, T has a �xed point.

Corollary 2.2.10. Let T : U → CB(U) be a mapping and d be complete. Assume that

their exists α ∈ [0, 1/2) such that

H(Tu, Tv) ≤ α(D(u, Tu) +D(v, Tv)), ∀ u, v ∈ U.

Then T has a �xed point.
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Proof. Let φ(u1, u2, u3, u4) = φ6(u1, u2, u3, u4) = β
2
(u2 + u3), where β ∈ [0, 1). From

(2.2.19), we have

H(Tu, Tv) ≤ β

2
(D(u, Tu) +D(v, Tv)) = α(D(u, Tu) +D(v, Tv)), ∀ u, v ∈ U.

Therefore by Theorem 2.2.8, T has a �xed point.

Corollary 2.2.11 (Gordji [6]). Let T : U → CB(U) be a mapping and d be complete.

Assume that their exist nonnegative real numbers a0, b0, c0, satisfying a0+2b0+2c0 ∈ [0, 1)

such that

H(Tu, Tv) ≤ a0d(u, v) + b0(D(u, Tu) +D(v, Tv)) + c0(D(v, Tu) +D(u, Tv)), ∀ u, v ∈ U.

Then T has a �xed point.

Proof. Let φ(u1, u2, u3, u4) = φ8(u1, u2, u3, u4) = au1 + b(u2 + u3) + cu4, where a, b, c are

nonnegative real numbers such that a+ 2b+ c ∈ [0, 1). From (2.2.19), we have

H(Tu, Tv) ≤ ad(u, v) + b(D(u, Tu) +D(v, Tv)) +
c

2
(D(v, Tu) +D(u, Tv)), ∀ u, v ∈ U.

Let c = 2c1, then

H(Tu, Tv) ≤ ad(u, v) + b(D(u, Tu) +D(v, Tv)) + c1(D(v, Tu) +D(u, Tv)), ∀ u, v ∈ U.

Therefore by Theorem 2.2.8, T has a �xed point.

Corollary 2.2.12 (Gordji [6]). Let T : U → CB(U) be a mapping and d be complete.

Assume that their exists α ∈ [0, 1/2) such that

H(Tu, Tv) ≤ α(D(v, Tu) +D(u, Tv)), ∀ u, v ∈ U.

Then T has a �xed point.

Proof. Let φ(u1, u2, u3, u4) = φ2(u1, u2, u3, u4) = βu4, where β ∈ [0, 1). From (2.2.19), we

have

H(Tu, Tv) ≤ β

2
(D(v, Tu) +D(u, Tv)) = α(D(v, Tu) +D(u, Tv)), ∀ u, v ∈ U.

Therefore by Theorem 2.2.8, T has a �xed point.
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Example 2.2.13. Let U = [1,∞) be endowed with the usual metric d. De�ne T : U →

CB(U) by Tu = [1,
√
u] for each u ∈ U . Consider φ(u1, u2, u3, u4) = 1

2
u1. Clearly φ ∈ Φ.

Now for each u, v ∈ U , we have

H(Tu, Tv) = |
√
u−
√
v| = |(

√
u−
√
v)×

√
u+
√
v√

u+
√
v
| = |u− v|√

u+
√
v
≤ 1

2
|u− v| = 1

2
d(u, v).

Therefore by Theorem 2.2.8, T has a �xed point.

Theorem 2.2.14. Let f : U → U be a single-valued mapping and T : U → CB(U) be

a multi-valued mapping such that TU ⊆ fU . Assume that fU is a complete subspace of

U and there exists φ ∈ ΦCB such that

H(Tu, Tv) ≤ φ

(
d(fu, fv), D(fu, Tu), D(fv, Tv),

D(fv, Tu) +D(fu, Tv)

2

)
, ∀ u, v ∈ U.

(2.2.41)

Then T and f have a coincidence point, say w. Moreover, if f is T -weakly commuting at

w and ffw = fw, then T and f have a common �xed point.

Proof. Let u0 ∈ U . Since Tu0 6= ∅ and Tu0 ⊆ fU . Then there exists u1 ∈ U such that

fu1 ∈ Tu0. Suppose fu0 6= fu1, for otherwise, u0 is a coincidence point of T and f .

From (2.2.41), we have

H(Tu0, Tu1) ≤ φ

(
d(fu0, fu1), D(fu0, Tu0), D(fu1, Tu1),

D(fu1, Tu0) +D(fu0, Tu1)

2

)
.

(2.2.42)

For p > 1, there exists fu2 ∈ Tu1. Suppose fu1 6= fu2, for otherwise, u1 is a coincidence

point of T and f . Then we have

0 < d(fu1, fu2) < pH(Tu0, Tu1). (2.2.43)

From (2.2.42), we have

H(Tu0, Tu1) ≤ φ

(
d(fu0, fu1), d(fu0, fu1), d(fu1, fu2),

0 + d(fu0, fu2)

2

)
. (2.2.44)

By triangular inequality, we have

d(fu0, fu2) ≤ d(fu0, fu1) + d(fu1, fu2). (2.2.45)

We claim that d(fu1, fu2) < d(fu0, fu1). Suppose on contrary that d(fu1, fu2) ≥

d(fu0, fu1). Then from (2.2.45), we have d(fu0, fu2) ≤ 2d(fu1, fu2). Using these in
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(2.2.44), we have

H(Tu0, Tu1) ≤ φ(d(fu1, fu2), d(fu0, fu1), d(fu1, fu2), d(fu1, fu2)). (2.2.46)

By property (ii) of ΦCB, we have H(Tu0, Tu1) = 0. A contradiction to (2.2.43). Hence

d(fu1, fu2) < d(fu0, fu1). From (2.2.44), we have

H(Tu0, Tu1) ≤ φ(d(fu0, fu1), d(fu0, fu1), d(fu1, fu2), d(fu0, fu1)). (2.2.47)

By property (ii) of ΦCB, we have

H(Tu0, Tu1) ≤ ψ(d(fu0, fu1)). (2.2.48)

From (2.2.43) and (2.2.48), we have

d(fu1, fu2) < pψ(d(fu0, fu1)). (2.2.49)

Since ψ is strictly increasing, we have

ψ(d(fu1, fu2)) < ψ(pψ(d(fu0, fu1))). (2.2.50)

Thus we have p1 = ψ(pψ(d(fu0,fu1)))
ψ(d(fu1,fu2))

. Again from (2.2.41), we have

H(Tu1, Tu2) ≤ φ

(
d(fu1, fu2), D(fu1, Tu1), D(fu2, Tu2),

D(fu2, Tu1) +D(fu1, Tu2)

2

)
.

(2.2.51)

For p1 > 1, there exists fu3 ∈ Tu2. Suppose fu2 6= fu3, for otherwise, u2 is a coincidence

point of T and f . Then we have

0 < d(fu2, fu3) < p1H(Tu1, Tu2). (2.2.52)

From (2.2.51), we have

H(Tu1, Tu2) ≤ φ

(
d(fu1, fu2), d(fu1, fu2), d(fu2, fu3),

0 + d(fu1, fu3)

2

)
. (2.2.53)

By triangular inequality, we have

d(fu1, fu3) ≤ d(fu1, fu2) + d(fu2, fu3). (2.2.54)
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We claim that d(fu2, fu3) < d(fu1, fu2). Suppose on contrary that d(fu2, fu3) ≥

d(fu1, fu2). Then from (2.2.54), we have d(fu1, fu3) ≤ 2d(fu2, fu3). Using these in

(2.2.53), we have

H(Tu1, Tu2) ≤ φ(d(fu2, fu3), d(fu1, fu2), d(fu2, fu3), d(fu2, fu3)). (2.2.55)

By property (ii) of ΦCB, we have H(Tu1, Tu2) = 0. A contradiction to (2.2.52). Hence

d(fu2, fu3) < d(fu1, fu2). From (2.2.53), we have

H(Tu1, Tu2) ≤ φ(d(fu1, fu2), d(fu1, fu2), d(fu2, fu3), d(fu1, fu2)). (2.2.56)

By property (ii) of ΦCB, we have

H(Tu1, Tu2) ≤ ψ(d(fu1, fu2)). (2.2.57)

From (2.2.52) and (2.2.57), we have

d(fu2, fu3) < p1ψ(d(fu1, fu2)) = ψ(qψ(d(fu0, fu1))). (2.2.58)

Since ψ is strictly increasing, we have

ψ(d(fu2, fu3)) < ψ2(pψ(d(fu0, fu1))). (2.2.59)

Thus we have p2 = ψ2(pψ(d(fu0,fu1)))
ψ(d(fu2,fu3))

. Continuing in this way, we get a sequence {Tun} in

CB(U) such that fun+1 ∈ Tun, fun 6= fun+1 and d(fun+1, fun+2) < d(fun, fun+1) for

each n ∈ N ∪ {0}. Further, we have

d(fun, fun+1) < ψn−1(pψ(d(fu0, fu1))), ∀ n ∈ N. (2.2.60)

Let n > m. Then we have

d(fum, fun) ≤ d(fum, fum+1) + d(fum+1, fum+2) + · · ·+ d(fun−1, fun)

< ψm−1(d(fu0, fu1)) + ψm(d(fu0, fu1)) + · · ·+ ψn−2(d(fu0, fu1))

=
n−2∑

i=m−1

ψi(d(fu0, fu1)).

Therefore {fun} is a Cauchy sequence in fU . By completeness of fU , there exist u∗, z∗ ∈

U such that

lim
n→∞

fun = fu∗ = z∗.
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From (2.2.41), we have

D(fun+1, Tu
∗) ≤ H(Tun, Tu

∗)

≤ φ
(
d(fun, fu

∗), D(fun, Tun), D(fu∗, Tu∗),

D(fu∗, Tun) +D(fun, Tu
∗)

2

)
≤ φ

(
d(fun, fu

∗), d(fun, fun+1), D(fu∗, Tu∗),

d(fu∗, fun+1) +D(fun, Tu
∗)

2

)
. (2.2.61)

Letting n→∞ in (2.2.61), we have

D(fu∗, Tu∗) ≤ φ(0, 0, D(fu∗, Tu∗), D(fu∗, Tu∗)). (2.2.62)

By property (iii) of ΦCB, we have D(fu∗, Tu∗) = 0. By closedness of T , we have fu∗ ∈

Tu∗. Therefore u∗ is a coincidence point of T and f . By assumption we have fu∗ =

ffu∗ ∈ Tfu∗ which implies that z∗ = fz∗ ∈ Tz∗.

Example 2.2.15. Let U = [1,∞) be endowed with the usual metric d. De�ne f : U → U

by fu = 2
√
u − 1 for each u ∈ U and T : U → CB(U) by Tu = [1,

√
u] for each u ∈ U .

Consider φ(u1, u2, u3, u4) = 1
2
u1. Clearly φ ∈ Φ. Now for each u, v ∈ U , we have

H(Tu, Tv) = |
√
u−
√
v| = 2|

√
u−
√
v|

2
=

1

2
|fu− fv| = 1

2
d(fu, fv).

Therefore by Theorem 2.2.14, T and f have a coincidence point. Moreover, ff1 ∈ Tf1

and ff1 = f1.
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Chapter 3

Fixed point theorems in partially

ordered metric spaces

Ran et al. [13] initiated the study of �xed points for mappings of partially ordered metric

spaces. A number of authors obtained many interesting results in this direction. In

this chapter we generalize some results of Chapter one. Although, we have considered

same contractive conditions as introduced in Chapter one but we require that these

conditions hold for those pair of points from the metric space that are related to each

other. Throughout this chapter, U is a nonempty set endowed with a complete metric d

and a partial ordering �.

3.1 Fixed point theorems for single-valued mappings

In this section, we establish some �xed point theorems for φ-contraction mappings in

partially ordered metric spaces. We can obtain some results of Nieto et al. [12] as

consequences of our results.

Theorem 3.1.1. Let T : U → U be a continuous and nondecreasing mapping. Assume

that there exists φ ∈ Φ such that

d(Tu, Tv) ≤ φ

(
d(u, v), d(u, Tu), d(v, Tv),

d(v, Tu) + d(u, Tv)

2

)
(3.1.1)

for each u, v ∈ U with u � v and there exists u0 ∈ U such that u0 � Tu0. Then T has a

�xed point.
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Proof. Let u0 ∈ U such that u0 � Tu0. Since T is nondecreasing, by induction we have

u0 � Tu0 � T 2u0 � T 3u0 � · · · � T nu0 � T n+1u0 � · · · . (3.1.2)

Put un+1 = Tun = T n+1u0 for each n ∈ N ∪ {0}. If uN+1 = uN for some N ∈ N ∪ {0}.

Then uN is a �xed point. Suppose un+1 6= un for each n ∈ N ∪ {0}. As un � un+1 for

each n ∈ N ∪ {0}. Then from (3.1.1), we have

d(un+1, un+2) = d(Tun, Tun+1)

≤ φ
(
d(un, un+1), d(un, Tun), d(un+1, Tun+1),

d(un+1, Tun) + d(un, Tun+1)

2

)
= φ

(
d(un, un+1), d(un, un+1), d(un+1, un+2),

d(un+1, un+1) + d(un, un+2)

2

)
. (3.1.3)

By triangular inequality, we have

d(un, un+2) ≤ d(un, un+1) + d(un+1, un+2). (3.1.4)

We claim that d(un+1, un+2) < d(un, un+1) for each n ∈ N ∪ {0}. Suppose on contrary

that d(un+1, un+2) ≥ d(un, un+1) for some n ∈ N∪{0}. From (3.1.4), we get d(un, un+2) ≤

2d(un+1, un+2). Since φ is nondecreasing, by using these in (3.1.3), we have

d(un+1, un+2) ≤ φ(d(un+1, un+2), d(un, un+1), d(un+1, un+2), d(un+1, un+2)). (3.1.5)

By (3.1.5) and property (ii) of Φ, we have

d(un+1, un+2) = 0.

A contradiction to our assumption that un+1 6= un for each n ∈ N∪{0}. Thus d(un+1, un+2)

< d(un, un+1) for each n ∈ N ∪ {0}. From (3.1.4), we have d(un, un+2) < 2d(un, un+1).

Using it in (3.1.3), we have

d(un+1, un+2) ≤ φ(d(un, un+1), d(un, un+1), d(un+1, un+2), d(un, un+1)). (3.1.6)

By (3.1.6) and property (ii) of Φ, we have

d(un+1, un+2) ≤ ψ(d(un, un+1)), ∀ n ∈ N ∪ {0}.
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Continuing in the same way, we get

d(un+1, un+2) ≤ ψn+1(d(u0, u1)), ∀ n ∈ N ∪ {0}. (3.1.7)

Let n > m. Then we have

d(um, un) ≤ d(um, um+1) + d(um+1, um+2) + · · ·+ d(un−1, un)

≤ ψm(d(u0, u1)) + ψm+1(d(u0, u1)) + · · ·+ ψn−1(d(u0, u1))

=
n−1∑
i=m

ψi(d(u0, u1)).

Therefore {un} is a Cauchy sequence in U . By completeness of U , there exists u∗ ∈ U

such that un → u∗ as n→∞. Since T is continuous, then un+1 = Tun → Tu∗ as n→∞.

By the uniqueness of limit, we have u∗ = Tu∗.

Corollary 3.1.2 (Nieto et al. [12]). Let T : U → U be a continuous and nondecreasing

mapping. Assume that there exists α ∈ [0, 1) such that d(Tu, Tv) ≤ αd(u, v) for all

u, v ∈ U with u � v. If there exists u0 ∈ U such that u0 � Tu0, then T has a �xed point.

Proof. Let φ(u1, u2, u3, u4) = φ5(u1, u2, u3, u4) = αu1, where α ∈ [0, 1). From (3.1.1), we

have

d(Tu, Tv) ≤ αd(u, v),

for each u, v ∈ U with u � v. Therefore by Theorem 3.1.1, T has a �xed point.

Corollary 3.1.3. Let T : U → U be a continuous and nondecreasing mapping. Assume

that there exists α ∈ [0, 1/2) such that d(Tu, Tv) ≤ α(d(v, Tu)+d(u, Tv)) for all u, v ∈ U

with u � v. If there exists u0 ∈ U such that u0 � Tu0, then T has a �xed point.

Proof. Let φ(u1, u2, u3, u4) = φ2(u1, u2, u3, u4) = βu4, where β ∈ [0, 1). From (3.1.1), we

have

d(Tu, Tv) ≤ β

2
(d(v, Tu) + d(u, Tv)) = α(d(v, Tu) + d(u, Tv)),

for each u, v ∈ U with u � v. Therefore by Theorem 3.1.1, T has a �xed point.

Corollary 3.1.4. Let T : U → U be a continuous and nondecreasing mapping. Assume

that there exists α ∈ [0, 1) such that d(Tu, Tv) ≤ αmax{d(u, Tu), d(v, Tv)} for all u, v ∈

U with u � v. If there exists u0 ∈ U such that u0 � Tu0, then T has a �xed point.
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Proof. Let φ(u1, u2, u3, u4) = φ4(u1, u2, u3, u4) = αmax{u2, u3}, where α ∈ [0, 1). From

(3.1.1), we have

d(Tu, Tv) ≤ αmax{d(u, Tu), d(v, Tv)},

for each u, v ∈ U with u � v. Therefore by Theorem 3.1.1, T has a �xed point.

Theorem 3.1.5. Let T : U → U be a nondecreasing mapping and there exists φ ∈ Φ

such that

d(Tu, Tv) ≤ φ

(
d(u, v), d(u, Tu), d(v, Tv),

d(v, Tu) + d(u, Tv)

2

)
(3.1.8)

for each u, v ∈ U with u � v. Assume that un � u for each n ∈ N ∪ {0}, whenever {un}

is a nondecreasing sequence in U such that un → u. If there exists u0 ∈ U such that

u0 � Tu0, then T has a �xed point.

Proof. Following the proof of Theorem 3.1.1, we know that {un} is a Cauchy sequence in

U . Since U is complete, there exists u∗ ∈ U such that un → u∗ as n → ∞. As un � u∗

for each n ∈ N ∪ {0}. From (3.1.8), we have

d(un+1, Tu
∗) = d(Tun, Tu

∗)

≤ φ
(
d(un, u

∗), d(un, Tun), d(u∗, Tu∗),

d(u∗, Tun) + d(un, Tu
∗)

2

)
= φ

(
d(un, u

∗), d(un, un+1), d(u∗, Tu∗),

d(u∗, un+1) + d(un, Tu
∗)

2

)
. (3.1.9)

Letting n→∞ in (3.1.9), we have

d(u∗, Tu∗) ≤ φ

(
0, 0, d(u∗, Tu∗),

0 + d(u∗, Tu∗)

2

)
. (3.1.10)

By property (iii) of Φ, we have d(u∗, Tu∗) = 0. Hence Tu∗ = u∗.

Corollary 3.1.6 (Nieto et al. [12]). Let T : U → U be a nondecreasing mapping.

Assume that there exists α ∈ [0, 1) such that d(Tu, Tv) ≤ αd(u, v) for all u, v ∈ U with

u � v. Also, assume that un � u for each n ∈ N∪{0}, whenever {un} is a nondecreasing

sequence in U such that un → u. If there exists u0 ∈ U such that u0 � Tu0, then T has

a �xed point.
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Proof. Let φ(u1, u2, u3, u4) = φ5(u1, u2, u3, u4) = αu1, where α ∈ [0, 1). From (3.1.8), we

have

d(Tu, Tv) ≤ αd(u, v),

for each u, v ∈ U with u � v. Therefore by Theorem 3.1.5, T has a �xed point.

Corollary 3.1.7. Let T : U → U be a nondecreasing mapping. Assume that there

exists α ∈ [0, 1/2) such that d(Tu, Tv) ≤ α(d(u, Tu) + d(v, Tv)) for all u, v ∈ U with

u � v. Also, assume that un � u for each n ∈ N∪{0}, whenever {un} is a nondecreasing

sequence in U such that un → u. If there exists u0 ∈ U such that u0 � Tu0, then T has

a �xed point.

Proof. Let φ(u1, u2, u3, u4) = φ6(u1, u2, u3, u4) = β
2
(u2 + u3), where β ∈ [0, 1). From

(3.1.8), we have

d(Tu, Tv) ≤ β

2
(d(u, Tu) + d(v, Tv)) = α(d(u, Tu) + d(v, Tv)),

for each u, v ∈ U with u � v. Therefore by Theorem 3.1.5, T has a �xed point.

Corollary 3.1.8. Let T : U → U be a nondecreasing mapping. Assume that there

exists α ∈ [0, 1) such that d(Tu, Tv) ≤ αmax{d(u, Tu), d(v, Tv)} for all u, v ∈ U with

u � v. Also, assume that un � u for each n ∈ N∪{0}, whenever {un} is a nondecreasing

sequence in U such that un → u. If there exists u0 ∈ U such that u0 � Tu0, then T has

a �xed point.

Proof. Let φ(u1, u2, u3, u4) = φ4(u1, u2, u3, u4) = αmax{u2, u3}, where α ∈ [0, 1). From

(3.1.8), we have

d(Tu, Tv) ≤ αmax{d(u, Tu), d(v, Tv)},

for each u, v ∈ U with u � v. Therefore by Theorem 3.1.5, T has a �xed point.

To ensure the uniqueness of �xed point, we will consider the following condition:

(C): For each u, v ∈ U , there exists z ∈ U such that u � z and v � z.

Theorem 3.1.9. Adding condition (C) to the hypothesis of Theorem 3.1.1 (resp. Theo-

rem 3.1.5), we obtain the uniqueness of �xed point of T .
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Proof. Suppose u∗ and v∗ be two distinct �xed points of T . By using (C), for u∗, v∗ ∈ U ,

we have z ∈ U such that u∗ � z and v∗ � z. Since T is nondecreasing, we have u∗ � T nz

for each n ∈ N. Put zn = T nz for each n ∈ N. Moreover, it is easy to show that {zn} is

a Cauchy sequence in U , thus there exists z∗ ∈ U such that zn → z∗ as n → ∞. From

(3.1.1), we have

d(u∗, T zn) = d(Tu∗, T zn)

≤ φ

(
d(u∗, zn), d(u∗, Tu∗), d(zn, T zn),

d(zn, Tu
∗) + d(u∗, T zn)

2

)
= φ

(
d(u∗, zn), 0, d(zn, zn+1),

d(zn, u
∗) + d(u∗, zn+1)

2

)
. (3.1.11)

Letting n→∞ in (3.1.11), we have

d(u∗, z∗) ≤ φ (d(u∗, z∗), 0, 0, d(u∗, z∗)) . (3.1.12)

By (3.1.12) and property (iii) of Φ, we have d(u∗, z∗) = 0, i.e., u∗ = z∗. Similarly, we have

v∗ = z∗. By the uniqueness of limit we have u∗ = v∗. A contradiction to our assumption.

Hence T has a unique �xed point in U .

Corollary 3.1.10. Let T : U → U be a continuous and nondecreasing mapping. Assume

that there exists α ∈ [0, 1) such that d(Tu, Tv) ≤ αd(u, v) for all u, v ∈ U with u � v.

Also, assume that U holds (C). If there exists u0 ∈ U such that u0 � Tu0, then T has a

unique �xed point.

Proof. Let φ(u1, u2, u3, u4) = φ5(u1, u2, u3, u4) = αu1, where α ∈ [0, 1). From (3.1.1), we

have

d(Tu, Tv) ≤ αd(u, v),

for each u, v ∈ U with u � v. Therefore by Theorem 3.1.9, T has a unique �xed point.

Example 3.1.11. Let U = [0,∞) × [0,∞) be a partially ordered set with relation �,

where (u1, u2) � (v1, v2) if and only if u1 ≤ v1 and u2 ≤ v2. De�ne a metric d on U such

that for each u = (u1, u2), v = (v1, v2) ∈ U , we have d(u, v) = max{|u1 − v1|, |u2 − v2|}

and T : U → U is given by T (u1, u2) = (ξ, u2
2

) for each u ∈ U and for some ξ ∈ U .

Consider φ(u1, u2, u3, u4) = 1
2
u1. Clearly φ ∈ Φ. For each u, v ∈ U with u � v, we have

d(Tu, Tv) =
1

2
|u2 − v2| ≤

1

2
(max{|u1 − v1|, |u2 − v2|}) =

1

2
d(u, v).

Therefore by Theorem 3.1.9, T has a unique �xed point.
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3.2 Fixed point theorems for multi-valued mappings

For A,B ∈ N(U), we have following relations:

• A ≺1 B, if for each a ∈ A we have b ∈ B with a � b.

• A ≺2 B, if for each b ∈ B we have a ∈ A with a � b.

Theorem 3.2.1. Let T : U → B(U) be a mapping satisfying the following conditions:

(i) there exists u0 ∈ U such that {u0} ≺1 Tu0;

(ii) for u, v ∈ U , u � v implies Tu ≺1 Tv;

(iii) if {un} is a nondecreasing sequence in U such that un → u, then un � u for each

n ∈ N ∪ {0};

(iv) there exists φ ∈ ΦB such that

δ(Tu, Tv) ≤ φ

(
d(u, v), D(u, Tu), D(v, Tv),

D(v, Tu) +D(u, Tv)

2

)
(3.2.1)

for each u, v ∈ U with u � v.

Then T has a �xed point.

Proof. By (i) there exists u0 ∈ U such that {u0} ≺1 Tu0. Then there exists u1 ∈ Tu0 such

that u0 � u1. By (ii) we have Tu0 ≺1 Tu1. Then for u1 ∈ Tu0, there exists u2 ∈ Tu1 such

that u1 � u2. Continuing in this way, we get a sequence {un} in U such that un+1 ∈ Tun
for each n ∈ N ∪ {0} and

u0 � u1 � u1 � u2 � · · · � un � un+1 � · · · . (3.2.2)

If there exists some N ∈ N∪{0} such that uN = uN+1, then uN is a �xed point. Suppose

un 6= un+1 for each n ∈ N ∪ {0}. As un � un+1 for each n ∈ N ∪ {0}. Then from (3.2.1),

we have

d(un+1, un+2) ≤ δ(Tun, Tun+1)

≤ φ
(
d(un, un+1), D(un, Tun), D(un+1, Tun+1),

D(un+1, Tun) +D(un, Tun+1)

2

)
≤ φ

(
d(un, un+1), d(un, un+1), d(un+1, un+2),

d(un+1, un+1) + d(un, un+2)

2

)
. (3.2.3)
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By triangular inequality, we have

d(un, un+2) ≤ d(un, un+1) + d(un+1, un+2). (3.2.4)

We claim that d(un+1, un+2) < d(un, un+1) for each n ∈ N∪{0}. Suppose on contrary that

d(un+1, un+2) ≥ d(un, un+1) for some n ∈ N ∪ {0}. From (3.2.4), we have d(un, un+2) ≤

2d(un+1, un+2). Since φ is nondecreasing, by using these in (3.2.3), we have

d(un+1, un+2) ≤ φ(d(un+1, un+2), d(un, un+1), d(un+1, un+2), d(un+1, un+2)). (3.2.5)

By (3.2.5) and property (ii) of ΦB, we have d(un+1, un+2) = 0, i.e., un+1 = un+2. A

contradiction to assumption that un 6= un+1 for each n ∈ N ∪ {0}. Thus d(un+1, un+2) <

d(un, un+1) for each n ∈ N∪{0}. From (3.2.4), we have d(un, un+2) < 2d(un, un+1). Using

it in (3.2.3), we have

d(un+1, un+2) ≤ φ(d(un, un+1), d(un, un+1), d(un+1, un+2), d(un, un+1)). (3.2.6)

By (3.2.6) and property (ii) of ΦB, we have

d(un+1, un+2) ≤ ψ(d(un, un+1)), ∀ n ∈ N ∪ {0}.

Continuing in the same way, we get

d(un+1, un+2) ≤ ψn+1(d(u0, u1)), ∀ n ∈ N ∪ {0}. (3.2.7)

Let n > m. Then we have

d(um, un) ≤ d(um, um+1) + d(um+1, um+2) + · · ·+ d(un−1, un)

≤ ψm(d(u0, u1)) + ψm+1(d(u0, u1)) + · · ·+ ψn−1(d(u0, u1))

=
n−1∑
i=m

ψi(d(u0, u1)).

Therefore {un} is a Cauchy sequence in U . By completeness of U , there exists u∗ ∈ U

such that un → u∗ as n→∞. As un � u∗ for each n ∈ N ∪ {0}. From (3.2.1), we have

δ(un+1, Tu
∗) ≤ δ(Tun, Tu

∗)

≤ φ
(
d(un, u

∗), D(un, Tun), D(u∗, Tu∗),

D(u∗, Tun) +D(un, Tu
∗)

2

)
≤ φ

(
d(un, u

∗), d(un, un+1), D(u∗, Tu∗),

d(u∗, un+1) +D(un, Tu
∗)

2

)
. (3.2.8)
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Letting n→∞ in (3.2.8), we have

δ(u∗, Tu∗) ≤ φ

(
0, 0, D(u∗, Tu∗),

D(u∗, Tu∗)

2

)
≤ φ

(
0, 0, δ(u∗, Tu∗),

δ(u∗, Tu∗)

2

)
. (3.2.9)

By (3.2.9) and property (ii) of ΦB, we have δ(u
∗, Tu∗) = 0. Hence Tu∗ = {u∗}. Moreover,

u∗ is a �xed point.

Corollary 3.2.2. Let T : U → B(U) be a mapping satisfying the following conditions:

(i) there exists u0 ∈ U such that {u0} ≺1 Tu0;

(ii) for u, v ∈ U , u � v implies Tu ≺1 Tv;

(iii) if {un} is a nondecreasing sequence in U such that un → u, then un � u for each

n ∈ N ∪ {0};

(iv) there exists α ∈ [0, 1) such that

δ(Tu, Tv) ≤ αmax

{
d(u, v),

D(u, Tu) +D(v, Tv)

2
,
D(v, Tu) +D(u, Tv)

2

}
for all u, v ∈ U with u � v.

Then T has a �xed point.

Proof. Let φ(u1, u2, u3, u4) = φ7(u1, u2, u3, u4) = αmax{u1, 12(u2 + u3), u4}, where α ∈

[0, 1). From (3.2.1), we have

δ(Tu, Tv) ≤ αmax

{
d(u, v),

D(u, Tu) +D(v, Tv)

2
,
D(v, Tu) +D(u, Tv)

2

}
for all u, v ∈ U with u � v. Therefore by Theorem 3.2.1, T has a �xed point.

Corollary 3.2.3 (Choudhury et al. [5]). Let T : U → B(U) be a mapping satisfying the

following conditions:

(i) there exists u0 ∈ U such that {u0} ≺1 Tu0;

(ii) for u, v ∈ U , u � v implies Tu ≺1 Tv;
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(iii) if {un} is a nondecreasing sequence in U such that un → u, then un � u for each

n ∈ N ∪ {0};

(iv) there exists α ∈ [0, 1) such that

δ(Tu, Tv) ≤ αmax

{
d(u, v), D(u, Tu), D(v, Tv),

D(v, Tu) +D(u, Tv)

2

}
for all u, v ∈ U with u � v.

Then T has a �xed point.

Proof. Let φ(u1, u2, u3, u4) = φ1(u1, u2, u3, u4) = αmax{u1, u2, u3, u4}, where α ∈ [0, 1).

From (3.2.1), we have

δ(Tu, Tv) ≤ αmax

{
d(u, v), D(u, Tu), D(v, Tv),

D(v, Tu) +D(u, Tv)

2

}
for all u, v ∈ U with u � v. Therefore by Theorem 3.2.1, T has a �xed point.

Example 3.2.4. Let U = {(0, 0), (0, 1), (−1
4
, 2
3
)} be a partially ordered set with relation

�. Where (u, v) � (u, v) if and only if u ≤ u, v ≤ v. De�ne a metric d on U such that

d(u, v) = max{|u1 − v1|, |u2 − v2|} for u, v ∈ U and T : U → B(U) by

Tu =

{(0, 1)} if u 6= (0, 0);

{(0, 1), (−1
4
, 2
3
)} if u = (0, 0).

(3.2.10)

Consider φ(u1, u2, u3, u4) = 2
3

max{u1, u2}. Comparable elements are: (0, 0) � (0, 0), (0, 1) �

(0, 1), (−1
4
, 2
3
) � (−1

4
, 2
3
), (0, 0) � (0, 1), (−1

4
, 2
3
) � (0, 1). Let u0 = (−1

4
, 2
3
), we have

{u0} ≺1 Tu0. If u � v, then clearly we have Tu ≺1 Tv. Now we discuss condition (iv)

by following cases:

(i) Consider u = v = (0, 0). Then Tu = Tv = {(0, 1), (−1
4
, 2
3
)}. Also, we have

δ(Tu, Tv) = 1/3, d(u, v) = 0, D(u, Tu) = 2/3. Thus condition (iv) of Theorem

(3.2.1) is satis�ed because 1
3
< 2

3
(2
3
).

(ii) Consider u = v = (0, 1). Then Tu = Tv = {(0, 1)}. Also, we have δ(Tu, Tv) =

0, d(u, v) = 0, D(u, Tu) = 0. Thus condition (iv) of Theorem (3.2.1) is satis�ed

because 0 = 2
3
(0).
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(iii) Consider u = v = (−1
4
, 2
3
). Then Tu = Tv = {(0, 1)}. Also, we have δ(Tu, Tv) = 0,

d(u, v) = 0, D(u, Tu) = 1/3. Thus condition (iv) of Theorem (3.2.1) is satis�ed

because 0 < 2
3
(1
3
).

(iv) Consider u = (0, 0) � v = (0, 1). Then Tu = {(0, 1), (−1
4
, 2
3
)} and Tv = {(0, 1)}.

Also, we have δ(Tu, Tv) = 1/3, d(u, v) = 1, D(u, Tu) = 2/3. Thus condition (iv)

of Theorem (3.2.1) is satis�ed because 1
3
< 2

3
(1).

(v) Consider u = (−1
4
, 2
3
) � v = (0, 1). Then Tu = Tv = {(0, 1)}. Also, we have

δ(Tu, Tv) = 0, d(u, v) = 1/3, D(u, Tu) = 1/3. Thus condition (iv) of Theorem

(3.2.1) is satis�ed because 0 < 2
3
(1
3
).

Moreover, if {un} is a nondecreasing sequence in U such that un → u, then un � u for

each n ∈ N ∪ {0}. Since all conditions of Theorem 3.2.1 are satis�ed. Therefore T has a

�xed point.

Theorem 3.2.5. Let T : U → B(U) be a mapping satisfying the following conditions:

(i) there exists u0 ∈ U such that Tu0 ≺2 {u0};

(ii) for u, v ∈ U , u � v implies Tu ≺2 Tv;

(iii) if {un} is a nonincreasing sequence in U such that un → u, then un � u for each

n ∈ N ∪ {0};

(iv) there exists φ ∈ ΦB such that

δ(Tu, Tv) ≤ φ

(
d(u, v), D(u, Tu), D(v, Tv),

D(v, Tu) +D(u, Tv)

2

)
for each u, v ∈ U with u � v;

Then T has a �xed point.

Proof. The proof follows on the same lines as in Theorem 3.2.1.
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Chapter 4

Fixed point theorems in pre-ordered

metric spaces

In this chapter, we de�ne another contractive type condition and obtain some �xed point

theorems. We show that some well known results can be obtained as a special case of

our results. Throughout this chapter, we denote by U a nonempty set endowed with a

metric d and pre-ordering �, by Ψ the class of altering distance functions and by Φ the

class of continuous functions from [0,∞) into [0,∞).

De�nition 4.0.6 (Khan et al. [10]). An altering distance function is a function ψ :

[0,∞) → [0,∞) which satis�es the following conditions: (i) ψ is continuous and nonde-

creasing; (ii) ψ(t) = 0 if and only if t = 0.

De�nition 4.0.7. Let β : U ×U → [0,∞) be a mapping. A mapping T : U → U is said

to be (β, ψ, φ)-contraction on S ⊂ U if there exist two functions ψ ∈ Ψ and φ ∈ Φ such

that

β(u, v)ψ(d(Tu, Tv)) ≤ φ(d(u, v)), ∀ u, v ∈ S. (4.0.1)

De�nition 4.0.8. Let β : U ×U → [0,∞) be a mapping. A mapping T : U → U is said

to β-subadmissible if

(i) for u, v ∈ U , β(u, v) ≥ 1⇒ β(Tu, Tv) ≥ 1;

(ii) for u ∈ U , β(T n+1u, T nu) ≥ 1 for each n ∈ N ∪ {0} implies β(Tmu, T nu) ≥ 1 for

each m,n ∈ N ∪ {0} with m > n.
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Remark 4.0.9. Note that T 0u = u ∀ u ∈ U .

Example 4.0.10. Let U = [0,∞). De�ne mappings T : U → U and β : U ×U → [0,∞)

by

Tu = u+ 1 ∀ u ∈ U,

and

β(u, v) = u+ v ∀ u, v ∈ U.

Then T is β-subadmissible.

Lemma 4.0.11 (Yan et al. [16]). If ψ is an alternating distance function and φ : [0,∞)→

[0,∞) is a continuous function with condition ψ(t) > φ(t) for all t > 0, then φ(0) = 0.

Theorem 4.0.12. Let S = {(u, v) ∈ U × U : u � v or u � v} and β : S → [0,∞) be a

mapping such that

β(u, v) =

 0 if u ≺ v;

> 0 if u � v.
(4.0.2)

Assume that d is complete and T : U → U be a mapping such that:

(i) T is (β, ψ, φ)-contraction on S;

(ii) T is β-subadmissible on S;

(iii) there exists u0 ∈ U such that β(Tu0, u0) ≥ 1;

(iv) T is continuous;

(v) ψ(t) > φ(t) for all t > 0.

Then T has a �xed point.

Proof. It follows from (iii) that there exists u0 ∈ U such that β(Tu0, u0) ≥ 1. Let

u1 = Tu0. Assume that u1 6= u0, for otherwise, u0 is a �xed point of T . From (4.0.2),

we get u0 � u1. Let u2 = Tu1. Assume that u2 6= u1. As T is β-subadmissible on S, we

have β(T u1, Tu0) ≥ 1. It follows from (4.0.2) that u2 � u1. Further, using (4.0.1)

ψ(d(u2, u1)) = ψ(d(Tu1, Tu0))

≤ β(u1, u0)ψ(d(Tu1, Tu0))

≤ φ(d(u1, u0)). (4.0.3)
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Continuing in this manner, we get a nondecreasing sequence {un} = {Tun−1} = {T nu0}

in U such that

β(un+1, un) ≥ 1 ∀ n ∈ N ∪ {0} (4.0.4)

and

ψ(d(un+1, un)) ≤ φ(d(un, un−1)). (4.0.5)

Assume that un 6= un−1, for otherwise, un−1 = Tun−1. It follows form (v) and (4.0.5) that

d(un+1, un) < d(un, un−1). (4.0.6)

Thus {d(un+1, un)} is a decreasing sequence of real numbers, which is bounded below by

0. Therefore, there exists r ≥ 0 such that

d(un+1, un)→ r. (4.0.7)

letting n→∞ in (4.0.5), we get

ψ(r) ≤ φ(r). (4.0.8)

Thus

d(un+1, un)→ 0. (4.0.9)

We claim that {un} is a Cauchy sequence in U . For otherwise, there exists an ε > 0 and

a subsequence {unk
} with nk > mk > k such that

d(unk
, umk

) ≥ ε ∀k ≥ 1. (4.0.10)

Let nk is the smallest positive integer greater than mk satisfying (4.0.10), then

d(unk−1
, umk

) < ε. (4.0.11)

From (4.0.10) and (4.0.11), we get

ε ≤ d(unk
, umk

) ≤ d(unk
, unk−1

) + d(unk−1
, umk

)

< d(unk
, unk−1

) + ε. (4.0.12)

Letting k →∞ in (4.0.12) and using (4.0.9), we get

lim
n→∞

d(unk
, umk

) = ε. (4.0.13)
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By using triangular inequality, we get

d(unk
, umk

) ≤ d(unk
, unk−1

) + d(unk−1
, umk−1

) + d(umk−1
, umk

). (4.0.14)

d(unk−1
, umk−1

) ≤ d(unk−1
, unk

) + d(unk
, umk

) + d(umk
, umk−1

). (4.0.15)

Letting k →∞ in (4.0.14), (4.0.15) and using (4.0.9), (4.0.13), we get

lim
k→∞

d(unk−1
, umk−1

) = ε. (4.0.16)

As T is β-subadmissible, by using (4.0.4), we have

ψ(d(unk
, umk

)) ≤ β(unk−1
, umk−1

)ψ(d(Tunk−1
, Tumk−1

))

≤ φ(d(unk−1
, umk−1

)). (4.0.17)

Letting k →∞ in (4.0.17) and using (4.0.13), (4.0.16), we get

ψ(ε) ≤ φ(ε). (4.0.18)

This implies that ε = 0, a contradiction. This shows that {un} is a Cauchy sequence in

U . Therefore, there exists u∗ ∈ U such that un → u∗ and continuity of T implies that

u∗ = lim
n→∞

un+1 = lim
n→∞

Tun = Tu∗.

Corollary 4.0.13 (Nieto et al. [12]). Let (U,�) be a partially ordered set and suppose

that (U, d) be a complete metric space. Let T : U → U be a mapping satisfying the

following assumptions:

(i) There exists k ∈ [0, 1) such that d(Tu, Tv) ≤ kd(u, v) for all u, v ∈ U with u � v;

(ii) there exists u0 ∈ U such that u0 � Tu0;

(iii) T is continuous and nondecreasing with respect to �.

Then T has a �xed point.
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Proof. Choose ψ(t) = t, φ(t) = kt and de�ne β : S → [0,∞) by

β(u, v) =

1 if u � v;

0 otherwise.

It follows that β(Tu0, u0) = 1, ψ(t) = t > kt = φ(t) and β(u, v)d(Tu, Tv) ≤ kd(u, v)

for all (u, v) ∈ S. Suppose (u, v) ∈ S be such that β(u, v) = 1. Then u � v which

in turns implies that β(Tu, Tv) = 1 since T is nondecreasing. Also, for each u ∈ U

with β(T n+1u, T nu) ≥ 1 for each n ∈ N ∪ {0}, we have β(Tmu, T nu) ≥ 1 for each

m,n ∈ N∪{0} with m > n, since T nondecreasing. Therefore, all conditions of Theorem

4.0.12 are satis�ed and T has a �xed point.

Corollary 4.0.14 (Yan et al. [16]). Let (U,�) be a partially ordered set and suppose

that (U, d) be a complete metric space. Let T : U → U be a continuous and nondecreasing

mapping such that

ψ(d(Tu, Tv)) ≤ φ(d(u, v)), ∀ u � v (4.0.19)

where ψ is alternating distance function and φ : [0,∞) → [0,∞) is continuous function

with condition ψ(t) > φ(t) for all t > 0. If there exists u0 ∈ U such that u0 � Tu0, then

T has a �xed point.

Proof. Taking β : S → [0,∞) by

β(u, v) =

1 if u � v;

0 otherwise.

Then it is easy to see that all conditions of Theorem 4.0.12 are satis�ed.

Next two examples show that Theorem 4.0.12 is proper generalization of Yan et al.

[16].

Example 4.0.15. Let U = [0,∞) be endowed with the usual metric d(u, v) = |u−v| and

u � v if and only if u ≤ v. De�ne ψ : [0,∞) → [0,∞) by ψ(t) = t
2
, φ : [0,∞) → [0,∞)

by φ(t) = t
4
and β : S → [0,∞) by

β(u, v) =


1

2(u+v)
if u � v and u 6= 0;

1 if u = v = 0;

0 otherwise.

(4.0.20)
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Let T : U → U be a mapping such that Tu = u2 for all u ∈ U . Note that ψ is an altering

distance function, φ and T are continuous functions, β(T0, 0) = 1 and ψ(t) > φ(t) for all

t > 0. Further, if u � v then β(u, v)ψ(d(Tu, Tv)) = 1
4
|u − v| = φ(d(u, v)), for otherwise

β(u, v)ψ(d(Tu, Tv)) = 0 ≤ φ(d(u, v)). Furthermore, β(u, v) ≥ 1 when u = v = 0 or

u, v ∈ (0, 1
4
] and in each case β(u, v) ≥ 1 implies β(Tu, Tv) ≥ 1. Clearly, for each

u ∈ U with β(T n+1u, T nu) ≥ 1 for each n ∈ N ∪ {0}, we have β(Tmu, T nu) ≥ 1 for each

m,n ∈ N ∪ {0} with m > n. Therefore, all conditions of Theorem 4.0.12 are satis�ed

and 0, 1 are �xed points of T . Note that Corollary 4.0.14 is not applicable here since

ψ(d(T5, T2)) > φ(d(5, 2)). Also, note that T is not a Banach contraction.

Example 4.0.16. Let U = [1,∞) be endowed with the usual metric d(u, v) = |u−v| and

u � v if and only if u ≤ v. De�ne ψ : [0,∞) → [0,∞) by ψ(t) = t, φ : [0,∞) → [0,∞)

by φ(t) = t
2
and β : S → [0,∞) by

β(u, v) =


1 if u = v = 1;

1
4

if u ≥ v, and u > 1;

0 otherwise.

(4.0.21)

Let T : U → U be a mapping such that Tu = 2u − 1 for all u ∈ U . Note that ψ is an

altering distance function, φ and T are continuous functions, β(T1, 1) = 1 and ψ(t) > φ(t)

for all t > 0. Further, T is (β, ψ, φ)-contraction on S and T is β-subadmissible on S.

Therefore, all conditions of Theorem 4.0.12 are satis�ed and 1 is a �xed point of T . Note

that Corollary 4.0.14 is not applicable here since ψ(d(T4, T1)) > φ(d(4, 1)). Also, note

that T is not a Banach contraction.

Example 4.0.17. Let U = {(u1, u2) : u1, u2 ∈ R} be endowed with the metric d(u, v) =

|u1 − v1| + |u2 − v2| and (u1, u2) � (v1, v2) if and only if u1 ≤ v1 and u2 ≤ v2. De�ne

ψ : [0,∞)→ [0,∞) by ψ(t) = t, φ : [0,∞)→ [0,∞) by φ(t) = t
4
and β : S → [0,∞) by

β(u, v) =


1
8

if u ≥ v;

1 if u = v;

0 otherwise.

(4.0.22)

Let T : U → U be a mapping such that T (u1, u2) = (2u1, 2u2) for all u = (u1, u2) ∈

U . Note that ψ is an altering distance function, φ and T are continuous functions,
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β(Tu0, u0) = 1 for u0 = (0, 0) and ψ(t) > φ(t) for all t > 0. Further, T is (β, ψ, φ)-

contraction on S and T is β-subadmissible on S. Therefore, all conditions of Theorem

4.0.12 are satis�ed and (0, 0) is a �xed point of T .

Theorem 4.0.18. Let S = {(u, v) ∈ U × U : u � v or u � v} and β : S → [0,∞) be a

mapping such that

β(u, v) =

 0 if u ≺ v;

> 0 if u � v.
(4.0.23)

Assume that d is complete and T : U → U be a mapping such that:

(i) T is (β, ψ, φ)-contraction on S;

(ii) T is β-subadmissible on S;

(iii) there exists u0 ∈ U such that β(Tu0, u0) ≥ 1;

(iv) if {un} is a sequence in U such that un → u and β(un+1, un) ≥ 1 for each n ∈ N∪{0},

then β(u, un) ≥ 1 for each n ∈ N ∪ {0};

(v) ψ(t) > φ(t) for all t > 0.

Then T has a �xed point.

Proof. Following the proof of Theorem 4.0.12, we construct a Cauchy sequence {un} in

U such that un → u∗ ∈ U . Now using (4.0.4) and condition (iv), we get β(u∗, un) ≥ 1 for

each n ∈ N ∪ {0}. Further, we have

ψ(d(Tu∗, un+1)) = ψ(d(Tu∗, Tun))

≤ β(u∗, un)ψ(d(Tu∗, Tun))

≤ φ(d(u∗, un)). (4.0.24)

Letting n→∞ in (4.0.24), using the properties of φ, ψ and condition (v), it follows that

Tu∗ = u∗.

Corollary 4.0.19 (Nieto et al. [12]). Let (U,�) be a partially ordered set and suppose

that (U, d) be a complete metric space. Let T : U → U be a mapping satisfying the

following assumptions:
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(i) There exists k ∈ [0, 1) such that d(Tu, Tv) ≤ kd(u, v) for all u, v ∈ U with u � v;

(ii) there exists u0 ∈ U such that u0 � Tu0;

(iii) if {un} is a nondecreasing sequence in U such that un → u as n→∞, then un � u

for each n ∈ N ∪ {0}.

Then T has a �xed point.

Proof. De�ne β : S → [0,∞) by

β(u, v) =

1 if u � v;

0 otherwise.

Note that if {un} is a sequence in U such that β(un+1, un) = 1 for each n ∈ N ∪ {0} and

un → u∗, then un � un+1 for each n ∈ N ∪ {0}. Moreover, it follows by assumption (iii)

that β(u∗, un) = 1 for each n ∈ N ∪ {0}. Choosing ψ(t) = t and φ(t) = kt, it is easy to

see that all conditions of Theorem 4.0.18 hold.

Corollary 4.0.20 (Yan et al. [16]). Let (U,�) be a partially ordered set and suppose

that (U, d) be a complete metric space. Assume that if {un} is a nondecreasing sequence

in U such that un → u, then un � u for each n ∈ N ∪ {0}. Let T : U → U be a

nondecreasing mapping such that

ψ(d(Tu, Tv)) ≤ φ(d(u, v)), ∀ u � v (4.0.25)

where ψ is alternating distance function and φ : [0,∞) → [0,∞) is continuous function

with condition ψ(t) > φ(t) for all t > 0. If there exists u0 ∈ U such that u0 � Tu0, then

T has a �xed point.

Proof. Taking β : S → [0,∞), by

β(u, v) =

1 if u � v;

0 otherwise.

Then it is easy to see that all conditions of Theorem 4.0.18 are satis�ed.

Following example shows that Theorem 4.0.18 is a proper generalization of Yan et al.

[16].
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Example 4.0.21. Let U = {0, 1, 2, 3, · · · } be endowed with metric d de�ne by

d(u, v) =

u+ v if u 6= v;

0 if u = v,

(4.0.26)

and u � v if and only if u−v
2
∈ Z. Here � is a pre-order which is not a partial order. De�ne

ψ : [0,∞)→ [0,∞) by ψ(t) = t, φ : [0,∞)→ [0,∞) by φ(t) = t
2
and β : S → [0,∞) by

β(u, v) =


1

2(u+v)
if u � v and u 6= 0;

1 if u = v = 0;

0 otherwise.

(4.0.27)

Let T : U → U be a mapping such that

Tu =

0 if u = 0, 1;

u2 otherwise.

(4.0.28)

Note that ψ is an altering distance function, φ is continuous functions, β(T0, 0) = 1

and ψ(t) > φ(t) for all t > 0. Further, If u � v then clearly β(u, v)ψ(d(Tu, Tv)) =

β(u, v)(Tu+Tv) ≤ u+v
2

= φ(d(u, v)), for otherwise, β(u, v)ψ(d(Tu, Tv)) = 0 ≤ φ(d(u, v)).

Furthermore, If u = v = 0 then β(u, v) = 1 ⇒ β(Tu, Tv) ≥ 1. Also, for u ∈ U we have

β(T n+1u, T nu) ≥ 1 for each n ∈ N∪{0} implies β(Tmu, T nu) = 1 for each m,n ∈ N∪{0}

with m > n. Moreover, if {un} is a sequence in U such that un → u and β(un+1, un) ≥ 1

for each n ∈ N ∪ {0}, then β(u, un) ≥ 1 for each n ∈ N ∪ {0}. Therefore, all conditions

of Theorem 4.0.18 are satis�ed and 0 is a �xed points of T . Note that Corollary 4.0.20

is not applicable here since ψ(d(T6, T2)) > φ(d(6, 2)). Also, note that T is not a Banach

contraction.

Theorem 4.0.22. In addition to the hypotheses of Theorem 4.0.12 (resp. Theorem

4.0.18), if for all u, v ∈ U , there exists z ∈ U such that either β(u, z) ≥ 1 and β(v, z) ≥ 1

or β(z, u) ≥ 1 and β(z, v) ≥ 1, then T has a unique �xed point.

Proof. Let u∗ and v∗ be the two distinct �xed points of T . Suppose that there exists

z ∈ U such that β(u∗, z) ≥ 1 and β(v∗, z) ≥ 1. Since T is β-subadmissible, we have
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β(u∗, T nz) ≥ 1 for each n ∈ N. Moreover, we have

ψ(d(u∗, T n+1z)) ≤ β(u∗, T nz)ψ(d(Tu∗, T n+1z))

≤ φ(d(u∗, T nz)). (4.0.29)

Since ψ is nondecreasing and ψ(t) > φ(t) (for t > 0), (4.0.29) implies that d(u∗, T n+1z) <

d(u∗, T nz). Therefore, {d(u∗, T nz)} is a decreasing sequence of real numbers, which is

bounded below by 0. Thus d(u∗, T nz)→ r ≥ 0. Letting n→∞, from (4.0.29) we get

ψ(r) ≤ φ(r). (4.0.30)

It follows that r = 0, by using Lemma 4.0.11 and properties of ψ. Hence limn→∞ T
nz = u∗.

Similarly, we have limn→∞ T
nz = v∗. Thus u∗ = v∗ by uniqueness of limit. The proof of

other case runs on same lines.

Corollary 4.0.23 (Yan et al. [16]). Adding the following condition in the hypotheses of

Theorem 4.0.14 (resp.Theorem 4.0.20), we obtain the uniqueness of the �xed point of T .

For u, v ∈ U , there exists z ∈ U which is comparable to u and v.

Proof. Taking β : S → [0,∞), by

β(u, v) =

1 if u � v;

0 otherwise.

Then it is easy to see that all conditions of Theorem 4.0.12 are satis�ed.

Example 4.0.24. Let U = [0, 1
4
] be endowed with the usual metric d(u, v) = |u− v| and

u � v if and only if u ≤ v. De�ne ψ : [0,∞) → [0,∞) by ψ(t) = t
2
, φ : [0,∞) → [0,∞)

by φ(t) = t
4
and β : S → [0,∞) by

β(u, v) =


1

2(u+v)
if u � v and u 6= 0;

1 if u = v = 0;

0 otherwise.

(4.0.31)

Let T : U → U be a mapping such that Tu = u2 for all u ∈ U . Note that ψ is an altering

distance function, φ and T are continuous functions, β(T0, 0) = 1 and ψ(t) > φ(t) for all
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t > 0. Further, If u � v then β(u, v)ψ(d(Tu, Tv)) = 1
4
|u− v| = φ(d(u, v)), for otherwise

β(u, v)ψ(d(Tu, Tv)) = 0 ≤ φ(d(u, v)). Furthermore, β(u, v) ≥ 1 when u = v = 0 or

u, v ∈ (0, 1
4
] and in each case β(u, v) ≥ 1 implies β(Tu, Tv) ≥ 1. Clearly for each u ∈ U

with β(T n+1u, T nu) ≥ 1 for each n ∈ N ∪ {0}, we have β(Tmu, T nu) ≥ 1 for each

m,n ∈ N ∪ {0} with m > n. Note that for u, v ∈ U , there exists z = min{u, v} in U

such that β(u, z) ≥ 1 and β(v, z) ≥ 1. Therefore, all conditions of Theorem (4.0.22) are

satis�ed and 0 is a unique �xed point of T .
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