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ABSTRACT 
 

This dissertation is concerned with the existence and multiplicity results of some four-
point boundary value problems (BVPs) of the type 

                                      
[ ]( ) ( , , ),  ,

( ) ( ),  ( ) ( ),
x t f t x x t I a b
x a x c x b x d

′′ ′= ∈ =

= =
 

Where are parameters such that , , , ,a b c d ∈ a c d b< ≤ <  and  is a 
continuous function which may be non-linear. These BVPs can arise in the bending of 
a beam where conditions may be imposed at the ends of the beam as well as at interior 
points to improve stability or for other reasons; or in the study of the steady states of a 
heated bar with a thermostat where controllers at t

2:f I × →

a=  and t b=  adds or dissipates 
heat according to the temperature detected by sensors at t c=  and .  d
          In Chapter 1, some basic definitions and notions concerning the existence of 
solutions of four-point BVPs are presented. They include the method of upper and 
lower solutions, modification of the nonlinearty, Arzela-Ascoli theorem, Schauder's 
fixed point theorem, Green's function, degree theory and properties of the degree 
theory. Moreover, some known results about the existence of at least one solution of 
the above BVP in the presence of constant lower and upper solutions are also 
discussed. 

In Chapter 2, existence of at least one solution of the BVP in the presence of 
lower and upper solutions which are not necessarily constants is studied. In this 
chapter, the types of the lower and upper solutions admissible are more general 
whereas in chapter one, the upper and lower solutions are considered as constant 
functions. Moreover, existence of solutions, when the growth of the nonlinearity of 

( , , )f t x x′  is allowed to be quadratic with respect to x′, is studied. Further, the 
existence theory under different combinations of sign conditions on f  without 
requiring the Nagumo type growth condition is presented. 
            In Chapter 3, we investigate the new results on  the existence of at least three 
solutions of the four point BVPs in the presence of two lower solutions 1,α α  and two 
upper solutions 1,  β β  such that 1α α≤  and 1β β≥  are investigated. It is assumed that 
the upper and lower solutions are to be continuous functions and some topological 
degree arguments are used to get multiplicity results. Moreover, the growth of 

( , , )f t x x′  with respect to x′  is allowed to be quadratic.  
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Chapter 1

Preliminaries

1.1 Introduction

In this chapter, some basic de�nitions and notions concerning the existence of solutions of

four-point BVPs of the type

x00(t) = f(t; x; x0); t 2 I = [a; b]; (1.1)

x(a) = x(c); x(b) = x(d);

are discussed, where a; b; c; d 2 R; are parameters such that a < c � d < b and f : I � R2 ! R

is a continuous function that may be non-linear. The method of upper and lower solutions is

developed to establish existence of solutions of the BVPs (1:1). The basic idea of the method

of upper and lower solutions is to modify the given problem suitably with respect to upper

and lower solutions and then employ Leray-Schauder theory or known existence results of the

modi�ed problem together with the theory of di¤erential and integral inequalities to establish

existence of solutions of the given problems. The nonlinear function f is modi�ed in such a

way that solutions of the modi�ed problems lie in a region where f is unmodi�ed and hence are

solutions of the original nonlinear BVPs. The method of upper and lower solutions for ordinary

di¤erential equations has introduced by E. Picard in 1893 and has further developed by Scorza

Dragoni in 1931: Such methods allow us to ensure the existence of at least one solution of a

given problem in the region bounded by well ordered upper and lower solutions, that is, the
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lower solution � and the upper solution � are such that �(x) � �(x); x 2 R:

1.2 Some basic de�nitions and notions

For the four point BVP (1:1), the concept of lower and upper solutions is introduced as follows

Upper and lower solutions

� 2 C2[a; b]; is said to be a lower solution of (1:1); if � satis�es the following inequalities

�00(t) � f(t; �(t); �0(t)); t 2 I;

�(a)� �(c) � 0; �(b)� �(d) � 0:

Similarly, � 2 C2[a; b] is an upper solution of (1:1); if � satis�es the following inequalities

�00(t) � f(t; �(t); �0(t)); t 2 I;

�(a)� �(c) � 0; �(b)� �(d) � 0:

In order to understand the concept of upper and lower solutions for the BVPs (1:1), let us

consider an example of two point BVP

x00 = x0 � te�x; t 2 [0; 1] ;

x (0) = 0; x (1) = 0:

Take � = 0 on [0; 1] ; then �0 = 0 and �00 = 0:

Clearly, � satis�es the following relations � (0) = 0; � (1) = 0 and

f(t; �(t); �0(t) = 0� te0 = �t � 0 = �00(t);

that is,

�00 (t) � f(t; �(t); �0(t)); t 2 [0; 1] :

Take � = t on [0; 1] ; then �0 = 1; and �00 = 0 on [0; 1] :
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Moreover, � (0) = 0; � (1) = 1 > 0 and

f(t; �(t); �0(t)) = 1� te�t = 1� t

et
� 0 = �00 (t) ;

that is,

�00 (t) � f(t; �(t); �0(t)); t 2 [0; 1] ;

the functions � = 0 and � = t are known as lower and upper solutions of the above BVP.

The following de�nitions are useful for our later work.

Nagumo function

A continuous function ! : [0;1)! [0;1) is called a Nagumo function if the integral
1Z
�

sds
!(s)

diverges for any � � 0, that is,

1Z
�

sds

!(s)
= +1; 8 � � 0:

A function f : I � R2 ! R satis�es a Bernstein-Nagumo condition relative to the pair �; �; if

there exists a Nagumo function ! such that

f(t; x; y)sgn(y) � !(jyj) on I � [�; �]� R; (1.2)

f(t; x; y)sgn(y) � �!(jyj) on I � [�; �]� R: (1.3)

Consider the following second order di¤erential equation

x00(t) = f(t; x; x0); t 2 I; (1.4)

where f : I �R2 ! R is continuous and may be nonlinear. Assume that f satis�es a Nagumo

condition, that is, the nonlinearity of f; grows not faster than quadratically with respect to x0:

In other word, f is chosen to be such that

��f(t; x; x0)�� � c(x)(1 + ��x0��2); (1.5)
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where c = c(x): Let x be a solution of (1:4): Note that on any interval of monotonicity of x(t);

take t = t(x): Denote x0 by p(x): Then, by the chain rule

x00 =
d

dt
(x0) =

dp

dx

dx

dt
= pp0:

Let x0 be the extremum point of x(t) which is closest to t and let x(t0) = x0: Setting q = p2

and equations (1:4) and (1:5); imply

dq

dx
= 2p

dp

dx
= 2pp0;

1

2

dq

dx
= pp0 = x00 = f(t; x; x0) � c(x)(1 + q):

Integrating

log(1 + q) � 2
Z
c(x)dx+D;

implies that

q = Ae2
R
c(x)dx � 1;

where A = eD: From here the boundedness of q(x) (and hence of p(x)) follows, provided x lies in

a bounded interval. Further, notice that this argument is independent of boundary conditions

(BCs). If on the other hand, the Nagumo condition is violated, then jx0j need not be bounded.

For example, the problem

x00 + (1 + x02)
3
2 = 0 on (0; 2);

x(0) = x(2) = 0;

has as a solution the upper half of the circle, (t�1)2+x2 = 1; with in�nite derivatives at x = 0

and x = 2:

Remark:

The Nagumo condition implies boundedness of the derivative x0 of a solution x; provided x

is bounded.
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Uniformly bounded [5]

A family ff(x)g of functions de�ned on a closed interval I is said to be uniformly bounded,

if there exist a number M � 0 such that jf(x)j < M for all x 2 I and for all f belonging to the

given family.

Equicontinuous

A family of functions ff(x)g is said to be equicontinuous, if for given � > 0; there is a � > 0

such that

jf(x1)� f(x2)j < �; whenever jx1 � x2j < �; x1; x2 2 R:

Compact set

A set M in a metric space R is said to be compact, if every sequence of elements in M

contains a subsequence that converges to some x 2 R.

Linear Operator

T : C1 ! C1 is said to be a linear operator, if

T (x+ y) = Tx+ Ty

and

T (�x) = �Tx; 8 � 2 F and x; y 2 R:

Compact operator

Suppose that M is a subset of a Banach space B. An operator A : M ! B is said to be

compact operator (or completely continuous) if and only if it is continuous and it maps every

bounded subset of M into a relatively compact set.

An 2 �net

Let M be any set in a metric space R and let � > 0: The set A � R is said to be an �� net

with respect to M; if for every point x 2 M at least one point a 2 A can be found such that

�(a; x) < �:

Homotopy

Let f; g 2 C(
) and H : 
 � [0; 1] ! R. Then H is a homotopy between f and g if H is

continuous on
_

� [0; 1] and H(x; 0) = f(x) and H(x; 1) = g(x) for every x 2

_

:
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Dirac delta function

The Dirac delta function often referred to as the unit impulse function and introduced by

the British theoretical physicist Paul Dirac, can usually be informally thought of as a function

�(x) that has value in�nity for x = xi and value zero for x 6= xi; that is

�(x� xi) =

8<: 0; if x 6= xi;

1; if x = xi;

and integral of the Dirac delta from any negative limit to any positive limit is 1; that is

Z 1

�1
�(x)dx = 1:

Heaviside unit step function

The heaviside unit step function is denoted by H(x� xi); and is de�ned by

H(x� xi) =

8<: 0; if x < xi;

1; if x > xi:

Note that the Dirac delta function �(x�xi) can be de�ned (among others) as the derivative of

the Heaviside unit step function H(x� xi); that is

�(x� xi) =
d

dx
H(x� xi):

The following results are useful for our later work.

Theorem 1 (Arzela-Ascoli theorem) [9] A necessary and su¢ cient condition that a family of

continuous functions de�ned on a closed interval [a; b] be compact in C[a; b] is that this family

be uniformly bounded and equicontinuous.

Proof. Let the set F be compact in C[a; b]: Then it is totally bounded, that is, for each � > 0

there exist a �nite ( �3) � net; f1; f2; :::::; fk in F: Each of the functions fi; being a continuous

function on a closed interval is bounded, that is, choose Mi such that jfij �Mi. Set

M = max
n
Mi +

�

3

o
:
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Then by the de�nition of an ( �3)� net; for every f 2 F; there is at least one fi; such that

�(f; fi) = max jf(x)� fi(x)j <
�

3
:

Consequently

jf j < jfij+
�

3
< Mi +

�

3
< M:

Thus, F is uniformly bounded. Further, Since each of the functions fi is uniformly continuous

and consequently uniformly continuous on [a; b]; hence for a given �
3 ; there exist a �i such that

jfi(x1)� fi(x2)j <
�

3
; if jx1 � x2j < �i:

Choose � = min f�ig : Then, for jx1 � x2j < � and for any f 2 F; taking fi so that �(f; fi) < �
3 ;

implies

jf(x1)� f(x2)j = jf(x1)� fi(x1) + fi(x1)� fi(x2) + fi(x2)� f(x2)j

� jf(x1)� fi(x1)j+ jfi(x1)� fi(x2)j+ jfi(x2)� f(x2)j

<
�

3
+
�

3
+
�

3
= �:

Thus the equicontinuity of F is proved.

Conversely, let F be a uniformly bounded and equicontinuous family of functions. As, the

necessary and su¢ cient condition for a subset M of a complete metric space R to be compact

is that M be totally bounded: In order to prove its compactness in C[a; b]; it is su¢ cient to

show that for an arbitrary � > 0; there exists a �nite �� net in C[a; b]: For this purpose, let

jf j �M; for all f 2 F

and let � > 0 be chosen so that

jf(x1)� f(x2)j <
�

5
for jx1 � x2j < � and for all f 2 F; where x1; x2 2 I:

Subdivide [a; b] by means of the points x0 = a; x1; x2; ; xn = b into intervals of length less than

8



� and construct vertical lines at these points of subdivision. Subdivide the segment [�M;M ]

on the y � axis by means of the points

y0 = �M; y1; y2; :::; ym =M;

into intervals of length �
5 and construct horizontal lines at these points of subdivisions: Thus

subdivide the rectangle

a � x � b; �M � y �M;

into cells with horizontal sides of length less than � and vertical sides of length �
5 : Now assign

to every function f 2 F a polygonal arc g(x) with vertices at the points (xk; yi): This polygonal

arc g(x) has a vertices on the points of the constructed net and deviates at points xk from

the function f by less than �
5 (the existence of such a polygonal arc is obvious); since, by the

construction

jf(xk)� g(xk)j <
�

5
;

jf(xk+1)� g(xk+1)j <
�

5

and ��f(xk)� f(xk+1)�� < �

5
:

This implies

jg(xk)� g(xk+1)j <
3�

5
:

Since the function g(x) is linear between the points xk and xk+1; hence

jg(xk)� g(x)j <
3�

5
for all x; xk � x � xk+1:

Now, let x be an arbitrary point of the closed interval [a; b] and let xk be the subdivision point

chosen which is closest to x from the left. Therefore

jf(x)� g(x)j � jf(x)� f(xk)j+ jf(xk)� g(xk)j+ jg(xk)� g(x)j < �:

9



Consequently, the polygonal arcs g(x) form an ��net with respect to F: Their number is �nite

(since only a �nite number of polygonal arcs can be drawn through a �nite number of points).

Hence, F is totally bounded. This proves the theorem completely.

Theorem 2 (Schauder�s �xed point) [5] If M is a bounded, closed and convex set in a Banach

space X and f :M 7!M is a compact mapping, then f has a �xed point.

Proof. Since the continuous image of a compact set is compact, therefore f(M) is compact

and hence totally bounded. Therefore for each n 2 N; there exists a �nite subset

fy1;y2; :::; yNng � f(M) �M;

such that for any element x 2M

min
1�i�Nn

kf(x)� yik <
1

n
:

For each i; de�ne

ai(x) = max

�
1

n
� kf(x)� yik ; 0

�
:

Then, for each x 2M; there must exists at least one i 2 f1; 2; :::Nng such that ai(x) 6= 0: De�ne

an operator pn :M ! N by

pn(x) =

PNn
i=1 �i(x)yiPNn
i=1 �i(x)

:

Note that pn(x) 2M; because pn(x) is a convex combination of the elements fy1; y2; :::; yNng �

M: Also, since f is continuous, ai is continuous as well. Therefore pn is continuous. Now let

Kn = conv (fy1;y2; ::::; yng) ;

which implies that

Kn � conv(f(M)) �M:

Therefore, Kn is a bounded, closed and convex subset of a �nite dimensional Banach space

which is spanned by vectors fy1; y2; :::; yng and pn : Kn ! Kn: Brouwer�s �xed point theorem

implies that each of the mappings pn has a �xed point xn 2 Kn: Since K is compact, therefore
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the sequence fxng has a subsequence fxnkg which converges, say xnk ! x 2 K: Now, observe

that for any n

pn(x) =


PNn
i=1 �i(x)yiPNn
i=1 �i(x)

� f(x)
 �

PNn
i=1 �i(x) kyi � f(x)kPNn

i=1 �i(x)

�
PNn
i=1 �i(x)

1
nPNn

i=1 �i(x)
=
1

n
:

It follows that x is a �xed point of f: Since

kxnk � f(x)k � kpnk(xnk)� f(xnk)k+ kf(xnk)� f(x)k

and the right-hand side tends to 0 as n ! 1; where the left-hand side tends to kx� f(x)k :

This proves the theorem.

An equivalent version of the above theorem without proof is,

Theorem 3 (Schauder�s �xed point) LetM be a closed, convex and bounded subset of a Banach

space X: If F :M !M is compact, then F has at least one �xed point.

1.3 Green�s functions [3]

Let L be a linear operator and consider a nonhomogeneous problem

L(u) = f(x);

subject to some two point homogeneous BCs. The solution of the linear problem by [3] is

u(x) =

bZ
a

f(x0)G(x; x0)dx0;

where the function G(x; x0) can be regarded as the in�uence function for the source f(x) and

is known as Green�s function.

11



1.3.1 Properties of Green�s function

The Green�s function has the following properties:

1. Symmetry: G(x0; x) = G(x; x0);

2. Continuity: G(x0�; x) = G(x0+; x);

3. Jump discontinuity of the derivative: dG(x0+;x)
dx � dG(x0�;x)

dx = �1:

1.4 Degree theory [12]

Let 
 be an open bounded subset of Rn and f :
_

 ! Rn is a continuous map, y 2 Rn and y

=2 f(@
), de�ne an integer, deg(f;
; y) which corresponds to the number of solutions x 2 
 of

the equation y = f(x). If f is a smooth function and y is not a critical value for f , then the

degree is given by

deg(f;
; y) =
X

Jf (x)

x2f�1(y)
;

where Jf (x) = detf 0(x) and
_

 denotes the closure of 
:

1.4.1 Properties of the Brouwer degree

Some of properties of the Brouwer degree are listed here. Let 
 be an open bounded subset

in Rn, f 2 C(
_


) and y =2 f(@
) (y is not an image of the boundary of 
). Then the Brouwer

degree has the following properties [13] :

1. Normalization: For the identity map I; deg(I; 
; y) = 1 for y 2 
;

2. Additivity: For disjoint open subsets 
1 and 
2 of 
 with y =2 
n
1 [ 
2;

deg(f;
; y) = deg(f;
1; y) + deg(f;
2; y);

3. Homotopy: The degree deg(h(t; :);
; y(t)) is independent of t, whenever h : [0; 1]�
! Rn

and y : [0; 1]! Rn are continuous and y(t) =2 h(t; @
) for every t 2 [0; 1];

4. Existence: deg(f;
; y) 6= 0 implies f (�1)(y) 6= ?;

5. Boundary dependence: deg(f;
; y) = deg(g;
; y);whenever f j@
 = g j@
 ;
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6. Excision Property: For every open set 
1 � 
 such that y =2 f(
_

=
1);

deg(f;
; y) = deg(f;
1; y):

The Leray-Schauder degree is an extension of the Brouwer degree to the case of in�nite

dimensional spaces, in the particular case of maps of the form T = I � C, where I is the

identity map and C is a compact map. The above properties also hold for the Leray-Schauder

degree.

1.5 Upper and lower solutions method

In this section, the method of upper and lower solutions is discussed. Since the method involves

modi�cation of the nonlinearity, it is useful to introduce this concept �rst.

1.5.1 Modi�ed function

Let �; � 2 C2(I) be lower and upper solutions of a di¤erential equation

x00 = f(t; x; x0)

such that � � � on I. Let C > 0 be such that

C > maxf
���0(t)�� ; ���0(t)�� : t 2 Ig:

De�ne the functions

F �(t; x; x0) =

8>>><>>>:
f(t; x; C); for x0 > C;

f(t; x; x0); for jx0j � C;

f(t; x;�C); for x0 < �C

and

F (t; x; x0) =

8>>><>>>:
F �(t; �(t); x0) + x��(t)

1+x2
; for x > �(t);

F �(t; x; x0); for �(t) � x � �(t);

F �(t; �(t); x0) + x��(t)
1+x2

; for x < �(t):
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The function F (t; x; x0) is called a modi�cation of f(t; x; x0) associated with the triple �; �; C:

It is clear that the modi�ed function F (t; x; x0) is continuous and bounded on I � R2: Hence

there exists a constant M > 0; such that

��F (t; x; x0)�� �M on I � R2;

where M =M0 + 1; and

M0 = maxf
��f(t; x; x0)�� : t 2 I; �(t) � x � �(t); ��x0(t)�� � Cg+max

t2I
j�(t)j+max

t2I
j�(t)j :

As an example, let us consider

f (x; y; z) = a1x+ b1y + c1z;

where a1; b1; c1 are real constants, choose C > 0: Take � = �a; � = a; then

F �(x; y; z) =

8>>><>>>:
a1x+ b1y + c1C; if z � C;

a1x+ b1y + c1z; if jzj < C;

a1x+ b1y � c1C; if z � �C

and

F (x; y; z) =

8>>><>>>:
F �(x; a; z); if y � a;

F �(x; y; z); if � a � y � a;

F �(x;�a; z); if y < �a;
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=

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

0BBB@
a1x+ b1a+ c1C; if z � C; if y � a

a1x+ b1a+ c1z; if jzj < C; if y � a

a1x+ b1a� c1C; if z � �C; if y � a

1CCCA
0BBB@

a1x+ b1y + c1C; if z � C; if jyj � a

a1x+ b1y + c1z; if jzj < C; if jyj � a

a1x+ b1y � c1C; if z � �C; if jyj � a

1CCCA
0BBB@

a1x� b1a+ c1C; if z � C; if y � �a

a1x� b1a+ c1z; if jzj < C; if y � �a

a1x� b1a� c1C; if z � �C; if y � �a;

1CCCA
is a modi�cation of f with respect to �a; a: Clearly, F is continuous and bounded on I � R2:

Now, to explain the basic idea of the method of upper and lower solutions, consider the

following BVP

x00(t) = f(t; x; x0); t 2 I (1.6)

x(a) = c; x(b) = d

and the corresponding modi�ed problem

x00(t) = F (t; x; x0); t 2 I (1.7)

x(a) = c; x(b) = d:

Solutions to the modi�ed problems lie in a region where f is unmodi�ed and hence are solutions

of the original problems. Recall some results, from [1]:

Theorem 4 Assume that �; � 2 C2(I) are lower and upper solutions of (1:6). If f : I�R2 ! R

is continuous and f(t; x; x0) is strictly increasing in x for each (t; x0) 2 I �R; then �(t) � �(t);

t 2 I: In particular, there is at most one solution.

Proof. De�ne

m(t) = �(t)� �(t); t 2 I;
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then, m 2 C2(I) and the BCs imply that

m(a) � 0; m(b) � 0:

It is required to show that m(t) � 0 on I: If not, then m (t) has a positive maximum at some

t0 2 I: From the BCs, it is clear that t0 2 (a; b); and hence

m(t0) > 0; m
0(t0) = 0; and m00(t0) � 0:

However, using the increasing property of the function f in x and the de�nition of lower and

upper solutions, we have

m00(t0) = �
00(t0)� �00(t0) � f(t0; �(t0); �0(t0))� f(t0; �(t0); �0(t0)) > 0;

which is a contradiction. Hence �(t) � �(t); t 2 I:

The next theorem, taken from [1]; is concerned with the existence of at least one solution

of the BVP (1:6) with the assumption that the nonlinearity f be bounded.

Theorem 5 Let f 2 C(I � R2) be bounded on I � R2: Then the BVP (1:6) with BCs x(a) =

0 = x(b); has a solution.

Proof. Choose M to be the bound for f on I � R2 and de�ne a mapping T : E ! E by

Tx(t) =

bZ
a

G(t; s)f(s; x(s); x0(s))ds;

where the Banach space is B = C(1)(I); with the norm de�ned by

kxkE = max
t2I

jx(t)j+max
t2I

��x0(t)�� ;
and G(t; s) is a Green�s function whose value is given by

G(t; s) =
�1
b� a

8<: (b� t)(s� a); if a � s � t � b;

(b� s)(t� a); if a � t � s � b:
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Note that the derivative Gt(t; s) of the Green�s function has a bounded jump discontinuity, that

is

Gt(s+; s)�Gt(s�; s) = �1:

It follows that

jGt(t; s)j � 1 on I � I:

Choose

N = max
s;t2I

jG(t; s)(b� a)j

and

N1 = max
s;t2I

jGt(t; s)(b� a)j :

Then

j(Tx)(t)j � NM

and ��(Tx)0(t)�� � N1M:
Hence, T maps the closed, bounded and convex set


 =
�
x 2 C1 : jx(t)j � NM;

��x0(t)�� � N1M	 ;
into itself. Moreover, since ��(Tx)00(t)�� �M;
the relation

(Tx)0(t) = (Tx)0(a) +

tZ
s

(Tx)00(�)d�;

this implies that ��(Tx)0(t)� (Tx)0(s)�� = tZ
s

(Tx)00(�)d� �M jt� sj ;

for any s; t 2 I(s � t): Thus f(Tx)g is uniformly bounded and equicontinuous and hence by the

Arzela-Ascoli theorem, T is completely continuous. Schauder�s �xed point theorem then yields
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the �xed point of T which is a solution of the BVP (1:6).

In the following theorem, f is not required to be bounded on I � R2 and existence of a

solution of the BVP (1:6) with the help of the modi�ed problem (1:7) is established, that is the

basic idea of the method of upper and lower solutions.

Theorem 6 Let �; � 2 C2(I) be lower and upper solutions of (1:6) such that � � � on I.

Then the BVP (1:6) has a solution x 2 C2(I) such that �(t) � x � �(t) on I:

Proof. Since F is continuous and bounded on I �R2; hence by Theorem (5); the modi�ed

problem (1:7) has a solution. Moreover, note that any solution of the modi�ed problem which

satisfy

�(t) � x(t) � �(t);
��x0(t)�� � C on I; (1.8)

is a solution of (1:6): The only need is to show that (1:8) holds. Therefore, we only discuss the

validity of x(t) � �(t) on I: The arguments are essentially the same for the case �(t) � x(t):

Suppose, if possible, x(t) > �(t) for some t 2 I: Then x(t) � �(t) has a positive maximum

at some t0 2 (a; b): Hence it follows that

x0(t0) = �
0(t0);

��x0(t0)�� < C
and

x00(t0) = F (t0; x(t0); x
0(t0))

= f(t0; x(t0); x
0(t0)) +

x(t0)� �(t0)
1 + x2(t0)

:

Since � is an upper solution, therefore

�00(t0) � f(t0; �(t0); �0(t0))

and this implies

x00(t0)� �00(t0) �
x(t0)� �(t0)
1 + x2(t0)

> 0;

which is impossible at a maximum of x(t)� �(t):

Hence, x(t) � �(t) on I:
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Now, we turn our attention to the four point BVP (1:1) and discuss existence of a solution

in the presence of constant lower and upper solutions. The following results are due to I.

Rachunkova [14], who established existence of at least one solution in the presence of constant

lower and upper solutions and under various combinations of sign conditions on the nonlinearity

f . We state the following lemma without proof, the proof is given in [14]:

Lemma 7 Let there exist an open bounded set 
 2 C1 such that

(a) for any � 2 (0; 1); each solution x of the problem

x00 = �f�(t; x; x0; �); t 2 I; (1.9)

x(a) = x(c); x(b) = x(d);

satis�es x =2 @
;

(b) for any root x0 2 R of the equation f0(x) = 0; where

f0(x) =
1

b� d

Z b

d

Z s

a
f�(t; x; 0; 0)dtds� 1

c� a

Z c

a

Z s

a
f�(t; x; 0; 0)dtds; (1.10)

the condition x0 =2 @
 is ful�lled, where x0 is considered as a constant function on I;

(c) the Brouwer degree d[f0; D; 0] 6= 0; where D � R is the set of constant c such that the

function x(t) = c belongs to 
:

Then problem (1:1) has at least one solution in 
:

Theorem 8 Let there exist r1; r2 2 R; K 2 (0;1) such that r1 � r2 and for a:e: t 2 I; the

inequalities

f(t; r1; 0) � 0; f(t; r2; 0) � 0

and Z b

a
jf(t; x; y)j dt � K; 8x 2 [r1; r2]; y 2 R; (1.11)

are satis�ed. Then the problem (1:1) has at least one solution x with the property

r1 � x(t) � r2: (1.12)

Proof. Choose an arbitrary �xed number m 2 N; where m > 1; and for (t; x; y) 2 I � R2;
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de�ne the modi�cation of f as follows

fm(t; x; y) =

8>>>>>>>>><>>>>>>>>>:

f(t; r2; 0); for x � r2 + 1
m ;

f(t; r2; y) + [f(t; r2; 0)� f(t; r2; y)]m(x� r2); for r2 < x < r2 + 1
m ;

f(t; x; y); for r1 � x � r2;

f(t; r1; y) + [f(t; r1; 0)� f(t; r1; y)]m(x� r); for r1 � 1
m < x < r1;

f(t; r1; 0); for x � r1 � 1
m :

Consider the system (1:9); where

f�(t; x; y; �) = �fm(t; x; y) + (1� �)
�

x� r1
r2 � r1 + 1

�
:

Note that f�(t; x; y; 1) = f(t; x; y) for r1 � x � r2: Put r = 1 + max fjr1j ; jr2jg ; and de�ne a

set


 =
�
x 2 C1 : kxk < r;

x0 < K + (b� a)
	
:

(a) Let x be a solution of the problem (1:9) for some � 2 (0; 1): Put

�(t) = x(t)� r2 �
1

m

and suppose that

max f�(t) : t 2 Ig = �(t0) > 0:

Since

�(a) = �(c) and �(b) = �(d);

choose t0 2 (a; b): Then there exists an interval (�; �) � (a; b) containing t0 such that �(t) � 0;

for each t 2 (�; �) and � 0(�) � 0; � 0(�) � 0: Hence for a:e: t 2 (�; �); it follows

� 00(t) = x00(t) = �

�
�fm(t; x; x

0) + (1� �)
�

x� r1
r2 � r1 + 1

��
= �

�
�f(t; r2; 0) + (1� �)

�
x� r1

r2 � r1 + 1

��
> 0:
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Integration of the last inequality from � to � yields

0 � � 0(�)� � 0(�) > 0;

a contradiction.

Thus, �(t) � 0 on I; which means that

x(t) � r2 +
1

m
;8 t 2 I:

By an analogous argument it can proved that

x(t) � r1 �
1

m
;8 t 2 I:

The BCs of (1:9) guarantee the existence of at least one zero of x0 on I: Integrating (1:9) and

using (1:11); it follows that x0 < K + (b� a):

Therefore x =2 @
: Hence, for any � 2 (0; 1) no solution of (1:9) belongs to @
:

(b) Since

f�(t; x; 0; 0) =

�
x� r1

r2 � r1 + 1

�
;

using (1:10);it follows that

f0(x) =
b+ d� a� c

2
:
x� r1

r2 � r1 + 1
;

which implies that the equation f0(t) = 0 has a unique root x0 = r1; and the constant function

x0(t) = r1 does not belong to @
:

(c) Choose D = (�r; r): Since f0(�r) < 0 and f0(r) > 0; it follows that the Brouwer degree

d[f0; D; 0] 6= 0: Thus all the conditions of Lemma 7 are satis�ed. Hence the problem

x00 = fm(t; x; x
0); t 2 I; (1.13)

x(a) = x(c); x(b) = x(d);
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has at least one solution in 
:

Repeating this argument for each m 2 N; a sequence fxng11 of solutions of the problems

(1:13) is obtained. Obviously, the sequence is bounded and equicontinuous in X and hence by

the Arzela-Ascoli Theorem, it is possible to choose a subsequence converging in X to a function

x0: Since

r1 �
1

m
� xm(t) � r2 +

1

m
; for all m � 1;

passing to the limit, it follows

r1 � x0 � r1

and consequently x0 is a solution of (1:1):

1.6 Existence of solution under sign changing nonlinearity

In the following theorem, sign conditions on f are imposed without requiring f to be a bounded

function:

Theorem 9 Let there exist real numbers R1; R2; R3; R4; r1; r2 such that r1 � r2; R1 6= R3;

R2 6= R4; R1 � 0 � R2; R3 � 0 � R4 and for a:e: t 2 I; let

f(t; r1; 0) � 0; f(t; r2; 0) � 0; (1.14)

f(t; x;R2) � 0; f(t; x;R1) � 0; 8 x 2 [r1; r2]:

Further, for a:e: t 2 [d; b] and all x 2 [r1; r2]; let

f(t; x;R3) � 0; f(t; x;R4) � 0: (1.15)

Then the BVP (1:1), has at least one solution x which for all t 2 I ful�ls the inequalities (1:12)

and

min fR1; R3g � x0(t) � max fR2; R4g : (1.16)

Proof. Since R1 6= R3 and R2 6= R4; choose R3 < R1 and R4 > R2: Then there exist

n0 2 N such that for all n � n0 (n 2 N) ; the inequalities R2 + 2
n < R4 and R1 �

2
n > R3 hold.
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For n � n0; de�ne

hn(t; x; y) =

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

f(t; x;R4); for R4 < y;

f(t; x; y); for R2 + 2
n � y � R4;

f(t; x;R2 +
2
n) + !2; for 1

n +R2 < y < R2 +
2
n ;

f(t; x;R2); for R2 < y � R2 + 1
n ;

f(t; x; y); for R1 � y � R2;

f(t; x;R1); for R1 � 1
n � y < R1;

f(t; x;R1 � 2
n)� !1; for R1 � 2

n < y < R1 �
1
n ;

f(t; x; y); for R3 � y � R1 � 2
n ;

f(t; x;R3); for R3 > y;

where !1 and !2 are given by

!1 =

�
f(t; x;R1 �

2

n
)� f(t; x;R1)

�
n

�
y �R1 +

2

n

�
;

!2 =

�
f(t; x;R2 +

2

n
)� f(t; x;R2)

�
n

�
y �R2 �

2

n

�
:

It is not di¢ cult to check that hn ful�ls the condition (1:11), with the value K given by

K =

Z b

a
(sup fjhn(t; x; y)j : x 2 [r1; r2]; y 2 [R3; R4]g)dt:

Since hn ful�ls the conditions of Theorem 8; hence by Theorem 8; the problem

x00(t) = hn(t; x; x
0); (1.17)

x(a) = x(c); x(b) = x(d):

has a solution xn satisfying the condition (1:12):

The priori estimates for x0n independent of n can be obtained as follows. From the BCs of the

BVP (1:1); it follows that there exist points a0 2 (a; c); b0 2 (d; b) such that x0n(a0) = 0 = x0n(b0):

Suppose that

max
�
x0n(t) : t 2 [a; b0]

	
= x0n(z0) > R2 +

1

n
:
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Then, z0 6= b0 and an interval (�; �) � (a; b0) can be found such that x0n(�) = R2; x
0
n(�) =

R2 +
1
n and

R2 � x0n(t) � R2 +
1

n
; 8 t 2 (�; �):

Thus, it follows

0 >

Z �

�
x00n(t)dt =

Z �

�
f(t; xn; R2)dt � 0;

which is a contradiction.

A similar contradiction occurs if

min
�
x0n(t) : t 2 [a; b0]

	
< R1 �

1

n
:

Thus, it has been proved the estimate on [a; b0]: Now, suppose that

max
�
x0n(t) : t 2 [b0; b]

	
= x0n(z1) > R4 +

1

n
:

Then z1 2 (b0; b] and there exists (�; �) � (b0; b) such that x0n(�) = R4; x0n(�) = R4 + 1
n and

R4 � x0n(t) � R4 +
1

n
; 8 t 2 (�; �):

Thus, it follows

0 <

Z �

�
x00n(t)dt =

Z �

�
f(t; xn; R4)dt � 0;

which is a contradiction. Similarly for

min
�
x0n(t) : t 2 [b0; b]

	
< R3 �

1

n
:

So, it has been proved the estimate on [b0; b]; and therefore

R3 �
1

n
� x0n(t) � R4 +

1

n
; 8 t 2 I: (1.18)

From (1:12) and (1:18) it follows that the sequence of solutions (xn)1n0 of the BVPs (1:17); is

bounded and equicontinuous in X and thus by a limiting process, a function x can be found
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which is a solution of the problem

x00(t) = h(t; x; x0); t 2 I; (1.19)

x(a) = x(c); x(b) = x(d);

where h(t; x; x0) is given by

h(t; x; x0) =

8>>><>>>:
f(t; x;R4); for y > R4;

f(t; x; y); for R3 � y � R4;

f(t; x;R3); for y < R3:

By (1:17); x ful�ls the inequality

R3 � x0n(t) � R4; 8 t 2 I

and thus it is a solution of (1:1) with the properties (1:12) and (1:16).

In case of R3 > R1; R2 < R4 replace R1 by R3 in the formula for hn , one can prove the

existence of a solution x by the same argument. Similarly, the existence of solution x in the

case of R4 < R2; can be proved: Thus it has been proved that under the assumptions of (1:14)

and (1:15) ; the four point BVP (1:1) has least one solution x such that

r1 < x < r2

and

min fR1; R3g � x0 � max fR2; R4g on I:
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Chapter 2

Existence of at least one solution

This chapter deals with the existence of at least one solution of the four point BVP (1:1)

in the presence of upper and lower solutions that are not necessarily constant functions but

some continuous functions de�ned on I which may be nonlinear: This chapter is in fact a

generalization of chapter 1 and almost all of the material of this chapter is taken from the

recent work presented in [6] ; [7] and [8] : The outline of this chapter is as follows: First, the

nonlinearity is assumed to be bounded on I � R2 and existence of at least one solution in the

presence of upper and lower solutions is established. Second, the problem is studied under much

weaker conditions by removing the boundedness assumption on f and imposing the Nagumo

type condition on f: Finally, the existence of solutions is studied by assuming sign conditions

on f without requiring f to satisfy the Nagumo type growth condition.

For our purpose, the method of upper and lower solutions is developed to prove the existence

of a solution of the BVP (1:1) in a region bounded by lower and upper solutions. Considering

approximate problem, a sequence of solutions of the approximated problems is obtained. It will

show that the sequence converges to a solution of the original problem (1:1): In this chapter, the

type of lower and upper solutions of the BVP (1:1) are more general, whereas in Theorems (6; 7)

of chapter 1, the upper and lower solutions are assumed to be constant functions. Moreover,

here, the existence of solutions is studied when the growth of the nonlinearity f(t; x; x0) is

allowed to be quadratic with respect to x0. Existence theory is also studied under the sign

conditions of f .
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2.1 Existence results for bounded nonlinearity

Theorem 10 Suppose that �; � 2 C2(I) are respectively lower and upper solutions of the BVP

(1:1) such that � � � on I: Assume that there exists K 2 R; K > 0 such that

bZ
a

jf(t; x; y)j dt � K; 8 x 2 [�(t); �(t)]; y 2 R:

Then, the BVP (1:1) has at least one solution x verifying that �(t) � x(t) � �(t); t 2 I:

Proof. Choose m 2 N; where m > 1 and is �xed. De�ne the modi�cation fm(t; x; y) of f

as follows

fm(t; x; y) =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

f(t; �(t); �0(t)) + x��(t)
1+jx��(t)j ; if �(t) + 1

m � x;

f(t; �(t); y) +
h
f(t; �(t); �0(t))� f(t; �(t); y) + x��(t)

1+jx��(t)j

i
m(x� �(t)); if �(t) � x < �(t) + 1

m ;

f(t; x; y); if �(t) � x � �(t);

f(t; �(t); y)� [f(t; �(t); �0(t))� f(t; �(t); y) + x��(t)
1+jx��(t)j ]

m(x� �(t)); if �(t)� 1
m < x � �(t);

f(t; �(t); �0(t)) + x��(t)
1+jx��(t)j ; if x � �(t)� 1

m :

Note that fm is continuous on I � R2: Consider the system of four point BVPs8<: x00 = fm(t; x(t); x0(t)); t 2 I;

x(a) = x(c); x(b) = x(d).
(2.1)

From the de�nition of fm; it is clear that if x is a solution of (2:1) such that

�(t) � x(t) � �(t); t 2 I;

then, x is a solution of (1:1):

Since � � � on I: Choose r = maxI � = minI �: If r = 0, then

max
I
� = min

I
�;
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which implies that � = �; is a constant solution of (1:1): Therefore, assume that r > 0 and

de�ne � = r
1+r : Clearly � > 0: Choose R � 0 such that

��f(t; �(t); �0(t))�� � R; ��f(t; �(t); �0(t))�� � R; t 2 I;
and take M1 > 0 large enough such that 0 � R �M1�: Then

�M1� � �R � f(t; �(t); �0(t)); f(t; �(t); �0(t)) � R �M1�; t 2 I: (2.2)

De�ne bounded continuous functions K1 and K2 as follows

K1(t; x) =

8>>><>>>:
R
M1�

; if x � �(t) + R
mM1�

;

m(x� �(t)); if �(t) � x � �(t) + R
mM1�

;

0; if x � �(t)

and

K2(t; x) =

8>>><>>>:
0; if x � �(t);

m(x� �(t)); if �(t)� R
mM1�

� x � �(t);

� R
M1�

; if x � �(t)� R
mM1�

:

Moreover, de�ne

�(t; x) = [K1(t; x) +K2(t; x)]M1�; (t; x) 2 I � R:

Note that � is continuous and bounded on I � R and in view of (2:2), � satis�es the following

relation

�R � �(t; x) � R on I � R:

Let

p(t; x) = maxf�(t);minfx; �(t)gg:

Consider the system of BVP to prove existence of (2:1)

8<: x00(t) = fm(t; x(t); x
0(t); �); t 2 I;

x(a) = x(c); x(b) = x(d);
(2.3)
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where,

f(t; x; y; �) = �fm(t; x; y; �) + (1� �)f�(t; x)� p(t; x) + xg

and � 2 [0; 1] :

For � = 1; f = fm and consequently (2:3) reduces to (2:1) : Moreover, for � = 1; if x is a

solution of (2:3) such that

� (t) � x(t) � � (t) ; t 2 I;

then

x00(t) = fm(t; x(t); x
0(t)) = f(t; x(t); x0(t)); t 2 I;

and hence is a solution of (1:1):

If � = 0; then (2:3) reduces to the BVP

x00(t) = �(t; x(t))� p(t; x(t)) + x; t 2 I; (2.4)

x(a) = x(c); x(b) = x(d):

Since �(t; x)� p(t; x) is continuous and bounded and the linear problem

8<: x00(t) = x(t); t 2 I;

x(a) = x(c); x(b) = x(d);

has only the trivial solution, therefore the problem (2:4) has a solution. In other words, the

problem (2:3) has a solution for � = 0:

For � 2 [0; 1], any solution x of problem (2:3) satis�es

�(t)� 1

m
� x(t) � �(t) + 1

m
; t 2 I:

For this, de�ne a function

v(t) = x(t)� �(t)� 1

m
; t 2 I;

and suppose that

max fv(t) : t 2 Ig = v(t0) > 0:
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Using the BCs

v(a) = x(a)� �(a)� 1

m
� x(c)� �(c)� 1

m
= v(c);

v(d) � v(b):

Consequently, choose t0 2 (a; b): Then

v(t0) > 0; v
0(t0) = 0; v

00(t0) � 0;

which implies that

x(t0) > �(t0) +
1

m
; x0(t0) = �

0(t0):

Hence

x(t0) > �(t0) +
1

m
� �(t0) +

1

m
� �(t0) +

R

mM1�
: (2.5)

Using (2:5) and by the de�nition of K1 and K2; it follows that

K1(t0; x(t0)) =
R

M1�
; K2(t0; x(t0) = 0:

The de�nition of � and the hypotheses on � then leads to

v00(t0) = x00(t0)� �00(t0)

= �fm(t0; x(t0); x
0(t0)) + (1� �)f�(t0; x(t0))� p(t0; x(t0))

+x(t0)g � �00(t0);

� �fm(t0; x(t0); x
0(t0)) + (1� �)f�(t0; x(t0))� p(t0; x(t0))

+x(t0)g � f(t0; �(t0); �0(t0))

= �

�
f(t0; �(t0); �

0(t0)) +
x(t0)� �(t0)

1 + jx(t0)� �(t0)j

�
+(1� �)[R� �(t0) + x(t0)]� f(t0; �(t0); �0(t0))

= (1� �)
�
R� f(t0; �(t0); �0(t0))

�
+�

�

1 + jx(t0)� �(t0)j
+ (1� �)

�
(x(t0)� �(t0))

> (1� �)[R� f(t0; �(t0); �0(t0))] � 0;
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which is a contradiction. This proves that v � 0 on I; which implies that

x(t) � �(t) + 1

m
; t 2 I:

Now, to prove

x(t) � �(t)� 1

m
; 8 t 2 I;

de�ne

v(t) = x(t)� �(t) + 1

m
; t 2 I:

Let

min fv(t) : t 2 Ig = v(t1) < 0:

The BCs

v(a) � v(c) and v(d) � v(b);

imply that t1 is an interior point, that is, t1 2 (a; b): Consequently,

v(t1) < 0; v
0(t1) = 0 and v00(t1) � 0:

Hence

x(t1) � �(t1)�
1

m
and x0(t1) = �0(t1):

Since

x(t1) < �(t1)�
1

m
� �(t1)�

1

m
� �(t1)�

R

mM1�
;

it follows that

K1(t1; x(t1)) = 0; K2(t1; x(t1)) = �
R

M1�
:
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By the de�nition of � and the hypotheses on �;

v00(t0) = x00(t1)� �00(t1)

� �fm(t1; x(t1); x
0(t1)) + (1� �)f�(t1; x(t1))� �(t1; x(t1))

+x(t1)g � f(t1; �(t1); �0(t1))

= �

�
f(t1; �(t1); �

0(t1)) +
x(t1)� �(t1)

1 + jx(t1)� �(t1)j

�
+(1� �)[�R� �(t1) + x(t1)]� f(t1; �(t1); �0(t1))

= �(1� �)[R+ f(t1; �(t1); �0(t1))] +�
�

1 + jx(t1)� �(t1)j
+ (1� �)

�
(x(t1)� �(t1))

< �(1� �)[R+ f(t1; �(t1); �0(t1))] � 0;

which is a contradiction. Hence

x(t) � �(t)� 1

m
; 8 t 2 I:

Thus,

�(t)� 1

m
� x(t) � �(t) + 1

m
; t 2 I:

Now, to �nd estimate for the derivative x0 of the solution x:

The BCs imply that there exist et 2 (a; b) such that x0(et) = 0: Integrating the equation (2:3)
from et to t;

x0(t) = x0(et) = tZ
et
x00(s)ds; t � et;

x0(t) =

tZ
et
[�fm(s; x(s); x

0(s)) + (1� �)f�(s; x(s))� p(s; x(s)) + x(s)]ds for t � et:

32



Hence

��x0(t)�� �
tZ
et
���fm(s; x(s); x0(s)) + (1� �)f�(s; x(s))� p(s; x(s)) + x(s)�� ds

�
bZ
a

���fm(s; x(s); x0(s)) + (1� �)f�(s; x(s))� p(s; x(s)) + x(s)�� ds:
A similar estimate can be obtained for t < et; so that for all t 2 I; it follows that

��x0(t)�� � bZ
a

���fm(s; x(s); x0(s))�� ds+ bZ
a

j�(s; x(s))� p(s; x(s)) + x(s)j ds: (2.6)

Since

�(t)� 1

m
� x(t) � �(t) + 1

m
for t 2 I and �R � �(t; x(t)) � R; for t 2 I;

hence

�R� �(s) + �(s)� 1

m
� �(s; x(s))� p(s; x(s)) + x(s) � R� �(s) + �(s) + 1

m
for s 2 I

and substituting

j�(s; x(s))� p(s; x(s)) + x(s)j � R+ �(s)� �(s) + 1

m
for s 2 I;

in (2.6), it follows

��x0(t)�� � bZ
a

��fm(s; x(s); x0(s))�� ds+ bZ
a

�
R+ �(s)� �(s) + 1

m

�
ds; t 2 I:

The expression

�(t)� 1

m
� x(t) � �(t) + 1

m
;

33



for t 2 I; also provides that fm(t; x(t); x0(t)) can be equal to8>>>>>>>>>><>>>>>>>>>>:

f(s; �(s); x0(s)) +
h
f(s; �(s); �0(s))� f(s; �(s); x0(s)) + x(s)��(s)

1+jx(s)��(s)j

i
m(x(s)� �(s)); if �(s) � x(s) � �(s) + 1

m ;

f(s; x(s); x0(s)); if �(s) � x(s) � �(s);

f(s; �(s); x0(s))�
h
f(s; �(s); �0(s))� f(s; �(s); x0(s)) + x(s)��(s)

1+jx(s)��(s)j

i
m(x(s)� �(s)); if �(s)� 1

m � x(s) � �(s):

For �(s) � x(s) � �(s) + 1
m

��fm(s; x(s); x0(s))��
�

��f(s; �(s); x0(s))��+ ����f(s; �(s); �0(s))� f(s; �(s); x0(s)) + x(s)� �(s)
1 + jx(s)� �(s)j

����
m(u(s)� �(s))

�
��f(s; �(s); x0(s))��+ ����f(s; �(s); �0(s))� f(s; �(s); x0(s)) + x(s)� �(s)

1 + jx(s)� �(s)j

����m 1

m

�
��f(s; �(s); x0(s))��+ ��f(s; �(s); �0(s))��+ ��f(s; �(s); x0(s))��+ x(s)� �(s)

1 + x(s)� �(s)

<
��f(s; �(s); x0(s))��+ ��f(s; �(s); �0(s))��+ ��f(s; �(s); x0(s))��+ 1

m

and for �(s)� 1
m � x(s) � �(s)

��fm(s; x(s); x0(s))��
�

��f(s; �(s); x0(s))��+ ����f(s; �(s); �0(s))� f(s; �(s); x0(s)) + x(s)� �(s)
1 + jx(s)� �(s)j

����
m jx(s)� �(s)j

�
��f(s; �(s); x0(s))��+ ����f(s; �(s); �0(s))� f(s; �(s); x0(s)) + x(s)� �(s)

1 + jx(s)� �(s)j

����m 1

m

�
��f(s; �(s); x0(s))��+ ��f(s; �(s); �0(s))��+ ��f(s; �(s); x0(s))��+ ���� x(s)� �(s)

1 + jx(s)� �(s)j

����
<

��f(s; �(s); x0(s))��+ ��f(s; �(s); �0(s))��+ ��f(s; �(s); x0(s))��+ 1

m
:

Hence
bZ
a

��fm(s; x(s); x0(s))�� ds � 3K +
1

m
(b� a);
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which implies that

x0 � 3K +
1

m
(b� a) +

bZ
a

�
R+ �(s)� �(s) + 1

m

�
ds

� 3K + (b� a) +
bZ
a

[R+ �(s)� �(s) + 1] ds = ;

where  is independent of m; which provide estimate for x0 on I:

Thus for � = 1; the modi�ed BVP (2:3) has a solution xm such that

�(t)� 1

m
� xm(t) � �(t) +

1

m
; t 2 I

and x0 �  on I:
Repeating this procedure for all m 2 N (m > 1); a sequence fxmg1m=2 is obtained; where

xm is a solution of the problem8<: x00(t) = fm(t; x(t); x0(t)); t 2 I;

x(a) = x(c); x(b) = x(d)

and satisfy the relations

kxmk � maxfk�k ; k�kg+ 1;
x0m � :

Thus, the sequence fxmg is bounded in C1(I) and since

x00m(t) = fm(t; xm(t); x0m(t)) ;
is bounded, hence fxmg is equicontinuous in C1(I): Thus, Arzela-Ascoli Theorem implies the

existence of a subsequence of fxmg convergent in C1(I) to a function x: Since

�(t)� 1

m
� xm(t) � �(t) +

1

m
; for t 2 I;
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then

�(t) � x(t) � �(t); t 2 I:

Moreover, kx0k � ; or more speci�cally

x0 � 3K +

bZ
a

[R+ �(s)� �(s)] ds:

The function x is a solution to problem (1:1):

2.2 Existence under Nagumo type growth condition

In the following theorem, f is not required to be bounded and it is proved that the conclusion

is still valid. The growth of f with respect to x0 is allowed to be quadratic.

Theorem 11 Assume that � and � are respectively lower and upper solutions of the BVP (1:1)

such that �(t) � �(t); t 2 I: If f : I�R2 ! R is continuous and satis�es the Bernstein-Nagumo

condition, then there exists a solution x(t) of the BVP (1:1) such that

�(t) � x(t) � �(t); t 2 I:

Moreover, there exists a constant C which depends on �; � and ! such that jx0(t)j < C on I;

where ! is a Nagumo function.

Proof. Let r = maxt2I �(t)�mint2I �(t): Since f satis�es a Nagumo condition relative to

�; �; there exists an N > 0; such that
R N
0

sds
!(s) > r: Let

C � maxfN;
�0 ;�0g

and de�ne q : R! R by

q(x)=

8>>><>>>:
C; if x � C;

x; if jxj � C;

�C; if x � �C:
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Note that q is continuous and bounded. Since
R x
0

sds
!(s) is continuous and an increasing function

of x and C � N; so Z C

0

sds

!(s)
�
Z N

0

sds

!(s)
> r: (2.7)

Consider the modi�cation F of f with respect to �; � as follows

F (t; x; x0) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

f(t; �(t); �0(t)) + x��(t)
1+jx��(t)j ; if x � �(t) + �;

f(t; �(t); x0) + [f(t; �(t); �0(t))� f(t; �(t); x0) + x��(t)
1+[x��(t) ]

x��(t)
� ; if �(t � x < �(t) + �;

f(t; x; x0); if �(t) � x � �(t);

f(t; �(t); x0)� [f(t; �(t); �0(t))� f(t; �(t); x0) + x��(t)
1+jx��(t)j ]

x��(t)
� ; if �(t)� 2< x � �(t);

f(t; �(t); �0(t)) + x��(t)
1+jx��(t)j ; if x � �(t)� �;

where � > 0 is a small �xed number.

Consider the modi�ed BVP

x00(t) = F (t; x; x0); t 2 I; (2.8)

x(a) = x(c); x(b) = x(d):

Where F (t; x; x0) is continuous on I � R2: It is to be noted that any solution x of the BVP

(2:8) which satis�es the relation

�(t) � x(t) � �(t); t 2 I;

is solution of the BVP (1:1):

For the existence of solution of the BVP (2:8); consider the following system of BVP

x00 = �F (t; x; x0) + (1� �)(�(t; x; x0) + x); t 2 I; (2.9)

x(a) = x(c); x(b) = x(d);
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where � 2 [0; 1]; is a parameter and �(t; x; x0) is bounded and continuous function de�ned by

�(t; x; x0) = f(t; p(t; x); q(x0))� p(t; x);

where

p(t; x) = maxf�(t);minfx; �(t)gg:

For � = 0; the system reduces to

x00(t) = x(t) + �(t; x; x0); t 2 I; (2.10)

x(a) = x(c); x(b) = x(d);

and for � = 1, it is equation (2:8): Since �(t; x; x0) is continuous and bounded and the linear

BVP

x00(t) = x(t); t 2 I;

x(a) = x(c); x(b) = x(d);

has a trivial solution only, it follows that the BVP (2:10) has a solution. That is the BVP (2:9)

has a solution for � = 0:

To show that for every � 2 [0; 1], any solution x of the BVP (2:9) satis�es the inequality

�(t) � x(t) � �(t); t 2 I:

Set

�(t) = x(t)� �(t); t 2 I:

It is required to show that �(t) � 0 for every t 2 I:

For this, suppose that this is not true, then �(t) > 0 for some t 2 I and consequently, �(t)

has a positive maximum at some t = t0 2 I: The BCs imply that

�(a) � �(c); �(b) � �(d);
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hence t0 2 (a; b): It follows that

�(t0) > 0; �
0(t0) = 0 and �00(t0) � 0:

However, if

�(t0) < x(t0) � �(t0) + �;

then by the de�nition of F and that of the upper solution, we obtain

�00(t0) = x00(t)� �00(t0)

� �

�
f(t0; �(t0); �

0(t0)) +
x(t0)� �(t0)

1 + jx(t0)� �(t0)j
x(t0)� �(t0)

"

�
+(1� �)[f(t0; �(t0); �0(t0))� �(t0) + x(t0)]� f(t0; �(t0); �0(t0))

= �f(t0; �(t0); �
0(t0)) +

�(�(t0))
2

(1 + �(t0))
+ f(t0; �(t0); �

0(t0) +

(1� �)v(t0)� �f(t0; �(t0); �0(t0))� f(t0; �(t0); �0(t0)

�00(t0) = �
(�(t0))

2

(1 + �(t0))"
+ (1� �)�(t0) > 0;

which is a contradiction.

If x(t0) > �(t0) + �; then

�00(t0) = x00(t)� �00(t0) � �[f(t0; �(t0); �0(t0)) +
x(t0)� �(t0)

1 + jx(t0)� �(t0)j
+

(1� �)[f(t0; �(t0); �0(t0))� �(t0) + x(t0)]� f(t0; �(t0); �0(t0))

= �f(t0; �(t0); �
0(t0)) +

�(�(t0))

1 + �(t0)
+ f(t0; �(t0); �

0(t0) +

(1� �)v(t0)� �f(t0; �(t0); �0(t0))� f(t0; �(t0); �0(t0)

�00(t0) = �
�(t0)

1 + �(t0)
+ (1� �)�(t0) > 0;

which is again a contradiction. Hence, it follows that

x(t) � �(t) for every t 2 I:

Now, to show that

x(t) � �(t) for every t 2 I;
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set

u(t) = x(t)� �(t); t 2 I

and suppose that u(t) has a negative minium at some t0 2 I. The BCs

�(a) � �(c); �(b) � �(d);

imply that t0 2 (a; b): Consequently,

u(t0) < 0; u
0(t0) = 0 and u00(t0) � 0:

If x(t0) < �(t0)� �; then by de�nition of F and the lower solution

u00(t0) = x00(t0)� �00(t0) � �[f(t0; �(t0); �0(t0)) +
x(t0)� �(t0)

1 + jx(t0)� �(t0)j
+

(1� �)[f(t0; �(t0); �0(t0))� �(t0) + x(t0)]� f(t0; �(t0); �0(t0));

= �f(t0; �(t0); �
0(t0)) + �

u(t0)

1 + u(t0)
+ f(t0; �(t0); �

0(t0) +

(1� �)u(t0)� �f(t0; �(t0); �0(t0))� f(t0; �(t0); �0(t0);

u00(t0) = �
u(t0)

1 + u(t0)
+ (1� �)u(t0) < 0;

a contradiction. Hence

x(t) � �(t) for every t 2 I

and so x is a solution of (1:1):

Now, it remains to show that jx0(t)j < C on I: The BCs imply the existence of a1 2 (a; c)

and b1 2 (d; b) such that

x0(a1) = 0; x
0(b1) = 0:

Suppose that there exist t0 2 (a1; b1) such that x0(t0) � C: Let [t1;t2] � [a1; b1] be the maximal

interval containing t0 such that x0(t) > 0 for every t 2 (t1; t2): Let

maxfx0(t) : t 2 [t1;t2]g = x0(t�) = C1;
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then C1 � C; and hence, in view of (2:7) and the increasing property of function
R x
0

sds
!(s) in x;

it follows that Z C1

0

sds

!(s)
�
Z C

0

sds

!(s)
> r: (2.11)

Since, for each t 2 (t1; t2); and x 2 [�(t); �(t)];

x00(t) = f(t; x; x0) � !(x0):

It follows that
x0(t)x00(t)

!(x0)
� x0(t); t 2 (t1;t2)

and by integration,

Z C1

0

sds

!(s)
� x(t�)� x(t1) � max

t2(a;b)
�(t)� min

t2(a;b)
�(t) = r; (2.12)

which contradicts (2:11):

Now, let t0 2 [a; a1) and [t1; t2] � [a; a1] be the maximal interval containing t0 such that

x0(t0) > 0 for t 2 (t1;t2); where t1; t2 are such that,

t2 � a1; t1 � a with x0(t2) = 0 and x0(t1) � 0:

Let

maxfx0(t) : t 2 [t1;t2]g = x0(t�) = C1;

then C1 � C; and t� < t2: Since x 2 [�; �] for t 2 (t1;t2); by (2:8); it follows that

x00(t) = f(t; x; x0) � �!(x0); t 2 (t1;t2);

which implies that

�x
0(t)x00(t)

!(x0)
� x0(t); t 2 (t1;t2):

Integrating from t� to t2; Z C1

0

sds

!(s)
� x(t2)� x(t�) � r; (2.13)
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which is again a contradiction.

If t0 2 (b1; b] and [t1;t2] be the maximal interval in [b1; b] containing t0 such that

x0(t) > 0; for t 2 (t1;t2);

where t1 � b1 and t2 � b are such that x0(t1) = 0 and x0(t2) � 0: Then t� > t1; where t� 2 (t1;t2]

is the point such that

x0(t�) = maxfx0(t) : t 2 [t1;t2]g:

Since x 2 [�; �]; by (1:2); the following holds

x0(t)x00(t)

!(x0)
� x0(t); t 2 (t1;t2):

Integration from t1 to t� leads toZ C1

0

sds

!(s)
� x(t�)� x(t1) � r;

again is a contradiction. Hence

x0(t) < C; t 2 I:

Now, it remains to show that

x0(t) > �C; t 2 I:

Assume that there exists t0 2 (a1;b1) such that x0(t0) � �C: Let [t1;t2] � [a1; b1] be the maximal

interval containing t0 such that x0(t) < 0 for every t 2 (t1;t2): Let

minfx0(t) : t 2 [t1;t2]g = x0(t�) = �C2; then C2 � C

and in view of (2:7); Z C2

0

sds

!(s)
> r:

For t 2 (t1;t2); since x 2 [�; �]; so

x00(t) = f(t; x; x0) � �!(
��x0��):
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It follows that
x0(t)x00(t)

!(jx0j) � �x0(t)

and hence Z C2

0

sds

!(s)
� x(t1)� x(t�) � max

t2[a;b]
�(t)� min

t2[a;b]
�(t) = r; (2.14)

which is a contradiction.

If t0 2 [a; a1) or (b1; b]; a contradiction occurs in the same way as above. Hence jx0(t)j < C;

t 2 I:

Let us consider the following example [7] which shows that the hypotheses of the above

theorem can easily be veri�ed and also, demonstrate that the above theorem is more general

than one studied in chapter 1:

Example: Consider the BVP

x00(t) = �x0(t) + g(x)�(t); t 2 [0; 1]; (2.15)

x(0) = x(�); x(�) = x(1);

where, 0 < � � � < 1; g : R �! R is continuous and � 2 C2[0; 1] satis�es the linear problem

with constant coe¢ cients

�00(t) + �0(t)� �(t) = ��(t); t 2 [0; 1]; (2.16)

�(0) = �(�); �(�) = �(1);

where �(t) 2 C[0; 1] and �(t) � 0 on [0; 1]: Assume that g(0) � 0; and g is increasing and there

exist a � 0; such that g(a) � 0: Since the homogeneous problem

�00(t) + �0(t)� �(t) = 0; (2.17)

�(0) = �(�); �(�) = �(1);

has only the trivial solution and �(t) is continuous and bounded on [0; 1]; it follows that the

BVP (2:16) has a solution.
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Claim that any solution �(t) of (2:16) satis�es �(t) � 0 on [0; 1]: If not, then �(t) has a

negative minimum at some t0 2 [0; 1]: The BCs imply that t0 2 (0; 1) and hence

�(t0) < 0; �
0(t0) = 0; �

00(t0) � 0:

However, from (2:16); it is clear that

�00(t0) = ��0(t0) + �(t0)� �(t0) < 0;

is a contradiction. Thus �(t) � 0 on [0; 1] and the claim is veri�ed.

Since [0; 1] is compact, then there exists L � 0 such that

0 � �(t) � L on [0; 1]:

Now, take �(t) = 0: Since g(0) � 0; therefore

�00(t) + �0(t)� g(t)�(t) = �g(0)�(t) � 0;

which implies that � is a lower solution of the problem (2:15):

Take �(t) = a+ g(a)�(t): As � � � and g is increasing, so g(�) � g(�): Moreover,

�00(t) + �0(t)� g(�)�(t) � g(a)�00(t) + g(a)�0(t)� g(a)�(t)

= g(a)[�00(t) + �0(t)� �(t)] � 0 and

�(0) = a+ g(a)�(0) = a+ g(a)�(�) = �(�);

�(�) = a+ g(a)�(�) = a+ g(a)�(1) = �(1):

Hence � is an upper solution of the problem (2:15): Clearly,

�(t) � �(t) on [0; 1]:
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Now for t 2 [0; 1] and x 2 [min�;max�]; we have

g(a+ g(a)L) � g(�) � g(x):

Let

C3 = maxfjg(0)j ; g(a+ g(a)L)g;

then for t 2 [0; 1] and x 2 [min�;max�], it follows that

���x0(t) + g(x)�(t)�� � ��x0(t)��+ LC3 = h(��x0(t)��);
where

h(s) = s+ LC3 for s � 0:

Moreover Z 1

0

sds

h(s)
=

Z 1

0

sds

s+ LC3
=1:

Thus the Nagumo condition is satis�ed.

Hence by Theorem (10); there exists a solution x of the BVP (2:15) ; such that

� � x � �:

Note that for x 2 [0; a+ g(a)�(t)]; we have

f(t; x;R) = �R+ g(x)�(t);

f(t; x;�R) = R+ g(x)�(t):

Thus, by the assumption, it has been proved that

f(t; 0; R) = �R+ g(0)�(t) � 0 for R � 0;

f(t; a;�R) = R+ g(a)�(t) � 0 for �R � 0:
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If R > 0; or g(0) < 0 and �(t) > 0 somewhere in [0; 1]; or g(a) > 0 and �(t) > 0 somewhere in

[0; 1]: Then it is not possible to apply Theorem (9) of chapter 1:

2.3 Existence results under sign conditions

In the following theorem, f is not required to satisfy the Nagumo type growth condition but

some sign conditions on f are imposed.

Theorem 12 If in Theorem (11), the Berstein-Nagumo condition is replaced by the following

sign conditions 8<: f(t; x;R) � 0; f(t; x;�R) � 0 for t 2 [a; b];

f(t; x;R) � 0; f(t; x;�R) � 0 for t 2 (d; b];
(2.18)

where x 2 [min�(t);max�(t)]; R � maxfk�0k ;
�0g: Then the conclusion of Theorem (11) is

valid, taking C = R:

Proof. The proof is closely related to that of Theorem (9) ; chapter 1: In this theorem,

condition (2:18) implies

f(t; x;R) = f(t; x;�R) = 0; for t 2 (d; b] and x 2 [min�(t);max�(t)]:

Let m 2 N and consider the problem

x00(t) = fm(t; x; x
0); t 2 I; (2.19)

x(a) = x(c); x(b) = x(d);

46



where

fm(t; x; x
0) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

f(t; �(t); �0(t)) + x��(t)
1+jx��(t)j ; if x � �(t) + 1

m ;

f(t; �(t); q(x0)) + [f(t; �(t); �0(t))� f(t; �(t); q(x0)) + x��(t)
1+jx��(t)j ]

m(x� �(t)); if �(t) � x < �(t) + 1
m ;

f(t; x; q(x0)); if �(t) � x � �(t);

f(t; �(t); q(x0))� [f(t; �(t); �0(t))� f(t; �(t); q(x0)) + x��(t)
1+jx��(t)j ]

m(x� �(t)); if �(t)� 1
m < x � �(t);

f(t; �(t); �0(t)) + x��(t)
1+jx��(t)j ; if x � �(t)� 1

m ;

and q(x0) is de�ned by

q(x0) = maxf�R;minfx0; Rgg:

Note that sgn(q(y)) = sgn(y) and q(y) = y for jyj � R: Further, note that fm(t; x; x0) is

continuous and bounded on I �R2 and any solution x(t) of the BVP (2:19) which satis�es the

relations

�(t) � x � �(t) and
��x0(t)�� � R; t 2 I;

is a solution of the BVP (1:1):

For the existence of solution of the BVP (2:19); consider the homotopy

x00(t) = �fm(t; x; x
0) + (1� �)(�(t; x; x0) + x

m
); t 2 I; (2.20)

x(a) = x(c); x(b) = x(d);

where � 2 [0; 1]; and �m(t; x; x0) is de�ned by

�m(t; x; x
0) = f(t; p(t; x); q(x0))� p(t; x)

m
;

p(t; x) = maxf�(t);minfx; �(t)gg:

For � = 0; (2:20) has a solution. For � 2 [0; 1] any solution xm of (2:20) satis�es the inequality

�(t)� 1

m
� xm(t) � �(t) +

1

m
; t 2 I: (2.21)
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For this, set

v(t) = xm(t)� �(t)�
I

m
; t 2 I;

and suppose that v(t) has a positive maximum at some t = t0 2 I: The BCs imply that

v(a) � v(c); v(b) � v(d);

choose t0 2 (a; b): It follows that

v(t0) > 0; v
0(t0) = 0; v

00(t0) � 0:

On the other hand

v00(t0) = x00m(t0)� �00(t0)

� �

"
f(t; �(t0); �

0(t0)) +
v(t0) +

1
m

1 + v(t0) +
1
m

#
+ (1� �)[f(t; �(t0); �0(t0))

��(t0)
m

+
xm(t0)

m
]� f(t; �(t0); �0(t0))

=

�
v(t0) +

1

m

� 
�

1 + v(t0) +
1
m

+
1� �
m

!
> 0;

which is a contradiction. Hence it follows that

xm(t) � �(t) +
1

m
for every t 2 I:

Similarly, it can be shown

xm(t) � �(t)�
I

m
for every t 2 I:

Thus, a sequence fxmg of solution the BVP (2:20) is obtained which satis�es the relation

�(t)� I

m
� xm(t) � �(t) +

1

m
; t 2 I: (2.22)
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Moreover, the BCs guarantee the existence of at least one point t1 2 (a; b) such that x0m(t1) = 0:

Integrating (2:20) from t1 to t

��x0m(t)�� � bZ
a

�����fm(t; xm(t); x0m(t)) + (1� �)(�m(t; xm(t); x0m(t)) + xm(t)m

���� dt;
which implies that fx0mg is uniformly bounded on I. Thus, the sequence fxmg is bounded and

equicontinuous in C1(I) and by the Arzela-Ascoli theorem it is possible to choose a subsequence

converging in C1(I) to a function x 2 C1(I): Since (2:22) holds for every m 2 N and every

t 2 I; it follows that

�(t) � x(t) � �(t); t 2 I

and hence x is solution of the problem

x00(t) = f(t; x; q(x0)); t 2 I (2.23)

x(a) = x(c); x(b) = x(d):

Now, to show that ��x0(t)�� � R; t 2 I;
the BCs

x(a) = x(c); x(b) = x(d);

imply that there exist a1 2 (a; c) and b1 2 (d; b) such that

x0(a1) = 0; x
0(b1) = 0:

Let

maxfx0(t) : t 2 Ig = x0(t0) � R+
1

m
:
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Then, t0 6= a1; b1: If t0 2 [a; a1); then there exist t1 � t0 and t2 � a1 with t1 < t2 such that

x0(t1) = R+
1

m
; x0(t2) = R and (2.24)

R � x0(t) � R+ 1

m
; for t 2 [t1; t2]:

Integrating (2:23) from t1 to t2; using (2:24) and (2:18); it follows that

0 >

t2Z
t1

x00(t)dt =

t2Z
t1

f(t; x(t); R)dt � 0;

which is a contradiction. If t0 2 (a1; b1]; then choose t1; t2 2 (a1; b1] with t1 < t2; t1 � t0 and

t2 � b1 such that

x0(t1) = R+
1

m
; x0(t2) = R (2.25)

and

R � x0(t) � R+ 1

m
; t 2 [t1; t2]:

Integrating (2:23) from t1 to t2; using (2:25) and (2:18); it follows that

0 >

t2Z
t1

x00(t)dt =

t2Z
t1

f(t; x(t); R)dt � 0;

again a contradiction.

Now if t0 2 (b1; b]; then there exists t1 � b1; t2 � t0 with t1 < t2 such that

x0(t1) = R; x0(t2) = R+
1

m
and (2.26)

R � x0(t) � R+ 1

m
; t 2 [t1; t2]:

Integrating (2:23) from t1 to t2; using (2:26) and conditions (2:18);

0 <

t2Z
t1

x00(t)dt =

t2Z
t1

f(t; x(t); R)dt = 0;
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a contradiction. Hence,

x0(t) � R; t 2 I:

Similarly, using the conditions

f(t; x;�R) � 0 for t 2 [a; b] and f(t; x;�R) � 0 for t 2 (d; b];

it can also be shown that

x0(t) � �R; t 2 I:

Consequently, x(t) is a solution of the BVP (1:1):
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Chapter 3

Existence of at least three solutions

In this chapter, we investigate new results dealing with the existence of at least three solutions

of the BVP (1:1) in the presence of two lower solutions and two upper solutions.

Existence of at least two solutions for some other BVPs has already been studied, e.g. [2],

[13] and [14]. In [14], existence of at least two solutions in the presence of constant lower and

upper solutions for some four point BVP has been studied, while in [2], the author studied

existence of at least two solutions for two point Drichlet BVPs. An abstract result giving the

existence of three solutions of nonlinear equations has given by Leggett and Williams [11]. They

have developed a �xed point theorem in an ordered Banach space that guarantees the existence

of three �xed points.

Motivated by the work of J. Henderson and H. B. Thompson [4] ; R. A. Khan and M. Ra�que

[8], for the existence of at least three solutions of some nonlinear second order di¤erential

equations subject to two point BCs [4] and nonlinear three point BCs [8] ; in this chapter, we

study the existence of at least three solutions for the four point BVP (1:1) in the presence of

two lower solutions �; �1 and two upper solutions �; �1 such that � � �1;and � � �1. It

is assumed the existence of upper and lower solutions that are not necessarily constant and

allow the growth of f(t; x; y) with respect to y to be quadratic. Some topological degree theory

arguments are used to get multiplicity results.
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3.1 Explicit form of Green�s Function

We use properties of a Green�s function to construct its explicit form. Since the solution of the

homogeneous di¤erential equation

x00(t) + x(t) = 0;

is given by

x(t) = A cos t+B sin t;

where A and B are constants. Take

G(t; s) =

8<: A cos t+B sin t; a � t � s � b;

C cos t+D sin t; a � s � t � b;
(3.1)

where A; B; C and D are constant to be determined. Using the BC, G(a; s) = G(c; s);we obtain

B = A tan(
a+ c

2
); where

a+ c

2
6= �

2

and the BC, G(b; s) = G(d; s); leads to

D = C tan(
b+ d

2
); where

b+ d

2
6= �

2
:

Putting the values of B and D in (3:1); we get

G(t; s) =

8<: A cos t+A tan(a+c2 ) sin t; a � t � s � b;

C cos t+ C tan( b+d2 ) sin t; a � s � t � b:
(3.2)

Using the continuity of a Green�s function at s, that is,

G(s�; s) = G(s+; s);

we have

A =
C(cos s+ sin s tan b+d2 )

cos s+ sin s tan a+c2
;

where a+c
2 6= �

2 and
b+d
2 6= �

2 :
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Consequently, G(t; s) takes the form

G(t; s) =

8<:
C(cos s+sin s tan b+d

2
)(cos t+sin t tan a+c

2
)

cos s+sin s tan a+c
2

a � t � s � b;

C(cos t+ tan( b+d2 ) sin t); a � s � t � b:
(3.3)

Di¤erentiating (3:3) with respect to t; we get

@

@t
G(t; s) =

8<:
C(cos s+sin s tan( b+d

2
))(cos t tan(a+c

2
)�sin t)

cos s+sin s tan a+c
2

a � t � s � b;

C(cos t tan( b+d2 )� sin t); a � s � t � b:

The property that the derivative of G has a jump-discontinuity that is given by

@

@t
G(s+; s)� @

@t
G(s�; s) = �1;

implies

C = �
1 + tan s tan a+c2

(1 + tan2 s)(tan b+d2 � tan a+c2 )
;

where a+c
2 6= �

2 and
b+d
2 6= �

2 :

Hence

G(t; s) =

8><>:
� (1+tan s tan b+d

2
)(cos t+sin t tan a+c

2
)

(1+tan2 s)(tan b+d
2
�tan a+c

2
)

; a � t � s � b;

� (1+tan s tan a+c
2
)(cos t+sin t tan b+d

2
)

(1+tan2 s)(tan b+d
2
�tan a+c

2
)

; a � s � t � b;

is a Green�s function of the homogenous four point BVP.

3.2 Existence of at least three solutions

In this section, we study existence of at least three solutions of the BVP (1:1) : We use the

method of upper and lower solutions and some degree theory arguments to establish multiplicity

results.

Theorem 13 Assume that

(A1) �; �1 2 C2(I) are two lower solutions and �; �1 2 C2(I) are two upper solutions of the

BVP (1:1) such that

� � �1 � �; � � �1 � � and �1 
 �1 on I:
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(A2) f : I � R2 ! R is continuous and satis�es a Nagumo condition relative to �; �:

(A3) �1; �1 are strict lower and upper solutions of the BVP (1:1) :

Then the BVP (1:1) has at least three solutions xi; i = 1; 2; 3 such that

� � x1 � �1; �1 � x2 � �; x3 
 �1 and x3 � �1 on I:

Proof. De�ne g : I � R2 ! R by

g(t; x; x0) = f(t; x; x0) + x;

then g is continuous and the BVP (1:1) can be written as follows

x00(t) + x(t) = g(t; x(t); x0(t)), t 2 I; (3.4)

x(a) = x(c); x(b) = x(d):

De�ne the modi�cation g��� of g with respect to �; � as follows

g���(t; x; x
0) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

g(t; �(t); �0(t)) + x� x��(t)
1+jx��(t)j ; if x � �(t) + �;

g(t; �(t); q(x0)) + [g(t; �(t); �0(t)� g(t; �(t); q(x0)) + x��(t)
1+[x��(t) ]

x��(t)
� ; if �(t) � x < �(t) + �;

g(t; x; q(x0)); if �(t) � x � �(t);

g(t; �(t); q(x0))� [g(t; �(t); �0(t))� g(t; �(t); q(x0)) + x��(t)
1+jx��(t)j ]

x��(t)
� ; if �(t)� � < x � �(t);

g(t; �(t); �0(t)) + x��(t)
1+jx��(t)j ; if x � �(t)� �;

where � > 0 is a small �xed number. Note that g��� is continuous and bounded on I � R2 and

hence satis�es the Nagumo condition.

Consider the modi�ed BVP

x00(t) + x(t) = g���(t; x(t); x
0(t)), t 2 I; (3.5)

x(a) = x(c); x(b) = x(d):
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As before, we note that any solution of the BVP (3:5) such that

�(t) � x(t) � �(t) and
��x0(t)�� � C; t 2 I;

is a solution of the BVP (3:4) :

Using the de�nition of g��� and that of upper and lower solutions, we obtain

g���(t; �(t); �
0 (t)) = g(t; �(t); �0 (t))

= f(t; �(t); �0 (t)) + � (t) � �00(t) + � (t) ; t 2 I

and

g���(t; �(t); �
0 (t)) = g(t; �(t); �0 (t))

= f(t; �(t); �0 (t)) + � (t) � �00(t) + � (t) ; t 2 I;

which imply that �; � are lower and upper solutions of (3:5) : Hence by Theorem (11), any

solution of the modi�ed BVP (3:5) satis�es the following inequalities

�(t) � x(t) � �(t);
��x0 (t)�� � C; t 2 I

and hence is solution of (3:4): Thus, it is su¢ cient to show that the modi�ed BVP (3:5) has at

least three solutions xi such that

�(t) � xi(t) � �(t); t 2 I; i = 1; 2; 3:

De�ne an integral operator T : C1(I)! C1(I) by

eT��x(t) = Z b

a
G(t; s)g���(s; x(s); x

0(s))ds: (3.6)

Di¤erentiating (3:5) with respect to t , we have

( eT��x(t))0 = Z b

a
Gt(t; s)g

�
��(s; x(s); x

0(s))ds: (3.7)
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Since g��� is continuous and bounded on I � R2, there exists M1 > 0 such that

��g���(t; x(t); x0(t))�� �M1 on I � R2:

Also G(t; s) is continuous and bounded on I � I; hence there exists M2 > 0 such that

jG(t; s)j �M2; on I � I:

The derivative of G(t; s), that is, Gt(t; s) is discontinuous at t = s; but have a �nite jump-

discontinuity, hence there also exists M3 > 0 such that

jGt(t; s)j �M3 on I � I:

Consequently, from (3:6) and (3:7) ; it follows that

��� eT��x(t)��� � Z b

a
G(t; s)g���(s; x(s); x

0(s))ds �M2M1(b� a) (3.8)

and ���( eT��x(t))0��� � Z b

a
Gt(t; s)g

�
��(s; x(s); x

0(s))ds �M3M1(b� a); (3.9)

which imply that the sequence
neT��x(t)o is uniformly bounded and equicontinuous. Hence by

Arzela-Ascolai theorem, eT�� is compact.
Choose,

M > max fM2M1(b� a); M3M1(b� a)g :

Then, by (3:8) and (3:9) ; we get

��� eT��x(t)��� < M and
���( eT��x(t))0��� < M; 8 x 2 C1(I):

Let


 =
�
x 2 C1(I) : kxk < M;

x0 < M	 :
Then 
 is a bounded open subset of C1(I):
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Let x; y 2 
; then kxk < M; and kyk < M: Also kx0k < M; ky0k < M: Since

k�x+ (1� �) yk � k�xk+ (1� �) kyk

= � kxk+ (1� �) kyk

= �M + (1� �)M =M

and

�x0 + (1� �) y0 �
�x0+ (1� �)y0

= �
x0+ (1� �)y0

= �M + (1� �)M =M:

Hence

�x+ (1� �) y 2 
;

which implies that 
 is convex.

Now, we show that eT�� (
) � 
:
Let x 2 
; then x 2 C1(I) and kxk < M; kx0k < M: Since

eT�� (x (t)) = Z b

a
G(t; s)g���(s; x(s); x

0(s))ds;

eT�� (x (t))0 = Z b

a
Gt(t; s)g

�
��(s; x(s); x

0(s))ds:

Therefore

eT��x �
Z b

a

G(t; s)g���(s; x(s); x0(s)) ds
�

Z b

a
M1M2ds =M1M2 (b� a) < M

and
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�eT��x�0 �
Z b

a

Gt(t; s)g���(s; x(s); x0(s)) ds
�

Z b

a
M3M1ds =M3M1 (b� a) < M;

which implies that eT��x 2 
: Hence eT�� (
) � 
:
Hence by Schauder�s �xed point theorem, eT�� has a �xed point, that is, the BVP (3:4) has

a solution in 
:

Since eT�� (
) � 
 and for x 2 @
 and � 2 [0; 1]; we have � eT��x 6= x; this implies that
(1� � eT�� )x 6= 0; for �[0; 1]:

Using the homotopy invariance property of degree, we get

deg(I � � eT�� ;
; 0) = 1; for �[0; 1]
and

deg(I � eT�� ;
; 0) = 1 for �[0; 1]:
Consider open bounded sets


�1 = fx 2 
 : x > �1 on Ig

and


�1 = fx 2 
 : x < �1 on Ig :

Then 
�1 \ 

�1 = ? and since �1 � �1 on I; therefore the set 
r 
�1 [ 
�1 6= ?: Moreover,

there are no solutions of (3:5) on @
�1 [ @
�1 : Because, if x is a solution of (3:5) such that

x 2 @
�1 [ @
�1 ;
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then x 2 @
�1 or x 2 @
�1 , which implies that

x = �1 or x = �1;

an impossible result as �1 and �1 are strict lower and upper solutions.

Using the additivity property of degree, it follows

1 = deg(I� eT�� ;
; 0) = deg(I� eT�� ;
�1 ; 0)+deg(I� eT�� ;
�1 ; 0)+deg(I� eT�� ;
�
�1 [ 
�1 ; 0):
(3.10)

We show that

deg(I � eT�� ;
�1 ; 0) = deg(I � eT�� ;
�1 ; 0) = 1:
First, we show that

deg(I � eT�� ;
�1 ; 0) = 1:
Let G�1� be the modi�cation of g with respect to �1; �; that is

G�1�(t; x; x
0) =

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

g(t; �(t); �0(t)) + x� x��(t)
1+jx��(t)j ; if x � �(t) + �;

g(t; �(t); q(x0)) + [g(t; �(t); �0(t)� g(t; �(t); q(x0)) + x��(t)
1+[x��(t)] ]

x��(t)
� ; if �(t) � x < �(t) + �;

g(t; x; q(x0)); if �(t) � x � �(t);

g(t; �1(t); x
0)� [g(t; �1(t); �01(t))� g(t; �1(t); q(x0)) +

x��1(t)
1+jx��1(t)j ]

x��1(t)
� ; if �1(t)� � < x � �1(t);

g(t; �1(t); �
0
1(t)) +

x��1(t)
1+jx��1(t)j ; if x � �1(t)� �:

Note that G�1� = g
�
�1�
:

Consider the BVP

x00(t) = G�1�(t; x(t); x
0(t)); t 2 I; (3.11)

x(a) = x(c); x(b) = x(d):

60



This is equivalent to the integral equation

(I � eT�
1�
)x = 0;

where eT�
1�
x(t) =

Z b

a
G(t; s)G�1�(s; x(s); x

0(s))ds;

is a compact operator.

As in the proof of Theorem (11); we can show that any solution x of the BVP (3:11) satis�es

x � �1 on I and since �1 is strict lower solution of (1:1), this implies that x 6= �1 on (a; b) and

hence x 2 
�1 : It follows that the BVP (3:11) has no solution in 
�
�1 ; which implies that

the degree

d(I � eT�1� ;
��
�1 ; 0) = 0: (3.12)

Moreover, since eT�1� (
) � 
; hence
d(I � eT�1� ;
; 0) = 1: (3.13)

From(3:12) and (3:13), it follows that

d(I � eT�1� ;
�1 ; 0) = 1. (3.14)

Since eT�1� = eT�� on 
�1 ; so by the property of degree
d(I � eT�� ;
�1 ; 0) = 1. (3.15)

Similarly, we can show that

d(I � eT�� ;
�1 ; 0) = 1:
Thus, from (3:10)

d(I � eT�� ;
�
�1 [ 
�1 ; 0) = �1:
Hence there are at least three solutions one in each of the sets 
�1 ; 


�1 and 
�
�1 [
�1 :

Thus, we have proved that in the presence of two lower solutions and two upper solutions, the
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BVP (1:1) has at least three solutions in some speci�c regions determined by the lower and

upper solutions.
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Chapter 4

Conclusion

In this dissertation, the existence of solutions of four-point BVPs of the type

x00(t) = f(t; x; x0); t 2 I = [a; b];

x(a) = x(c); x(b) = x(d);

is discussed, where a; b; c; d 2 R; are parameters such that a < c � d < b; and f : I �R2 ! R is

a continuous function. The method of upper and lower solutions is used to establish existence

of solution of the BVP (1:1). The basic idea is to modify the given problem suitably and then

employ Leray-Schauder theory or known existence results of the modi�ed problem together

with the theory of di¤erential and integral inequalities to establish existence of solution of the

given problem. Here f is modi�ed in such a way that solutions of the modi�ed problem lie in

a region where f is unmodi�ed and hence are solutions of the original nonlinear BVP. Such

methods allow us to ensure the existence of at least one solution of the given problem in the

region bounded by the well ordered upper and lower solutions.

Chapter 1 contains the basic de�nitions and notions. In Chapter 2, the existence of at least

one solution of the four point BVP (1:1) is discussed in the presence of lower and upper solutions.

It is assumed that the nonlinearity is bounded on I � R2 and established the existence of at

least one solution in the presence of upper and lower solutions. Then, the problem under much

weaker assumptions is studied by replacing the boundedness assumption on f by the Nagumo

type growth condition. Finally, the result is further generalized by allowing f to satisfy some
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sign conditions without demanding the Nagumo condition.

In Chapter 3, new results on the existence of at least three solutions of the BVP (1:1) are

proved in the presence of two lower solutions and two upper solutions. Such types of results

were studied for some other BVPs in [5] and [10] : We proved that more than one solutions of

the BVP (1:1) exist in the presence of two lower solutions �; �1 and two upper solutions �; �1.
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